PR ipa/64481
[official-gcc.git] / gcc / jump.c
blobc3eb40c54b045f0d5c051f1a7665a5d4321d38e8
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "hashtab.h"
49 #include "hash-set.h"
50 #include "vec.h"
51 #include "machmode.h"
52 #include "input.h"
53 #include "function.h"
54 #include "predict.h"
55 #include "dominance.h"
56 #include "cfg.h"
57 #include "cfgrtl.h"
58 #include "basic-block.h"
59 #include "symtab.h"
60 #include "expr.h"
61 #include "except.h"
62 #include "diagnostic-core.h"
63 #include "reload.h"
64 #include "tree-pass.h"
65 #include "target.h"
66 #include "rtl-iter.h"
68 /* Optimize jump y; x: ... y: jumpif... x?
69 Don't know if it is worth bothering with. */
70 /* Optimize two cases of conditional jump to conditional jump?
71 This can never delete any instruction or make anything dead,
72 or even change what is live at any point.
73 So perhaps let combiner do it. */
75 static void init_label_info (rtx_insn *);
76 static void mark_all_labels (rtx_insn *);
77 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
78 static void mark_jump_label_asm (rtx, rtx_insn *);
79 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
80 static int invert_exp_1 (rtx, rtx);
82 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
83 static void
84 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
86 rtx_insn_list *insn;
88 timevar_push (TV_REBUILD_JUMP);
89 init_label_info (f);
90 mark_all_labels (f);
92 /* Keep track of labels used from static data; we don't track them
93 closely enough to delete them here, so make sure their reference
94 count doesn't drop to zero. */
96 if (count_forced)
97 for (insn = forced_labels; insn; insn = insn->next ())
98 if (LABEL_P (insn->insn ()))
99 LABEL_NUSES (insn->insn ())++;
100 timevar_pop (TV_REBUILD_JUMP);
103 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
104 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
105 instructions and jumping insns that have labels as operands
106 (e.g. cbranchsi4). */
107 void
108 rebuild_jump_labels (rtx_insn *f)
110 rebuild_jump_labels_1 (f, true);
113 /* This function is like rebuild_jump_labels, but doesn't run over
114 forced_labels. It can be used on insn chains that aren't the
115 main function chain. */
116 void
117 rebuild_jump_labels_chain (rtx_insn *chain)
119 rebuild_jump_labels_1 (chain, false);
122 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
123 non-fallthru insn. This is not generally true, as multiple barriers
124 may have crept in, or the BARRIER may be separated from the last
125 real insn by one or more NOTEs.
127 This simple pass moves barriers and removes duplicates so that the
128 old code is happy.
130 static unsigned int
131 cleanup_barriers (void)
133 rtx_insn *insn;
134 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
136 if (BARRIER_P (insn))
138 rtx_insn *prev = prev_nonnote_insn (insn);
139 if (!prev)
140 continue;
142 if (CALL_P (prev))
144 /* Make sure we do not split a call and its corresponding
145 CALL_ARG_LOCATION note. */
146 rtx_insn *next = NEXT_INSN (prev);
148 if (NOTE_P (next)
149 && NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
150 prev = next;
153 if (BARRIER_P (prev))
154 delete_insn (insn);
155 else if (prev != PREV_INSN (insn))
156 reorder_insns_nobb (insn, insn, prev);
159 return 0;
162 namespace {
164 const pass_data pass_data_cleanup_barriers =
166 RTL_PASS, /* type */
167 "barriers", /* name */
168 OPTGROUP_NONE, /* optinfo_flags */
169 TV_NONE, /* tv_id */
170 0, /* properties_required */
171 0, /* properties_provided */
172 0, /* properties_destroyed */
173 0, /* todo_flags_start */
174 0, /* todo_flags_finish */
177 class pass_cleanup_barriers : public rtl_opt_pass
179 public:
180 pass_cleanup_barriers (gcc::context *ctxt)
181 : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
184 /* opt_pass methods: */
185 virtual unsigned int execute (function *) { return cleanup_barriers (); }
187 }; // class pass_cleanup_barriers
189 } // anon namespace
191 rtl_opt_pass *
192 make_pass_cleanup_barriers (gcc::context *ctxt)
194 return new pass_cleanup_barriers (ctxt);
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
200 notes whose labels don't occur in the insn any more. */
202 static void
203 init_label_info (rtx_insn *f)
205 rtx_insn *insn;
207 for (insn = f; insn; insn = NEXT_INSN (insn))
209 if (LABEL_P (insn))
210 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
212 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 sticky and not reset here; that way we won't lose association
214 with a label when e.g. the source for a target register
215 disappears out of reach for targets that may use jump-target
216 registers. Jump transformations are supposed to transform
217 any REG_LABEL_TARGET notes. The target label reference in a
218 branch may disappear from the branch (and from the
219 instruction before it) for other reasons, like register
220 allocation. */
222 if (INSN_P (insn))
224 rtx note, next;
226 for (note = REG_NOTES (insn); note; note = next)
228 next = XEXP (note, 1);
229 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 remove_note (insn, note);
237 /* A subroutine of mark_all_labels. Trivially propagate a simple label
238 load into a jump_insn that uses it. */
240 static void
241 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
243 rtx label_note, pc, pc_src;
245 pc = pc_set (jump_insn);
246 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
249 /* If the previous non-jump insn sets something to a label,
250 something that this jump insn uses, make that label the primary
251 target of this insn if we don't yet have any. That previous
252 insn must be a single_set and not refer to more than one label.
253 The jump insn must not refer to other labels as jump targets
254 and must be a plain (set (pc) ...), maybe in a parallel, and
255 may refer to the item being set only directly or as one of the
256 arms in an IF_THEN_ELSE. */
258 if (label_note != NULL && pc_src != NULL)
260 rtx label_set = single_set (prev_nonjump_insn);
261 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
263 if (label_set != NULL
264 /* The source must be the direct LABEL_REF, not a
265 PLUS, UNSPEC, IF_THEN_ELSE etc. */
266 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 && (rtx_equal_p (label_dest, pc_src)
268 || (GET_CODE (pc_src) == IF_THEN_ELSE
269 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
272 /* The CODE_LABEL referred to in the note must be the
273 CODE_LABEL in the LABEL_REF of the "set". We can
274 conveniently use it for the marker function, which
275 requires a LABEL_REF wrapping. */
276 gcc_assert (XEXP (label_note, 0) == LABEL_REF_LABEL (SET_SRC (label_set)));
278 mark_jump_label_1 (label_set, jump_insn, false, true);
280 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
285 /* Mark the label each jump jumps to.
286 Combine consecutive labels, and count uses of labels. */
288 static void
289 mark_all_labels (rtx_insn *f)
291 rtx_insn *insn;
293 if (current_ir_type () == IR_RTL_CFGLAYOUT)
295 basic_block bb;
296 FOR_EACH_BB_FN (bb, cfun)
298 /* In cfglayout mode, we don't bother with trivial next-insn
299 propagation of LABEL_REFs into JUMP_LABEL. This will be
300 handled by other optimizers using better algorithms. */
301 FOR_BB_INSNS (bb, insn)
303 gcc_assert (! insn->deleted ());
304 if (NONDEBUG_INSN_P (insn))
305 mark_jump_label (PATTERN (insn), insn, 0);
308 /* In cfglayout mode, there may be non-insns between the
309 basic blocks. If those non-insns represent tablejump data,
310 they contain label references that we must record. */
311 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
312 if (JUMP_TABLE_DATA_P (insn))
313 mark_jump_label (PATTERN (insn), insn, 0);
314 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
315 if (JUMP_TABLE_DATA_P (insn))
316 mark_jump_label (PATTERN (insn), insn, 0);
319 else
321 rtx_insn *prev_nonjump_insn = NULL;
322 for (insn = f; insn; insn = NEXT_INSN (insn))
324 if (insn->deleted ())
326 else if (LABEL_P (insn))
327 prev_nonjump_insn = NULL;
328 else if (JUMP_TABLE_DATA_P (insn))
329 mark_jump_label (PATTERN (insn), insn, 0);
330 else if (NONDEBUG_INSN_P (insn))
332 mark_jump_label (PATTERN (insn), insn, 0);
333 if (JUMP_P (insn))
335 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 maybe_propagate_label_ref (insn, prev_nonjump_insn);
338 else
339 prev_nonjump_insn = insn;
345 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
346 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
347 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348 know whether it's source is floating point or integer comparison. Machine
349 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350 to help this function avoid overhead in these cases. */
351 enum rtx_code
352 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
353 const_rtx arg1, const_rtx insn)
355 machine_mode mode;
357 /* If this is not actually a comparison, we can't reverse it. */
358 if (GET_RTX_CLASS (code) != RTX_COMPARE
359 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
360 return UNKNOWN;
362 mode = GET_MODE (arg0);
363 if (mode == VOIDmode)
364 mode = GET_MODE (arg1);
366 /* First see if machine description supplies us way to reverse the
367 comparison. Give it priority over everything else to allow
368 machine description to do tricks. */
369 if (GET_MODE_CLASS (mode) == MODE_CC
370 && REVERSIBLE_CC_MODE (mode))
372 #ifdef REVERSE_CONDITION
373 return REVERSE_CONDITION (code, mode);
374 #else
375 return reverse_condition (code);
376 #endif
379 /* Try a few special cases based on the comparison code. */
380 switch (code)
382 case GEU:
383 case GTU:
384 case LEU:
385 case LTU:
386 case NE:
387 case EQ:
388 /* It is always safe to reverse EQ and NE, even for the floating
389 point. Similarly the unsigned comparisons are never used for
390 floating point so we can reverse them in the default way. */
391 return reverse_condition (code);
392 case ORDERED:
393 case UNORDERED:
394 case LTGT:
395 case UNEQ:
396 /* In case we already see unordered comparison, we can be sure to
397 be dealing with floating point so we don't need any more tests. */
398 return reverse_condition_maybe_unordered (code);
399 case UNLT:
400 case UNLE:
401 case UNGT:
402 case UNGE:
403 /* We don't have safe way to reverse these yet. */
404 return UNKNOWN;
405 default:
406 break;
409 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
411 const_rtx prev;
412 /* Try to search for the comparison to determine the real mode.
413 This code is expensive, but with sane machine description it
414 will be never used, since REVERSIBLE_CC_MODE will return true
415 in all cases. */
416 if (! insn)
417 return UNKNOWN;
419 /* These CONST_CAST's are okay because prev_nonnote_insn just
420 returns its argument and we assign it to a const_rtx
421 variable. */
422 for (prev = prev_nonnote_insn (CONST_CAST_RTX (insn));
423 prev != 0 && !LABEL_P (prev);
424 prev = prev_nonnote_insn (CONST_CAST_RTX (prev)))
426 const_rtx set = set_of (arg0, prev);
427 if (set && GET_CODE (set) == SET
428 && rtx_equal_p (SET_DEST (set), arg0))
430 rtx src = SET_SRC (set);
432 if (GET_CODE (src) == COMPARE)
434 rtx comparison = src;
435 arg0 = XEXP (src, 0);
436 mode = GET_MODE (arg0);
437 if (mode == VOIDmode)
438 mode = GET_MODE (XEXP (comparison, 1));
439 break;
441 /* We can get past reg-reg moves. This may be useful for model
442 of i387 comparisons that first move flag registers around. */
443 if (REG_P (src))
445 arg0 = src;
446 continue;
449 /* If register is clobbered in some ununderstandable way,
450 give up. */
451 if (set)
452 return UNKNOWN;
456 /* Test for an integer condition, or a floating-point comparison
457 in which NaNs can be ignored. */
458 if (CONST_INT_P (arg0)
459 || (GET_MODE (arg0) != VOIDmode
460 && GET_MODE_CLASS (mode) != MODE_CC
461 && !HONOR_NANS (mode)))
462 return reverse_condition (code);
464 return UNKNOWN;
467 /* A wrapper around the previous function to take COMPARISON as rtx
468 expression. This simplifies many callers. */
469 enum rtx_code
470 reversed_comparison_code (const_rtx comparison, const_rtx insn)
472 if (!COMPARISON_P (comparison))
473 return UNKNOWN;
474 return reversed_comparison_code_parts (GET_CODE (comparison),
475 XEXP (comparison, 0),
476 XEXP (comparison, 1), insn);
479 /* Return comparison with reversed code of EXP.
480 Return NULL_RTX in case we fail to do the reversal. */
482 reversed_comparison (const_rtx exp, machine_mode mode)
484 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
485 if (reversed_code == UNKNOWN)
486 return NULL_RTX;
487 else
488 return simplify_gen_relational (reversed_code, mode, VOIDmode,
489 XEXP (exp, 0), XEXP (exp, 1));
493 /* Given an rtx-code for a comparison, return the code for the negated
494 comparison. If no such code exists, return UNKNOWN.
496 WATCH OUT! reverse_condition is not safe to use on a jump that might
497 be acting on the results of an IEEE floating point comparison, because
498 of the special treatment of non-signaling nans in comparisons.
499 Use reversed_comparison_code instead. */
501 enum rtx_code
502 reverse_condition (enum rtx_code code)
504 switch (code)
506 case EQ:
507 return NE;
508 case NE:
509 return EQ;
510 case GT:
511 return LE;
512 case GE:
513 return LT;
514 case LT:
515 return GE;
516 case LE:
517 return GT;
518 case GTU:
519 return LEU;
520 case GEU:
521 return LTU;
522 case LTU:
523 return GEU;
524 case LEU:
525 return GTU;
526 case UNORDERED:
527 return ORDERED;
528 case ORDERED:
529 return UNORDERED;
531 case UNLT:
532 case UNLE:
533 case UNGT:
534 case UNGE:
535 case UNEQ:
536 case LTGT:
537 return UNKNOWN;
539 default:
540 gcc_unreachable ();
544 /* Similar, but we're allowed to generate unordered comparisons, which
545 makes it safe for IEEE floating-point. Of course, we have to recognize
546 that the target will support them too... */
548 enum rtx_code
549 reverse_condition_maybe_unordered (enum rtx_code code)
551 switch (code)
553 case EQ:
554 return NE;
555 case NE:
556 return EQ;
557 case GT:
558 return UNLE;
559 case GE:
560 return UNLT;
561 case LT:
562 return UNGE;
563 case LE:
564 return UNGT;
565 case LTGT:
566 return UNEQ;
567 case UNORDERED:
568 return ORDERED;
569 case ORDERED:
570 return UNORDERED;
571 case UNLT:
572 return GE;
573 case UNLE:
574 return GT;
575 case UNGT:
576 return LE;
577 case UNGE:
578 return LT;
579 case UNEQ:
580 return LTGT;
582 default:
583 gcc_unreachable ();
587 /* Similar, but return the code when two operands of a comparison are swapped.
588 This IS safe for IEEE floating-point. */
590 enum rtx_code
591 swap_condition (enum rtx_code code)
593 switch (code)
595 case EQ:
596 case NE:
597 case UNORDERED:
598 case ORDERED:
599 case UNEQ:
600 case LTGT:
601 return code;
603 case GT:
604 return LT;
605 case GE:
606 return LE;
607 case LT:
608 return GT;
609 case LE:
610 return GE;
611 case GTU:
612 return LTU;
613 case GEU:
614 return LEU;
615 case LTU:
616 return GTU;
617 case LEU:
618 return GEU;
619 case UNLT:
620 return UNGT;
621 case UNLE:
622 return UNGE;
623 case UNGT:
624 return UNLT;
625 case UNGE:
626 return UNLE;
628 default:
629 gcc_unreachable ();
633 /* Given a comparison CODE, return the corresponding unsigned comparison.
634 If CODE is an equality comparison or already an unsigned comparison,
635 CODE is returned. */
637 enum rtx_code
638 unsigned_condition (enum rtx_code code)
640 switch (code)
642 case EQ:
643 case NE:
644 case GTU:
645 case GEU:
646 case LTU:
647 case LEU:
648 return code;
650 case GT:
651 return GTU;
652 case GE:
653 return GEU;
654 case LT:
655 return LTU;
656 case LE:
657 return LEU;
659 default:
660 gcc_unreachable ();
664 /* Similarly, return the signed version of a comparison. */
666 enum rtx_code
667 signed_condition (enum rtx_code code)
669 switch (code)
671 case EQ:
672 case NE:
673 case GT:
674 case GE:
675 case LT:
676 case LE:
677 return code;
679 case GTU:
680 return GT;
681 case GEU:
682 return GE;
683 case LTU:
684 return LT;
685 case LEU:
686 return LE;
688 default:
689 gcc_unreachable ();
693 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
694 truth of CODE1 implies the truth of CODE2. */
697 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
699 /* UNKNOWN comparison codes can happen as a result of trying to revert
700 comparison codes.
701 They can't match anything, so we have to reject them here. */
702 if (code1 == UNKNOWN || code2 == UNKNOWN)
703 return 0;
705 if (code1 == code2)
706 return 1;
708 switch (code1)
710 case UNEQ:
711 if (code2 == UNLE || code2 == UNGE)
712 return 1;
713 break;
715 case EQ:
716 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
717 || code2 == ORDERED)
718 return 1;
719 break;
721 case UNLT:
722 if (code2 == UNLE || code2 == NE)
723 return 1;
724 break;
726 case LT:
727 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
728 return 1;
729 break;
731 case UNGT:
732 if (code2 == UNGE || code2 == NE)
733 return 1;
734 break;
736 case GT:
737 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
738 return 1;
739 break;
741 case GE:
742 case LE:
743 if (code2 == ORDERED)
744 return 1;
745 break;
747 case LTGT:
748 if (code2 == NE || code2 == ORDERED)
749 return 1;
750 break;
752 case LTU:
753 if (code2 == LEU || code2 == NE)
754 return 1;
755 break;
757 case GTU:
758 if (code2 == GEU || code2 == NE)
759 return 1;
760 break;
762 case UNORDERED:
763 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
764 || code2 == UNGE || code2 == UNGT)
765 return 1;
766 break;
768 default:
769 break;
772 return 0;
775 /* Return 1 if INSN is an unconditional jump and nothing else. */
778 simplejump_p (const rtx_insn *insn)
780 return (JUMP_P (insn)
781 && GET_CODE (PATTERN (insn)) == SET
782 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
783 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
786 /* Return nonzero if INSN is a (possibly) conditional jump
787 and nothing more.
789 Use of this function is deprecated, since we need to support combined
790 branch and compare insns. Use any_condjump_p instead whenever possible. */
793 condjump_p (const rtx_insn *insn)
795 const_rtx x = PATTERN (insn);
797 if (GET_CODE (x) != SET
798 || GET_CODE (SET_DEST (x)) != PC)
799 return 0;
801 x = SET_SRC (x);
802 if (GET_CODE (x) == LABEL_REF)
803 return 1;
804 else
805 return (GET_CODE (x) == IF_THEN_ELSE
806 && ((GET_CODE (XEXP (x, 2)) == PC
807 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
808 || ANY_RETURN_P (XEXP (x, 1))))
809 || (GET_CODE (XEXP (x, 1)) == PC
810 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
811 || ANY_RETURN_P (XEXP (x, 2))))));
814 /* Return nonzero if INSN is a (possibly) conditional jump inside a
815 PARALLEL.
817 Use this function is deprecated, since we need to support combined
818 branch and compare insns. Use any_condjump_p instead whenever possible. */
821 condjump_in_parallel_p (const rtx_insn *insn)
823 const_rtx x = PATTERN (insn);
825 if (GET_CODE (x) != PARALLEL)
826 return 0;
827 else
828 x = XVECEXP (x, 0, 0);
830 if (GET_CODE (x) != SET)
831 return 0;
832 if (GET_CODE (SET_DEST (x)) != PC)
833 return 0;
834 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
835 return 1;
836 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
837 return 0;
838 if (XEXP (SET_SRC (x), 2) == pc_rtx
839 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
840 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
841 return 1;
842 if (XEXP (SET_SRC (x), 1) == pc_rtx
843 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
844 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
845 return 1;
846 return 0;
849 /* Return set of PC, otherwise NULL. */
852 pc_set (const rtx_insn *insn)
854 rtx pat;
855 if (!JUMP_P (insn))
856 return NULL_RTX;
857 pat = PATTERN (insn);
859 /* The set is allowed to appear either as the insn pattern or
860 the first set in a PARALLEL. */
861 if (GET_CODE (pat) == PARALLEL)
862 pat = XVECEXP (pat, 0, 0);
863 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
864 return pat;
866 return NULL_RTX;
869 /* Return true when insn is an unconditional direct jump,
870 possibly bundled inside a PARALLEL. */
873 any_uncondjump_p (const rtx_insn *insn)
875 const_rtx x = pc_set (insn);
876 if (!x)
877 return 0;
878 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
879 return 0;
880 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
881 return 0;
882 return 1;
885 /* Return true when insn is a conditional jump. This function works for
886 instructions containing PC sets in PARALLELs. The instruction may have
887 various other effects so before removing the jump you must verify
888 onlyjump_p.
890 Note that unlike condjump_p it returns false for unconditional jumps. */
893 any_condjump_p (const rtx_insn *insn)
895 const_rtx x = pc_set (insn);
896 enum rtx_code a, b;
898 if (!x)
899 return 0;
900 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
901 return 0;
903 a = GET_CODE (XEXP (SET_SRC (x), 1));
904 b = GET_CODE (XEXP (SET_SRC (x), 2));
906 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
907 || (a == PC
908 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
911 /* Return the label of a conditional jump. */
914 condjump_label (const rtx_insn *insn)
916 rtx x = pc_set (insn);
918 if (!x)
919 return NULL_RTX;
920 x = SET_SRC (x);
921 if (GET_CODE (x) == LABEL_REF)
922 return x;
923 if (GET_CODE (x) != IF_THEN_ELSE)
924 return NULL_RTX;
925 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
926 return XEXP (x, 1);
927 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
928 return XEXP (x, 2);
929 return NULL_RTX;
932 /* Return TRUE if INSN is a return jump. */
935 returnjump_p (const rtx_insn *insn)
937 if (JUMP_P (insn))
939 subrtx_iterator::array_type array;
940 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
942 const_rtx x = *iter;
943 switch (GET_CODE (x))
945 case RETURN:
946 case SIMPLE_RETURN:
947 case EH_RETURN:
948 return true;
950 case SET:
951 if (SET_IS_RETURN_P (x))
952 return true;
953 break;
955 default:
956 break;
960 return false;
963 /* Return true if INSN is a (possibly conditional) return insn. */
966 eh_returnjump_p (rtx_insn *insn)
968 if (JUMP_P (insn))
970 subrtx_iterator::array_type array;
971 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
972 if (GET_CODE (*iter) == EH_RETURN)
973 return true;
975 return false;
978 /* Return true if INSN is a jump that only transfers control and
979 nothing more. */
982 onlyjump_p (const rtx_insn *insn)
984 rtx set;
986 if (!JUMP_P (insn))
987 return 0;
989 set = single_set (insn);
990 if (set == NULL)
991 return 0;
992 if (GET_CODE (SET_DEST (set)) != PC)
993 return 0;
994 if (side_effects_p (SET_SRC (set)))
995 return 0;
997 return 1;
1000 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1001 NULL or a return. */
1002 bool
1003 jump_to_label_p (const rtx_insn *insn)
1005 return (JUMP_P (insn)
1006 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1009 #ifdef HAVE_cc0
1011 /* Return nonzero if X is an RTX that only sets the condition codes
1012 and has no side effects. */
1015 only_sets_cc0_p (const_rtx x)
1017 if (! x)
1018 return 0;
1020 if (INSN_P (x))
1021 x = PATTERN (x);
1023 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1026 /* Return 1 if X is an RTX that does nothing but set the condition codes
1027 and CLOBBER or USE registers.
1028 Return -1 if X does explicitly set the condition codes,
1029 but also does other things. */
1032 sets_cc0_p (const_rtx x)
1034 if (! x)
1035 return 0;
1037 if (INSN_P (x))
1038 x = PATTERN (x);
1040 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1041 return 1;
1042 if (GET_CODE (x) == PARALLEL)
1044 int i;
1045 int sets_cc0 = 0;
1046 int other_things = 0;
1047 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1049 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1050 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1051 sets_cc0 = 1;
1052 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1053 other_things = 1;
1055 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1057 return 0;
1059 #endif
1061 /* Find all CODE_LABELs referred to in X, and increment their use
1062 counts. If INSN is a JUMP_INSN and there is at least one
1063 CODE_LABEL referenced in INSN as a jump target, then store the last
1064 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1065 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1066 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1067 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1068 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1069 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1071 Note that two labels separated by a loop-beginning note
1072 must be kept distinct if we have not yet done loop-optimization,
1073 because the gap between them is where loop-optimize
1074 will want to move invariant code to. CROSS_JUMP tells us
1075 that loop-optimization is done with. */
1077 void
1078 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1080 rtx asmop = extract_asm_operands (x);
1081 if (asmop)
1082 mark_jump_label_asm (asmop, insn);
1083 else
1084 mark_jump_label_1 (x, insn, in_mem != 0,
1085 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1088 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1089 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1090 jump-target; when the JUMP_LABEL field of INSN should be set or a
1091 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1092 note. */
1094 static void
1095 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1097 RTX_CODE code = GET_CODE (x);
1098 int i;
1099 const char *fmt;
1101 switch (code)
1103 case PC:
1104 case CC0:
1105 case REG:
1106 case CLOBBER:
1107 case CALL:
1108 return;
1110 case RETURN:
1111 case SIMPLE_RETURN:
1112 if (is_target)
1114 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1115 JUMP_LABEL (insn) = x;
1117 return;
1119 case MEM:
1120 in_mem = true;
1121 break;
1123 case SEQUENCE:
1125 rtx_sequence *seq = as_a <rtx_sequence *> (x);
1126 for (i = 0; i < seq->len (); i++)
1127 mark_jump_label (PATTERN (seq->insn (i)),
1128 seq->insn (i), 0);
1130 return;
1132 case SYMBOL_REF:
1133 if (!in_mem)
1134 return;
1136 /* If this is a constant-pool reference, see if it is a label. */
1137 if (CONSTANT_POOL_ADDRESS_P (x))
1138 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1139 break;
1141 /* Handle operands in the condition of an if-then-else as for a
1142 non-jump insn. */
1143 case IF_THEN_ELSE:
1144 if (!is_target)
1145 break;
1146 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1147 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1148 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1149 return;
1151 case LABEL_REF:
1153 rtx label = LABEL_REF_LABEL (x);
1155 /* Ignore remaining references to unreachable labels that
1156 have been deleted. */
1157 if (NOTE_P (label)
1158 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1159 break;
1161 gcc_assert (LABEL_P (label));
1163 /* Ignore references to labels of containing functions. */
1164 if (LABEL_REF_NONLOCAL_P (x))
1165 break;
1167 LABEL_REF_LABEL (x) = label;
1168 if (! insn || ! insn->deleted ())
1169 ++LABEL_NUSES (label);
1171 if (insn)
1173 if (is_target
1174 /* Do not change a previous setting of JUMP_LABEL. If the
1175 JUMP_LABEL slot is occupied by a different label,
1176 create a note for this label. */
1177 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1178 JUMP_LABEL (insn) = label;
1179 else
1181 enum reg_note kind
1182 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1184 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1185 for LABEL unless there already is one. All uses of
1186 a label, except for the primary target of a jump,
1187 must have such a note. */
1188 if (! find_reg_note (insn, kind, label))
1189 add_reg_note (insn, kind, label);
1192 return;
1195 /* Do walk the labels in a vector, but not the first operand of an
1196 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1197 case ADDR_VEC:
1198 case ADDR_DIFF_VEC:
1199 if (! insn->deleted ())
1201 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1203 for (i = 0; i < XVECLEN (x, eltnum); i++)
1204 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1205 is_target);
1207 return;
1209 default:
1210 break;
1213 fmt = GET_RTX_FORMAT (code);
1215 /* The primary target of a tablejump is the label of the ADDR_VEC,
1216 which is canonically mentioned *last* in the insn. To get it
1217 marked as JUMP_LABEL, we iterate over items in reverse order. */
1218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1220 if (fmt[i] == 'e')
1221 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1222 else if (fmt[i] == 'E')
1224 int j;
1226 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1227 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1228 is_target);
1233 /* Worker function for mark_jump_label. Handle asm insns specially.
1234 In particular, output operands need not be considered so we can
1235 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1236 need to be considered targets. */
1238 static void
1239 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1241 int i;
1243 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1244 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1246 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1247 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1250 /* Delete insn INSN from the chain of insns and update label ref counts
1251 and delete insns now unreachable.
1253 Returns the first insn after INSN that was not deleted.
1255 Usage of this instruction is deprecated. Use delete_insn instead and
1256 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1258 rtx_insn *
1259 delete_related_insns (rtx uncast_insn)
1261 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1262 int was_code_label = (LABEL_P (insn));
1263 rtx note;
1264 rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1266 while (next && next->deleted ())
1267 next = NEXT_INSN (next);
1269 /* This insn is already deleted => return first following nondeleted. */
1270 if (insn->deleted ())
1271 return next;
1273 delete_insn (insn);
1275 /* If instruction is followed by a barrier,
1276 delete the barrier too. */
1278 if (next != 0 && BARRIER_P (next))
1279 delete_insn (next);
1281 /* If this is a call, then we have to remove the var tracking note
1282 for the call arguments. */
1284 if (CALL_P (insn)
1285 || (NONJUMP_INSN_P (insn)
1286 && GET_CODE (PATTERN (insn)) == SEQUENCE
1287 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1289 rtx_insn *p;
1291 for (p = next && next->deleted () ? NEXT_INSN (next) : next;
1292 p && NOTE_P (p);
1293 p = NEXT_INSN (p))
1294 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1296 remove_insn (p);
1297 break;
1301 /* If deleting a jump, decrement the count of the label,
1302 and delete the label if it is now unused. */
1304 if (jump_to_label_p (insn))
1306 rtx lab = JUMP_LABEL (insn);
1307 rtx_jump_table_data *lab_next;
1309 if (LABEL_NUSES (lab) == 0)
1310 /* This can delete NEXT or PREV,
1311 either directly if NEXT is JUMP_LABEL (INSN),
1312 or indirectly through more levels of jumps. */
1313 delete_related_insns (lab);
1314 else if (tablejump_p (insn, NULL, &lab_next))
1316 /* If we're deleting the tablejump, delete the dispatch table.
1317 We may not be able to kill the label immediately preceding
1318 just yet, as it might be referenced in code leading up to
1319 the tablejump. */
1320 delete_related_insns (lab_next);
1324 /* Likewise if we're deleting a dispatch table. */
1326 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1328 rtvec labels = table->get_labels ();
1329 int i;
1330 int len = GET_NUM_ELEM (labels);
1332 for (i = 0; i < len; i++)
1333 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1334 delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1335 while (next && next->deleted ())
1336 next = NEXT_INSN (next);
1337 return next;
1340 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1341 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1342 if (INSN_P (insn))
1343 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1344 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1345 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1346 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1347 && LABEL_P (XEXP (note, 0)))
1348 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1349 delete_related_insns (XEXP (note, 0));
1351 while (prev && (prev->deleted () || NOTE_P (prev)))
1352 prev = PREV_INSN (prev);
1354 /* If INSN was a label and a dispatch table follows it,
1355 delete the dispatch table. The tablejump must have gone already.
1356 It isn't useful to fall through into a table. */
1358 if (was_code_label
1359 && NEXT_INSN (insn) != 0
1360 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1361 next = delete_related_insns (NEXT_INSN (insn));
1363 /* If INSN was a label, delete insns following it if now unreachable. */
1365 if (was_code_label && prev && BARRIER_P (prev))
1367 enum rtx_code code;
1368 while (next)
1370 code = GET_CODE (next);
1371 if (code == NOTE)
1372 next = NEXT_INSN (next);
1373 /* Keep going past other deleted labels to delete what follows. */
1374 else if (code == CODE_LABEL && next->deleted ())
1375 next = NEXT_INSN (next);
1376 /* Keep the (use (insn))s created by dbr_schedule, which needs
1377 them in order to track liveness relative to a previous
1378 barrier. */
1379 else if (INSN_P (next)
1380 && GET_CODE (PATTERN (next)) == USE
1381 && INSN_P (XEXP (PATTERN (next), 0)))
1382 next = NEXT_INSN (next);
1383 else if (code == BARRIER || INSN_P (next))
1384 /* Note: if this deletes a jump, it can cause more
1385 deletion of unreachable code, after a different label.
1386 As long as the value from this recursive call is correct,
1387 this invocation functions correctly. */
1388 next = delete_related_insns (next);
1389 else
1390 break;
1394 /* I feel a little doubtful about this loop,
1395 but I see no clean and sure alternative way
1396 to find the first insn after INSN that is not now deleted.
1397 I hope this works. */
1398 while (next && next->deleted ())
1399 next = NEXT_INSN (next);
1400 return next;
1403 /* Delete a range of insns from FROM to TO, inclusive.
1404 This is for the sake of peephole optimization, so assume
1405 that whatever these insns do will still be done by a new
1406 peephole insn that will replace them. */
1408 void
1409 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1411 rtx_insn *insn = from;
1413 while (1)
1415 rtx_insn *next = NEXT_INSN (insn);
1416 rtx_insn *prev = PREV_INSN (insn);
1418 if (!NOTE_P (insn))
1420 insn->set_deleted();
1422 /* Patch this insn out of the chain. */
1423 /* We don't do this all at once, because we
1424 must preserve all NOTEs. */
1425 if (prev)
1426 SET_NEXT_INSN (prev) = next;
1428 if (next)
1429 SET_PREV_INSN (next) = prev;
1432 if (insn == to)
1433 break;
1434 insn = next;
1437 /* Note that if TO is an unconditional jump
1438 we *do not* delete the BARRIER that follows,
1439 since the peephole that replaces this sequence
1440 is also an unconditional jump in that case. */
1443 /* A helper function for redirect_exp_1; examines its input X and returns
1444 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1445 static rtx
1446 redirect_target (rtx x)
1448 if (x == NULL_RTX)
1449 return ret_rtx;
1450 if (!ANY_RETURN_P (x))
1451 return gen_rtx_LABEL_REF (Pmode, x);
1452 return x;
1455 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1456 NLABEL as a return. Accrue modifications into the change group. */
1458 static void
1459 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1461 rtx x = *loc;
1462 RTX_CODE code = GET_CODE (x);
1463 int i;
1464 const char *fmt;
1466 if ((code == LABEL_REF && LABEL_REF_LABEL (x) == olabel)
1467 || x == olabel)
1469 x = redirect_target (nlabel);
1470 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1471 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1472 validate_change (insn, loc, x, 1);
1473 return;
1476 if (code == SET && SET_DEST (x) == pc_rtx
1477 && ANY_RETURN_P (nlabel)
1478 && GET_CODE (SET_SRC (x)) == LABEL_REF
1479 && LABEL_REF_LABEL (SET_SRC (x)) == olabel)
1481 validate_change (insn, loc, nlabel, 1);
1482 return;
1485 if (code == IF_THEN_ELSE)
1487 /* Skip the condition of an IF_THEN_ELSE. We only want to
1488 change jump destinations, not eventual label comparisons. */
1489 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1490 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1491 return;
1494 fmt = GET_RTX_FORMAT (code);
1495 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1497 if (fmt[i] == 'e')
1498 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1499 else if (fmt[i] == 'E')
1501 int j;
1502 for (j = 0; j < XVECLEN (x, i); j++)
1503 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1508 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1509 the modifications into the change group. Return false if we did
1510 not see how to do that. */
1513 redirect_jump_1 (rtx jump, rtx nlabel)
1515 int ochanges = num_validated_changes ();
1516 rtx *loc, asmop;
1518 gcc_assert (nlabel != NULL_RTX);
1519 asmop = extract_asm_operands (PATTERN (jump));
1520 if (asmop)
1522 if (nlabel == NULL)
1523 return 0;
1524 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1525 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1527 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1528 loc = &XVECEXP (PATTERN (jump), 0, 0);
1529 else
1530 loc = &PATTERN (jump);
1532 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1533 return num_validated_changes () > ochanges;
1536 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1537 jump target label is unused as a result, it and the code following
1538 it may be deleted.
1540 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1541 in that case we are to turn the jump into a (possibly conditional)
1542 return insn.
1544 The return value will be 1 if the change was made, 0 if it wasn't
1545 (this can only occur when trying to produce return insns). */
1548 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1550 rtx olabel = JUMP_LABEL (jump);
1552 if (!nlabel)
1554 /* If there is no label, we are asked to redirect to the EXIT block.
1555 When before the epilogue is emitted, return/simple_return cannot be
1556 created so we return 0 immediately. After the epilogue is emitted,
1557 we always expect a label, either a non-null label, or a
1558 return/simple_return RTX. */
1560 if (!epilogue_completed)
1561 return 0;
1562 gcc_unreachable ();
1565 if (nlabel == olabel)
1566 return 1;
1568 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1569 return 0;
1571 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1572 return 1;
1575 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1576 NLABEL in JUMP.
1577 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1578 count has dropped to zero. */
1579 void
1580 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1581 int invert)
1583 rtx note;
1585 gcc_assert (JUMP_LABEL (jump) == olabel);
1587 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1588 moving FUNCTION_END note. Just sanity check that no user still worry
1589 about this. */
1590 gcc_assert (delete_unused >= 0);
1591 JUMP_LABEL (jump) = nlabel;
1592 if (!ANY_RETURN_P (nlabel))
1593 ++LABEL_NUSES (nlabel);
1595 /* Update labels in any REG_EQUAL note. */
1596 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1598 if (ANY_RETURN_P (nlabel)
1599 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1600 remove_note (jump, note);
1601 else
1603 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1604 confirm_change_group ();
1608 /* Handle the case where we had a conditional crossing jump to a return
1609 label and are now changing it into a direct conditional return.
1610 The jump is no longer crossing in that case. */
1611 if (ANY_RETURN_P (nlabel))
1612 CROSSING_JUMP_P (jump) = 0;
1614 if (!ANY_RETURN_P (olabel)
1615 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1616 /* Undefined labels will remain outside the insn stream. */
1617 && INSN_UID (olabel))
1618 delete_related_insns (olabel);
1619 if (invert)
1620 invert_br_probabilities (jump);
1623 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1624 modifications into the change group. Return nonzero for success. */
1625 static int
1626 invert_exp_1 (rtx x, rtx insn)
1628 RTX_CODE code = GET_CODE (x);
1630 if (code == IF_THEN_ELSE)
1632 rtx comp = XEXP (x, 0);
1633 rtx tem;
1634 enum rtx_code reversed_code;
1636 /* We can do this in two ways: The preferable way, which can only
1637 be done if this is not an integer comparison, is to reverse
1638 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1639 of the IF_THEN_ELSE. If we can't do either, fail. */
1641 reversed_code = reversed_comparison_code (comp, insn);
1643 if (reversed_code != UNKNOWN)
1645 validate_change (insn, &XEXP (x, 0),
1646 gen_rtx_fmt_ee (reversed_code,
1647 GET_MODE (comp), XEXP (comp, 0),
1648 XEXP (comp, 1)),
1650 return 1;
1653 tem = XEXP (x, 1);
1654 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1655 validate_change (insn, &XEXP (x, 2), tem, 1);
1656 return 1;
1658 else
1659 return 0;
1662 /* Invert the condition of the jump JUMP, and make it jump to label
1663 NLABEL instead of where it jumps now. Accrue changes into the
1664 change group. Return false if we didn't see how to perform the
1665 inversion and redirection. */
1668 invert_jump_1 (rtx_insn *jump, rtx nlabel)
1670 rtx x = pc_set (jump);
1671 int ochanges;
1672 int ok;
1674 ochanges = num_validated_changes ();
1675 if (x == NULL)
1676 return 0;
1677 ok = invert_exp_1 (SET_SRC (x), jump);
1678 gcc_assert (ok);
1680 if (num_validated_changes () == ochanges)
1681 return 0;
1683 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1684 in Pmode, so checking this is not merely an optimization. */
1685 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1688 /* Invert the condition of the jump JUMP, and make it jump to label
1689 NLABEL instead of where it jumps now. Return true if successful. */
1692 invert_jump (rtx_insn *jump, rtx nlabel, int delete_unused)
1694 rtx olabel = JUMP_LABEL (jump);
1696 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1698 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1699 return 1;
1701 cancel_changes (0);
1702 return 0;
1706 /* Like rtx_equal_p except that it considers two REGs as equal
1707 if they renumber to the same value and considers two commutative
1708 operations to be the same if the order of the operands has been
1709 reversed. */
1712 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1714 int i;
1715 const enum rtx_code code = GET_CODE (x);
1716 const char *fmt;
1718 if (x == y)
1719 return 1;
1721 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1722 && (REG_P (y) || (GET_CODE (y) == SUBREG
1723 && REG_P (SUBREG_REG (y)))))
1725 int reg_x = -1, reg_y = -1;
1726 int byte_x = 0, byte_y = 0;
1727 struct subreg_info info;
1729 if (GET_MODE (x) != GET_MODE (y))
1730 return 0;
1732 /* If we haven't done any renumbering, don't
1733 make any assumptions. */
1734 if (reg_renumber == 0)
1735 return rtx_equal_p (x, y);
1737 if (code == SUBREG)
1739 reg_x = REGNO (SUBREG_REG (x));
1740 byte_x = SUBREG_BYTE (x);
1742 if (reg_renumber[reg_x] >= 0)
1744 subreg_get_info (reg_renumber[reg_x],
1745 GET_MODE (SUBREG_REG (x)), byte_x,
1746 GET_MODE (x), &info);
1747 if (!info.representable_p)
1748 return 0;
1749 reg_x = info.offset;
1750 byte_x = 0;
1753 else
1755 reg_x = REGNO (x);
1756 if (reg_renumber[reg_x] >= 0)
1757 reg_x = reg_renumber[reg_x];
1760 if (GET_CODE (y) == SUBREG)
1762 reg_y = REGNO (SUBREG_REG (y));
1763 byte_y = SUBREG_BYTE (y);
1765 if (reg_renumber[reg_y] >= 0)
1767 subreg_get_info (reg_renumber[reg_y],
1768 GET_MODE (SUBREG_REG (y)), byte_y,
1769 GET_MODE (y), &info);
1770 if (!info.representable_p)
1771 return 0;
1772 reg_y = info.offset;
1773 byte_y = 0;
1776 else
1778 reg_y = REGNO (y);
1779 if (reg_renumber[reg_y] >= 0)
1780 reg_y = reg_renumber[reg_y];
1783 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1786 /* Now we have disposed of all the cases
1787 in which different rtx codes can match. */
1788 if (code != GET_CODE (y))
1789 return 0;
1791 switch (code)
1793 case PC:
1794 case CC0:
1795 case ADDR_VEC:
1796 case ADDR_DIFF_VEC:
1797 CASE_CONST_UNIQUE:
1798 return 0;
1800 case LABEL_REF:
1801 /* We can't assume nonlocal labels have their following insns yet. */
1802 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1803 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
1805 /* Two label-refs are equivalent if they point at labels
1806 in the same position in the instruction stream. */
1807 return (next_real_insn (LABEL_REF_LABEL (x))
1808 == next_real_insn (LABEL_REF_LABEL (y)));
1810 case SYMBOL_REF:
1811 return XSTR (x, 0) == XSTR (y, 0);
1813 case CODE_LABEL:
1814 /* If we didn't match EQ equality above, they aren't the same. */
1815 return 0;
1817 default:
1818 break;
1821 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1823 if (GET_MODE (x) != GET_MODE (y))
1824 return 0;
1826 /* MEMs referring to different address space are not equivalent. */
1827 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1828 return 0;
1830 /* For commutative operations, the RTX match if the operand match in any
1831 order. Also handle the simple binary and unary cases without a loop. */
1832 if (targetm.commutative_p (x, UNKNOWN))
1833 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1834 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1835 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1836 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1837 else if (NON_COMMUTATIVE_P (x))
1838 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1839 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1840 else if (UNARY_P (x))
1841 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1843 /* Compare the elements. If any pair of corresponding elements
1844 fail to match, return 0 for the whole things. */
1846 fmt = GET_RTX_FORMAT (code);
1847 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1849 int j;
1850 switch (fmt[i])
1852 case 'w':
1853 if (XWINT (x, i) != XWINT (y, i))
1854 return 0;
1855 break;
1857 case 'i':
1858 if (XINT (x, i) != XINT (y, i))
1860 if (((code == ASM_OPERANDS && i == 6)
1861 || (code == ASM_INPUT && i == 1)))
1862 break;
1863 return 0;
1865 break;
1867 case 't':
1868 if (XTREE (x, i) != XTREE (y, i))
1869 return 0;
1870 break;
1872 case 's':
1873 if (strcmp (XSTR (x, i), XSTR (y, i)))
1874 return 0;
1875 break;
1877 case 'e':
1878 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1879 return 0;
1880 break;
1882 case 'u':
1883 if (XEXP (x, i) != XEXP (y, i))
1884 return 0;
1885 /* Fall through. */
1886 case '0':
1887 break;
1889 case 'E':
1890 if (XVECLEN (x, i) != XVECLEN (y, i))
1891 return 0;
1892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1893 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1894 return 0;
1895 break;
1897 default:
1898 gcc_unreachable ();
1901 return 1;
1904 /* If X is a hard register or equivalent to one or a subregister of one,
1905 return the hard register number. If X is a pseudo register that was not
1906 assigned a hard register, return the pseudo register number. Otherwise,
1907 return -1. Any rtx is valid for X. */
1910 true_regnum (const_rtx x)
1912 if (REG_P (x))
1914 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1915 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1916 return reg_renumber[REGNO (x)];
1917 return REGNO (x);
1919 if (GET_CODE (x) == SUBREG)
1921 int base = true_regnum (SUBREG_REG (x));
1922 if (base >= 0
1923 && base < FIRST_PSEUDO_REGISTER)
1925 struct subreg_info info;
1927 subreg_get_info (lra_in_progress
1928 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1929 GET_MODE (SUBREG_REG (x)),
1930 SUBREG_BYTE (x), GET_MODE (x), &info);
1932 if (info.representable_p)
1933 return base + info.offset;
1936 return -1;
1939 /* Return regno of the register REG and handle subregs too. */
1940 unsigned int
1941 reg_or_subregno (const_rtx reg)
1943 if (GET_CODE (reg) == SUBREG)
1944 reg = SUBREG_REG (reg);
1945 gcc_assert (REG_P (reg));
1946 return REGNO (reg);