Remove VEC_RSHIFT_EXPR tree code, now unused
[official-gcc.git] / gcc / optabs.c
blobf6548c33b26089d6d9adcbfacf52162dec931677
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 /* Include insn-config.h before expr.h so that HAVE_conditional_move
28 is properly defined. */
29 #include "insn-config.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tree-hasher.h"
33 #include "stor-layout.h"
34 #include "stringpool.h"
35 #include "varasm.h"
36 #include "tm_p.h"
37 #include "flags.h"
38 #include "hashtab.h"
39 #include "hash-set.h"
40 #include "vec.h"
41 #include "machmode.h"
42 #include "hard-reg-set.h"
43 #include "input.h"
44 #include "function.h"
45 #include "except.h"
46 #include "expr.h"
47 #include "insn-codes.h"
48 #include "optabs.h"
49 #include "libfuncs.h"
50 #include "recog.h"
51 #include "reload.h"
52 #include "ggc.h"
53 #include "predict.h"
54 #include "dominance.h"
55 #include "cfg.h"
56 #include "basic-block.h"
57 #include "target.h"
59 struct target_optabs default_target_optabs;
60 struct target_libfuncs default_target_libfuncs;
61 struct target_optabs *this_fn_optabs = &default_target_optabs;
62 #if SWITCHABLE_TARGET
63 struct target_optabs *this_target_optabs = &default_target_optabs;
64 struct target_libfuncs *this_target_libfuncs = &default_target_libfuncs;
65 #endif
67 #define libfunc_hash \
68 (this_target_libfuncs->x_libfunc_hash)
70 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
71 machine_mode *);
72 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
73 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
75 /* Debug facility for use in GDB. */
76 void debug_optab_libfuncs (void);
78 /* Prefixes for the current version of decimal floating point (BID vs. DPD) */
79 #if ENABLE_DECIMAL_BID_FORMAT
80 #define DECIMAL_PREFIX "bid_"
81 #else
82 #define DECIMAL_PREFIX "dpd_"
83 #endif
85 /* Used for libfunc_hash. */
87 hashval_t
88 libfunc_hasher::hash (libfunc_entry *e)
90 return ((e->mode1 + e->mode2 * NUM_MACHINE_MODES) ^ e->op);
93 /* Used for libfunc_hash. */
95 bool
96 libfunc_hasher::equal (libfunc_entry *e1, libfunc_entry *e2)
98 return e1->op == e2->op && e1->mode1 == e2->mode1 && e1->mode2 == e2->mode2;
101 /* Return libfunc corresponding operation defined by OPTAB converting
102 from MODE2 to MODE1. Trigger lazy initialization if needed, return NULL
103 if no libfunc is available. */
105 convert_optab_libfunc (convert_optab optab, machine_mode mode1,
106 machine_mode mode2)
108 struct libfunc_entry e;
109 struct libfunc_entry **slot;
111 /* ??? This ought to be an assert, but not all of the places
112 that we expand optabs know about the optabs that got moved
113 to being direct. */
114 if (!(optab >= FIRST_CONV_OPTAB && optab <= LAST_CONVLIB_OPTAB))
115 return NULL_RTX;
117 e.op = optab;
118 e.mode1 = mode1;
119 e.mode2 = mode2;
120 slot = libfunc_hash->find_slot (&e, NO_INSERT);
121 if (!slot)
123 const struct convert_optab_libcall_d *d
124 = &convlib_def[optab - FIRST_CONV_OPTAB];
126 if (d->libcall_gen == NULL)
127 return NULL;
129 d->libcall_gen (optab, d->libcall_basename, mode1, mode2);
130 slot = libfunc_hash->find_slot (&e, NO_INSERT);
131 if (!slot)
132 return NULL;
134 return (*slot)->libfunc;
137 /* Return libfunc corresponding operation defined by OPTAB in MODE.
138 Trigger lazy initialization if needed, return NULL if no libfunc is
139 available. */
141 optab_libfunc (optab optab, machine_mode mode)
143 struct libfunc_entry e;
144 struct libfunc_entry **slot;
146 /* ??? This ought to be an assert, but not all of the places
147 that we expand optabs know about the optabs that got moved
148 to being direct. */
149 if (!(optab >= FIRST_NORM_OPTAB && optab <= LAST_NORMLIB_OPTAB))
150 return NULL_RTX;
152 e.op = optab;
153 e.mode1 = mode;
154 e.mode2 = VOIDmode;
155 slot = libfunc_hash->find_slot (&e, NO_INSERT);
156 if (!slot)
158 const struct optab_libcall_d *d
159 = &normlib_def[optab - FIRST_NORM_OPTAB];
161 if (d->libcall_gen == NULL)
162 return NULL;
164 d->libcall_gen (optab, d->libcall_basename, d->libcall_suffix, mode);
165 slot = libfunc_hash->find_slot (&e, NO_INSERT);
166 if (!slot)
167 return NULL;
169 return (*slot)->libfunc;
173 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
174 the result of operation CODE applied to OP0 (and OP1 if it is a binary
175 operation).
177 If the last insn does not set TARGET, don't do anything, but return 1.
179 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
180 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
181 try again, ensuring that TARGET is not one of the operands. */
183 static int
184 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0, rtx op1)
186 rtx_insn *last_insn;
187 rtx set;
188 rtx note;
190 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
192 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
193 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
194 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
195 && GET_RTX_CLASS (code) != RTX_COMPARE
196 && GET_RTX_CLASS (code) != RTX_UNARY)
197 return 1;
199 if (GET_CODE (target) == ZERO_EXTRACT)
200 return 1;
202 for (last_insn = insns;
203 NEXT_INSN (last_insn) != NULL_RTX;
204 last_insn = NEXT_INSN (last_insn))
207 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
208 a value changing in the insn, so the note would be invalid for CSE. */
209 if (reg_overlap_mentioned_p (target, op0)
210 || (op1 && reg_overlap_mentioned_p (target, op1)))
212 if (MEM_P (target)
213 && (rtx_equal_p (target, op0)
214 || (op1 && rtx_equal_p (target, op1))))
216 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
217 over expanding it as temp = MEM op X, MEM = temp. If the target
218 supports MEM = MEM op X instructions, it is sometimes too hard
219 to reconstruct that form later, especially if X is also a memory,
220 and due to multiple occurrences of addresses the address might
221 be forced into register unnecessarily.
222 Note that not emitting the REG_EQUIV note might inhibit
223 CSE in some cases. */
224 set = single_set (last_insn);
225 if (set
226 && GET_CODE (SET_SRC (set)) == code
227 && MEM_P (SET_DEST (set))
228 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
229 || (op1 && rtx_equal_p (SET_DEST (set),
230 XEXP (SET_SRC (set), 1)))))
231 return 1;
233 return 0;
236 set = set_for_reg_notes (last_insn);
237 if (set == NULL_RTX)
238 return 1;
240 if (! rtx_equal_p (SET_DEST (set), target)
241 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
242 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
243 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
244 return 1;
246 if (GET_RTX_CLASS (code) == RTX_UNARY)
247 switch (code)
249 case FFS:
250 case CLZ:
251 case CTZ:
252 case CLRSB:
253 case POPCOUNT:
254 case PARITY:
255 case BSWAP:
256 if (GET_MODE (op0) != VOIDmode && GET_MODE (target) != GET_MODE (op0))
258 note = gen_rtx_fmt_e (code, GET_MODE (op0), copy_rtx (op0));
259 if (GET_MODE_SIZE (GET_MODE (op0))
260 > GET_MODE_SIZE (GET_MODE (target)))
261 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
262 note, GET_MODE (op0));
263 else
264 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
265 note, GET_MODE (op0));
266 break;
268 /* FALLTHRU */
269 default:
270 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
271 break;
273 else
274 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
276 set_unique_reg_note (last_insn, REG_EQUAL, note);
278 return 1;
281 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
282 for a widening operation would be. In most cases this would be OP0, but if
283 that's a constant it'll be VOIDmode, which isn't useful. */
285 static machine_mode
286 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
288 machine_mode m0 = GET_MODE (op0);
289 machine_mode m1 = GET_MODE (op1);
290 machine_mode result;
292 if (m0 == VOIDmode && m1 == VOIDmode)
293 return to_mode;
294 else if (m0 == VOIDmode || GET_MODE_SIZE (m0) < GET_MODE_SIZE (m1))
295 result = m1;
296 else
297 result = m0;
299 if (GET_MODE_SIZE (result) > GET_MODE_SIZE (to_mode))
300 return to_mode;
302 return result;
305 /* Like optab_handler, but for widening_operations that have a
306 TO_MODE and a FROM_MODE. */
308 enum insn_code
309 widening_optab_handler (optab op, machine_mode to_mode,
310 machine_mode from_mode)
312 unsigned scode = (op << 16) | to_mode;
313 if (to_mode != from_mode && from_mode != VOIDmode)
315 /* ??? Why does find_widening_optab_handler_and_mode attempt to
316 widen things that can't be widened? E.g. add_optab... */
317 if (op > LAST_CONV_OPTAB)
318 return CODE_FOR_nothing;
319 scode |= from_mode << 8;
321 return raw_optab_handler (scode);
324 /* Find a widening optab even if it doesn't widen as much as we want.
325 E.g. if from_mode is HImode, and to_mode is DImode, and there is no
326 direct HI->SI insn, then return SI->DI, if that exists.
327 If PERMIT_NON_WIDENING is non-zero then this can be used with
328 non-widening optabs also. */
330 enum insn_code
331 find_widening_optab_handler_and_mode (optab op, machine_mode to_mode,
332 machine_mode from_mode,
333 int permit_non_widening,
334 machine_mode *found_mode)
336 for (; (permit_non_widening || from_mode != to_mode)
337 && GET_MODE_SIZE (from_mode) <= GET_MODE_SIZE (to_mode)
338 && from_mode != VOIDmode;
339 from_mode = GET_MODE_WIDER_MODE (from_mode))
341 enum insn_code handler = widening_optab_handler (op, to_mode,
342 from_mode);
344 if (handler != CODE_FOR_nothing)
346 if (found_mode)
347 *found_mode = from_mode;
348 return handler;
352 return CODE_FOR_nothing;
355 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
356 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
357 not actually do a sign-extend or zero-extend, but can leave the
358 higher-order bits of the result rtx undefined, for example, in the case
359 of logical operations, but not right shifts. */
361 static rtx
362 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
363 int unsignedp, int no_extend)
365 rtx result;
367 /* If we don't have to extend and this is a constant, return it. */
368 if (no_extend && GET_MODE (op) == VOIDmode)
369 return op;
371 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
372 extend since it will be more efficient to do so unless the signedness of
373 a promoted object differs from our extension. */
374 if (! no_extend
375 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
376 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
377 return convert_modes (mode, oldmode, op, unsignedp);
379 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
380 SUBREG. */
381 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
382 return gen_lowpart (mode, force_reg (GET_MODE (op), op));
384 /* Otherwise, get an object of MODE, clobber it, and set the low-order
385 part to OP. */
387 result = gen_reg_rtx (mode);
388 emit_clobber (result);
389 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
390 return result;
393 /* Return the optab used for computing the operation given by the tree code,
394 CODE and the tree EXP. This function is not always usable (for example, it
395 cannot give complete results for multiplication or division) but probably
396 ought to be relied on more widely throughout the expander. */
397 optab
398 optab_for_tree_code (enum tree_code code, const_tree type,
399 enum optab_subtype subtype)
401 bool trapv;
402 switch (code)
404 case BIT_AND_EXPR:
405 return and_optab;
407 case BIT_IOR_EXPR:
408 return ior_optab;
410 case BIT_NOT_EXPR:
411 return one_cmpl_optab;
413 case BIT_XOR_EXPR:
414 return xor_optab;
416 case MULT_HIGHPART_EXPR:
417 return TYPE_UNSIGNED (type) ? umul_highpart_optab : smul_highpart_optab;
419 case TRUNC_MOD_EXPR:
420 case CEIL_MOD_EXPR:
421 case FLOOR_MOD_EXPR:
422 case ROUND_MOD_EXPR:
423 return TYPE_UNSIGNED (type) ? umod_optab : smod_optab;
425 case RDIV_EXPR:
426 case TRUNC_DIV_EXPR:
427 case CEIL_DIV_EXPR:
428 case FLOOR_DIV_EXPR:
429 case ROUND_DIV_EXPR:
430 case EXACT_DIV_EXPR:
431 if (TYPE_SATURATING (type))
432 return TYPE_UNSIGNED (type) ? usdiv_optab : ssdiv_optab;
433 return TYPE_UNSIGNED (type) ? udiv_optab : sdiv_optab;
435 case LSHIFT_EXPR:
436 if (TREE_CODE (type) == VECTOR_TYPE)
438 if (subtype == optab_vector)
439 return TYPE_SATURATING (type) ? unknown_optab : vashl_optab;
441 gcc_assert (subtype == optab_scalar);
443 if (TYPE_SATURATING (type))
444 return TYPE_UNSIGNED (type) ? usashl_optab : ssashl_optab;
445 return ashl_optab;
447 case RSHIFT_EXPR:
448 if (TREE_CODE (type) == VECTOR_TYPE)
450 if (subtype == optab_vector)
451 return TYPE_UNSIGNED (type) ? vlshr_optab : vashr_optab;
453 gcc_assert (subtype == optab_scalar);
455 return TYPE_UNSIGNED (type) ? lshr_optab : ashr_optab;
457 case LROTATE_EXPR:
458 if (TREE_CODE (type) == VECTOR_TYPE)
460 if (subtype == optab_vector)
461 return vrotl_optab;
463 gcc_assert (subtype == optab_scalar);
465 return rotl_optab;
467 case RROTATE_EXPR:
468 if (TREE_CODE (type) == VECTOR_TYPE)
470 if (subtype == optab_vector)
471 return vrotr_optab;
473 gcc_assert (subtype == optab_scalar);
475 return rotr_optab;
477 case MAX_EXPR:
478 return TYPE_UNSIGNED (type) ? umax_optab : smax_optab;
480 case MIN_EXPR:
481 return TYPE_UNSIGNED (type) ? umin_optab : smin_optab;
483 case REALIGN_LOAD_EXPR:
484 return vec_realign_load_optab;
486 case WIDEN_SUM_EXPR:
487 return TYPE_UNSIGNED (type) ? usum_widen_optab : ssum_widen_optab;
489 case DOT_PROD_EXPR:
490 return TYPE_UNSIGNED (type) ? udot_prod_optab : sdot_prod_optab;
492 case SAD_EXPR:
493 return TYPE_UNSIGNED (type) ? usad_optab : ssad_optab;
495 case WIDEN_MULT_PLUS_EXPR:
496 return (TYPE_UNSIGNED (type)
497 ? (TYPE_SATURATING (type)
498 ? usmadd_widen_optab : umadd_widen_optab)
499 : (TYPE_SATURATING (type)
500 ? ssmadd_widen_optab : smadd_widen_optab));
502 case WIDEN_MULT_MINUS_EXPR:
503 return (TYPE_UNSIGNED (type)
504 ? (TYPE_SATURATING (type)
505 ? usmsub_widen_optab : umsub_widen_optab)
506 : (TYPE_SATURATING (type)
507 ? ssmsub_widen_optab : smsub_widen_optab));
509 case FMA_EXPR:
510 return fma_optab;
512 case REDUC_MAX_EXPR:
513 return TYPE_UNSIGNED (type)
514 ? reduc_umax_scal_optab : reduc_smax_scal_optab;
516 case REDUC_MIN_EXPR:
517 return TYPE_UNSIGNED (type)
518 ? reduc_umin_scal_optab : reduc_smin_scal_optab;
520 case REDUC_PLUS_EXPR:
521 return reduc_plus_scal_optab;
523 case VEC_WIDEN_MULT_HI_EXPR:
524 return TYPE_UNSIGNED (type) ?
525 vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
527 case VEC_WIDEN_MULT_LO_EXPR:
528 return TYPE_UNSIGNED (type) ?
529 vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
531 case VEC_WIDEN_MULT_EVEN_EXPR:
532 return TYPE_UNSIGNED (type) ?
533 vec_widen_umult_even_optab : vec_widen_smult_even_optab;
535 case VEC_WIDEN_MULT_ODD_EXPR:
536 return TYPE_UNSIGNED (type) ?
537 vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
539 case VEC_WIDEN_LSHIFT_HI_EXPR:
540 return TYPE_UNSIGNED (type) ?
541 vec_widen_ushiftl_hi_optab : vec_widen_sshiftl_hi_optab;
543 case VEC_WIDEN_LSHIFT_LO_EXPR:
544 return TYPE_UNSIGNED (type) ?
545 vec_widen_ushiftl_lo_optab : vec_widen_sshiftl_lo_optab;
547 case VEC_UNPACK_HI_EXPR:
548 return TYPE_UNSIGNED (type) ?
549 vec_unpacku_hi_optab : vec_unpacks_hi_optab;
551 case VEC_UNPACK_LO_EXPR:
552 return TYPE_UNSIGNED (type) ?
553 vec_unpacku_lo_optab : vec_unpacks_lo_optab;
555 case VEC_UNPACK_FLOAT_HI_EXPR:
556 /* The signedness is determined from input operand. */
557 return TYPE_UNSIGNED (type) ?
558 vec_unpacku_float_hi_optab : vec_unpacks_float_hi_optab;
560 case VEC_UNPACK_FLOAT_LO_EXPR:
561 /* The signedness is determined from input operand. */
562 return TYPE_UNSIGNED (type) ?
563 vec_unpacku_float_lo_optab : vec_unpacks_float_lo_optab;
565 case VEC_PACK_TRUNC_EXPR:
566 return vec_pack_trunc_optab;
568 case VEC_PACK_SAT_EXPR:
569 return TYPE_UNSIGNED (type) ? vec_pack_usat_optab : vec_pack_ssat_optab;
571 case VEC_PACK_FIX_TRUNC_EXPR:
572 /* The signedness is determined from output operand. */
573 return TYPE_UNSIGNED (type) ?
574 vec_pack_ufix_trunc_optab : vec_pack_sfix_trunc_optab;
576 default:
577 break;
580 trapv = INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type);
581 switch (code)
583 case POINTER_PLUS_EXPR:
584 case PLUS_EXPR:
585 if (TYPE_SATURATING (type))
586 return TYPE_UNSIGNED (type) ? usadd_optab : ssadd_optab;
587 return trapv ? addv_optab : add_optab;
589 case MINUS_EXPR:
590 if (TYPE_SATURATING (type))
591 return TYPE_UNSIGNED (type) ? ussub_optab : sssub_optab;
592 return trapv ? subv_optab : sub_optab;
594 case MULT_EXPR:
595 if (TYPE_SATURATING (type))
596 return TYPE_UNSIGNED (type) ? usmul_optab : ssmul_optab;
597 return trapv ? smulv_optab : smul_optab;
599 case NEGATE_EXPR:
600 if (TYPE_SATURATING (type))
601 return TYPE_UNSIGNED (type) ? usneg_optab : ssneg_optab;
602 return trapv ? negv_optab : neg_optab;
604 case ABS_EXPR:
605 return trapv ? absv_optab : abs_optab;
607 default:
608 return unknown_optab;
612 /* Given optab UNOPTAB that reduces a vector to a scalar, find instead the old
613 optab that produces a vector with the reduction result in one element,
614 for a tree with type TYPE. */
616 optab
617 scalar_reduc_to_vector (optab unoptab, const_tree type)
619 switch (unoptab)
621 case reduc_plus_scal_optab:
622 return TYPE_UNSIGNED (type) ? reduc_uplus_optab : reduc_splus_optab;
624 case reduc_smin_scal_optab: return reduc_smin_optab;
625 case reduc_umin_scal_optab: return reduc_umin_optab;
626 case reduc_smax_scal_optab: return reduc_smax_optab;
627 case reduc_umax_scal_optab: return reduc_umax_optab;
628 default: return unknown_optab;
632 /* Expand vector widening operations.
634 There are two different classes of operations handled here:
635 1) Operations whose result is wider than all the arguments to the operation.
636 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
637 In this case OP0 and optionally OP1 would be initialized,
638 but WIDE_OP wouldn't (not relevant for this case).
639 2) Operations whose result is of the same size as the last argument to the
640 operation, but wider than all the other arguments to the operation.
641 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
642 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
644 E.g, when called to expand the following operations, this is how
645 the arguments will be initialized:
646 nops OP0 OP1 WIDE_OP
647 widening-sum 2 oprnd0 - oprnd1
648 widening-dot-product 3 oprnd0 oprnd1 oprnd2
649 widening-mult 2 oprnd0 oprnd1 -
650 type-promotion (vec-unpack) 1 oprnd0 - - */
653 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
654 rtx target, int unsignedp)
656 struct expand_operand eops[4];
657 tree oprnd0, oprnd1, oprnd2;
658 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
659 optab widen_pattern_optab;
660 enum insn_code icode;
661 int nops = TREE_CODE_LENGTH (ops->code);
662 int op;
664 oprnd0 = ops->op0;
665 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
666 widen_pattern_optab =
667 optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
668 if (ops->code == WIDEN_MULT_PLUS_EXPR
669 || ops->code == WIDEN_MULT_MINUS_EXPR)
670 icode = find_widening_optab_handler (widen_pattern_optab,
671 TYPE_MODE (TREE_TYPE (ops->op2)),
672 tmode0, 0);
673 else
674 icode = optab_handler (widen_pattern_optab, tmode0);
675 gcc_assert (icode != CODE_FOR_nothing);
677 if (nops >= 2)
679 oprnd1 = ops->op1;
680 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
683 /* The last operand is of a wider mode than the rest of the operands. */
684 if (nops == 2)
685 wmode = tmode1;
686 else if (nops == 3)
688 gcc_assert (tmode1 == tmode0);
689 gcc_assert (op1);
690 oprnd2 = ops->op2;
691 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
694 op = 0;
695 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
696 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
697 if (op1)
698 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
699 if (wide_op)
700 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
701 expand_insn (icode, op, eops);
702 return eops[0].value;
705 /* Generate code to perform an operation specified by TERNARY_OPTAB
706 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
708 UNSIGNEDP is for the case where we have to widen the operands
709 to perform the operation. It says to use zero-extension.
711 If TARGET is nonzero, the value
712 is generated there, if it is convenient to do so.
713 In all cases an rtx is returned for the locus of the value;
714 this may or may not be TARGET. */
717 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
718 rtx op1, rtx op2, rtx target, int unsignedp)
720 struct expand_operand ops[4];
721 enum insn_code icode = optab_handler (ternary_optab, mode);
723 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
725 create_output_operand (&ops[0], target, mode);
726 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
727 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
728 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
729 expand_insn (icode, 4, ops);
730 return ops[0].value;
734 /* Like expand_binop, but return a constant rtx if the result can be
735 calculated at compile time. The arguments and return value are
736 otherwise the same as for expand_binop. */
739 simplify_expand_binop (machine_mode mode, optab binoptab,
740 rtx op0, rtx op1, rtx target, int unsignedp,
741 enum optab_methods methods)
743 if (CONSTANT_P (op0) && CONSTANT_P (op1))
745 rtx x = simplify_binary_operation (optab_to_code (binoptab),
746 mode, op0, op1);
747 if (x)
748 return x;
751 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
754 /* Like simplify_expand_binop, but always put the result in TARGET.
755 Return true if the expansion succeeded. */
757 bool
758 force_expand_binop (machine_mode mode, optab binoptab,
759 rtx op0, rtx op1, rtx target, int unsignedp,
760 enum optab_methods methods)
762 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
763 target, unsignedp, methods);
764 if (x == 0)
765 return false;
766 if (x != target)
767 emit_move_insn (target, x);
768 return true;
771 /* Create a new vector value in VMODE with all elements set to OP. The
772 mode of OP must be the element mode of VMODE. If OP is a constant,
773 then the return value will be a constant. */
775 static rtx
776 expand_vector_broadcast (machine_mode vmode, rtx op)
778 enum insn_code icode;
779 rtvec vec;
780 rtx ret;
781 int i, n;
783 gcc_checking_assert (VECTOR_MODE_P (vmode));
785 n = GET_MODE_NUNITS (vmode);
786 vec = rtvec_alloc (n);
787 for (i = 0; i < n; ++i)
788 RTVEC_ELT (vec, i) = op;
790 if (CONSTANT_P (op))
791 return gen_rtx_CONST_VECTOR (vmode, vec);
793 /* ??? If the target doesn't have a vec_init, then we have no easy way
794 of performing this operation. Most of this sort of generic support
795 is hidden away in the vector lowering support in gimple. */
796 icode = optab_handler (vec_init_optab, vmode);
797 if (icode == CODE_FOR_nothing)
798 return NULL;
800 ret = gen_reg_rtx (vmode);
801 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
803 return ret;
806 /* This subroutine of expand_doubleword_shift handles the cases in which
807 the effective shift value is >= BITS_PER_WORD. The arguments and return
808 value are the same as for the parent routine, except that SUPERWORD_OP1
809 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
810 INTO_TARGET may be null if the caller has decided to calculate it. */
812 static bool
813 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
814 rtx outof_target, rtx into_target,
815 int unsignedp, enum optab_methods methods)
817 if (into_target != 0)
818 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
819 into_target, unsignedp, methods))
820 return false;
822 if (outof_target != 0)
824 /* For a signed right shift, we must fill OUTOF_TARGET with copies
825 of the sign bit, otherwise we must fill it with zeros. */
826 if (binoptab != ashr_optab)
827 emit_move_insn (outof_target, CONST0_RTX (word_mode));
828 else
829 if (!force_expand_binop (word_mode, binoptab,
830 outof_input, GEN_INT (BITS_PER_WORD - 1),
831 outof_target, unsignedp, methods))
832 return false;
834 return true;
837 /* This subroutine of expand_doubleword_shift handles the cases in which
838 the effective shift value is < BITS_PER_WORD. The arguments and return
839 value are the same as for the parent routine. */
841 static bool
842 expand_subword_shift (machine_mode op1_mode, optab binoptab,
843 rtx outof_input, rtx into_input, rtx op1,
844 rtx outof_target, rtx into_target,
845 int unsignedp, enum optab_methods methods,
846 unsigned HOST_WIDE_INT shift_mask)
848 optab reverse_unsigned_shift, unsigned_shift;
849 rtx tmp, carries;
851 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
852 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
854 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
855 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
856 the opposite direction to BINOPTAB. */
857 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
859 carries = outof_input;
860 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
861 op1_mode), op1_mode);
862 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
863 0, true, methods);
865 else
867 /* We must avoid shifting by BITS_PER_WORD bits since that is either
868 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
869 has unknown behavior. Do a single shift first, then shift by the
870 remainder. It's OK to use ~OP1 as the remainder if shift counts
871 are truncated to the mode size. */
872 carries = expand_binop (word_mode, reverse_unsigned_shift,
873 outof_input, const1_rtx, 0, unsignedp, methods);
874 if (shift_mask == BITS_PER_WORD - 1)
876 tmp = immed_wide_int_const
877 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
878 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
879 0, true, methods);
881 else
883 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
884 op1_mode), op1_mode);
885 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
886 0, true, methods);
889 if (tmp == 0 || carries == 0)
890 return false;
891 carries = expand_binop (word_mode, reverse_unsigned_shift,
892 carries, tmp, 0, unsignedp, methods);
893 if (carries == 0)
894 return false;
896 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
897 so the result can go directly into INTO_TARGET if convenient. */
898 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
899 into_target, unsignedp, methods);
900 if (tmp == 0)
901 return false;
903 /* Now OR in the bits carried over from OUTOF_INPUT. */
904 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
905 into_target, unsignedp, methods))
906 return false;
908 /* Use a standard word_mode shift for the out-of half. */
909 if (outof_target != 0)
910 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
911 outof_target, unsignedp, methods))
912 return false;
914 return true;
918 #ifdef HAVE_conditional_move
919 /* Try implementing expand_doubleword_shift using conditional moves.
920 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
921 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
922 are the shift counts to use in the former and latter case. All other
923 arguments are the same as the parent routine. */
925 static bool
926 expand_doubleword_shift_condmove (machine_mode op1_mode, optab binoptab,
927 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
928 rtx outof_input, rtx into_input,
929 rtx subword_op1, rtx superword_op1,
930 rtx outof_target, rtx into_target,
931 int unsignedp, enum optab_methods methods,
932 unsigned HOST_WIDE_INT shift_mask)
934 rtx outof_superword, into_superword;
936 /* Put the superword version of the output into OUTOF_SUPERWORD and
937 INTO_SUPERWORD. */
938 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
939 if (outof_target != 0 && subword_op1 == superword_op1)
941 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
942 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
943 into_superword = outof_target;
944 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
945 outof_superword, 0, unsignedp, methods))
946 return false;
948 else
950 into_superword = gen_reg_rtx (word_mode);
951 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
952 outof_superword, into_superword,
953 unsignedp, methods))
954 return false;
957 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
958 if (!expand_subword_shift (op1_mode, binoptab,
959 outof_input, into_input, subword_op1,
960 outof_target, into_target,
961 unsignedp, methods, shift_mask))
962 return false;
964 /* Select between them. Do the INTO half first because INTO_SUPERWORD
965 might be the current value of OUTOF_TARGET. */
966 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
967 into_target, into_superword, word_mode, false))
968 return false;
970 if (outof_target != 0)
971 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
972 outof_target, outof_superword,
973 word_mode, false))
974 return false;
976 return true;
978 #endif
980 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
981 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
982 input operand; the shift moves bits in the direction OUTOF_INPUT->
983 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
984 of the target. OP1 is the shift count and OP1_MODE is its mode.
985 If OP1 is constant, it will have been truncated as appropriate
986 and is known to be nonzero.
988 If SHIFT_MASK is zero, the result of word shifts is undefined when the
989 shift count is outside the range [0, BITS_PER_WORD). This routine must
990 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
992 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
993 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
994 fill with zeros or sign bits as appropriate.
996 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
997 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
998 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
999 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
1000 are undefined.
1002 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
1003 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
1004 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
1005 function wants to calculate it itself.
1007 Return true if the shift could be successfully synthesized. */
1009 static bool
1010 expand_doubleword_shift (machine_mode op1_mode, optab binoptab,
1011 rtx outof_input, rtx into_input, rtx op1,
1012 rtx outof_target, rtx into_target,
1013 int unsignedp, enum optab_methods methods,
1014 unsigned HOST_WIDE_INT shift_mask)
1016 rtx superword_op1, tmp, cmp1, cmp2;
1017 enum rtx_code cmp_code;
1019 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
1020 fill the result with sign or zero bits as appropriate. If so, the value
1021 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
1022 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
1023 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
1025 This isn't worthwhile for constant shifts since the optimizers will
1026 cope better with in-range shift counts. */
1027 if (shift_mask >= BITS_PER_WORD
1028 && outof_target != 0
1029 && !CONSTANT_P (op1))
1031 if (!expand_doubleword_shift (op1_mode, binoptab,
1032 outof_input, into_input, op1,
1033 0, into_target,
1034 unsignedp, methods, shift_mask))
1035 return false;
1036 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
1037 outof_target, unsignedp, methods))
1038 return false;
1039 return true;
1042 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
1043 is true when the effective shift value is less than BITS_PER_WORD.
1044 Set SUPERWORD_OP1 to the shift count that should be used to shift
1045 OUTOF_INPUT into INTO_TARGET when the condition is false. */
1046 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
1047 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
1049 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
1050 is a subword shift count. */
1051 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
1052 0, true, methods);
1053 cmp2 = CONST0_RTX (op1_mode);
1054 cmp_code = EQ;
1055 superword_op1 = op1;
1057 else
1059 /* Set CMP1 to OP1 - BITS_PER_WORD. */
1060 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
1061 0, true, methods);
1062 cmp2 = CONST0_RTX (op1_mode);
1063 cmp_code = LT;
1064 superword_op1 = cmp1;
1066 if (cmp1 == 0)
1067 return false;
1069 /* If we can compute the condition at compile time, pick the
1070 appropriate subroutine. */
1071 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
1072 if (tmp != 0 && CONST_INT_P (tmp))
1074 if (tmp == const0_rtx)
1075 return expand_superword_shift (binoptab, outof_input, superword_op1,
1076 outof_target, into_target,
1077 unsignedp, methods);
1078 else
1079 return expand_subword_shift (op1_mode, binoptab,
1080 outof_input, into_input, op1,
1081 outof_target, into_target,
1082 unsignedp, methods, shift_mask);
1085 #ifdef HAVE_conditional_move
1086 /* Try using conditional moves to generate straight-line code. */
1088 rtx_insn *start = get_last_insn ();
1089 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
1090 cmp_code, cmp1, cmp2,
1091 outof_input, into_input,
1092 op1, superword_op1,
1093 outof_target, into_target,
1094 unsignedp, methods, shift_mask))
1095 return true;
1096 delete_insns_since (start);
1098 #endif
1100 /* As a last resort, use branches to select the correct alternative. */
1101 rtx_code_label *subword_label = gen_label_rtx ();
1102 rtx_code_label *done_label = gen_label_rtx ();
1104 NO_DEFER_POP;
1105 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
1106 0, 0, subword_label, -1);
1107 OK_DEFER_POP;
1109 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
1110 outof_target, into_target,
1111 unsignedp, methods))
1112 return false;
1114 emit_jump_insn (gen_jump (done_label));
1115 emit_barrier ();
1116 emit_label (subword_label);
1118 if (!expand_subword_shift (op1_mode, binoptab,
1119 outof_input, into_input, op1,
1120 outof_target, into_target,
1121 unsignedp, methods, shift_mask))
1122 return false;
1124 emit_label (done_label);
1125 return true;
1128 /* Subroutine of expand_binop. Perform a double word multiplication of
1129 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
1130 as the target's word_mode. This function return NULL_RTX if anything
1131 goes wrong, in which case it may have already emitted instructions
1132 which need to be deleted.
1134 If we want to multiply two two-word values and have normal and widening
1135 multiplies of single-word values, we can do this with three smaller
1136 multiplications.
1138 The multiplication proceeds as follows:
1139 _______________________
1140 [__op0_high_|__op0_low__]
1141 _______________________
1142 * [__op1_high_|__op1_low__]
1143 _______________________________________________
1144 _______________________
1145 (1) [__op0_low__*__op1_low__]
1146 _______________________
1147 (2a) [__op0_low__*__op1_high_]
1148 _______________________
1149 (2b) [__op0_high_*__op1_low__]
1150 _______________________
1151 (3) [__op0_high_*__op1_high_]
1154 This gives a 4-word result. Since we are only interested in the
1155 lower 2 words, partial result (3) and the upper words of (2a) and
1156 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1157 calculated using non-widening multiplication.
1159 (1), however, needs to be calculated with an unsigned widening
1160 multiplication. If this operation is not directly supported we
1161 try using a signed widening multiplication and adjust the result.
1162 This adjustment works as follows:
1164 If both operands are positive then no adjustment is needed.
1166 If the operands have different signs, for example op0_low < 0 and
1167 op1_low >= 0, the instruction treats the most significant bit of
1168 op0_low as a sign bit instead of a bit with significance
1169 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1170 with 2**BITS_PER_WORD - op0_low, and two's complements the
1171 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1172 the result.
1174 Similarly, if both operands are negative, we need to add
1175 (op0_low + op1_low) * 2**BITS_PER_WORD.
1177 We use a trick to adjust quickly. We logically shift op0_low right
1178 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1179 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1180 logical shift exists, we do an arithmetic right shift and subtract
1181 the 0 or -1. */
1183 static rtx
1184 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
1185 bool umulp, enum optab_methods methods)
1187 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1188 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1189 rtx wordm1 = umulp ? NULL_RTX : GEN_INT (BITS_PER_WORD - 1);
1190 rtx product, adjust, product_high, temp;
1192 rtx op0_high = operand_subword_force (op0, high, mode);
1193 rtx op0_low = operand_subword_force (op0, low, mode);
1194 rtx op1_high = operand_subword_force (op1, high, mode);
1195 rtx op1_low = operand_subword_force (op1, low, mode);
1197 /* If we're using an unsigned multiply to directly compute the product
1198 of the low-order words of the operands and perform any required
1199 adjustments of the operands, we begin by trying two more multiplications
1200 and then computing the appropriate sum.
1202 We have checked above that the required addition is provided.
1203 Full-word addition will normally always succeed, especially if
1204 it is provided at all, so we don't worry about its failure. The
1205 multiplication may well fail, however, so we do handle that. */
1207 if (!umulp)
1209 /* ??? This could be done with emit_store_flag where available. */
1210 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1211 NULL_RTX, 1, methods);
1212 if (temp)
1213 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
1214 NULL_RTX, 0, OPTAB_DIRECT);
1215 else
1217 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1218 NULL_RTX, 0, methods);
1219 if (!temp)
1220 return NULL_RTX;
1221 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
1222 NULL_RTX, 0, OPTAB_DIRECT);
1225 if (!op0_high)
1226 return NULL_RTX;
1229 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
1230 NULL_RTX, 0, OPTAB_DIRECT);
1231 if (!adjust)
1232 return NULL_RTX;
1234 /* OP0_HIGH should now be dead. */
1236 if (!umulp)
1238 /* ??? This could be done with emit_store_flag where available. */
1239 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1240 NULL_RTX, 1, methods);
1241 if (temp)
1242 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
1243 NULL_RTX, 0, OPTAB_DIRECT);
1244 else
1246 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1247 NULL_RTX, 0, methods);
1248 if (!temp)
1249 return NULL_RTX;
1250 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
1251 NULL_RTX, 0, OPTAB_DIRECT);
1254 if (!op1_high)
1255 return NULL_RTX;
1258 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
1259 NULL_RTX, 0, OPTAB_DIRECT);
1260 if (!temp)
1261 return NULL_RTX;
1263 /* OP1_HIGH should now be dead. */
1265 adjust = expand_binop (word_mode, add_optab, adjust, temp,
1266 NULL_RTX, 0, OPTAB_DIRECT);
1268 if (target && !REG_P (target))
1269 target = NULL_RTX;
1271 if (umulp)
1272 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1273 target, 1, OPTAB_DIRECT);
1274 else
1275 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1276 target, 1, OPTAB_DIRECT);
1278 if (!product)
1279 return NULL_RTX;
1281 product_high = operand_subword (product, high, 1, mode);
1282 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
1283 NULL_RTX, 0, OPTAB_DIRECT);
1284 emit_move_insn (product_high, adjust);
1285 return product;
1288 /* Wrapper around expand_binop which takes an rtx code to specify
1289 the operation to perform, not an optab pointer. All other
1290 arguments are the same. */
1292 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
1293 rtx op1, rtx target, int unsignedp,
1294 enum optab_methods methods)
1296 optab binop = code_to_optab (code);
1297 gcc_assert (binop);
1299 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
1302 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
1303 binop. Order them according to commutative_operand_precedence and, if
1304 possible, try to put TARGET or a pseudo first. */
1305 static bool
1306 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
1308 int op0_prec = commutative_operand_precedence (op0);
1309 int op1_prec = commutative_operand_precedence (op1);
1311 if (op0_prec < op1_prec)
1312 return true;
1314 if (op0_prec > op1_prec)
1315 return false;
1317 /* With equal precedence, both orders are ok, but it is better if the
1318 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
1319 if (target == 0 || REG_P (target))
1320 return (REG_P (op1) && !REG_P (op0)) || target == op1;
1321 else
1322 return rtx_equal_p (op1, target);
1325 /* Return true if BINOPTAB implements a shift operation. */
1327 static bool
1328 shift_optab_p (optab binoptab)
1330 switch (optab_to_code (binoptab))
1332 case ASHIFT:
1333 case SS_ASHIFT:
1334 case US_ASHIFT:
1335 case ASHIFTRT:
1336 case LSHIFTRT:
1337 case ROTATE:
1338 case ROTATERT:
1339 return true;
1341 default:
1342 return false;
1346 /* Return true if BINOPTAB implements a commutative binary operation. */
1348 static bool
1349 commutative_optab_p (optab binoptab)
1351 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
1352 || binoptab == smul_widen_optab
1353 || binoptab == umul_widen_optab
1354 || binoptab == smul_highpart_optab
1355 || binoptab == umul_highpart_optab);
1358 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1359 optimizing, and if the operand is a constant that costs more than
1360 1 instruction, force the constant into a register and return that
1361 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1363 static rtx
1364 avoid_expensive_constant (machine_mode mode, optab binoptab,
1365 int opn, rtx x, bool unsignedp)
1367 bool speed = optimize_insn_for_speed_p ();
1369 if (mode != VOIDmode
1370 && optimize
1371 && CONSTANT_P (x)
1372 && (rtx_cost (x, optab_to_code (binoptab), opn, speed)
1373 > set_src_cost (x, speed)))
1375 if (CONST_INT_P (x))
1377 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1378 if (intval != INTVAL (x))
1379 x = GEN_INT (intval);
1381 else
1382 x = convert_modes (mode, VOIDmode, x, unsignedp);
1383 x = force_reg (mode, x);
1385 return x;
1388 /* Helper function for expand_binop: handle the case where there
1389 is an insn that directly implements the indicated operation.
1390 Returns null if this is not possible. */
1391 static rtx
1392 expand_binop_directly (machine_mode mode, optab binoptab,
1393 rtx op0, rtx op1,
1394 rtx target, int unsignedp, enum optab_methods methods,
1395 rtx_insn *last)
1397 machine_mode from_mode = widened_mode (mode, op0, op1);
1398 enum insn_code icode = find_widening_optab_handler (binoptab, mode,
1399 from_mode, 1);
1400 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1401 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1402 machine_mode mode0, mode1, tmp_mode;
1403 struct expand_operand ops[3];
1404 bool commutative_p;
1405 rtx pat;
1406 rtx xop0 = op0, xop1 = op1;
1407 rtx swap;
1409 /* If it is a commutative operator and the modes would match
1410 if we would swap the operands, we can save the conversions. */
1411 commutative_p = commutative_optab_p (binoptab);
1412 if (commutative_p
1413 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1414 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1416 swap = xop0;
1417 xop0 = xop1;
1418 xop1 = swap;
1421 /* If we are optimizing, force expensive constants into a register. */
1422 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1423 if (!shift_optab_p (binoptab))
1424 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1426 /* In case the insn wants input operands in modes different from
1427 those of the actual operands, convert the operands. It would
1428 seem that we don't need to convert CONST_INTs, but we do, so
1429 that they're properly zero-extended, sign-extended or truncated
1430 for their mode. */
1432 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1433 if (xmode0 != VOIDmode && xmode0 != mode0)
1435 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1436 mode0 = xmode0;
1439 mode1 = GET_MODE (xop1) != VOIDmode ? GET_MODE (xop1) : mode;
1440 if (xmode1 != VOIDmode && xmode1 != mode1)
1442 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1443 mode1 = xmode1;
1446 /* If operation is commutative,
1447 try to make the first operand a register.
1448 Even better, try to make it the same as the target.
1449 Also try to make the last operand a constant. */
1450 if (commutative_p
1451 && swap_commutative_operands_with_target (target, xop0, xop1))
1453 swap = xop1;
1454 xop1 = xop0;
1455 xop0 = swap;
1458 /* Now, if insn's predicates don't allow our operands, put them into
1459 pseudo regs. */
1461 if (binoptab == vec_pack_trunc_optab
1462 || binoptab == vec_pack_usat_optab
1463 || binoptab == vec_pack_ssat_optab
1464 || binoptab == vec_pack_ufix_trunc_optab
1465 || binoptab == vec_pack_sfix_trunc_optab)
1467 /* The mode of the result is different then the mode of the
1468 arguments. */
1469 tmp_mode = insn_data[(int) icode].operand[0].mode;
1470 if (GET_MODE_NUNITS (tmp_mode) != 2 * GET_MODE_NUNITS (mode))
1472 delete_insns_since (last);
1473 return NULL_RTX;
1476 else
1477 tmp_mode = mode;
1479 create_output_operand (&ops[0], target, tmp_mode);
1480 create_input_operand (&ops[1], xop0, mode0);
1481 create_input_operand (&ops[2], xop1, mode1);
1482 pat = maybe_gen_insn (icode, 3, ops);
1483 if (pat)
1485 /* If PAT is composed of more than one insn, try to add an appropriate
1486 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1487 operand, call expand_binop again, this time without a target. */
1488 if (INSN_P (pat) && NEXT_INSN (as_a <rtx_insn *> (pat)) != NULL_RTX
1489 && ! add_equal_note (as_a <rtx_insn *> (pat), ops[0].value,
1490 optab_to_code (binoptab),
1491 ops[1].value, ops[2].value))
1493 delete_insns_since (last);
1494 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1495 unsignedp, methods);
1498 emit_insn (pat);
1499 return ops[0].value;
1501 delete_insns_since (last);
1502 return NULL_RTX;
1505 /* Generate code to perform an operation specified by BINOPTAB
1506 on operands OP0 and OP1, with result having machine-mode MODE.
1508 UNSIGNEDP is for the case where we have to widen the operands
1509 to perform the operation. It says to use zero-extension.
1511 If TARGET is nonzero, the value
1512 is generated there, if it is convenient to do so.
1513 In all cases an rtx is returned for the locus of the value;
1514 this may or may not be TARGET. */
1517 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1518 rtx target, int unsignedp, enum optab_methods methods)
1520 enum optab_methods next_methods
1521 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1522 ? OPTAB_WIDEN : methods);
1523 enum mode_class mclass;
1524 machine_mode wider_mode;
1525 rtx libfunc;
1526 rtx temp;
1527 rtx_insn *entry_last = get_last_insn ();
1528 rtx_insn *last;
1530 mclass = GET_MODE_CLASS (mode);
1532 /* If subtracting an integer constant, convert this into an addition of
1533 the negated constant. */
1535 if (binoptab == sub_optab && CONST_INT_P (op1))
1537 op1 = negate_rtx (mode, op1);
1538 binoptab = add_optab;
1541 /* Record where to delete back to if we backtrack. */
1542 last = get_last_insn ();
1544 /* If we can do it with a three-operand insn, do so. */
1546 if (methods != OPTAB_MUST_WIDEN
1547 && find_widening_optab_handler (binoptab, mode,
1548 widened_mode (mode, op0, op1), 1)
1549 != CODE_FOR_nothing)
1551 temp = expand_binop_directly (mode, binoptab, op0, op1, target,
1552 unsignedp, methods, last);
1553 if (temp)
1554 return temp;
1557 /* If we were trying to rotate, and that didn't work, try rotating
1558 the other direction before falling back to shifts and bitwise-or. */
1559 if (((binoptab == rotl_optab
1560 && optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
1561 || (binoptab == rotr_optab
1562 && optab_handler (rotl_optab, mode) != CODE_FOR_nothing))
1563 && mclass == MODE_INT)
1565 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1566 rtx newop1;
1567 unsigned int bits = GET_MODE_PRECISION (mode);
1569 if (CONST_INT_P (op1))
1570 newop1 = GEN_INT (bits - INTVAL (op1));
1571 else if (targetm.shift_truncation_mask (mode) == bits - 1)
1572 newop1 = negate_rtx (GET_MODE (op1), op1);
1573 else
1574 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1575 gen_int_mode (bits, GET_MODE (op1)), op1,
1576 NULL_RTX, unsignedp, OPTAB_DIRECT);
1578 temp = expand_binop_directly (mode, otheroptab, op0, newop1,
1579 target, unsignedp, methods, last);
1580 if (temp)
1581 return temp;
1584 /* If this is a multiply, see if we can do a widening operation that
1585 takes operands of this mode and makes a wider mode. */
1587 if (binoptab == smul_optab
1588 && GET_MODE_2XWIDER_MODE (mode) != VOIDmode
1589 && (widening_optab_handler ((unsignedp ? umul_widen_optab
1590 : smul_widen_optab),
1591 GET_MODE_2XWIDER_MODE (mode), mode)
1592 != CODE_FOR_nothing))
1594 temp = expand_binop (GET_MODE_2XWIDER_MODE (mode),
1595 unsignedp ? umul_widen_optab : smul_widen_optab,
1596 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1598 if (temp != 0)
1600 if (GET_MODE_CLASS (mode) == MODE_INT
1601 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1602 return gen_lowpart (mode, temp);
1603 else
1604 return convert_to_mode (mode, temp, unsignedp);
1608 /* If this is a vector shift by a scalar, see if we can do a vector
1609 shift by a vector. If so, broadcast the scalar into a vector. */
1610 if (mclass == MODE_VECTOR_INT)
1612 optab otheroptab = unknown_optab;
1614 if (binoptab == ashl_optab)
1615 otheroptab = vashl_optab;
1616 else if (binoptab == ashr_optab)
1617 otheroptab = vashr_optab;
1618 else if (binoptab == lshr_optab)
1619 otheroptab = vlshr_optab;
1620 else if (binoptab == rotl_optab)
1621 otheroptab = vrotl_optab;
1622 else if (binoptab == rotr_optab)
1623 otheroptab = vrotr_optab;
1625 if (otheroptab && optab_handler (otheroptab, mode) != CODE_FOR_nothing)
1627 rtx vop1 = expand_vector_broadcast (mode, op1);
1628 if (vop1)
1630 temp = expand_binop_directly (mode, otheroptab, op0, vop1,
1631 target, unsignedp, methods, last);
1632 if (temp)
1633 return temp;
1638 /* Look for a wider mode of the same class for which we think we
1639 can open-code the operation. Check for a widening multiply at the
1640 wider mode as well. */
1642 if (CLASS_HAS_WIDER_MODES_P (mclass)
1643 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1644 for (wider_mode = GET_MODE_WIDER_MODE (mode);
1645 wider_mode != VOIDmode;
1646 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1648 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1649 || (binoptab == smul_optab
1650 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
1651 && (find_widening_optab_handler ((unsignedp
1652 ? umul_widen_optab
1653 : smul_widen_optab),
1654 GET_MODE_WIDER_MODE (wider_mode),
1655 mode, 0)
1656 != CODE_FOR_nothing)))
1658 rtx xop0 = op0, xop1 = op1;
1659 int no_extend = 0;
1661 /* For certain integer operations, we need not actually extend
1662 the narrow operands, as long as we will truncate
1663 the results to the same narrowness. */
1665 if ((binoptab == ior_optab || binoptab == and_optab
1666 || binoptab == xor_optab
1667 || binoptab == add_optab || binoptab == sub_optab
1668 || binoptab == smul_optab || binoptab == ashl_optab)
1669 && mclass == MODE_INT)
1671 no_extend = 1;
1672 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1673 xop0, unsignedp);
1674 if (binoptab != ashl_optab)
1675 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1676 xop1, unsignedp);
1679 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1681 /* The second operand of a shift must always be extended. */
1682 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1683 no_extend && binoptab != ashl_optab);
1685 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1686 unsignedp, OPTAB_DIRECT);
1687 if (temp)
1689 if (mclass != MODE_INT
1690 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1692 if (target == 0)
1693 target = gen_reg_rtx (mode);
1694 convert_move (target, temp, 0);
1695 return target;
1697 else
1698 return gen_lowpart (mode, temp);
1700 else
1701 delete_insns_since (last);
1705 /* If operation is commutative,
1706 try to make the first operand a register.
1707 Even better, try to make it the same as the target.
1708 Also try to make the last operand a constant. */
1709 if (commutative_optab_p (binoptab)
1710 && swap_commutative_operands_with_target (target, op0, op1))
1712 temp = op1;
1713 op1 = op0;
1714 op0 = temp;
1717 /* These can be done a word at a time. */
1718 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1719 && mclass == MODE_INT
1720 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1721 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1723 int i;
1724 rtx_insn *insns;
1726 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1727 won't be accurate, so use a new target. */
1728 if (target == 0
1729 || target == op0
1730 || target == op1
1731 || !valid_multiword_target_p (target))
1732 target = gen_reg_rtx (mode);
1734 start_sequence ();
1736 /* Do the actual arithmetic. */
1737 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1739 rtx target_piece = operand_subword (target, i, 1, mode);
1740 rtx x = expand_binop (word_mode, binoptab,
1741 operand_subword_force (op0, i, mode),
1742 operand_subword_force (op1, i, mode),
1743 target_piece, unsignedp, next_methods);
1745 if (x == 0)
1746 break;
1748 if (target_piece != x)
1749 emit_move_insn (target_piece, x);
1752 insns = get_insns ();
1753 end_sequence ();
1755 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
1757 emit_insn (insns);
1758 return target;
1762 /* Synthesize double word shifts from single word shifts. */
1763 if ((binoptab == lshr_optab || binoptab == ashl_optab
1764 || binoptab == ashr_optab)
1765 && mclass == MODE_INT
1766 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1767 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1768 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode)
1769 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1770 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1771 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1773 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1774 machine_mode op1_mode;
1776 double_shift_mask = targetm.shift_truncation_mask (mode);
1777 shift_mask = targetm.shift_truncation_mask (word_mode);
1778 op1_mode = GET_MODE (op1) != VOIDmode ? GET_MODE (op1) : word_mode;
1780 /* Apply the truncation to constant shifts. */
1781 if (double_shift_mask > 0 && CONST_INT_P (op1))
1782 op1 = GEN_INT (INTVAL (op1) & double_shift_mask);
1784 if (op1 == CONST0_RTX (op1_mode))
1785 return op0;
1787 /* Make sure that this is a combination that expand_doubleword_shift
1788 can handle. See the comments there for details. */
1789 if (double_shift_mask == 0
1790 || (shift_mask == BITS_PER_WORD - 1
1791 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1793 rtx_insn *insns;
1794 rtx into_target, outof_target;
1795 rtx into_input, outof_input;
1796 int left_shift, outof_word;
1798 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1799 won't be accurate, so use a new target. */
1800 if (target == 0
1801 || target == op0
1802 || target == op1
1803 || !valid_multiword_target_p (target))
1804 target = gen_reg_rtx (mode);
1806 start_sequence ();
1808 /* OUTOF_* is the word we are shifting bits away from, and
1809 INTO_* is the word that we are shifting bits towards, thus
1810 they differ depending on the direction of the shift and
1811 WORDS_BIG_ENDIAN. */
1813 left_shift = binoptab == ashl_optab;
1814 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1816 outof_target = operand_subword (target, outof_word, 1, mode);
1817 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1819 outof_input = operand_subword_force (op0, outof_word, mode);
1820 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1822 if (expand_doubleword_shift (op1_mode, binoptab,
1823 outof_input, into_input, op1,
1824 outof_target, into_target,
1825 unsignedp, next_methods, shift_mask))
1827 insns = get_insns ();
1828 end_sequence ();
1830 emit_insn (insns);
1831 return target;
1833 end_sequence ();
1837 /* Synthesize double word rotates from single word shifts. */
1838 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1839 && mclass == MODE_INT
1840 && CONST_INT_P (op1)
1841 && GET_MODE_PRECISION (mode) == 2 * BITS_PER_WORD
1842 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1843 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1845 rtx_insn *insns;
1846 rtx into_target, outof_target;
1847 rtx into_input, outof_input;
1848 rtx inter;
1849 int shift_count, left_shift, outof_word;
1851 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1852 won't be accurate, so use a new target. Do this also if target is not
1853 a REG, first because having a register instead may open optimization
1854 opportunities, and second because if target and op0 happen to be MEMs
1855 designating the same location, we would risk clobbering it too early
1856 in the code sequence we generate below. */
1857 if (target == 0
1858 || target == op0
1859 || target == op1
1860 || !REG_P (target)
1861 || !valid_multiword_target_p (target))
1862 target = gen_reg_rtx (mode);
1864 start_sequence ();
1866 shift_count = INTVAL (op1);
1868 /* OUTOF_* is the word we are shifting bits away from, and
1869 INTO_* is the word that we are shifting bits towards, thus
1870 they differ depending on the direction of the shift and
1871 WORDS_BIG_ENDIAN. */
1873 left_shift = (binoptab == rotl_optab);
1874 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1876 outof_target = operand_subword (target, outof_word, 1, mode);
1877 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1879 outof_input = operand_subword_force (op0, outof_word, mode);
1880 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1882 if (shift_count == BITS_PER_WORD)
1884 /* This is just a word swap. */
1885 emit_move_insn (outof_target, into_input);
1886 emit_move_insn (into_target, outof_input);
1887 inter = const0_rtx;
1889 else
1891 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1892 rtx first_shift_count, second_shift_count;
1893 optab reverse_unsigned_shift, unsigned_shift;
1895 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1896 ? lshr_optab : ashl_optab);
1898 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1899 ? ashl_optab : lshr_optab);
1901 if (shift_count > BITS_PER_WORD)
1903 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1904 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1906 else
1908 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1909 second_shift_count = GEN_INT (shift_count);
1912 into_temp1 = expand_binop (word_mode, unsigned_shift,
1913 outof_input, first_shift_count,
1914 NULL_RTX, unsignedp, next_methods);
1915 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1916 into_input, second_shift_count,
1917 NULL_RTX, unsignedp, next_methods);
1919 if (into_temp1 != 0 && into_temp2 != 0)
1920 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1921 into_target, unsignedp, next_methods);
1922 else
1923 inter = 0;
1925 if (inter != 0 && inter != into_target)
1926 emit_move_insn (into_target, inter);
1928 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1929 into_input, first_shift_count,
1930 NULL_RTX, unsignedp, next_methods);
1931 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1932 outof_input, second_shift_count,
1933 NULL_RTX, unsignedp, next_methods);
1935 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1936 inter = expand_binop (word_mode, ior_optab,
1937 outof_temp1, outof_temp2,
1938 outof_target, unsignedp, next_methods);
1940 if (inter != 0 && inter != outof_target)
1941 emit_move_insn (outof_target, inter);
1944 insns = get_insns ();
1945 end_sequence ();
1947 if (inter != 0)
1949 emit_insn (insns);
1950 return target;
1954 /* These can be done a word at a time by propagating carries. */
1955 if ((binoptab == add_optab || binoptab == sub_optab)
1956 && mclass == MODE_INT
1957 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1958 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1960 unsigned int i;
1961 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1962 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1963 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1964 rtx xop0, xop1, xtarget;
1966 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1967 value is one of those, use it. Otherwise, use 1 since it is the
1968 one easiest to get. */
1969 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1970 int normalizep = STORE_FLAG_VALUE;
1971 #else
1972 int normalizep = 1;
1973 #endif
1975 /* Prepare the operands. */
1976 xop0 = force_reg (mode, op0);
1977 xop1 = force_reg (mode, op1);
1979 xtarget = gen_reg_rtx (mode);
1981 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1982 target = xtarget;
1984 /* Indicate for flow that the entire target reg is being set. */
1985 if (REG_P (target))
1986 emit_clobber (xtarget);
1988 /* Do the actual arithmetic. */
1989 for (i = 0; i < nwords; i++)
1991 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1992 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1993 rtx op0_piece = operand_subword_force (xop0, index, mode);
1994 rtx op1_piece = operand_subword_force (xop1, index, mode);
1995 rtx x;
1997 /* Main add/subtract of the input operands. */
1998 x = expand_binop (word_mode, binoptab,
1999 op0_piece, op1_piece,
2000 target_piece, unsignedp, next_methods);
2001 if (x == 0)
2002 break;
2004 if (i + 1 < nwords)
2006 /* Store carry from main add/subtract. */
2007 carry_out = gen_reg_rtx (word_mode);
2008 carry_out = emit_store_flag_force (carry_out,
2009 (binoptab == add_optab
2010 ? LT : GT),
2011 x, op0_piece,
2012 word_mode, 1, normalizep);
2015 if (i > 0)
2017 rtx newx;
2019 /* Add/subtract previous carry to main result. */
2020 newx = expand_binop (word_mode,
2021 normalizep == 1 ? binoptab : otheroptab,
2022 x, carry_in,
2023 NULL_RTX, 1, next_methods);
2025 if (i + 1 < nwords)
2027 /* Get out carry from adding/subtracting carry in. */
2028 rtx carry_tmp = gen_reg_rtx (word_mode);
2029 carry_tmp = emit_store_flag_force (carry_tmp,
2030 (binoptab == add_optab
2031 ? LT : GT),
2032 newx, x,
2033 word_mode, 1, normalizep);
2035 /* Logical-ior the two poss. carry together. */
2036 carry_out = expand_binop (word_mode, ior_optab,
2037 carry_out, carry_tmp,
2038 carry_out, 0, next_methods);
2039 if (carry_out == 0)
2040 break;
2042 emit_move_insn (target_piece, newx);
2044 else
2046 if (x != target_piece)
2047 emit_move_insn (target_piece, x);
2050 carry_in = carry_out;
2053 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
2055 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing
2056 || ! rtx_equal_p (target, xtarget))
2058 rtx temp = emit_move_insn (target, xtarget);
2060 set_dst_reg_note (temp, REG_EQUAL,
2061 gen_rtx_fmt_ee (optab_to_code (binoptab),
2062 mode, copy_rtx (xop0),
2063 copy_rtx (xop1)),
2064 target);
2066 else
2067 target = xtarget;
2069 return target;
2072 else
2073 delete_insns_since (last);
2076 /* Attempt to synthesize double word multiplies using a sequence of word
2077 mode multiplications. We first attempt to generate a sequence using a
2078 more efficient unsigned widening multiply, and if that fails we then
2079 try using a signed widening multiply. */
2081 if (binoptab == smul_optab
2082 && mclass == MODE_INT
2083 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
2084 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
2085 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
2087 rtx product = NULL_RTX;
2088 if (widening_optab_handler (umul_widen_optab, mode, word_mode)
2089 != CODE_FOR_nothing)
2091 product = expand_doubleword_mult (mode, op0, op1, target,
2092 true, methods);
2093 if (!product)
2094 delete_insns_since (last);
2097 if (product == NULL_RTX
2098 && widening_optab_handler (smul_widen_optab, mode, word_mode)
2099 != CODE_FOR_nothing)
2101 product = expand_doubleword_mult (mode, op0, op1, target,
2102 false, methods);
2103 if (!product)
2104 delete_insns_since (last);
2107 if (product != NULL_RTX)
2109 if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
2111 temp = emit_move_insn (target ? target : product, product);
2112 set_dst_reg_note (temp,
2113 REG_EQUAL,
2114 gen_rtx_fmt_ee (MULT, mode,
2115 copy_rtx (op0),
2116 copy_rtx (op1)),
2117 target ? target : product);
2119 return product;
2123 /* It can't be open-coded in this mode.
2124 Use a library call if one is available and caller says that's ok. */
2126 libfunc = optab_libfunc (binoptab, mode);
2127 if (libfunc
2128 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
2130 rtx_insn *insns;
2131 rtx op1x = op1;
2132 machine_mode op1_mode = mode;
2133 rtx value;
2135 start_sequence ();
2137 if (shift_optab_p (binoptab))
2139 op1_mode = targetm.libgcc_shift_count_mode ();
2140 /* Specify unsigned here,
2141 since negative shift counts are meaningless. */
2142 op1x = convert_to_mode (op1_mode, op1, 1);
2145 if (GET_MODE (op0) != VOIDmode
2146 && GET_MODE (op0) != mode)
2147 op0 = convert_to_mode (mode, op0, unsignedp);
2149 /* Pass 1 for NO_QUEUE so we don't lose any increments
2150 if the libcall is cse'd or moved. */
2151 value = emit_library_call_value (libfunc,
2152 NULL_RTX, LCT_CONST, mode, 2,
2153 op0, mode, op1x, op1_mode);
2155 insns = get_insns ();
2156 end_sequence ();
2158 target = gen_reg_rtx (mode);
2159 emit_libcall_block_1 (insns, target, value,
2160 gen_rtx_fmt_ee (optab_to_code (binoptab),
2161 mode, op0, op1),
2162 trapv_binoptab_p (binoptab));
2164 return target;
2167 delete_insns_since (last);
2169 /* It can't be done in this mode. Can we do it in a wider mode? */
2171 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
2172 || methods == OPTAB_MUST_WIDEN))
2174 /* Caller says, don't even try. */
2175 delete_insns_since (entry_last);
2176 return 0;
2179 /* Compute the value of METHODS to pass to recursive calls.
2180 Don't allow widening to be tried recursively. */
2182 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
2184 /* Look for a wider mode of the same class for which it appears we can do
2185 the operation. */
2187 if (CLASS_HAS_WIDER_MODES_P (mclass))
2189 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2190 wider_mode != VOIDmode;
2191 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2193 if (find_widening_optab_handler (binoptab, wider_mode, mode, 1)
2194 != CODE_FOR_nothing
2195 || (methods == OPTAB_LIB
2196 && optab_libfunc (binoptab, wider_mode)))
2198 rtx xop0 = op0, xop1 = op1;
2199 int no_extend = 0;
2201 /* For certain integer operations, we need not actually extend
2202 the narrow operands, as long as we will truncate
2203 the results to the same narrowness. */
2205 if ((binoptab == ior_optab || binoptab == and_optab
2206 || binoptab == xor_optab
2207 || binoptab == add_optab || binoptab == sub_optab
2208 || binoptab == smul_optab || binoptab == ashl_optab)
2209 && mclass == MODE_INT)
2210 no_extend = 1;
2212 xop0 = widen_operand (xop0, wider_mode, mode,
2213 unsignedp, no_extend);
2215 /* The second operand of a shift must always be extended. */
2216 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
2217 no_extend && binoptab != ashl_optab);
2219 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
2220 unsignedp, methods);
2221 if (temp)
2223 if (mclass != MODE_INT
2224 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2226 if (target == 0)
2227 target = gen_reg_rtx (mode);
2228 convert_move (target, temp, 0);
2229 return target;
2231 else
2232 return gen_lowpart (mode, temp);
2234 else
2235 delete_insns_since (last);
2240 delete_insns_since (entry_last);
2241 return 0;
2244 /* Expand a binary operator which has both signed and unsigned forms.
2245 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2246 signed operations.
2248 If we widen unsigned operands, we may use a signed wider operation instead
2249 of an unsigned wider operation, since the result would be the same. */
2252 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
2253 rtx op0, rtx op1, rtx target, int unsignedp,
2254 enum optab_methods methods)
2256 rtx temp;
2257 optab direct_optab = unsignedp ? uoptab : soptab;
2258 bool save_enable;
2260 /* Do it without widening, if possible. */
2261 temp = expand_binop (mode, direct_optab, op0, op1, target,
2262 unsignedp, OPTAB_DIRECT);
2263 if (temp || methods == OPTAB_DIRECT)
2264 return temp;
2266 /* Try widening to a signed int. Disable any direct use of any
2267 signed insn in the current mode. */
2268 save_enable = swap_optab_enable (soptab, mode, false);
2270 temp = expand_binop (mode, soptab, op0, op1, target,
2271 unsignedp, OPTAB_WIDEN);
2273 /* For unsigned operands, try widening to an unsigned int. */
2274 if (!temp && unsignedp)
2275 temp = expand_binop (mode, uoptab, op0, op1, target,
2276 unsignedp, OPTAB_WIDEN);
2277 if (temp || methods == OPTAB_WIDEN)
2278 goto egress;
2280 /* Use the right width libcall if that exists. */
2281 temp = expand_binop (mode, direct_optab, op0, op1, target,
2282 unsignedp, OPTAB_LIB);
2283 if (temp || methods == OPTAB_LIB)
2284 goto egress;
2286 /* Must widen and use a libcall, use either signed or unsigned. */
2287 temp = expand_binop (mode, soptab, op0, op1, target,
2288 unsignedp, methods);
2289 if (!temp && unsignedp)
2290 temp = expand_binop (mode, uoptab, op0, op1, target,
2291 unsignedp, methods);
2293 egress:
2294 /* Undo the fiddling above. */
2295 if (save_enable)
2296 swap_optab_enable (soptab, mode, true);
2297 return temp;
2300 /* Generate code to perform an operation specified by UNOPPTAB
2301 on operand OP0, with two results to TARG0 and TARG1.
2302 We assume that the order of the operands for the instruction
2303 is TARG0, TARG1, OP0.
2305 Either TARG0 or TARG1 may be zero, but what that means is that
2306 the result is not actually wanted. We will generate it into
2307 a dummy pseudo-reg and discard it. They may not both be zero.
2309 Returns 1 if this operation can be performed; 0 if not. */
2312 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
2313 int unsignedp)
2315 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2316 enum mode_class mclass;
2317 machine_mode wider_mode;
2318 rtx_insn *entry_last = get_last_insn ();
2319 rtx_insn *last;
2321 mclass = GET_MODE_CLASS (mode);
2323 if (!targ0)
2324 targ0 = gen_reg_rtx (mode);
2325 if (!targ1)
2326 targ1 = gen_reg_rtx (mode);
2328 /* Record where to go back to if we fail. */
2329 last = get_last_insn ();
2331 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2333 struct expand_operand ops[3];
2334 enum insn_code icode = optab_handler (unoptab, mode);
2336 create_fixed_operand (&ops[0], targ0);
2337 create_fixed_operand (&ops[1], targ1);
2338 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2339 if (maybe_expand_insn (icode, 3, ops))
2340 return 1;
2343 /* It can't be done in this mode. Can we do it in a wider mode? */
2345 if (CLASS_HAS_WIDER_MODES_P (mclass))
2347 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2348 wider_mode != VOIDmode;
2349 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2351 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2353 rtx t0 = gen_reg_rtx (wider_mode);
2354 rtx t1 = gen_reg_rtx (wider_mode);
2355 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2357 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2359 convert_move (targ0, t0, unsignedp);
2360 convert_move (targ1, t1, unsignedp);
2361 return 1;
2363 else
2364 delete_insns_since (last);
2369 delete_insns_since (entry_last);
2370 return 0;
2373 /* Generate code to perform an operation specified by BINOPTAB
2374 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2375 We assume that the order of the operands for the instruction
2376 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2377 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2379 Either TARG0 or TARG1 may be zero, but what that means is that
2380 the result is not actually wanted. We will generate it into
2381 a dummy pseudo-reg and discard it. They may not both be zero.
2383 Returns 1 if this operation can be performed; 0 if not. */
2386 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2387 int unsignedp)
2389 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2390 enum mode_class mclass;
2391 machine_mode wider_mode;
2392 rtx_insn *entry_last = get_last_insn ();
2393 rtx_insn *last;
2395 mclass = GET_MODE_CLASS (mode);
2397 if (!targ0)
2398 targ0 = gen_reg_rtx (mode);
2399 if (!targ1)
2400 targ1 = gen_reg_rtx (mode);
2402 /* Record where to go back to if we fail. */
2403 last = get_last_insn ();
2405 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2407 struct expand_operand ops[4];
2408 enum insn_code icode = optab_handler (binoptab, mode);
2409 machine_mode mode0 = insn_data[icode].operand[1].mode;
2410 machine_mode mode1 = insn_data[icode].operand[2].mode;
2411 rtx xop0 = op0, xop1 = op1;
2413 /* If we are optimizing, force expensive constants into a register. */
2414 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2415 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2417 create_fixed_operand (&ops[0], targ0);
2418 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2419 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2420 create_fixed_operand (&ops[3], targ1);
2421 if (maybe_expand_insn (icode, 4, ops))
2422 return 1;
2423 delete_insns_since (last);
2426 /* It can't be done in this mode. Can we do it in a wider mode? */
2428 if (CLASS_HAS_WIDER_MODES_P (mclass))
2430 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2431 wider_mode != VOIDmode;
2432 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2434 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2436 rtx t0 = gen_reg_rtx (wider_mode);
2437 rtx t1 = gen_reg_rtx (wider_mode);
2438 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2439 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2441 if (expand_twoval_binop (binoptab, cop0, cop1,
2442 t0, t1, unsignedp))
2444 convert_move (targ0, t0, unsignedp);
2445 convert_move (targ1, t1, unsignedp);
2446 return 1;
2448 else
2449 delete_insns_since (last);
2454 delete_insns_since (entry_last);
2455 return 0;
2458 /* Expand the two-valued library call indicated by BINOPTAB, but
2459 preserve only one of the values. If TARG0 is non-NULL, the first
2460 value is placed into TARG0; otherwise the second value is placed
2461 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2462 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2463 This routine assumes that the value returned by the library call is
2464 as if the return value was of an integral mode twice as wide as the
2465 mode of OP0. Returns 1 if the call was successful. */
2467 bool
2468 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2469 rtx targ0, rtx targ1, enum rtx_code code)
2471 machine_mode mode;
2472 machine_mode libval_mode;
2473 rtx libval;
2474 rtx_insn *insns;
2475 rtx libfunc;
2477 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2478 gcc_assert (!targ0 != !targ1);
2480 mode = GET_MODE (op0);
2481 libfunc = optab_libfunc (binoptab, mode);
2482 if (!libfunc)
2483 return false;
2485 /* The value returned by the library function will have twice as
2486 many bits as the nominal MODE. */
2487 libval_mode = smallest_mode_for_size (2 * GET_MODE_BITSIZE (mode),
2488 MODE_INT);
2489 start_sequence ();
2490 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2491 libval_mode, 2,
2492 op0, mode,
2493 op1, mode);
2494 /* Get the part of VAL containing the value that we want. */
2495 libval = simplify_gen_subreg (mode, libval, libval_mode,
2496 targ0 ? 0 : GET_MODE_SIZE (mode));
2497 insns = get_insns ();
2498 end_sequence ();
2499 /* Move the into the desired location. */
2500 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2501 gen_rtx_fmt_ee (code, mode, op0, op1));
2503 return true;
2507 /* Wrapper around expand_unop which takes an rtx code to specify
2508 the operation to perform, not an optab pointer. All other
2509 arguments are the same. */
2511 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2512 rtx target, int unsignedp)
2514 optab unop = code_to_optab (code);
2515 gcc_assert (unop);
2517 return expand_unop (mode, unop, op0, target, unsignedp);
2520 /* Try calculating
2521 (clz:narrow x)
2523 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2525 A similar operation can be used for clrsb. UNOPTAB says which operation
2526 we are trying to expand. */
2527 static rtx
2528 widen_leading (machine_mode mode, rtx op0, rtx target, optab unoptab)
2530 enum mode_class mclass = GET_MODE_CLASS (mode);
2531 if (CLASS_HAS_WIDER_MODES_P (mclass))
2533 machine_mode wider_mode;
2534 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2535 wider_mode != VOIDmode;
2536 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2538 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2540 rtx xop0, temp;
2541 rtx_insn *last;
2543 last = get_last_insn ();
2545 if (target == 0)
2546 target = gen_reg_rtx (mode);
2547 xop0 = widen_operand (op0, wider_mode, mode,
2548 unoptab != clrsb_optab, false);
2549 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2550 unoptab != clrsb_optab);
2551 if (temp != 0)
2552 temp = expand_binop
2553 (wider_mode, sub_optab, temp,
2554 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2555 - GET_MODE_PRECISION (mode),
2556 wider_mode),
2557 target, true, OPTAB_DIRECT);
2558 if (temp == 0)
2559 delete_insns_since (last);
2561 return temp;
2565 return 0;
2568 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2569 quantities, choosing which based on whether the high word is nonzero. */
2570 static rtx
2571 expand_doubleword_clz (machine_mode mode, rtx op0, rtx target)
2573 rtx xop0 = force_reg (mode, op0);
2574 rtx subhi = gen_highpart (word_mode, xop0);
2575 rtx sublo = gen_lowpart (word_mode, xop0);
2576 rtx_code_label *hi0_label = gen_label_rtx ();
2577 rtx_code_label *after_label = gen_label_rtx ();
2578 rtx_insn *seq;
2579 rtx temp, result;
2581 /* If we were not given a target, use a word_mode register, not a
2582 'mode' register. The result will fit, and nobody is expecting
2583 anything bigger (the return type of __builtin_clz* is int). */
2584 if (!target)
2585 target = gen_reg_rtx (word_mode);
2587 /* In any case, write to a word_mode scratch in both branches of the
2588 conditional, so we can ensure there is a single move insn setting
2589 'target' to tag a REG_EQUAL note on. */
2590 result = gen_reg_rtx (word_mode);
2592 start_sequence ();
2594 /* If the high word is not equal to zero,
2595 then clz of the full value is clz of the high word. */
2596 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2597 word_mode, true, hi0_label);
2599 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2600 if (!temp)
2601 goto fail;
2603 if (temp != result)
2604 convert_move (result, temp, true);
2606 emit_jump_insn (gen_jump (after_label));
2607 emit_barrier ();
2609 /* Else clz of the full value is clz of the low word plus the number
2610 of bits in the high word. */
2611 emit_label (hi0_label);
2613 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2614 if (!temp)
2615 goto fail;
2616 temp = expand_binop (word_mode, add_optab, temp,
2617 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2618 result, true, OPTAB_DIRECT);
2619 if (!temp)
2620 goto fail;
2621 if (temp != result)
2622 convert_move (result, temp, true);
2624 emit_label (after_label);
2625 convert_move (target, result, true);
2627 seq = get_insns ();
2628 end_sequence ();
2630 add_equal_note (seq, target, CLZ, xop0, 0);
2631 emit_insn (seq);
2632 return target;
2634 fail:
2635 end_sequence ();
2636 return 0;
2639 /* Try calculating
2640 (bswap:narrow x)
2642 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2643 static rtx
2644 widen_bswap (machine_mode mode, rtx op0, rtx target)
2646 enum mode_class mclass = GET_MODE_CLASS (mode);
2647 machine_mode wider_mode;
2648 rtx x;
2649 rtx_insn *last;
2651 if (!CLASS_HAS_WIDER_MODES_P (mclass))
2652 return NULL_RTX;
2654 for (wider_mode = GET_MODE_WIDER_MODE (mode);
2655 wider_mode != VOIDmode;
2656 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2657 if (optab_handler (bswap_optab, wider_mode) != CODE_FOR_nothing)
2658 goto found;
2659 return NULL_RTX;
2661 found:
2662 last = get_last_insn ();
2664 x = widen_operand (op0, wider_mode, mode, true, true);
2665 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2667 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2668 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2669 if (x != 0)
2670 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2671 GET_MODE_BITSIZE (wider_mode)
2672 - GET_MODE_BITSIZE (mode),
2673 NULL_RTX, true);
2675 if (x != 0)
2677 if (target == 0)
2678 target = gen_reg_rtx (mode);
2679 emit_move_insn (target, gen_lowpart (mode, x));
2681 else
2682 delete_insns_since (last);
2684 return target;
2687 /* Try calculating bswap as two bswaps of two word-sized operands. */
2689 static rtx
2690 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2692 rtx t0, t1;
2694 t1 = expand_unop (word_mode, bswap_optab,
2695 operand_subword_force (op, 0, mode), NULL_RTX, true);
2696 t0 = expand_unop (word_mode, bswap_optab,
2697 operand_subword_force (op, 1, mode), NULL_RTX, true);
2699 if (target == 0 || !valid_multiword_target_p (target))
2700 target = gen_reg_rtx (mode);
2701 if (REG_P (target))
2702 emit_clobber (target);
2703 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2704 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2706 return target;
2709 /* Try calculating (parity x) as (and (popcount x) 1), where
2710 popcount can also be done in a wider mode. */
2711 static rtx
2712 expand_parity (machine_mode mode, rtx op0, rtx target)
2714 enum mode_class mclass = GET_MODE_CLASS (mode);
2715 if (CLASS_HAS_WIDER_MODES_P (mclass))
2717 machine_mode wider_mode;
2718 for (wider_mode = mode; wider_mode != VOIDmode;
2719 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2721 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2723 rtx xop0, temp;
2724 rtx_insn *last;
2726 last = get_last_insn ();
2728 if (target == 0)
2729 target = gen_reg_rtx (mode);
2730 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2731 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2732 true);
2733 if (temp != 0)
2734 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2735 target, true, OPTAB_DIRECT);
2736 if (temp == 0)
2737 delete_insns_since (last);
2739 return temp;
2743 return 0;
2746 /* Try calculating ctz(x) as K - clz(x & -x) ,
2747 where K is GET_MODE_PRECISION(mode) - 1.
2749 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2750 don't have to worry about what the hardware does in that case. (If
2751 the clz instruction produces the usual value at 0, which is K, the
2752 result of this code sequence will be -1; expand_ffs, below, relies
2753 on this. It might be nice to have it be K instead, for consistency
2754 with the (very few) processors that provide a ctz with a defined
2755 value, but that would take one more instruction, and it would be
2756 less convenient for expand_ffs anyway. */
2758 static rtx
2759 expand_ctz (machine_mode mode, rtx op0, rtx target)
2761 rtx_insn *seq;
2762 rtx temp;
2764 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2765 return 0;
2767 start_sequence ();
2769 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2770 if (temp)
2771 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2772 true, OPTAB_DIRECT);
2773 if (temp)
2774 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2775 if (temp)
2776 temp = expand_binop (mode, sub_optab,
2777 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2778 temp, target,
2779 true, OPTAB_DIRECT);
2780 if (temp == 0)
2782 end_sequence ();
2783 return 0;
2786 seq = get_insns ();
2787 end_sequence ();
2789 add_equal_note (seq, temp, CTZ, op0, 0);
2790 emit_insn (seq);
2791 return temp;
2795 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2796 else with the sequence used by expand_clz.
2798 The ffs builtin promises to return zero for a zero value and ctz/clz
2799 may have an undefined value in that case. If they do not give us a
2800 convenient value, we have to generate a test and branch. */
2801 static rtx
2802 expand_ffs (machine_mode mode, rtx op0, rtx target)
2804 HOST_WIDE_INT val = 0;
2805 bool defined_at_zero = false;
2806 rtx temp;
2807 rtx_insn *seq;
2809 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2811 start_sequence ();
2813 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2814 if (!temp)
2815 goto fail;
2817 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2819 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2821 start_sequence ();
2822 temp = expand_ctz (mode, op0, 0);
2823 if (!temp)
2824 goto fail;
2826 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2828 defined_at_zero = true;
2829 val = (GET_MODE_PRECISION (mode) - 1) - val;
2832 else
2833 return 0;
2835 if (defined_at_zero && val == -1)
2836 /* No correction needed at zero. */;
2837 else
2839 /* We don't try to do anything clever with the situation found
2840 on some processors (eg Alpha) where ctz(0:mode) ==
2841 bitsize(mode). If someone can think of a way to send N to -1
2842 and leave alone all values in the range 0..N-1 (where N is a
2843 power of two), cheaper than this test-and-branch, please add it.
2845 The test-and-branch is done after the operation itself, in case
2846 the operation sets condition codes that can be recycled for this.
2847 (This is true on i386, for instance.) */
2849 rtx_code_label *nonzero_label = gen_label_rtx ();
2850 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2851 mode, true, nonzero_label);
2853 convert_move (temp, GEN_INT (-1), false);
2854 emit_label (nonzero_label);
2857 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2858 to produce a value in the range 0..bitsize. */
2859 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2860 target, false, OPTAB_DIRECT);
2861 if (!temp)
2862 goto fail;
2864 seq = get_insns ();
2865 end_sequence ();
2867 add_equal_note (seq, temp, FFS, op0, 0);
2868 emit_insn (seq);
2869 return temp;
2871 fail:
2872 end_sequence ();
2873 return 0;
2876 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2877 conditions, VAL may already be a SUBREG against which we cannot generate
2878 a further SUBREG. In this case, we expect forcing the value into a
2879 register will work around the situation. */
2881 static rtx
2882 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2883 machine_mode imode)
2885 rtx ret;
2886 ret = lowpart_subreg (omode, val, imode);
2887 if (ret == NULL)
2889 val = force_reg (imode, val);
2890 ret = lowpart_subreg (omode, val, imode);
2891 gcc_assert (ret != NULL);
2893 return ret;
2896 /* Expand a floating point absolute value or negation operation via a
2897 logical operation on the sign bit. */
2899 static rtx
2900 expand_absneg_bit (enum rtx_code code, machine_mode mode,
2901 rtx op0, rtx target)
2903 const struct real_format *fmt;
2904 int bitpos, word, nwords, i;
2905 machine_mode imode;
2906 rtx temp;
2907 rtx_insn *insns;
2909 /* The format has to have a simple sign bit. */
2910 fmt = REAL_MODE_FORMAT (mode);
2911 if (fmt == NULL)
2912 return NULL_RTX;
2914 bitpos = fmt->signbit_rw;
2915 if (bitpos < 0)
2916 return NULL_RTX;
2918 /* Don't create negative zeros if the format doesn't support them. */
2919 if (code == NEG && !fmt->has_signed_zero)
2920 return NULL_RTX;
2922 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2924 imode = int_mode_for_mode (mode);
2925 if (imode == BLKmode)
2926 return NULL_RTX;
2927 word = 0;
2928 nwords = 1;
2930 else
2932 imode = word_mode;
2934 if (FLOAT_WORDS_BIG_ENDIAN)
2935 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2936 else
2937 word = bitpos / BITS_PER_WORD;
2938 bitpos = bitpos % BITS_PER_WORD;
2939 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2942 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2943 if (code == ABS)
2944 mask = ~mask;
2946 if (target == 0
2947 || target == op0
2948 || (nwords > 1 && !valid_multiword_target_p (target)))
2949 target = gen_reg_rtx (mode);
2951 if (nwords > 1)
2953 start_sequence ();
2955 for (i = 0; i < nwords; ++i)
2957 rtx targ_piece = operand_subword (target, i, 1, mode);
2958 rtx op0_piece = operand_subword_force (op0, i, mode);
2960 if (i == word)
2962 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2963 op0_piece,
2964 immed_wide_int_const (mask, imode),
2965 targ_piece, 1, OPTAB_LIB_WIDEN);
2966 if (temp != targ_piece)
2967 emit_move_insn (targ_piece, temp);
2969 else
2970 emit_move_insn (targ_piece, op0_piece);
2973 insns = get_insns ();
2974 end_sequence ();
2976 emit_insn (insns);
2978 else
2980 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2981 gen_lowpart (imode, op0),
2982 immed_wide_int_const (mask, imode),
2983 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2984 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2986 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2987 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2988 target);
2991 return target;
2994 /* As expand_unop, but will fail rather than attempt the operation in a
2995 different mode or with a libcall. */
2996 static rtx
2997 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2998 int unsignedp)
3000 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
3002 struct expand_operand ops[2];
3003 enum insn_code icode = optab_handler (unoptab, mode);
3004 rtx_insn *last = get_last_insn ();
3005 rtx pat;
3007 create_output_operand (&ops[0], target, mode);
3008 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
3009 pat = maybe_gen_insn (icode, 2, ops);
3010 if (pat)
3012 if (INSN_P (pat) && NEXT_INSN (as_a <rtx_insn *> (pat)) != NULL_RTX
3013 && ! add_equal_note (as_a <rtx_insn *> (pat), ops[0].value,
3014 optab_to_code (unoptab),
3015 ops[1].value, NULL_RTX))
3017 delete_insns_since (last);
3018 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
3021 emit_insn (pat);
3023 return ops[0].value;
3026 return 0;
3029 /* Generate code to perform an operation specified by UNOPTAB
3030 on operand OP0, with result having machine-mode MODE.
3032 UNSIGNEDP is for the case where we have to widen the operands
3033 to perform the operation. It says to use zero-extension.
3035 If TARGET is nonzero, the value
3036 is generated there, if it is convenient to do so.
3037 In all cases an rtx is returned for the locus of the value;
3038 this may or may not be TARGET. */
3041 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
3042 int unsignedp)
3044 enum mode_class mclass = GET_MODE_CLASS (mode);
3045 machine_mode wider_mode;
3046 rtx temp;
3047 rtx libfunc;
3049 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
3050 if (temp)
3051 return temp;
3053 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3055 /* Widening (or narrowing) clz needs special treatment. */
3056 if (unoptab == clz_optab)
3058 temp = widen_leading (mode, op0, target, unoptab);
3059 if (temp)
3060 return temp;
3062 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3063 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3065 temp = expand_doubleword_clz (mode, op0, target);
3066 if (temp)
3067 return temp;
3070 goto try_libcall;
3073 if (unoptab == clrsb_optab)
3075 temp = widen_leading (mode, op0, target, unoptab);
3076 if (temp)
3077 return temp;
3078 goto try_libcall;
3081 /* Widening (or narrowing) bswap needs special treatment. */
3082 if (unoptab == bswap_optab)
3084 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
3085 or ROTATERT. First try these directly; if this fails, then try the
3086 obvious pair of shifts with allowed widening, as this will probably
3087 be always more efficient than the other fallback methods. */
3088 if (mode == HImode)
3090 rtx_insn *last;
3091 rtx temp1, temp2;
3093 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
3095 temp = expand_binop (mode, rotl_optab, op0, GEN_INT (8), target,
3096 unsignedp, OPTAB_DIRECT);
3097 if (temp)
3098 return temp;
3101 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
3103 temp = expand_binop (mode, rotr_optab, op0, GEN_INT (8), target,
3104 unsignedp, OPTAB_DIRECT);
3105 if (temp)
3106 return temp;
3109 last = get_last_insn ();
3111 temp1 = expand_binop (mode, ashl_optab, op0, GEN_INT (8), NULL_RTX,
3112 unsignedp, OPTAB_WIDEN);
3113 temp2 = expand_binop (mode, lshr_optab, op0, GEN_INT (8), NULL_RTX,
3114 unsignedp, OPTAB_WIDEN);
3115 if (temp1 && temp2)
3117 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
3118 unsignedp, OPTAB_WIDEN);
3119 if (temp)
3120 return temp;
3123 delete_insns_since (last);
3126 temp = widen_bswap (mode, op0, target);
3127 if (temp)
3128 return temp;
3130 if (GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
3131 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3133 temp = expand_doubleword_bswap (mode, op0, target);
3134 if (temp)
3135 return temp;
3138 goto try_libcall;
3141 if (CLASS_HAS_WIDER_MODES_P (mclass))
3142 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3143 wider_mode != VOIDmode;
3144 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3146 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
3148 rtx xop0 = op0;
3149 rtx_insn *last = get_last_insn ();
3151 /* For certain operations, we need not actually extend
3152 the narrow operand, as long as we will truncate the
3153 results to the same narrowness. */
3155 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3156 (unoptab == neg_optab
3157 || unoptab == one_cmpl_optab)
3158 && mclass == MODE_INT);
3160 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3161 unsignedp);
3163 if (temp)
3165 if (mclass != MODE_INT
3166 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
3168 if (target == 0)
3169 target = gen_reg_rtx (mode);
3170 convert_move (target, temp, 0);
3171 return target;
3173 else
3174 return gen_lowpart (mode, temp);
3176 else
3177 delete_insns_since (last);
3181 /* These can be done a word at a time. */
3182 if (unoptab == one_cmpl_optab
3183 && mclass == MODE_INT
3184 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
3185 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
3187 int i;
3188 rtx_insn *insns;
3190 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
3191 target = gen_reg_rtx (mode);
3193 start_sequence ();
3195 /* Do the actual arithmetic. */
3196 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
3198 rtx target_piece = operand_subword (target, i, 1, mode);
3199 rtx x = expand_unop (word_mode, unoptab,
3200 operand_subword_force (op0, i, mode),
3201 target_piece, unsignedp);
3203 if (target_piece != x)
3204 emit_move_insn (target_piece, x);
3207 insns = get_insns ();
3208 end_sequence ();
3210 emit_insn (insns);
3211 return target;
3214 if (optab_to_code (unoptab) == NEG)
3216 /* Try negating floating point values by flipping the sign bit. */
3217 if (SCALAR_FLOAT_MODE_P (mode))
3219 temp = expand_absneg_bit (NEG, mode, op0, target);
3220 if (temp)
3221 return temp;
3224 /* If there is no negation pattern, and we have no negative zero,
3225 try subtracting from zero. */
3226 if (!HONOR_SIGNED_ZEROS (mode))
3228 temp = expand_binop (mode, (unoptab == negv_optab
3229 ? subv_optab : sub_optab),
3230 CONST0_RTX (mode), op0, target,
3231 unsignedp, OPTAB_DIRECT);
3232 if (temp)
3233 return temp;
3237 /* Try calculating parity (x) as popcount (x) % 2. */
3238 if (unoptab == parity_optab)
3240 temp = expand_parity (mode, op0, target);
3241 if (temp)
3242 return temp;
3245 /* Try implementing ffs (x) in terms of clz (x). */
3246 if (unoptab == ffs_optab)
3248 temp = expand_ffs (mode, op0, target);
3249 if (temp)
3250 return temp;
3253 /* Try implementing ctz (x) in terms of clz (x). */
3254 if (unoptab == ctz_optab)
3256 temp = expand_ctz (mode, op0, target);
3257 if (temp)
3258 return temp;
3261 try_libcall:
3262 /* Now try a library call in this mode. */
3263 libfunc = optab_libfunc (unoptab, mode);
3264 if (libfunc)
3266 rtx_insn *insns;
3267 rtx value;
3268 rtx eq_value;
3269 machine_mode outmode = mode;
3271 /* All of these functions return small values. Thus we choose to
3272 have them return something that isn't a double-word. */
3273 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3274 || unoptab == clrsb_optab || unoptab == popcount_optab
3275 || unoptab == parity_optab)
3276 outmode
3277 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3278 optab_libfunc (unoptab, mode)));
3280 start_sequence ();
3282 /* Pass 1 for NO_QUEUE so we don't lose any increments
3283 if the libcall is cse'd or moved. */
3284 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3285 1, op0, mode);
3286 insns = get_insns ();
3287 end_sequence ();
3289 target = gen_reg_rtx (outmode);
3290 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3291 if (GET_MODE_SIZE (outmode) < GET_MODE_SIZE (mode))
3292 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3293 else if (GET_MODE_SIZE (outmode) > GET_MODE_SIZE (mode))
3294 eq_value = simplify_gen_unary (ZERO_EXTEND, outmode, eq_value, mode);
3295 emit_libcall_block_1 (insns, target, value, eq_value,
3296 trapv_unoptab_p (unoptab));
3298 return target;
3301 /* It can't be done in this mode. Can we do it in a wider mode? */
3303 if (CLASS_HAS_WIDER_MODES_P (mclass))
3305 for (wider_mode = GET_MODE_WIDER_MODE (mode);
3306 wider_mode != VOIDmode;
3307 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3309 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3310 || optab_libfunc (unoptab, wider_mode))
3312 rtx xop0 = op0;
3313 rtx_insn *last = get_last_insn ();
3315 /* For certain operations, we need not actually extend
3316 the narrow operand, as long as we will truncate the
3317 results to the same narrowness. */
3318 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3319 (unoptab == neg_optab
3320 || unoptab == one_cmpl_optab
3321 || unoptab == bswap_optab)
3322 && mclass == MODE_INT);
3324 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3325 unsignedp);
3327 /* If we are generating clz using wider mode, adjust the
3328 result. Similarly for clrsb. */
3329 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3330 && temp != 0)
3331 temp = expand_binop
3332 (wider_mode, sub_optab, temp,
3333 gen_int_mode (GET_MODE_PRECISION (wider_mode)
3334 - GET_MODE_PRECISION (mode),
3335 wider_mode),
3336 target, true, OPTAB_DIRECT);
3338 /* Likewise for bswap. */
3339 if (unoptab == bswap_optab && temp != 0)
3341 gcc_assert (GET_MODE_PRECISION (wider_mode)
3342 == GET_MODE_BITSIZE (wider_mode)
3343 && GET_MODE_PRECISION (mode)
3344 == GET_MODE_BITSIZE (mode));
3346 temp = expand_shift (RSHIFT_EXPR, wider_mode, temp,
3347 GET_MODE_BITSIZE (wider_mode)
3348 - GET_MODE_BITSIZE (mode),
3349 NULL_RTX, true);
3352 if (temp)
3354 if (mclass != MODE_INT)
3356 if (target == 0)
3357 target = gen_reg_rtx (mode);
3358 convert_move (target, temp, 0);
3359 return target;
3361 else
3362 return gen_lowpart (mode, temp);
3364 else
3365 delete_insns_since (last);
3370 /* One final attempt at implementing negation via subtraction,
3371 this time allowing widening of the operand. */
3372 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3374 rtx temp;
3375 temp = expand_binop (mode,
3376 unoptab == negv_optab ? subv_optab : sub_optab,
3377 CONST0_RTX (mode), op0,
3378 target, unsignedp, OPTAB_LIB_WIDEN);
3379 if (temp)
3380 return temp;
3383 return 0;
3386 /* Emit code to compute the absolute value of OP0, with result to
3387 TARGET if convenient. (TARGET may be 0.) The return value says
3388 where the result actually is to be found.
3390 MODE is the mode of the operand; the mode of the result is
3391 different but can be deduced from MODE.
3396 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3397 int result_unsignedp)
3399 rtx temp;
3401 if (GET_MODE_CLASS (mode) != MODE_INT
3402 || ! flag_trapv)
3403 result_unsignedp = 1;
3405 /* First try to do it with a special abs instruction. */
3406 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3407 op0, target, 0);
3408 if (temp != 0)
3409 return temp;
3411 /* For floating point modes, try clearing the sign bit. */
3412 if (SCALAR_FLOAT_MODE_P (mode))
3414 temp = expand_absneg_bit (ABS, mode, op0, target);
3415 if (temp)
3416 return temp;
3419 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3420 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3421 && !HONOR_SIGNED_ZEROS (mode))
3423 rtx_insn *last = get_last_insn ();
3425 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3426 op0, NULL_RTX, 0);
3427 if (temp != 0)
3428 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3429 OPTAB_WIDEN);
3431 if (temp != 0)
3432 return temp;
3434 delete_insns_since (last);
3437 /* If this machine has expensive jumps, we can do integer absolute
3438 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3439 where W is the width of MODE. */
3441 if (GET_MODE_CLASS (mode) == MODE_INT
3442 && BRANCH_COST (optimize_insn_for_speed_p (),
3443 false) >= 2)
3445 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3446 GET_MODE_PRECISION (mode) - 1,
3447 NULL_RTX, 0);
3449 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3450 OPTAB_LIB_WIDEN);
3451 if (temp != 0)
3452 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
3453 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3455 if (temp != 0)
3456 return temp;
3459 return NULL_RTX;
3463 expand_abs (machine_mode mode, rtx op0, rtx target,
3464 int result_unsignedp, int safe)
3466 rtx temp;
3467 rtx_code_label *op1;
3469 if (GET_MODE_CLASS (mode) != MODE_INT
3470 || ! flag_trapv)
3471 result_unsignedp = 1;
3473 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3474 if (temp != 0)
3475 return temp;
3477 /* If that does not win, use conditional jump and negate. */
3479 /* It is safe to use the target if it is the same
3480 as the source if this is also a pseudo register */
3481 if (op0 == target && REG_P (op0)
3482 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3483 safe = 1;
3485 op1 = gen_label_rtx ();
3486 if (target == 0 || ! safe
3487 || GET_MODE (target) != mode
3488 || (MEM_P (target) && MEM_VOLATILE_P (target))
3489 || (REG_P (target)
3490 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3491 target = gen_reg_rtx (mode);
3493 emit_move_insn (target, op0);
3494 NO_DEFER_POP;
3496 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3497 NULL_RTX, NULL_RTX, op1, -1);
3499 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3500 target, target, 0);
3501 if (op0 != target)
3502 emit_move_insn (target, op0);
3503 emit_label (op1);
3504 OK_DEFER_POP;
3505 return target;
3508 /* Emit code to compute the one's complement absolute value of OP0
3509 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3510 (TARGET may be NULL_RTX.) The return value says where the result
3511 actually is to be found.
3513 MODE is the mode of the operand; the mode of the result is
3514 different but can be deduced from MODE. */
3517 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3519 rtx temp;
3521 /* Not applicable for floating point modes. */
3522 if (FLOAT_MODE_P (mode))
3523 return NULL_RTX;
3525 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3526 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3528 rtx_insn *last = get_last_insn ();
3530 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3531 if (temp != 0)
3532 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3533 OPTAB_WIDEN);
3535 if (temp != 0)
3536 return temp;
3538 delete_insns_since (last);
3541 /* If this machine has expensive jumps, we can do one's complement
3542 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3544 if (GET_MODE_CLASS (mode) == MODE_INT
3545 && BRANCH_COST (optimize_insn_for_speed_p (),
3546 false) >= 2)
3548 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
3549 GET_MODE_PRECISION (mode) - 1,
3550 NULL_RTX, 0);
3552 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
3553 OPTAB_LIB_WIDEN);
3555 if (temp != 0)
3556 return temp;
3559 return NULL_RTX;
3562 /* A subroutine of expand_copysign, perform the copysign operation using the
3563 abs and neg primitives advertised to exist on the target. The assumption
3564 is that we have a split register file, and leaving op0 in fp registers,
3565 and not playing with subregs so much, will help the register allocator. */
3567 static rtx
3568 expand_copysign_absneg (machine_mode mode, rtx op0, rtx op1, rtx target,
3569 int bitpos, bool op0_is_abs)
3571 machine_mode imode;
3572 enum insn_code icode;
3573 rtx sign;
3574 rtx_code_label *label;
3576 if (target == op1)
3577 target = NULL_RTX;
3579 /* Check if the back end provides an insn that handles signbit for the
3580 argument's mode. */
3581 icode = optab_handler (signbit_optab, mode);
3582 if (icode != CODE_FOR_nothing)
3584 imode = insn_data[(int) icode].operand[0].mode;
3585 sign = gen_reg_rtx (imode);
3586 emit_unop_insn (icode, sign, op1, UNKNOWN);
3588 else
3590 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3592 imode = int_mode_for_mode (mode);
3593 if (imode == BLKmode)
3594 return NULL_RTX;
3595 op1 = gen_lowpart (imode, op1);
3597 else
3599 int word;
3601 imode = word_mode;
3602 if (FLOAT_WORDS_BIG_ENDIAN)
3603 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3604 else
3605 word = bitpos / BITS_PER_WORD;
3606 bitpos = bitpos % BITS_PER_WORD;
3607 op1 = operand_subword_force (op1, word, mode);
3610 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3611 sign = expand_binop (imode, and_optab, op1,
3612 immed_wide_int_const (mask, imode),
3613 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3616 if (!op0_is_abs)
3618 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3619 if (op0 == NULL)
3620 return NULL_RTX;
3621 target = op0;
3623 else
3625 if (target == NULL_RTX)
3626 target = copy_to_reg (op0);
3627 else
3628 emit_move_insn (target, op0);
3631 label = gen_label_rtx ();
3632 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3634 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3635 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3636 else
3637 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3638 if (op0 != target)
3639 emit_move_insn (target, op0);
3641 emit_label (label);
3643 return target;
3647 /* A subroutine of expand_copysign, perform the entire copysign operation
3648 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3649 is true if op0 is known to have its sign bit clear. */
3651 static rtx
3652 expand_copysign_bit (machine_mode mode, rtx op0, rtx op1, rtx target,
3653 int bitpos, bool op0_is_abs)
3655 machine_mode imode;
3656 int word, nwords, i;
3657 rtx temp;
3658 rtx_insn *insns;
3660 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3662 imode = int_mode_for_mode (mode);
3663 if (imode == BLKmode)
3664 return NULL_RTX;
3665 word = 0;
3666 nwords = 1;
3668 else
3670 imode = word_mode;
3672 if (FLOAT_WORDS_BIG_ENDIAN)
3673 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3674 else
3675 word = bitpos / BITS_PER_WORD;
3676 bitpos = bitpos % BITS_PER_WORD;
3677 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3680 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3682 if (target == 0
3683 || target == op0
3684 || target == op1
3685 || (nwords > 1 && !valid_multiword_target_p (target)))
3686 target = gen_reg_rtx (mode);
3688 if (nwords > 1)
3690 start_sequence ();
3692 for (i = 0; i < nwords; ++i)
3694 rtx targ_piece = operand_subword (target, i, 1, mode);
3695 rtx op0_piece = operand_subword_force (op0, i, mode);
3697 if (i == word)
3699 if (!op0_is_abs)
3700 op0_piece
3701 = expand_binop (imode, and_optab, op0_piece,
3702 immed_wide_int_const (~mask, imode),
3703 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3704 op1 = expand_binop (imode, and_optab,
3705 operand_subword_force (op1, i, mode),
3706 immed_wide_int_const (mask, imode),
3707 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3709 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3710 targ_piece, 1, OPTAB_LIB_WIDEN);
3711 if (temp != targ_piece)
3712 emit_move_insn (targ_piece, temp);
3714 else
3715 emit_move_insn (targ_piece, op0_piece);
3718 insns = get_insns ();
3719 end_sequence ();
3721 emit_insn (insns);
3723 else
3725 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3726 immed_wide_int_const (mask, imode),
3727 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3729 op0 = gen_lowpart (imode, op0);
3730 if (!op0_is_abs)
3731 op0 = expand_binop (imode, and_optab, op0,
3732 immed_wide_int_const (~mask, imode),
3733 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3735 temp = expand_binop (imode, ior_optab, op0, op1,
3736 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3737 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3740 return target;
3743 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3744 scalar floating point mode. Return NULL if we do not know how to
3745 expand the operation inline. */
3748 expand_copysign (rtx op0, rtx op1, rtx target)
3750 machine_mode mode = GET_MODE (op0);
3751 const struct real_format *fmt;
3752 bool op0_is_abs;
3753 rtx temp;
3755 gcc_assert (SCALAR_FLOAT_MODE_P (mode));
3756 gcc_assert (GET_MODE (op1) == mode);
3758 /* First try to do it with a special instruction. */
3759 temp = expand_binop (mode, copysign_optab, op0, op1,
3760 target, 0, OPTAB_DIRECT);
3761 if (temp)
3762 return temp;
3764 fmt = REAL_MODE_FORMAT (mode);
3765 if (fmt == NULL || !fmt->has_signed_zero)
3766 return NULL_RTX;
3768 op0_is_abs = false;
3769 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3771 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3772 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3773 op0_is_abs = true;
3776 if (fmt->signbit_ro >= 0
3777 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3778 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3779 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3781 temp = expand_copysign_absneg (mode, op0, op1, target,
3782 fmt->signbit_ro, op0_is_abs);
3783 if (temp)
3784 return temp;
3787 if (fmt->signbit_rw < 0)
3788 return NULL_RTX;
3789 return expand_copysign_bit (mode, op0, op1, target,
3790 fmt->signbit_rw, op0_is_abs);
3793 /* Generate an instruction whose insn-code is INSN_CODE,
3794 with two operands: an output TARGET and an input OP0.
3795 TARGET *must* be nonzero, and the output is always stored there.
3796 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3797 the value that is stored into TARGET.
3799 Return false if expansion failed. */
3801 bool
3802 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3803 enum rtx_code code)
3805 struct expand_operand ops[2];
3806 rtx pat;
3808 create_output_operand (&ops[0], target, GET_MODE (target));
3809 create_input_operand (&ops[1], op0, GET_MODE (op0));
3810 pat = maybe_gen_insn (icode, 2, ops);
3811 if (!pat)
3812 return false;
3814 if (INSN_P (pat) && NEXT_INSN (as_a <rtx_insn *> (pat)) != NULL_RTX
3815 && code != UNKNOWN)
3816 add_equal_note (as_a <rtx_insn *> (pat), ops[0].value, code, ops[1].value,
3817 NULL_RTX);
3819 emit_insn (pat);
3821 if (ops[0].value != target)
3822 emit_move_insn (target, ops[0].value);
3823 return true;
3825 /* Generate an instruction whose insn-code is INSN_CODE,
3826 with two operands: an output TARGET and an input OP0.
3827 TARGET *must* be nonzero, and the output is always stored there.
3828 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3829 the value that is stored into TARGET. */
3831 void
3832 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3834 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3835 gcc_assert (ok);
3838 struct no_conflict_data
3840 rtx target;
3841 rtx_insn *first, *insn;
3842 bool must_stay;
3845 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3846 the currently examined clobber / store has to stay in the list of
3847 insns that constitute the actual libcall block. */
3848 static void
3849 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3851 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3853 /* If this inns directly contributes to setting the target, it must stay. */
3854 if (reg_overlap_mentioned_p (p->target, dest))
3855 p->must_stay = true;
3856 /* If we haven't committed to keeping any other insns in the list yet,
3857 there is nothing more to check. */
3858 else if (p->insn == p->first)
3859 return;
3860 /* If this insn sets / clobbers a register that feeds one of the insns
3861 already in the list, this insn has to stay too. */
3862 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3863 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3864 || reg_used_between_p (dest, p->first, p->insn)
3865 /* Likewise if this insn depends on a register set by a previous
3866 insn in the list, or if it sets a result (presumably a hard
3867 register) that is set or clobbered by a previous insn.
3868 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3869 SET_DEST perform the former check on the address, and the latter
3870 check on the MEM. */
3871 || (GET_CODE (set) == SET
3872 && (modified_in_p (SET_SRC (set), p->first)
3873 || modified_in_p (SET_DEST (set), p->first)
3874 || modified_between_p (SET_SRC (set), p->first, p->insn)
3875 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3876 p->must_stay = true;
3880 /* Emit code to make a call to a constant function or a library call.
3882 INSNS is a list containing all insns emitted in the call.
3883 These insns leave the result in RESULT. Our block is to copy RESULT
3884 to TARGET, which is logically equivalent to EQUIV.
3886 We first emit any insns that set a pseudo on the assumption that these are
3887 loading constants into registers; doing so allows them to be safely cse'ed
3888 between blocks. Then we emit all the other insns in the block, followed by
3889 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3890 note with an operand of EQUIV. */
3892 static void
3893 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3894 bool equiv_may_trap)
3896 rtx final_dest = target;
3897 rtx_insn *next, *last, *insn;
3899 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3900 into a MEM later. Protect the libcall block from this change. */
3901 if (! REG_P (target) || REG_USERVAR_P (target))
3902 target = gen_reg_rtx (GET_MODE (target));
3904 /* If we're using non-call exceptions, a libcall corresponding to an
3905 operation that may trap may also trap. */
3906 /* ??? See the comment in front of make_reg_eh_region_note. */
3907 if (cfun->can_throw_non_call_exceptions
3908 && (equiv_may_trap || may_trap_p (equiv)))
3910 for (insn = insns; insn; insn = NEXT_INSN (insn))
3911 if (CALL_P (insn))
3913 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3914 if (note)
3916 int lp_nr = INTVAL (XEXP (note, 0));
3917 if (lp_nr == 0 || lp_nr == INT_MIN)
3918 remove_note (insn, note);
3922 else
3924 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3925 reg note to indicate that this call cannot throw or execute a nonlocal
3926 goto (unless there is already a REG_EH_REGION note, in which case
3927 we update it). */
3928 for (insn = insns; insn; insn = NEXT_INSN (insn))
3929 if (CALL_P (insn))
3930 make_reg_eh_region_note_nothrow_nononlocal (insn);
3933 /* First emit all insns that set pseudos. Remove them from the list as
3934 we go. Avoid insns that set pseudos which were referenced in previous
3935 insns. These can be generated by move_by_pieces, for example,
3936 to update an address. Similarly, avoid insns that reference things
3937 set in previous insns. */
3939 for (insn = insns; insn; insn = next)
3941 rtx set = single_set (insn);
3943 next = NEXT_INSN (insn);
3945 if (set != 0 && REG_P (SET_DEST (set))
3946 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3948 struct no_conflict_data data;
3950 data.target = const0_rtx;
3951 data.first = insns;
3952 data.insn = insn;
3953 data.must_stay = 0;
3954 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3955 if (! data.must_stay)
3957 if (PREV_INSN (insn))
3958 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3959 else
3960 insns = next;
3962 if (next)
3963 SET_PREV_INSN (next) = PREV_INSN (insn);
3965 add_insn (insn);
3969 /* Some ports use a loop to copy large arguments onto the stack.
3970 Don't move anything outside such a loop. */
3971 if (LABEL_P (insn))
3972 break;
3975 /* Write the remaining insns followed by the final copy. */
3976 for (insn = insns; insn; insn = next)
3978 next = NEXT_INSN (insn);
3980 add_insn (insn);
3983 last = emit_move_insn (target, result);
3984 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3986 if (final_dest != target)
3987 emit_move_insn (final_dest, target);
3990 void
3991 emit_libcall_block (rtx insns, rtx target, rtx result, rtx equiv)
3993 emit_libcall_block_1 (safe_as_a <rtx_insn *> (insns),
3994 target, result, equiv, false);
3997 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3998 PURPOSE describes how this comparison will be used. CODE is the rtx
3999 comparison code we will be using.
4001 ??? Actually, CODE is slightly weaker than that. A target is still
4002 required to implement all of the normal bcc operations, but not
4003 required to implement all (or any) of the unordered bcc operations. */
4006 can_compare_p (enum rtx_code code, machine_mode mode,
4007 enum can_compare_purpose purpose)
4009 rtx test;
4010 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
4013 enum insn_code icode;
4015 if (purpose == ccp_jump
4016 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
4017 && insn_operand_matches (icode, 0, test))
4018 return 1;
4019 if (purpose == ccp_store_flag
4020 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
4021 && insn_operand_matches (icode, 1, test))
4022 return 1;
4023 if (purpose == ccp_cmov
4024 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
4025 return 1;
4027 mode = GET_MODE_WIDER_MODE (mode);
4028 PUT_MODE (test, mode);
4030 while (mode != VOIDmode);
4032 return 0;
4035 /* This function is called when we are going to emit a compare instruction that
4036 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
4038 *PMODE is the mode of the inputs (in case they are const_int).
4039 *PUNSIGNEDP nonzero says that the operands are unsigned;
4040 this matters if they need to be widened (as given by METHODS).
4042 If they have mode BLKmode, then SIZE specifies the size of both operands.
4044 This function performs all the setup necessary so that the caller only has
4045 to emit a single comparison insn. This setup can involve doing a BLKmode
4046 comparison or emitting a library call to perform the comparison if no insn
4047 is available to handle it.
4048 The values which are passed in through pointers can be modified; the caller
4049 should perform the comparison on the modified values. Constant
4050 comparisons must have already been folded. */
4052 static void
4053 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
4054 int unsignedp, enum optab_methods methods,
4055 rtx *ptest, machine_mode *pmode)
4057 machine_mode mode = *pmode;
4058 rtx libfunc, test;
4059 machine_mode cmp_mode;
4060 enum mode_class mclass;
4062 /* The other methods are not needed. */
4063 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
4064 || methods == OPTAB_LIB_WIDEN);
4066 /* If we are optimizing, force expensive constants into a register. */
4067 if (CONSTANT_P (x) && optimize
4068 && (rtx_cost (x, COMPARE, 0, optimize_insn_for_speed_p ())
4069 > COSTS_N_INSNS (1)))
4070 x = force_reg (mode, x);
4072 if (CONSTANT_P (y) && optimize
4073 && (rtx_cost (y, COMPARE, 1, optimize_insn_for_speed_p ())
4074 > COSTS_N_INSNS (1)))
4075 y = force_reg (mode, y);
4077 #ifdef HAVE_cc0
4078 /* Make sure if we have a canonical comparison. The RTL
4079 documentation states that canonical comparisons are required only
4080 for targets which have cc0. */
4081 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
4082 #endif
4084 /* Don't let both operands fail to indicate the mode. */
4085 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
4086 x = force_reg (mode, x);
4087 if (mode == VOIDmode)
4088 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
4090 /* Handle all BLKmode compares. */
4092 if (mode == BLKmode)
4094 machine_mode result_mode;
4095 enum insn_code cmp_code;
4096 tree length_type;
4097 rtx libfunc;
4098 rtx result;
4099 rtx opalign
4100 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
4102 gcc_assert (size);
4104 /* Try to use a memory block compare insn - either cmpstr
4105 or cmpmem will do. */
4106 for (cmp_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
4107 cmp_mode != VOIDmode;
4108 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode))
4110 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
4111 if (cmp_code == CODE_FOR_nothing)
4112 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
4113 if (cmp_code == CODE_FOR_nothing)
4114 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
4115 if (cmp_code == CODE_FOR_nothing)
4116 continue;
4118 /* Must make sure the size fits the insn's mode. */
4119 if ((CONST_INT_P (size)
4120 && INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode)))
4121 || (GET_MODE_BITSIZE (GET_MODE (size))
4122 > GET_MODE_BITSIZE (cmp_mode)))
4123 continue;
4125 result_mode = insn_data[cmp_code].operand[0].mode;
4126 result = gen_reg_rtx (result_mode);
4127 size = convert_to_mode (cmp_mode, size, 1);
4128 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
4130 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
4131 *pmode = result_mode;
4132 return;
4135 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
4136 goto fail;
4138 /* Otherwise call a library function, memcmp. */
4139 libfunc = memcmp_libfunc;
4140 length_type = sizetype;
4141 result_mode = TYPE_MODE (integer_type_node);
4142 cmp_mode = TYPE_MODE (length_type);
4143 size = convert_to_mode (TYPE_MODE (length_type), size,
4144 TYPE_UNSIGNED (length_type));
4146 result = emit_library_call_value (libfunc, 0, LCT_PURE,
4147 result_mode, 3,
4148 XEXP (x, 0), Pmode,
4149 XEXP (y, 0), Pmode,
4150 size, cmp_mode);
4151 x = result;
4152 y = const0_rtx;
4153 mode = result_mode;
4154 methods = OPTAB_LIB_WIDEN;
4155 unsignedp = false;
4158 /* Don't allow operands to the compare to trap, as that can put the
4159 compare and branch in different basic blocks. */
4160 if (cfun->can_throw_non_call_exceptions)
4162 if (may_trap_p (x))
4163 x = force_reg (mode, x);
4164 if (may_trap_p (y))
4165 y = force_reg (mode, y);
4168 if (GET_MODE_CLASS (mode) == MODE_CC)
4170 gcc_assert (can_compare_p (comparison, CCmode, ccp_jump));
4171 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4172 return;
4175 mclass = GET_MODE_CLASS (mode);
4176 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
4177 cmp_mode = mode;
4180 enum insn_code icode;
4181 icode = optab_handler (cbranch_optab, cmp_mode);
4182 if (icode != CODE_FOR_nothing
4183 && insn_operand_matches (icode, 0, test))
4185 rtx_insn *last = get_last_insn ();
4186 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
4187 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
4188 if (op0 && op1
4189 && insn_operand_matches (icode, 1, op0)
4190 && insn_operand_matches (icode, 2, op1))
4192 XEXP (test, 0) = op0;
4193 XEXP (test, 1) = op1;
4194 *ptest = test;
4195 *pmode = cmp_mode;
4196 return;
4198 delete_insns_since (last);
4201 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4202 break;
4203 cmp_mode = GET_MODE_WIDER_MODE (cmp_mode);
4205 while (cmp_mode != VOIDmode);
4207 if (methods != OPTAB_LIB_WIDEN)
4208 goto fail;
4210 if (!SCALAR_FLOAT_MODE_P (mode))
4212 rtx result;
4213 machine_mode ret_mode;
4215 /* Handle a libcall just for the mode we are using. */
4216 libfunc = optab_libfunc (cmp_optab, mode);
4217 gcc_assert (libfunc);
4219 /* If we want unsigned, and this mode has a distinct unsigned
4220 comparison routine, use that. */
4221 if (unsignedp)
4223 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4224 if (ulibfunc)
4225 libfunc = ulibfunc;
4228 ret_mode = targetm.libgcc_cmp_return_mode ();
4229 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4230 ret_mode, 2, x, mode, y, mode);
4232 /* There are two kinds of comparison routines. Biased routines
4233 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4234 of gcc expect that the comparison operation is equivalent
4235 to the modified comparison. For signed comparisons compare the
4236 result against 1 in the biased case, and zero in the unbiased
4237 case. For unsigned comparisons always compare against 1 after
4238 biasing the unbiased result by adding 1. This gives us a way to
4239 represent LTU.
4240 The comparisons in the fixed-point helper library are always
4241 biased. */
4242 x = result;
4243 y = const1_rtx;
4245 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4247 if (unsignedp)
4248 x = plus_constant (ret_mode, result, 1);
4249 else
4250 y = const0_rtx;
4253 *pmode = ret_mode;
4254 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4255 ptest, pmode);
4257 else
4258 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4260 return;
4262 fail:
4263 *ptest = NULL_RTX;
4266 /* Before emitting an insn with code ICODE, make sure that X, which is going
4267 to be used for operand OPNUM of the insn, is converted from mode MODE to
4268 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4269 that it is accepted by the operand predicate. Return the new value. */
4272 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4273 machine_mode wider_mode, int unsignedp)
4275 if (mode != wider_mode)
4276 x = convert_modes (wider_mode, mode, x, unsignedp);
4278 if (!insn_operand_matches (icode, opnum, x))
4280 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4281 if (reload_completed)
4282 return NULL_RTX;
4283 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4284 return NULL_RTX;
4285 x = copy_to_mode_reg (op_mode, x);
4288 return x;
4291 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4292 we can do the branch. */
4294 static void
4295 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label, int prob)
4297 machine_mode optab_mode;
4298 enum mode_class mclass;
4299 enum insn_code icode;
4300 rtx_insn *insn;
4302 mclass = GET_MODE_CLASS (mode);
4303 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4304 icode = optab_handler (cbranch_optab, optab_mode);
4306 gcc_assert (icode != CODE_FOR_nothing);
4307 gcc_assert (insn_operand_matches (icode, 0, test));
4308 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4309 XEXP (test, 1), label));
4310 if (prob != -1
4311 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4312 && insn
4313 && JUMP_P (insn)
4314 && any_condjump_p (insn)
4315 && !find_reg_note (insn, REG_BR_PROB, 0))
4316 add_int_reg_note (insn, REG_BR_PROB, prob);
4319 /* Generate code to compare X with Y so that the condition codes are
4320 set and to jump to LABEL if the condition is true. If X is a
4321 constant and Y is not a constant, then the comparison is swapped to
4322 ensure that the comparison RTL has the canonical form.
4324 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4325 need to be widened. UNSIGNEDP is also used to select the proper
4326 branch condition code.
4328 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4330 MODE is the mode of the inputs (in case they are const_int).
4332 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4333 It will be potentially converted into an unsigned variant based on
4334 UNSIGNEDP to select a proper jump instruction.
4336 PROB is the probability of jumping to LABEL. */
4338 void
4339 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4340 machine_mode mode, int unsignedp, rtx label,
4341 int prob)
4343 rtx op0 = x, op1 = y;
4344 rtx test;
4346 /* Swap operands and condition to ensure canonical RTL. */
4347 if (swap_commutative_operands_p (x, y)
4348 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4350 op0 = y, op1 = x;
4351 comparison = swap_condition (comparison);
4354 /* If OP0 is still a constant, then both X and Y must be constants
4355 or the opposite comparison is not supported. Force X into a register
4356 to create canonical RTL. */
4357 if (CONSTANT_P (op0))
4358 op0 = force_reg (mode, op0);
4360 if (unsignedp)
4361 comparison = unsigned_condition (comparison);
4363 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4364 &test, &mode);
4365 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4369 /* Emit a library call comparison between floating point X and Y.
4370 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4372 static void
4373 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4374 rtx *ptest, machine_mode *pmode)
4376 enum rtx_code swapped = swap_condition (comparison);
4377 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4378 machine_mode orig_mode = GET_MODE (x);
4379 machine_mode mode, cmp_mode;
4380 rtx true_rtx, false_rtx;
4381 rtx value, target, equiv;
4382 rtx_insn *insns;
4383 rtx libfunc = 0;
4384 bool reversed_p = false;
4385 cmp_mode = targetm.libgcc_cmp_return_mode ();
4387 for (mode = orig_mode;
4388 mode != VOIDmode;
4389 mode = GET_MODE_WIDER_MODE (mode))
4391 if (code_to_optab (comparison)
4392 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4393 break;
4395 if (code_to_optab (swapped)
4396 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4398 rtx tmp;
4399 tmp = x; x = y; y = tmp;
4400 comparison = swapped;
4401 break;
4404 if (code_to_optab (reversed)
4405 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4407 comparison = reversed;
4408 reversed_p = true;
4409 break;
4413 gcc_assert (mode != VOIDmode);
4415 if (mode != orig_mode)
4417 x = convert_to_mode (mode, x, 0);
4418 y = convert_to_mode (mode, y, 0);
4421 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4422 the RTL. The allows the RTL optimizers to delete the libcall if the
4423 condition can be determined at compile-time. */
4424 if (comparison == UNORDERED
4425 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4427 true_rtx = const_true_rtx;
4428 false_rtx = const0_rtx;
4430 else
4432 switch (comparison)
4434 case EQ:
4435 true_rtx = const0_rtx;
4436 false_rtx = const_true_rtx;
4437 break;
4439 case NE:
4440 true_rtx = const_true_rtx;
4441 false_rtx = const0_rtx;
4442 break;
4444 case GT:
4445 true_rtx = const1_rtx;
4446 false_rtx = const0_rtx;
4447 break;
4449 case GE:
4450 true_rtx = const0_rtx;
4451 false_rtx = constm1_rtx;
4452 break;
4454 case LT:
4455 true_rtx = constm1_rtx;
4456 false_rtx = const0_rtx;
4457 break;
4459 case LE:
4460 true_rtx = const0_rtx;
4461 false_rtx = const1_rtx;
4462 break;
4464 default:
4465 gcc_unreachable ();
4469 if (comparison == UNORDERED)
4471 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4472 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4473 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4474 temp, const_true_rtx, equiv);
4476 else
4478 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4479 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4480 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4481 equiv, true_rtx, false_rtx);
4484 start_sequence ();
4485 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4486 cmp_mode, 2, x, mode, y, mode);
4487 insns = get_insns ();
4488 end_sequence ();
4490 target = gen_reg_rtx (cmp_mode);
4491 emit_libcall_block (insns, target, value, equiv);
4493 if (comparison == UNORDERED
4494 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4495 || reversed_p)
4496 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4497 else
4498 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4500 *pmode = cmp_mode;
4503 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4505 void
4506 emit_indirect_jump (rtx loc ATTRIBUTE_UNUSED)
4508 #ifndef HAVE_indirect_jump
4509 sorry ("indirect jumps are not available on this target");
4510 #else
4511 struct expand_operand ops[1];
4512 create_address_operand (&ops[0], loc);
4513 expand_jump_insn (CODE_FOR_indirect_jump, 1, ops);
4514 emit_barrier ();
4515 #endif
4518 #ifdef HAVE_conditional_move
4520 /* Emit a conditional move instruction if the machine supports one for that
4521 condition and machine mode.
4523 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4524 the mode to use should they be constants. If it is VOIDmode, they cannot
4525 both be constants.
4527 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4528 should be stored there. MODE is the mode to use should they be constants.
4529 If it is VOIDmode, they cannot both be constants.
4531 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4532 is not supported. */
4535 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4536 machine_mode cmode, rtx op2, rtx op3,
4537 machine_mode mode, int unsignedp)
4539 rtx tem, comparison;
4540 rtx_insn *last;
4541 enum insn_code icode;
4542 enum rtx_code reversed;
4544 /* If one operand is constant, make it the second one. Only do this
4545 if the other operand is not constant as well. */
4547 if (swap_commutative_operands_p (op0, op1))
4549 tem = op0;
4550 op0 = op1;
4551 op1 = tem;
4552 code = swap_condition (code);
4555 /* get_condition will prefer to generate LT and GT even if the old
4556 comparison was against zero, so undo that canonicalization here since
4557 comparisons against zero are cheaper. */
4558 if (code == LT && op1 == const1_rtx)
4559 code = LE, op1 = const0_rtx;
4560 else if (code == GT && op1 == constm1_rtx)
4561 code = GE, op1 = const0_rtx;
4563 if (cmode == VOIDmode)
4564 cmode = GET_MODE (op0);
4566 if (swap_commutative_operands_p (op2, op3)
4567 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4568 != UNKNOWN))
4570 tem = op2;
4571 op2 = op3;
4572 op3 = tem;
4573 code = reversed;
4576 if (mode == VOIDmode)
4577 mode = GET_MODE (op2);
4579 icode = direct_optab_handler (movcc_optab, mode);
4581 if (icode == CODE_FOR_nothing)
4582 return 0;
4584 if (!target)
4585 target = gen_reg_rtx (mode);
4587 code = unsignedp ? unsigned_condition (code) : code;
4588 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4590 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4591 return NULL and let the caller figure out how best to deal with this
4592 situation. */
4593 if (!COMPARISON_P (comparison))
4594 return NULL_RTX;
4596 saved_pending_stack_adjust save;
4597 save_pending_stack_adjust (&save);
4598 last = get_last_insn ();
4599 do_pending_stack_adjust ();
4600 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4601 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4602 &comparison, &cmode);
4603 if (comparison)
4605 struct expand_operand ops[4];
4607 create_output_operand (&ops[0], target, mode);
4608 create_fixed_operand (&ops[1], comparison);
4609 create_input_operand (&ops[2], op2, mode);
4610 create_input_operand (&ops[3], op3, mode);
4611 if (maybe_expand_insn (icode, 4, ops))
4613 if (ops[0].value != target)
4614 convert_move (target, ops[0].value, false);
4615 return target;
4618 delete_insns_since (last);
4619 restore_pending_stack_adjust (&save);
4620 return NULL_RTX;
4623 /* Return nonzero if a conditional move of mode MODE is supported.
4625 This function is for combine so it can tell whether an insn that looks
4626 like a conditional move is actually supported by the hardware. If we
4627 guess wrong we lose a bit on optimization, but that's it. */
4628 /* ??? sparc64 supports conditionally moving integers values based on fp
4629 comparisons, and vice versa. How do we handle them? */
4632 can_conditionally_move_p (machine_mode mode)
4634 if (direct_optab_handler (movcc_optab, mode) != CODE_FOR_nothing)
4635 return 1;
4637 return 0;
4640 #endif /* HAVE_conditional_move */
4642 /* Emit a conditional addition instruction if the machine supports one for that
4643 condition and machine mode.
4645 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4646 the mode to use should they be constants. If it is VOIDmode, they cannot
4647 both be constants.
4649 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4650 should be stored there. MODE is the mode to use should they be constants.
4651 If it is VOIDmode, they cannot both be constants.
4653 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4654 is not supported. */
4657 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4658 machine_mode cmode, rtx op2, rtx op3,
4659 machine_mode mode, int unsignedp)
4661 rtx tem, comparison;
4662 rtx_insn *last;
4663 enum insn_code icode;
4665 /* If one operand is constant, make it the second one. Only do this
4666 if the other operand is not constant as well. */
4668 if (swap_commutative_operands_p (op0, op1))
4670 tem = op0;
4671 op0 = op1;
4672 op1 = tem;
4673 code = swap_condition (code);
4676 /* get_condition will prefer to generate LT and GT even if the old
4677 comparison was against zero, so undo that canonicalization here since
4678 comparisons against zero are cheaper. */
4679 if (code == LT && op1 == const1_rtx)
4680 code = LE, op1 = const0_rtx;
4681 else if (code == GT && op1 == constm1_rtx)
4682 code = GE, op1 = const0_rtx;
4684 if (cmode == VOIDmode)
4685 cmode = GET_MODE (op0);
4687 if (mode == VOIDmode)
4688 mode = GET_MODE (op2);
4690 icode = optab_handler (addcc_optab, mode);
4692 if (icode == CODE_FOR_nothing)
4693 return 0;
4695 if (!target)
4696 target = gen_reg_rtx (mode);
4698 code = unsignedp ? unsigned_condition (code) : code;
4699 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4701 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4702 return NULL and let the caller figure out how best to deal with this
4703 situation. */
4704 if (!COMPARISON_P (comparison))
4705 return NULL_RTX;
4707 do_pending_stack_adjust ();
4708 last = get_last_insn ();
4709 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4710 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4711 &comparison, &cmode);
4712 if (comparison)
4714 struct expand_operand ops[4];
4716 create_output_operand (&ops[0], target, mode);
4717 create_fixed_operand (&ops[1], comparison);
4718 create_input_operand (&ops[2], op2, mode);
4719 create_input_operand (&ops[3], op3, mode);
4720 if (maybe_expand_insn (icode, 4, ops))
4722 if (ops[0].value != target)
4723 convert_move (target, ops[0].value, false);
4724 return target;
4727 delete_insns_since (last);
4728 return NULL_RTX;
4731 /* These functions attempt to generate an insn body, rather than
4732 emitting the insn, but if the gen function already emits them, we
4733 make no attempt to turn them back into naked patterns. */
4735 /* Generate and return an insn body to add Y to X. */
4738 gen_add2_insn (rtx x, rtx y)
4740 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4742 gcc_assert (insn_operand_matches (icode, 0, x));
4743 gcc_assert (insn_operand_matches (icode, 1, x));
4744 gcc_assert (insn_operand_matches (icode, 2, y));
4746 return GEN_FCN (icode) (x, x, y);
4749 /* Generate and return an insn body to add r1 and c,
4750 storing the result in r0. */
4753 gen_add3_insn (rtx r0, rtx r1, rtx c)
4755 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4757 if (icode == CODE_FOR_nothing
4758 || !insn_operand_matches (icode, 0, r0)
4759 || !insn_operand_matches (icode, 1, r1)
4760 || !insn_operand_matches (icode, 2, c))
4761 return NULL_RTX;
4763 return GEN_FCN (icode) (r0, r1, c);
4767 have_add2_insn (rtx x, rtx y)
4769 enum insn_code icode;
4771 gcc_assert (GET_MODE (x) != VOIDmode);
4773 icode = optab_handler (add_optab, GET_MODE (x));
4775 if (icode == CODE_FOR_nothing)
4776 return 0;
4778 if (!insn_operand_matches (icode, 0, x)
4779 || !insn_operand_matches (icode, 1, x)
4780 || !insn_operand_matches (icode, 2, y))
4781 return 0;
4783 return 1;
4786 /* Generate and return an insn body to add Y to X. */
4789 gen_addptr3_insn (rtx x, rtx y, rtx z)
4791 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4793 gcc_assert (insn_operand_matches (icode, 0, x));
4794 gcc_assert (insn_operand_matches (icode, 1, y));
4795 gcc_assert (insn_operand_matches (icode, 2, z));
4797 return GEN_FCN (icode) (x, y, z);
4800 /* Return true if the target implements an addptr pattern and X, Y,
4801 and Z are valid for the pattern predicates. */
4804 have_addptr3_insn (rtx x, rtx y, rtx z)
4806 enum insn_code icode;
4808 gcc_assert (GET_MODE (x) != VOIDmode);
4810 icode = optab_handler (addptr3_optab, GET_MODE (x));
4812 if (icode == CODE_FOR_nothing)
4813 return 0;
4815 if (!insn_operand_matches (icode, 0, x)
4816 || !insn_operand_matches (icode, 1, y)
4817 || !insn_operand_matches (icode, 2, z))
4818 return 0;
4820 return 1;
4823 /* Generate and return an insn body to subtract Y from X. */
4826 gen_sub2_insn (rtx x, rtx y)
4828 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4830 gcc_assert (insn_operand_matches (icode, 0, x));
4831 gcc_assert (insn_operand_matches (icode, 1, x));
4832 gcc_assert (insn_operand_matches (icode, 2, y));
4834 return GEN_FCN (icode) (x, x, y);
4837 /* Generate and return an insn body to subtract r1 and c,
4838 storing the result in r0. */
4841 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4843 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4845 if (icode == CODE_FOR_nothing
4846 || !insn_operand_matches (icode, 0, r0)
4847 || !insn_operand_matches (icode, 1, r1)
4848 || !insn_operand_matches (icode, 2, c))
4849 return NULL_RTX;
4851 return GEN_FCN (icode) (r0, r1, c);
4855 have_sub2_insn (rtx x, rtx y)
4857 enum insn_code icode;
4859 gcc_assert (GET_MODE (x) != VOIDmode);
4861 icode = optab_handler (sub_optab, GET_MODE (x));
4863 if (icode == CODE_FOR_nothing)
4864 return 0;
4866 if (!insn_operand_matches (icode, 0, x)
4867 || !insn_operand_matches (icode, 1, x)
4868 || !insn_operand_matches (icode, 2, y))
4869 return 0;
4871 return 1;
4874 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4875 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4876 no such operation exists, CODE_FOR_nothing will be returned. */
4878 enum insn_code
4879 can_extend_p (machine_mode to_mode, machine_mode from_mode,
4880 int unsignedp)
4882 convert_optab tab;
4883 #ifdef HAVE_ptr_extend
4884 if (unsignedp < 0)
4885 return CODE_FOR_ptr_extend;
4886 #endif
4888 tab = unsignedp ? zext_optab : sext_optab;
4889 return convert_optab_handler (tab, to_mode, from_mode);
4892 /* Generate the body of an insn to extend Y (with mode MFROM)
4893 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4896 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4897 machine_mode mfrom, int unsignedp)
4899 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4900 return GEN_FCN (icode) (x, y);
4903 /* can_fix_p and can_float_p say whether the target machine
4904 can directly convert a given fixed point type to
4905 a given floating point type, or vice versa.
4906 The returned value is the CODE_FOR_... value to use,
4907 or CODE_FOR_nothing if these modes cannot be directly converted.
4909 *TRUNCP_PTR is set to 1 if it is necessary to output
4910 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4912 static enum insn_code
4913 can_fix_p (machine_mode fixmode, machine_mode fltmode,
4914 int unsignedp, int *truncp_ptr)
4916 convert_optab tab;
4917 enum insn_code icode;
4919 tab = unsignedp ? ufixtrunc_optab : sfixtrunc_optab;
4920 icode = convert_optab_handler (tab, fixmode, fltmode);
4921 if (icode != CODE_FOR_nothing)
4923 *truncp_ptr = 0;
4924 return icode;
4927 /* FIXME: This requires a port to define both FIX and FTRUNC pattern
4928 for this to work. We need to rework the fix* and ftrunc* patterns
4929 and documentation. */
4930 tab = unsignedp ? ufix_optab : sfix_optab;
4931 icode = convert_optab_handler (tab, fixmode, fltmode);
4932 if (icode != CODE_FOR_nothing
4933 && optab_handler (ftrunc_optab, fltmode) != CODE_FOR_nothing)
4935 *truncp_ptr = 1;
4936 return icode;
4939 *truncp_ptr = 0;
4940 return CODE_FOR_nothing;
4943 enum insn_code
4944 can_float_p (machine_mode fltmode, machine_mode fixmode,
4945 int unsignedp)
4947 convert_optab tab;
4949 tab = unsignedp ? ufloat_optab : sfloat_optab;
4950 return convert_optab_handler (tab, fltmode, fixmode);
4953 /* Function supportable_convert_operation
4955 Check whether an operation represented by the code CODE is a
4956 convert operation that is supported by the target platform in
4957 vector form (i.e., when operating on arguments of type VECTYPE_IN
4958 producing a result of type VECTYPE_OUT).
4960 Convert operations we currently support directly are FIX_TRUNC and FLOAT.
4961 This function checks if these operations are supported
4962 by the target platform either directly (via vector tree-codes), or via
4963 target builtins.
4965 Output:
4966 - CODE1 is code of vector operation to be used when
4967 vectorizing the operation, if available.
4968 - DECL is decl of target builtin functions to be used
4969 when vectorizing the operation, if available. In this case,
4970 CODE1 is CALL_EXPR. */
4972 bool
4973 supportable_convert_operation (enum tree_code code,
4974 tree vectype_out, tree vectype_in,
4975 tree *decl, enum tree_code *code1)
4977 machine_mode m1,m2;
4978 int truncp;
4980 m1 = TYPE_MODE (vectype_out);
4981 m2 = TYPE_MODE (vectype_in);
4983 /* First check if we can done conversion directly. */
4984 if ((code == FIX_TRUNC_EXPR
4985 && can_fix_p (m1,m2,TYPE_UNSIGNED (vectype_out), &truncp)
4986 != CODE_FOR_nothing)
4987 || (code == FLOAT_EXPR
4988 && can_float_p (m1,m2,TYPE_UNSIGNED (vectype_in))
4989 != CODE_FOR_nothing))
4991 *code1 = code;
4992 return true;
4995 /* Now check for builtin. */
4996 if (targetm.vectorize.builtin_conversion
4997 && targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
4999 *code1 = CALL_EXPR;
5000 *decl = targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in);
5001 return true;
5003 return false;
5007 /* Generate code to convert FROM to floating point
5008 and store in TO. FROM must be fixed point and not VOIDmode.
5009 UNSIGNEDP nonzero means regard FROM as unsigned.
5010 Normally this is done by correcting the final value
5011 if it is negative. */
5013 void
5014 expand_float (rtx to, rtx from, int unsignedp)
5016 enum insn_code icode;
5017 rtx target = to;
5018 machine_mode fmode, imode;
5019 bool can_do_signed = false;
5021 /* Crash now, because we won't be able to decide which mode to use. */
5022 gcc_assert (GET_MODE (from) != VOIDmode);
5024 /* Look for an insn to do the conversion. Do it in the specified
5025 modes if possible; otherwise convert either input, output or both to
5026 wider mode. If the integer mode is wider than the mode of FROM,
5027 we can do the conversion signed even if the input is unsigned. */
5029 for (fmode = GET_MODE (to); fmode != VOIDmode;
5030 fmode = GET_MODE_WIDER_MODE (fmode))
5031 for (imode = GET_MODE (from); imode != VOIDmode;
5032 imode = GET_MODE_WIDER_MODE (imode))
5034 int doing_unsigned = unsignedp;
5036 if (fmode != GET_MODE (to)
5037 && significand_size (fmode) < GET_MODE_PRECISION (GET_MODE (from)))
5038 continue;
5040 icode = can_float_p (fmode, imode, unsignedp);
5041 if (icode == CODE_FOR_nothing && unsignedp)
5043 enum insn_code scode = can_float_p (fmode, imode, 0);
5044 if (scode != CODE_FOR_nothing)
5045 can_do_signed = true;
5046 if (imode != GET_MODE (from))
5047 icode = scode, doing_unsigned = 0;
5050 if (icode != CODE_FOR_nothing)
5052 if (imode != GET_MODE (from))
5053 from = convert_to_mode (imode, from, unsignedp);
5055 if (fmode != GET_MODE (to))
5056 target = gen_reg_rtx (fmode);
5058 emit_unop_insn (icode, target, from,
5059 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
5061 if (target != to)
5062 convert_move (to, target, 0);
5063 return;
5067 /* Unsigned integer, and no way to convert directly. Convert as signed,
5068 then unconditionally adjust the result. */
5069 if (unsignedp && can_do_signed)
5071 rtx_code_label *label = gen_label_rtx ();
5072 rtx temp;
5073 REAL_VALUE_TYPE offset;
5075 /* Look for a usable floating mode FMODE wider than the source and at
5076 least as wide as the target. Using FMODE will avoid rounding woes
5077 with unsigned values greater than the signed maximum value. */
5079 for (fmode = GET_MODE (to); fmode != VOIDmode;
5080 fmode = GET_MODE_WIDER_MODE (fmode))
5081 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
5082 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
5083 break;
5085 if (fmode == VOIDmode)
5087 /* There is no such mode. Pretend the target is wide enough. */
5088 fmode = GET_MODE (to);
5090 /* Avoid double-rounding when TO is narrower than FROM. */
5091 if ((significand_size (fmode) + 1)
5092 < GET_MODE_PRECISION (GET_MODE (from)))
5094 rtx temp1;
5095 rtx_code_label *neglabel = gen_label_rtx ();
5097 /* Don't use TARGET if it isn't a register, is a hard register,
5098 or is the wrong mode. */
5099 if (!REG_P (target)
5100 || REGNO (target) < FIRST_PSEUDO_REGISTER
5101 || GET_MODE (target) != fmode)
5102 target = gen_reg_rtx (fmode);
5104 imode = GET_MODE (from);
5105 do_pending_stack_adjust ();
5107 /* Test whether the sign bit is set. */
5108 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
5109 0, neglabel);
5111 /* The sign bit is not set. Convert as signed. */
5112 expand_float (target, from, 0);
5113 emit_jump_insn (gen_jump (label));
5114 emit_barrier ();
5116 /* The sign bit is set.
5117 Convert to a usable (positive signed) value by shifting right
5118 one bit, while remembering if a nonzero bit was shifted
5119 out; i.e., compute (from & 1) | (from >> 1). */
5121 emit_label (neglabel);
5122 temp = expand_binop (imode, and_optab, from, const1_rtx,
5123 NULL_RTX, 1, OPTAB_LIB_WIDEN);
5124 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
5125 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
5126 OPTAB_LIB_WIDEN);
5127 expand_float (target, temp, 0);
5129 /* Multiply by 2 to undo the shift above. */
5130 temp = expand_binop (fmode, add_optab, target, target,
5131 target, 0, OPTAB_LIB_WIDEN);
5132 if (temp != target)
5133 emit_move_insn (target, temp);
5135 do_pending_stack_adjust ();
5136 emit_label (label);
5137 goto done;
5141 /* If we are about to do some arithmetic to correct for an
5142 unsigned operand, do it in a pseudo-register. */
5144 if (GET_MODE (to) != fmode
5145 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
5146 target = gen_reg_rtx (fmode);
5148 /* Convert as signed integer to floating. */
5149 expand_float (target, from, 0);
5151 /* If FROM is negative (and therefore TO is negative),
5152 correct its value by 2**bitwidth. */
5154 do_pending_stack_adjust ();
5155 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
5156 0, label);
5159 real_2expN (&offset, GET_MODE_PRECISION (GET_MODE (from)), fmode);
5160 temp = expand_binop (fmode, add_optab, target,
5161 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
5162 target, 0, OPTAB_LIB_WIDEN);
5163 if (temp != target)
5164 emit_move_insn (target, temp);
5166 do_pending_stack_adjust ();
5167 emit_label (label);
5168 goto done;
5171 /* No hardware instruction available; call a library routine. */
5173 rtx libfunc;
5174 rtx_insn *insns;
5175 rtx value;
5176 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
5178 if (GET_MODE_PRECISION (GET_MODE (from)) < GET_MODE_PRECISION (SImode))
5179 from = convert_to_mode (SImode, from, unsignedp);
5181 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5182 gcc_assert (libfunc);
5184 start_sequence ();
5186 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5187 GET_MODE (to), 1, from,
5188 GET_MODE (from));
5189 insns = get_insns ();
5190 end_sequence ();
5192 emit_libcall_block (insns, target, value,
5193 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
5194 GET_MODE (to), from));
5197 done:
5199 /* Copy result to requested destination
5200 if we have been computing in a temp location. */
5202 if (target != to)
5204 if (GET_MODE (target) == GET_MODE (to))
5205 emit_move_insn (to, target);
5206 else
5207 convert_move (to, target, 0);
5211 /* Generate code to convert FROM to fixed point and store in TO. FROM
5212 must be floating point. */
5214 void
5215 expand_fix (rtx to, rtx from, int unsignedp)
5217 enum insn_code icode;
5218 rtx target = to;
5219 machine_mode fmode, imode;
5220 int must_trunc = 0;
5222 /* We first try to find a pair of modes, one real and one integer, at
5223 least as wide as FROM and TO, respectively, in which we can open-code
5224 this conversion. If the integer mode is wider than the mode of TO,
5225 we can do the conversion either signed or unsigned. */
5227 for (fmode = GET_MODE (from); fmode != VOIDmode;
5228 fmode = GET_MODE_WIDER_MODE (fmode))
5229 for (imode = GET_MODE (to); imode != VOIDmode;
5230 imode = GET_MODE_WIDER_MODE (imode))
5232 int doing_unsigned = unsignedp;
5234 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5235 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5236 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5238 if (icode != CODE_FOR_nothing)
5240 rtx_insn *last = get_last_insn ();
5241 if (fmode != GET_MODE (from))
5242 from = convert_to_mode (fmode, from, 0);
5244 if (must_trunc)
5246 rtx temp = gen_reg_rtx (GET_MODE (from));
5247 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5248 temp, 0);
5251 if (imode != GET_MODE (to))
5252 target = gen_reg_rtx (imode);
5254 if (maybe_emit_unop_insn (icode, target, from,
5255 doing_unsigned ? UNSIGNED_FIX : FIX))
5257 if (target != to)
5258 convert_move (to, target, unsignedp);
5259 return;
5261 delete_insns_since (last);
5265 /* For an unsigned conversion, there is one more way to do it.
5266 If we have a signed conversion, we generate code that compares
5267 the real value to the largest representable positive number. If if
5268 is smaller, the conversion is done normally. Otherwise, subtract
5269 one plus the highest signed number, convert, and add it back.
5271 We only need to check all real modes, since we know we didn't find
5272 anything with a wider integer mode.
5274 This code used to extend FP value into mode wider than the destination.
5275 This is needed for decimal float modes which cannot accurately
5276 represent one plus the highest signed number of the same size, but
5277 not for binary modes. Consider, for instance conversion from SFmode
5278 into DImode.
5280 The hot path through the code is dealing with inputs smaller than 2^63
5281 and doing just the conversion, so there is no bits to lose.
5283 In the other path we know the value is positive in the range 2^63..2^64-1
5284 inclusive. (as for other input overflow happens and result is undefined)
5285 So we know that the most important bit set in mantissa corresponds to
5286 2^63. The subtraction of 2^63 should not generate any rounding as it
5287 simply clears out that bit. The rest is trivial. */
5289 if (unsignedp && GET_MODE_PRECISION (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5290 for (fmode = GET_MODE (from); fmode != VOIDmode;
5291 fmode = GET_MODE_WIDER_MODE (fmode))
5292 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0, &must_trunc)
5293 && (!DECIMAL_FLOAT_MODE_P (fmode)
5294 || GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (GET_MODE (to))))
5296 int bitsize;
5297 REAL_VALUE_TYPE offset;
5298 rtx limit;
5299 rtx_code_label *lab1, *lab2;
5300 rtx_insn *insn;
5302 bitsize = GET_MODE_PRECISION (GET_MODE (to));
5303 real_2expN (&offset, bitsize - 1, fmode);
5304 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5305 lab1 = gen_label_rtx ();
5306 lab2 = gen_label_rtx ();
5308 if (fmode != GET_MODE (from))
5309 from = convert_to_mode (fmode, from, 0);
5311 /* See if we need to do the subtraction. */
5312 do_pending_stack_adjust ();
5313 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5314 0, lab1);
5316 /* If not, do the signed "fix" and branch around fixup code. */
5317 expand_fix (to, from, 0);
5318 emit_jump_insn (gen_jump (lab2));
5319 emit_barrier ();
5321 /* Otherwise, subtract 2**(N-1), convert to signed number,
5322 then add 2**(N-1). Do the addition using XOR since this
5323 will often generate better code. */
5324 emit_label (lab1);
5325 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5326 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5327 expand_fix (to, target, 0);
5328 target = expand_binop (GET_MODE (to), xor_optab, to,
5329 gen_int_mode
5330 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5331 GET_MODE (to)),
5332 to, 1, OPTAB_LIB_WIDEN);
5334 if (target != to)
5335 emit_move_insn (to, target);
5337 emit_label (lab2);
5339 if (optab_handler (mov_optab, GET_MODE (to)) != CODE_FOR_nothing)
5341 /* Make a place for a REG_NOTE and add it. */
5342 insn = emit_move_insn (to, to);
5343 set_dst_reg_note (insn, REG_EQUAL,
5344 gen_rtx_fmt_e (UNSIGNED_FIX, GET_MODE (to),
5345 copy_rtx (from)),
5346 to);
5349 return;
5352 /* We can't do it with an insn, so use a library call. But first ensure
5353 that the mode of TO is at least as wide as SImode, since those are the
5354 only library calls we know about. */
5356 if (GET_MODE_PRECISION (GET_MODE (to)) < GET_MODE_PRECISION (SImode))
5358 target = gen_reg_rtx (SImode);
5360 expand_fix (target, from, unsignedp);
5362 else
5364 rtx_insn *insns;
5365 rtx value;
5366 rtx libfunc;
5368 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5369 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5370 gcc_assert (libfunc);
5372 start_sequence ();
5374 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5375 GET_MODE (to), 1, from,
5376 GET_MODE (from));
5377 insns = get_insns ();
5378 end_sequence ();
5380 emit_libcall_block (insns, target, value,
5381 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5382 GET_MODE (to), from));
5385 if (target != to)
5387 if (GET_MODE (to) == GET_MODE (target))
5388 emit_move_insn (to, target);
5389 else
5390 convert_move (to, target, 0);
5394 /* Generate code to convert FROM or TO a fixed-point.
5395 If UINTP is true, either TO or FROM is an unsigned integer.
5396 If SATP is true, we need to saturate the result. */
5398 void
5399 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5401 machine_mode to_mode = GET_MODE (to);
5402 machine_mode from_mode = GET_MODE (from);
5403 convert_optab tab;
5404 enum rtx_code this_code;
5405 enum insn_code code;
5406 rtx_insn *insns;
5407 rtx value;
5408 rtx libfunc;
5410 if (to_mode == from_mode)
5412 emit_move_insn (to, from);
5413 return;
5416 if (uintp)
5418 tab = satp ? satfractuns_optab : fractuns_optab;
5419 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5421 else
5423 tab = satp ? satfract_optab : fract_optab;
5424 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5426 code = convert_optab_handler (tab, to_mode, from_mode);
5427 if (code != CODE_FOR_nothing)
5429 emit_unop_insn (code, to, from, this_code);
5430 return;
5433 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5434 gcc_assert (libfunc);
5436 start_sequence ();
5437 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5438 1, from, from_mode);
5439 insns = get_insns ();
5440 end_sequence ();
5442 emit_libcall_block (insns, to, value,
5443 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5446 /* Generate code to convert FROM to fixed point and store in TO. FROM
5447 must be floating point, TO must be signed. Use the conversion optab
5448 TAB to do the conversion. */
5450 bool
5451 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5453 enum insn_code icode;
5454 rtx target = to;
5455 machine_mode fmode, imode;
5457 /* We first try to find a pair of modes, one real and one integer, at
5458 least as wide as FROM and TO, respectively, in which we can open-code
5459 this conversion. If the integer mode is wider than the mode of TO,
5460 we can do the conversion either signed or unsigned. */
5462 for (fmode = GET_MODE (from); fmode != VOIDmode;
5463 fmode = GET_MODE_WIDER_MODE (fmode))
5464 for (imode = GET_MODE (to); imode != VOIDmode;
5465 imode = GET_MODE_WIDER_MODE (imode))
5467 icode = convert_optab_handler (tab, imode, fmode);
5468 if (icode != CODE_FOR_nothing)
5470 rtx_insn *last = get_last_insn ();
5471 if (fmode != GET_MODE (from))
5472 from = convert_to_mode (fmode, from, 0);
5474 if (imode != GET_MODE (to))
5475 target = gen_reg_rtx (imode);
5477 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5479 delete_insns_since (last);
5480 continue;
5482 if (target != to)
5483 convert_move (to, target, 0);
5484 return true;
5488 return false;
5491 /* Report whether we have an instruction to perform the operation
5492 specified by CODE on operands of mode MODE. */
5494 have_insn_for (enum rtx_code code, machine_mode mode)
5496 return (code_to_optab (code)
5497 && (optab_handler (code_to_optab (code), mode)
5498 != CODE_FOR_nothing));
5501 /* Initialize the libfunc fields of an entire group of entries in some
5502 optab. Each entry is set equal to a string consisting of a leading
5503 pair of underscores followed by a generic operation name followed by
5504 a mode name (downshifted to lowercase) followed by a single character
5505 representing the number of operands for the given operation (which is
5506 usually one of the characters '2', '3', or '4').
5508 OPTABLE is the table in which libfunc fields are to be initialized.
5509 OPNAME is the generic (string) name of the operation.
5510 SUFFIX is the character which specifies the number of operands for
5511 the given generic operation.
5512 MODE is the mode to generate for.
5515 static void
5516 gen_libfunc (optab optable, const char *opname, int suffix,
5517 machine_mode mode)
5519 unsigned opname_len = strlen (opname);
5520 const char *mname = GET_MODE_NAME (mode);
5521 unsigned mname_len = strlen (mname);
5522 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5523 int len = prefix_len + opname_len + mname_len + 1 + 1;
5524 char *libfunc_name = XALLOCAVEC (char, len);
5525 char *p;
5526 const char *q;
5528 p = libfunc_name;
5529 *p++ = '_';
5530 *p++ = '_';
5531 if (targetm.libfunc_gnu_prefix)
5533 *p++ = 'g';
5534 *p++ = 'n';
5535 *p++ = 'u';
5536 *p++ = '_';
5538 for (q = opname; *q; )
5539 *p++ = *q++;
5540 for (q = mname; *q; q++)
5541 *p++ = TOLOWER (*q);
5542 *p++ = suffix;
5543 *p = '\0';
5545 set_optab_libfunc (optable, mode,
5546 ggc_alloc_string (libfunc_name, p - libfunc_name));
5549 /* Like gen_libfunc, but verify that integer operation is involved. */
5551 void
5552 gen_int_libfunc (optab optable, const char *opname, char suffix,
5553 machine_mode mode)
5555 int maxsize = 2 * BITS_PER_WORD;
5556 int minsize = BITS_PER_WORD;
5558 if (GET_MODE_CLASS (mode) != MODE_INT)
5559 return;
5560 if (maxsize < LONG_LONG_TYPE_SIZE)
5561 maxsize = LONG_LONG_TYPE_SIZE;
5562 if (minsize > INT_TYPE_SIZE
5563 && (trapv_binoptab_p (optable)
5564 || trapv_unoptab_p (optable)))
5565 minsize = INT_TYPE_SIZE;
5566 if (GET_MODE_BITSIZE (mode) < minsize
5567 || GET_MODE_BITSIZE (mode) > maxsize)
5568 return;
5569 gen_libfunc (optable, opname, suffix, mode);
5572 /* Like gen_libfunc, but verify that FP and set decimal prefix if needed. */
5574 void
5575 gen_fp_libfunc (optab optable, const char *opname, char suffix,
5576 machine_mode mode)
5578 char *dec_opname;
5580 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5581 gen_libfunc (optable, opname, suffix, mode);
5582 if (DECIMAL_FLOAT_MODE_P (mode))
5584 dec_opname = XALLOCAVEC (char, sizeof (DECIMAL_PREFIX) + strlen (opname));
5585 /* For BID support, change the name to have either a bid_ or dpd_ prefix
5586 depending on the low level floating format used. */
5587 memcpy (dec_opname, DECIMAL_PREFIX, sizeof (DECIMAL_PREFIX) - 1);
5588 strcpy (dec_opname + sizeof (DECIMAL_PREFIX) - 1, opname);
5589 gen_libfunc (optable, dec_opname, suffix, mode);
5593 /* Like gen_libfunc, but verify that fixed-point operation is involved. */
5595 void
5596 gen_fixed_libfunc (optab optable, const char *opname, char suffix,
5597 machine_mode mode)
5599 if (!ALL_FIXED_POINT_MODE_P (mode))
5600 return;
5601 gen_libfunc (optable, opname, suffix, mode);
5604 /* Like gen_libfunc, but verify that signed fixed-point operation is
5605 involved. */
5607 void
5608 gen_signed_fixed_libfunc (optab optable, const char *opname, char suffix,
5609 machine_mode mode)
5611 if (!SIGNED_FIXED_POINT_MODE_P (mode))
5612 return;
5613 gen_libfunc (optable, opname, suffix, mode);
5616 /* Like gen_libfunc, but verify that unsigned fixed-point operation is
5617 involved. */
5619 void
5620 gen_unsigned_fixed_libfunc (optab optable, const char *opname, char suffix,
5621 machine_mode mode)
5623 if (!UNSIGNED_FIXED_POINT_MODE_P (mode))
5624 return;
5625 gen_libfunc (optable, opname, suffix, mode);
5628 /* Like gen_libfunc, but verify that FP or INT operation is involved. */
5630 void
5631 gen_int_fp_libfunc (optab optable, const char *name, char suffix,
5632 machine_mode mode)
5634 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5635 gen_fp_libfunc (optable, name, suffix, mode);
5636 if (INTEGRAL_MODE_P (mode))
5637 gen_int_libfunc (optable, name, suffix, mode);
5640 /* Like gen_libfunc, but verify that FP or INT operation is involved
5641 and add 'v' suffix for integer operation. */
5643 void
5644 gen_intv_fp_libfunc (optab optable, const char *name, char suffix,
5645 machine_mode mode)
5647 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5648 gen_fp_libfunc (optable, name, suffix, mode);
5649 if (GET_MODE_CLASS (mode) == MODE_INT)
5651 int len = strlen (name);
5652 char *v_name = XALLOCAVEC (char, len + 2);
5653 strcpy (v_name, name);
5654 v_name[len] = 'v';
5655 v_name[len + 1] = 0;
5656 gen_int_libfunc (optable, v_name, suffix, mode);
5660 /* Like gen_libfunc, but verify that FP or INT or FIXED operation is
5661 involved. */
5663 void
5664 gen_int_fp_fixed_libfunc (optab optable, const char *name, char suffix,
5665 machine_mode mode)
5667 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5668 gen_fp_libfunc (optable, name, suffix, mode);
5669 if (INTEGRAL_MODE_P (mode))
5670 gen_int_libfunc (optable, name, suffix, mode);
5671 if (ALL_FIXED_POINT_MODE_P (mode))
5672 gen_fixed_libfunc (optable, name, suffix, mode);
5675 /* Like gen_libfunc, but verify that FP or INT or signed FIXED operation is
5676 involved. */
5678 void
5679 gen_int_fp_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5680 machine_mode mode)
5682 if (DECIMAL_FLOAT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_FLOAT)
5683 gen_fp_libfunc (optable, name, suffix, mode);
5684 if (INTEGRAL_MODE_P (mode))
5685 gen_int_libfunc (optable, name, suffix, mode);
5686 if (SIGNED_FIXED_POINT_MODE_P (mode))
5687 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5690 /* Like gen_libfunc, but verify that INT or FIXED operation is
5691 involved. */
5693 void
5694 gen_int_fixed_libfunc (optab optable, const char *name, char suffix,
5695 machine_mode mode)
5697 if (INTEGRAL_MODE_P (mode))
5698 gen_int_libfunc (optable, name, suffix, mode);
5699 if (ALL_FIXED_POINT_MODE_P (mode))
5700 gen_fixed_libfunc (optable, name, suffix, mode);
5703 /* Like gen_libfunc, but verify that INT or signed FIXED operation is
5704 involved. */
5706 void
5707 gen_int_signed_fixed_libfunc (optab optable, const char *name, char suffix,
5708 machine_mode mode)
5710 if (INTEGRAL_MODE_P (mode))
5711 gen_int_libfunc (optable, name, suffix, mode);
5712 if (SIGNED_FIXED_POINT_MODE_P (mode))
5713 gen_signed_fixed_libfunc (optable, name, suffix, mode);
5716 /* Like gen_libfunc, but verify that INT or unsigned FIXED operation is
5717 involved. */
5719 void
5720 gen_int_unsigned_fixed_libfunc (optab optable, const char *name, char suffix,
5721 machine_mode mode)
5723 if (INTEGRAL_MODE_P (mode))
5724 gen_int_libfunc (optable, name, suffix, mode);
5725 if (UNSIGNED_FIXED_POINT_MODE_P (mode))
5726 gen_unsigned_fixed_libfunc (optable, name, suffix, mode);
5729 /* Initialize the libfunc fields of an entire group of entries of an
5730 inter-mode-class conversion optab. The string formation rules are
5731 similar to the ones for init_libfuncs, above, but instead of having
5732 a mode name and an operand count these functions have two mode names
5733 and no operand count. */
5735 void
5736 gen_interclass_conv_libfunc (convert_optab tab,
5737 const char *opname,
5738 machine_mode tmode,
5739 machine_mode fmode)
5741 size_t opname_len = strlen (opname);
5742 size_t mname_len = 0;
5744 const char *fname, *tname;
5745 const char *q;
5746 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5747 char *libfunc_name, *suffix;
5748 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5749 char *p;
5751 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5752 depends on which underlying decimal floating point format is used. */
5753 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5755 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5757 nondec_name = XALLOCAVEC (char, prefix_len + opname_len + mname_len + 1 + 1);
5758 nondec_name[0] = '_';
5759 nondec_name[1] = '_';
5760 if (targetm.libfunc_gnu_prefix)
5762 nondec_name[2] = 'g';
5763 nondec_name[3] = 'n';
5764 nondec_name[4] = 'u';
5765 nondec_name[5] = '_';
5768 memcpy (&nondec_name[prefix_len], opname, opname_len);
5769 nondec_suffix = nondec_name + opname_len + prefix_len;
5771 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5772 dec_name[0] = '_';
5773 dec_name[1] = '_';
5774 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5775 memcpy (&dec_name[2+dec_len], opname, opname_len);
5776 dec_suffix = dec_name + dec_len + opname_len + 2;
5778 fname = GET_MODE_NAME (fmode);
5779 tname = GET_MODE_NAME (tmode);
5781 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5783 libfunc_name = dec_name;
5784 suffix = dec_suffix;
5786 else
5788 libfunc_name = nondec_name;
5789 suffix = nondec_suffix;
5792 p = suffix;
5793 for (q = fname; *q; p++, q++)
5794 *p = TOLOWER (*q);
5795 for (q = tname; *q; p++, q++)
5796 *p = TOLOWER (*q);
5798 *p = '\0';
5800 set_conv_libfunc (tab, tmode, fmode,
5801 ggc_alloc_string (libfunc_name, p - libfunc_name));
5804 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5805 int->fp conversion. */
5807 void
5808 gen_int_to_fp_conv_libfunc (convert_optab tab,
5809 const char *opname,
5810 machine_mode tmode,
5811 machine_mode fmode)
5813 if (GET_MODE_CLASS (fmode) != MODE_INT)
5814 return;
5815 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5816 return;
5817 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5820 /* ufloat_optab is special by using floatun for FP and floatuns decimal fp
5821 naming scheme. */
5823 void
5824 gen_ufloat_conv_libfunc (convert_optab tab,
5825 const char *opname ATTRIBUTE_UNUSED,
5826 machine_mode tmode,
5827 machine_mode fmode)
5829 if (DECIMAL_FLOAT_MODE_P (tmode))
5830 gen_int_to_fp_conv_libfunc (tab, "floatuns", tmode, fmode);
5831 else
5832 gen_int_to_fp_conv_libfunc (tab, "floatun", tmode, fmode);
5835 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5836 fp->int conversion. */
5838 void
5839 gen_int_to_fp_nondecimal_conv_libfunc (convert_optab tab,
5840 const char *opname,
5841 machine_mode tmode,
5842 machine_mode fmode)
5844 if (GET_MODE_CLASS (fmode) != MODE_INT)
5845 return;
5846 if (GET_MODE_CLASS (tmode) != MODE_FLOAT)
5847 return;
5848 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5851 /* Same as gen_interclass_conv_libfunc but verify that we are producing
5852 fp->int conversion with no decimal floating point involved. */
5854 void
5855 gen_fp_to_int_conv_libfunc (convert_optab tab,
5856 const char *opname,
5857 machine_mode tmode,
5858 machine_mode fmode)
5860 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5861 return;
5862 if (GET_MODE_CLASS (tmode) != MODE_INT)
5863 return;
5864 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5867 /* Initialize the libfunc fields of an of an intra-mode-class conversion optab.
5868 The string formation rules are
5869 similar to the ones for init_libfunc, above. */
5871 void
5872 gen_intraclass_conv_libfunc (convert_optab tab, const char *opname,
5873 machine_mode tmode, machine_mode fmode)
5875 size_t opname_len = strlen (opname);
5876 size_t mname_len = 0;
5878 const char *fname, *tname;
5879 const char *q;
5880 int prefix_len = targetm.libfunc_gnu_prefix ? 6 : 2;
5881 char *nondec_name, *dec_name, *nondec_suffix, *dec_suffix;
5882 char *libfunc_name, *suffix;
5883 char *p;
5885 /* If this is a decimal conversion, add the current BID vs. DPD prefix that
5886 depends on which underlying decimal floating point format is used. */
5887 const size_t dec_len = sizeof (DECIMAL_PREFIX) - 1;
5889 mname_len = strlen (GET_MODE_NAME (tmode)) + strlen (GET_MODE_NAME (fmode));
5891 nondec_name = XALLOCAVEC (char, 2 + opname_len + mname_len + 1 + 1);
5892 nondec_name[0] = '_';
5893 nondec_name[1] = '_';
5894 if (targetm.libfunc_gnu_prefix)
5896 nondec_name[2] = 'g';
5897 nondec_name[3] = 'n';
5898 nondec_name[4] = 'u';
5899 nondec_name[5] = '_';
5901 memcpy (&nondec_name[prefix_len], opname, opname_len);
5902 nondec_suffix = nondec_name + opname_len + prefix_len;
5904 dec_name = XALLOCAVEC (char, 2 + dec_len + opname_len + mname_len + 1 + 1);
5905 dec_name[0] = '_';
5906 dec_name[1] = '_';
5907 memcpy (&dec_name[2], DECIMAL_PREFIX, dec_len);
5908 memcpy (&dec_name[2 + dec_len], opname, opname_len);
5909 dec_suffix = dec_name + dec_len + opname_len + 2;
5911 fname = GET_MODE_NAME (fmode);
5912 tname = GET_MODE_NAME (tmode);
5914 if (DECIMAL_FLOAT_MODE_P (fmode) || DECIMAL_FLOAT_MODE_P (tmode))
5916 libfunc_name = dec_name;
5917 suffix = dec_suffix;
5919 else
5921 libfunc_name = nondec_name;
5922 suffix = nondec_suffix;
5925 p = suffix;
5926 for (q = fname; *q; p++, q++)
5927 *p = TOLOWER (*q);
5928 for (q = tname; *q; p++, q++)
5929 *p = TOLOWER (*q);
5931 *p++ = '2';
5932 *p = '\0';
5934 set_conv_libfunc (tab, tmode, fmode,
5935 ggc_alloc_string (libfunc_name, p - libfunc_name));
5938 /* Pick proper libcall for trunc_optab. We need to chose if we do
5939 truncation or extension and interclass or intraclass. */
5941 void
5942 gen_trunc_conv_libfunc (convert_optab tab,
5943 const char *opname,
5944 machine_mode tmode,
5945 machine_mode fmode)
5947 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5948 return;
5949 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5950 return;
5951 if (tmode == fmode)
5952 return;
5954 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5955 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5956 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5958 if (GET_MODE_PRECISION (fmode) <= GET_MODE_PRECISION (tmode))
5959 return;
5961 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5962 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5963 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5964 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5967 /* Pick proper libcall for extend_optab. We need to chose if we do
5968 truncation or extension and interclass or intraclass. */
5970 void
5971 gen_extend_conv_libfunc (convert_optab tab,
5972 const char *opname ATTRIBUTE_UNUSED,
5973 machine_mode tmode,
5974 machine_mode fmode)
5976 if (GET_MODE_CLASS (tmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (tmode))
5977 return;
5978 if (GET_MODE_CLASS (fmode) != MODE_FLOAT && !DECIMAL_FLOAT_MODE_P (fmode))
5979 return;
5980 if (tmode == fmode)
5981 return;
5983 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (fmode))
5984 || (GET_MODE_CLASS (fmode) == MODE_FLOAT && DECIMAL_FLOAT_MODE_P (tmode)))
5985 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
5987 if (GET_MODE_PRECISION (fmode) > GET_MODE_PRECISION (tmode))
5988 return;
5990 if ((GET_MODE_CLASS (tmode) == MODE_FLOAT
5991 && GET_MODE_CLASS (fmode) == MODE_FLOAT)
5992 || (DECIMAL_FLOAT_MODE_P (fmode) && DECIMAL_FLOAT_MODE_P (tmode)))
5993 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
5996 /* Pick proper libcall for fract_optab. We need to chose if we do
5997 interclass or intraclass. */
5999 void
6000 gen_fract_conv_libfunc (convert_optab tab,
6001 const char *opname,
6002 machine_mode tmode,
6003 machine_mode fmode)
6005 if (tmode == fmode)
6006 return;
6007 if (!(ALL_FIXED_POINT_MODE_P (tmode) || ALL_FIXED_POINT_MODE_P (fmode)))
6008 return;
6010 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6011 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6012 else
6013 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6016 /* Pick proper libcall for fractuns_optab. */
6018 void
6019 gen_fractuns_conv_libfunc (convert_optab tab,
6020 const char *opname,
6021 machine_mode tmode,
6022 machine_mode fmode)
6024 if (tmode == fmode)
6025 return;
6026 /* One mode must be a fixed-point mode, and the other must be an integer
6027 mode. */
6028 if (!((ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT)
6029 || (ALL_FIXED_POINT_MODE_P (fmode)
6030 && GET_MODE_CLASS (tmode) == MODE_INT)))
6031 return;
6033 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6036 /* Pick proper libcall for satfract_optab. We need to chose if we do
6037 interclass or intraclass. */
6039 void
6040 gen_satfract_conv_libfunc (convert_optab tab,
6041 const char *opname,
6042 machine_mode tmode,
6043 machine_mode fmode)
6045 if (tmode == fmode)
6046 return;
6047 /* TMODE must be a fixed-point mode. */
6048 if (!ALL_FIXED_POINT_MODE_P (tmode))
6049 return;
6051 if (GET_MODE_CLASS (tmode) == GET_MODE_CLASS (fmode))
6052 gen_intraclass_conv_libfunc (tab, opname, tmode, fmode);
6053 else
6054 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6057 /* Pick proper libcall for satfractuns_optab. */
6059 void
6060 gen_satfractuns_conv_libfunc (convert_optab tab,
6061 const char *opname,
6062 machine_mode tmode,
6063 machine_mode fmode)
6065 if (tmode == fmode)
6066 return;
6067 /* TMODE must be a fixed-point mode, and FMODE must be an integer mode. */
6068 if (!(ALL_FIXED_POINT_MODE_P (tmode) && GET_MODE_CLASS (fmode) == MODE_INT))
6069 return;
6071 gen_interclass_conv_libfunc (tab, opname, tmode, fmode);
6074 /* Hashtable callbacks for libfunc_decls. */
6076 struct libfunc_decl_hasher : ggc_hasher<tree>
6078 static hashval_t
6079 hash (tree entry)
6081 return IDENTIFIER_HASH_VALUE (DECL_NAME (entry));
6084 static bool
6085 equal (tree decl, tree name)
6087 return DECL_NAME (decl) == name;
6091 /* A table of previously-created libfuncs, hashed by name. */
6092 static GTY (()) hash_table<libfunc_decl_hasher> *libfunc_decls;
6094 /* Build a decl for a libfunc named NAME. */
6096 tree
6097 build_libfunc_function (const char *name)
6099 tree decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
6100 get_identifier (name),
6101 build_function_type (integer_type_node, NULL_TREE));
6102 /* ??? We don't have any type information except for this is
6103 a function. Pretend this is "int foo()". */
6104 DECL_ARTIFICIAL (decl) = 1;
6105 DECL_EXTERNAL (decl) = 1;
6106 TREE_PUBLIC (decl) = 1;
6107 gcc_assert (DECL_ASSEMBLER_NAME (decl));
6109 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
6110 are the flags assigned by targetm.encode_section_info. */
6111 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
6113 return decl;
6117 init_one_libfunc (const char *name)
6119 tree id, decl;
6120 hashval_t hash;
6122 if (libfunc_decls == NULL)
6123 libfunc_decls = hash_table<libfunc_decl_hasher>::create_ggc (37);
6125 /* See if we have already created a libfunc decl for this function. */
6126 id = get_identifier (name);
6127 hash = IDENTIFIER_HASH_VALUE (id);
6128 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, INSERT);
6129 decl = *slot;
6130 if (decl == NULL)
6132 /* Create a new decl, so that it can be passed to
6133 targetm.encode_section_info. */
6134 decl = build_libfunc_function (name);
6135 *slot = decl;
6137 return XEXP (DECL_RTL (decl), 0);
6140 /* Adjust the assembler name of libfunc NAME to ASMSPEC. */
6143 set_user_assembler_libfunc (const char *name, const char *asmspec)
6145 tree id, decl;
6146 hashval_t hash;
6148 id = get_identifier (name);
6149 hash = IDENTIFIER_HASH_VALUE (id);
6150 tree *slot = libfunc_decls->find_slot_with_hash (id, hash, NO_INSERT);
6151 gcc_assert (slot);
6152 decl = (tree) *slot;
6153 set_user_assembler_name (decl, asmspec);
6154 return XEXP (DECL_RTL (decl), 0);
6157 /* Call this to reset the function entry for one optab (OPTABLE) in mode
6158 MODE to NAME, which should be either 0 or a string constant. */
6159 void
6160 set_optab_libfunc (optab op, machine_mode mode, const char *name)
6162 rtx val;
6163 struct libfunc_entry e;
6164 struct libfunc_entry **slot;
6166 e.op = op;
6167 e.mode1 = mode;
6168 e.mode2 = VOIDmode;
6170 if (name)
6171 val = init_one_libfunc (name);
6172 else
6173 val = 0;
6174 slot = libfunc_hash->find_slot (&e, INSERT);
6175 if (*slot == NULL)
6176 *slot = ggc_alloc<libfunc_entry> ();
6177 (*slot)->op = op;
6178 (*slot)->mode1 = mode;
6179 (*slot)->mode2 = VOIDmode;
6180 (*slot)->libfunc = val;
6183 /* Call this to reset the function entry for one conversion optab
6184 (OPTABLE) from mode FMODE to mode TMODE to NAME, which should be
6185 either 0 or a string constant. */
6186 void
6187 set_conv_libfunc (convert_optab optab, machine_mode tmode,
6188 machine_mode fmode, const char *name)
6190 rtx val;
6191 struct libfunc_entry e;
6192 struct libfunc_entry **slot;
6194 e.op = optab;
6195 e.mode1 = tmode;
6196 e.mode2 = fmode;
6198 if (name)
6199 val = init_one_libfunc (name);
6200 else
6201 val = 0;
6202 slot = libfunc_hash->find_slot (&e, INSERT);
6203 if (*slot == NULL)
6204 *slot = ggc_alloc<libfunc_entry> ();
6205 (*slot)->op = optab;
6206 (*slot)->mode1 = tmode;
6207 (*slot)->mode2 = fmode;
6208 (*slot)->libfunc = val;
6211 /* Call this to initialize the contents of the optabs
6212 appropriately for the current target machine. */
6214 void
6215 init_optabs (void)
6217 if (libfunc_hash)
6218 libfunc_hash->empty ();
6219 else
6220 libfunc_hash = hash_table<libfunc_hasher>::create_ggc (10);
6222 /* Fill in the optabs with the insns we support. */
6223 init_all_optabs (this_fn_optabs);
6225 /* The ffs function operates on `int'. Fall back on it if we do not
6226 have a libgcc2 function for that width. */
6227 if (INT_TYPE_SIZE < BITS_PER_WORD)
6228 set_optab_libfunc (ffs_optab, mode_for_size (INT_TYPE_SIZE, MODE_INT, 0),
6229 "ffs");
6231 /* Explicitly initialize the bswap libfuncs since we need them to be
6232 valid for things other than word_mode. */
6233 if (targetm.libfunc_gnu_prefix)
6235 set_optab_libfunc (bswap_optab, SImode, "__gnu_bswapsi2");
6236 set_optab_libfunc (bswap_optab, DImode, "__gnu_bswapdi2");
6238 else
6240 set_optab_libfunc (bswap_optab, SImode, "__bswapsi2");
6241 set_optab_libfunc (bswap_optab, DImode, "__bswapdi2");
6244 /* Use cabs for double complex abs, since systems generally have cabs.
6245 Don't define any libcall for float complex, so that cabs will be used. */
6246 if (complex_double_type_node)
6247 set_optab_libfunc (abs_optab, TYPE_MODE (complex_double_type_node),
6248 "cabs");
6250 abort_libfunc = init_one_libfunc ("abort");
6251 memcpy_libfunc = init_one_libfunc ("memcpy");
6252 memmove_libfunc = init_one_libfunc ("memmove");
6253 memcmp_libfunc = init_one_libfunc ("memcmp");
6254 memset_libfunc = init_one_libfunc ("memset");
6255 setbits_libfunc = init_one_libfunc ("__setbits");
6257 #ifndef DONT_USE_BUILTIN_SETJMP
6258 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
6259 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
6260 #else
6261 setjmp_libfunc = init_one_libfunc ("setjmp");
6262 longjmp_libfunc = init_one_libfunc ("longjmp");
6263 #endif
6264 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
6265 unwind_sjlj_unregister_libfunc
6266 = init_one_libfunc ("_Unwind_SjLj_Unregister");
6268 /* For function entry/exit instrumentation. */
6269 profile_function_entry_libfunc
6270 = init_one_libfunc ("__cyg_profile_func_enter");
6271 profile_function_exit_libfunc
6272 = init_one_libfunc ("__cyg_profile_func_exit");
6274 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
6276 /* Allow the target to add more libcalls or rename some, etc. */
6277 targetm.init_libfuncs ();
6280 /* Use the current target and options to initialize
6281 TREE_OPTIMIZATION_OPTABS (OPTNODE). */
6283 void
6284 init_tree_optimization_optabs (tree optnode)
6286 /* Quick exit if we have already computed optabs for this target. */
6287 if (TREE_OPTIMIZATION_BASE_OPTABS (optnode) == this_target_optabs)
6288 return;
6290 /* Forget any previous information and set up for the current target. */
6291 TREE_OPTIMIZATION_BASE_OPTABS (optnode) = this_target_optabs;
6292 struct target_optabs *tmp_optabs = (struct target_optabs *)
6293 TREE_OPTIMIZATION_OPTABS (optnode);
6294 if (tmp_optabs)
6295 memset (tmp_optabs, 0, sizeof (struct target_optabs));
6296 else
6297 tmp_optabs = ggc_alloc<target_optabs> ();
6299 /* Generate a new set of optabs into tmp_optabs. */
6300 init_all_optabs (tmp_optabs);
6302 /* If the optabs changed, record it. */
6303 if (memcmp (tmp_optabs, this_target_optabs, sizeof (struct target_optabs)))
6304 TREE_OPTIMIZATION_OPTABS (optnode) = tmp_optabs;
6305 else
6307 TREE_OPTIMIZATION_OPTABS (optnode) = NULL;
6308 ggc_free (tmp_optabs);
6312 /* A helper function for init_sync_libfuncs. Using the basename BASE,
6313 install libfuncs into TAB for BASE_N for 1 <= N <= MAX. */
6315 static void
6316 init_sync_libfuncs_1 (optab tab, const char *base, int max)
6318 machine_mode mode;
6319 char buf[64];
6320 size_t len = strlen (base);
6321 int i;
6323 gcc_assert (max <= 8);
6324 gcc_assert (len + 3 < sizeof (buf));
6326 memcpy (buf, base, len);
6327 buf[len] = '_';
6328 buf[len + 1] = '0';
6329 buf[len + 2] = '\0';
6331 mode = QImode;
6332 for (i = 1; i <= max; i *= 2)
6334 buf[len + 1] = '0' + i;
6335 set_optab_libfunc (tab, mode, buf);
6336 mode = GET_MODE_2XWIDER_MODE (mode);
6340 void
6341 init_sync_libfuncs (int max)
6343 if (!flag_sync_libcalls)
6344 return;
6346 init_sync_libfuncs_1 (sync_compare_and_swap_optab,
6347 "__sync_val_compare_and_swap", max);
6348 init_sync_libfuncs_1 (sync_lock_test_and_set_optab,
6349 "__sync_lock_test_and_set", max);
6351 init_sync_libfuncs_1 (sync_old_add_optab, "__sync_fetch_and_add", max);
6352 init_sync_libfuncs_1 (sync_old_sub_optab, "__sync_fetch_and_sub", max);
6353 init_sync_libfuncs_1 (sync_old_ior_optab, "__sync_fetch_and_or", max);
6354 init_sync_libfuncs_1 (sync_old_and_optab, "__sync_fetch_and_and", max);
6355 init_sync_libfuncs_1 (sync_old_xor_optab, "__sync_fetch_and_xor", max);
6356 init_sync_libfuncs_1 (sync_old_nand_optab, "__sync_fetch_and_nand", max);
6358 init_sync_libfuncs_1 (sync_new_add_optab, "__sync_add_and_fetch", max);
6359 init_sync_libfuncs_1 (sync_new_sub_optab, "__sync_sub_and_fetch", max);
6360 init_sync_libfuncs_1 (sync_new_ior_optab, "__sync_or_and_fetch", max);
6361 init_sync_libfuncs_1 (sync_new_and_optab, "__sync_and_and_fetch", max);
6362 init_sync_libfuncs_1 (sync_new_xor_optab, "__sync_xor_and_fetch", max);
6363 init_sync_libfuncs_1 (sync_new_nand_optab, "__sync_nand_and_fetch", max);
6366 /* Print information about the current contents of the optabs on
6367 STDERR. */
6369 DEBUG_FUNCTION void
6370 debug_optab_libfuncs (void)
6372 int i, j, k;
6374 /* Dump the arithmetic optabs. */
6375 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
6376 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6378 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
6379 if (l)
6381 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6382 fprintf (stderr, "%s\t%s:\t%s\n",
6383 GET_RTX_NAME (optab_to_code ((optab) i)),
6384 GET_MODE_NAME (j),
6385 XSTR (l, 0));
6389 /* Dump the conversion optabs. */
6390 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
6391 for (j = 0; j < NUM_MACHINE_MODES; ++j)
6392 for (k = 0; k < NUM_MACHINE_MODES; ++k)
6394 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
6395 (machine_mode) k);
6396 if (l)
6398 gcc_assert (GET_CODE (l) == SYMBOL_REF);
6399 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
6400 GET_RTX_NAME (optab_to_code ((optab) i)),
6401 GET_MODE_NAME (j),
6402 GET_MODE_NAME (k),
6403 XSTR (l, 0));
6409 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
6410 CODE. Return 0 on failure. */
6413 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
6415 machine_mode mode = GET_MODE (op1);
6416 enum insn_code icode;
6417 rtx insn;
6418 rtx trap_rtx;
6420 if (mode == VOIDmode)
6421 return 0;
6423 icode = optab_handler (ctrap_optab, mode);
6424 if (icode == CODE_FOR_nothing)
6425 return 0;
6427 /* Some targets only accept a zero trap code. */
6428 if (!insn_operand_matches (icode, 3, tcode))
6429 return 0;
6431 do_pending_stack_adjust ();
6432 start_sequence ();
6433 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
6434 &trap_rtx, &mode);
6435 if (!trap_rtx)
6436 insn = NULL_RTX;
6437 else
6438 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
6439 tcode);
6441 /* If that failed, then give up. */
6442 if (insn == 0)
6444 end_sequence ();
6445 return 0;
6448 emit_insn (insn);
6449 insn = get_insns ();
6450 end_sequence ();
6451 return insn;
6454 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
6455 or unsigned operation code. */
6457 static enum rtx_code
6458 get_rtx_code (enum tree_code tcode, bool unsignedp)
6460 enum rtx_code code;
6461 switch (tcode)
6463 case EQ_EXPR:
6464 code = EQ;
6465 break;
6466 case NE_EXPR:
6467 code = NE;
6468 break;
6469 case LT_EXPR:
6470 code = unsignedp ? LTU : LT;
6471 break;
6472 case LE_EXPR:
6473 code = unsignedp ? LEU : LE;
6474 break;
6475 case GT_EXPR:
6476 code = unsignedp ? GTU : GT;
6477 break;
6478 case GE_EXPR:
6479 code = unsignedp ? GEU : GE;
6480 break;
6482 case UNORDERED_EXPR:
6483 code = UNORDERED;
6484 break;
6485 case ORDERED_EXPR:
6486 code = ORDERED;
6487 break;
6488 case UNLT_EXPR:
6489 code = UNLT;
6490 break;
6491 case UNLE_EXPR:
6492 code = UNLE;
6493 break;
6494 case UNGT_EXPR:
6495 code = UNGT;
6496 break;
6497 case UNGE_EXPR:
6498 code = UNGE;
6499 break;
6500 case UNEQ_EXPR:
6501 code = UNEQ;
6502 break;
6503 case LTGT_EXPR:
6504 code = LTGT;
6505 break;
6507 default:
6508 gcc_unreachable ();
6510 return code;
6513 /* Return comparison rtx for COND. Use UNSIGNEDP to select signed or
6514 unsigned operators. Do not generate compare instruction. */
6516 static rtx
6517 vector_compare_rtx (enum tree_code tcode, tree t_op0, tree t_op1,
6518 bool unsignedp, enum insn_code icode)
6520 struct expand_operand ops[2];
6521 rtx rtx_op0, rtx_op1;
6522 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
6524 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
6526 /* Expand operands. */
6527 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
6528 EXPAND_STACK_PARM);
6529 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
6530 EXPAND_STACK_PARM);
6532 create_input_operand (&ops[0], rtx_op0, GET_MODE (rtx_op0));
6533 create_input_operand (&ops[1], rtx_op1, GET_MODE (rtx_op1));
6534 if (!maybe_legitimize_operands (icode, 4, 2, ops))
6535 gcc_unreachable ();
6536 return gen_rtx_fmt_ee (rcode, VOIDmode, ops[0].value, ops[1].value);
6539 /* Return true if VEC_PERM_EXPR of arbitrary input vectors can be expanded using
6540 SIMD extensions of the CPU. SEL may be NULL, which stands for an unknown
6541 constant. Note that additional permutations representing whole-vector shifts
6542 may also be handled via the vec_shr optab, but only where the second input
6543 vector is entirely constant zeroes; this case is not dealt with here. */
6545 bool
6546 can_vec_perm_p (machine_mode mode, bool variable,
6547 const unsigned char *sel)
6549 machine_mode qimode;
6551 /* If the target doesn't implement a vector mode for the vector type,
6552 then no operations are supported. */
6553 if (!VECTOR_MODE_P (mode))
6554 return false;
6556 if (!variable)
6558 if (direct_optab_handler (vec_perm_const_optab, mode) != CODE_FOR_nothing
6559 && (sel == NULL
6560 || targetm.vectorize.vec_perm_const_ok == NULL
6561 || targetm.vectorize.vec_perm_const_ok (mode, sel)))
6562 return true;
6565 if (direct_optab_handler (vec_perm_optab, mode) != CODE_FOR_nothing)
6566 return true;
6568 /* We allow fallback to a QI vector mode, and adjust the mask. */
6569 if (GET_MODE_INNER (mode) == QImode)
6570 return false;
6571 qimode = mode_for_vector (QImode, GET_MODE_SIZE (mode));
6572 if (!VECTOR_MODE_P (qimode))
6573 return false;
6575 /* ??? For completeness, we ought to check the QImode version of
6576 vec_perm_const_optab. But all users of this implicit lowering
6577 feature implement the variable vec_perm_optab. */
6578 if (direct_optab_handler (vec_perm_optab, qimode) == CODE_FOR_nothing)
6579 return false;
6581 /* In order to support the lowering of variable permutations,
6582 we need to support shifts and adds. */
6583 if (variable)
6585 if (GET_MODE_UNIT_SIZE (mode) > 2
6586 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing
6587 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing)
6588 return false;
6589 if (optab_handler (add_optab, qimode) == CODE_FOR_nothing)
6590 return false;
6593 return true;
6596 /* Checks if vec_perm mask SEL is a constant equivalent to a shift of the first
6597 vec_perm operand, assuming the second operand is a constant vector of zeroes.
6598 Return the shift distance in bits if so, or NULL_RTX if the vec_perm is not a
6599 shift. */
6600 static rtx
6601 shift_amt_for_vec_perm_mask (rtx sel)
6603 unsigned int i, first, nelt = GET_MODE_NUNITS (GET_MODE (sel));
6604 unsigned int bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (sel)));
6606 if (GET_CODE (sel) != CONST_VECTOR)
6607 return NULL_RTX;
6609 first = INTVAL (CONST_VECTOR_ELT (sel, 0));
6610 if (first >= 2*nelt)
6611 return NULL_RTX;
6612 for (i = 1; i < nelt; i++)
6614 int idx = INTVAL (CONST_VECTOR_ELT (sel, i));
6615 unsigned int expected = (i + first) & (2 * nelt - 1);
6616 /* Indices into the second vector are all equivalent. */
6617 if (idx < 0 || (MIN (nelt, (unsigned) idx) != MIN (nelt, expected)))
6618 return NULL_RTX;
6621 if (BYTES_BIG_ENDIAN)
6622 first = (2 * nelt) - first;
6623 return GEN_INT (first * bitsize);
6626 /* A subroutine of expand_vec_perm for expanding one vec_perm insn. */
6628 static rtx
6629 expand_vec_perm_1 (enum insn_code icode, rtx target,
6630 rtx v0, rtx v1, rtx sel)
6632 machine_mode tmode = GET_MODE (target);
6633 machine_mode smode = GET_MODE (sel);
6634 struct expand_operand ops[4];
6636 create_output_operand (&ops[0], target, tmode);
6637 create_input_operand (&ops[3], sel, smode);
6639 /* Make an effort to preserve v0 == v1. The target expander is able to
6640 rely on this to determine if we're permuting a single input operand. */
6641 if (rtx_equal_p (v0, v1))
6643 if (!insn_operand_matches (icode, 1, v0))
6644 v0 = force_reg (tmode, v0);
6645 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
6646 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
6648 create_fixed_operand (&ops[1], v0);
6649 create_fixed_operand (&ops[2], v0);
6651 else
6653 create_input_operand (&ops[1], v0, tmode);
6654 /* See if this can be handled with a vec_shr. We only do this if the
6655 second vector is all zeroes. */
6656 enum insn_code shift_code = optab_handler (vec_shr_optab, GET_MODE (v0));
6657 if (v1 == CONST0_RTX (GET_MODE (v1)) && shift_code)
6658 if (rtx shift_amt = shift_amt_for_vec_perm_mask (sel))
6660 create_convert_operand_from_type (&ops[2], shift_amt,
6661 sizetype_tab[(int) stk_sizetype]);
6662 if (maybe_expand_insn (shift_code, 3, ops))
6663 return ops[0].value;
6665 create_input_operand (&ops[2], v1, tmode);
6668 if (maybe_expand_insn (icode, 4, ops))
6669 return ops[0].value;
6670 return NULL_RTX;
6673 /* Generate instructions for vec_perm optab given its mode
6674 and three operands. */
6677 expand_vec_perm (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
6679 enum insn_code icode;
6680 machine_mode qimode;
6681 unsigned int i, w, e, u;
6682 rtx tmp, sel_qi = NULL;
6683 rtvec vec;
6685 if (!target || GET_MODE (target) != mode)
6686 target = gen_reg_rtx (mode);
6688 w = GET_MODE_SIZE (mode);
6689 e = GET_MODE_NUNITS (mode);
6690 u = GET_MODE_UNIT_SIZE (mode);
6692 /* Set QIMODE to a different vector mode with byte elements.
6693 If no such mode, or if MODE already has byte elements, use VOIDmode. */
6694 qimode = VOIDmode;
6695 if (GET_MODE_INNER (mode) != QImode)
6697 qimode = mode_for_vector (QImode, w);
6698 if (!VECTOR_MODE_P (qimode))
6699 qimode = VOIDmode;
6702 /* If the input is a constant, expand it specially. */
6703 gcc_assert (GET_MODE_CLASS (GET_MODE (sel)) == MODE_VECTOR_INT);
6704 if (GET_CODE (sel) == CONST_VECTOR)
6706 icode = direct_optab_handler (vec_perm_const_optab, mode);
6707 if (icode != CODE_FOR_nothing)
6709 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6710 if (tmp)
6711 return tmp;
6714 /* Fall back to a constant byte-based permutation. */
6715 if (qimode != VOIDmode)
6717 vec = rtvec_alloc (w);
6718 for (i = 0; i < e; ++i)
6720 unsigned int j, this_e;
6722 this_e = INTVAL (CONST_VECTOR_ELT (sel, i));
6723 this_e &= 2 * e - 1;
6724 this_e *= u;
6726 for (j = 0; j < u; ++j)
6727 RTVEC_ELT (vec, i * u + j) = GEN_INT (this_e + j);
6729 sel_qi = gen_rtx_CONST_VECTOR (qimode, vec);
6731 icode = direct_optab_handler (vec_perm_const_optab, qimode);
6732 if (icode != CODE_FOR_nothing)
6734 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6735 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6736 gen_lowpart (qimode, v1), sel_qi);
6737 if (tmp)
6738 return gen_lowpart (mode, tmp);
6743 /* Otherwise expand as a fully variable permuation. */
6744 icode = direct_optab_handler (vec_perm_optab, mode);
6745 if (icode != CODE_FOR_nothing)
6747 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
6748 if (tmp)
6749 return tmp;
6752 /* As a special case to aid several targets, lower the element-based
6753 permutation to a byte-based permutation and try again. */
6754 if (qimode == VOIDmode)
6755 return NULL_RTX;
6756 icode = direct_optab_handler (vec_perm_optab, qimode);
6757 if (icode == CODE_FOR_nothing)
6758 return NULL_RTX;
6760 if (sel_qi == NULL)
6762 /* Multiply each element by its byte size. */
6763 machine_mode selmode = GET_MODE (sel);
6764 if (u == 2)
6765 sel = expand_simple_binop (selmode, PLUS, sel, sel,
6766 sel, 0, OPTAB_DIRECT);
6767 else
6768 sel = expand_simple_binop (selmode, ASHIFT, sel,
6769 GEN_INT (exact_log2 (u)),
6770 sel, 0, OPTAB_DIRECT);
6771 gcc_assert (sel != NULL);
6773 /* Broadcast the low byte each element into each of its bytes. */
6774 vec = rtvec_alloc (w);
6775 for (i = 0; i < w; ++i)
6777 int this_e = i / u * u;
6778 if (BYTES_BIG_ENDIAN)
6779 this_e += u - 1;
6780 RTVEC_ELT (vec, i) = GEN_INT (this_e);
6782 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6783 sel = gen_lowpart (qimode, sel);
6784 sel = expand_vec_perm (qimode, sel, sel, tmp, NULL);
6785 gcc_assert (sel != NULL);
6787 /* Add the byte offset to each byte element. */
6788 /* Note that the definition of the indicies here is memory ordering,
6789 so there should be no difference between big and little endian. */
6790 vec = rtvec_alloc (w);
6791 for (i = 0; i < w; ++i)
6792 RTVEC_ELT (vec, i) = GEN_INT (i % u);
6793 tmp = gen_rtx_CONST_VECTOR (qimode, vec);
6794 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
6795 sel, 0, OPTAB_DIRECT);
6796 gcc_assert (sel_qi != NULL);
6799 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
6800 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
6801 gen_lowpart (qimode, v1), sel_qi);
6802 if (tmp)
6803 tmp = gen_lowpart (mode, tmp);
6804 return tmp;
6807 /* Return insn code for a conditional operator with a comparison in
6808 mode CMODE, unsigned if UNS is true, resulting in a value of mode VMODE. */
6810 static inline enum insn_code
6811 get_vcond_icode (machine_mode vmode, machine_mode cmode, bool uns)
6813 enum insn_code icode = CODE_FOR_nothing;
6814 if (uns)
6815 icode = convert_optab_handler (vcondu_optab, vmode, cmode);
6816 else
6817 icode = convert_optab_handler (vcond_optab, vmode, cmode);
6818 return icode;
6821 /* Return TRUE iff, appropriate vector insns are available
6822 for vector cond expr with vector type VALUE_TYPE and a comparison
6823 with operand vector types in CMP_OP_TYPE. */
6825 bool
6826 expand_vec_cond_expr_p (tree value_type, tree cmp_op_type)
6828 machine_mode value_mode = TYPE_MODE (value_type);
6829 machine_mode cmp_op_mode = TYPE_MODE (cmp_op_type);
6830 if (GET_MODE_SIZE (value_mode) != GET_MODE_SIZE (cmp_op_mode)
6831 || GET_MODE_NUNITS (value_mode) != GET_MODE_NUNITS (cmp_op_mode)
6832 || get_vcond_icode (TYPE_MODE (value_type), TYPE_MODE (cmp_op_type),
6833 TYPE_UNSIGNED (cmp_op_type)) == CODE_FOR_nothing)
6834 return false;
6835 return true;
6838 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
6839 three operands. */
6842 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
6843 rtx target)
6845 struct expand_operand ops[6];
6846 enum insn_code icode;
6847 rtx comparison, rtx_op1, rtx_op2;
6848 machine_mode mode = TYPE_MODE (vec_cond_type);
6849 machine_mode cmp_op_mode;
6850 bool unsignedp;
6851 tree op0a, op0b;
6852 enum tree_code tcode;
6854 if (COMPARISON_CLASS_P (op0))
6856 op0a = TREE_OPERAND (op0, 0);
6857 op0b = TREE_OPERAND (op0, 1);
6858 tcode = TREE_CODE (op0);
6860 else
6862 /* Fake op0 < 0. */
6863 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (op0)));
6864 op0a = op0;
6865 op0b = build_zero_cst (TREE_TYPE (op0));
6866 tcode = LT_EXPR;
6868 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
6869 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
6872 gcc_assert (GET_MODE_SIZE (mode) == GET_MODE_SIZE (cmp_op_mode)
6873 && GET_MODE_NUNITS (mode) == GET_MODE_NUNITS (cmp_op_mode));
6875 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
6876 if (icode == CODE_FOR_nothing)
6877 return 0;
6879 comparison = vector_compare_rtx (tcode, op0a, op0b, unsignedp, icode);
6880 rtx_op1 = expand_normal (op1);
6881 rtx_op2 = expand_normal (op2);
6883 create_output_operand (&ops[0], target, mode);
6884 create_input_operand (&ops[1], rtx_op1, mode);
6885 create_input_operand (&ops[2], rtx_op2, mode);
6886 create_fixed_operand (&ops[3], comparison);
6887 create_fixed_operand (&ops[4], XEXP (comparison, 0));
6888 create_fixed_operand (&ops[5], XEXP (comparison, 1));
6889 expand_insn (icode, 6, ops);
6890 return ops[0].value;
6893 /* Return non-zero if a highpart multiply is supported of can be synthisized.
6894 For the benefit of expand_mult_highpart, the return value is 1 for direct,
6895 2 for even/odd widening, and 3 for hi/lo widening. */
6898 can_mult_highpart_p (machine_mode mode, bool uns_p)
6900 optab op;
6901 unsigned char *sel;
6902 unsigned i, nunits;
6904 op = uns_p ? umul_highpart_optab : smul_highpart_optab;
6905 if (optab_handler (op, mode) != CODE_FOR_nothing)
6906 return 1;
6908 /* If the mode is an integral vector, synth from widening operations. */
6909 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
6910 return 0;
6912 nunits = GET_MODE_NUNITS (mode);
6913 sel = XALLOCAVEC (unsigned char, nunits);
6915 op = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6916 if (optab_handler (op, mode) != CODE_FOR_nothing)
6918 op = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6919 if (optab_handler (op, mode) != CODE_FOR_nothing)
6921 for (i = 0; i < nunits; ++i)
6922 sel[i] = !BYTES_BIG_ENDIAN + (i & ~1) + ((i & 1) ? nunits : 0);
6923 if (can_vec_perm_p (mode, false, sel))
6924 return 2;
6928 op = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6929 if (optab_handler (op, mode) != CODE_FOR_nothing)
6931 op = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6932 if (optab_handler (op, mode) != CODE_FOR_nothing)
6934 for (i = 0; i < nunits; ++i)
6935 sel[i] = 2 * i + (BYTES_BIG_ENDIAN ? 0 : 1);
6936 if (can_vec_perm_p (mode, false, sel))
6937 return 3;
6941 return 0;
6944 /* Expand a highpart multiply. */
6947 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
6948 rtx target, bool uns_p)
6950 struct expand_operand eops[3];
6951 enum insn_code icode;
6952 int method, i, nunits;
6953 machine_mode wmode;
6954 rtx m1, m2, perm;
6955 optab tab1, tab2;
6956 rtvec v;
6958 method = can_mult_highpart_p (mode, uns_p);
6959 switch (method)
6961 case 0:
6962 return NULL_RTX;
6963 case 1:
6964 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
6965 return expand_binop (mode, tab1, op0, op1, target, uns_p,
6966 OPTAB_LIB_WIDEN);
6967 case 2:
6968 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
6969 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
6970 break;
6971 case 3:
6972 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
6973 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
6974 if (BYTES_BIG_ENDIAN)
6976 optab t = tab1;
6977 tab1 = tab2;
6978 tab2 = t;
6980 break;
6981 default:
6982 gcc_unreachable ();
6985 icode = optab_handler (tab1, mode);
6986 nunits = GET_MODE_NUNITS (mode);
6987 wmode = insn_data[icode].operand[0].mode;
6988 gcc_checking_assert (2 * GET_MODE_NUNITS (wmode) == nunits);
6989 gcc_checking_assert (GET_MODE_SIZE (wmode) == GET_MODE_SIZE (mode));
6991 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6992 create_input_operand (&eops[1], op0, mode);
6993 create_input_operand (&eops[2], op1, mode);
6994 expand_insn (icode, 3, eops);
6995 m1 = gen_lowpart (mode, eops[0].value);
6997 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
6998 create_input_operand (&eops[1], op0, mode);
6999 create_input_operand (&eops[2], op1, mode);
7000 expand_insn (optab_handler (tab2, mode), 3, eops);
7001 m2 = gen_lowpart (mode, eops[0].value);
7003 v = rtvec_alloc (nunits);
7004 if (method == 2)
7006 for (i = 0; i < nunits; ++i)
7007 RTVEC_ELT (v, i) = GEN_INT (!BYTES_BIG_ENDIAN + (i & ~1)
7008 + ((i & 1) ? nunits : 0));
7010 else
7012 for (i = 0; i < nunits; ++i)
7013 RTVEC_ELT (v, i) = GEN_INT (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
7015 perm = gen_rtx_CONST_VECTOR (mode, v);
7017 return expand_vec_perm (mode, m1, m2, perm, target);
7020 /* Return true if target supports vector masked load/store for mode. */
7021 bool
7022 can_vec_mask_load_store_p (machine_mode mode, bool is_load)
7024 optab op = is_load ? maskload_optab : maskstore_optab;
7025 machine_mode vmode;
7026 unsigned int vector_sizes;
7028 /* If mode is vector mode, check it directly. */
7029 if (VECTOR_MODE_P (mode))
7030 return optab_handler (op, mode) != CODE_FOR_nothing;
7032 /* Otherwise, return true if there is some vector mode with
7033 the mask load/store supported. */
7035 /* See if there is any chance the mask load or store might be
7036 vectorized. If not, punt. */
7037 vmode = targetm.vectorize.preferred_simd_mode (mode);
7038 if (!VECTOR_MODE_P (vmode))
7039 return false;
7041 if (optab_handler (op, vmode) != CODE_FOR_nothing)
7042 return true;
7044 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
7045 while (vector_sizes != 0)
7047 unsigned int cur = 1 << floor_log2 (vector_sizes);
7048 vector_sizes &= ~cur;
7049 if (cur <= GET_MODE_SIZE (mode))
7050 continue;
7051 vmode = mode_for_vector (mode, cur / GET_MODE_SIZE (mode));
7052 if (VECTOR_MODE_P (vmode)
7053 && optab_handler (op, vmode) != CODE_FOR_nothing)
7054 return true;
7056 return false;
7059 /* Return true if there is a compare_and_swap pattern. */
7061 bool
7062 can_compare_and_swap_p (machine_mode mode, bool allow_libcall)
7064 enum insn_code icode;
7066 /* Check for __atomic_compare_and_swap. */
7067 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7068 if (icode != CODE_FOR_nothing)
7069 return true;
7071 /* Check for __sync_compare_and_swap. */
7072 icode = optab_handler (sync_compare_and_swap_optab, mode);
7073 if (icode != CODE_FOR_nothing)
7074 return true;
7075 if (allow_libcall && optab_libfunc (sync_compare_and_swap_optab, mode))
7076 return true;
7078 /* No inline compare and swap. */
7079 return false;
7082 /* Return true if an atomic exchange can be performed. */
7084 bool
7085 can_atomic_exchange_p (machine_mode mode, bool allow_libcall)
7087 enum insn_code icode;
7089 /* Check for __atomic_exchange. */
7090 icode = direct_optab_handler (atomic_exchange_optab, mode);
7091 if (icode != CODE_FOR_nothing)
7092 return true;
7094 /* Don't check __sync_test_and_set, as on some platforms that
7095 has reduced functionality. Targets that really do support
7096 a proper exchange should simply be updated to the __atomics. */
7098 return can_compare_and_swap_p (mode, allow_libcall);
7102 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
7103 pattern. */
7105 static void
7106 find_cc_set (rtx x, const_rtx pat, void *data)
7108 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
7109 && GET_CODE (pat) == SET)
7111 rtx *p_cc_reg = (rtx *) data;
7112 gcc_assert (!*p_cc_reg);
7113 *p_cc_reg = x;
7117 /* This is a helper function for the other atomic operations. This function
7118 emits a loop that contains SEQ that iterates until a compare-and-swap
7119 operation at the end succeeds. MEM is the memory to be modified. SEQ is
7120 a set of instructions that takes a value from OLD_REG as an input and
7121 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
7122 set to the current contents of MEM. After SEQ, a compare-and-swap will
7123 attempt to update MEM with NEW_REG. The function returns true when the
7124 loop was generated successfully. */
7126 static bool
7127 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
7129 machine_mode mode = GET_MODE (mem);
7130 rtx_code_label *label;
7131 rtx cmp_reg, success, oldval;
7133 /* The loop we want to generate looks like
7135 cmp_reg = mem;
7136 label:
7137 old_reg = cmp_reg;
7138 seq;
7139 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
7140 if (success)
7141 goto label;
7143 Note that we only do the plain load from memory once. Subsequent
7144 iterations use the value loaded by the compare-and-swap pattern. */
7146 label = gen_label_rtx ();
7147 cmp_reg = gen_reg_rtx (mode);
7149 emit_move_insn (cmp_reg, mem);
7150 emit_label (label);
7151 emit_move_insn (old_reg, cmp_reg);
7152 if (seq)
7153 emit_insn (seq);
7155 success = NULL_RTX;
7156 oldval = cmp_reg;
7157 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
7158 new_reg, false, MEMMODEL_SEQ_CST,
7159 MEMMODEL_RELAXED))
7160 return false;
7162 if (oldval != cmp_reg)
7163 emit_move_insn (cmp_reg, oldval);
7165 /* Mark this jump predicted not taken. */
7166 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
7167 GET_MODE (success), 1, label, 0);
7168 return true;
7172 /* This function tries to emit an atomic_exchange intruction. VAL is written
7173 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
7174 using TARGET if possible. */
7176 static rtx
7177 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7179 machine_mode mode = GET_MODE (mem);
7180 enum insn_code icode;
7182 /* If the target supports the exchange directly, great. */
7183 icode = direct_optab_handler (atomic_exchange_optab, mode);
7184 if (icode != CODE_FOR_nothing)
7186 struct expand_operand ops[4];
7188 create_output_operand (&ops[0], target, mode);
7189 create_fixed_operand (&ops[1], mem);
7190 create_input_operand (&ops[2], val, mode);
7191 create_integer_operand (&ops[3], model);
7192 if (maybe_expand_insn (icode, 4, ops))
7193 return ops[0].value;
7196 return NULL_RTX;
7199 /* This function tries to implement an atomic exchange operation using
7200 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
7201 The previous contents of *MEM are returned, using TARGET if possible.
7202 Since this instructionn is an acquire barrier only, stronger memory
7203 models may require additional barriers to be emitted. */
7205 static rtx
7206 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
7207 enum memmodel model)
7209 machine_mode mode = GET_MODE (mem);
7210 enum insn_code icode;
7211 rtx_insn *last_insn = get_last_insn ();
7213 icode = optab_handler (sync_lock_test_and_set_optab, mode);
7215 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
7216 exists, and the memory model is stronger than acquire, add a release
7217 barrier before the instruction. */
7219 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST
7220 || (model & MEMMODEL_MASK) == MEMMODEL_RELEASE
7221 || (model & MEMMODEL_MASK) == MEMMODEL_ACQ_REL)
7222 expand_mem_thread_fence (model);
7224 if (icode != CODE_FOR_nothing)
7226 struct expand_operand ops[3];
7227 create_output_operand (&ops[0], target, mode);
7228 create_fixed_operand (&ops[1], mem);
7229 create_input_operand (&ops[2], val, mode);
7230 if (maybe_expand_insn (icode, 3, ops))
7231 return ops[0].value;
7234 /* If an external test-and-set libcall is provided, use that instead of
7235 any external compare-and-swap that we might get from the compare-and-
7236 swap-loop expansion later. */
7237 if (!can_compare_and_swap_p (mode, false))
7239 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
7240 if (libfunc != NULL)
7242 rtx addr;
7244 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7245 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7246 mode, 2, addr, ptr_mode,
7247 val, mode);
7251 /* If the test_and_set can't be emitted, eliminate any barrier that might
7252 have been emitted. */
7253 delete_insns_since (last_insn);
7254 return NULL_RTX;
7257 /* This function tries to implement an atomic exchange operation using a
7258 compare_and_swap loop. VAL is written to *MEM. The previous contents of
7259 *MEM are returned, using TARGET if possible. No memory model is required
7260 since a compare_and_swap loop is seq-cst. */
7262 static rtx
7263 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
7265 machine_mode mode = GET_MODE (mem);
7267 if (can_compare_and_swap_p (mode, true))
7269 if (!target || !register_operand (target, mode))
7270 target = gen_reg_rtx (mode);
7271 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
7272 return target;
7275 return NULL_RTX;
7278 /* This function tries to implement an atomic test-and-set operation
7279 using the atomic_test_and_set instruction pattern. A boolean value
7280 is returned from the operation, using TARGET if possible. */
7282 #ifndef HAVE_atomic_test_and_set
7283 #define HAVE_atomic_test_and_set 0
7284 #define CODE_FOR_atomic_test_and_set CODE_FOR_nothing
7285 #endif
7287 static rtx
7288 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7290 machine_mode pat_bool_mode;
7291 struct expand_operand ops[3];
7293 if (!HAVE_atomic_test_and_set)
7294 return NULL_RTX;
7296 /* While we always get QImode from __atomic_test_and_set, we get
7297 other memory modes from __sync_lock_test_and_set. Note that we
7298 use no endian adjustment here. This matches the 4.6 behavior
7299 in the Sparc backend. */
7300 gcc_checking_assert
7301 (insn_data[CODE_FOR_atomic_test_and_set].operand[1].mode == QImode);
7302 if (GET_MODE (mem) != QImode)
7303 mem = adjust_address_nv (mem, QImode, 0);
7305 pat_bool_mode = insn_data[CODE_FOR_atomic_test_and_set].operand[0].mode;
7306 create_output_operand (&ops[0], target, pat_bool_mode);
7307 create_fixed_operand (&ops[1], mem);
7308 create_integer_operand (&ops[2], model);
7310 if (maybe_expand_insn (CODE_FOR_atomic_test_and_set, 3, ops))
7311 return ops[0].value;
7312 return NULL_RTX;
7315 /* This function expands the legacy _sync_lock test_and_set operation which is
7316 generally an atomic exchange. Some limited targets only allow the
7317 constant 1 to be stored. This is an ACQUIRE operation.
7319 TARGET is an optional place to stick the return value.
7320 MEM is where VAL is stored. */
7323 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
7325 rtx ret;
7327 /* Try an atomic_exchange first. */
7328 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_ACQUIRE);
7329 if (ret)
7330 return ret;
7332 ret = maybe_emit_sync_lock_test_and_set (target, mem, val, MEMMODEL_ACQUIRE);
7333 if (ret)
7334 return ret;
7336 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7337 if (ret)
7338 return ret;
7340 /* If there are no other options, try atomic_test_and_set if the value
7341 being stored is 1. */
7342 if (val == const1_rtx)
7343 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_ACQUIRE);
7345 return ret;
7348 /* This function expands the atomic test_and_set operation:
7349 atomically store a boolean TRUE into MEM and return the previous value.
7351 MEMMODEL is the memory model variant to use.
7352 TARGET is an optional place to stick the return value. */
7355 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
7357 machine_mode mode = GET_MODE (mem);
7358 rtx ret, trueval, subtarget;
7360 ret = maybe_emit_atomic_test_and_set (target, mem, model);
7361 if (ret)
7362 return ret;
7364 /* Be binary compatible with non-default settings of trueval, and different
7365 cpu revisions. E.g. one revision may have atomic-test-and-set, but
7366 another only has atomic-exchange. */
7367 if (targetm.atomic_test_and_set_trueval == 1)
7369 trueval = const1_rtx;
7370 subtarget = target ? target : gen_reg_rtx (mode);
7372 else
7374 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
7375 subtarget = gen_reg_rtx (mode);
7378 /* Try the atomic-exchange optab... */
7379 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
7381 /* ... then an atomic-compare-and-swap loop ... */
7382 if (!ret)
7383 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
7385 /* ... before trying the vaguely defined legacy lock_test_and_set. */
7386 if (!ret)
7387 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
7389 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
7390 things with the value 1. Thus we try again without trueval. */
7391 if (!ret && targetm.atomic_test_and_set_trueval != 1)
7392 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
7394 /* Failing all else, assume a single threaded environment and simply
7395 perform the operation. */
7396 if (!ret)
7398 /* If the result is ignored skip the move to target. */
7399 if (subtarget != const0_rtx)
7400 emit_move_insn (subtarget, mem);
7402 emit_move_insn (mem, trueval);
7403 ret = subtarget;
7406 /* Recall that have to return a boolean value; rectify if trueval
7407 is not exactly one. */
7408 if (targetm.atomic_test_and_set_trueval != 1)
7409 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
7411 return ret;
7414 /* This function expands the atomic exchange operation:
7415 atomically store VAL in MEM and return the previous value in MEM.
7417 MEMMODEL is the memory model variant to use.
7418 TARGET is an optional place to stick the return value. */
7421 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
7423 rtx ret;
7425 ret = maybe_emit_atomic_exchange (target, mem, val, model);
7427 /* Next try a compare-and-swap loop for the exchange. */
7428 if (!ret)
7429 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
7431 return ret;
7434 /* This function expands the atomic compare exchange operation:
7436 *PTARGET_BOOL is an optional place to store the boolean success/failure.
7437 *PTARGET_OVAL is an optional place to store the old value from memory.
7438 Both target parameters may be NULL to indicate that we do not care about
7439 that return value. Both target parameters are updated on success to
7440 the actual location of the corresponding result.
7442 MEMMODEL is the memory model variant to use.
7444 The return value of the function is true for success. */
7446 bool
7447 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
7448 rtx mem, rtx expected, rtx desired,
7449 bool is_weak, enum memmodel succ_model,
7450 enum memmodel fail_model)
7452 machine_mode mode = GET_MODE (mem);
7453 struct expand_operand ops[8];
7454 enum insn_code icode;
7455 rtx target_oval, target_bool = NULL_RTX;
7456 rtx libfunc;
7458 /* Load expected into a register for the compare and swap. */
7459 if (MEM_P (expected))
7460 expected = copy_to_reg (expected);
7462 /* Make sure we always have some place to put the return oldval.
7463 Further, make sure that place is distinct from the input expected,
7464 just in case we need that path down below. */
7465 if (ptarget_oval == NULL
7466 || (target_oval = *ptarget_oval) == NULL
7467 || reg_overlap_mentioned_p (expected, target_oval))
7468 target_oval = gen_reg_rtx (mode);
7470 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
7471 if (icode != CODE_FOR_nothing)
7473 machine_mode bool_mode = insn_data[icode].operand[0].mode;
7475 /* Make sure we always have a place for the bool operand. */
7476 if (ptarget_bool == NULL
7477 || (target_bool = *ptarget_bool) == NULL
7478 || GET_MODE (target_bool) != bool_mode)
7479 target_bool = gen_reg_rtx (bool_mode);
7481 /* Emit the compare_and_swap. */
7482 create_output_operand (&ops[0], target_bool, bool_mode);
7483 create_output_operand (&ops[1], target_oval, mode);
7484 create_fixed_operand (&ops[2], mem);
7485 create_input_operand (&ops[3], expected, mode);
7486 create_input_operand (&ops[4], desired, mode);
7487 create_integer_operand (&ops[5], is_weak);
7488 create_integer_operand (&ops[6], succ_model);
7489 create_integer_operand (&ops[7], fail_model);
7490 if (maybe_expand_insn (icode, 8, ops))
7492 /* Return success/failure. */
7493 target_bool = ops[0].value;
7494 target_oval = ops[1].value;
7495 goto success;
7499 /* Otherwise fall back to the original __sync_val_compare_and_swap
7500 which is always seq-cst. */
7501 icode = optab_handler (sync_compare_and_swap_optab, mode);
7502 if (icode != CODE_FOR_nothing)
7504 rtx cc_reg;
7506 create_output_operand (&ops[0], target_oval, mode);
7507 create_fixed_operand (&ops[1], mem);
7508 create_input_operand (&ops[2], expected, mode);
7509 create_input_operand (&ops[3], desired, mode);
7510 if (!maybe_expand_insn (icode, 4, ops))
7511 return false;
7513 target_oval = ops[0].value;
7515 /* If the caller isn't interested in the boolean return value,
7516 skip the computation of it. */
7517 if (ptarget_bool == NULL)
7518 goto success;
7520 /* Otherwise, work out if the compare-and-swap succeeded. */
7521 cc_reg = NULL_RTX;
7522 if (have_insn_for (COMPARE, CCmode))
7523 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
7524 if (cc_reg)
7526 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
7527 const0_rtx, VOIDmode, 0, 1);
7528 goto success;
7530 goto success_bool_from_val;
7533 /* Also check for library support for __sync_val_compare_and_swap. */
7534 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
7535 if (libfunc != NULL)
7537 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7538 target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
7539 mode, 3, addr, ptr_mode,
7540 expected, mode, desired, mode);
7542 /* Compute the boolean return value only if requested. */
7543 if (ptarget_bool)
7544 goto success_bool_from_val;
7545 else
7546 goto success;
7549 /* Failure. */
7550 return false;
7552 success_bool_from_val:
7553 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
7554 expected, VOIDmode, 1, 1);
7555 success:
7556 /* Make sure that the oval output winds up where the caller asked. */
7557 if (ptarget_oval)
7558 *ptarget_oval = target_oval;
7559 if (ptarget_bool)
7560 *ptarget_bool = target_bool;
7561 return true;
7564 /* Generate asm volatile("" : : : "memory") as the memory barrier. */
7566 static void
7567 expand_asm_memory_barrier (void)
7569 rtx asm_op, clob;
7571 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, empty_string, empty_string, 0,
7572 rtvec_alloc (0), rtvec_alloc (0),
7573 rtvec_alloc (0), UNKNOWN_LOCATION);
7574 MEM_VOLATILE_P (asm_op) = 1;
7576 clob = gen_rtx_SCRATCH (VOIDmode);
7577 clob = gen_rtx_MEM (BLKmode, clob);
7578 clob = gen_rtx_CLOBBER (VOIDmode, clob);
7580 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
7583 /* This routine will either emit the mem_thread_fence pattern or issue a
7584 sync_synchronize to generate a fence for memory model MEMMODEL. */
7586 #ifndef HAVE_mem_thread_fence
7587 # define HAVE_mem_thread_fence 0
7588 # define gen_mem_thread_fence(x) (gcc_unreachable (), NULL_RTX)
7589 #endif
7590 #ifndef HAVE_memory_barrier
7591 # define HAVE_memory_barrier 0
7592 # define gen_memory_barrier() (gcc_unreachable (), NULL_RTX)
7593 #endif
7595 void
7596 expand_mem_thread_fence (enum memmodel model)
7598 if (HAVE_mem_thread_fence)
7599 emit_insn (gen_mem_thread_fence (GEN_INT (model)));
7600 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7602 if (HAVE_memory_barrier)
7603 emit_insn (gen_memory_barrier ());
7604 else if (synchronize_libfunc != NULL_RTX)
7605 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode, 0);
7606 else
7607 expand_asm_memory_barrier ();
7611 /* This routine will either emit the mem_signal_fence pattern or issue a
7612 sync_synchronize to generate a fence for memory model MEMMODEL. */
7614 #ifndef HAVE_mem_signal_fence
7615 # define HAVE_mem_signal_fence 0
7616 # define gen_mem_signal_fence(x) (gcc_unreachable (), NULL_RTX)
7617 #endif
7619 void
7620 expand_mem_signal_fence (enum memmodel model)
7622 if (HAVE_mem_signal_fence)
7623 emit_insn (gen_mem_signal_fence (GEN_INT (model)));
7624 else if ((model & MEMMODEL_MASK) != MEMMODEL_RELAXED)
7626 /* By default targets are coherent between a thread and the signal
7627 handler running on the same thread. Thus this really becomes a
7628 compiler barrier, in that stores must not be sunk past
7629 (or raised above) a given point. */
7630 expand_asm_memory_barrier ();
7634 /* This function expands the atomic load operation:
7635 return the atomically loaded value in MEM.
7637 MEMMODEL is the memory model variant to use.
7638 TARGET is an option place to stick the return value. */
7641 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
7643 machine_mode mode = GET_MODE (mem);
7644 enum insn_code icode;
7646 /* If the target supports the load directly, great. */
7647 icode = direct_optab_handler (atomic_load_optab, mode);
7648 if (icode != CODE_FOR_nothing)
7650 struct expand_operand ops[3];
7652 create_output_operand (&ops[0], target, mode);
7653 create_fixed_operand (&ops[1], mem);
7654 create_integer_operand (&ops[2], model);
7655 if (maybe_expand_insn (icode, 3, ops))
7656 return ops[0].value;
7659 /* If the size of the object is greater than word size on this target,
7660 then we assume that a load will not be atomic. */
7661 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7663 /* Issue val = compare_and_swap (mem, 0, 0).
7664 This may cause the occasional harmless store of 0 when the value is
7665 already 0, but it seems to be OK according to the standards guys. */
7666 if (expand_atomic_compare_and_swap (NULL, &target, mem, const0_rtx,
7667 const0_rtx, false, model, model))
7668 return target;
7669 else
7670 /* Otherwise there is no atomic load, leave the library call. */
7671 return NULL_RTX;
7674 /* Otherwise assume loads are atomic, and emit the proper barriers. */
7675 if (!target || target == const0_rtx)
7676 target = gen_reg_rtx (mode);
7678 /* For SEQ_CST, emit a barrier before the load. */
7679 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7680 expand_mem_thread_fence (model);
7682 emit_move_insn (target, mem);
7684 /* Emit the appropriate barrier after the load. */
7685 expand_mem_thread_fence (model);
7687 return target;
7690 /* This function expands the atomic store operation:
7691 Atomically store VAL in MEM.
7692 MEMMODEL is the memory model variant to use.
7693 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
7694 function returns const0_rtx if a pattern was emitted. */
7697 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
7699 machine_mode mode = GET_MODE (mem);
7700 enum insn_code icode;
7701 struct expand_operand ops[3];
7703 /* If the target supports the store directly, great. */
7704 icode = direct_optab_handler (atomic_store_optab, mode);
7705 if (icode != CODE_FOR_nothing)
7707 create_fixed_operand (&ops[0], mem);
7708 create_input_operand (&ops[1], val, mode);
7709 create_integer_operand (&ops[2], model);
7710 if (maybe_expand_insn (icode, 3, ops))
7711 return const0_rtx;
7714 /* If using __sync_lock_release is a viable alternative, try it. */
7715 if (use_release)
7717 icode = direct_optab_handler (sync_lock_release_optab, mode);
7718 if (icode != CODE_FOR_nothing)
7720 create_fixed_operand (&ops[0], mem);
7721 create_input_operand (&ops[1], const0_rtx, mode);
7722 if (maybe_expand_insn (icode, 2, ops))
7724 /* lock_release is only a release barrier. */
7725 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7726 expand_mem_thread_fence (model);
7727 return const0_rtx;
7732 /* If the size of the object is greater than word size on this target,
7733 a default store will not be atomic, Try a mem_exchange and throw away
7734 the result. If that doesn't work, don't do anything. */
7735 if (GET_MODE_PRECISION (mode) > BITS_PER_WORD)
7737 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
7738 if (!target)
7739 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem, val);
7740 if (target)
7741 return const0_rtx;
7742 else
7743 return NULL_RTX;
7746 /* Otherwise assume stores are atomic, and emit the proper barriers. */
7747 expand_mem_thread_fence (model);
7749 emit_move_insn (mem, val);
7751 /* For SEQ_CST, also emit a barrier after the store. */
7752 if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST)
7753 expand_mem_thread_fence (model);
7755 return const0_rtx;
7759 /* Structure containing the pointers and values required to process the
7760 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
7762 struct atomic_op_functions
7764 direct_optab mem_fetch_before;
7765 direct_optab mem_fetch_after;
7766 direct_optab mem_no_result;
7767 optab fetch_before;
7768 optab fetch_after;
7769 direct_optab no_result;
7770 enum rtx_code reverse_code;
7774 /* Fill in structure pointed to by OP with the various optab entries for an
7775 operation of type CODE. */
7777 static void
7778 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
7780 gcc_assert (op!= NULL);
7782 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
7783 in the source code during compilation, and the optab entries are not
7784 computable until runtime. Fill in the values at runtime. */
7785 switch (code)
7787 case PLUS:
7788 op->mem_fetch_before = atomic_fetch_add_optab;
7789 op->mem_fetch_after = atomic_add_fetch_optab;
7790 op->mem_no_result = atomic_add_optab;
7791 op->fetch_before = sync_old_add_optab;
7792 op->fetch_after = sync_new_add_optab;
7793 op->no_result = sync_add_optab;
7794 op->reverse_code = MINUS;
7795 break;
7796 case MINUS:
7797 op->mem_fetch_before = atomic_fetch_sub_optab;
7798 op->mem_fetch_after = atomic_sub_fetch_optab;
7799 op->mem_no_result = atomic_sub_optab;
7800 op->fetch_before = sync_old_sub_optab;
7801 op->fetch_after = sync_new_sub_optab;
7802 op->no_result = sync_sub_optab;
7803 op->reverse_code = PLUS;
7804 break;
7805 case XOR:
7806 op->mem_fetch_before = atomic_fetch_xor_optab;
7807 op->mem_fetch_after = atomic_xor_fetch_optab;
7808 op->mem_no_result = atomic_xor_optab;
7809 op->fetch_before = sync_old_xor_optab;
7810 op->fetch_after = sync_new_xor_optab;
7811 op->no_result = sync_xor_optab;
7812 op->reverse_code = XOR;
7813 break;
7814 case AND:
7815 op->mem_fetch_before = atomic_fetch_and_optab;
7816 op->mem_fetch_after = atomic_and_fetch_optab;
7817 op->mem_no_result = atomic_and_optab;
7818 op->fetch_before = sync_old_and_optab;
7819 op->fetch_after = sync_new_and_optab;
7820 op->no_result = sync_and_optab;
7821 op->reverse_code = UNKNOWN;
7822 break;
7823 case IOR:
7824 op->mem_fetch_before = atomic_fetch_or_optab;
7825 op->mem_fetch_after = atomic_or_fetch_optab;
7826 op->mem_no_result = atomic_or_optab;
7827 op->fetch_before = sync_old_ior_optab;
7828 op->fetch_after = sync_new_ior_optab;
7829 op->no_result = sync_ior_optab;
7830 op->reverse_code = UNKNOWN;
7831 break;
7832 case NOT:
7833 op->mem_fetch_before = atomic_fetch_nand_optab;
7834 op->mem_fetch_after = atomic_nand_fetch_optab;
7835 op->mem_no_result = atomic_nand_optab;
7836 op->fetch_before = sync_old_nand_optab;
7837 op->fetch_after = sync_new_nand_optab;
7838 op->no_result = sync_nand_optab;
7839 op->reverse_code = UNKNOWN;
7840 break;
7841 default:
7842 gcc_unreachable ();
7846 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
7847 using memory order MODEL. If AFTER is true the operation needs to return
7848 the value of *MEM after the operation, otherwise the previous value.
7849 TARGET is an optional place to place the result. The result is unused if
7850 it is const0_rtx.
7851 Return the result if there is a better sequence, otherwise NULL_RTX. */
7853 static rtx
7854 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
7855 enum memmodel model, bool after)
7857 /* If the value is prefetched, or not used, it may be possible to replace
7858 the sequence with a native exchange operation. */
7859 if (!after || target == const0_rtx)
7861 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
7862 if (code == AND && val == const0_rtx)
7864 if (target == const0_rtx)
7865 target = gen_reg_rtx (GET_MODE (mem));
7866 return maybe_emit_atomic_exchange (target, mem, val, model);
7869 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
7870 if (code == IOR && val == constm1_rtx)
7872 if (target == const0_rtx)
7873 target = gen_reg_rtx (GET_MODE (mem));
7874 return maybe_emit_atomic_exchange (target, mem, val, model);
7878 return NULL_RTX;
7881 /* Try to emit an instruction for a specific operation varaition.
7882 OPTAB contains the OP functions.
7883 TARGET is an optional place to return the result. const0_rtx means unused.
7884 MEM is the memory location to operate on.
7885 VAL is the value to use in the operation.
7886 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
7887 MODEL is the memory model, if used.
7888 AFTER is true if the returned result is the value after the operation. */
7890 static rtx
7891 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
7892 rtx val, bool use_memmodel, enum memmodel model, bool after)
7894 machine_mode mode = GET_MODE (mem);
7895 struct expand_operand ops[4];
7896 enum insn_code icode;
7897 int op_counter = 0;
7898 int num_ops;
7900 /* Check to see if there is a result returned. */
7901 if (target == const0_rtx)
7903 if (use_memmodel)
7905 icode = direct_optab_handler (optab->mem_no_result, mode);
7906 create_integer_operand (&ops[2], model);
7907 num_ops = 3;
7909 else
7911 icode = direct_optab_handler (optab->no_result, mode);
7912 num_ops = 2;
7915 /* Otherwise, we need to generate a result. */
7916 else
7918 if (use_memmodel)
7920 icode = direct_optab_handler (after ? optab->mem_fetch_after
7921 : optab->mem_fetch_before, mode);
7922 create_integer_operand (&ops[3], model);
7923 num_ops = 4;
7925 else
7927 icode = optab_handler (after ? optab->fetch_after
7928 : optab->fetch_before, mode);
7929 num_ops = 3;
7931 create_output_operand (&ops[op_counter++], target, mode);
7933 if (icode == CODE_FOR_nothing)
7934 return NULL_RTX;
7936 create_fixed_operand (&ops[op_counter++], mem);
7937 /* VAL may have been promoted to a wider mode. Shrink it if so. */
7938 create_convert_operand_to (&ops[op_counter++], val, mode, true);
7940 if (maybe_expand_insn (icode, num_ops, ops))
7941 return (target == const0_rtx ? const0_rtx : ops[0].value);
7943 return NULL_RTX;
7947 /* This function expands an atomic fetch_OP or OP_fetch operation:
7948 TARGET is an option place to stick the return value. const0_rtx indicates
7949 the result is unused.
7950 atomically fetch MEM, perform the operation with VAL and return it to MEM.
7951 CODE is the operation being performed (OP)
7952 MEMMODEL is the memory model variant to use.
7953 AFTER is true to return the result of the operation (OP_fetch).
7954 AFTER is false to return the value before the operation (fetch_OP).
7956 This function will *only* generate instructions if there is a direct
7957 optab. No compare and swap loops or libcalls will be generated. */
7959 static rtx
7960 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
7961 enum rtx_code code, enum memmodel model,
7962 bool after)
7964 machine_mode mode = GET_MODE (mem);
7965 struct atomic_op_functions optab;
7966 rtx result;
7967 bool unused_result = (target == const0_rtx);
7969 get_atomic_op_for_code (&optab, code);
7971 /* Check to see if there are any better instructions. */
7972 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
7973 if (result)
7974 return result;
7976 /* Check for the case where the result isn't used and try those patterns. */
7977 if (unused_result)
7979 /* Try the memory model variant first. */
7980 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
7981 if (result)
7982 return result;
7984 /* Next try the old style withuot a memory model. */
7985 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
7986 if (result)
7987 return result;
7989 /* There is no no-result pattern, so try patterns with a result. */
7990 target = NULL_RTX;
7993 /* Try the __atomic version. */
7994 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
7995 if (result)
7996 return result;
7998 /* Try the older __sync version. */
7999 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
8000 if (result)
8001 return result;
8003 /* If the fetch value can be calculated from the other variation of fetch,
8004 try that operation. */
8005 if (after || unused_result || optab.reverse_code != UNKNOWN)
8007 /* Try the __atomic version, then the older __sync version. */
8008 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
8009 if (!result)
8010 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
8012 if (result)
8014 /* If the result isn't used, no need to do compensation code. */
8015 if (unused_result)
8016 return result;
8018 /* Issue compensation code. Fetch_after == fetch_before OP val.
8019 Fetch_before == after REVERSE_OP val. */
8020 if (!after)
8021 code = optab.reverse_code;
8022 if (code == NOT)
8024 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
8025 true, OPTAB_LIB_WIDEN);
8026 result = expand_simple_unop (mode, NOT, result, target, true);
8028 else
8029 result = expand_simple_binop (mode, code, result, val, target,
8030 true, OPTAB_LIB_WIDEN);
8031 return result;
8035 /* No direct opcode can be generated. */
8036 return NULL_RTX;
8041 /* This function expands an atomic fetch_OP or OP_fetch operation:
8042 TARGET is an option place to stick the return value. const0_rtx indicates
8043 the result is unused.
8044 atomically fetch MEM, perform the operation with VAL and return it to MEM.
8045 CODE is the operation being performed (OP)
8046 MEMMODEL is the memory model variant to use.
8047 AFTER is true to return the result of the operation (OP_fetch).
8048 AFTER is false to return the value before the operation (fetch_OP). */
8050 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
8051 enum memmodel model, bool after)
8053 machine_mode mode = GET_MODE (mem);
8054 rtx result;
8055 bool unused_result = (target == const0_rtx);
8057 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
8058 after);
8060 if (result)
8061 return result;
8063 /* Add/sub can be implemented by doing the reverse operation with -(val). */
8064 if (code == PLUS || code == MINUS)
8066 rtx tmp;
8067 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
8069 start_sequence ();
8070 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
8071 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
8072 model, after);
8073 if (result)
8075 /* PLUS worked so emit the insns and return. */
8076 tmp = get_insns ();
8077 end_sequence ();
8078 emit_insn (tmp);
8079 return result;
8082 /* PLUS did not work, so throw away the negation code and continue. */
8083 end_sequence ();
8086 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
8087 if (!can_compare_and_swap_p (mode, false))
8089 rtx libfunc;
8090 bool fixup = false;
8091 enum rtx_code orig_code = code;
8092 struct atomic_op_functions optab;
8094 get_atomic_op_for_code (&optab, code);
8095 libfunc = optab_libfunc (after ? optab.fetch_after
8096 : optab.fetch_before, mode);
8097 if (libfunc == NULL
8098 && (after || unused_result || optab.reverse_code != UNKNOWN))
8100 fixup = true;
8101 if (!after)
8102 code = optab.reverse_code;
8103 libfunc = optab_libfunc (after ? optab.fetch_before
8104 : optab.fetch_after, mode);
8106 if (libfunc != NULL)
8108 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
8109 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
8110 2, addr, ptr_mode, val, mode);
8112 if (!unused_result && fixup)
8113 result = expand_simple_binop (mode, code, result, val, target,
8114 true, OPTAB_LIB_WIDEN);
8115 return result;
8118 /* We need the original code for any further attempts. */
8119 code = orig_code;
8122 /* If nothing else has succeeded, default to a compare and swap loop. */
8123 if (can_compare_and_swap_p (mode, true))
8125 rtx_insn *insn;
8126 rtx t0 = gen_reg_rtx (mode), t1;
8128 start_sequence ();
8130 /* If the result is used, get a register for it. */
8131 if (!unused_result)
8133 if (!target || !register_operand (target, mode))
8134 target = gen_reg_rtx (mode);
8135 /* If fetch_before, copy the value now. */
8136 if (!after)
8137 emit_move_insn (target, t0);
8139 else
8140 target = const0_rtx;
8142 t1 = t0;
8143 if (code == NOT)
8145 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
8146 true, OPTAB_LIB_WIDEN);
8147 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
8149 else
8150 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
8151 OPTAB_LIB_WIDEN);
8153 /* For after, copy the value now. */
8154 if (!unused_result && after)
8155 emit_move_insn (target, t1);
8156 insn = get_insns ();
8157 end_sequence ();
8159 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
8160 return target;
8163 return NULL_RTX;
8166 /* Return true if OPERAND is suitable for operand number OPNO of
8167 instruction ICODE. */
8169 bool
8170 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
8172 return (!insn_data[(int) icode].operand[opno].predicate
8173 || (insn_data[(int) icode].operand[opno].predicate
8174 (operand, insn_data[(int) icode].operand[opno].mode)));
8177 /* TARGET is a target of a multiword operation that we are going to
8178 implement as a series of word-mode operations. Return true if
8179 TARGET is suitable for this purpose. */
8181 bool
8182 valid_multiword_target_p (rtx target)
8184 machine_mode mode;
8185 int i;
8187 mode = GET_MODE (target);
8188 for (i = 0; i < GET_MODE_SIZE (mode); i += UNITS_PER_WORD)
8189 if (!validate_subreg (word_mode, mode, target, i))
8190 return false;
8191 return true;
8194 /* Like maybe_legitimize_operand, but do not change the code of the
8195 current rtx value. */
8197 static bool
8198 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
8199 struct expand_operand *op)
8201 /* See if the operand matches in its current form. */
8202 if (insn_operand_matches (icode, opno, op->value))
8203 return true;
8205 /* If the operand is a memory whose address has no side effects,
8206 try forcing the address into a non-virtual pseudo register.
8207 The check for side effects is important because copy_to_mode_reg
8208 cannot handle things like auto-modified addresses. */
8209 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
8211 rtx addr, mem;
8213 mem = op->value;
8214 addr = XEXP (mem, 0);
8215 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
8216 && !side_effects_p (addr))
8218 rtx_insn *last;
8219 machine_mode mode;
8221 last = get_last_insn ();
8222 mode = get_address_mode (mem);
8223 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
8224 if (insn_operand_matches (icode, opno, mem))
8226 op->value = mem;
8227 return true;
8229 delete_insns_since (last);
8233 return false;
8236 /* Try to make OP match operand OPNO of instruction ICODE. Return true
8237 on success, storing the new operand value back in OP. */
8239 static bool
8240 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
8241 struct expand_operand *op)
8243 machine_mode mode, imode;
8244 bool old_volatile_ok, result;
8246 mode = op->mode;
8247 switch (op->type)
8249 case EXPAND_FIXED:
8250 old_volatile_ok = volatile_ok;
8251 volatile_ok = true;
8252 result = maybe_legitimize_operand_same_code (icode, opno, op);
8253 volatile_ok = old_volatile_ok;
8254 return result;
8256 case EXPAND_OUTPUT:
8257 gcc_assert (mode != VOIDmode);
8258 if (op->value
8259 && op->value != const0_rtx
8260 && GET_MODE (op->value) == mode
8261 && maybe_legitimize_operand_same_code (icode, opno, op))
8262 return true;
8264 op->value = gen_reg_rtx (mode);
8265 break;
8267 case EXPAND_INPUT:
8268 input:
8269 gcc_assert (mode != VOIDmode);
8270 gcc_assert (GET_MODE (op->value) == VOIDmode
8271 || GET_MODE (op->value) == mode);
8272 if (maybe_legitimize_operand_same_code (icode, opno, op))
8273 return true;
8275 op->value = copy_to_mode_reg (mode, op->value);
8276 break;
8278 case EXPAND_CONVERT_TO:
8279 gcc_assert (mode != VOIDmode);
8280 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
8281 goto input;
8283 case EXPAND_CONVERT_FROM:
8284 if (GET_MODE (op->value) != VOIDmode)
8285 mode = GET_MODE (op->value);
8286 else
8287 /* The caller must tell us what mode this value has. */
8288 gcc_assert (mode != VOIDmode);
8290 imode = insn_data[(int) icode].operand[opno].mode;
8291 if (imode != VOIDmode && imode != mode)
8293 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
8294 mode = imode;
8296 goto input;
8298 case EXPAND_ADDRESS:
8299 gcc_assert (mode != VOIDmode);
8300 op->value = convert_memory_address (mode, op->value);
8301 goto input;
8303 case EXPAND_INTEGER:
8304 mode = insn_data[(int) icode].operand[opno].mode;
8305 if (mode != VOIDmode && const_int_operand (op->value, mode))
8306 goto input;
8307 break;
8309 return insn_operand_matches (icode, opno, op->value);
8312 /* Make OP describe an input operand that should have the same value
8313 as VALUE, after any mode conversion that the target might request.
8314 TYPE is the type of VALUE. */
8316 void
8317 create_convert_operand_from_type (struct expand_operand *op,
8318 rtx value, tree type)
8320 create_convert_operand_from (op, value, TYPE_MODE (type),
8321 TYPE_UNSIGNED (type));
8324 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
8325 of instruction ICODE. Return true on success, leaving the new operand
8326 values in the OPS themselves. Emit no code on failure. */
8328 bool
8329 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
8330 unsigned int nops, struct expand_operand *ops)
8332 rtx_insn *last;
8333 unsigned int i;
8335 last = get_last_insn ();
8336 for (i = 0; i < nops; i++)
8337 if (!maybe_legitimize_operand (icode, opno + i, &ops[i]))
8339 delete_insns_since (last);
8340 return false;
8342 return true;
8345 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
8346 as its operands. Return the instruction pattern on success,
8347 and emit any necessary set-up code. Return null and emit no
8348 code on failure. */
8351 maybe_gen_insn (enum insn_code icode, unsigned int nops,
8352 struct expand_operand *ops)
8354 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
8355 if (!maybe_legitimize_operands (icode, 0, nops, ops))
8356 return NULL_RTX;
8358 switch (nops)
8360 case 1:
8361 return GEN_FCN (icode) (ops[0].value);
8362 case 2:
8363 return GEN_FCN (icode) (ops[0].value, ops[1].value);
8364 case 3:
8365 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
8366 case 4:
8367 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8368 ops[3].value);
8369 case 5:
8370 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8371 ops[3].value, ops[4].value);
8372 case 6:
8373 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8374 ops[3].value, ops[4].value, ops[5].value);
8375 case 7:
8376 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8377 ops[3].value, ops[4].value, ops[5].value,
8378 ops[6].value);
8379 case 8:
8380 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8381 ops[3].value, ops[4].value, ops[5].value,
8382 ops[6].value, ops[7].value);
8383 case 9:
8384 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
8385 ops[3].value, ops[4].value, ops[5].value,
8386 ops[6].value, ops[7].value, ops[8].value);
8388 gcc_unreachable ();
8391 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
8392 as its operands. Return true on success and emit no code on failure. */
8394 bool
8395 maybe_expand_insn (enum insn_code icode, unsigned int nops,
8396 struct expand_operand *ops)
8398 rtx pat = maybe_gen_insn (icode, nops, ops);
8399 if (pat)
8401 emit_insn (pat);
8402 return true;
8404 return false;
8407 /* Like maybe_expand_insn, but for jumps. */
8409 bool
8410 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
8411 struct expand_operand *ops)
8413 rtx pat = maybe_gen_insn (icode, nops, ops);
8414 if (pat)
8416 emit_jump_insn (pat);
8417 return true;
8419 return false;
8422 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
8423 as its operands. */
8425 void
8426 expand_insn (enum insn_code icode, unsigned int nops,
8427 struct expand_operand *ops)
8429 if (!maybe_expand_insn (icode, nops, ops))
8430 gcc_unreachable ();
8433 /* Like expand_insn, but for jumps. */
8435 void
8436 expand_jump_insn (enum insn_code icode, unsigned int nops,
8437 struct expand_operand *ops)
8439 if (!maybe_expand_jump_insn (icode, nops, ops))
8440 gcc_unreachable ();
8443 /* Reduce conditional compilation elsewhere. */
8444 #ifndef HAVE_insv
8445 #define HAVE_insv 0
8446 #define CODE_FOR_insv CODE_FOR_nothing
8447 #endif
8448 #ifndef HAVE_extv
8449 #define HAVE_extv 0
8450 #define CODE_FOR_extv CODE_FOR_nothing
8451 #endif
8452 #ifndef HAVE_extzv
8453 #define HAVE_extzv 0
8454 #define CODE_FOR_extzv CODE_FOR_nothing
8455 #endif
8457 /* Enumerates the possible types of structure operand to an
8458 extraction_insn. */
8459 enum extraction_type { ET_unaligned_mem, ET_reg };
8461 /* Check whether insv, extv or extzv pattern ICODE can be used for an
8462 insertion or extraction of type TYPE on a structure of mode MODE.
8463 Return true if so and fill in *INSN accordingly. STRUCT_OP is the
8464 operand number of the structure (the first sign_extract or zero_extract
8465 operand) and FIELD_OP is the operand number of the field (the other
8466 side of the set from the sign_extract or zero_extract). */
8468 static bool
8469 get_traditional_extraction_insn (extraction_insn *insn,
8470 enum extraction_type type,
8471 machine_mode mode,
8472 enum insn_code icode,
8473 int struct_op, int field_op)
8475 const struct insn_data_d *data = &insn_data[icode];
8477 machine_mode struct_mode = data->operand[struct_op].mode;
8478 if (struct_mode == VOIDmode)
8479 struct_mode = word_mode;
8480 if (mode != struct_mode)
8481 return false;
8483 machine_mode field_mode = data->operand[field_op].mode;
8484 if (field_mode == VOIDmode)
8485 field_mode = word_mode;
8487 machine_mode pos_mode = data->operand[struct_op + 2].mode;
8488 if (pos_mode == VOIDmode)
8489 pos_mode = word_mode;
8491 insn->icode = icode;
8492 insn->field_mode = field_mode;
8493 insn->struct_mode = (type == ET_unaligned_mem ? byte_mode : struct_mode);
8494 insn->pos_mode = pos_mode;
8495 return true;
8498 /* Return true if an optab exists to perform an insertion or extraction
8499 of type TYPE in mode MODE. Describe the instruction in *INSN if so.
8501 REG_OPTAB is the optab to use for register structures and
8502 MISALIGN_OPTAB is the optab to use for misaligned memory structures.
8503 POS_OP is the operand number of the bit position. */
8505 static bool
8506 get_optab_extraction_insn (struct extraction_insn *insn,
8507 enum extraction_type type,
8508 machine_mode mode, direct_optab reg_optab,
8509 direct_optab misalign_optab, int pos_op)
8511 direct_optab optab = (type == ET_unaligned_mem ? misalign_optab : reg_optab);
8512 enum insn_code icode = direct_optab_handler (optab, mode);
8513 if (icode == CODE_FOR_nothing)
8514 return false;
8516 const struct insn_data_d *data = &insn_data[icode];
8518 insn->icode = icode;
8519 insn->field_mode = mode;
8520 insn->struct_mode = (type == ET_unaligned_mem ? BLKmode : mode);
8521 insn->pos_mode = data->operand[pos_op].mode;
8522 if (insn->pos_mode == VOIDmode)
8523 insn->pos_mode = word_mode;
8524 return true;
8527 /* Return true if an instruction exists to perform an insertion or
8528 extraction (PATTERN says which) of type TYPE in mode MODE.
8529 Describe the instruction in *INSN if so. */
8531 static bool
8532 get_extraction_insn (extraction_insn *insn,
8533 enum extraction_pattern pattern,
8534 enum extraction_type type,
8535 machine_mode mode)
8537 switch (pattern)
8539 case EP_insv:
8540 if (HAVE_insv
8541 && get_traditional_extraction_insn (insn, type, mode,
8542 CODE_FOR_insv, 0, 3))
8543 return true;
8544 return get_optab_extraction_insn (insn, type, mode, insv_optab,
8545 insvmisalign_optab, 2);
8547 case EP_extv:
8548 if (HAVE_extv
8549 && get_traditional_extraction_insn (insn, type, mode,
8550 CODE_FOR_extv, 1, 0))
8551 return true;
8552 return get_optab_extraction_insn (insn, type, mode, extv_optab,
8553 extvmisalign_optab, 3);
8555 case EP_extzv:
8556 if (HAVE_extzv
8557 && get_traditional_extraction_insn (insn, type, mode,
8558 CODE_FOR_extzv, 1, 0))
8559 return true;
8560 return get_optab_extraction_insn (insn, type, mode, extzv_optab,
8561 extzvmisalign_optab, 3);
8563 default:
8564 gcc_unreachable ();
8568 /* Return true if an instruction exists to access a field of mode
8569 FIELDMODE in a structure that has STRUCT_BITS significant bits.
8570 Describe the "best" such instruction in *INSN if so. PATTERN and
8571 TYPE describe the type of insertion or extraction we want to perform.
8573 For an insertion, the number of significant structure bits includes
8574 all bits of the target. For an extraction, it need only include the
8575 most significant bit of the field. Larger widths are acceptable
8576 in both cases. */
8578 static bool
8579 get_best_extraction_insn (extraction_insn *insn,
8580 enum extraction_pattern pattern,
8581 enum extraction_type type,
8582 unsigned HOST_WIDE_INT struct_bits,
8583 machine_mode field_mode)
8585 machine_mode mode = smallest_mode_for_size (struct_bits, MODE_INT);
8586 while (mode != VOIDmode)
8588 if (get_extraction_insn (insn, pattern, type, mode))
8590 while (mode != VOIDmode
8591 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (field_mode)
8592 && !TRULY_NOOP_TRUNCATION_MODES_P (insn->field_mode,
8593 field_mode))
8595 get_extraction_insn (insn, pattern, type, mode);
8596 mode = GET_MODE_WIDER_MODE (mode);
8598 return true;
8600 mode = GET_MODE_WIDER_MODE (mode);
8602 return false;
8605 /* Return true if an instruction exists to access a field of mode
8606 FIELDMODE in a register structure that has STRUCT_BITS significant bits.
8607 Describe the "best" such instruction in *INSN if so. PATTERN describes
8608 the type of insertion or extraction we want to perform.
8610 For an insertion, the number of significant structure bits includes
8611 all bits of the target. For an extraction, it need only include the
8612 most significant bit of the field. Larger widths are acceptable
8613 in both cases. */
8615 bool
8616 get_best_reg_extraction_insn (extraction_insn *insn,
8617 enum extraction_pattern pattern,
8618 unsigned HOST_WIDE_INT struct_bits,
8619 machine_mode field_mode)
8621 return get_best_extraction_insn (insn, pattern, ET_reg, struct_bits,
8622 field_mode);
8625 /* Return true if an instruction exists to access a field of BITSIZE
8626 bits starting BITNUM bits into a memory structure. Describe the
8627 "best" such instruction in *INSN if so. PATTERN describes the type
8628 of insertion or extraction we want to perform and FIELDMODE is the
8629 natural mode of the extracted field.
8631 The instructions considered here only access bytes that overlap
8632 the bitfield; they do not touch any surrounding bytes. */
8634 bool
8635 get_best_mem_extraction_insn (extraction_insn *insn,
8636 enum extraction_pattern pattern,
8637 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitnum,
8638 machine_mode field_mode)
8640 unsigned HOST_WIDE_INT struct_bits = (bitnum % BITS_PER_UNIT
8641 + bitsize
8642 + BITS_PER_UNIT - 1);
8643 struct_bits -= struct_bits % BITS_PER_UNIT;
8644 return get_best_extraction_insn (insn, pattern, ET_unaligned_mem,
8645 struct_bits, field_mode);
8648 /* Determine whether "1 << x" is relatively cheap in word_mode. */
8650 bool
8651 lshift_cheap_p (bool speed_p)
8653 /* FIXME: This should be made target dependent via this "this_target"
8654 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
8655 static bool init[2] = { false, false };
8656 static bool cheap[2] = { true, true };
8658 /* If the targer has no lshift in word_mode, the operation will most
8659 probably not be cheap. ??? Does GCC even work for such targets? */
8660 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
8661 return false;
8663 if (!init[speed_p])
8665 rtx reg = gen_raw_REG (word_mode, 10000);
8666 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
8667 speed_p);
8668 cheap[speed_p] = cost < COSTS_N_INSNS (3);
8669 init[speed_p] = true;
8672 return cheap[speed_p];
8675 #include "gt-optabs.h"