1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
30 #include "fold-const.h"
32 #include "insn-config.h"
43 #include "cfgcleanup.h"
44 #include "internal-fn.h"
46 #include "gimple-iterator.h"
49 #include "tree-into-ssa.h"
51 #include "tree-inline.h"
52 #include "tree-pass.h"
53 #include "langhooks.h"
54 #include "diagnostic-core.h"
57 #include "gimple-low.h"
59 /* In some instances a tree and a gimple need to be stored in a same table,
60 i.e. in hash tables. This is a structure to do this. */
61 typedef union {tree
*tp
; tree t
; gimple
*g
;} treemple
;
63 /* Misc functions used in this file. */
65 /* Remember and lookup EH landing pad data for arbitrary statements.
66 Really this means any statement that could_throw_p. We could
67 stuff this information into the stmt_ann data structure, but:
69 (1) We absolutely rely on this information being kept until
70 we get to rtl. Once we're done with lowering here, if we lose
71 the information there's no way to recover it!
73 (2) There are many more statements that *cannot* throw as
74 compared to those that can. We should be saving some amount
75 of space by only allocating memory for those that can throw. */
77 /* Add statement T in function IFUN to landing pad NUM. */
80 add_stmt_to_eh_lp_fn (struct function
*ifun
, gimple
*t
, int num
)
82 gcc_assert (num
!= 0);
84 if (!get_eh_throw_stmt_table (ifun
))
85 set_eh_throw_stmt_table (ifun
, hash_map
<gimple
*, int>::create_ggc (31));
87 gcc_assert (!get_eh_throw_stmt_table (ifun
)->put (t
, num
));
90 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
93 add_stmt_to_eh_lp (gimple
*t
, int num
)
95 add_stmt_to_eh_lp_fn (cfun
, t
, num
);
98 /* Add statement T to the single EH landing pad in REGION. */
101 record_stmt_eh_region (eh_region region
, gimple
*t
)
105 if (region
->type
== ERT_MUST_NOT_THROW
)
106 add_stmt_to_eh_lp_fn (cfun
, t
, -region
->index
);
109 eh_landing_pad lp
= region
->landing_pads
;
111 lp
= gen_eh_landing_pad (region
);
113 gcc_assert (lp
->next_lp
== NULL
);
114 add_stmt_to_eh_lp_fn (cfun
, t
, lp
->index
);
119 /* Remove statement T in function IFUN from its EH landing pad. */
122 remove_stmt_from_eh_lp_fn (struct function
*ifun
, gimple
*t
)
124 if (!get_eh_throw_stmt_table (ifun
))
127 if (!get_eh_throw_stmt_table (ifun
)->get (t
))
130 get_eh_throw_stmt_table (ifun
)->remove (t
);
135 /* Remove statement T in the current function (cfun) from its
139 remove_stmt_from_eh_lp (gimple
*t
)
141 return remove_stmt_from_eh_lp_fn (cfun
, t
);
144 /* Determine if statement T is inside an EH region in function IFUN.
145 Positive numbers indicate a landing pad index; negative numbers
146 indicate a MUST_NOT_THROW region index; zero indicates that the
147 statement is not recorded in the region table. */
150 lookup_stmt_eh_lp_fn (struct function
*ifun
, gimple
*t
)
152 if (ifun
->eh
->throw_stmt_table
== NULL
)
155 int *lp_nr
= ifun
->eh
->throw_stmt_table
->get (t
);
156 return lp_nr
? *lp_nr
: 0;
159 /* Likewise, but always use the current function. */
162 lookup_stmt_eh_lp (gimple
*t
)
164 /* We can get called from initialized data when -fnon-call-exceptions
165 is on; prevent crash. */
168 return lookup_stmt_eh_lp_fn (cfun
, t
);
171 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
172 nodes and LABEL_DECL nodes. We will use this during the second phase to
173 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
175 struct finally_tree_node
177 /* When storing a GIMPLE_TRY, we have to record a gimple. However
178 when deciding whether a GOTO to a certain LABEL_DECL (which is a
179 tree) leaves the TRY block, its necessary to record a tree in
180 this field. Thus a treemple is used. */
185 /* Hashtable helpers. */
187 struct finally_tree_hasher
: free_ptr_hash
<finally_tree_node
>
189 static inline hashval_t
hash (const finally_tree_node
*);
190 static inline bool equal (const finally_tree_node
*,
191 const finally_tree_node
*);
195 finally_tree_hasher::hash (const finally_tree_node
*v
)
197 return (intptr_t)v
->child
.t
>> 4;
201 finally_tree_hasher::equal (const finally_tree_node
*v
,
202 const finally_tree_node
*c
)
204 return v
->child
.t
== c
->child
.t
;
207 /* Note that this table is *not* marked GTY. It is short-lived. */
208 static hash_table
<finally_tree_hasher
> *finally_tree
;
211 record_in_finally_tree (treemple child
, gtry
*parent
)
213 struct finally_tree_node
*n
;
214 finally_tree_node
**slot
;
216 n
= XNEW (struct finally_tree_node
);
220 slot
= finally_tree
->find_slot (n
, INSERT
);
226 collect_finally_tree (gimple
*stmt
, gtry
*region
);
228 /* Go through the gimple sequence. Works with collect_finally_tree to
229 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
232 collect_finally_tree_1 (gimple_seq seq
, gtry
*region
)
234 gimple_stmt_iterator gsi
;
236 for (gsi
= gsi_start (seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
237 collect_finally_tree (gsi_stmt (gsi
), region
);
241 collect_finally_tree (gimple
*stmt
, gtry
*region
)
245 switch (gimple_code (stmt
))
248 temp
.t
= gimple_label_label (as_a
<glabel
*> (stmt
));
249 record_in_finally_tree (temp
, region
);
253 if (gimple_try_kind (stmt
) == GIMPLE_TRY_FINALLY
)
256 record_in_finally_tree (temp
, region
);
257 collect_finally_tree_1 (gimple_try_eval (stmt
),
258 as_a
<gtry
*> (stmt
));
259 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
261 else if (gimple_try_kind (stmt
) == GIMPLE_TRY_CATCH
)
263 collect_finally_tree_1 (gimple_try_eval (stmt
), region
);
264 collect_finally_tree_1 (gimple_try_cleanup (stmt
), region
);
269 collect_finally_tree_1 (gimple_catch_handler (
270 as_a
<gcatch
*> (stmt
)),
274 case GIMPLE_EH_FILTER
:
275 collect_finally_tree_1 (gimple_eh_filter_failure (stmt
), region
);
280 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
281 collect_finally_tree_1 (gimple_eh_else_n_body (eh_else_stmt
), region
);
282 collect_finally_tree_1 (gimple_eh_else_e_body (eh_else_stmt
), region
);
287 /* A type, a decl, or some kind of statement that we're not
288 interested in. Don't walk them. */
294 /* Use the finally tree to determine if a jump from START to TARGET
295 would leave the try_finally node that START lives in. */
298 outside_finally_tree (treemple start
, gimple
*target
)
300 struct finally_tree_node n
, *p
;
305 p
= finally_tree
->find (&n
);
310 while (start
.g
!= target
);
315 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
316 nodes into a set of gotos, magic labels, and eh regions.
317 The eh region creation is straight-forward, but frobbing all the gotos
318 and such into shape isn't. */
320 /* The sequence into which we record all EH stuff. This will be
321 placed at the end of the function when we're all done. */
322 static gimple_seq eh_seq
;
324 /* Record whether an EH region contains something that can throw,
325 indexed by EH region number. */
326 static bitmap eh_region_may_contain_throw_map
;
328 /* The GOTO_QUEUE is an array of GIMPLE_GOTO and GIMPLE_RETURN
329 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
330 The idea is to record a gimple statement for everything except for
331 the conditionals, which get their labels recorded. Since labels are
332 of type 'tree', we need this node to store both gimple and tree
333 objects. REPL_STMT is the sequence used to replace the goto/return
334 statement. CONT_STMT is used to store the statement that allows
335 the return/goto to jump to the original destination. */
337 struct goto_queue_node
341 gimple_seq repl_stmt
;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
349 /* State of the world while lowering. */
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region
;
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region
;
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state
*tf
;
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gtry
*try_finally_expr
;
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq
;
382 /* The state outside this try_finally node. */
383 struct leh_state
*outer
;
385 /* The exception region created for it. */
388 /* The goto queue. */
389 struct goto_queue_node
*goto_queue
;
390 size_t goto_queue_size
;
391 size_t goto_queue_active
;
393 /* Pointer map to help in searching goto_queue when it is large. */
394 hash_map
<gimple
*, goto_queue_node
*> *goto_queue_map
;
396 /* The set of unique labels seen as entries in the goto queue. */
397 vec
<tree
> dest_array
;
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
416 static gimple_seq
lower_eh_must_not_throw (struct leh_state
*, gtry
*);
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
421 #define LARGE_GOTO_QUEUE 20
423 static void lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*seq
);
426 find_goto_replacement (struct leh_tf_state
*tf
, treemple stmt
)
430 if (tf
->goto_queue_active
< LARGE_GOTO_QUEUE
)
432 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
433 if ( tf
->goto_queue
[i
].stmt
.g
== stmt
.g
)
434 return tf
->goto_queue
[i
].repl_stmt
;
438 /* If we have a large number of entries in the goto_queue, create a
439 pointer map and use that for searching. */
441 if (!tf
->goto_queue_map
)
443 tf
->goto_queue_map
= new hash_map
<gimple
*, goto_queue_node
*>;
444 for (i
= 0; i
< tf
->goto_queue_active
; i
++)
446 bool existed
= tf
->goto_queue_map
->put (tf
->goto_queue
[i
].stmt
.g
,
448 gcc_assert (!existed
);
452 goto_queue_node
**slot
= tf
->goto_queue_map
->get (stmt
.g
);
454 return ((*slot
)->repl_stmt
);
459 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
460 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
461 then we can just splat it in, otherwise we add the new stmts immediately
462 after the GIMPLE_COND and redirect. */
465 replace_goto_queue_cond_clause (tree
*tp
, struct leh_tf_state
*tf
,
466 gimple_stmt_iterator
*gsi
)
471 location_t loc
= gimple_location (gsi_stmt (*gsi
));
474 new_seq
= find_goto_replacement (tf
, temp
);
478 if (gimple_seq_singleton_p (new_seq
)
479 && gimple_code (gimple_seq_first_stmt (new_seq
)) == GIMPLE_GOTO
)
481 *tp
= gimple_goto_dest (gimple_seq_first_stmt (new_seq
));
485 label
= create_artificial_label (loc
);
486 /* Set the new label for the GIMPLE_COND */
489 gsi_insert_after (gsi
, gimple_build_label (label
), GSI_CONTINUE_LINKING
);
490 gsi_insert_seq_after (gsi
, gimple_seq_copy (new_seq
), GSI_CONTINUE_LINKING
);
493 /* The real work of replace_goto_queue. Returns with TSI updated to
494 point to the next statement. */
496 static void replace_goto_queue_stmt_list (gimple_seq
*, struct leh_tf_state
*);
499 replace_goto_queue_1 (gimple
*stmt
, struct leh_tf_state
*tf
,
500 gimple_stmt_iterator
*gsi
)
506 switch (gimple_code (stmt
))
511 seq
= find_goto_replacement (tf
, temp
);
514 gsi_insert_seq_before (gsi
, gimple_seq_copy (seq
), GSI_SAME_STMT
);
515 gsi_remove (gsi
, false);
521 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 2), tf
, gsi
);
522 replace_goto_queue_cond_clause (gimple_op_ptr (stmt
, 3), tf
, gsi
);
526 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt
), tf
);
527 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt
), tf
);
530 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (
531 as_a
<gcatch
*> (stmt
)),
534 case GIMPLE_EH_FILTER
:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt
), tf
);
539 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (stmt
);
540 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (eh_else_stmt
),
542 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (eh_else_stmt
),
548 /* These won't have gotos in them. */
555 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
558 replace_goto_queue_stmt_list (gimple_seq
*seq
, struct leh_tf_state
*tf
)
560 gimple_stmt_iterator gsi
= gsi_start (*seq
);
562 while (!gsi_end_p (gsi
))
563 replace_goto_queue_1 (gsi_stmt (gsi
), tf
, &gsi
);
566 /* Replace all goto queue members. */
569 replace_goto_queue (struct leh_tf_state
*tf
)
571 if (tf
->goto_queue_active
== 0)
573 replace_goto_queue_stmt_list (&tf
->top_p_seq
, tf
);
574 replace_goto_queue_stmt_list (&eh_seq
, tf
);
577 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
578 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
582 record_in_goto_queue (struct leh_tf_state
*tf
,
589 struct goto_queue_node
*q
;
591 gcc_assert (!tf
->goto_queue_map
);
593 active
= tf
->goto_queue_active
;
594 size
= tf
->goto_queue_size
;
597 size
= (size
? size
* 2 : 32);
598 tf
->goto_queue_size
= size
;
600 = XRESIZEVEC (struct goto_queue_node
, tf
->goto_queue
, size
);
603 q
= &tf
->goto_queue
[active
];
604 tf
->goto_queue_active
= active
+ 1;
606 memset (q
, 0, sizeof (*q
));
609 q
->location
= location
;
610 q
->is_label
= is_label
;
613 /* Record the LABEL label in the goto queue contained in TF.
617 record_in_goto_queue_label (struct leh_tf_state
*tf
, treemple stmt
, tree label
,
621 treemple temp
, new_stmt
;
626 /* Computed and non-local gotos do not get processed. Given
627 their nature we can neither tell whether we've escaped the
628 finally block nor redirect them if we knew. */
629 if (TREE_CODE (label
) != LABEL_DECL
)
632 /* No need to record gotos that don't leave the try block. */
634 if (!outside_finally_tree (temp
, tf
->try_finally_expr
))
637 if (! tf
->dest_array
.exists ())
639 tf
->dest_array
.create (10);
640 tf
->dest_array
.quick_push (label
);
645 int n
= tf
->dest_array
.length ();
646 for (index
= 0; index
< n
; ++index
)
647 if (tf
->dest_array
[index
] == label
)
650 tf
->dest_array
.safe_push (label
);
653 /* In the case of a GOTO we want to record the destination label,
654 since with a GIMPLE_COND we have an easy access to the then/else
657 record_in_goto_queue (tf
, new_stmt
, index
, true, location
);
660 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
661 node, and if so record that fact in the goto queue associated with that
665 maybe_record_in_goto_queue (struct leh_state
*state
, gimple
*stmt
)
667 struct leh_tf_state
*tf
= state
->tf
;
673 switch (gimple_code (stmt
))
677 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
678 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 2);
679 record_in_goto_queue_label (tf
, new_stmt
,
680 gimple_cond_true_label (cond_stmt
),
681 EXPR_LOCATION (*new_stmt
.tp
));
682 new_stmt
.tp
= gimple_op_ptr (cond_stmt
, 3);
683 record_in_goto_queue_label (tf
, new_stmt
,
684 gimple_cond_false_label (cond_stmt
),
685 EXPR_LOCATION (*new_stmt
.tp
));
690 record_in_goto_queue_label (tf
, new_stmt
, gimple_goto_dest (stmt
),
691 gimple_location (stmt
));
695 tf
->may_return
= true;
697 record_in_goto_queue (tf
, new_stmt
, -1, false, gimple_location (stmt
));
706 #ifdef ENABLE_CHECKING
707 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
708 was in fact structured, and we've not yet done jump threading, then none
709 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
712 verify_norecord_switch_expr (struct leh_state
*state
,
713 gswitch
*switch_expr
)
715 struct leh_tf_state
*tf
= state
->tf
;
721 n
= gimple_switch_num_labels (switch_expr
);
723 for (i
= 0; i
< n
; ++i
)
726 tree lab
= CASE_LABEL (gimple_switch_label (switch_expr
, i
));
728 gcc_assert (!outside_finally_tree (temp
, tf
->try_finally_expr
));
732 #define verify_norecord_switch_expr(state, switch_expr)
735 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
736 non-null, insert it before the new branch. */
739 do_return_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
)
743 /* In the case of a return, the queue node must be a gimple statement. */
744 gcc_assert (!q
->is_label
);
746 /* Note that the return value may have already been computed, e.g.,
759 should return 0, not 1. We don't have to do anything to make
760 this happens because the return value has been placed in the
761 RESULT_DECL already. */
763 q
->cont_stmt
= q
->stmt
.g
;
766 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
768 x
= gimple_build_goto (finlab
);
769 gimple_set_location (x
, q
->location
);
770 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
773 /* Similar, but easier, for GIMPLE_GOTO. */
776 do_goto_redirection (struct goto_queue_node
*q
, tree finlab
, gimple_seq mod
,
777 struct leh_tf_state
*tf
)
781 gcc_assert (q
->is_label
);
783 q
->cont_stmt
= gimple_build_goto (tf
->dest_array
[q
->index
]);
786 gimple_seq_add_seq (&q
->repl_stmt
, mod
);
788 x
= gimple_build_goto (finlab
);
789 gimple_set_location (x
, q
->location
);
790 gimple_seq_add_stmt (&q
->repl_stmt
, x
);
793 /* Emit a standard landing pad sequence into SEQ for REGION. */
796 emit_post_landing_pad (gimple_seq
*seq
, eh_region region
)
798 eh_landing_pad lp
= region
->landing_pads
;
802 lp
= gen_eh_landing_pad (region
);
804 lp
->post_landing_pad
= create_artificial_label (UNKNOWN_LOCATION
);
805 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = lp
->index
;
807 x
= gimple_build_label (lp
->post_landing_pad
);
808 gimple_seq_add_stmt (seq
, x
);
811 /* Emit a RESX statement into SEQ for REGION. */
814 emit_resx (gimple_seq
*seq
, eh_region region
)
816 gresx
*x
= gimple_build_resx (region
->index
);
817 gimple_seq_add_stmt (seq
, x
);
819 record_stmt_eh_region (region
->outer
, x
);
822 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
825 emit_eh_dispatch (gimple_seq
*seq
, eh_region region
)
827 geh_dispatch
*x
= gimple_build_eh_dispatch (region
->index
);
828 gimple_seq_add_stmt (seq
, x
);
831 /* Note that the current EH region may contain a throw, or a
832 call to a function which itself may contain a throw. */
835 note_eh_region_may_contain_throw (eh_region region
)
837 while (bitmap_set_bit (eh_region_may_contain_throw_map
, region
->index
))
839 if (region
->type
== ERT_MUST_NOT_THROW
)
841 region
= region
->outer
;
847 /* Check if REGION has been marked as containing a throw. If REGION is
848 NULL, this predicate is false. */
851 eh_region_may_contain_throw (eh_region r
)
853 return r
&& bitmap_bit_p (eh_region_may_contain_throw_map
, r
->index
);
856 /* We want to transform
857 try { body; } catch { stuff; }
867 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
868 should be placed before the second operand, or NULL. OVER is
869 an existing label that should be put at the exit, or NULL. */
872 frob_into_branch_around (gtry
*tp
, eh_region region
, tree over
)
875 gimple_seq cleanup
, result
;
876 location_t loc
= gimple_location (tp
);
878 cleanup
= gimple_try_cleanup (tp
);
879 result
= gimple_try_eval (tp
);
882 emit_post_landing_pad (&eh_seq
, region
);
884 if (gimple_seq_may_fallthru (cleanup
))
887 over
= create_artificial_label (loc
);
888 x
= gimple_build_goto (over
);
889 gimple_set_location (x
, loc
);
890 gimple_seq_add_stmt (&cleanup
, x
);
892 gimple_seq_add_seq (&eh_seq
, cleanup
);
896 x
= gimple_build_label (over
);
897 gimple_seq_add_stmt (&result
, x
);
902 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
903 Make sure to record all new labels found. */
906 lower_try_finally_dup_block (gimple_seq seq
, struct leh_state
*outer_state
,
911 gimple_stmt_iterator gsi
;
913 new_seq
= copy_gimple_seq_and_replace_locals (seq
);
915 for (gsi
= gsi_start (new_seq
); !gsi_end_p (gsi
); gsi_next (&gsi
))
917 gimple
*stmt
= gsi_stmt (gsi
);
918 /* We duplicate __builtin_stack_restore at -O0 in the hope of eliminating
919 it on the EH paths. When it is not eliminated, make it transparent in
921 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
922 gimple_set_location (stmt
, UNKNOWN_LOCATION
);
923 else if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
925 tree block
= gimple_block (stmt
);
926 gimple_set_location (stmt
, loc
);
927 gimple_set_block (stmt
, block
);
932 region
= outer_state
->tf
->try_finally_expr
;
933 collect_finally_tree_1 (new_seq
, region
);
938 /* A subroutine of lower_try_finally. Create a fallthru label for
939 the given try_finally state. The only tricky bit here is that
940 we have to make sure to record the label in our outer context. */
943 lower_try_finally_fallthru_label (struct leh_tf_state
*tf
)
945 tree label
= tf
->fallthru_label
;
950 label
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
951 tf
->fallthru_label
= label
;
955 record_in_finally_tree (temp
, tf
->outer
->tf
->try_finally_expr
);
961 /* A subroutine of lower_try_finally. If FINALLY consits of a
962 GIMPLE_EH_ELSE node, return it. */
964 static inline geh_else
*
965 get_eh_else (gimple_seq finally
)
967 gimple
*x
= gimple_seq_first_stmt (finally
);
968 if (gimple_code (x
) == GIMPLE_EH_ELSE
)
970 gcc_assert (gimple_seq_singleton_p (finally
));
971 return as_a
<geh_else
*> (x
);
976 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
977 langhook returns non-null, then the language requires that the exception
978 path out of a try_finally be treated specially. To wit: the code within
979 the finally block may not itself throw an exception. We have two choices
980 here. First we can duplicate the finally block and wrap it in a
981 must_not_throw region. Second, we can generate code like
986 if (fintmp == eh_edge)
987 protect_cleanup_actions;
990 where "fintmp" is the temporary used in the switch statement generation
991 alternative considered below. For the nonce, we always choose the first
994 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
997 honor_protect_cleanup_actions (struct leh_state
*outer_state
,
998 struct leh_state
*this_state
,
999 struct leh_tf_state
*tf
)
1001 tree protect_cleanup_actions
;
1002 gimple_stmt_iterator gsi
;
1003 bool finally_may_fallthru
;
1010 /* First check for nothing to do. */
1011 if (lang_hooks
.eh_protect_cleanup_actions
== NULL
)
1013 protect_cleanup_actions
= lang_hooks
.eh_protect_cleanup_actions ();
1014 if (protect_cleanup_actions
== NULL
)
1017 finally
= gimple_try_cleanup (tf
->top_p
);
1018 eh_else
= get_eh_else (finally
);
1020 /* Duplicate the FINALLY block. Only need to do this for try-finally,
1021 and not for cleanups. If we've got an EH_ELSE, extract it now. */
1024 finally
= gimple_eh_else_e_body (eh_else
);
1025 gimple_try_set_cleanup (tf
->top_p
, gimple_eh_else_n_body (eh_else
));
1027 else if (this_state
)
1028 finally
= lower_try_finally_dup_block (finally
, outer_state
,
1029 gimple_location (tf
->try_finally_expr
));
1030 finally_may_fallthru
= gimple_seq_may_fallthru (finally
);
1032 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1033 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1034 to be in an enclosing scope, but needs to be implemented at this level
1035 to avoid a nesting violation (see wrap_temporary_cleanups in
1036 cp/decl.c). Since it's logically at an outer level, we should call
1037 terminate before we get to it, so strip it away before adding the
1038 MUST_NOT_THROW filter. */
1039 gsi
= gsi_start (finally
);
1041 if (gimple_code (x
) == GIMPLE_TRY
1042 && gimple_try_kind (x
) == GIMPLE_TRY_CATCH
1043 && gimple_try_catch_is_cleanup (x
))
1045 gsi_insert_seq_before (&gsi
, gimple_try_eval (x
), GSI_SAME_STMT
);
1046 gsi_remove (&gsi
, false);
1049 /* Wrap the block with protect_cleanup_actions as the action. */
1050 eh_mnt
= gimple_build_eh_must_not_throw (protect_cleanup_actions
);
1051 try_stmt
= gimple_build_try (finally
, gimple_seq_alloc_with_stmt (eh_mnt
),
1053 finally
= lower_eh_must_not_throw (outer_state
, try_stmt
);
1055 /* Drop all of this into the exception sequence. */
1056 emit_post_landing_pad (&eh_seq
, tf
->region
);
1057 gimple_seq_add_seq (&eh_seq
, finally
);
1058 if (finally_may_fallthru
)
1059 emit_resx (&eh_seq
, tf
->region
);
1061 /* Having now been handled, EH isn't to be considered with
1062 the rest of the outgoing edges. */
1063 tf
->may_throw
= false;
1066 /* A subroutine of lower_try_finally. We have determined that there is
1067 no fallthru edge out of the finally block. This means that there is
1068 no outgoing edge corresponding to any incoming edge. Restructure the
1069 try_finally node for this special case. */
1072 lower_try_finally_nofallthru (struct leh_state
*state
,
1073 struct leh_tf_state
*tf
)
1079 struct goto_queue_node
*q
, *qe
;
1081 lab
= create_artificial_label (gimple_location (tf
->try_finally_expr
));
1083 /* We expect that tf->top_p is a GIMPLE_TRY. */
1084 finally
= gimple_try_cleanup (tf
->top_p
);
1085 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1087 x
= gimple_build_label (lab
);
1088 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1091 qe
= q
+ tf
->goto_queue_active
;
1094 do_return_redirection (q
, lab
, NULL
);
1096 do_goto_redirection (q
, lab
, NULL
, tf
);
1098 replace_goto_queue (tf
);
1100 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1101 eh_else
= get_eh_else (finally
);
1104 finally
= gimple_eh_else_n_body (eh_else
);
1105 lower_eh_constructs_1 (state
, &finally
);
1106 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1110 finally
= gimple_eh_else_e_body (eh_else
);
1111 lower_eh_constructs_1 (state
, &finally
);
1113 emit_post_landing_pad (&eh_seq
, tf
->region
);
1114 gimple_seq_add_seq (&eh_seq
, finally
);
1119 lower_eh_constructs_1 (state
, &finally
);
1120 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1124 emit_post_landing_pad (&eh_seq
, tf
->region
);
1126 x
= gimple_build_goto (lab
);
1127 gimple_set_location (x
, gimple_location (tf
->try_finally_expr
));
1128 gimple_seq_add_stmt (&eh_seq
, x
);
1133 /* A subroutine of lower_try_finally. We have determined that there is
1134 exactly one destination of the finally block. Restructure the
1135 try_finally node for this special case. */
1138 lower_try_finally_onedest (struct leh_state
*state
, struct leh_tf_state
*tf
)
1140 struct goto_queue_node
*q
, *qe
;
1145 gimple_stmt_iterator gsi
;
1147 location_t loc
= gimple_location (tf
->try_finally_expr
);
1149 finally
= gimple_try_cleanup (tf
->top_p
);
1150 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1152 /* Since there's only one destination, and the destination edge can only
1153 either be EH or non-EH, that implies that all of our incoming edges
1154 are of the same type. Therefore we can lower EH_ELSE immediately. */
1155 eh_else
= get_eh_else (finally
);
1159 finally
= gimple_eh_else_e_body (eh_else
);
1161 finally
= gimple_eh_else_n_body (eh_else
);
1164 lower_eh_constructs_1 (state
, &finally
);
1166 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1168 gimple
*stmt
= gsi_stmt (gsi
);
1169 if (LOCATION_LOCUS (gimple_location (stmt
)) == UNKNOWN_LOCATION
)
1171 tree block
= gimple_block (stmt
);
1172 gimple_set_location (stmt
, gimple_location (tf
->try_finally_expr
));
1173 gimple_set_block (stmt
, block
);
1179 /* Only reachable via the exception edge. Add the given label to
1180 the head of the FINALLY block. Append a RESX at the end. */
1181 emit_post_landing_pad (&eh_seq
, tf
->region
);
1182 gimple_seq_add_seq (&eh_seq
, finally
);
1183 emit_resx (&eh_seq
, tf
->region
);
1187 if (tf
->may_fallthru
)
1189 /* Only reachable via the fallthru edge. Do nothing but let
1190 the two blocks run together; we'll fall out the bottom. */
1191 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1195 finally_label
= create_artificial_label (loc
);
1196 label_stmt
= gimple_build_label (finally_label
);
1197 gimple_seq_add_stmt (&tf
->top_p_seq
, label_stmt
);
1199 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1202 qe
= q
+ tf
->goto_queue_active
;
1206 /* Reachable by return expressions only. Redirect them. */
1208 do_return_redirection (q
, finally_label
, NULL
);
1209 replace_goto_queue (tf
);
1213 /* Reachable by goto expressions only. Redirect them. */
1215 do_goto_redirection (q
, finally_label
, NULL
, tf
);
1216 replace_goto_queue (tf
);
1218 if (tf
->dest_array
[0] == tf
->fallthru_label
)
1220 /* Reachable by goto to fallthru label only. Redirect it
1221 to the new label (already created, sadly), and do not
1222 emit the final branch out, or the fallthru label. */
1223 tf
->fallthru_label
= NULL
;
1228 /* Place the original return/goto to the original destination
1229 immediately after the finally block. */
1230 x
= tf
->goto_queue
[0].cont_stmt
;
1231 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1232 maybe_record_in_goto_queue (state
, x
);
1235 /* A subroutine of lower_try_finally. There are multiple edges incoming
1236 and outgoing from the finally block. Implement this by duplicating the
1237 finally block for every destination. */
1240 lower_try_finally_copy (struct leh_state
*state
, struct leh_tf_state
*tf
)
1243 gimple_seq new_stmt
;
1248 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1250 finally
= gimple_try_cleanup (tf
->top_p
);
1252 /* Notice EH_ELSE, and simplify some of the remaining code
1253 by considering FINALLY to be the normal return path only. */
1254 eh_else
= get_eh_else (finally
);
1256 finally
= gimple_eh_else_n_body (eh_else
);
1258 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1261 if (tf
->may_fallthru
)
1263 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1264 lower_eh_constructs_1 (state
, &seq
);
1265 gimple_seq_add_seq (&new_stmt
, seq
);
1267 tmp
= lower_try_finally_fallthru_label (tf
);
1268 x
= gimple_build_goto (tmp
);
1269 gimple_set_location (x
, tf_loc
);
1270 gimple_seq_add_stmt (&new_stmt
, x
);
1275 /* We don't need to copy the EH path of EH_ELSE,
1276 since it is only emitted once. */
1278 seq
= gimple_eh_else_e_body (eh_else
);
1280 seq
= lower_try_finally_dup_block (finally
, state
, tf_loc
);
1281 lower_eh_constructs_1 (state
, &seq
);
1283 emit_post_landing_pad (&eh_seq
, tf
->region
);
1284 gimple_seq_add_seq (&eh_seq
, seq
);
1285 emit_resx (&eh_seq
, tf
->region
);
1290 struct goto_queue_node
*q
, *qe
;
1291 int return_index
, index
;
1294 struct goto_queue_node
*q
;
1298 return_index
= tf
->dest_array
.length ();
1299 labels
= XCNEWVEC (struct labels_s
, return_index
+ 1);
1302 qe
= q
+ tf
->goto_queue_active
;
1305 index
= q
->index
< 0 ? return_index
: q
->index
;
1307 if (!labels
[index
].q
)
1308 labels
[index
].q
= q
;
1311 for (index
= 0; index
< return_index
+ 1; index
++)
1315 q
= labels
[index
].q
;
1319 lab
= labels
[index
].label
1320 = create_artificial_label (tf_loc
);
1322 if (index
== return_index
)
1323 do_return_redirection (q
, lab
, NULL
);
1325 do_goto_redirection (q
, lab
, NULL
, tf
);
1327 x
= gimple_build_label (lab
);
1328 gimple_seq_add_stmt (&new_stmt
, x
);
1330 seq
= lower_try_finally_dup_block (finally
, state
, q
->location
);
1331 lower_eh_constructs_1 (state
, &seq
);
1332 gimple_seq_add_seq (&new_stmt
, seq
);
1334 gimple_seq_add_stmt (&new_stmt
, q
->cont_stmt
);
1335 maybe_record_in_goto_queue (state
, q
->cont_stmt
);
1338 for (q
= tf
->goto_queue
; q
< qe
; q
++)
1342 index
= q
->index
< 0 ? return_index
: q
->index
;
1344 if (labels
[index
].q
== q
)
1347 lab
= labels
[index
].label
;
1349 if (index
== return_index
)
1350 do_return_redirection (q
, lab
, NULL
);
1352 do_goto_redirection (q
, lab
, NULL
, tf
);
1355 replace_goto_queue (tf
);
1359 /* Need to link new stmts after running replace_goto_queue due
1360 to not wanting to process the same goto stmts twice. */
1361 gimple_seq_add_seq (&tf
->top_p_seq
, new_stmt
);
1364 /* A subroutine of lower_try_finally. There are multiple edges incoming
1365 and outgoing from the finally block. Implement this by instrumenting
1366 each incoming edge and creating a switch statement at the end of the
1367 finally block that branches to the appropriate destination. */
1370 lower_try_finally_switch (struct leh_state
*state
, struct leh_tf_state
*tf
)
1372 struct goto_queue_node
*q
, *qe
;
1373 tree finally_tmp
, finally_label
;
1374 int return_index
, eh_index
, fallthru_index
;
1375 int nlabels
, ndests
, j
, last_case_index
;
1377 vec
<tree
> case_label_vec
;
1378 gimple_seq switch_body
= NULL
;
1382 gimple
*switch_stmt
;
1384 hash_map
<tree
, gimple
*> *cont_map
= NULL
;
1385 /* The location of the TRY_FINALLY stmt. */
1386 location_t tf_loc
= gimple_location (tf
->try_finally_expr
);
1387 /* The location of the finally block. */
1388 location_t finally_loc
;
1390 finally
= gimple_try_cleanup (tf
->top_p
);
1391 eh_else
= get_eh_else (finally
);
1393 /* Mash the TRY block to the head of the chain. */
1394 tf
->top_p_seq
= gimple_try_eval (tf
->top_p
);
1396 /* The location of the finally is either the last stmt in the finally
1397 block or the location of the TRY_FINALLY itself. */
1398 x
= gimple_seq_last_stmt (finally
);
1399 finally_loc
= x
? gimple_location (x
) : tf_loc
;
1401 /* Prepare for switch statement generation. */
1402 nlabels
= tf
->dest_array
.length ();
1403 return_index
= nlabels
;
1404 eh_index
= return_index
+ tf
->may_return
;
1405 fallthru_index
= eh_index
+ (tf
->may_throw
&& !eh_else
);
1406 ndests
= fallthru_index
+ tf
->may_fallthru
;
1408 finally_tmp
= create_tmp_var (integer_type_node
, "finally_tmp");
1409 finally_label
= create_artificial_label (finally_loc
);
1411 /* We use vec::quick_push on case_label_vec throughout this function,
1412 since we know the size in advance and allocate precisely as muce
1414 case_label_vec
.create (ndests
);
1416 last_case_index
= 0;
1418 /* Begin inserting code for getting to the finally block. Things
1419 are done in this order to correspond to the sequence the code is
1422 if (tf
->may_fallthru
)
1424 x
= gimple_build_assign (finally_tmp
,
1425 build_int_cst (integer_type_node
,
1427 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1429 tmp
= build_int_cst (integer_type_node
, fallthru_index
);
1430 last_case
= build_case_label (tmp
, NULL
,
1431 create_artificial_label (tf_loc
));
1432 case_label_vec
.quick_push (last_case
);
1435 x
= gimple_build_label (CASE_LABEL (last_case
));
1436 gimple_seq_add_stmt (&switch_body
, x
);
1438 tmp
= lower_try_finally_fallthru_label (tf
);
1439 x
= gimple_build_goto (tmp
);
1440 gimple_set_location (x
, tf_loc
);
1441 gimple_seq_add_stmt (&switch_body
, x
);
1444 /* For EH_ELSE, emit the exception path (plus resx) now, then
1445 subsequently we only need consider the normal path. */
1450 finally
= gimple_eh_else_e_body (eh_else
);
1451 lower_eh_constructs_1 (state
, &finally
);
1453 emit_post_landing_pad (&eh_seq
, tf
->region
);
1454 gimple_seq_add_seq (&eh_seq
, finally
);
1455 emit_resx (&eh_seq
, tf
->region
);
1458 finally
= gimple_eh_else_n_body (eh_else
);
1460 else if (tf
->may_throw
)
1462 emit_post_landing_pad (&eh_seq
, tf
->region
);
1464 x
= gimple_build_assign (finally_tmp
,
1465 build_int_cst (integer_type_node
, eh_index
));
1466 gimple_seq_add_stmt (&eh_seq
, x
);
1468 x
= gimple_build_goto (finally_label
);
1469 gimple_set_location (x
, tf_loc
);
1470 gimple_seq_add_stmt (&eh_seq
, x
);
1472 tmp
= build_int_cst (integer_type_node
, eh_index
);
1473 last_case
= build_case_label (tmp
, NULL
,
1474 create_artificial_label (tf_loc
));
1475 case_label_vec
.quick_push (last_case
);
1478 x
= gimple_build_label (CASE_LABEL (last_case
));
1479 gimple_seq_add_stmt (&eh_seq
, x
);
1480 emit_resx (&eh_seq
, tf
->region
);
1483 x
= gimple_build_label (finally_label
);
1484 gimple_seq_add_stmt (&tf
->top_p_seq
, x
);
1486 lower_eh_constructs_1 (state
, &finally
);
1487 gimple_seq_add_seq (&tf
->top_p_seq
, finally
);
1489 /* Redirect each incoming goto edge. */
1491 qe
= q
+ tf
->goto_queue_active
;
1492 j
= last_case_index
+ tf
->may_return
;
1493 /* Prepare the assignments to finally_tmp that are executed upon the
1494 entrance through a particular edge. */
1497 gimple_seq mod
= NULL
;
1499 unsigned int case_index
;
1503 x
= gimple_build_assign (finally_tmp
,
1504 build_int_cst (integer_type_node
,
1506 gimple_seq_add_stmt (&mod
, x
);
1507 do_return_redirection (q
, finally_label
, mod
);
1508 switch_id
= return_index
;
1512 x
= gimple_build_assign (finally_tmp
,
1513 build_int_cst (integer_type_node
, q
->index
));
1514 gimple_seq_add_stmt (&mod
, x
);
1515 do_goto_redirection (q
, finally_label
, mod
, tf
);
1516 switch_id
= q
->index
;
1519 case_index
= j
+ q
->index
;
1520 if (case_label_vec
.length () <= case_index
|| !case_label_vec
[case_index
])
1523 tmp
= build_int_cst (integer_type_node
, switch_id
);
1524 case_lab
= build_case_label (tmp
, NULL
,
1525 create_artificial_label (tf_loc
));
1526 /* We store the cont_stmt in the pointer map, so that we can recover
1527 it in the loop below. */
1529 cont_map
= new hash_map
<tree
, gimple
*>;
1530 cont_map
->put (case_lab
, q
->cont_stmt
);
1531 case_label_vec
.quick_push (case_lab
);
1534 for (j
= last_case_index
; j
< last_case_index
+ nlabels
; j
++)
1538 last_case
= case_label_vec
[j
];
1540 gcc_assert (last_case
);
1541 gcc_assert (cont_map
);
1543 cont_stmt
= *cont_map
->get (last_case
);
1545 x
= gimple_build_label (CASE_LABEL (last_case
));
1546 gimple_seq_add_stmt (&switch_body
, x
);
1547 gimple_seq_add_stmt (&switch_body
, cont_stmt
);
1548 maybe_record_in_goto_queue (state
, cont_stmt
);
1553 replace_goto_queue (tf
);
1555 /* Make sure that the last case is the default label, as one is required.
1556 Then sort the labels, which is also required in GIMPLE. */
1557 CASE_LOW (last_case
) = NULL
;
1558 tree tem
= case_label_vec
.pop ();
1559 gcc_assert (tem
== last_case
);
1560 sort_case_labels (case_label_vec
);
1562 /* Build the switch statement, setting last_case to be the default
1564 switch_stmt
= gimple_build_switch (finally_tmp
, last_case
,
1566 gimple_set_location (switch_stmt
, finally_loc
);
1568 /* Need to link SWITCH_STMT after running replace_goto_queue
1569 due to not wanting to process the same goto stmts twice. */
1570 gimple_seq_add_stmt (&tf
->top_p_seq
, switch_stmt
);
1571 gimple_seq_add_seq (&tf
->top_p_seq
, switch_body
);
1574 /* Decide whether or not we are going to duplicate the finally block.
1575 There are several considerations.
1577 First, if this is Java, then the finally block contains code
1578 written by the user. It has line numbers associated with it,
1579 so duplicating the block means it's difficult to set a breakpoint.
1580 Since controlling code generation via -g is verboten, we simply
1581 never duplicate code without optimization.
1583 Second, we'd like to prevent egregious code growth. One way to
1584 do this is to estimate the size of the finally block, multiply
1585 that by the number of copies we'd need to make, and compare against
1586 the estimate of the size of the switch machinery we'd have to add. */
1589 decide_copy_try_finally (int ndests
, bool may_throw
, gimple_seq finally
)
1591 int f_estimate
, sw_estimate
;
1594 /* If there's an EH_ELSE involved, the exception path is separate
1595 and really doesn't come into play for this computation. */
1596 eh_else
= get_eh_else (finally
);
1599 ndests
-= may_throw
;
1600 finally
= gimple_eh_else_n_body (eh_else
);
1605 gimple_stmt_iterator gsi
;
1610 for (gsi
= gsi_start (finally
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1612 /* Duplicate __builtin_stack_restore in the hope of eliminating it
1613 on the EH paths and, consequently, useless cleanups. */
1614 gimple
*stmt
= gsi_stmt (gsi
);
1615 if (!is_gimple_debug (stmt
)
1616 && !gimple_clobber_p (stmt
)
1617 && !gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1623 /* Finally estimate N times, plus N gotos. */
1624 f_estimate
= estimate_num_insns_seq (finally
, &eni_size_weights
);
1625 f_estimate
= (f_estimate
+ 1) * ndests
;
1627 /* Switch statement (cost 10), N variable assignments, N gotos. */
1628 sw_estimate
= 10 + 2 * ndests
;
1630 /* Optimize for size clearly wants our best guess. */
1631 if (optimize_function_for_size_p (cfun
))
1632 return f_estimate
< sw_estimate
;
1634 /* ??? These numbers are completely made up so far. */
1636 return f_estimate
< 100 || f_estimate
< sw_estimate
* 2;
1638 return f_estimate
< 40 || f_estimate
* 2 < sw_estimate
* 3;
1641 /* REG is the enclosing region for a possible cleanup region, or the region
1642 itself. Returns TRUE if such a region would be unreachable.
1644 Cleanup regions within a must-not-throw region aren't actually reachable
1645 even if there are throwing stmts within them, because the personality
1646 routine will call terminate before unwinding. */
1649 cleanup_is_dead_in (eh_region reg
)
1651 while (reg
&& reg
->type
== ERT_CLEANUP
)
1653 return (reg
&& reg
->type
== ERT_MUST_NOT_THROW
);
1656 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1657 to a sequence of labels and blocks, plus the exception region trees
1658 that record all the magic. This is complicated by the need to
1659 arrange for the FINALLY block to be executed on all exits. */
1662 lower_try_finally (struct leh_state
*state
, gtry
*tp
)
1664 struct leh_tf_state this_tf
;
1665 struct leh_state this_state
;
1667 gimple_seq old_eh_seq
;
1669 /* Process the try block. */
1671 memset (&this_tf
, 0, sizeof (this_tf
));
1672 this_tf
.try_finally_expr
= tp
;
1674 this_tf
.outer
= state
;
1675 if (using_eh_for_cleanups_p () && !cleanup_is_dead_in (state
->cur_region
))
1677 this_tf
.region
= gen_eh_region_cleanup (state
->cur_region
);
1678 this_state
.cur_region
= this_tf
.region
;
1682 this_tf
.region
= NULL
;
1683 this_state
.cur_region
= state
->cur_region
;
1686 this_state
.ehp_region
= state
->ehp_region
;
1687 this_state
.tf
= &this_tf
;
1689 old_eh_seq
= eh_seq
;
1692 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1694 /* Determine if the try block is escaped through the bottom. */
1695 this_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1697 /* Determine if any exceptions are possible within the try block. */
1699 this_tf
.may_throw
= eh_region_may_contain_throw (this_tf
.region
);
1700 if (this_tf
.may_throw
)
1701 honor_protect_cleanup_actions (state
, &this_state
, &this_tf
);
1703 /* Determine how many edges (still) reach the finally block. Or rather,
1704 how many destinations are reached by the finally block. Use this to
1705 determine how we process the finally block itself. */
1707 ndests
= this_tf
.dest_array
.length ();
1708 ndests
+= this_tf
.may_fallthru
;
1709 ndests
+= this_tf
.may_return
;
1710 ndests
+= this_tf
.may_throw
;
1712 /* If the FINALLY block is not reachable, dike it out. */
1715 gimple_seq_add_seq (&this_tf
.top_p_seq
, gimple_try_eval (tp
));
1716 gimple_try_set_cleanup (tp
, NULL
);
1718 /* If the finally block doesn't fall through, then any destination
1719 we might try to impose there isn't reached either. There may be
1720 some minor amount of cleanup and redirection still needed. */
1721 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp
)))
1722 lower_try_finally_nofallthru (state
, &this_tf
);
1724 /* We can easily special-case redirection to a single destination. */
1725 else if (ndests
== 1)
1726 lower_try_finally_onedest (state
, &this_tf
);
1727 else if (decide_copy_try_finally (ndests
, this_tf
.may_throw
,
1728 gimple_try_cleanup (tp
)))
1729 lower_try_finally_copy (state
, &this_tf
);
1731 lower_try_finally_switch (state
, &this_tf
);
1733 /* If someone requested we add a label at the end of the transformed
1735 if (this_tf
.fallthru_label
)
1737 /* This must be reached only if ndests == 0. */
1738 gimple
*x
= gimple_build_label (this_tf
.fallthru_label
);
1739 gimple_seq_add_stmt (&this_tf
.top_p_seq
, x
);
1742 this_tf
.dest_array
.release ();
1743 free (this_tf
.goto_queue
);
1744 if (this_tf
.goto_queue_map
)
1745 delete this_tf
.goto_queue_map
;
1747 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1748 If there was no old eh_seq, then the append is trivially already done. */
1752 eh_seq
= old_eh_seq
;
1755 gimple_seq new_eh_seq
= eh_seq
;
1756 eh_seq
= old_eh_seq
;
1757 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1761 return this_tf
.top_p_seq
;
1764 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1765 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1766 exception region trees that records all the magic. */
1769 lower_catch (struct leh_state
*state
, gtry
*tp
)
1771 eh_region try_region
= NULL
;
1772 struct leh_state this_state
= *state
;
1773 gimple_stmt_iterator gsi
;
1775 gimple_seq new_seq
, cleanup
;
1777 location_t try_catch_loc
= gimple_location (tp
);
1779 if (flag_exceptions
)
1781 try_region
= gen_eh_region_try (state
->cur_region
);
1782 this_state
.cur_region
= try_region
;
1785 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1787 if (!eh_region_may_contain_throw (try_region
))
1788 return gimple_try_eval (tp
);
1791 emit_eh_dispatch (&new_seq
, try_region
);
1792 emit_resx (&new_seq
, try_region
);
1794 this_state
.cur_region
= state
->cur_region
;
1795 this_state
.ehp_region
= try_region
;
1797 /* Add eh_seq from lowering EH in the cleanup sequence after the cleanup
1798 itself, so that e.g. for coverage purposes the nested cleanups don't
1799 appear before the cleanup body. See PR64634 for details. */
1800 gimple_seq old_eh_seq
= eh_seq
;
1804 cleanup
= gimple_try_cleanup (tp
);
1805 for (gsi
= gsi_start (cleanup
);
1813 catch_stmt
= as_a
<gcatch
*> (gsi_stmt (gsi
));
1814 c
= gen_eh_region_catch (try_region
, gimple_catch_types (catch_stmt
));
1816 handler
= gimple_catch_handler (catch_stmt
);
1817 lower_eh_constructs_1 (&this_state
, &handler
);
1819 c
->label
= create_artificial_label (UNKNOWN_LOCATION
);
1820 x
= gimple_build_label (c
->label
);
1821 gimple_seq_add_stmt (&new_seq
, x
);
1823 gimple_seq_add_seq (&new_seq
, handler
);
1825 if (gimple_seq_may_fallthru (new_seq
))
1828 out_label
= create_artificial_label (try_catch_loc
);
1830 x
= gimple_build_goto (out_label
);
1831 gimple_seq_add_stmt (&new_seq
, x
);
1837 gimple_try_set_cleanup (tp
, new_seq
);
1839 gimple_seq new_eh_seq
= eh_seq
;
1840 eh_seq
= old_eh_seq
;
1841 gimple_seq ret_seq
= frob_into_branch_around (tp
, try_region
, out_label
);
1842 gimple_seq_add_seq (&eh_seq
, new_eh_seq
);
1846 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1847 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1848 region trees that record all the magic. */
1851 lower_eh_filter (struct leh_state
*state
, gtry
*tp
)
1853 struct leh_state this_state
= *state
;
1854 eh_region this_region
= NULL
;
1858 inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1860 if (flag_exceptions
)
1862 this_region
= gen_eh_region_allowed (state
->cur_region
,
1863 gimple_eh_filter_types (inner
));
1864 this_state
.cur_region
= this_region
;
1867 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1869 if (!eh_region_may_contain_throw (this_region
))
1870 return gimple_try_eval (tp
);
1873 this_state
.cur_region
= state
->cur_region
;
1874 this_state
.ehp_region
= this_region
;
1876 emit_eh_dispatch (&new_seq
, this_region
);
1877 emit_resx (&new_seq
, this_region
);
1879 this_region
->u
.allowed
.label
= create_artificial_label (UNKNOWN_LOCATION
);
1880 x
= gimple_build_label (this_region
->u
.allowed
.label
);
1881 gimple_seq_add_stmt (&new_seq
, x
);
1883 lower_eh_constructs_1 (&this_state
, gimple_eh_filter_failure_ptr (inner
));
1884 gimple_seq_add_seq (&new_seq
, gimple_eh_filter_failure (inner
));
1886 gimple_try_set_cleanup (tp
, new_seq
);
1888 return frob_into_branch_around (tp
, this_region
, NULL
);
1891 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1892 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1893 plus the exception region trees that record all the magic. */
1896 lower_eh_must_not_throw (struct leh_state
*state
, gtry
*tp
)
1898 struct leh_state this_state
= *state
;
1900 if (flag_exceptions
)
1902 gimple
*inner
= gimple_seq_first_stmt (gimple_try_cleanup (tp
));
1903 eh_region this_region
;
1905 this_region
= gen_eh_region_must_not_throw (state
->cur_region
);
1906 this_region
->u
.must_not_throw
.failure_decl
1907 = gimple_eh_must_not_throw_fndecl (
1908 as_a
<geh_mnt
*> (inner
));
1909 this_region
->u
.must_not_throw
.failure_loc
1910 = LOCATION_LOCUS (gimple_location (tp
));
1912 /* In order to get mangling applied to this decl, we must mark it
1913 used now. Otherwise, pass_ipa_free_lang_data won't think it
1915 TREE_USED (this_region
->u
.must_not_throw
.failure_decl
) = 1;
1917 this_state
.cur_region
= this_region
;
1920 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1922 return gimple_try_eval (tp
);
1925 /* Implement a cleanup expression. This is similar to try-finally,
1926 except that we only execute the cleanup block for exception edges. */
1929 lower_cleanup (struct leh_state
*state
, gtry
*tp
)
1931 struct leh_state this_state
= *state
;
1932 eh_region this_region
= NULL
;
1933 struct leh_tf_state fake_tf
;
1935 bool cleanup_dead
= cleanup_is_dead_in (state
->cur_region
);
1937 if (flag_exceptions
&& !cleanup_dead
)
1939 this_region
= gen_eh_region_cleanup (state
->cur_region
);
1940 this_state
.cur_region
= this_region
;
1943 lower_eh_constructs_1 (&this_state
, gimple_try_eval_ptr (tp
));
1945 if (cleanup_dead
|| !eh_region_may_contain_throw (this_region
))
1946 return gimple_try_eval (tp
);
1948 /* Build enough of a try-finally state so that we can reuse
1949 honor_protect_cleanup_actions. */
1950 memset (&fake_tf
, 0, sizeof (fake_tf
));
1951 fake_tf
.top_p
= fake_tf
.try_finally_expr
= tp
;
1952 fake_tf
.outer
= state
;
1953 fake_tf
.region
= this_region
;
1954 fake_tf
.may_fallthru
= gimple_seq_may_fallthru (gimple_try_eval (tp
));
1955 fake_tf
.may_throw
= true;
1957 honor_protect_cleanup_actions (state
, NULL
, &fake_tf
);
1959 if (fake_tf
.may_throw
)
1961 /* In this case honor_protect_cleanup_actions had nothing to do,
1962 and we should process this normally. */
1963 lower_eh_constructs_1 (state
, gimple_try_cleanup_ptr (tp
));
1964 result
= frob_into_branch_around (tp
, this_region
,
1965 fake_tf
.fallthru_label
);
1969 /* In this case honor_protect_cleanup_actions did nearly all of
1970 the work. All we have left is to append the fallthru_label. */
1972 result
= gimple_try_eval (tp
);
1973 if (fake_tf
.fallthru_label
)
1975 gimple
*x
= gimple_build_label (fake_tf
.fallthru_label
);
1976 gimple_seq_add_stmt (&result
, x
);
1982 /* Main loop for lowering eh constructs. Also moves gsi to the next
1986 lower_eh_constructs_2 (struct leh_state
*state
, gimple_stmt_iterator
*gsi
)
1990 gimple
*stmt
= gsi_stmt (*gsi
);
1992 switch (gimple_code (stmt
))
1996 tree fndecl
= gimple_call_fndecl (stmt
);
1999 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
2000 switch (DECL_FUNCTION_CODE (fndecl
))
2002 case BUILT_IN_EH_POINTER
:
2003 /* The front end may have generated a call to
2004 __builtin_eh_pointer (0) within a catch region. Replace
2005 this zero argument with the current catch region number. */
2006 if (state
->ehp_region
)
2008 tree nr
= build_int_cst (integer_type_node
,
2009 state
->ehp_region
->index
);
2010 gimple_call_set_arg (stmt
, 0, nr
);
2014 /* The user has dome something silly. Remove it. */
2015 rhs
= null_pointer_node
;
2020 case BUILT_IN_EH_FILTER
:
2021 /* ??? This should never appear, but since it's a builtin it
2022 is accessible to abuse by users. Just remove it and
2023 replace the use with the arbitrary value zero. */
2024 rhs
= build_int_cst (TREE_TYPE (TREE_TYPE (fndecl
)), 0);
2026 lhs
= gimple_call_lhs (stmt
);
2027 x
= gimple_build_assign (lhs
, rhs
);
2028 gsi_insert_before (gsi
, x
, GSI_SAME_STMT
);
2031 case BUILT_IN_EH_COPY_VALUES
:
2032 /* Likewise this should not appear. Remove it. */
2033 gsi_remove (gsi
, true);
2043 /* If the stmt can throw use a new temporary for the assignment
2044 to a LHS. This makes sure the old value of the LHS is
2045 available on the EH edge. Only do so for statements that
2046 potentially fall through (no noreturn calls e.g.), otherwise
2047 this new assignment might create fake fallthru regions. */
2048 if (stmt_could_throw_p (stmt
)
2049 && gimple_has_lhs (stmt
)
2050 && gimple_stmt_may_fallthru (stmt
)
2051 && !tree_could_throw_p (gimple_get_lhs (stmt
))
2052 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
2054 tree lhs
= gimple_get_lhs (stmt
);
2055 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
2056 gimple
*s
= gimple_build_assign (lhs
, tmp
);
2057 gimple_set_location (s
, gimple_location (stmt
));
2058 gimple_set_block (s
, gimple_block (stmt
));
2059 gimple_set_lhs (stmt
, tmp
);
2060 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
2061 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
2062 DECL_GIMPLE_REG_P (tmp
) = 1;
2063 gsi_insert_after (gsi
, s
, GSI_SAME_STMT
);
2065 /* Look for things that can throw exceptions, and record them. */
2066 if (state
->cur_region
&& stmt_could_throw_p (stmt
))
2068 record_stmt_eh_region (state
->cur_region
, stmt
);
2069 note_eh_region_may_contain_throw (state
->cur_region
);
2076 maybe_record_in_goto_queue (state
, stmt
);
2080 verify_norecord_switch_expr (state
, as_a
<gswitch
*> (stmt
));
2085 gtry
*try_stmt
= as_a
<gtry
*> (stmt
);
2086 if (gimple_try_kind (try_stmt
) == GIMPLE_TRY_FINALLY
)
2087 replace
= lower_try_finally (state
, try_stmt
);
2090 x
= gimple_seq_first_stmt (gimple_try_cleanup (try_stmt
));
2093 replace
= gimple_try_eval (try_stmt
);
2094 lower_eh_constructs_1 (state
, &replace
);
2097 switch (gimple_code (x
))
2100 replace
= lower_catch (state
, try_stmt
);
2102 case GIMPLE_EH_FILTER
:
2103 replace
= lower_eh_filter (state
, try_stmt
);
2105 case GIMPLE_EH_MUST_NOT_THROW
:
2106 replace
= lower_eh_must_not_throw (state
, try_stmt
);
2108 case GIMPLE_EH_ELSE
:
2109 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2112 replace
= lower_cleanup (state
, try_stmt
);
2118 /* Remove the old stmt and insert the transformed sequence
2120 gsi_insert_seq_before (gsi
, replace
, GSI_SAME_STMT
);
2121 gsi_remove (gsi
, true);
2123 /* Return since we don't want gsi_next () */
2126 case GIMPLE_EH_ELSE
:
2127 /* We should be eliminating this in lower_try_finally et al. */
2131 /* A type, a decl, or some kind of statement that we're not
2132 interested in. Don't walk them. */
2139 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2142 lower_eh_constructs_1 (struct leh_state
*state
, gimple_seq
*pseq
)
2144 gimple_stmt_iterator gsi
;
2145 for (gsi
= gsi_start (*pseq
); !gsi_end_p (gsi
);)
2146 lower_eh_constructs_2 (state
, &gsi
);
2151 const pass_data pass_data_lower_eh
=
2153 GIMPLE_PASS
, /* type */
2155 OPTGROUP_NONE
, /* optinfo_flags */
2156 TV_TREE_EH
, /* tv_id */
2157 PROP_gimple_lcf
, /* properties_required */
2158 PROP_gimple_leh
, /* properties_provided */
2159 0, /* properties_destroyed */
2160 0, /* todo_flags_start */
2161 0, /* todo_flags_finish */
2164 class pass_lower_eh
: public gimple_opt_pass
2167 pass_lower_eh (gcc::context
*ctxt
)
2168 : gimple_opt_pass (pass_data_lower_eh
, ctxt
)
2171 /* opt_pass methods: */
2172 virtual unsigned int execute (function
*);
2174 }; // class pass_lower_eh
2177 pass_lower_eh::execute (function
*fun
)
2179 struct leh_state null_state
;
2182 bodyp
= gimple_body (current_function_decl
);
2186 finally_tree
= new hash_table
<finally_tree_hasher
> (31);
2187 eh_region_may_contain_throw_map
= BITMAP_ALLOC (NULL
);
2188 memset (&null_state
, 0, sizeof (null_state
));
2190 collect_finally_tree_1 (bodyp
, NULL
);
2191 lower_eh_constructs_1 (&null_state
, &bodyp
);
2192 gimple_set_body (current_function_decl
, bodyp
);
2194 /* We assume there's a return statement, or something, at the end of
2195 the function, and thus ploping the EH sequence afterward won't
2197 gcc_assert (!gimple_seq_may_fallthru (bodyp
));
2198 gimple_seq_add_seq (&bodyp
, eh_seq
);
2200 /* We assume that since BODYP already existed, adding EH_SEQ to it
2201 didn't change its value, and we don't have to re-set the function. */
2202 gcc_assert (bodyp
== gimple_body (current_function_decl
));
2204 delete finally_tree
;
2205 finally_tree
= NULL
;
2206 BITMAP_FREE (eh_region_may_contain_throw_map
);
2209 /* If this function needs a language specific EH personality routine
2210 and the frontend didn't already set one do so now. */
2211 if (function_needs_eh_personality (fun
) == eh_personality_lang
2212 && !DECL_FUNCTION_PERSONALITY (current_function_decl
))
2213 DECL_FUNCTION_PERSONALITY (current_function_decl
)
2214 = lang_hooks
.eh_personality ();
2222 make_pass_lower_eh (gcc::context
*ctxt
)
2224 return new pass_lower_eh (ctxt
);
2227 /* Create the multiple edges from an EH_DISPATCH statement to all of
2228 the possible handlers for its EH region. Return true if there's
2229 no fallthru edge; false if there is. */
2232 make_eh_dispatch_edges (geh_dispatch
*stmt
)
2236 basic_block src
, dst
;
2238 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2239 src
= gimple_bb (stmt
);
2244 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2246 dst
= label_to_block (c
->label
);
2247 make_edge (src
, dst
, 0);
2249 /* A catch-all handler doesn't have a fallthru. */
2250 if (c
->type_list
== NULL
)
2255 case ERT_ALLOWED_EXCEPTIONS
:
2256 dst
= label_to_block (r
->u
.allowed
.label
);
2257 make_edge (src
, dst
, 0);
2267 /* Create the single EH edge from STMT to its nearest landing pad,
2268 if there is such a landing pad within the current function. */
2271 make_eh_edges (gimple
*stmt
)
2273 basic_block src
, dst
;
2277 lp_nr
= lookup_stmt_eh_lp (stmt
);
2281 lp
= get_eh_landing_pad_from_number (lp_nr
);
2282 gcc_assert (lp
!= NULL
);
2284 src
= gimple_bb (stmt
);
2285 dst
= label_to_block (lp
->post_landing_pad
);
2286 make_edge (src
, dst
, EDGE_EH
);
2289 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2290 do not actually perform the final edge redirection.
2292 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2293 we intend to change the destination EH region as well; this means
2294 EH_LANDING_PAD_NR must already be set on the destination block label.
2295 If false, we're being called from generic cfg manipulation code and we
2296 should preserve our place within the region tree. */
2299 redirect_eh_edge_1 (edge edge_in
, basic_block new_bb
, bool change_region
)
2301 eh_landing_pad old_lp
, new_lp
;
2304 int old_lp_nr
, new_lp_nr
;
2305 tree old_label
, new_label
;
2309 old_bb
= edge_in
->dest
;
2310 old_label
= gimple_block_label (old_bb
);
2311 old_lp_nr
= EH_LANDING_PAD_NR (old_label
);
2312 gcc_assert (old_lp_nr
> 0);
2313 old_lp
= get_eh_landing_pad_from_number (old_lp_nr
);
2315 throw_stmt
= last_stmt (edge_in
->src
);
2316 gcc_assert (lookup_stmt_eh_lp (throw_stmt
) == old_lp_nr
);
2318 new_label
= gimple_block_label (new_bb
);
2320 /* Look for an existing region that might be using NEW_BB already. */
2321 new_lp_nr
= EH_LANDING_PAD_NR (new_label
);
2324 new_lp
= get_eh_landing_pad_from_number (new_lp_nr
);
2325 gcc_assert (new_lp
);
2327 /* Unless CHANGE_REGION is true, the new and old landing pad
2328 had better be associated with the same EH region. */
2329 gcc_assert (change_region
|| new_lp
->region
== old_lp
->region
);
2334 gcc_assert (!change_region
);
2337 /* Notice when we redirect the last EH edge away from OLD_BB. */
2338 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
2339 if (e
!= edge_in
&& (e
->flags
& EDGE_EH
))
2344 /* NEW_LP already exists. If there are still edges into OLD_LP,
2345 there's nothing to do with the EH tree. If there are no more
2346 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2347 If CHANGE_REGION is true, then our caller is expecting to remove
2349 if (e
== NULL
&& !change_region
)
2350 remove_eh_landing_pad (old_lp
);
2354 /* No correct landing pad exists. If there are no more edges
2355 into OLD_LP, then we can simply re-use the existing landing pad.
2356 Otherwise, we have to create a new landing pad. */
2359 EH_LANDING_PAD_NR (old_lp
->post_landing_pad
) = 0;
2363 new_lp
= gen_eh_landing_pad (old_lp
->region
);
2364 new_lp
->post_landing_pad
= new_label
;
2365 EH_LANDING_PAD_NR (new_label
) = new_lp
->index
;
2368 /* Maybe move the throwing statement to the new region. */
2369 if (old_lp
!= new_lp
)
2371 remove_stmt_from_eh_lp (throw_stmt
);
2372 add_stmt_to_eh_lp (throw_stmt
, new_lp
->index
);
2376 /* Redirect EH edge E to NEW_BB. */
2379 redirect_eh_edge (edge edge_in
, basic_block new_bb
)
2381 redirect_eh_edge_1 (edge_in
, new_bb
, false);
2382 return ssa_redirect_edge (edge_in
, new_bb
);
2385 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2386 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2387 The actual edge update will happen in the caller. */
2390 redirect_eh_dispatch_edge (geh_dispatch
*stmt
, edge e
, basic_block new_bb
)
2392 tree new_lab
= gimple_block_label (new_bb
);
2393 bool any_changed
= false;
2398 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
2402 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
2404 old_bb
= label_to_block (c
->label
);
2405 if (old_bb
== e
->dest
)
2413 case ERT_ALLOWED_EXCEPTIONS
:
2414 old_bb
= label_to_block (r
->u
.allowed
.label
);
2415 gcc_assert (old_bb
== e
->dest
);
2416 r
->u
.allowed
.label
= new_lab
;
2424 gcc_assert (any_changed
);
2427 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2430 operation_could_trap_helper_p (enum tree_code op
,
2441 case TRUNC_DIV_EXPR
:
2443 case FLOOR_DIV_EXPR
:
2444 case ROUND_DIV_EXPR
:
2445 case EXACT_DIV_EXPR
:
2447 case FLOOR_MOD_EXPR
:
2448 case ROUND_MOD_EXPR
:
2449 case TRUNC_MOD_EXPR
:
2451 if (honor_snans
|| honor_trapv
)
2454 return flag_trapping_math
;
2455 if (!TREE_CONSTANT (divisor
) || integer_zerop (divisor
))
2464 /* Some floating point comparisons may trap. */
2469 case UNORDERED_EXPR
:
2481 /* These operations don't trap with floating point. */
2489 /* Any floating arithmetic may trap. */
2490 if (fp_operation
&& flag_trapping_math
)
2498 /* Constructing an object cannot trap. */
2502 /* Any floating arithmetic may trap. */
2503 if (fp_operation
&& flag_trapping_math
)
2511 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2512 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2513 type operands that may trap. If OP is a division operator, DIVISOR contains
2514 the value of the divisor. */
2517 operation_could_trap_p (enum tree_code op
, bool fp_operation
, bool honor_trapv
,
2520 bool honor_nans
= (fp_operation
&& flag_trapping_math
2521 && !flag_finite_math_only
);
2522 bool honor_snans
= fp_operation
&& flag_signaling_nans
!= 0;
2525 if (TREE_CODE_CLASS (op
) != tcc_comparison
2526 && TREE_CODE_CLASS (op
) != tcc_unary
2527 && TREE_CODE_CLASS (op
) != tcc_binary
)
2530 return operation_could_trap_helper_p (op
, fp_operation
, honor_trapv
,
2531 honor_nans
, honor_snans
, divisor
,
2536 /* Returns true if it is possible to prove that the index of
2537 an array access REF (an ARRAY_REF expression) falls into the
2541 in_array_bounds_p (tree ref
)
2543 tree idx
= TREE_OPERAND (ref
, 1);
2546 if (TREE_CODE (idx
) != INTEGER_CST
)
2549 min
= array_ref_low_bound (ref
);
2550 max
= array_ref_up_bound (ref
);
2553 || TREE_CODE (min
) != INTEGER_CST
2554 || TREE_CODE (max
) != INTEGER_CST
)
2557 if (tree_int_cst_lt (idx
, min
)
2558 || tree_int_cst_lt (max
, idx
))
2564 /* Returns true if it is possible to prove that the range of
2565 an array access REF (an ARRAY_RANGE_REF expression) falls
2566 into the array bounds. */
2569 range_in_array_bounds_p (tree ref
)
2571 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ref
));
2572 tree range_min
, range_max
, min
, max
;
2574 range_min
= TYPE_MIN_VALUE (domain_type
);
2575 range_max
= TYPE_MAX_VALUE (domain_type
);
2578 || TREE_CODE (range_min
) != INTEGER_CST
2579 || TREE_CODE (range_max
) != INTEGER_CST
)
2582 min
= array_ref_low_bound (ref
);
2583 max
= array_ref_up_bound (ref
);
2586 || TREE_CODE (min
) != INTEGER_CST
2587 || TREE_CODE (max
) != INTEGER_CST
)
2590 if (tree_int_cst_lt (range_min
, min
)
2591 || tree_int_cst_lt (max
, range_max
))
2597 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2598 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2599 This routine expects only GIMPLE lhs or rhs input. */
2602 tree_could_trap_p (tree expr
)
2604 enum tree_code code
;
2605 bool fp_operation
= false;
2606 bool honor_trapv
= false;
2607 tree t
, base
, div
= NULL_TREE
;
2612 code
= TREE_CODE (expr
);
2613 t
= TREE_TYPE (expr
);
2617 if (COMPARISON_CLASS_P (expr
))
2618 fp_operation
= FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0)));
2620 fp_operation
= FLOAT_TYPE_P (t
);
2621 honor_trapv
= INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
);
2624 if (TREE_CODE_CLASS (code
) == tcc_binary
)
2625 div
= TREE_OPERAND (expr
, 1);
2626 if (operation_could_trap_p (code
, fp_operation
, honor_trapv
, div
))
2636 case VIEW_CONVERT_EXPR
:
2637 case WITH_SIZE_EXPR
:
2638 expr
= TREE_OPERAND (expr
, 0);
2639 code
= TREE_CODE (expr
);
2642 case ARRAY_RANGE_REF
:
2643 base
= TREE_OPERAND (expr
, 0);
2644 if (tree_could_trap_p (base
))
2646 if (TREE_THIS_NOTRAP (expr
))
2648 return !range_in_array_bounds_p (expr
);
2651 base
= TREE_OPERAND (expr
, 0);
2652 if (tree_could_trap_p (base
))
2654 if (TREE_THIS_NOTRAP (expr
))
2656 return !in_array_bounds_p (expr
);
2658 case TARGET_MEM_REF
:
2660 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
2661 && tree_could_trap_p (TREE_OPERAND (TREE_OPERAND (expr
, 0), 0)))
2663 if (TREE_THIS_NOTRAP (expr
))
2665 /* We cannot prove that the access is in-bounds when we have
2666 variable-index TARGET_MEM_REFs. */
2667 if (code
== TARGET_MEM_REF
2668 && (TMR_INDEX (expr
) || TMR_INDEX2 (expr
)))
2670 if (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
)
2672 tree base
= TREE_OPERAND (TREE_OPERAND (expr
, 0), 0);
2673 offset_int off
= mem_ref_offset (expr
);
2674 if (wi::neg_p (off
, SIGNED
))
2676 if (TREE_CODE (base
) == STRING_CST
)
2677 return wi::leu_p (TREE_STRING_LENGTH (base
), off
);
2678 else if (DECL_SIZE_UNIT (base
) == NULL_TREE
2679 || TREE_CODE (DECL_SIZE_UNIT (base
)) != INTEGER_CST
2680 || wi::leu_p (wi::to_offset (DECL_SIZE_UNIT (base
)), off
))
2682 /* Now we are sure the first byte of the access is inside
2689 return !TREE_THIS_NOTRAP (expr
);
2692 return TREE_THIS_VOLATILE (expr
);
2695 t
= get_callee_fndecl (expr
);
2696 /* Assume that calls to weak functions may trap. */
2697 if (!t
|| !DECL_P (t
))
2700 return tree_could_trap_p (t
);
2704 /* Assume that accesses to weak functions may trap, unless we know
2705 they are certainly defined in current TU or in some other
2707 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2709 cgraph_node
*node
= cgraph_node::get (expr
);
2711 node
= node
->function_symbol ();
2712 return !(node
&& node
->in_other_partition
);
2717 /* Assume that accesses to weak vars may trap, unless we know
2718 they are certainly defined in current TU or in some other
2720 if (DECL_WEAK (expr
) && !DECL_COMDAT (expr
) && DECL_EXTERNAL (expr
))
2722 varpool_node
*node
= varpool_node::get (expr
);
2724 node
= node
->ultimate_alias_target ();
2725 return !(node
&& node
->in_other_partition
);
2735 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2736 an assignment or a conditional) may throw. */
2739 stmt_could_throw_1_p (gimple
*stmt
)
2741 enum tree_code code
= gimple_expr_code (stmt
);
2742 bool honor_nans
= false;
2743 bool honor_snans
= false;
2744 bool fp_operation
= false;
2745 bool honor_trapv
= false;
2750 if (TREE_CODE_CLASS (code
) == tcc_comparison
2751 || TREE_CODE_CLASS (code
) == tcc_unary
2752 || TREE_CODE_CLASS (code
) == tcc_binary
)
2754 if (is_gimple_assign (stmt
)
2755 && TREE_CODE_CLASS (code
) == tcc_comparison
)
2756 t
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
2757 else if (gimple_code (stmt
) == GIMPLE_COND
)
2758 t
= TREE_TYPE (gimple_cond_lhs (stmt
));
2760 t
= gimple_expr_type (stmt
);
2761 fp_operation
= FLOAT_TYPE_P (t
);
2764 honor_nans
= flag_trapping_math
&& !flag_finite_math_only
;
2765 honor_snans
= flag_signaling_nans
!= 0;
2767 else if (INTEGRAL_TYPE_P (t
) && TYPE_OVERFLOW_TRAPS (t
))
2771 /* Check if the main expression may trap. */
2772 t
= is_gimple_assign (stmt
) ? gimple_assign_rhs2 (stmt
) : NULL
;
2773 ret
= operation_could_trap_helper_p (code
, fp_operation
, honor_trapv
,
2774 honor_nans
, honor_snans
, t
,
2779 /* If the expression does not trap, see if any of the individual operands may
2781 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
2782 if (tree_could_trap_p (gimple_op (stmt
, i
)))
2789 /* Return true if statement STMT could throw an exception. */
2792 stmt_could_throw_p (gimple
*stmt
)
2794 if (!flag_exceptions
)
2797 /* The only statements that can throw an exception are assignments,
2798 conditionals, calls, resx, and asms. */
2799 switch (gimple_code (stmt
))
2805 return !gimple_call_nothrow_p (as_a
<gcall
*> (stmt
));
2809 if (!cfun
->can_throw_non_call_exceptions
)
2811 return stmt_could_throw_1_p (stmt
);
2814 if (!cfun
->can_throw_non_call_exceptions
)
2816 return gimple_asm_volatile_p (as_a
<gasm
*> (stmt
));
2824 /* Return true if expression T could throw an exception. */
2827 tree_could_throw_p (tree t
)
2829 if (!flag_exceptions
)
2831 if (TREE_CODE (t
) == MODIFY_EXPR
)
2833 if (cfun
->can_throw_non_call_exceptions
2834 && tree_could_trap_p (TREE_OPERAND (t
, 0)))
2836 t
= TREE_OPERAND (t
, 1);
2839 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
2840 t
= TREE_OPERAND (t
, 0);
2841 if (TREE_CODE (t
) == CALL_EXPR
)
2842 return (call_expr_flags (t
) & ECF_NOTHROW
) == 0;
2843 if (cfun
->can_throw_non_call_exceptions
)
2844 return tree_could_trap_p (t
);
2848 /* Return true if STMT can throw an exception that is not caught within
2849 the current function (CFUN). */
2852 stmt_can_throw_external (gimple
*stmt
)
2856 if (!stmt_could_throw_p (stmt
))
2859 lp_nr
= lookup_stmt_eh_lp (stmt
);
2863 /* Return true if STMT can throw an exception that is caught within
2864 the current function (CFUN). */
2867 stmt_can_throw_internal (gimple
*stmt
)
2871 if (!stmt_could_throw_p (stmt
))
2874 lp_nr
= lookup_stmt_eh_lp (stmt
);
2878 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2879 remove any entry it might have from the EH table. Return true if
2880 any change was made. */
2883 maybe_clean_eh_stmt_fn (struct function
*ifun
, gimple
*stmt
)
2885 if (stmt_could_throw_p (stmt
))
2887 return remove_stmt_from_eh_lp_fn (ifun
, stmt
);
2890 /* Likewise, but always use the current function. */
2893 maybe_clean_eh_stmt (gimple
*stmt
)
2895 return maybe_clean_eh_stmt_fn (cfun
, stmt
);
2898 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2899 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2900 in the table if it should be in there. Return TRUE if a replacement was
2901 done that my require an EH edge purge. */
2904 maybe_clean_or_replace_eh_stmt (gimple
*old_stmt
, gimple
*new_stmt
)
2906 int lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2910 bool new_stmt_could_throw
= stmt_could_throw_p (new_stmt
);
2912 if (new_stmt
== old_stmt
&& new_stmt_could_throw
)
2915 remove_stmt_from_eh_lp (old_stmt
);
2916 if (new_stmt_could_throw
)
2918 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2928 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2929 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2930 operand is the return value of duplicate_eh_regions. */
2933 maybe_duplicate_eh_stmt_fn (struct function
*new_fun
, gimple
*new_stmt
,
2934 struct function
*old_fun
, gimple
*old_stmt
,
2935 hash_map
<void *, void *> *map
,
2938 int old_lp_nr
, new_lp_nr
;
2940 if (!stmt_could_throw_p (new_stmt
))
2943 old_lp_nr
= lookup_stmt_eh_lp_fn (old_fun
, old_stmt
);
2946 if (default_lp_nr
== 0)
2948 new_lp_nr
= default_lp_nr
;
2950 else if (old_lp_nr
> 0)
2952 eh_landing_pad old_lp
, new_lp
;
2954 old_lp
= (*old_fun
->eh
->lp_array
)[old_lp_nr
];
2955 new_lp
= static_cast<eh_landing_pad
> (*map
->get (old_lp
));
2956 new_lp_nr
= new_lp
->index
;
2960 eh_region old_r
, new_r
;
2962 old_r
= (*old_fun
->eh
->region_array
)[-old_lp_nr
];
2963 new_r
= static_cast<eh_region
> (*map
->get (old_r
));
2964 new_lp_nr
= -new_r
->index
;
2967 add_stmt_to_eh_lp_fn (new_fun
, new_stmt
, new_lp_nr
);
2971 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2972 and thus no remapping is required. */
2975 maybe_duplicate_eh_stmt (gimple
*new_stmt
, gimple
*old_stmt
)
2979 if (!stmt_could_throw_p (new_stmt
))
2982 lp_nr
= lookup_stmt_eh_lp (old_stmt
);
2986 add_stmt_to_eh_lp (new_stmt
, lp_nr
);
2990 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2991 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2992 this only handles handlers consisting of a single call, as that's the
2993 important case for C++: a destructor call for a particular object showing
2994 up in multiple handlers. */
2997 same_handler_p (gimple_seq oneh
, gimple_seq twoh
)
2999 gimple_stmt_iterator gsi
;
3000 gimple
*ones
, *twos
;
3003 gsi
= gsi_start (oneh
);
3004 if (!gsi_one_before_end_p (gsi
))
3006 ones
= gsi_stmt (gsi
);
3008 gsi
= gsi_start (twoh
);
3009 if (!gsi_one_before_end_p (gsi
))
3011 twos
= gsi_stmt (gsi
);
3013 if (!is_gimple_call (ones
)
3014 || !is_gimple_call (twos
)
3015 || gimple_call_lhs (ones
)
3016 || gimple_call_lhs (twos
)
3017 || gimple_call_chain (ones
)
3018 || gimple_call_chain (twos
)
3019 || !gimple_call_same_target_p (ones
, twos
)
3020 || gimple_call_num_args (ones
) != gimple_call_num_args (twos
))
3023 for (ai
= 0; ai
< gimple_call_num_args (ones
); ++ai
)
3024 if (!operand_equal_p (gimple_call_arg (ones
, ai
),
3025 gimple_call_arg (twos
, ai
), 0))
3032 try { A() } finally { try { ~B() } catch { ~A() } }
3033 try { ... } finally { ~A() }
3035 try { A() } catch { ~B() }
3036 try { ~B() ... } finally { ~A() }
3038 This occurs frequently in C++, where A is a local variable and B is a
3039 temporary used in the initializer for A. */
3042 optimize_double_finally (gtry
*one
, gtry
*two
)
3045 gimple_stmt_iterator gsi
;
3048 cleanup
= gimple_try_cleanup (one
);
3049 gsi
= gsi_start (cleanup
);
3050 if (!gsi_one_before_end_p (gsi
))
3053 oneh
= gsi_stmt (gsi
);
3054 if (gimple_code (oneh
) != GIMPLE_TRY
3055 || gimple_try_kind (oneh
) != GIMPLE_TRY_CATCH
)
3058 if (same_handler_p (gimple_try_cleanup (oneh
), gimple_try_cleanup (two
)))
3060 gimple_seq seq
= gimple_try_eval (oneh
);
3062 gimple_try_set_cleanup (one
, seq
);
3063 gimple_try_set_kind (one
, GIMPLE_TRY_CATCH
);
3064 seq
= copy_gimple_seq_and_replace_locals (seq
);
3065 gimple_seq_add_seq (&seq
, gimple_try_eval (two
));
3066 gimple_try_set_eval (two
, seq
);
3070 /* Perform EH refactoring optimizations that are simpler to do when code
3071 flow has been lowered but EH structures haven't. */
3074 refactor_eh_r (gimple_seq seq
)
3076 gimple_stmt_iterator gsi
;
3081 gsi
= gsi_start (seq
);
3085 if (gsi_end_p (gsi
))
3088 two
= gsi_stmt (gsi
);
3090 if (gtry
*try_one
= dyn_cast
<gtry
*> (one
))
3091 if (gtry
*try_two
= dyn_cast
<gtry
*> (two
))
3092 if (gimple_try_kind (try_one
) == GIMPLE_TRY_FINALLY
3093 && gimple_try_kind (try_two
) == GIMPLE_TRY_FINALLY
)
3094 optimize_double_finally (try_one
, try_two
);
3096 switch (gimple_code (one
))
3099 refactor_eh_r (gimple_try_eval (one
));
3100 refactor_eh_r (gimple_try_cleanup (one
));
3103 refactor_eh_r (gimple_catch_handler (as_a
<gcatch
*> (one
)));
3105 case GIMPLE_EH_FILTER
:
3106 refactor_eh_r (gimple_eh_filter_failure (one
));
3108 case GIMPLE_EH_ELSE
:
3110 geh_else
*eh_else_stmt
= as_a
<geh_else
*> (one
);
3111 refactor_eh_r (gimple_eh_else_n_body (eh_else_stmt
));
3112 refactor_eh_r (gimple_eh_else_e_body (eh_else_stmt
));
3127 const pass_data pass_data_refactor_eh
=
3129 GIMPLE_PASS
, /* type */
3131 OPTGROUP_NONE
, /* optinfo_flags */
3132 TV_TREE_EH
, /* tv_id */
3133 PROP_gimple_lcf
, /* properties_required */
3134 0, /* properties_provided */
3135 0, /* properties_destroyed */
3136 0, /* todo_flags_start */
3137 0, /* todo_flags_finish */
3140 class pass_refactor_eh
: public gimple_opt_pass
3143 pass_refactor_eh (gcc::context
*ctxt
)
3144 : gimple_opt_pass (pass_data_refactor_eh
, ctxt
)
3147 /* opt_pass methods: */
3148 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3149 virtual unsigned int execute (function
*)
3151 refactor_eh_r (gimple_body (current_function_decl
));
3155 }; // class pass_refactor_eh
3160 make_pass_refactor_eh (gcc::context
*ctxt
)
3162 return new pass_refactor_eh (ctxt
);
3165 /* At the end of gimple optimization, we can lower RESX. */
3168 lower_resx (basic_block bb
, gresx
*stmt
,
3169 hash_map
<eh_region
, tree
> *mnt_map
)
3172 eh_region src_r
, dst_r
;
3173 gimple_stmt_iterator gsi
;
3178 lp_nr
= lookup_stmt_eh_lp (stmt
);
3180 dst_r
= get_eh_region_from_lp_number (lp_nr
);
3184 src_r
= get_eh_region_from_number (gimple_resx_region (stmt
));
3185 gsi
= gsi_last_bb (bb
);
3189 /* We can wind up with no source region when pass_cleanup_eh shows
3190 that there are no entries into an eh region and deletes it, but
3191 then the block that contains the resx isn't removed. This can
3192 happen without optimization when the switch statement created by
3193 lower_try_finally_switch isn't simplified to remove the eh case.
3195 Resolve this by expanding the resx node to an abort. */
3197 fn
= builtin_decl_implicit (BUILT_IN_TRAP
);
3198 x
= gimple_build_call (fn
, 0);
3199 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3201 while (EDGE_COUNT (bb
->succs
) > 0)
3202 remove_edge (EDGE_SUCC (bb
, 0));
3206 /* When we have a destination region, we resolve this by copying
3207 the excptr and filter values into place, and changing the edge
3208 to immediately after the landing pad. */
3216 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3217 the failure decl into a new block, if needed. */
3218 gcc_assert (dst_r
->type
== ERT_MUST_NOT_THROW
);
3220 tree
*slot
= mnt_map
->get (dst_r
);
3223 gimple_stmt_iterator gsi2
;
3225 new_bb
= create_empty_bb (bb
);
3226 add_bb_to_loop (new_bb
, bb
->loop_father
);
3227 lab
= gimple_block_label (new_bb
);
3228 gsi2
= gsi_start_bb (new_bb
);
3230 fn
= dst_r
->u
.must_not_throw
.failure_decl
;
3231 x
= gimple_build_call (fn
, 0);
3232 gimple_set_location (x
, dst_r
->u
.must_not_throw
.failure_loc
);
3233 gsi_insert_after (&gsi2
, x
, GSI_CONTINUE_LINKING
);
3235 mnt_map
->put (dst_r
, lab
);
3240 new_bb
= label_to_block (lab
);
3243 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3244 e
= make_edge (bb
, new_bb
, EDGE_FALLTHRU
);
3245 e
->count
= bb
->count
;
3246 e
->probability
= REG_BR_PROB_BASE
;
3251 tree dst_nr
= build_int_cst (integer_type_node
, dst_r
->index
);
3253 fn
= builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES
);
3254 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3255 x
= gimple_build_call (fn
, 2, dst_nr
, src_nr
);
3256 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3258 /* Update the flags for the outgoing edge. */
3259 e
= single_succ_edge (bb
);
3260 gcc_assert (e
->flags
& EDGE_EH
);
3261 e
->flags
= (e
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
3263 /* If there are no more EH users of the landing pad, delete it. */
3264 FOR_EACH_EDGE (e
, ei
, e
->dest
->preds
)
3265 if (e
->flags
& EDGE_EH
)
3269 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
3270 remove_eh_landing_pad (lp
);
3280 /* When we don't have a destination region, this exception escapes
3281 up the call chain. We resolve this by generating a call to the
3282 _Unwind_Resume library function. */
3284 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3285 with no arguments for C++ and Java. Check for that. */
3286 if (src_r
->use_cxa_end_cleanup
)
3288 fn
= builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP
);
3289 x
= gimple_build_call (fn
, 0);
3290 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3294 fn
= builtin_decl_implicit (BUILT_IN_EH_POINTER
);
3295 src_nr
= build_int_cst (integer_type_node
, src_r
->index
);
3296 x
= gimple_build_call (fn
, 1, src_nr
);
3297 var
= create_tmp_var (ptr_type_node
);
3298 var
= make_ssa_name (var
, x
);
3299 gimple_call_set_lhs (x
, var
);
3300 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3302 fn
= builtin_decl_implicit (BUILT_IN_UNWIND_RESUME
);
3303 x
= gimple_build_call (fn
, 1, var
);
3304 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3307 gcc_assert (EDGE_COUNT (bb
->succs
) == 0);
3310 gsi_remove (&gsi
, true);
3317 const pass_data pass_data_lower_resx
=
3319 GIMPLE_PASS
, /* type */
3321 OPTGROUP_NONE
, /* optinfo_flags */
3322 TV_TREE_EH
, /* tv_id */
3323 PROP_gimple_lcf
, /* properties_required */
3324 0, /* properties_provided */
3325 0, /* properties_destroyed */
3326 0, /* todo_flags_start */
3327 0, /* todo_flags_finish */
3330 class pass_lower_resx
: public gimple_opt_pass
3333 pass_lower_resx (gcc::context
*ctxt
)
3334 : gimple_opt_pass (pass_data_lower_resx
, ctxt
)
3337 /* opt_pass methods: */
3338 virtual bool gate (function
*) { return flag_exceptions
!= 0; }
3339 virtual unsigned int execute (function
*);
3341 }; // class pass_lower_resx
3344 pass_lower_resx::execute (function
*fun
)
3347 bool dominance_invalidated
= false;
3348 bool any_rewritten
= false;
3350 hash_map
<eh_region
, tree
> mnt_map
;
3352 FOR_EACH_BB_FN (bb
, fun
)
3354 gimple
*last
= last_stmt (bb
);
3355 if (last
&& is_gimple_resx (last
))
3357 dominance_invalidated
|=
3358 lower_resx (bb
, as_a
<gresx
*> (last
), &mnt_map
);
3359 any_rewritten
= true;
3363 if (dominance_invalidated
)
3365 free_dominance_info (CDI_DOMINATORS
);
3366 free_dominance_info (CDI_POST_DOMINATORS
);
3369 return any_rewritten
? TODO_update_ssa_only_virtuals
: 0;
3375 make_pass_lower_resx (gcc::context
*ctxt
)
3377 return new pass_lower_resx (ctxt
);
3380 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3384 optimize_clobbers (basic_block bb
)
3386 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3387 bool any_clobbers
= false;
3388 bool seen_stack_restore
= false;
3392 /* Only optimize anything if the bb contains at least one clobber,
3393 ends with resx (checked by caller), optionally contains some
3394 debug stmts or labels, or at most one __builtin_stack_restore
3395 call, and has an incoming EH edge. */
3396 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3398 gimple
*stmt
= gsi_stmt (gsi
);
3399 if (is_gimple_debug (stmt
))
3401 if (gimple_clobber_p (stmt
))
3403 any_clobbers
= true;
3406 if (!seen_stack_restore
3407 && gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
3409 seen_stack_restore
= true;
3412 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3418 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3419 if (e
->flags
& EDGE_EH
)
3423 gsi
= gsi_last_bb (bb
);
3424 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3426 gimple
*stmt
= gsi_stmt (gsi
);
3427 if (!gimple_clobber_p (stmt
))
3429 unlink_stmt_vdef (stmt
);
3430 gsi_remove (&gsi
, true);
3431 release_defs (stmt
);
3435 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3436 internal throw to successor BB. */
3439 sink_clobbers (basic_block bb
)
3443 gimple_stmt_iterator gsi
, dgsi
;
3445 bool any_clobbers
= false;
3448 /* Only optimize if BB has a single EH successor and
3449 all predecessor edges are EH too. */
3450 if (!single_succ_p (bb
)
3451 || (single_succ_edge (bb
)->flags
& EDGE_EH
) == 0)
3454 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3456 if ((e
->flags
& EDGE_EH
) == 0)
3460 /* And BB contains only CLOBBER stmts before the final
3462 gsi
= gsi_last_bb (bb
);
3463 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3465 gimple
*stmt
= gsi_stmt (gsi
);
3466 if (is_gimple_debug (stmt
))
3468 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3470 if (!gimple_clobber_p (stmt
))
3472 any_clobbers
= true;
3477 edge succe
= single_succ_edge (bb
);
3478 succbb
= succe
->dest
;
3480 /* See if there is a virtual PHI node to take an updated virtual
3483 tree vuse
= NULL_TREE
;
3484 for (gphi_iterator gpi
= gsi_start_phis (succbb
);
3485 !gsi_end_p (gpi
); gsi_next (&gpi
))
3487 tree res
= gimple_phi_result (gpi
.phi ());
3488 if (virtual_operand_p (res
))
3496 dgsi
= gsi_after_labels (succbb
);
3497 gsi
= gsi_last_bb (bb
);
3498 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
3500 gimple
*stmt
= gsi_stmt (gsi
);
3502 if (is_gimple_debug (stmt
))
3504 if (gimple_code (stmt
) == GIMPLE_LABEL
)
3506 lhs
= gimple_assign_lhs (stmt
);
3507 /* Unfortunately we don't have dominance info updated at this
3508 point, so checking if
3509 dominated_by_p (CDI_DOMINATORS, succbb,
3510 gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (lhs, 0)))
3511 would be too costly. Thus, avoid sinking any clobbers that
3512 refer to non-(D) SSA_NAMEs. */
3513 if (TREE_CODE (lhs
) == MEM_REF
3514 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
3515 && !SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (lhs
, 0)))
3517 unlink_stmt_vdef (stmt
);
3518 gsi_remove (&gsi
, true);
3519 release_defs (stmt
);
3523 /* As we do not change stmt order when sinking across a
3524 forwarder edge we can keep virtual operands in place. */
3525 gsi_remove (&gsi
, false);
3526 gsi_insert_before (&dgsi
, stmt
, GSI_NEW_STMT
);
3528 /* But adjust virtual operands if we sunk across a PHI node. */
3532 imm_use_iterator iter
;
3533 use_operand_p use_p
;
3534 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, vuse
)
3535 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
3536 SET_USE (use_p
, gimple_vdef (stmt
));
3537 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse
))
3539 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_vdef (stmt
)) = 1;
3540 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse
) = 0;
3542 /* Adjust the incoming virtual operand. */
3543 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (vphi
, succe
), gimple_vuse (stmt
));
3544 SET_USE (gimple_vuse_op (stmt
), vuse
);
3546 /* If there isn't a single predecessor but no virtual PHI node
3547 arrange for virtual operands to be renamed. */
3548 else if (gimple_vuse_op (stmt
) != NULL_USE_OPERAND_P
3549 && !single_pred_p (succbb
))
3551 /* In this case there will be no use of the VDEF of this stmt.
3552 ??? Unless this is a secondary opportunity and we have not
3553 removed unreachable blocks yet, so we cannot assert this.
3554 Which also means we will end up renaming too many times. */
3555 SET_USE (gimple_vuse_op (stmt
), gimple_vop (cfun
));
3556 mark_virtual_operands_for_renaming (cfun
);
3557 todo
|= TODO_update_ssa_only_virtuals
;
3564 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3565 we have found some duplicate labels and removed some edges. */
3568 lower_eh_dispatch (basic_block src
, geh_dispatch
*stmt
)
3570 gimple_stmt_iterator gsi
;
3575 bool redirected
= false;
3577 region_nr
= gimple_eh_dispatch_region (stmt
);
3578 r
= get_eh_region_from_number (region_nr
);
3580 gsi
= gsi_last_bb (src
);
3586 auto_vec
<tree
> labels
;
3587 tree default_label
= NULL
;
3591 hash_set
<tree
> seen_values
;
3593 /* Collect the labels for a switch. Zero the post_landing_pad
3594 field becase we'll no longer have anything keeping these labels
3595 in existence and the optimizer will be free to merge these
3597 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
3599 tree tp_node
, flt_node
, lab
= c
->label
;
3600 bool have_label
= false;
3603 tp_node
= c
->type_list
;
3604 flt_node
= c
->filter_list
;
3606 if (tp_node
== NULL
)
3608 default_label
= lab
;
3613 /* Filter out duplicate labels that arise when this handler
3614 is shadowed by an earlier one. When no labels are
3615 attached to the handler anymore, we remove
3616 the corresponding edge and then we delete unreachable
3617 blocks at the end of this pass. */
3618 if (! seen_values
.contains (TREE_VALUE (flt_node
)))
3620 tree t
= build_case_label (TREE_VALUE (flt_node
),
3622 labels
.safe_push (t
);
3623 seen_values
.add (TREE_VALUE (flt_node
));
3627 tp_node
= TREE_CHAIN (tp_node
);
3628 flt_node
= TREE_CHAIN (flt_node
);
3633 remove_edge (find_edge (src
, label_to_block (lab
)));
3638 /* Clean up the edge flags. */
3639 FOR_EACH_EDGE (e
, ei
, src
->succs
)
3641 if (e
->flags
& EDGE_FALLTHRU
)
3643 /* If there was no catch-all, use the fallthru edge. */
3644 if (default_label
== NULL
)
3645 default_label
= gimple_block_label (e
->dest
);
3646 e
->flags
&= ~EDGE_FALLTHRU
;
3649 gcc_assert (default_label
!= NULL
);
3651 /* Don't generate a switch if there's only a default case.
3652 This is common in the form of try { A; } catch (...) { B; }. */
3653 if (!labels
.exists ())
3655 e
= single_succ_edge (src
);
3656 e
->flags
|= EDGE_FALLTHRU
;
3660 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3661 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3663 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3664 filter
= make_ssa_name (filter
, x
);
3665 gimple_call_set_lhs (x
, filter
);
3666 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3668 /* Turn the default label into a default case. */
3669 default_label
= build_case_label (NULL
, NULL
, default_label
);
3670 sort_case_labels (labels
);
3672 x
= gimple_build_switch (filter
, default_label
, labels
);
3673 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3678 case ERT_ALLOWED_EXCEPTIONS
:
3680 edge b_e
= BRANCH_EDGE (src
);
3681 edge f_e
= FALLTHRU_EDGE (src
);
3683 fn
= builtin_decl_implicit (BUILT_IN_EH_FILTER
);
3684 x
= gimple_build_call (fn
, 1, build_int_cst (integer_type_node
,
3686 filter
= create_tmp_var (TREE_TYPE (TREE_TYPE (fn
)));
3687 filter
= make_ssa_name (filter
, x
);
3688 gimple_call_set_lhs (x
, filter
);
3689 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3691 r
->u
.allowed
.label
= NULL
;
3692 x
= gimple_build_cond (EQ_EXPR
, filter
,
3693 build_int_cst (TREE_TYPE (filter
),
3694 r
->u
.allowed
.filter
),
3695 NULL_TREE
, NULL_TREE
);
3696 gsi_insert_before (&gsi
, x
, GSI_SAME_STMT
);
3698 b_e
->flags
= b_e
->flags
| EDGE_TRUE_VALUE
;
3699 f_e
->flags
= (f_e
->flags
& ~EDGE_FALLTHRU
) | EDGE_FALSE_VALUE
;
3707 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3708 gsi_remove (&gsi
, true);
3714 const pass_data pass_data_lower_eh_dispatch
=
3716 GIMPLE_PASS
, /* type */
3717 "ehdisp", /* name */
3718 OPTGROUP_NONE
, /* optinfo_flags */
3719 TV_TREE_EH
, /* tv_id */
3720 PROP_gimple_lcf
, /* properties_required */
3721 0, /* properties_provided */
3722 0, /* properties_destroyed */
3723 0, /* todo_flags_start */
3724 0, /* todo_flags_finish */
3727 class pass_lower_eh_dispatch
: public gimple_opt_pass
3730 pass_lower_eh_dispatch (gcc::context
*ctxt
)
3731 : gimple_opt_pass (pass_data_lower_eh_dispatch
, ctxt
)
3734 /* opt_pass methods: */
3735 virtual bool gate (function
*fun
) { return fun
->eh
->region_tree
!= NULL
; }
3736 virtual unsigned int execute (function
*);
3738 }; // class pass_lower_eh_dispatch
3741 pass_lower_eh_dispatch::execute (function
*fun
)
3745 bool redirected
= false;
3747 assign_filter_values ();
3749 FOR_EACH_BB_FN (bb
, fun
)
3751 gimple
*last
= last_stmt (bb
);
3754 if (gimple_code (last
) == GIMPLE_EH_DISPATCH
)
3756 redirected
|= lower_eh_dispatch (bb
,
3757 as_a
<geh_dispatch
*> (last
));
3758 flags
|= TODO_update_ssa_only_virtuals
;
3760 else if (gimple_code (last
) == GIMPLE_RESX
)
3762 if (stmt_can_throw_external (last
))
3763 optimize_clobbers (bb
);
3765 flags
|= sink_clobbers (bb
);
3770 delete_unreachable_blocks ();
3777 make_pass_lower_eh_dispatch (gcc::context
*ctxt
)
3779 return new pass_lower_eh_dispatch (ctxt
);
3782 /* Walk statements, see what regions and, optionally, landing pads
3783 are really referenced.
3785 Returns in R_REACHABLEP an sbitmap with bits set for reachable regions,
3786 and in LP_REACHABLE an sbitmap with bits set for reachable landing pads.
3788 Passing NULL for LP_REACHABLE is valid, in this case only reachable
3791 The caller is responsible for freeing the returned sbitmaps. */
3794 mark_reachable_handlers (sbitmap
*r_reachablep
, sbitmap
*lp_reachablep
)
3796 sbitmap r_reachable
, lp_reachable
;
3798 bool mark_landing_pads
= (lp_reachablep
!= NULL
);
3799 gcc_checking_assert (r_reachablep
!= NULL
);
3801 r_reachable
= sbitmap_alloc (cfun
->eh
->region_array
->length ());
3802 bitmap_clear (r_reachable
);
3803 *r_reachablep
= r_reachable
;
3805 if (mark_landing_pads
)
3807 lp_reachable
= sbitmap_alloc (cfun
->eh
->lp_array
->length ());
3808 bitmap_clear (lp_reachable
);
3809 *lp_reachablep
= lp_reachable
;
3812 lp_reachable
= NULL
;
3814 FOR_EACH_BB_FN (bb
, cfun
)
3816 gimple_stmt_iterator gsi
;
3818 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3820 gimple
*stmt
= gsi_stmt (gsi
);
3822 if (mark_landing_pads
)
3824 int lp_nr
= lookup_stmt_eh_lp (stmt
);
3826 /* Negative LP numbers are MUST_NOT_THROW regions which
3827 are not considered BB enders. */
3829 bitmap_set_bit (r_reachable
, -lp_nr
);
3831 /* Positive LP numbers are real landing pads, and BB enders. */
3834 gcc_assert (gsi_one_before_end_p (gsi
));
3835 eh_region region
= get_eh_region_from_lp_number (lp_nr
);
3836 bitmap_set_bit (r_reachable
, region
->index
);
3837 bitmap_set_bit (lp_reachable
, lp_nr
);
3841 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3842 switch (gimple_code (stmt
))
3845 bitmap_set_bit (r_reachable
,
3846 gimple_resx_region (as_a
<gresx
*> (stmt
)));
3848 case GIMPLE_EH_DISPATCH
:
3849 bitmap_set_bit (r_reachable
,
3850 gimple_eh_dispatch_region (
3851 as_a
<geh_dispatch
*> (stmt
)));
3854 if (gimple_call_builtin_p (stmt
, BUILT_IN_EH_COPY_VALUES
))
3855 for (int i
= 0; i
< 2; ++i
)
3857 tree rt
= gimple_call_arg (stmt
, i
);
3858 HOST_WIDE_INT ri
= tree_to_shwi (rt
);
3860 gcc_assert (ri
= (int)ri
);
3861 bitmap_set_bit (r_reachable
, ri
);
3871 /* Remove unreachable handlers and unreachable landing pads. */
3874 remove_unreachable_handlers (void)
3876 sbitmap r_reachable
, lp_reachable
;
3881 mark_reachable_handlers (&r_reachable
, &lp_reachable
);
3885 fprintf (dump_file
, "Before removal of unreachable regions:\n");
3886 dump_eh_tree (dump_file
, cfun
);
3887 fprintf (dump_file
, "Reachable regions: ");
3888 dump_bitmap_file (dump_file
, r_reachable
);
3889 fprintf (dump_file
, "Reachable landing pads: ");
3890 dump_bitmap_file (dump_file
, lp_reachable
);
3895 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
3896 if (region
&& !bitmap_bit_p (r_reachable
, region
->index
))
3898 "Removing unreachable region %d\n",
3902 remove_unreachable_eh_regions (r_reachable
);
3904 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
3905 if (lp
&& !bitmap_bit_p (lp_reachable
, lp
->index
))
3909 "Removing unreachable landing pad %d\n",
3911 remove_eh_landing_pad (lp
);
3916 fprintf (dump_file
, "\n\nAfter removal of unreachable regions:\n");
3917 dump_eh_tree (dump_file
, cfun
);
3918 fprintf (dump_file
, "\n\n");
3921 sbitmap_free (r_reachable
);
3922 sbitmap_free (lp_reachable
);
3924 #ifdef ENABLE_CHECKING
3925 verify_eh_tree (cfun
);
3929 /* Remove unreachable handlers if any landing pads have been removed after
3930 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3933 maybe_remove_unreachable_handlers (void)
3938 if (cfun
->eh
== NULL
)
3941 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->lp_array
, i
, lp
)
3942 if (lp
&& lp
->post_landing_pad
)
3944 if (label_to_block (lp
->post_landing_pad
) == NULL
)
3946 remove_unreachable_handlers ();
3952 /* Remove regions that do not have landing pads. This assumes
3953 that remove_unreachable_handlers has already been run, and
3954 that we've just manipulated the landing pads since then.
3956 Preserve regions with landing pads and regions that prevent
3957 exceptions from propagating further, even if these regions
3958 are not reachable. */
3961 remove_unreachable_handlers_no_lp (void)
3964 sbitmap r_reachable
;
3967 mark_reachable_handlers (&r_reachable
, /*lp_reachablep=*/NULL
);
3969 FOR_EACH_VEC_SAFE_ELT (cfun
->eh
->region_array
, i
, region
)
3974 if (region
->landing_pads
!= NULL
3975 || region
->type
== ERT_MUST_NOT_THROW
)
3976 bitmap_set_bit (r_reachable
, region
->index
);
3979 && !bitmap_bit_p (r_reachable
, region
->index
))
3981 "Removing unreachable region %d\n",
3985 remove_unreachable_eh_regions (r_reachable
);
3987 sbitmap_free (r_reachable
);
3990 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3991 optimisticaly split all sorts of edges, including EH edges. The
3992 optimization passes in between may not have needed them; if not,
3993 we should undo the split.
3995 Recognize this case by having one EH edge incoming to the BB and
3996 one normal edge outgoing; BB should be empty apart from the
3997 post_landing_pad label.
3999 Note that this is slightly different from the empty handler case
4000 handled by cleanup_empty_eh, in that the actual handler may yet
4001 have actual code but the landing pad has been separated from the
4002 handler. As such, cleanup_empty_eh relies on this transformation
4003 having been done first. */
4006 unsplit_eh (eh_landing_pad lp
)
4008 basic_block bb
= label_to_block (lp
->post_landing_pad
);
4009 gimple_stmt_iterator gsi
;
4012 /* Quickly check the edge counts on BB for singularity. */
4013 if (!single_pred_p (bb
) || !single_succ_p (bb
))
4015 e_in
= single_pred_edge (bb
);
4016 e_out
= single_succ_edge (bb
);
4018 /* Input edge must be EH and output edge must be normal. */
4019 if ((e_in
->flags
& EDGE_EH
) == 0 || (e_out
->flags
& EDGE_EH
) != 0)
4022 /* The block must be empty except for the labels and debug insns. */
4023 gsi
= gsi_after_labels (bb
);
4024 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4025 gsi_next_nondebug (&gsi
);
4026 if (!gsi_end_p (gsi
))
4029 /* The destination block must not already have a landing pad
4030 for a different region. */
4031 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4033 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4039 lab
= gimple_label_label (label_stmt
);
4040 lp_nr
= EH_LANDING_PAD_NR (lab
);
4041 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4045 /* The new destination block must not already be a destination of
4046 the source block, lest we merge fallthru and eh edges and get
4047 all sorts of confused. */
4048 if (find_edge (e_in
->src
, e_out
->dest
))
4051 /* ??? We can get degenerate phis due to cfg cleanups. I would have
4052 thought this should have been cleaned up by a phicprop pass, but
4053 that doesn't appear to handle virtuals. Propagate by hand. */
4054 if (!gimple_seq_empty_p (phi_nodes (bb
)))
4056 for (gphi_iterator gpi
= gsi_start_phis (bb
); !gsi_end_p (gpi
); )
4059 gphi
*phi
= gpi
.phi ();
4060 tree lhs
= gimple_phi_result (phi
);
4061 tree rhs
= gimple_phi_arg_def (phi
, 0);
4062 use_operand_p use_p
;
4063 imm_use_iterator iter
;
4065 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
4067 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
4068 SET_USE (use_p
, rhs
);
4071 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
4072 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs
) = 1;
4074 remove_phi_node (&gpi
, true);
4078 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4079 fprintf (dump_file
, "Unsplit EH landing pad %d to block %i.\n",
4080 lp
->index
, e_out
->dest
->index
);
4082 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
4083 a successor edge, humor it. But do the real CFG change with the
4084 predecessor of E_OUT in order to preserve the ordering of arguments
4085 to the PHI nodes in E_OUT->DEST. */
4086 redirect_eh_edge_1 (e_in
, e_out
->dest
, false);
4087 redirect_edge_pred (e_out
, e_in
->src
);
4088 e_out
->flags
= e_in
->flags
;
4089 e_out
->probability
= e_in
->probability
;
4090 e_out
->count
= e_in
->count
;
4096 /* Examine each landing pad block and see if it matches unsplit_eh. */
4099 unsplit_all_eh (void)
4101 bool changed
= false;
4105 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4107 changed
|= unsplit_eh (lp
);
4112 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
4113 to OLD_BB to NEW_BB; return true on success, false on failure.
4115 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
4116 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
4117 Virtual PHIs may be deleted and marked for renaming. */
4120 cleanup_empty_eh_merge_phis (basic_block new_bb
, basic_block old_bb
,
4121 edge old_bb_out
, bool change_region
)
4123 gphi_iterator ngsi
, ogsi
;
4126 bitmap ophi_handled
;
4128 /* The destination block must not be a regular successor for any
4129 of the preds of the landing pad. Thus, avoid turning
4139 which CFG verification would choke on. See PR45172 and PR51089. */
4140 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4141 if (find_edge (e
->src
, new_bb
))
4144 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4145 redirect_edge_var_map_clear (e
);
4147 ophi_handled
= BITMAP_ALLOC (NULL
);
4149 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
4150 for the edges we're going to move. */
4151 for (ngsi
= gsi_start_phis (new_bb
); !gsi_end_p (ngsi
); gsi_next (&ngsi
))
4153 gphi
*ophi
, *nphi
= ngsi
.phi ();
4156 nresult
= gimple_phi_result (nphi
);
4157 nop
= gimple_phi_arg_def (nphi
, old_bb_out
->dest_idx
);
4159 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
4160 the source ssa_name. */
4162 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4165 if (gimple_phi_result (ophi
) == nop
)
4170 /* If we did find the corresponding PHI, copy those inputs. */
4173 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
4174 if (!has_single_use (nop
))
4176 imm_use_iterator imm_iter
;
4177 use_operand_p use_p
;
4179 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, nop
)
4181 if (!gimple_debug_bind_p (USE_STMT (use_p
))
4182 && (gimple_code (USE_STMT (use_p
)) != GIMPLE_PHI
4183 || gimple_bb (USE_STMT (use_p
)) != new_bb
))
4187 bitmap_set_bit (ophi_handled
, SSA_NAME_VERSION (nop
));
4188 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4193 if ((e
->flags
& EDGE_EH
) == 0)
4195 oop
= gimple_phi_arg_def (ophi
, e
->dest_idx
);
4196 oloc
= gimple_phi_arg_location (ophi
, e
->dest_idx
);
4197 redirect_edge_var_map_add (e
, nresult
, oop
, oloc
);
4200 /* If we didn't find the PHI, if it's a real variable or a VOP, we know
4201 from the fact that OLD_BB is tree_empty_eh_handler_p that the
4202 variable is unchanged from input to the block and we can simply
4203 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
4207 = gimple_phi_arg_location (nphi
, old_bb_out
->dest_idx
);
4208 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4209 redirect_edge_var_map_add (e
, nresult
, nop
, nloc
);
4213 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
4214 we don't know what values from the other edges into NEW_BB to use. */
4215 for (ogsi
= gsi_start_phis (old_bb
); !gsi_end_p (ogsi
); gsi_next (&ogsi
))
4217 gphi
*ophi
= ogsi
.phi ();
4218 tree oresult
= gimple_phi_result (ophi
);
4219 if (!bitmap_bit_p (ophi_handled
, SSA_NAME_VERSION (oresult
)))
4223 /* Finally, move the edges and update the PHIs. */
4224 for (ei
= ei_start (old_bb
->preds
); (e
= ei_safe_edge (ei
)); )
4225 if (e
->flags
& EDGE_EH
)
4227 /* ??? CFG manipluation routines do not try to update loop
4228 form on edge redirection. Do so manually here for now. */
4229 /* If we redirect a loop entry or latch edge that will either create
4230 a multiple entry loop or rotate the loop. If the loops merge
4231 we may have created a loop with multiple latches.
4232 All of this isn't easily fixed thus cancel the affected loop
4233 and mark the other loop as possibly having multiple latches. */
4234 if (e
->dest
== e
->dest
->loop_father
->header
)
4236 mark_loop_for_removal (e
->dest
->loop_father
);
4237 new_bb
->loop_father
->latch
= NULL
;
4238 loops_state_set (LOOPS_MAY_HAVE_MULTIPLE_LATCHES
);
4240 redirect_eh_edge_1 (e
, new_bb
, change_region
);
4241 redirect_edge_succ (e
, new_bb
);
4242 flush_pending_stmts (e
);
4247 BITMAP_FREE (ophi_handled
);
4251 FOR_EACH_EDGE (e
, ei
, old_bb
->preds
)
4252 redirect_edge_var_map_clear (e
);
4253 BITMAP_FREE (ophi_handled
);
4257 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
4258 old region to NEW_REGION at BB. */
4261 cleanup_empty_eh_move_lp (basic_block bb
, edge e_out
,
4262 eh_landing_pad lp
, eh_region new_region
)
4264 gimple_stmt_iterator gsi
;
4267 for (pp
= &lp
->region
->landing_pads
; *pp
!= lp
; pp
= &(*pp
)->next_lp
)
4271 lp
->region
= new_region
;
4272 lp
->next_lp
= new_region
->landing_pads
;
4273 new_region
->landing_pads
= lp
;
4275 /* Delete the RESX that was matched within the empty handler block. */
4276 gsi
= gsi_last_bb (bb
);
4277 unlink_stmt_vdef (gsi_stmt (gsi
));
4278 gsi_remove (&gsi
, true);
4280 /* Clean up E_OUT for the fallthru. */
4281 e_out
->flags
= (e_out
->flags
& ~EDGE_EH
) | EDGE_FALLTHRU
;
4282 e_out
->probability
= REG_BR_PROB_BASE
;
4285 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
4286 unsplitting than unsplit_eh was prepared to handle, e.g. when
4287 multiple incoming edges and phis are involved. */
4290 cleanup_empty_eh_unsplit (basic_block bb
, edge e_out
, eh_landing_pad lp
)
4292 gimple_stmt_iterator gsi
;
4295 /* We really ought not have totally lost everything following
4296 a landing pad label. Given that BB is empty, there had better
4298 gcc_assert (e_out
!= NULL
);
4300 /* The destination block must not already have a landing pad
4301 for a different region. */
4303 for (gsi
= gsi_start_bb (e_out
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4305 glabel
*stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
4310 lab
= gimple_label_label (stmt
);
4311 lp_nr
= EH_LANDING_PAD_NR (lab
);
4312 if (lp_nr
&& get_eh_region_from_lp_number (lp_nr
) != lp
->region
)
4316 /* Attempt to move the PHIs into the successor block. */
4317 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, false))
4319 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4321 "Unsplit EH landing pad %d to block %i "
4322 "(via cleanup_empty_eh).\n",
4323 lp
->index
, e_out
->dest
->index
);
4330 /* Return true if edge E_FIRST is part of an empty infinite loop
4331 or leads to such a loop through a series of single successor
4335 infinite_empty_loop_p (edge e_first
)
4337 bool inf_loop
= false;
4340 if (e_first
->dest
== e_first
->src
)
4343 e_first
->src
->aux
= (void *) 1;
4344 for (e
= e_first
; single_succ_p (e
->dest
); e
= single_succ_edge (e
->dest
))
4346 gimple_stmt_iterator gsi
;
4352 e
->dest
->aux
= (void *) 1;
4353 gsi
= gsi_after_labels (e
->dest
);
4354 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4355 gsi_next_nondebug (&gsi
);
4356 if (!gsi_end_p (gsi
))
4359 e_first
->src
->aux
= NULL
;
4360 for (e
= e_first
; e
->dest
->aux
; e
= single_succ_edge (e
->dest
))
4361 e
->dest
->aux
= NULL
;
4366 /* Examine the block associated with LP to determine if it's an empty
4367 handler for its EH region. If so, attempt to redirect EH edges to
4368 an outer region. Return true the CFG was updated in any way. This
4369 is similar to jump forwarding, just across EH edges. */
4372 cleanup_empty_eh (eh_landing_pad lp
)
4374 basic_block bb
= label_to_block (lp
->post_landing_pad
);
4375 gimple_stmt_iterator gsi
;
4377 eh_region new_region
;
4380 bool has_non_eh_pred
;
4384 /* There can be zero or one edges out of BB. This is the quickest test. */
4385 switch (EDGE_COUNT (bb
->succs
))
4391 e_out
= single_succ_edge (bb
);
4397 resx
= last_stmt (bb
);
4398 if (resx
&& is_gimple_resx (resx
))
4400 if (stmt_can_throw_external (resx
))
4401 optimize_clobbers (bb
);
4402 else if (sink_clobbers (bb
))
4406 gsi
= gsi_after_labels (bb
);
4408 /* Make sure to skip debug statements. */
4409 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
4410 gsi_next_nondebug (&gsi
);
4412 /* If the block is totally empty, look for more unsplitting cases. */
4413 if (gsi_end_p (gsi
))
4415 /* For the degenerate case of an infinite loop bail out.
4416 If bb has no successors and is totally empty, which can happen e.g.
4417 because of incorrect noreturn attribute, bail out too. */
4419 || infinite_empty_loop_p (e_out
))
4422 return ret
| cleanup_empty_eh_unsplit (bb
, e_out
, lp
);
4425 /* The block should consist only of a single RESX statement, modulo a
4426 preceding call to __builtin_stack_restore if there is no outgoing
4427 edge, since the call can be eliminated in this case. */
4428 resx
= gsi_stmt (gsi
);
4429 if (!e_out
&& gimple_call_builtin_p (resx
, BUILT_IN_STACK_RESTORE
))
4432 resx
= gsi_stmt (gsi
);
4434 if (!is_gimple_resx (resx
))
4436 gcc_assert (gsi_one_before_end_p (gsi
));
4438 /* Determine if there are non-EH edges, or resx edges into the handler. */
4439 has_non_eh_pred
= false;
4440 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4441 if (!(e
->flags
& EDGE_EH
))
4442 has_non_eh_pred
= true;
4444 /* Find the handler that's outer of the empty handler by looking at
4445 where the RESX instruction was vectored. */
4446 new_lp_nr
= lookup_stmt_eh_lp (resx
);
4447 new_region
= get_eh_region_from_lp_number (new_lp_nr
);
4449 /* If there's no destination region within the current function,
4450 redirection is trivial via removing the throwing statements from
4451 the EH region, removing the EH edges, and allowing the block
4452 to go unreachable. */
4453 if (new_region
== NULL
)
4455 gcc_assert (e_out
== NULL
);
4456 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4457 if (e
->flags
& EDGE_EH
)
4459 gimple
*stmt
= last_stmt (e
->src
);
4460 remove_stmt_from_eh_lp (stmt
);
4468 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4469 to handle the abort and allow the blocks to go unreachable. */
4470 if (new_region
->type
== ERT_MUST_NOT_THROW
)
4472 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
4473 if (e
->flags
& EDGE_EH
)
4475 gimple
*stmt
= last_stmt (e
->src
);
4476 remove_stmt_from_eh_lp (stmt
);
4477 add_stmt_to_eh_lp (stmt
, new_lp_nr
);
4485 /* Try to redirect the EH edges and merge the PHIs into the destination
4486 landing pad block. If the merge succeeds, we'll already have redirected
4487 all the EH edges. The handler itself will go unreachable if there were
4489 if (cleanup_empty_eh_merge_phis (e_out
->dest
, bb
, e_out
, true))
4492 /* Finally, if all input edges are EH edges, then we can (potentially)
4493 reduce the number of transfers from the runtime by moving the landing
4494 pad from the original region to the new region. This is a win when
4495 we remove the last CLEANUP region along a particular exception
4496 propagation path. Since nothing changes except for the region with
4497 which the landing pad is associated, the PHI nodes do not need to be
4499 if (!has_non_eh_pred
)
4501 cleanup_empty_eh_move_lp (bb
, e_out
, lp
, new_region
);
4502 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4503 fprintf (dump_file
, "Empty EH handler %i moved to EH region %i.\n",
4504 lp
->index
, new_region
->index
);
4506 /* ??? The CFG didn't change, but we may have rendered the
4507 old EH region unreachable. Trigger a cleanup there. */
4514 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
4515 fprintf (dump_file
, "Empty EH handler %i removed.\n", lp
->index
);
4516 remove_eh_landing_pad (lp
);
4520 /* Do a post-order traversal of the EH region tree. Examine each
4521 post_landing_pad block and see if we can eliminate it as empty. */
4524 cleanup_all_empty_eh (void)
4526 bool changed
= false;
4530 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
4532 changed
|= cleanup_empty_eh (lp
);
4537 /* Perform cleanups and lowering of exception handling
4538 1) cleanups regions with handlers doing nothing are optimized out
4539 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4540 3) Info about regions that are containing instructions, and regions
4541 reachable via local EH edges is collected
4542 4) Eh tree is pruned for regions no longer necessary.
4544 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4545 Unify those that have the same failure decl and locus.
4549 execute_cleanup_eh_1 (void)
4551 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4552 looking up unreachable landing pads. */
4553 remove_unreachable_handlers ();
4555 /* Watch out for the region tree vanishing due to all unreachable. */
4556 if (cfun
->eh
->region_tree
)
4558 bool changed
= false;
4561 changed
|= unsplit_all_eh ();
4562 changed
|= cleanup_all_empty_eh ();
4566 free_dominance_info (CDI_DOMINATORS
);
4567 free_dominance_info (CDI_POST_DOMINATORS
);
4569 /* We delayed all basic block deletion, as we may have performed
4570 cleanups on EH edges while non-EH edges were still present. */
4571 delete_unreachable_blocks ();
4573 /* We manipulated the landing pads. Remove any region that no
4574 longer has a landing pad. */
4575 remove_unreachable_handlers_no_lp ();
4577 return TODO_cleanup_cfg
| TODO_update_ssa_only_virtuals
;
4586 const pass_data pass_data_cleanup_eh
=
4588 GIMPLE_PASS
, /* type */
4589 "ehcleanup", /* name */
4590 OPTGROUP_NONE
, /* optinfo_flags */
4591 TV_TREE_EH
, /* tv_id */
4592 PROP_gimple_lcf
, /* properties_required */
4593 0, /* properties_provided */
4594 0, /* properties_destroyed */
4595 0, /* todo_flags_start */
4596 0, /* todo_flags_finish */
4599 class pass_cleanup_eh
: public gimple_opt_pass
4602 pass_cleanup_eh (gcc::context
*ctxt
)
4603 : gimple_opt_pass (pass_data_cleanup_eh
, ctxt
)
4606 /* opt_pass methods: */
4607 opt_pass
* clone () { return new pass_cleanup_eh (m_ctxt
); }
4608 virtual bool gate (function
*fun
)
4610 return fun
->eh
!= NULL
&& fun
->eh
->region_tree
!= NULL
;
4613 virtual unsigned int execute (function
*);
4615 }; // class pass_cleanup_eh
4618 pass_cleanup_eh::execute (function
*fun
)
4620 int ret
= execute_cleanup_eh_1 ();
4622 /* If the function no longer needs an EH personality routine
4623 clear it. This exposes cross-language inlining opportunities
4624 and avoids references to a never defined personality routine. */
4625 if (DECL_FUNCTION_PERSONALITY (current_function_decl
)
4626 && function_needs_eh_personality (fun
) != eh_personality_lang
)
4627 DECL_FUNCTION_PERSONALITY (current_function_decl
) = NULL_TREE
;
4635 make_pass_cleanup_eh (gcc::context
*ctxt
)
4637 return new pass_cleanup_eh (ctxt
);
4640 /* Verify that BB containing STMT as the last statement, has precisely the
4641 edge that make_eh_edges would create. */
4644 verify_eh_edges (gimple
*stmt
)
4646 basic_block bb
= gimple_bb (stmt
);
4647 eh_landing_pad lp
= NULL
;
4652 lp_nr
= lookup_stmt_eh_lp (stmt
);
4654 lp
= get_eh_landing_pad_from_number (lp_nr
);
4657 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4659 if (e
->flags
& EDGE_EH
)
4663 error ("BB %i has multiple EH edges", bb
->index
);
4675 error ("BB %i can not throw but has an EH edge", bb
->index
);
4681 if (!stmt_could_throw_p (stmt
))
4683 error ("BB %i last statement has incorrectly set lp", bb
->index
);
4687 if (eh_edge
== NULL
)
4689 error ("BB %i is missing an EH edge", bb
->index
);
4693 if (eh_edge
->dest
!= label_to_block (lp
->post_landing_pad
))
4695 error ("Incorrect EH edge %i->%i", bb
->index
, eh_edge
->dest
->index
);
4702 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4705 verify_eh_dispatch_edge (geh_dispatch
*stmt
)
4709 basic_block src
, dst
;
4710 bool want_fallthru
= true;
4714 r
= get_eh_region_from_number (gimple_eh_dispatch_region (stmt
));
4715 src
= gimple_bb (stmt
);
4717 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4718 gcc_assert (e
->aux
== NULL
);
4723 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
4725 dst
= label_to_block (c
->label
);
4726 e
= find_edge (src
, dst
);
4729 error ("BB %i is missing an edge", src
->index
);
4734 /* A catch-all handler doesn't have a fallthru. */
4735 if (c
->type_list
== NULL
)
4737 want_fallthru
= false;
4743 case ERT_ALLOWED_EXCEPTIONS
:
4744 dst
= label_to_block (r
->u
.allowed
.label
);
4745 e
= find_edge (src
, dst
);
4748 error ("BB %i is missing an edge", src
->index
);
4759 FOR_EACH_EDGE (e
, ei
, src
->succs
)
4761 if (e
->flags
& EDGE_FALLTHRU
)
4763 if (fall_edge
!= NULL
)
4765 error ("BB %i too many fallthru edges", src
->index
);
4774 error ("BB %i has incorrect edge", src
->index
);
4778 if ((fall_edge
!= NULL
) ^ want_fallthru
)
4780 error ("BB %i has incorrect fallthru edge", src
->index
);