1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
70 #include "targhooks.h"
79 #include "tree-pass.h"
85 #include "tree-pretty-print.h" /* for dump_function_header */
87 #include "wide-int-print.h"
90 #ifdef XCOFF_DEBUGGING_INFO
91 #include "xcoffout.h" /* Needed for external data
92 declarations for e.g. AIX 4.x. */
95 #include "dwarf2out.h"
97 #ifdef DBX_DEBUGGING_INFO
101 #ifdef SDB_DEBUGGING_INFO
105 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
106 So define a null default for it to save conditionalization later. */
107 #ifndef CC_STATUS_INIT
108 #define CC_STATUS_INIT
111 /* Is the given character a logical line separator for the assembler? */
112 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
113 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
116 #ifndef JUMP_TABLES_IN_TEXT_SECTION
117 #define JUMP_TABLES_IN_TEXT_SECTION 0
120 /* Bitflags used by final_scan_insn. */
122 #define SEEN_EMITTED 2
124 /* Last insn processed by final_scan_insn. */
125 static rtx_insn
*debug_insn
;
126 rtx_insn
*current_output_insn
;
128 /* Line number of last NOTE. */
129 static int last_linenum
;
131 /* Last discriminator written to assembly. */
132 static int last_discriminator
;
134 /* Discriminator of current block. */
135 static int discriminator
;
137 /* Highest line number in current block. */
138 static int high_block_linenum
;
140 /* Likewise for function. */
141 static int high_function_linenum
;
143 /* Filename of last NOTE. */
144 static const char *last_filename
;
146 /* Override filename and line number. */
147 static const char *override_filename
;
148 static int override_linenum
;
150 /* Whether to force emission of a line note before the next insn. */
151 static bool force_source_line
= false;
153 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
155 /* Nonzero while outputting an `asm' with operands.
156 This means that inconsistencies are the user's fault, so don't die.
157 The precise value is the insn being output, to pass to error_for_asm. */
158 const rtx_insn
*this_is_asm_operands
;
160 /* Number of operands of this insn, for an `asm' with operands. */
161 static unsigned int insn_noperands
;
163 /* Compare optimization flag. */
165 static rtx last_ignored_compare
= 0;
167 /* Assign a unique number to each insn that is output.
168 This can be used to generate unique local labels. */
170 static int insn_counter
= 0;
172 /* This variable contains machine-dependent flags (defined in tm.h)
173 set and examined by output routines
174 that describe how to interpret the condition codes properly. */
178 /* During output of an insn, this contains a copy of cc_status
179 from before the insn. */
181 CC_STATUS cc_prev_status
;
183 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
185 static int block_depth
;
187 /* Nonzero if have enabled APP processing of our assembler output. */
191 /* If we are outputting an insn sequence, this contains the sequence rtx.
194 rtx_sequence
*final_sequence
;
196 #ifdef ASSEMBLER_DIALECT
198 /* Number of the assembler dialect to use, starting at 0. */
199 static int dialect_number
;
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate
;
205 /* True if printing into -fdump-final-insns= dump. */
206 bool final_insns_dump_p
;
208 /* True if profile_function should be called, but hasn't been called yet. */
209 static bool need_profile_function
;
211 static int asm_insn_count (rtx
);
212 static void profile_function (FILE *);
213 static void profile_after_prologue (FILE *);
214 static bool notice_source_line (rtx_insn
*, bool *);
215 static rtx
walk_alter_subreg (rtx
*, bool *);
216 static void output_asm_name (void);
217 static void output_alternate_entry_point (FILE *, rtx_insn
*);
218 static tree
get_mem_expr_from_op (rtx
, int *);
219 static void output_asm_operand_names (rtx
*, int *, int);
220 #ifdef LEAF_REGISTERS
221 static void leaf_renumber_regs (rtx_insn
*);
224 static int alter_cond (rtx
);
226 #ifndef ADDR_VEC_ALIGN
227 static int final_addr_vec_align (rtx
);
229 static int align_fuzz (rtx
, rtx
, int, unsigned);
230 static void collect_fn_hard_reg_usage (void);
231 static tree
get_call_fndecl (rtx_insn
*);
233 /* Initialize data in final at the beginning of a compilation. */
236 init_final (const char *filename ATTRIBUTE_UNUSED
)
241 #ifdef ASSEMBLER_DIALECT
242 dialect_number
= ASSEMBLER_DIALECT
;
246 /* Default target function prologue and epilogue assembler output.
248 If not overridden for epilogue code, then the function body itself
249 contains return instructions wherever needed. */
251 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
252 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
257 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
258 tree decl ATTRIBUTE_UNUSED
,
259 bool new_is_cold ATTRIBUTE_UNUSED
)
263 /* Default target hook that outputs nothing to a stream. */
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
277 fputs (ASM_APP_ON
, asm_out_file
);
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
290 fputs (ASM_APP_OFF
, asm_out_file
);
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
301 dbr_sequence_length (void)
303 if (final_sequence
!= 0)
304 return XVECLEN (final_sequence
, 0) - 1;
310 /* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
313 /* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
316 static int *insn_lengths
;
318 vec
<int> insn_addresses_
;
320 /* Max uid for which the above arrays are valid. */
321 static int insn_lengths_max_uid
;
323 /* Address of insn being processed. Used by `insn_current_length'. */
324 int insn_current_address
;
326 /* Address of insn being processed in previous iteration. */
327 int insn_last_address
;
329 /* known invariant alignment of insn being processed. */
330 int insn_current_align
;
332 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
341 struct label_alignment
347 static rtx
*uid_align
;
348 static int *uid_shuid
;
349 static struct label_alignment
*label_align
;
351 /* Indicate that branch shortening hasn't yet been done. */
354 init_insn_lengths (void)
365 insn_lengths_max_uid
= 0;
367 if (HAVE_ATTR_length
)
368 INSN_ADDRESSES_FREE ();
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, use FALLBACK_FN to calculate the
380 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
386 if (!HAVE_ATTR_length
)
389 if (insn_lengths_max_uid
> INSN_UID (insn
))
390 return insn_lengths
[INSN_UID (insn
)];
392 switch (GET_CODE (insn
))
402 length
= fallback_fn (insn
);
406 body
= PATTERN (insn
);
407 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
410 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
411 length
= asm_insn_count (body
) * fallback_fn (insn
);
412 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
413 for (i
= 0; i
< seq
->len (); i
++)
414 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
416 length
= fallback_fn (insn
);
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn
, length
);
429 /* Obtain the current length of an insn. If branch shortening has been done,
430 get its actual length. Otherwise, get its maximum length. */
432 get_attr_length (rtx_insn
*insn
)
434 return get_attr_length_1 (insn
, insn_default_length
);
437 /* Obtain the current length of an insn. If branch shortening has been done,
438 get its actual length. Otherwise, get its minimum length. */
440 get_attr_min_length (rtx_insn
*insn
)
442 return get_attr_length_1 (insn
, insn_min_length
);
445 /* Code to handle alignment inside shorten_branches. */
447 /* Here is an explanation how the algorithm in align_fuzz can give
450 Call a sequence of instructions beginning with alignment point X
451 and continuing until the next alignment point `block X'. When `X'
452 is used in an expression, it means the alignment value of the
455 Call the distance between the start of the first insn of block X, and
456 the end of the last insn of block X `IX', for the `inner size of X'.
457 This is clearly the sum of the instruction lengths.
459 Likewise with the next alignment-delimited block following X, which we
462 Call the distance between the start of the first insn of block X, and
463 the start of the first insn of block Y `OX', for the `outer size of X'.
465 The estimated padding is then OX - IX.
467 OX can be safely estimated as
472 OX = round_up(IX, X) + Y - X
474 Clearly est(IX) >= real(IX), because that only depends on the
475 instruction lengths, and those being overestimated is a given.
477 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
478 we needn't worry about that when thinking about OX.
480 When X >= Y, the alignment provided by Y adds no uncertainty factor
481 for branch ranges starting before X, so we can just round what we have.
482 But when X < Y, we don't know anything about the, so to speak,
483 `middle bits', so we have to assume the worst when aligning up from an
484 address mod X to one mod Y, which is Y - X. */
487 #define LABEL_ALIGN(LABEL) align_labels_log
491 #define LOOP_ALIGN(LABEL) align_loops_log
494 #ifndef LABEL_ALIGN_AFTER_BARRIER
495 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
499 #define JUMP_ALIGN(LABEL) align_jumps_log
503 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
509 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
511 return align_loops_max_skip
;
515 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
517 return align_labels_max_skip
;
521 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
523 return align_jumps_max_skip
;
526 #ifndef ADDR_VEC_ALIGN
528 final_addr_vec_align (rtx addr_vec
)
530 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
532 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
533 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
534 return exact_log2 (align
);
538 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
541 #ifndef INSN_LENGTH_ALIGNMENT
542 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
545 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
547 static int min_labelno
, max_labelno
;
549 #define LABEL_TO_ALIGNMENT(LABEL) \
550 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
552 #define LABEL_TO_MAX_SKIP(LABEL) \
553 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
555 /* For the benefit of port specific code do this also as a function. */
558 label_to_alignment (rtx label
)
560 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
561 return LABEL_TO_ALIGNMENT (label
);
566 label_to_max_skip (rtx label
)
568 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
569 return LABEL_TO_MAX_SKIP (label
);
573 /* The differences in addresses
574 between a branch and its target might grow or shrink depending on
575 the alignment the start insn of the range (the branch for a forward
576 branch or the label for a backward branch) starts out on; if these
577 differences are used naively, they can even oscillate infinitely.
578 We therefore want to compute a 'worst case' address difference that
579 is independent of the alignment the start insn of the range end
580 up on, and that is at least as large as the actual difference.
581 The function align_fuzz calculates the amount we have to add to the
582 naively computed difference, by traversing the part of the alignment
583 chain of the start insn of the range that is in front of the end insn
584 of the range, and considering for each alignment the maximum amount
585 that it might contribute to a size increase.
587 For casesi tables, we also want to know worst case minimum amounts of
588 address difference, in case a machine description wants to introduce
589 some common offset that is added to all offsets in a table.
590 For this purpose, align_fuzz with a growth argument of 0 computes the
591 appropriate adjustment. */
593 /* Compute the maximum delta by which the difference of the addresses of
594 START and END might grow / shrink due to a different address for start
595 which changes the size of alignment insns between START and END.
596 KNOWN_ALIGN_LOG is the alignment known for START.
597 GROWTH should be ~0 if the objective is to compute potential code size
598 increase, and 0 if the objective is to compute potential shrink.
599 The return value is undefined for any other value of GROWTH. */
602 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
604 int uid
= INSN_UID (start
);
606 int known_align
= 1 << known_align_log
;
607 int end_shuid
= INSN_SHUID (end
);
610 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
612 int align_addr
, new_align
;
614 uid
= INSN_UID (align_label
);
615 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
616 if (uid_shuid
[uid
] > end_shuid
)
618 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
619 new_align
= 1 << known_align_log
;
620 if (new_align
< known_align
)
622 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
623 known_align
= new_align
;
628 /* Compute a worst-case reference address of a branch so that it
629 can be safely used in the presence of aligned labels. Since the
630 size of the branch itself is unknown, the size of the branch is
631 not included in the range. I.e. for a forward branch, the reference
632 address is the end address of the branch as known from the previous
633 branch shortening pass, minus a value to account for possible size
634 increase due to alignment. For a backward branch, it is the start
635 address of the branch as known from the current pass, plus a value
636 to account for possible size increase due to alignment.
637 NB.: Therefore, the maximum offset allowed for backward branches needs
638 to exclude the branch size. */
641 insn_current_reference_address (rtx_insn
*branch
)
646 if (! INSN_ADDRESSES_SET_P ())
649 rtx_insn
*seq
= NEXT_INSN (PREV_INSN (branch
));
650 seq_uid
= INSN_UID (seq
);
651 if (!JUMP_P (branch
))
652 /* This can happen for example on the PA; the objective is to know the
653 offset to address something in front of the start of the function.
654 Thus, we can treat it like a backward branch.
655 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
656 any alignment we'd encounter, so we skip the call to align_fuzz. */
657 return insn_current_address
;
658 dest
= JUMP_LABEL (branch
);
660 /* BRANCH has no proper alignment chain set, so use SEQ.
661 BRANCH also has no INSN_SHUID. */
662 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
664 /* Forward branch. */
665 return (insn_last_address
+ insn_lengths
[seq_uid
]
666 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
670 /* Backward branch. */
671 return (insn_current_address
672 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
676 /* Compute branch alignments based on frequency information in the
680 compute_alignments (void)
682 int log
, max_skip
, max_log
;
685 int freq_threshold
= 0;
693 max_labelno
= max_label_num ();
694 min_labelno
= get_first_label_num ();
695 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
697 /* If not optimizing or optimizing for size, don't assign any alignments. */
698 if (! optimize
|| optimize_function_for_size_p (cfun
))
703 dump_reg_info (dump_file
);
704 dump_flow_info (dump_file
, TDF_DETAILS
);
705 flow_loops_dump (dump_file
, NULL
, 1);
707 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
708 FOR_EACH_BB_FN (bb
, cfun
)
709 if (bb
->frequency
> freq_max
)
710 freq_max
= bb
->frequency
;
711 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
714 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
715 FOR_EACH_BB_FN (bb
, cfun
)
717 rtx_insn
*label
= BB_HEAD (bb
);
718 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
723 || optimize_bb_for_size_p (bb
))
727 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
728 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
732 max_log
= LABEL_ALIGN (label
);
733 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
735 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
737 if (e
->flags
& EDGE_FALLTHRU
)
738 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
740 branch_frequency
+= EDGE_FREQUENCY (e
);
744 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
745 " %2i fall %4i branch %4i",
746 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
748 fallthru_frequency
, branch_frequency
);
749 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
750 fprintf (dump_file
, " inner_loop");
751 if (bb
->loop_father
->header
== bb
)
752 fprintf (dump_file
, " loop_header");
753 fprintf (dump_file
, "\n");
756 /* There are two purposes to align block with no fallthru incoming edge:
757 1) to avoid fetch stalls when branch destination is near cache boundary
758 2) to improve cache efficiency in case the previous block is not executed
759 (so it does not need to be in the cache).
761 We to catch first case, we align frequently executed blocks.
762 To catch the second, we align blocks that are executed more frequently
763 than the predecessor and the predecessor is likely to not be executed
764 when function is called. */
767 && (branch_frequency
> freq_threshold
768 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
769 && (bb
->prev_bb
->frequency
770 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
772 log
= JUMP_ALIGN (label
);
774 fprintf (dump_file
, " jump alignment added.\n");
778 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
781 /* In case block is frequent and reached mostly by non-fallthru edge,
782 align it. It is most likely a first block of loop. */
784 && !(single_succ_p (bb
)
785 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
786 && optimize_bb_for_speed_p (bb
)
787 && branch_frequency
+ fallthru_frequency
> freq_threshold
789 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
791 log
= LOOP_ALIGN (label
);
793 fprintf (dump_file
, " internal loop alignment added.\n");
797 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
800 LABEL_TO_ALIGNMENT (label
) = max_log
;
801 LABEL_TO_MAX_SKIP (label
) = max_skip
;
804 loop_optimizer_finalize ();
805 free_dominance_info (CDI_DOMINATORS
);
809 /* Grow the LABEL_ALIGN array after new labels are created. */
812 grow_label_align (void)
814 int old
= max_labelno
;
818 max_labelno
= max_label_num ();
820 n_labels
= max_labelno
- min_labelno
+ 1;
821 n_old_labels
= old
- min_labelno
+ 1;
823 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
825 /* Range of labels grows monotonically in the function. Failing here
826 means that the initialization of array got lost. */
827 gcc_assert (n_old_labels
<= n_labels
);
829 memset (label_align
+ n_old_labels
, 0,
830 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
833 /* Update the already computed alignment information. LABEL_PAIRS is a vector
834 made up of pairs of labels for which the alignment information of the first
835 element will be copied from that of the second element. */
838 update_alignments (vec
<rtx
> &label_pairs
)
841 rtx iter
, label
= NULL_RTX
;
843 if (max_labelno
!= max_label_num ())
846 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
849 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
850 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
858 const pass_data pass_data_compute_alignments
=
861 "alignments", /* name */
862 OPTGROUP_NONE
, /* optinfo_flags */
864 0, /* properties_required */
865 0, /* properties_provided */
866 0, /* properties_destroyed */
867 0, /* todo_flags_start */
868 0, /* todo_flags_finish */
871 class pass_compute_alignments
: public rtl_opt_pass
874 pass_compute_alignments (gcc::context
*ctxt
)
875 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
878 /* opt_pass methods: */
879 virtual unsigned int execute (function
*) { return compute_alignments (); }
881 }; // class pass_compute_alignments
886 make_pass_compute_alignments (gcc::context
*ctxt
)
888 return new pass_compute_alignments (ctxt
);
892 /* Make a pass over all insns and compute their actual lengths by shortening
893 any branches of variable length if possible. */
895 /* shorten_branches might be called multiple times: for example, the SH
896 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
897 In order to do this, it needs proper length information, which it obtains
898 by calling shorten_branches. This cannot be collapsed with
899 shorten_branches itself into a single pass unless we also want to integrate
900 reorg.c, since the branch splitting exposes new instructions with delay
904 shorten_branches (rtx_insn
*first
)
911 #define MAX_CODE_ALIGN 16
913 int something_changed
= 1;
914 char *varying_length
;
917 rtx align_tab
[MAX_CODE_ALIGN
];
919 /* Compute maximum UID and allocate label_align / uid_shuid. */
920 max_uid
= get_max_uid ();
922 /* Free uid_shuid before reallocating it. */
925 uid_shuid
= XNEWVEC (int, max_uid
);
927 if (max_labelno
!= max_label_num ())
930 /* Initialize label_align and set up uid_shuid to be strictly
931 monotonically rising with insn order. */
932 /* We use max_log here to keep track of the maximum alignment we want to
933 impose on the next CODE_LABEL (or the current one if we are processing
934 the CODE_LABEL itself). */
939 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
943 INSN_SHUID (insn
) = i
++;
950 bool next_is_jumptable
;
952 /* Merge in alignments computed by compute_alignments. */
953 log
= LABEL_TO_ALIGNMENT (insn
);
957 max_skip
= LABEL_TO_MAX_SKIP (insn
);
960 next
= next_nonnote_insn (insn
);
961 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
962 if (!next_is_jumptable
)
964 log
= LABEL_ALIGN (insn
);
968 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
971 /* ADDR_VECs only take room if read-only data goes into the text
973 if ((JUMP_TABLES_IN_TEXT_SECTION
974 || readonly_data_section
== text_section
)
975 && next_is_jumptable
)
977 log
= ADDR_VEC_ALIGN (next
);
981 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
984 LABEL_TO_ALIGNMENT (insn
) = max_log
;
985 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
989 else if (BARRIER_P (insn
))
993 for (label
= insn
; label
&& ! INSN_P (label
);
994 label
= NEXT_INSN (label
))
997 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1001 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1007 if (!HAVE_ATTR_length
)
1010 /* Allocate the rest of the arrays. */
1011 insn_lengths
= XNEWVEC (int, max_uid
);
1012 insn_lengths_max_uid
= max_uid
;
1013 /* Syntax errors can lead to labels being outside of the main insn stream.
1014 Initialize insn_addresses, so that we get reproducible results. */
1015 INSN_ADDRESSES_ALLOC (max_uid
);
1017 varying_length
= XCNEWVEC (char, max_uid
);
1019 /* Initialize uid_align. We scan instructions
1020 from end to start, and keep in align_tab[n] the last seen insn
1021 that does an alignment of at least n+1, i.e. the successor
1022 in the alignment chain for an insn that does / has a known
1024 uid_align
= XCNEWVEC (rtx
, max_uid
);
1026 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1027 align_tab
[i
] = NULL_RTX
;
1028 seq
= get_last_insn ();
1029 for (; seq
; seq
= PREV_INSN (seq
))
1031 int uid
= INSN_UID (seq
);
1033 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1034 uid_align
[uid
] = align_tab
[0];
1037 /* Found an alignment label. */
1038 uid_align
[uid
] = align_tab
[log
];
1039 for (i
= log
- 1; i
>= 0; i
--)
1044 /* When optimizing, we start assuming minimum length, and keep increasing
1045 lengths as we find the need for this, till nothing changes.
1046 When not optimizing, we start assuming maximum lengths, and
1047 do a single pass to update the lengths. */
1048 bool increasing
= optimize
!= 0;
1050 #ifdef CASE_VECTOR_SHORTEN_MODE
1053 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1056 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1057 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1060 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1062 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1063 int len
, i
, min
, max
, insn_shuid
;
1065 addr_diff_vec_flags flags
;
1067 if (! JUMP_TABLE_DATA_P (insn
)
1068 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1070 pat
= PATTERN (insn
);
1071 len
= XVECLEN (pat
, 1);
1072 gcc_assert (len
> 0);
1073 min_align
= MAX_CODE_ALIGN
;
1074 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1076 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1077 int shuid
= INSN_SHUID (lab
);
1088 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1089 min_align
= LABEL_TO_ALIGNMENT (lab
);
1091 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1092 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1093 insn_shuid
= INSN_SHUID (insn
);
1094 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1095 memset (&flags
, 0, sizeof (flags
));
1096 flags
.min_align
= min_align
;
1097 flags
.base_after_vec
= rel
> insn_shuid
;
1098 flags
.min_after_vec
= min
> insn_shuid
;
1099 flags
.max_after_vec
= max
> insn_shuid
;
1100 flags
.min_after_base
= min
> rel
;
1101 flags
.max_after_base
= max
> rel
;
1102 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1105 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1108 #endif /* CASE_VECTOR_SHORTEN_MODE */
1110 /* Compute initial lengths, addresses, and varying flags for each insn. */
1111 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1113 for (insn_current_address
= 0, insn
= first
;
1115 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1117 uid
= INSN_UID (insn
);
1119 insn_lengths
[uid
] = 0;
1123 int log
= LABEL_TO_ALIGNMENT (insn
);
1126 int align
= 1 << log
;
1127 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1128 insn_lengths
[uid
] = new_address
- insn_current_address
;
1132 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1134 if (NOTE_P (insn
) || BARRIER_P (insn
)
1135 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1137 if (insn
->deleted ())
1140 body
= PATTERN (insn
);
1141 if (JUMP_TABLE_DATA_P (insn
))
1143 /* This only takes room if read-only data goes into the text
1145 if (JUMP_TABLES_IN_TEXT_SECTION
1146 || readonly_data_section
== text_section
)
1147 insn_lengths
[uid
] = (XVECLEN (body
,
1148 GET_CODE (body
) == ADDR_DIFF_VEC
)
1149 * GET_MODE_SIZE (GET_MODE (body
)));
1150 /* Alignment is handled by ADDR_VEC_ALIGN. */
1152 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1153 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1154 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1157 int const_delay_slots
;
1159 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1161 const_delay_slots
= 0;
1163 int (*inner_length_fun
) (rtx_insn
*)
1164 = const_delay_slots
? length_fun
: insn_default_length
;
1165 /* Inside a delay slot sequence, we do not do any branch shortening
1166 if the shortening could change the number of delay slots
1168 for (i
= 0; i
< body_seq
->len (); i
++)
1170 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1171 int inner_uid
= INSN_UID (inner_insn
);
1174 if (GET_CODE (body
) == ASM_INPUT
1175 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1176 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1177 * insn_default_length (inner_insn
));
1179 inner_length
= inner_length_fun (inner_insn
);
1181 insn_lengths
[inner_uid
] = inner_length
;
1182 if (const_delay_slots
)
1184 if ((varying_length
[inner_uid
]
1185 = insn_variable_length_p (inner_insn
)) != 0)
1186 varying_length
[uid
] = 1;
1187 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1188 + insn_lengths
[uid
]);
1191 varying_length
[inner_uid
] = 0;
1192 insn_lengths
[uid
] += inner_length
;
1195 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1197 insn_lengths
[uid
] = length_fun (insn
);
1198 varying_length
[uid
] = insn_variable_length_p (insn
);
1201 /* If needed, do any adjustment. */
1202 #ifdef ADJUST_INSN_LENGTH
1203 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1204 if (insn_lengths
[uid
] < 0)
1205 fatal_insn ("negative insn length", insn
);
1209 /* Now loop over all the insns finding varying length insns. For each,
1210 get the current insn length. If it has changed, reflect the change.
1211 When nothing changes for a full pass, we are done. */
1213 while (something_changed
)
1215 something_changed
= 0;
1216 insn_current_align
= MAX_CODE_ALIGN
- 1;
1217 for (insn_current_address
= 0, insn
= first
;
1219 insn
= NEXT_INSN (insn
))
1222 #ifdef ADJUST_INSN_LENGTH
1227 uid
= INSN_UID (insn
);
1231 int log
= LABEL_TO_ALIGNMENT (insn
);
1233 #ifdef CASE_VECTOR_SHORTEN_MODE
1234 /* If the mode of a following jump table was changed, we
1235 may need to update the alignment of this label. */
1237 bool next_is_jumptable
;
1239 next
= next_nonnote_insn (insn
);
1240 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1241 if ((JUMP_TABLES_IN_TEXT_SECTION
1242 || readonly_data_section
== text_section
)
1243 && next_is_jumptable
)
1245 int newlog
= ADDR_VEC_ALIGN (next
);
1249 LABEL_TO_ALIGNMENT (insn
) = log
;
1250 something_changed
= 1;
1255 if (log
> insn_current_align
)
1257 int align
= 1 << log
;
1258 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1259 insn_lengths
[uid
] = new_address
- insn_current_address
;
1260 insn_current_align
= log
;
1261 insn_current_address
= new_address
;
1264 insn_lengths
[uid
] = 0;
1265 INSN_ADDRESSES (uid
) = insn_current_address
;
1269 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1270 if (length_align
< insn_current_align
)
1271 insn_current_align
= length_align
;
1273 insn_last_address
= INSN_ADDRESSES (uid
);
1274 INSN_ADDRESSES (uid
) = insn_current_address
;
1276 #ifdef CASE_VECTOR_SHORTEN_MODE
1278 && JUMP_TABLE_DATA_P (insn
)
1279 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1281 rtx body
= PATTERN (insn
);
1282 int old_length
= insn_lengths
[uid
];
1284 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1285 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1286 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1287 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1288 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1289 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1292 addr_diff_vec_flags flags
;
1293 machine_mode vec_mode
;
1295 /* Avoid automatic aggregate initialization. */
1296 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1298 /* Try to find a known alignment for rel_lab. */
1299 for (prev
= rel_lab
;
1301 && ! insn_lengths
[INSN_UID (prev
)]
1302 && ! (varying_length
[INSN_UID (prev
)] & 1);
1303 prev
= PREV_INSN (prev
))
1304 if (varying_length
[INSN_UID (prev
)] & 2)
1306 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1310 /* See the comment on addr_diff_vec_flags in rtl.h for the
1311 meaning of the flags values. base: REL_LAB vec: INSN */
1312 /* Anything after INSN has still addresses from the last
1313 pass; adjust these so that they reflect our current
1314 estimate for this pass. */
1315 if (flags
.base_after_vec
)
1316 rel_addr
+= insn_current_address
- insn_last_address
;
1317 if (flags
.min_after_vec
)
1318 min_addr
+= insn_current_address
- insn_last_address
;
1319 if (flags
.max_after_vec
)
1320 max_addr
+= insn_current_address
- insn_last_address
;
1321 /* We want to know the worst case, i.e. lowest possible value
1322 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1323 its offset is positive, and we have to be wary of code shrink;
1324 otherwise, it is negative, and we have to be vary of code
1326 if (flags
.min_after_base
)
1328 /* If INSN is between REL_LAB and MIN_LAB, the size
1329 changes we are about to make can change the alignment
1330 within the observed offset, therefore we have to break
1331 it up into two parts that are independent. */
1332 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1334 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1335 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1338 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1342 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1344 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1345 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1348 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1350 /* Likewise, determine the highest lowest possible value
1351 for the offset of MAX_LAB. */
1352 if (flags
.max_after_base
)
1354 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1356 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1357 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1360 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1364 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1366 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1367 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1370 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1372 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1373 max_addr
- rel_addr
, body
);
1375 || (GET_MODE_SIZE (vec_mode
)
1376 >= GET_MODE_SIZE (GET_MODE (body
))))
1377 PUT_MODE (body
, vec_mode
);
1378 if (JUMP_TABLES_IN_TEXT_SECTION
1379 || readonly_data_section
== text_section
)
1382 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1383 insn_current_address
+= insn_lengths
[uid
];
1384 if (insn_lengths
[uid
] != old_length
)
1385 something_changed
= 1;
1390 #endif /* CASE_VECTOR_SHORTEN_MODE */
1392 if (! (varying_length
[uid
]))
1394 if (NONJUMP_INSN_P (insn
)
1395 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1399 body
= PATTERN (insn
);
1400 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1402 rtx inner_insn
= XVECEXP (body
, 0, i
);
1403 int inner_uid
= INSN_UID (inner_insn
);
1405 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1407 insn_current_address
+= insn_lengths
[inner_uid
];
1411 insn_current_address
+= insn_lengths
[uid
];
1416 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1418 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1421 body
= PATTERN (insn
);
1423 for (i
= 0; i
< seqn
->len (); i
++)
1425 rtx_insn
*inner_insn
= seqn
->insn (i
);
1426 int inner_uid
= INSN_UID (inner_insn
);
1429 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1431 /* insn_current_length returns 0 for insns with a
1432 non-varying length. */
1433 if (! varying_length
[inner_uid
])
1434 inner_length
= insn_lengths
[inner_uid
];
1436 inner_length
= insn_current_length (inner_insn
);
1438 if (inner_length
!= insn_lengths
[inner_uid
])
1440 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1442 insn_lengths
[inner_uid
] = inner_length
;
1443 something_changed
= 1;
1446 inner_length
= insn_lengths
[inner_uid
];
1448 insn_current_address
+= inner_length
;
1449 new_length
+= inner_length
;
1454 new_length
= insn_current_length (insn
);
1455 insn_current_address
+= new_length
;
1458 #ifdef ADJUST_INSN_LENGTH
1459 /* If needed, do any adjustment. */
1460 tmp_length
= new_length
;
1461 ADJUST_INSN_LENGTH (insn
, new_length
);
1462 insn_current_address
+= (new_length
- tmp_length
);
1465 if (new_length
!= insn_lengths
[uid
]
1466 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1468 insn_lengths
[uid
] = new_length
;
1469 something_changed
= 1;
1472 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1474 /* For a non-optimizing compile, do only a single pass. */
1479 free (varying_length
);
1482 /* Given the body of an INSN known to be generated by an ASM statement, return
1483 the number of machine instructions likely to be generated for this insn.
1484 This is used to compute its length. */
1487 asm_insn_count (rtx body
)
1491 if (GET_CODE (body
) == ASM_INPUT
)
1492 templ
= XSTR (body
, 0);
1494 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1496 return asm_str_count (templ
);
1499 /* Return the number of machine instructions likely to be generated for the
1500 inline-asm template. */
1502 asm_str_count (const char *templ
)
1509 for (; *templ
; templ
++)
1510 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1517 /* ??? This is probably the wrong place for these. */
1518 /* Structure recording the mapping from source file and directory
1519 names at compile time to those to be embedded in debug
1521 struct debug_prefix_map
1523 const char *old_prefix
;
1524 const char *new_prefix
;
1527 struct debug_prefix_map
*next
;
1530 /* Linked list of such structures. */
1531 static debug_prefix_map
*debug_prefix_maps
;
1534 /* Record a debug file prefix mapping. ARG is the argument to
1535 -fdebug-prefix-map and must be of the form OLD=NEW. */
1538 add_debug_prefix_map (const char *arg
)
1540 debug_prefix_map
*map
;
1543 p
= strchr (arg
, '=');
1546 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1549 map
= XNEW (debug_prefix_map
);
1550 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1551 map
->old_len
= p
- arg
;
1553 map
->new_prefix
= xstrdup (p
);
1554 map
->new_len
= strlen (p
);
1555 map
->next
= debug_prefix_maps
;
1556 debug_prefix_maps
= map
;
1559 /* Perform user-specified mapping of debug filename prefixes. Return
1560 the new name corresponding to FILENAME. */
1563 remap_debug_filename (const char *filename
)
1565 debug_prefix_map
*map
;
1570 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1571 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1575 name
= filename
+ map
->old_len
;
1576 name_len
= strlen (name
) + 1;
1577 s
= (char *) alloca (name_len
+ map
->new_len
);
1578 memcpy (s
, map
->new_prefix
, map
->new_len
);
1579 memcpy (s
+ map
->new_len
, name
, name_len
);
1580 return ggc_strdup (s
);
1583 /* Return true if DWARF2 debug info can be emitted for DECL. */
1586 dwarf2_debug_info_emitted_p (tree decl
)
1588 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1591 if (DECL_IGNORED_P (decl
))
1597 /* Return scope resulting from combination of S1 and S2. */
1599 choose_inner_scope (tree s1
, tree s2
)
1605 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1610 /* Emit lexical block notes needed to change scope from S1 to S2. */
1613 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1615 rtx_insn
*insn
= orig_insn
;
1616 tree com
= NULL_TREE
;
1617 tree ts1
= s1
, ts2
= s2
;
1622 gcc_assert (ts1
&& ts2
);
1623 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1624 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1625 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1626 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1629 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1630 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1639 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1640 NOTE_BLOCK (note
) = s
;
1641 s
= BLOCK_SUPERCONTEXT (s
);
1648 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1649 NOTE_BLOCK (insn
) = s
;
1650 s
= BLOCK_SUPERCONTEXT (s
);
1654 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1655 on the scope tree and the newly reordered instructions. */
1658 reemit_insn_block_notes (void)
1660 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1664 insn
= get_insns ();
1665 for (; insn
; insn
= NEXT_INSN (insn
))
1669 /* Prevent lexical blocks from straddling section boundaries. */
1670 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1672 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1673 s
= BLOCK_SUPERCONTEXT (s
))
1675 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1676 NOTE_BLOCK (note
) = s
;
1677 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1678 NOTE_BLOCK (note
) = s
;
1682 if (!active_insn_p (insn
))
1685 /* Avoid putting scope notes between jump table and its label. */
1686 if (JUMP_TABLE_DATA_P (insn
))
1689 this_block
= insn_scope (insn
);
1690 /* For sequences compute scope resulting from merging all scopes
1691 of instructions nested inside. */
1692 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1697 for (i
= 0; i
< body
->len (); i
++)
1698 this_block
= choose_inner_scope (this_block
,
1699 insn_scope (body
->insn (i
)));
1703 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1706 this_block
= DECL_INITIAL (cfun
->decl
);
1709 if (this_block
!= cur_block
)
1711 change_scope (insn
, cur_block
, this_block
);
1712 cur_block
= this_block
;
1716 /* change_scope emits before the insn, not after. */
1717 note
= emit_note (NOTE_INSN_DELETED
);
1718 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1724 static const char *some_local_dynamic_name
;
1726 /* Locate some local-dynamic symbol still in use by this function
1727 so that we can print its name in local-dynamic base patterns.
1728 Return null if there are no local-dynamic references. */
1731 get_some_local_dynamic_name ()
1733 subrtx_iterator::array_type array
;
1736 if (some_local_dynamic_name
)
1737 return some_local_dynamic_name
;
1739 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1740 if (NONDEBUG_INSN_P (insn
))
1741 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1743 const_rtx x
= *iter
;
1744 if (GET_CODE (x
) == SYMBOL_REF
)
1746 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1747 return some_local_dynamic_name
= XSTR (x
, 0);
1748 if (CONSTANT_POOL_ADDRESS_P (x
))
1749 iter
.substitute (get_pool_constant (x
));
1756 /* Output assembler code for the start of a function,
1757 and initialize some of the variables in this file
1758 for the new function. The label for the function and associated
1759 assembler pseudo-ops have already been output in `assemble_start_function'.
1761 FIRST is the first insn of the rtl for the function being compiled.
1762 FILE is the file to write assembler code to.
1763 OPTIMIZE_P is nonzero if we should eliminate redundant
1764 test and compare insns. */
1767 final_start_function (rtx_insn
*first
, FILE *file
,
1768 int optimize_p ATTRIBUTE_UNUSED
)
1772 this_is_asm_operands
= 0;
1774 need_profile_function
= false;
1776 last_filename
= LOCATION_FILE (prologue_location
);
1777 last_linenum
= LOCATION_LINE (prologue_location
);
1778 last_discriminator
= discriminator
= 0;
1780 high_block_linenum
= high_function_linenum
= last_linenum
;
1782 if (flag_sanitize
& SANITIZE_ADDRESS
)
1783 asan_function_start ();
1785 if (!DECL_IGNORED_P (current_function_decl
))
1786 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1788 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1789 dwarf2out_begin_prologue (0, NULL
);
1791 #ifdef LEAF_REG_REMAP
1792 if (crtl
->uses_only_leaf_regs
)
1793 leaf_renumber_regs (first
);
1796 /* The Sun386i and perhaps other machines don't work right
1797 if the profiling code comes after the prologue. */
1798 if (targetm
.profile_before_prologue () && crtl
->profile
)
1800 if (targetm
.asm_out
.function_prologue
== default_function_pro_epilogue
1801 && targetm
.have_prologue ())
1804 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1810 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1811 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1813 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1814 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1823 need_profile_function
= true;
1825 profile_function (file
);
1828 profile_function (file
);
1831 /* If debugging, assign block numbers to all of the blocks in this
1835 reemit_insn_block_notes ();
1836 number_blocks (current_function_decl
);
1837 /* We never actually put out begin/end notes for the top-level
1838 block in the function. But, conceptually, that block is
1840 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1843 if (warn_frame_larger_than
1844 && get_frame_size () > frame_larger_than_size
)
1846 /* Issue a warning */
1847 warning (OPT_Wframe_larger_than_
,
1848 "the frame size of %wd bytes is larger than %wd bytes",
1849 get_frame_size (), frame_larger_than_size
);
1852 /* First output the function prologue: code to set up the stack frame. */
1853 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1855 /* If the machine represents the prologue as RTL, the profiling code must
1856 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1857 if (! targetm
.have_prologue ())
1858 profile_after_prologue (file
);
1862 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1864 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1865 profile_function (file
);
1869 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1871 #ifndef NO_PROFILE_COUNTERS
1872 # define NO_PROFILE_COUNTERS 0
1874 #ifdef ASM_OUTPUT_REG_PUSH
1875 rtx sval
= NULL
, chain
= NULL
;
1877 if (cfun
->returns_struct
)
1878 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1880 if (cfun
->static_chain_decl
)
1881 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1882 #endif /* ASM_OUTPUT_REG_PUSH */
1884 if (! NO_PROFILE_COUNTERS
)
1886 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1887 switch_to_section (data_section
);
1888 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1889 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1890 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1893 switch_to_section (current_function_section ());
1895 #ifdef ASM_OUTPUT_REG_PUSH
1896 if (sval
&& REG_P (sval
))
1897 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1898 if (chain
&& REG_P (chain
))
1899 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1902 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1904 #ifdef ASM_OUTPUT_REG_PUSH
1905 if (chain
&& REG_P (chain
))
1906 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1907 if (sval
&& REG_P (sval
))
1908 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1912 /* Output assembler code for the end of a function.
1913 For clarity, args are same as those of `final_start_function'
1914 even though not all of them are needed. */
1917 final_end_function (void)
1921 if (!DECL_IGNORED_P (current_function_decl
))
1922 debug_hooks
->end_function (high_function_linenum
);
1924 /* Finally, output the function epilogue:
1925 code to restore the stack frame and return to the caller. */
1926 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1928 /* And debug output. */
1929 if (!DECL_IGNORED_P (current_function_decl
))
1930 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1932 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1933 && dwarf2out_do_frame ())
1934 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1936 some_local_dynamic_name
= 0;
1940 /* Dumper helper for basic block information. FILE is the assembly
1941 output file, and INSN is the instruction being emitted. */
1944 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1945 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1949 if (!flag_debug_asm
)
1952 if (INSN_UID (insn
) < bb_map_size
1953 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1958 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1960 fprintf (file
, " freq:%d", bb
->frequency
);
1962 fprintf (file
, " count:%" PRId64
,
1964 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1965 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1966 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1968 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1970 fprintf (file
, "\n");
1972 if (INSN_UID (insn
) < bb_map_size
1973 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1978 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1979 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1981 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1983 fprintf (file
, "\n");
1987 /* Output assembler code for some insns: all or part of a function.
1988 For description of args, see `final_start_function', above. */
1991 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
1993 rtx_insn
*insn
, *next
;
1996 /* Used for -dA dump. */
1997 basic_block
*start_to_bb
= NULL
;
1998 basic_block
*end_to_bb
= NULL
;
1999 int bb_map_size
= 0;
2002 last_ignored_compare
= 0;
2005 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2007 /* If CC tracking across branches is enabled, record the insn which
2008 jumps to each branch only reached from one place. */
2009 if (optimize_p
&& JUMP_P (insn
))
2011 rtx lab
= JUMP_LABEL (insn
);
2012 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2014 LABEL_REFS (lab
) = insn
;
2027 bb_map_size
= get_max_uid () + 1;
2028 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2029 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2031 /* There is no cfg for a thunk. */
2032 if (!cfun
->is_thunk
)
2033 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2035 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2036 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2040 /* Output the insns. */
2041 for (insn
= first
; insn
;)
2043 if (HAVE_ATTR_length
)
2045 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2047 /* This can be triggered by bugs elsewhere in the compiler if
2048 new insns are created after init_insn_lengths is called. */
2049 gcc_assert (NOTE_P (insn
));
2050 insn_current_address
= -1;
2053 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2056 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2057 bb_map_size
, &bb_seqn
);
2058 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2067 /* Remove CFI notes, to avoid compare-debug failures. */
2068 for (insn
= first
; insn
; insn
= next
)
2070 next
= NEXT_INSN (insn
);
2072 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2073 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2079 get_insn_template (int code
, rtx insn
)
2081 switch (insn_data
[code
].output_format
)
2083 case INSN_OUTPUT_FORMAT_SINGLE
:
2084 return insn_data
[code
].output
.single
;
2085 case INSN_OUTPUT_FORMAT_MULTI
:
2086 return insn_data
[code
].output
.multi
[which_alternative
];
2087 case INSN_OUTPUT_FORMAT_FUNCTION
:
2089 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2090 as_a
<rtx_insn
*> (insn
));
2097 /* Emit the appropriate declaration for an alternate-entry-point
2098 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2099 LABEL_KIND != LABEL_NORMAL.
2101 The case fall-through in this function is intentional. */
2103 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2105 const char *name
= LABEL_NAME (insn
);
2107 switch (LABEL_KIND (insn
))
2109 case LABEL_WEAK_ENTRY
:
2110 #ifdef ASM_WEAKEN_LABEL
2111 ASM_WEAKEN_LABEL (file
, name
);
2113 case LABEL_GLOBAL_ENTRY
:
2114 targetm
.asm_out
.globalize_label (file
, name
);
2115 case LABEL_STATIC_ENTRY
:
2116 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2117 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2119 ASM_OUTPUT_LABEL (file
, name
);
2128 /* Given a CALL_INSN, find and return the nested CALL. */
2130 call_from_call_insn (rtx_call_insn
*insn
)
2133 gcc_assert (CALL_P (insn
));
2136 while (GET_CODE (x
) != CALL
)
2138 switch (GET_CODE (x
))
2143 x
= COND_EXEC_CODE (x
);
2146 x
= XVECEXP (x
, 0, 0);
2156 /* The final scan for one insn, INSN.
2157 Args are same as in `final', except that INSN
2158 is the insn being scanned.
2159 Value returned is the next insn to be scanned.
2161 NOPEEPHOLES is the flag to disallow peephole processing (currently
2162 used for within delayed branch sequence output).
2164 SEEN is used to track the end of the prologue, for emitting
2165 debug information. We force the emission of a line note after
2166 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2169 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2170 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2179 /* Ignore deleted insns. These can occur when we split insns (due to a
2180 template of "#") while not optimizing. */
2181 if (insn
->deleted ())
2182 return NEXT_INSN (insn
);
2184 switch (GET_CODE (insn
))
2187 switch (NOTE_KIND (insn
))
2189 case NOTE_INSN_DELETED
:
2190 case NOTE_INSN_UPDATE_SJLJ_CONTEXT
:
2193 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2194 in_cold_section_p
= !in_cold_section_p
;
2196 if (dwarf2out_do_frame ())
2197 dwarf2out_switch_text_section ();
2198 else if (!DECL_IGNORED_P (current_function_decl
))
2199 debug_hooks
->switch_text_section ();
2201 switch_to_section (current_function_section ());
2202 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2203 current_function_decl
,
2205 /* Emit a label for the split cold section. Form label name by
2206 suffixing "cold" to the original function's name. */
2207 if (in_cold_section_p
)
2210 = clone_function_name (current_function_decl
, "cold");
2211 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2212 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file
,
2214 (cold_function_name
),
2215 current_function_decl
);
2217 ASM_OUTPUT_LABEL (asm_out_file
,
2218 IDENTIFIER_POINTER (cold_function_name
));
2223 case NOTE_INSN_BASIC_BLOCK
:
2224 if (need_profile_function
)
2226 profile_function (asm_out_file
);
2227 need_profile_function
= false;
2230 if (targetm
.asm_out
.unwind_emit
)
2231 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2233 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2237 case NOTE_INSN_EH_REGION_BEG
:
2238 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2239 NOTE_EH_HANDLER (insn
));
2242 case NOTE_INSN_EH_REGION_END
:
2243 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2244 NOTE_EH_HANDLER (insn
));
2247 case NOTE_INSN_PROLOGUE_END
:
2248 targetm
.asm_out
.function_end_prologue (file
);
2249 profile_after_prologue (file
);
2251 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2253 *seen
|= SEEN_EMITTED
;
2254 force_source_line
= true;
2261 case NOTE_INSN_EPILOGUE_BEG
:
2262 if (!DECL_IGNORED_P (current_function_decl
))
2263 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2264 targetm
.asm_out
.function_begin_epilogue (file
);
2268 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2271 case NOTE_INSN_CFI_LABEL
:
2272 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2273 NOTE_LABEL_NUMBER (insn
));
2276 case NOTE_INSN_FUNCTION_BEG
:
2277 if (need_profile_function
)
2279 profile_function (asm_out_file
);
2280 need_profile_function
= false;
2284 if (!DECL_IGNORED_P (current_function_decl
))
2285 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2287 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2289 *seen
|= SEEN_EMITTED
;
2290 force_source_line
= true;
2297 case NOTE_INSN_BLOCK_BEG
:
2298 if (debug_info_level
== DINFO_LEVEL_NORMAL
2299 || debug_info_level
== DINFO_LEVEL_VERBOSE
2300 || write_symbols
== DWARF2_DEBUG
2301 || write_symbols
== VMS_AND_DWARF2_DEBUG
2302 || write_symbols
== VMS_DEBUG
)
2304 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2308 high_block_linenum
= last_linenum
;
2310 /* Output debugging info about the symbol-block beginning. */
2311 if (!DECL_IGNORED_P (current_function_decl
))
2312 debug_hooks
->begin_block (last_linenum
, n
);
2314 /* Mark this block as output. */
2315 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2317 if (write_symbols
== DBX_DEBUG
2318 || write_symbols
== SDB_DEBUG
)
2320 location_t
*locus_ptr
2321 = block_nonartificial_location (NOTE_BLOCK (insn
));
2323 if (locus_ptr
!= NULL
)
2325 override_filename
= LOCATION_FILE (*locus_ptr
);
2326 override_linenum
= LOCATION_LINE (*locus_ptr
);
2331 case NOTE_INSN_BLOCK_END
:
2332 if (debug_info_level
== DINFO_LEVEL_NORMAL
2333 || debug_info_level
== DINFO_LEVEL_VERBOSE
2334 || write_symbols
== DWARF2_DEBUG
2335 || write_symbols
== VMS_AND_DWARF2_DEBUG
2336 || write_symbols
== VMS_DEBUG
)
2338 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2342 /* End of a symbol-block. */
2344 gcc_assert (block_depth
>= 0);
2346 if (!DECL_IGNORED_P (current_function_decl
))
2347 debug_hooks
->end_block (high_block_linenum
, n
);
2349 if (write_symbols
== DBX_DEBUG
2350 || write_symbols
== SDB_DEBUG
)
2352 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2353 location_t
*locus_ptr
2354 = block_nonartificial_location (outer_block
);
2356 if (locus_ptr
!= NULL
)
2358 override_filename
= LOCATION_FILE (*locus_ptr
);
2359 override_linenum
= LOCATION_LINE (*locus_ptr
);
2363 override_filename
= NULL
;
2364 override_linenum
= 0;
2369 case NOTE_INSN_DELETED_LABEL
:
2370 /* Emit the label. We may have deleted the CODE_LABEL because
2371 the label could be proved to be unreachable, though still
2372 referenced (in the form of having its address taken. */
2373 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2376 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2377 /* Similarly, but need to use different namespace for it. */
2378 if (CODE_LABEL_NUMBER (insn
) != -1)
2379 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2382 case NOTE_INSN_VAR_LOCATION
:
2383 case NOTE_INSN_CALL_ARG_LOCATION
:
2384 if (!DECL_IGNORED_P (current_function_decl
))
2385 debug_hooks
->var_location (insn
);
2398 /* The target port might emit labels in the output function for
2399 some insn, e.g. sh.c output_branchy_insn. */
2400 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2402 int align
= LABEL_TO_ALIGNMENT (insn
);
2403 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2404 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2407 if (align
&& NEXT_INSN (insn
))
2409 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2410 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2412 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2413 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2415 ASM_OUTPUT_ALIGN (file
, align
);
2422 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2423 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2427 next
= next_nonnote_insn (insn
);
2428 /* If this label is followed by a jump-table, make sure we put
2429 the label in the read-only section. Also possibly write the
2430 label and jump table together. */
2431 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2433 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2434 /* In this case, the case vector is being moved by the
2435 target, so don't output the label at all. Leave that
2436 to the back end macros. */
2438 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2442 switch_to_section (targetm
.asm_out
.function_rodata_section
2443 (current_function_decl
));
2445 #ifdef ADDR_VEC_ALIGN
2446 log_align
= ADDR_VEC_ALIGN (next
);
2448 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2450 ASM_OUTPUT_ALIGN (file
, log_align
);
2453 switch_to_section (current_function_section ());
2455 #ifdef ASM_OUTPUT_CASE_LABEL
2456 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2459 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2464 if (LABEL_ALT_ENTRY_P (insn
))
2465 output_alternate_entry_point (file
, insn
);
2467 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2472 rtx body
= PATTERN (insn
);
2473 int insn_code_number
;
2477 /* Reset this early so it is correct for ASM statements. */
2478 current_insn_predicate
= NULL_RTX
;
2480 /* An INSN, JUMP_INSN or CALL_INSN.
2481 First check for special kinds that recog doesn't recognize. */
2483 if (GET_CODE (body
) == USE
/* These are just declarations. */
2484 || GET_CODE (body
) == CLOBBER
)
2489 /* If there is a REG_CC_SETTER note on this insn, it means that
2490 the setting of the condition code was done in the delay slot
2491 of the insn that branched here. So recover the cc status
2492 from the insn that set it. */
2494 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2497 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2498 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2499 cc_prev_status
= cc_status
;
2504 /* Detect insns that are really jump-tables
2505 and output them as such. */
2507 if (JUMP_TABLE_DATA_P (insn
))
2509 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2513 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2514 switch_to_section (targetm
.asm_out
.function_rodata_section
2515 (current_function_decl
));
2517 switch_to_section (current_function_section ());
2521 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2522 if (GET_CODE (body
) == ADDR_VEC
)
2524 #ifdef ASM_OUTPUT_ADDR_VEC
2525 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2532 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2533 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2539 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2540 for (idx
= 0; idx
< vlen
; idx
++)
2542 if (GET_CODE (body
) == ADDR_VEC
)
2544 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2545 ASM_OUTPUT_ADDR_VEC_ELT
2546 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2553 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2554 ASM_OUTPUT_ADDR_DIFF_ELT
2557 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2558 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2564 #ifdef ASM_OUTPUT_CASE_END
2565 ASM_OUTPUT_CASE_END (file
,
2566 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2571 switch_to_section (current_function_section ());
2575 /* Output this line note if it is the first or the last line
2577 if (!DECL_IGNORED_P (current_function_decl
)
2578 && notice_source_line (insn
, &is_stmt
))
2579 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2580 last_discriminator
, is_stmt
);
2582 if (GET_CODE (body
) == ASM_INPUT
)
2584 const char *string
= XSTR (body
, 0);
2586 /* There's no telling what that did to the condition codes. */
2591 expanded_location loc
;
2594 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2595 if (*loc
.file
&& loc
.line
)
2596 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2597 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2598 fprintf (asm_out_file
, "\t%s\n", string
);
2599 #if HAVE_AS_LINE_ZERO
2600 if (*loc
.file
&& loc
.line
)
2601 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2607 /* Detect `asm' construct with operands. */
2608 if (asm_noperands (body
) >= 0)
2610 unsigned int noperands
= asm_noperands (body
);
2611 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2614 expanded_location expanded
;
2616 /* There's no telling what that did to the condition codes. */
2619 /* Get out the operand values. */
2620 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2621 /* Inhibit dying on what would otherwise be compiler bugs. */
2622 insn_noperands
= noperands
;
2623 this_is_asm_operands
= insn
;
2624 expanded
= expand_location (loc
);
2626 #ifdef FINAL_PRESCAN_INSN
2627 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2630 /* Output the insn using them. */
2634 if (expanded
.file
&& expanded
.line
)
2635 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2636 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2637 output_asm_insn (string
, ops
);
2638 #if HAVE_AS_LINE_ZERO
2639 if (expanded
.file
&& expanded
.line
)
2640 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2644 if (targetm
.asm_out
.final_postscan_insn
)
2645 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2648 this_is_asm_operands
= 0;
2654 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2656 /* A delayed-branch sequence */
2659 final_sequence
= seq
;
2661 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2662 force the restoration of a comparison that was previously
2663 thought unnecessary. If that happens, cancel this sequence
2664 and cause that insn to be restored. */
2666 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2667 if (next
!= seq
->insn (1))
2673 for (i
= 1; i
< seq
->len (); i
++)
2675 rtx_insn
*insn
= seq
->insn (i
);
2676 rtx_insn
*next
= NEXT_INSN (insn
);
2677 /* We loop in case any instruction in a delay slot gets
2680 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2681 while (insn
!= next
);
2683 #ifdef DBR_OUTPUT_SEQEND
2684 DBR_OUTPUT_SEQEND (file
);
2688 /* If the insn requiring the delay slot was a CALL_INSN, the
2689 insns in the delay slot are actually executed before the
2690 called function. Hence we don't preserve any CC-setting
2691 actions in these insns and the CC must be marked as being
2692 clobbered by the function. */
2693 if (CALL_P (seq
->insn (0)))
2700 /* We have a real machine instruction as rtl. */
2702 body
= PATTERN (insn
);
2705 set
= single_set (insn
);
2707 /* Check for redundant test and compare instructions
2708 (when the condition codes are already set up as desired).
2709 This is done only when optimizing; if not optimizing,
2710 it should be possible for the user to alter a variable
2711 with the debugger in between statements
2712 and the next statement should reexamine the variable
2713 to compute the condition codes. */
2718 && GET_CODE (SET_DEST (set
)) == CC0
2719 && insn
!= last_ignored_compare
)
2722 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2723 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2725 src1
= SET_SRC (set
);
2727 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2729 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2730 XEXP (SET_SRC (set
), 0)
2731 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2732 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2733 XEXP (SET_SRC (set
), 1)
2734 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2735 if (XEXP (SET_SRC (set
), 1)
2736 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2737 src2
= XEXP (SET_SRC (set
), 0);
2739 if ((cc_status
.value1
!= 0
2740 && rtx_equal_p (src1
, cc_status
.value1
))
2741 || (cc_status
.value2
!= 0
2742 && rtx_equal_p (src1
, cc_status
.value2
))
2743 || (src2
!= 0 && cc_status
.value1
!= 0
2744 && rtx_equal_p (src2
, cc_status
.value1
))
2745 || (src2
!= 0 && cc_status
.value2
!= 0
2746 && rtx_equal_p (src2
, cc_status
.value2
)))
2748 /* Don't delete insn if it has an addressing side-effect. */
2749 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2750 /* or if anything in it is volatile. */
2751 && ! volatile_refs_p (PATTERN (insn
)))
2753 /* We don't really delete the insn; just ignore it. */
2754 last_ignored_compare
= insn
;
2761 /* If this is a conditional branch, maybe modify it
2762 if the cc's are in a nonstandard state
2763 so that it accomplishes the same thing that it would
2764 do straightforwardly if the cc's were set up normally. */
2766 if (cc_status
.flags
!= 0
2768 && GET_CODE (body
) == SET
2769 && SET_DEST (body
) == pc_rtx
2770 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2771 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2772 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2774 /* This function may alter the contents of its argument
2775 and clear some of the cc_status.flags bits.
2776 It may also return 1 meaning condition now always true
2777 or -1 meaning condition now always false
2778 or 2 meaning condition nontrivial but altered. */
2779 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2780 /* If condition now has fixed value, replace the IF_THEN_ELSE
2781 with its then-operand or its else-operand. */
2783 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2785 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2787 /* The jump is now either unconditional or a no-op.
2788 If it has become a no-op, don't try to output it.
2789 (It would not be recognized.) */
2790 if (SET_SRC (body
) == pc_rtx
)
2795 else if (ANY_RETURN_P (SET_SRC (body
)))
2796 /* Replace (set (pc) (return)) with (return). */
2797 PATTERN (insn
) = body
= SET_SRC (body
);
2799 /* Rerecognize the instruction if it has changed. */
2801 INSN_CODE (insn
) = -1;
2804 /* If this is a conditional trap, maybe modify it if the cc's
2805 are in a nonstandard state so that it accomplishes the same
2806 thing that it would do straightforwardly if the cc's were
2808 if (cc_status
.flags
!= 0
2809 && NONJUMP_INSN_P (insn
)
2810 && GET_CODE (body
) == TRAP_IF
2811 && COMPARISON_P (TRAP_CONDITION (body
))
2812 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2814 /* This function may alter the contents of its argument
2815 and clear some of the cc_status.flags bits.
2816 It may also return 1 meaning condition now always true
2817 or -1 meaning condition now always false
2818 or 2 meaning condition nontrivial but altered. */
2819 int result
= alter_cond (TRAP_CONDITION (body
));
2821 /* If TRAP_CONDITION has become always false, delete the
2829 /* If TRAP_CONDITION has become always true, replace
2830 TRAP_CONDITION with const_true_rtx. */
2832 TRAP_CONDITION (body
) = const_true_rtx
;
2834 /* Rerecognize the instruction if it has changed. */
2836 INSN_CODE (insn
) = -1;
2839 /* Make same adjustments to instructions that examine the
2840 condition codes without jumping and instructions that
2841 handle conditional moves (if this machine has either one). */
2843 if (cc_status
.flags
!= 0
2846 rtx cond_rtx
, then_rtx
, else_rtx
;
2849 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2851 cond_rtx
= XEXP (SET_SRC (set
), 0);
2852 then_rtx
= XEXP (SET_SRC (set
), 1);
2853 else_rtx
= XEXP (SET_SRC (set
), 2);
2857 cond_rtx
= SET_SRC (set
);
2858 then_rtx
= const_true_rtx
;
2859 else_rtx
= const0_rtx
;
2862 if (COMPARISON_P (cond_rtx
)
2863 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2866 result
= alter_cond (cond_rtx
);
2868 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2869 else if (result
== -1)
2870 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2871 else if (result
== 2)
2872 INSN_CODE (insn
) = -1;
2873 if (SET_DEST (set
) == SET_SRC (set
))
2880 /* Do machine-specific peephole optimizations if desired. */
2882 if (HAVE_peephole
&& optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2884 rtx_insn
*next
= peephole (insn
);
2885 /* When peepholing, if there were notes within the peephole,
2886 emit them before the peephole. */
2887 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2889 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2891 for (note
= NEXT_INSN (insn
); note
!= next
;
2892 note
= NEXT_INSN (note
))
2893 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2895 /* Put the notes in the proper position for a later
2896 rescan. For example, the SH target can do this
2897 when generating a far jump in a delayed branch
2899 note
= NEXT_INSN (insn
);
2900 SET_PREV_INSN (note
) = prev
;
2901 SET_NEXT_INSN (prev
) = note
;
2902 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2903 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2904 SET_NEXT_INSN (insn
) = next
;
2905 SET_PREV_INSN (next
) = insn
;
2908 /* PEEPHOLE might have changed this. */
2909 body
= PATTERN (insn
);
2912 /* Try to recognize the instruction.
2913 If successful, verify that the operands satisfy the
2914 constraints for the instruction. Crash if they don't,
2915 since `reload' should have changed them so that they do. */
2917 insn_code_number
= recog_memoized (insn
);
2918 cleanup_subreg_operands (insn
);
2920 /* Dump the insn in the assembly for debugging (-dAP).
2921 If the final dump is requested as slim RTL, dump slim
2922 RTL to the assembly file also. */
2923 if (flag_dump_rtl_in_asm
)
2925 print_rtx_head
= ASM_COMMENT_START
;
2926 if (! (dump_flags
& TDF_SLIM
))
2927 print_rtl_single (asm_out_file
, insn
);
2929 dump_insn_slim (asm_out_file
, insn
);
2930 print_rtx_head
= "";
2933 if (! constrain_operands_cached (insn
, 1))
2934 fatal_insn_not_found (insn
);
2936 /* Some target machines need to prescan each insn before
2939 #ifdef FINAL_PRESCAN_INSN
2940 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2943 if (targetm
.have_conditional_execution ()
2944 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2945 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2948 cc_prev_status
= cc_status
;
2950 /* Update `cc_status' for this instruction.
2951 The instruction's output routine may change it further.
2952 If the output routine for a jump insn needs to depend
2953 on the cc status, it should look at cc_prev_status. */
2955 NOTICE_UPDATE_CC (body
, insn
);
2958 current_output_insn
= debug_insn
= insn
;
2960 /* Find the proper template for this insn. */
2961 templ
= get_insn_template (insn_code_number
, insn
);
2963 /* If the C code returns 0, it means that it is a jump insn
2964 which follows a deleted test insn, and that test insn
2965 needs to be reinserted. */
2970 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2972 /* We have already processed the notes between the setter and
2973 the user. Make sure we don't process them again, this is
2974 particularly important if one of the notes is a block
2975 scope note or an EH note. */
2977 prev
!= last_ignored_compare
;
2978 prev
= PREV_INSN (prev
))
2981 delete_insn (prev
); /* Use delete_note. */
2987 /* If the template is the string "#", it means that this insn must
2989 if (templ
[0] == '#' && templ
[1] == '\0')
2991 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
2993 /* If we didn't split the insn, go away. */
2994 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2995 fatal_insn ("could not split insn", insn
);
2997 /* If we have a length attribute, this instruction should have
2998 been split in shorten_branches, to ensure that we would have
2999 valid length info for the splitees. */
3000 gcc_assert (!HAVE_ATTR_length
);
3005 /* ??? This will put the directives in the wrong place if
3006 get_insn_template outputs assembly directly. However calling it
3007 before get_insn_template breaks if the insns is split. */
3008 if (targetm
.asm_out
.unwind_emit_before_insn
3009 && targetm
.asm_out
.unwind_emit
)
3010 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3012 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3014 rtx x
= call_from_call_insn (call_insn
);
3016 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3020 t
= SYMBOL_REF_DECL (x
);
3022 assemble_external (t
);
3024 if (!DECL_IGNORED_P (current_function_decl
))
3025 debug_hooks
->var_location (insn
);
3028 /* Output assembler code from the template. */
3029 output_asm_insn (templ
, recog_data
.operand
);
3031 /* Some target machines need to postscan each insn after
3033 if (targetm
.asm_out
.final_postscan_insn
)
3034 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3035 recog_data
.n_operands
);
3037 if (!targetm
.asm_out
.unwind_emit_before_insn
3038 && targetm
.asm_out
.unwind_emit
)
3039 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3041 current_output_insn
= debug_insn
= 0;
3044 return NEXT_INSN (insn
);
3047 /* Return whether a source line note needs to be emitted before INSN.
3048 Sets IS_STMT to TRUE if the line should be marked as a possible
3049 breakpoint location. */
3052 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3054 const char *filename
;
3057 if (override_filename
)
3059 filename
= override_filename
;
3060 linenum
= override_linenum
;
3062 else if (INSN_HAS_LOCATION (insn
))
3064 expanded_location xloc
= insn_location (insn
);
3065 filename
= xloc
.file
;
3066 linenum
= xloc
.line
;
3074 if (filename
== NULL
)
3077 if (force_source_line
3078 || filename
!= last_filename
3079 || last_linenum
!= linenum
)
3081 force_source_line
= false;
3082 last_filename
= filename
;
3083 last_linenum
= linenum
;
3084 last_discriminator
= discriminator
;
3086 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3087 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3091 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3093 /* If the discriminator changed, but the line number did not,
3094 output the line table entry with is_stmt false so the
3095 debugger does not treat this as a breakpoint location. */
3096 last_discriminator
= discriminator
;
3104 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3105 directly to the desired hard register. */
3108 cleanup_subreg_operands (rtx_insn
*insn
)
3111 bool changed
= false;
3112 extract_insn_cached (insn
);
3113 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3115 /* The following test cannot use recog_data.operand when testing
3116 for a SUBREG: the underlying object might have been changed
3117 already if we are inside a match_operator expression that
3118 matches the else clause. Instead we test the underlying
3119 expression directly. */
3120 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3122 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3125 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3126 || GET_CODE (recog_data
.operand
[i
]) == MULT
3127 || MEM_P (recog_data
.operand
[i
]))
3128 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3131 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3133 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3135 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3138 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3139 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3140 || MEM_P (*recog_data
.dup_loc
[i
]))
3141 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3144 df_insn_rescan (insn
);
3147 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3148 the thing it is a subreg of. Do it anyway if FINAL_P. */
3151 alter_subreg (rtx
*xp
, bool final_p
)
3154 rtx y
= SUBREG_REG (x
);
3156 /* simplify_subreg does not remove subreg from volatile references.
3157 We are required to. */
3160 int offset
= SUBREG_BYTE (x
);
3162 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3163 contains 0 instead of the proper offset. See simplify_subreg. */
3165 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3167 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3168 - GET_MODE_SIZE (GET_MODE (x
));
3169 if (WORDS_BIG_ENDIAN
)
3170 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3171 if (BYTES_BIG_ENDIAN
)
3172 offset
+= difference
% UNITS_PER_WORD
;
3176 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3178 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3180 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3182 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3187 else if (final_p
&& REG_P (y
))
3189 /* Simplify_subreg can't handle some REG cases, but we have to. */
3191 HOST_WIDE_INT offset
;
3193 regno
= subreg_regno (x
);
3194 if (subreg_lowpart_p (x
))
3195 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3197 offset
= SUBREG_BYTE (x
);
3198 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3205 /* Do alter_subreg on all the SUBREGs contained in X. */
3208 walk_alter_subreg (rtx
*xp
, bool *changed
)
3211 switch (GET_CODE (x
))
3216 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3217 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3222 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3227 return alter_subreg (xp
, true);
3238 /* Given BODY, the body of a jump instruction, alter the jump condition
3239 as required by the bits that are set in cc_status.flags.
3240 Not all of the bits there can be handled at this level in all cases.
3242 The value is normally 0.
3243 1 means that the condition has become always true.
3244 -1 means that the condition has become always false.
3245 2 means that COND has been altered. */
3248 alter_cond (rtx cond
)
3252 if (cc_status
.flags
& CC_REVERSED
)
3255 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3258 if (cc_status
.flags
& CC_INVERTED
)
3261 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3264 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3265 switch (GET_CODE (cond
))
3270 /* Jump becomes unconditional. */
3276 /* Jump becomes no-op. */
3280 PUT_CODE (cond
, EQ
);
3285 PUT_CODE (cond
, NE
);
3293 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3294 switch (GET_CODE (cond
))
3298 /* Jump becomes unconditional. */
3303 /* Jump becomes no-op. */
3308 PUT_CODE (cond
, EQ
);
3314 PUT_CODE (cond
, NE
);
3322 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3323 switch (GET_CODE (cond
))
3326 /* Jump becomes unconditional. */
3330 PUT_CODE (cond
, EQ
);
3335 PUT_CODE (cond
, NE
);
3340 /* Jump becomes no-op. */
3347 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3348 switch (GET_CODE (cond
))
3354 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3359 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3364 if (cc_status
.flags
& CC_NOT_SIGNED
)
3365 /* The flags are valid if signed condition operators are converted
3367 switch (GET_CODE (cond
))
3370 PUT_CODE (cond
, LEU
);
3375 PUT_CODE (cond
, LTU
);
3380 PUT_CODE (cond
, GTU
);
3385 PUT_CODE (cond
, GEU
);
3397 /* Report inconsistency between the assembler template and the operands.
3398 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3401 output_operand_lossage (const char *cmsgid
, ...)
3405 const char *pfx_str
;
3408 va_start (ap
, cmsgid
);
3410 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3411 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3412 new_message
= xvasprintf (fmt_string
, ap
);
3414 if (this_is_asm_operands
)
3415 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3417 internal_error ("%s", new_message
);
3424 /* Output of assembler code from a template, and its subroutines. */
3426 /* Annotate the assembly with a comment describing the pattern and
3427 alternative used. */
3430 output_asm_name (void)
3434 int num
= INSN_CODE (debug_insn
);
3435 fprintf (asm_out_file
, "\t%s %d\t%s",
3436 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3437 insn_data
[num
].name
);
3438 if (insn_data
[num
].n_alternatives
> 1)
3439 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3441 if (HAVE_ATTR_length
)
3442 fprintf (asm_out_file
, "\t[length = %d]",
3443 get_attr_length (debug_insn
));
3445 /* Clear this so only the first assembler insn
3446 of any rtl insn will get the special comment for -dp. */
3451 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3452 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3453 corresponds to the address of the object and 0 if to the object. */
3456 get_mem_expr_from_op (rtx op
, int *paddressp
)
3464 return REG_EXPR (op
);
3465 else if (!MEM_P (op
))
3468 if (MEM_EXPR (op
) != 0)
3469 return MEM_EXPR (op
);
3471 /* Otherwise we have an address, so indicate it and look at the address. */
3475 /* First check if we have a decl for the address, then look at the right side
3476 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3477 But don't allow the address to itself be indirect. */
3478 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3480 else if (GET_CODE (op
) == PLUS
3481 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3485 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3488 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3489 return inner_addressp
? 0 : expr
;
3492 /* Output operand names for assembler instructions. OPERANDS is the
3493 operand vector, OPORDER is the order to write the operands, and NOPS
3494 is the number of operands to write. */
3497 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3502 for (i
= 0; i
< nops
; i
++)
3505 rtx op
= operands
[oporder
[i
]];
3506 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3508 fprintf (asm_out_file
, "%c%s",
3509 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3513 fprintf (asm_out_file
, "%s",
3514 addressp
? "*" : "");
3515 print_mem_expr (asm_out_file
, expr
);
3518 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3519 && ORIGINAL_REGNO (op
) != REGNO (op
))
3520 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3524 #ifdef ASSEMBLER_DIALECT
3525 /* Helper function to parse assembler dialects in the asm string.
3526 This is called from output_asm_insn and asm_fprintf. */
3528 do_assembler_dialects (const char *p
, int *dialect
)
3539 output_operand_lossage ("nested assembly dialect alternatives");
3543 /* If we want the first dialect, do nothing. Otherwise, skip
3544 DIALECT_NUMBER of strings ending with '|'. */
3545 for (i
= 0; i
< dialect_number
; i
++)
3547 while (*p
&& *p
!= '}')
3555 /* Skip over any character after a percent sign. */
3567 output_operand_lossage ("unterminated assembly dialect alternative");
3574 /* Skip to close brace. */
3579 output_operand_lossage ("unterminated assembly dialect alternative");
3583 /* Skip over any character after a percent sign. */
3584 if (*p
== '%' && p
[1])
3598 putc (c
, asm_out_file
);
3603 putc (c
, asm_out_file
);
3614 /* Output text from TEMPLATE to the assembler output file,
3615 obeying %-directions to substitute operands taken from
3616 the vector OPERANDS.
3618 %N (for N a digit) means print operand N in usual manner.
3619 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3620 and print the label name with no punctuation.
3621 %cN means require operand N to be a constant
3622 and print the constant expression with no punctuation.
3623 %aN means expect operand N to be a memory address
3624 (not a memory reference!) and print a reference
3626 %nN means expect operand N to be a constant
3627 and print a constant expression for minus the value
3628 of the operand, with no other punctuation. */
3631 output_asm_insn (const char *templ
, rtx
*operands
)
3635 #ifdef ASSEMBLER_DIALECT
3638 int oporder
[MAX_RECOG_OPERANDS
];
3639 char opoutput
[MAX_RECOG_OPERANDS
];
3642 /* An insn may return a null string template
3643 in a case where no assembler code is needed. */
3647 memset (opoutput
, 0, sizeof opoutput
);
3649 putc ('\t', asm_out_file
);
3651 #ifdef ASM_OUTPUT_OPCODE
3652 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3659 if (flag_verbose_asm
)
3660 output_asm_operand_names (operands
, oporder
, ops
);
3661 if (flag_print_asm_name
)
3665 memset (opoutput
, 0, sizeof opoutput
);
3667 putc (c
, asm_out_file
);
3668 #ifdef ASM_OUTPUT_OPCODE
3669 while ((c
= *p
) == '\t')
3671 putc (c
, asm_out_file
);
3674 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3678 #ifdef ASSEMBLER_DIALECT
3682 p
= do_assembler_dialects (p
, &dialect
);
3687 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3688 if ASSEMBLER_DIALECT defined and these characters have a special
3689 meaning as dialect delimiters.*/
3691 #ifdef ASSEMBLER_DIALECT
3692 || *p
== '{' || *p
== '}' || *p
== '|'
3696 putc (*p
, asm_out_file
);
3699 /* %= outputs a number which is unique to each insn in the entire
3700 compilation. This is useful for making local labels that are
3701 referred to more than once in a given insn. */
3705 fprintf (asm_out_file
, "%d", insn_counter
);
3707 /* % followed by a letter and some digits
3708 outputs an operand in a special way depending on the letter.
3709 Letters `acln' are implemented directly.
3710 Other letters are passed to `output_operand' so that
3711 the TARGET_PRINT_OPERAND hook can define them. */
3712 else if (ISALPHA (*p
))
3715 unsigned long opnum
;
3718 opnum
= strtoul (p
, &endptr
, 10);
3721 output_operand_lossage ("operand number missing "
3723 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3724 output_operand_lossage ("operand number out of range");
3725 else if (letter
== 'l')
3726 output_asm_label (operands
[opnum
]);
3727 else if (letter
== 'a')
3728 output_address (operands
[opnum
]);
3729 else if (letter
== 'c')
3731 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3732 output_addr_const (asm_out_file
, operands
[opnum
]);
3734 output_operand (operands
[opnum
], 'c');
3736 else if (letter
== 'n')
3738 if (CONST_INT_P (operands
[opnum
]))
3739 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3740 - INTVAL (operands
[opnum
]));
3743 putc ('-', asm_out_file
);
3744 output_addr_const (asm_out_file
, operands
[opnum
]);
3748 output_operand (operands
[opnum
], letter
);
3750 if (!opoutput
[opnum
])
3751 oporder
[ops
++] = opnum
;
3752 opoutput
[opnum
] = 1;
3757 /* % followed by a digit outputs an operand the default way. */
3758 else if (ISDIGIT (*p
))
3760 unsigned long opnum
;
3763 opnum
= strtoul (p
, &endptr
, 10);
3764 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3765 output_operand_lossage ("operand number out of range");
3767 output_operand (operands
[opnum
], 0);
3769 if (!opoutput
[opnum
])
3770 oporder
[ops
++] = opnum
;
3771 opoutput
[opnum
] = 1;
3776 /* % followed by punctuation: output something for that
3777 punctuation character alone, with no operand. The
3778 TARGET_PRINT_OPERAND hook decides what is actually done. */
3779 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3780 output_operand (NULL_RTX
, *p
++);
3782 output_operand_lossage ("invalid %%-code");
3786 putc (c
, asm_out_file
);
3789 /* Write out the variable names for operands, if we know them. */
3790 if (flag_verbose_asm
)
3791 output_asm_operand_names (operands
, oporder
, ops
);
3792 if (flag_print_asm_name
)
3795 putc ('\n', asm_out_file
);
3798 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3801 output_asm_label (rtx x
)
3805 if (GET_CODE (x
) == LABEL_REF
)
3806 x
= LABEL_REF_LABEL (x
);
3809 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3810 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3812 output_operand_lossage ("'%%l' operand isn't a label");
3814 assemble_name (asm_out_file
, buf
);
3817 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3820 mark_symbol_refs_as_used (rtx x
)
3822 subrtx_iterator::array_type array
;
3823 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3825 const_rtx x
= *iter
;
3826 if (GET_CODE (x
) == SYMBOL_REF
)
3827 if (tree t
= SYMBOL_REF_DECL (x
))
3828 assemble_external (t
);
3832 /* Print operand X using machine-dependent assembler syntax.
3833 CODE is a non-digit that preceded the operand-number in the % spec,
3834 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3835 between the % and the digits.
3836 When CODE is a non-letter, X is 0.
3838 The meanings of the letters are machine-dependent and controlled
3839 by TARGET_PRINT_OPERAND. */
3842 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3844 if (x
&& GET_CODE (x
) == SUBREG
)
3845 x
= alter_subreg (&x
, true);
3847 /* X must not be a pseudo reg. */
3848 if (!targetm
.no_register_allocation
)
3849 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3851 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3856 mark_symbol_refs_as_used (x
);
3859 /* Print a memory reference operand for address X using
3860 machine-dependent assembler syntax. */
3863 output_address (rtx x
)
3865 bool changed
= false;
3866 walk_alter_subreg (&x
, &changed
);
3867 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3870 /* Print an integer constant expression in assembler syntax.
3871 Addition and subtraction are the only arithmetic
3872 that may appear in these expressions. */
3875 output_addr_const (FILE *file
, rtx x
)
3880 switch (GET_CODE (x
))
3887 if (SYMBOL_REF_DECL (x
))
3888 assemble_external (SYMBOL_REF_DECL (x
));
3889 #ifdef ASM_OUTPUT_SYMBOL_REF
3890 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3892 assemble_name (file
, XSTR (x
, 0));
3897 x
= LABEL_REF_LABEL (x
);
3900 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3901 #ifdef ASM_OUTPUT_LABEL_REF
3902 ASM_OUTPUT_LABEL_REF (file
, buf
);
3904 assemble_name (file
, buf
);
3909 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3913 /* This used to output parentheses around the expression,
3914 but that does not work on the 386 (either ATT or BSD assembler). */
3915 output_addr_const (file
, XEXP (x
, 0));
3918 case CONST_WIDE_INT
:
3919 /* We do not know the mode here so we have to use a round about
3920 way to build a wide-int to get it printed properly. */
3922 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3923 CONST_WIDE_INT_NUNITS (x
),
3924 CONST_WIDE_INT_NUNITS (x
)
3925 * HOST_BITS_PER_WIDE_INT
,
3927 print_decs (w
, file
);
3932 if (CONST_DOUBLE_AS_INT_P (x
))
3934 /* We can use %d if the number is one word and positive. */
3935 if (CONST_DOUBLE_HIGH (x
))
3936 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3937 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3938 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3939 else if (CONST_DOUBLE_LOW (x
) < 0)
3940 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3941 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3943 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3946 /* We can't handle floating point constants;
3947 PRINT_OPERAND must handle them. */
3948 output_operand_lossage ("floating constant misused");
3952 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3956 /* Some assemblers need integer constants to appear last (eg masm). */
3957 if (CONST_INT_P (XEXP (x
, 0)))
3959 output_addr_const (file
, XEXP (x
, 1));
3960 if (INTVAL (XEXP (x
, 0)) >= 0)
3961 fprintf (file
, "+");
3962 output_addr_const (file
, XEXP (x
, 0));
3966 output_addr_const (file
, XEXP (x
, 0));
3967 if (!CONST_INT_P (XEXP (x
, 1))
3968 || INTVAL (XEXP (x
, 1)) >= 0)
3969 fprintf (file
, "+");
3970 output_addr_const (file
, XEXP (x
, 1));
3975 /* Avoid outputting things like x-x or x+5-x,
3976 since some assemblers can't handle that. */
3977 x
= simplify_subtraction (x
);
3978 if (GET_CODE (x
) != MINUS
)
3981 output_addr_const (file
, XEXP (x
, 0));
3982 fprintf (file
, "-");
3983 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3984 || GET_CODE (XEXP (x
, 1)) == PC
3985 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3986 output_addr_const (file
, XEXP (x
, 1));
3989 fputs (targetm
.asm_out
.open_paren
, file
);
3990 output_addr_const (file
, XEXP (x
, 1));
3991 fputs (targetm
.asm_out
.close_paren
, file
);
3999 output_addr_const (file
, XEXP (x
, 0));
4003 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4006 output_operand_lossage ("invalid expression as operand");
4010 /* Output a quoted string. */
4013 output_quoted_string (FILE *asm_file
, const char *string
)
4015 #ifdef OUTPUT_QUOTED_STRING
4016 OUTPUT_QUOTED_STRING (asm_file
, string
);
4020 putc ('\"', asm_file
);
4021 while ((c
= *string
++) != 0)
4025 if (c
== '\"' || c
== '\\')
4026 putc ('\\', asm_file
);
4030 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4032 putc ('\"', asm_file
);
4036 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4039 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4041 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4046 char *p
= buf
+ sizeof (buf
);
4048 *--p
= "0123456789abcdef"[value
% 16];
4049 while ((value
/= 16) != 0);
4052 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4056 /* Internal function that prints an unsigned long in decimal in reverse.
4057 The output string IS NOT null-terminated. */
4060 sprint_ul_rev (char *s
, unsigned long value
)
4065 s
[i
] = "0123456789"[value
% 10];
4068 /* alternate version, without modulo */
4069 /* oldval = value; */
4071 /* s[i] = "0123456789" [oldval - 10*value]; */
4078 /* Write an unsigned long as decimal to a file, fast. */
4081 fprint_ul (FILE *f
, unsigned long value
)
4083 /* python says: len(str(2**64)) == 20 */
4087 i
= sprint_ul_rev (s
, value
);
4089 /* It's probably too small to bother with string reversal and fputs. */
4098 /* Write an unsigned long as decimal to a string, fast.
4099 s must be wide enough to not overflow, at least 21 chars.
4100 Returns the length of the string (without terminating '\0'). */
4103 sprint_ul (char *s
, unsigned long value
)
4105 int len
= sprint_ul_rev (s
, value
);
4108 std::reverse (s
, s
+ len
);
4112 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4113 %R prints the value of REGISTER_PREFIX.
4114 %L prints the value of LOCAL_LABEL_PREFIX.
4115 %U prints the value of USER_LABEL_PREFIX.
4116 %I prints the value of IMMEDIATE_PREFIX.
4117 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4118 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4120 We handle alternate assembler dialects here, just like output_asm_insn. */
4123 asm_fprintf (FILE *file
, const char *p
, ...)
4127 #ifdef ASSEMBLER_DIALECT
4132 va_start (argptr
, p
);
4139 #ifdef ASSEMBLER_DIALECT
4143 p
= do_assembler_dialects (p
, &dialect
);
4150 while (strchr ("-+ #0", c
))
4155 while (ISDIGIT (c
) || c
== '.')
4166 case 'd': case 'i': case 'u':
4167 case 'x': case 'X': case 'o':
4171 fprintf (file
, buf
, va_arg (argptr
, int));
4175 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4176 'o' cases, but we do not check for those cases. It
4177 means that the value is a HOST_WIDE_INT, which may be
4178 either `long' or `long long'. */
4179 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4180 q
+= strlen (HOST_WIDE_INT_PRINT
);
4183 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4188 #ifdef HAVE_LONG_LONG
4194 fprintf (file
, buf
, va_arg (argptr
, long long));
4201 fprintf (file
, buf
, va_arg (argptr
, long));
4209 fprintf (file
, buf
, va_arg (argptr
, char *));
4213 #ifdef ASM_OUTPUT_OPCODE
4214 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4219 #ifdef REGISTER_PREFIX
4220 fprintf (file
, "%s", REGISTER_PREFIX
);
4225 #ifdef IMMEDIATE_PREFIX
4226 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4231 #ifdef LOCAL_LABEL_PREFIX
4232 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4237 fputs (user_label_prefix
, file
);
4240 #ifdef ASM_FPRINTF_EXTENSIONS
4241 /* Uppercase letters are reserved for general use by asm_fprintf
4242 and so are not available to target specific code. In order to
4243 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4244 they are defined here. As they get turned into real extensions
4245 to asm_fprintf they should be removed from this list. */
4246 case 'A': case 'B': case 'C': case 'D': case 'E':
4247 case 'F': case 'G': case 'H': case 'J': case 'K':
4248 case 'M': case 'N': case 'P': case 'Q': case 'S':
4249 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4252 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4265 /* Return nonzero if this function has no function calls. */
4268 leaf_function_p (void)
4272 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4273 functions even if they call mcount. */
4274 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4277 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4280 && ! SIBLING_CALL_P (insn
))
4282 if (NONJUMP_INSN_P (insn
)
4283 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4284 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4285 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4292 /* Return 1 if branch is a forward branch.
4293 Uses insn_shuid array, so it works only in the final pass. May be used by
4294 output templates to customary add branch prediction hints.
4297 final_forward_branch_p (rtx_insn
*insn
)
4299 int insn_id
, label_id
;
4301 gcc_assert (uid_shuid
);
4302 insn_id
= INSN_SHUID (insn
);
4303 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4304 /* We've hit some insns that does not have id information available. */
4305 gcc_assert (insn_id
&& label_id
);
4306 return insn_id
< label_id
;
4309 /* On some machines, a function with no call insns
4310 can run faster if it doesn't create its own register window.
4311 When output, the leaf function should use only the "output"
4312 registers. Ordinarily, the function would be compiled to use
4313 the "input" registers to find its arguments; it is a candidate
4314 for leaf treatment if it uses only the "input" registers.
4315 Leaf function treatment means renumbering so the function
4316 uses the "output" registers instead. */
4318 #ifdef LEAF_REGISTERS
4320 /* Return 1 if this function uses only the registers that can be
4321 safely renumbered. */
4324 only_leaf_regs_used (void)
4327 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4329 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4330 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4331 && ! permitted_reg_in_leaf_functions
[i
])
4334 if (crtl
->uses_pic_offset_table
4335 && pic_offset_table_rtx
!= 0
4336 && REG_P (pic_offset_table_rtx
)
4337 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4343 /* Scan all instructions and renumber all registers into those
4344 available in leaf functions. */
4347 leaf_renumber_regs (rtx_insn
*first
)
4351 /* Renumber only the actual patterns.
4352 The reg-notes can contain frame pointer refs,
4353 and renumbering them could crash, and should not be needed. */
4354 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4356 leaf_renumber_regs_insn (PATTERN (insn
));
4359 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4360 available in leaf functions. */
4363 leaf_renumber_regs_insn (rtx in_rtx
)
4366 const char *format_ptr
;
4371 /* Renumber all input-registers into output-registers.
4372 renumbered_regs would be 1 for an output-register;
4379 /* Don't renumber the same reg twice. */
4383 newreg
= REGNO (in_rtx
);
4384 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4385 to reach here as part of a REG_NOTE. */
4386 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4391 newreg
= LEAF_REG_REMAP (newreg
);
4392 gcc_assert (newreg
>= 0);
4393 df_set_regs_ever_live (REGNO (in_rtx
), false);
4394 df_set_regs_ever_live (newreg
, true);
4395 SET_REGNO (in_rtx
, newreg
);
4400 if (INSN_P (in_rtx
))
4402 /* Inside a SEQUENCE, we find insns.
4403 Renumber just the patterns of these insns,
4404 just as we do for the top-level insns. */
4405 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4409 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4411 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4412 switch (*format_ptr
++)
4415 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4419 if (NULL
!= XVEC (in_rtx
, i
))
4421 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4422 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4441 /* Turn the RTL into assembly. */
4443 rest_of_handle_final (void)
4445 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4447 assemble_start_function (current_function_decl
, fnname
);
4448 final_start_function (get_insns (), asm_out_file
, optimize
);
4449 final (get_insns (), asm_out_file
, optimize
);
4451 collect_fn_hard_reg_usage ();
4452 final_end_function ();
4454 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4455 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4456 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4457 output_function_exception_table (fnname
);
4459 assemble_end_function (current_function_decl
, fnname
);
4461 user_defined_section_attribute
= false;
4463 /* Free up reg info memory. */
4467 fflush (asm_out_file
);
4469 /* Write DBX symbols if requested. */
4471 /* Note that for those inline functions where we don't initially
4472 know for certain that we will be generating an out-of-line copy,
4473 the first invocation of this routine (rest_of_compilation) will
4474 skip over this code by doing a `goto exit_rest_of_compilation;'.
4475 Later on, wrapup_global_declarations will (indirectly) call
4476 rest_of_compilation again for those inline functions that need
4477 to have out-of-line copies generated. During that call, we
4478 *will* be routed past here. */
4480 timevar_push (TV_SYMOUT
);
4481 if (!DECL_IGNORED_P (current_function_decl
))
4482 debug_hooks
->function_decl (current_function_decl
);
4483 timevar_pop (TV_SYMOUT
);
4485 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4486 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4488 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4489 && targetm
.have_ctors_dtors
)
4490 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4491 decl_init_priority_lookup
4492 (current_function_decl
));
4493 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4494 && targetm
.have_ctors_dtors
)
4495 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4496 decl_fini_priority_lookup
4497 (current_function_decl
));
4503 const pass_data pass_data_final
=
4505 RTL_PASS
, /* type */
4507 OPTGROUP_NONE
, /* optinfo_flags */
4508 TV_FINAL
, /* tv_id */
4509 0, /* properties_required */
4510 0, /* properties_provided */
4511 0, /* properties_destroyed */
4512 0, /* todo_flags_start */
4513 0, /* todo_flags_finish */
4516 class pass_final
: public rtl_opt_pass
4519 pass_final (gcc::context
*ctxt
)
4520 : rtl_opt_pass (pass_data_final
, ctxt
)
4523 /* opt_pass methods: */
4524 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4526 }; // class pass_final
4531 make_pass_final (gcc::context
*ctxt
)
4533 return new pass_final (ctxt
);
4538 rest_of_handle_shorten_branches (void)
4540 /* Shorten branches. */
4541 shorten_branches (get_insns ());
4547 const pass_data pass_data_shorten_branches
=
4549 RTL_PASS
, /* type */
4550 "shorten", /* name */
4551 OPTGROUP_NONE
, /* optinfo_flags */
4552 TV_SHORTEN_BRANCH
, /* tv_id */
4553 0, /* properties_required */
4554 0, /* properties_provided */
4555 0, /* properties_destroyed */
4556 0, /* todo_flags_start */
4557 0, /* todo_flags_finish */
4560 class pass_shorten_branches
: public rtl_opt_pass
4563 pass_shorten_branches (gcc::context
*ctxt
)
4564 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4567 /* opt_pass methods: */
4568 virtual unsigned int execute (function
*)
4570 return rest_of_handle_shorten_branches ();
4573 }; // class pass_shorten_branches
4578 make_pass_shorten_branches (gcc::context
*ctxt
)
4580 return new pass_shorten_branches (ctxt
);
4585 rest_of_clean_state (void)
4587 rtx_insn
*insn
, *next
;
4588 FILE *final_output
= NULL
;
4589 int save_unnumbered
= flag_dump_unnumbered
;
4590 int save_noaddr
= flag_dump_noaddr
;
4592 if (flag_dump_final_insns
)
4594 final_output
= fopen (flag_dump_final_insns
, "a");
4597 error ("could not open final insn dump file %qs: %m",
4598 flag_dump_final_insns
);
4599 flag_dump_final_insns
= NULL
;
4603 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4604 if (flag_compare_debug_opt
|| flag_compare_debug
)
4605 dump_flags
|= TDF_NOUID
;
4606 dump_function_header (final_output
, current_function_decl
,
4608 final_insns_dump_p
= true;
4610 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4612 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4616 set_block_for_insn (insn
, NULL
);
4617 INSN_UID (insn
) = 0;
4622 /* It is very important to decompose the RTL instruction chain here:
4623 debug information keeps pointing into CODE_LABEL insns inside the function
4624 body. If these remain pointing to the other insns, we end up preserving
4625 whole RTL chain and attached detailed debug info in memory. */
4626 for (insn
= get_insns (); insn
; insn
= next
)
4628 next
= NEXT_INSN (insn
);
4629 SET_NEXT_INSN (insn
) = NULL
;
4630 SET_PREV_INSN (insn
) = NULL
;
4633 && (!NOTE_P (insn
) ||
4634 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4635 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4636 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4637 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4638 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4639 print_rtl_single (final_output
, insn
);
4644 flag_dump_noaddr
= save_noaddr
;
4645 flag_dump_unnumbered
= save_unnumbered
;
4646 final_insns_dump_p
= false;
4648 if (fclose (final_output
))
4650 error ("could not close final insn dump file %qs: %m",
4651 flag_dump_final_insns
);
4652 flag_dump_final_insns
= NULL
;
4656 /* In case the function was not output,
4657 don't leave any temporary anonymous types
4658 queued up for sdb output. */
4659 #ifdef SDB_DEBUGGING_INFO
4660 if (write_symbols
== SDB_DEBUG
)
4661 sdbout_types (NULL_TREE
);
4664 flag_rerun_cse_after_global_opts
= 0;
4665 reload_completed
= 0;
4666 epilogue_completed
= 0;
4668 regstack_completed
= 0;
4671 /* Clear out the insn_length contents now that they are no
4673 init_insn_lengths ();
4675 /* Show no temporary slots allocated. */
4678 free_bb_for_insn ();
4682 /* We can reduce stack alignment on call site only when we are sure that
4683 the function body just produced will be actually used in the final
4685 if (decl_binds_to_current_def_p (current_function_decl
))
4687 unsigned int pref
= crtl
->preferred_stack_boundary
;
4688 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4689 pref
= crtl
->stack_alignment_needed
;
4690 cgraph_node::rtl_info (current_function_decl
)
4691 ->preferred_incoming_stack_boundary
= pref
;
4694 /* Make sure volatile mem refs aren't considered valid operands for
4695 arithmetic insns. We must call this here if this is a nested inline
4696 function, since the above code leaves us in the init_recog state,
4697 and the function context push/pop code does not save/restore volatile_ok.
4699 ??? Maybe it isn't necessary for expand_start_function to call this
4700 anymore if we do it here? */
4702 init_recog_no_volatile ();
4704 /* We're done with this function. Free up memory if we can. */
4705 free_after_parsing (cfun
);
4706 free_after_compilation (cfun
);
4712 const pass_data pass_data_clean_state
=
4714 RTL_PASS
, /* type */
4715 "*clean_state", /* name */
4716 OPTGROUP_NONE
, /* optinfo_flags */
4717 TV_FINAL
, /* tv_id */
4718 0, /* properties_required */
4719 0, /* properties_provided */
4720 PROP_rtl
, /* properties_destroyed */
4721 0, /* todo_flags_start */
4722 0, /* todo_flags_finish */
4725 class pass_clean_state
: public rtl_opt_pass
4728 pass_clean_state (gcc::context
*ctxt
)
4729 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4732 /* opt_pass methods: */
4733 virtual unsigned int execute (function
*)
4735 return rest_of_clean_state ();
4738 }; // class pass_clean_state
4743 make_pass_clean_state (gcc::context
*ctxt
)
4745 return new pass_clean_state (ctxt
);
4748 /* Return true if INSN is a call to the current function. */
4751 self_recursive_call_p (rtx_insn
*insn
)
4753 tree fndecl
= get_call_fndecl (insn
);
4754 return (fndecl
== current_function_decl
4755 && decl_binds_to_current_def_p (fndecl
));
4758 /* Collect hard register usage for the current function. */
4761 collect_fn_hard_reg_usage (void)
4767 struct cgraph_rtl_info
*node
;
4768 HARD_REG_SET function_used_regs
;
4770 /* ??? To be removed when all the ports have been fixed. */
4771 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4774 CLEAR_HARD_REG_SET (function_used_regs
);
4776 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4778 HARD_REG_SET insn_used_regs
;
4780 if (!NONDEBUG_INSN_P (insn
))
4784 && !self_recursive_call_p (insn
))
4786 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4790 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4793 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4794 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4797 /* Be conservative - mark fixed and global registers as used. */
4798 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4801 /* Handle STACK_REGS conservatively, since the df-framework does not
4802 provide accurate information for them. */
4804 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4805 SET_HARD_REG_BIT (function_used_regs
, i
);
4808 /* The information we have gathered is only interesting if it exposes a
4809 register from the call_used_regs that is not used in this function. */
4810 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4813 node
= cgraph_node::rtl_info (current_function_decl
);
4814 gcc_assert (node
!= NULL
);
4816 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4817 node
->function_used_regs_valid
= 1;
4820 /* Get the declaration of the function called by INSN. */
4823 get_call_fndecl (rtx_insn
*insn
)
4827 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4828 if (note
== NULL_RTX
)
4831 datum
= XEXP (note
, 0);
4832 if (datum
!= NULL_RTX
)
4833 return SYMBOL_REF_DECL (datum
);
4838 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4839 call targets that can be overwritten. */
4841 static struct cgraph_rtl_info
*
4842 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4846 if (insn
== NULL_RTX
)
4849 fndecl
= get_call_fndecl (insn
);
4850 if (fndecl
== NULL_TREE
4851 || !decl_binds_to_current_def_p (fndecl
))
4854 return cgraph_node::rtl_info (fndecl
);
4857 /* Find hard registers used by function call instruction INSN, and return them
4858 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4861 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4862 HARD_REG_SET default_set
)
4866 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4868 && node
->function_used_regs_valid
)
4870 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4871 AND_HARD_REG_SET (*reg_set
, default_set
);
4876 COPY_HARD_REG_SET (*reg_set
, default_set
);