1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "diagnostic-core.h"
29 #include "stor-layout.h"
34 #include "insn-config.h"
43 #include "insn-codes.h"
47 #include "langhooks.h"
49 #include "common/common-target.h"
52 static rtx
break_out_memory_refs (rtx
);
55 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
58 trunc_int_for_mode (HOST_WIDE_INT c
, machine_mode mode
)
60 int width
= GET_MODE_PRECISION (mode
);
62 /* You want to truncate to a _what_? */
63 gcc_assert (SCALAR_INT_MODE_P (mode
)
64 || POINTER_BOUNDS_MODE_P (mode
));
66 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
68 return c
& 1 ? STORE_FLAG_VALUE
: 0;
70 /* Sign-extend for the requested mode. */
72 if (width
< HOST_BITS_PER_WIDE_INT
)
74 HOST_WIDE_INT sign
= 1;
84 /* Return an rtx for the sum of X and the integer C, given that X has
85 mode MODE. INPLACE is true if X can be modified inplace or false
86 if it must be treated as immutable. */
89 plus_constant (machine_mode mode
, rtx x
, HOST_WIDE_INT c
,
97 gcc_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
109 CASE_CONST_SCALAR_INT
:
110 return immed_wide_int_const (wi::add (std::make_pair (x
, mode
), c
),
113 /* If this is a reference to the constant pool, try replacing it with
114 a reference to a new constant. If the resulting address isn't
115 valid, don't return it because we have no way to validize it. */
116 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
117 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
119 tem
= plus_constant (mode
, get_pool_constant (XEXP (x
, 0)), c
);
120 tem
= force_const_mem (GET_MODE (x
), tem
);
121 /* Targets may disallow some constants in the constant pool, thus
122 force_const_mem may return NULL_RTX. */
123 if (tem
&& memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
129 /* If adding to something entirely constant, set a flag
130 so that we can add a CONST around the result. */
131 if (inplace
&& shared_const_p (x
))
143 /* The interesting case is adding the integer to a sum. Look
144 for constant term in the sum and combine with C. For an
145 integer constant term or a constant term that is not an
146 explicit integer, we combine or group them together anyway.
148 We may not immediately return from the recursive call here, lest
149 all_constant gets lost. */
151 if (CONSTANT_P (XEXP (x
, 1)))
153 rtx term
= plus_constant (mode
, XEXP (x
, 1), c
, inplace
);
154 if (term
== const0_rtx
)
159 x
= gen_rtx_PLUS (mode
, XEXP (x
, 0), term
);
162 else if (rtx
*const_loc
= find_constant_term_loc (&y
))
166 /* We need to be careful since X may be shared and we can't
167 modify it in place. */
169 const_loc
= find_constant_term_loc (&x
);
171 *const_loc
= plus_constant (mode
, *const_loc
, c
, true);
181 x
= gen_rtx_PLUS (mode
, x
, gen_int_mode (c
, mode
));
183 if (GET_CODE (x
) == SYMBOL_REF
|| GET_CODE (x
) == LABEL_REF
)
185 else if (all_constant
)
186 return gen_rtx_CONST (mode
, x
);
191 /* If X is a sum, return a new sum like X but lacking any constant terms.
192 Add all the removed constant terms into *CONSTPTR.
193 X itself is not altered. The result != X if and only if
194 it is not isomorphic to X. */
197 eliminate_constant_term (rtx x
, rtx
*constptr
)
202 if (GET_CODE (x
) != PLUS
)
205 /* First handle constants appearing at this level explicitly. */
206 if (CONST_INT_P (XEXP (x
, 1))
207 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
), *constptr
,
209 && CONST_INT_P (tem
))
212 return eliminate_constant_term (XEXP (x
, 0), constptr
);
216 x0
= eliminate_constant_term (XEXP (x
, 0), &tem
);
217 x1
= eliminate_constant_term (XEXP (x
, 1), &tem
);
218 if ((x1
!= XEXP (x
, 1) || x0
!= XEXP (x
, 0))
219 && 0 != (tem
= simplify_binary_operation (PLUS
, GET_MODE (x
),
221 && CONST_INT_P (tem
))
224 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
231 /* Return a copy of X in which all memory references
232 and all constants that involve symbol refs
233 have been replaced with new temporary registers.
234 Also emit code to load the memory locations and constants
235 into those registers.
237 If X contains no such constants or memory references,
238 X itself (not a copy) is returned.
240 If a constant is found in the address that is not a legitimate constant
241 in an insn, it is left alone in the hope that it might be valid in the
244 X may contain no arithmetic except addition, subtraction and multiplication.
245 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
248 break_out_memory_refs (rtx x
)
251 || (CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
)
252 && GET_MODE (x
) != VOIDmode
))
253 x
= force_reg (GET_MODE (x
), x
);
254 else if (GET_CODE (x
) == PLUS
|| GET_CODE (x
) == MINUS
255 || GET_CODE (x
) == MULT
)
257 rtx op0
= break_out_memory_refs (XEXP (x
, 0));
258 rtx op1
= break_out_memory_refs (XEXP (x
, 1));
260 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
261 x
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
267 /* Given X, a memory address in address space AS' pointer mode, convert it to
268 an address in the address space's address mode, or vice versa (TO_MODE says
269 which way). We take advantage of the fact that pointers are not allowed to
270 overflow by commuting arithmetic operations over conversions so that address
271 arithmetic insns can be used. IN_CONST is true if this conversion is inside
275 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED
,
276 rtx x
, addr_space_t as ATTRIBUTE_UNUSED
,
277 bool in_const ATTRIBUTE_UNUSED
)
279 #ifndef POINTERS_EXTEND_UNSIGNED
280 gcc_assert (GET_MODE (x
) == to_mode
|| GET_MODE (x
) == VOIDmode
);
282 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
283 machine_mode pointer_mode
, address_mode
, from_mode
;
287 /* If X already has the right mode, just return it. */
288 if (GET_MODE (x
) == to_mode
)
291 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
292 address_mode
= targetm
.addr_space
.address_mode (as
);
293 from_mode
= to_mode
== pointer_mode
? address_mode
: pointer_mode
;
295 /* Here we handle some special cases. If none of them apply, fall through
296 to the default case. */
297 switch (GET_CODE (x
))
299 CASE_CONST_SCALAR_INT
:
300 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
))
302 else if (POINTERS_EXTEND_UNSIGNED
< 0)
304 else if (POINTERS_EXTEND_UNSIGNED
> 0)
308 temp
= simplify_unary_operation (code
, to_mode
, x
, from_mode
);
314 if ((SUBREG_PROMOTED_VAR_P (x
) || REG_POINTER (SUBREG_REG (x
)))
315 && GET_MODE (SUBREG_REG (x
)) == to_mode
)
316 return SUBREG_REG (x
);
320 temp
= gen_rtx_LABEL_REF (to_mode
, LABEL_REF_LABEL (x
));
321 LABEL_REF_NONLOCAL_P (temp
) = LABEL_REF_NONLOCAL_P (x
);
326 temp
= shallow_copy_rtx (x
);
327 PUT_MODE (temp
, to_mode
);
332 return gen_rtx_CONST (to_mode
,
333 convert_memory_address_addr_space_1
334 (to_mode
, XEXP (x
, 0), as
, true));
339 /* For addition we can safely permute the conversion and addition
340 operation if one operand is a constant and converting the constant
341 does not change it or if one operand is a constant and we are
342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
343 We can always safely permute them if we are making the address
344 narrower. Inside a CONST RTL, this is safe for both pointers
345 zero or sign extended as pointers cannot wrap. */
346 if (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (from_mode
)
347 || (GET_CODE (x
) == PLUS
348 && CONST_INT_P (XEXP (x
, 1))
349 && ((in_const
&& POINTERS_EXTEND_UNSIGNED
!= 0)
350 || XEXP (x
, 1) == convert_memory_address_addr_space_1
351 (to_mode
, XEXP (x
, 1), as
, in_const
)
352 || POINTERS_EXTEND_UNSIGNED
< 0)))
353 return gen_rtx_fmt_ee (GET_CODE (x
), to_mode
,
354 convert_memory_address_addr_space_1
355 (to_mode
, XEXP (x
, 0), as
, in_const
),
363 return convert_modes (to_mode
, from_mode
,
364 x
, POINTERS_EXTEND_UNSIGNED
);
365 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
368 /* Given X, a memory address in address space AS' pointer mode, convert it to
369 an address in the address space's address mode, or vice versa (TO_MODE says
370 which way). We take advantage of the fact that pointers are not allowed to
371 overflow by commuting arithmetic operations over conversions so that address
372 arithmetic insns can be used. */
375 convert_memory_address_addr_space (machine_mode to_mode
, rtx x
, addr_space_t as
)
377 return convert_memory_address_addr_space_1 (to_mode
, x
, as
, false);
381 /* Return something equivalent to X but valid as a memory address for something
382 of mode MODE in the named address space AS. When X is not itself valid,
383 this works by copying X or subexpressions of it into registers. */
386 memory_address_addr_space (machine_mode mode
, rtx x
, addr_space_t as
)
389 machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
391 x
= convert_memory_address_addr_space (address_mode
, x
, as
);
393 /* By passing constant addresses through registers
394 we get a chance to cse them. */
395 if (! cse_not_expected
&& CONSTANT_P (x
) && CONSTANT_ADDRESS_P (x
))
396 x
= force_reg (address_mode
, x
);
398 /* We get better cse by rejecting indirect addressing at this stage.
399 Let the combiner create indirect addresses where appropriate.
400 For now, generate the code so that the subexpressions useful to share
401 are visible. But not if cse won't be done! */
404 if (! cse_not_expected
&& !REG_P (x
))
405 x
= break_out_memory_refs (x
);
407 /* At this point, any valid address is accepted. */
408 if (memory_address_addr_space_p (mode
, x
, as
))
411 /* If it was valid before but breaking out memory refs invalidated it,
412 use it the old way. */
413 if (memory_address_addr_space_p (mode
, oldx
, as
))
419 /* Perform machine-dependent transformations on X
420 in certain cases. This is not necessary since the code
421 below can handle all possible cases, but machine-dependent
422 transformations can make better code. */
425 x
= targetm
.addr_space
.legitimize_address (x
, oldx
, mode
, as
);
426 if (orig_x
!= x
&& memory_address_addr_space_p (mode
, x
, as
))
430 /* PLUS and MULT can appear in special ways
431 as the result of attempts to make an address usable for indexing.
432 Usually they are dealt with by calling force_operand, below.
433 But a sum containing constant terms is special
434 if removing them makes the sum a valid address:
435 then we generate that address in a register
436 and index off of it. We do this because it often makes
437 shorter code, and because the addresses thus generated
438 in registers often become common subexpressions. */
439 if (GET_CODE (x
) == PLUS
)
441 rtx constant_term
= const0_rtx
;
442 rtx y
= eliminate_constant_term (x
, &constant_term
);
443 if (constant_term
== const0_rtx
444 || ! memory_address_addr_space_p (mode
, y
, as
))
445 x
= force_operand (x
, NULL_RTX
);
448 y
= gen_rtx_PLUS (GET_MODE (x
), copy_to_reg (y
), constant_term
);
449 if (! memory_address_addr_space_p (mode
, y
, as
))
450 x
= force_operand (x
, NULL_RTX
);
456 else if (GET_CODE (x
) == MULT
|| GET_CODE (x
) == MINUS
)
457 x
= force_operand (x
, NULL_RTX
);
459 /* If we have a register that's an invalid address,
460 it must be a hard reg of the wrong class. Copy it to a pseudo. */
464 /* Last resort: copy the value to a register, since
465 the register is a valid address. */
467 x
= force_reg (address_mode
, x
);
472 gcc_assert (memory_address_addr_space_p (mode
, x
, as
));
473 /* If we didn't change the address, we are done. Otherwise, mark
474 a reg as a pointer if we have REG or REG + CONST_INT. */
478 mark_reg_pointer (x
, BITS_PER_UNIT
);
479 else if (GET_CODE (x
) == PLUS
480 && REG_P (XEXP (x
, 0))
481 && CONST_INT_P (XEXP (x
, 1)))
482 mark_reg_pointer (XEXP (x
, 0), BITS_PER_UNIT
);
484 /* OLDX may have been the address on a temporary. Update the address
485 to indicate that X is now used. */
486 update_temp_slot_address (oldx
, x
);
491 /* If REF is a MEM with an invalid address, change it into a valid address.
492 Pass through anything else unchanged. REF must be an unshared rtx and
493 the function may modify it in-place. */
496 validize_mem (rtx ref
)
500 ref
= use_anchored_address (ref
);
501 if (memory_address_addr_space_p (GET_MODE (ref
), XEXP (ref
, 0),
502 MEM_ADDR_SPACE (ref
)))
505 return replace_equiv_address (ref
, XEXP (ref
, 0), true);
508 /* If X is a memory reference to a member of an object block, try rewriting
509 it to use an anchor instead. Return the new memory reference on success
510 and the old one on failure. */
513 use_anchored_address (rtx x
)
516 HOST_WIDE_INT offset
;
519 if (!flag_section_anchors
)
525 /* Split the address into a base and offset. */
528 if (GET_CODE (base
) == CONST
529 && GET_CODE (XEXP (base
, 0)) == PLUS
530 && CONST_INT_P (XEXP (XEXP (base
, 0), 1)))
532 offset
+= INTVAL (XEXP (XEXP (base
, 0), 1));
533 base
= XEXP (XEXP (base
, 0), 0);
536 /* Check whether BASE is suitable for anchors. */
537 if (GET_CODE (base
) != SYMBOL_REF
538 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base
)
539 || SYMBOL_REF_ANCHOR_P (base
)
540 || SYMBOL_REF_BLOCK (base
) == NULL
541 || !targetm
.use_anchors_for_symbol_p (base
))
544 /* Decide where BASE is going to be. */
545 place_block_symbol (base
);
547 /* Get the anchor we need to use. */
548 offset
+= SYMBOL_REF_BLOCK_OFFSET (base
);
549 base
= get_section_anchor (SYMBOL_REF_BLOCK (base
), offset
,
550 SYMBOL_REF_TLS_MODEL (base
));
552 /* Work out the offset from the anchor. */
553 offset
-= SYMBOL_REF_BLOCK_OFFSET (base
);
555 /* If we're going to run a CSE pass, force the anchor into a register.
556 We will then be able to reuse registers for several accesses, if the
557 target costs say that that's worthwhile. */
558 mode
= GET_MODE (base
);
559 if (!cse_not_expected
)
560 base
= force_reg (mode
, base
);
562 return replace_equiv_address (x
, plus_constant (mode
, base
, offset
));
565 /* Copy the value or contents of X to a new temp reg and return that reg. */
570 rtx temp
= gen_reg_rtx (GET_MODE (x
));
572 /* If not an operand, must be an address with PLUS and MULT so
573 do the computation. */
574 if (! general_operand (x
, VOIDmode
))
575 x
= force_operand (x
, temp
);
578 emit_move_insn (temp
, x
);
583 /* Like copy_to_reg but always give the new register mode Pmode
584 in case X is a constant. */
587 copy_addr_to_reg (rtx x
)
589 return copy_to_mode_reg (Pmode
, x
);
592 /* Like copy_to_reg but always give the new register mode MODE
593 in case X is a constant. */
596 copy_to_mode_reg (machine_mode mode
, rtx x
)
598 rtx temp
= gen_reg_rtx (mode
);
600 /* If not an operand, must be an address with PLUS and MULT so
601 do the computation. */
602 if (! general_operand (x
, VOIDmode
))
603 x
= force_operand (x
, temp
);
605 gcc_assert (GET_MODE (x
) == mode
|| GET_MODE (x
) == VOIDmode
);
607 emit_move_insn (temp
, x
);
611 /* Load X into a register if it is not already one.
612 Use mode MODE for the register.
613 X should be valid for mode MODE, but it may be a constant which
614 is valid for all integer modes; that's why caller must specify MODE.
616 The caller must not alter the value in the register we return,
617 since we mark it as a "constant" register. */
620 force_reg (machine_mode mode
, rtx x
)
628 if (general_operand (x
, mode
))
630 temp
= gen_reg_rtx (mode
);
631 insn
= emit_move_insn (temp
, x
);
635 temp
= force_operand (x
, NULL_RTX
);
637 insn
= get_last_insn ();
640 rtx temp2
= gen_reg_rtx (mode
);
641 insn
= emit_move_insn (temp2
, temp
);
646 /* Let optimizers know that TEMP's value never changes
647 and that X can be substituted for it. Don't get confused
648 if INSN set something else (such as a SUBREG of TEMP). */
650 && (set
= single_set (insn
)) != 0
651 && SET_DEST (set
) == temp
652 && ! rtx_equal_p (x
, SET_SRC (set
)))
653 set_unique_reg_note (insn
, REG_EQUAL
, x
);
655 /* Let optimizers know that TEMP is a pointer, and if so, the
656 known alignment of that pointer. */
659 if (GET_CODE (x
) == SYMBOL_REF
)
661 align
= BITS_PER_UNIT
;
662 if (SYMBOL_REF_DECL (x
) && DECL_P (SYMBOL_REF_DECL (x
)))
663 align
= DECL_ALIGN (SYMBOL_REF_DECL (x
));
665 else if (GET_CODE (x
) == LABEL_REF
)
666 align
= BITS_PER_UNIT
;
667 else if (GET_CODE (x
) == CONST
668 && GET_CODE (XEXP (x
, 0)) == PLUS
669 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
670 && CONST_INT_P (XEXP (XEXP (x
, 0), 1)))
672 rtx s
= XEXP (XEXP (x
, 0), 0);
673 rtx c
= XEXP (XEXP (x
, 0), 1);
677 if (SYMBOL_REF_DECL (s
) && DECL_P (SYMBOL_REF_DECL (s
)))
678 sa
= DECL_ALIGN (SYMBOL_REF_DECL (s
));
684 ca
= ctz_hwi (INTVAL (c
)) * BITS_PER_UNIT
;
685 align
= MIN (sa
, ca
);
689 if (align
|| (MEM_P (x
) && MEM_POINTER (x
)))
690 mark_reg_pointer (temp
, align
);
696 /* If X is a memory ref, copy its contents to a new temp reg and return
697 that reg. Otherwise, return X. */
700 force_not_mem (rtx x
)
704 if (!MEM_P (x
) || GET_MODE (x
) == BLKmode
)
707 temp
= gen_reg_rtx (GET_MODE (x
));
710 REG_POINTER (temp
) = 1;
712 emit_move_insn (temp
, x
);
716 /* Copy X to TARGET (if it's nonzero and a reg)
717 or to a new temp reg and return that reg.
718 MODE is the mode to use for X in case it is a constant. */
721 copy_to_suggested_reg (rtx x
, rtx target
, machine_mode mode
)
725 if (target
&& REG_P (target
))
728 temp
= gen_reg_rtx (mode
);
730 emit_move_insn (temp
, x
);
734 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
735 PUNSIGNEDP points to the signedness of the type and may be adjusted
736 to show what signedness to use on extension operations.
738 FOR_RETURN is nonzero if the caller is promoting the return value
739 of FNDECL, else it is for promoting args. */
742 promote_function_mode (const_tree type
, machine_mode mode
, int *punsignedp
,
743 const_tree funtype
, int for_return
)
745 /* Called without a type node for a libcall. */
746 if (type
== NULL_TREE
)
748 if (INTEGRAL_MODE_P (mode
))
749 return targetm
.calls
.promote_function_mode (NULL_TREE
, mode
,
756 switch (TREE_CODE (type
))
758 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
759 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
760 case POINTER_TYPE
: case REFERENCE_TYPE
:
761 return targetm
.calls
.promote_function_mode (type
, mode
, punsignedp
, funtype
,
768 /* Return the mode to use to store a scalar of TYPE and MODE.
769 PUNSIGNEDP points to the signedness of the type and may be adjusted
770 to show what signedness to use on extension operations. */
773 promote_mode (const_tree type ATTRIBUTE_UNUSED
, machine_mode mode
,
774 int *punsignedp ATTRIBUTE_UNUSED
)
781 /* For libcalls this is invoked without TYPE from the backends
782 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
784 if (type
== NULL_TREE
)
787 /* FIXME: this is the same logic that was there until GCC 4.4, but we
788 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
789 is not defined. The affected targets are M32C, S390, SPARC. */
791 code
= TREE_CODE (type
);
792 unsignedp
= *punsignedp
;
796 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
797 case REAL_TYPE
: case OFFSET_TYPE
: case FIXED_POINT_TYPE
:
798 PROMOTE_MODE (mode
, unsignedp
, type
);
799 *punsignedp
= unsignedp
;
803 #ifdef POINTERS_EXTEND_UNSIGNED
806 *punsignedp
= POINTERS_EXTEND_UNSIGNED
;
807 return targetm
.addr_space
.address_mode
808 (TYPE_ADDR_SPACE (TREE_TYPE (type
)));
821 /* Use one of promote_mode or promote_function_mode to find the promoted
822 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
823 of DECL after promotion. */
826 promote_decl_mode (const_tree decl
, int *punsignedp
)
828 tree type
= TREE_TYPE (decl
);
829 int unsignedp
= TYPE_UNSIGNED (type
);
830 machine_mode mode
= DECL_MODE (decl
);
833 if (TREE_CODE (decl
) == RESULT_DECL
&& !DECL_BY_REFERENCE (decl
))
834 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
835 TREE_TYPE (current_function_decl
), 1);
836 else if (TREE_CODE (decl
) == RESULT_DECL
|| TREE_CODE (decl
) == PARM_DECL
)
837 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
838 TREE_TYPE (current_function_decl
), 2);
840 pmode
= promote_mode (type
, mode
, &unsignedp
);
843 *punsignedp
= unsignedp
;
847 /* Return the promoted mode for name. If it is a named SSA_NAME, it
848 is the same as promote_decl_mode. Otherwise, it is the promoted
849 mode of a temp decl of same type as the SSA_NAME, if we had created
853 promote_ssa_mode (const_tree name
, int *punsignedp
)
855 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
857 /* Partitions holding parms and results must be promoted as expected
859 if (SSA_NAME_VAR (name
)
860 && (TREE_CODE (SSA_NAME_VAR (name
)) == PARM_DECL
861 || TREE_CODE (SSA_NAME_VAR (name
)) == RESULT_DECL
))
863 machine_mode mode
= promote_decl_mode (SSA_NAME_VAR (name
), punsignedp
);
868 tree type
= TREE_TYPE (name
);
869 int unsignedp
= TYPE_UNSIGNED (type
);
870 machine_mode mode
= TYPE_MODE (type
);
872 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
875 gcc_assert (VECTOR_TYPE_P (type
));
876 mode
= type
->type_common
.mode
;
879 machine_mode pmode
= promote_mode (type
, mode
, &unsignedp
);
881 *punsignedp
= unsignedp
;
888 /* Controls the behaviour of {anti_,}adjust_stack. */
889 static bool suppress_reg_args_size
;
891 /* A helper for adjust_stack and anti_adjust_stack. */
894 adjust_stack_1 (rtx adjust
, bool anti_p
)
899 /* Hereafter anti_p means subtract_p. */
900 if (!STACK_GROWS_DOWNWARD
)
903 temp
= expand_binop (Pmode
,
904 anti_p
? sub_optab
: add_optab
,
905 stack_pointer_rtx
, adjust
, stack_pointer_rtx
, 0,
908 if (temp
!= stack_pointer_rtx
)
909 insn
= emit_move_insn (stack_pointer_rtx
, temp
);
912 insn
= get_last_insn ();
913 temp
= single_set (insn
);
914 gcc_assert (temp
!= NULL
&& SET_DEST (temp
) == stack_pointer_rtx
);
917 if (!suppress_reg_args_size
)
918 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
921 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
922 This pops when ADJUST is positive. ADJUST need not be constant. */
925 adjust_stack (rtx adjust
)
927 if (adjust
== const0_rtx
)
930 /* We expect all variable sized adjustments to be multiple of
931 PREFERRED_STACK_BOUNDARY. */
932 if (CONST_INT_P (adjust
))
933 stack_pointer_delta
-= INTVAL (adjust
);
935 adjust_stack_1 (adjust
, false);
938 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
939 This pushes when ADJUST is positive. ADJUST need not be constant. */
942 anti_adjust_stack (rtx adjust
)
944 if (adjust
== const0_rtx
)
947 /* We expect all variable sized adjustments to be multiple of
948 PREFERRED_STACK_BOUNDARY. */
949 if (CONST_INT_P (adjust
))
950 stack_pointer_delta
+= INTVAL (adjust
);
952 adjust_stack_1 (adjust
, true);
955 /* Round the size of a block to be pushed up to the boundary required
956 by this machine. SIZE is the desired size, which need not be constant. */
959 round_push (rtx size
)
961 rtx align_rtx
, alignm1_rtx
;
963 if (!SUPPORTS_STACK_ALIGNMENT
964 || crtl
->preferred_stack_boundary
== MAX_SUPPORTED_STACK_ALIGNMENT
)
966 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
971 if (CONST_INT_P (size
))
973 HOST_WIDE_INT new_size
= (INTVAL (size
) + align
- 1) / align
* align
;
975 if (INTVAL (size
) != new_size
)
976 size
= GEN_INT (new_size
);
980 align_rtx
= GEN_INT (align
);
981 alignm1_rtx
= GEN_INT (align
- 1);
985 /* If crtl->preferred_stack_boundary might still grow, use
986 virtual_preferred_stack_boundary_rtx instead. This will be
987 substituted by the right value in vregs pass and optimized
989 align_rtx
= virtual_preferred_stack_boundary_rtx
;
990 alignm1_rtx
= force_operand (plus_constant (Pmode
, align_rtx
, -1),
994 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
995 but we know it can't. So add ourselves and then do
997 size
= expand_binop (Pmode
, add_optab
, size
, alignm1_rtx
,
998 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
999 size
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, size
, align_rtx
,
1001 size
= expand_mult (Pmode
, size
, align_rtx
, NULL_RTX
, 1);
1006 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1007 to a previously-created save area. If no save area has been allocated,
1008 this function will allocate one. If a save area is specified, it
1009 must be of the proper mode. */
1012 emit_stack_save (enum save_level save_level
, rtx
*psave
)
1015 /* The default is that we use a move insn and save in a Pmode object. */
1016 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1017 machine_mode mode
= STACK_SAVEAREA_MODE (save_level
);
1019 /* See if this machine has anything special to do for this kind of save. */
1023 if (targetm
.have_save_stack_block ())
1024 fcn
= targetm
.gen_save_stack_block
;
1027 if (targetm
.have_save_stack_function ())
1028 fcn
= targetm
.gen_save_stack_function
;
1031 if (targetm
.have_save_stack_nonlocal ())
1032 fcn
= targetm
.gen_save_stack_nonlocal
;
1038 /* If there is no save area and we have to allocate one, do so. Otherwise
1039 verify the save area is the proper mode. */
1043 if (mode
!= VOIDmode
)
1045 if (save_level
== SAVE_NONLOCAL
)
1046 *psave
= sa
= assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
1048 *psave
= sa
= gen_reg_rtx (mode
);
1052 do_pending_stack_adjust ();
1054 sa
= validize_mem (sa
);
1055 emit_insn (fcn (sa
, stack_pointer_rtx
));
1058 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1059 area made by emit_stack_save. If it is zero, we have nothing to do. */
1062 emit_stack_restore (enum save_level save_level
, rtx sa
)
1064 /* The default is that we use a move insn. */
1065 rtx_insn
*(*fcn
) (rtx
, rtx
) = gen_move_insn
;
1067 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1068 STACK_POINTER and HARD_FRAME_POINTER.
1069 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1070 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1071 aligned variables, which is reflected in ix86_can_eliminate.
1072 We normally still have the realigned STACK_POINTER that we can use.
1073 But if there is a stack restore still present at reload, it can trigger
1074 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1075 FRAME_POINTER into a hard reg.
1076 To prevent this situation, we force need_drap if we emit a stack
1078 if (SUPPORTS_STACK_ALIGNMENT
)
1079 crtl
->need_drap
= true;
1081 /* See if this machine has anything special to do for this kind of save. */
1085 if (targetm
.have_restore_stack_block ())
1086 fcn
= targetm
.gen_restore_stack_block
;
1089 if (targetm
.have_restore_stack_function ())
1090 fcn
= targetm
.gen_restore_stack_function
;
1093 if (targetm
.have_restore_stack_nonlocal ())
1094 fcn
= targetm
.gen_restore_stack_nonlocal
;
1102 sa
= validize_mem (sa
);
1103 /* These clobbers prevent the scheduler from moving
1104 references to variable arrays below the code
1105 that deletes (pops) the arrays. */
1106 emit_clobber (gen_rtx_MEM (BLKmode
, gen_rtx_SCRATCH (VOIDmode
)));
1107 emit_clobber (gen_rtx_MEM (BLKmode
, stack_pointer_rtx
));
1110 discard_pending_stack_adjust ();
1112 emit_insn (fcn (stack_pointer_rtx
, sa
));
1115 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1116 function. This should be called whenever we allocate or deallocate
1117 dynamic stack space. */
1120 update_nonlocal_goto_save_area (void)
1125 /* The nonlocal_goto_save_area object is an array of N pointers. The
1126 first one is used for the frame pointer save; the rest are sized by
1127 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1128 of the stack save area slots. */
1129 t_save
= build4 (ARRAY_REF
,
1130 TREE_TYPE (TREE_TYPE (cfun
->nonlocal_goto_save_area
)),
1131 cfun
->nonlocal_goto_save_area
,
1132 integer_one_node
, NULL_TREE
, NULL_TREE
);
1133 r_save
= expand_expr (t_save
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
1135 emit_stack_save (SAVE_NONLOCAL
, &r_save
);
1138 /* Record a new stack level for the current function. This should be called
1139 whenever we allocate or deallocate dynamic stack space. */
1142 record_new_stack_level (void)
1144 /* Record the new stack level for nonlocal gotos. */
1145 if (cfun
->nonlocal_goto_save_area
)
1146 update_nonlocal_goto_save_area ();
1148 /* Record the new stack level for SJLJ exceptions. */
1149 if (targetm_common
.except_unwind_info (&global_options
) == UI_SJLJ
)
1150 update_sjlj_context ();
1153 /* Return an rtx representing the address of an area of memory dynamically
1154 pushed on the stack.
1156 Any required stack pointer alignment is preserved.
1158 SIZE is an rtx representing the size of the area.
1160 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1161 parameter may be zero. If so, a proper value will be extracted
1162 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1164 REQUIRED_ALIGN is the alignment (in bits) required for the region
1167 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1168 stack space allocated by the generated code cannot be added with itself
1169 in the course of the execution of the function. It is always safe to
1170 pass FALSE here and the following criterion is sufficient in order to
1171 pass TRUE: every path in the CFG that starts at the allocation point and
1172 loops to it executes the associated deallocation code. */
1175 allocate_dynamic_stack_space (rtx size
, unsigned size_align
,
1176 unsigned required_align
, bool cannot_accumulate
)
1178 HOST_WIDE_INT stack_usage_size
= -1;
1179 rtx_code_label
*final_label
;
1180 rtx final_target
, target
;
1181 unsigned extra_align
= 0;
1184 /* If we're asking for zero bytes, it doesn't matter what we point
1185 to since we can't dereference it. But return a reasonable
1187 if (size
== const0_rtx
)
1188 return virtual_stack_dynamic_rtx
;
1190 /* Otherwise, show we're calling alloca or equivalent. */
1191 cfun
->calls_alloca
= 1;
1193 /* If stack usage info is requested, look into the size we are passed.
1194 We need to do so this early to avoid the obfuscation that may be
1195 introduced later by the various alignment operations. */
1196 if (flag_stack_usage_info
)
1198 if (CONST_INT_P (size
))
1199 stack_usage_size
= INTVAL (size
);
1200 else if (REG_P (size
))
1202 /* Look into the last emitted insn and see if we can deduce
1203 something for the register. */
1206 insn
= get_last_insn ();
1207 if ((set
= single_set (insn
)) && rtx_equal_p (SET_DEST (set
), size
))
1209 if (CONST_INT_P (SET_SRC (set
)))
1210 stack_usage_size
= INTVAL (SET_SRC (set
));
1211 else if ((note
= find_reg_equal_equiv_note (insn
))
1212 && CONST_INT_P (XEXP (note
, 0)))
1213 stack_usage_size
= INTVAL (XEXP (note
, 0));
1217 /* If the size is not constant, we can't say anything. */
1218 if (stack_usage_size
== -1)
1220 current_function_has_unbounded_dynamic_stack_size
= 1;
1221 stack_usage_size
= 0;
1225 /* Ensure the size is in the proper mode. */
1226 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1227 size
= convert_to_mode (Pmode
, size
, 1);
1229 /* Adjust SIZE_ALIGN, if needed. */
1230 if (CONST_INT_P (size
))
1232 unsigned HOST_WIDE_INT lsb
;
1234 lsb
= INTVAL (size
);
1237 /* Watch out for overflow truncating to "unsigned". */
1238 if (lsb
> UINT_MAX
/ BITS_PER_UNIT
)
1239 size_align
= 1u << (HOST_BITS_PER_INT
- 1);
1241 size_align
= (unsigned)lsb
* BITS_PER_UNIT
;
1243 else if (size_align
< BITS_PER_UNIT
)
1244 size_align
= BITS_PER_UNIT
;
1246 /* We can't attempt to minimize alignment necessary, because we don't
1247 know the final value of preferred_stack_boundary yet while executing
1249 if (crtl
->preferred_stack_boundary
< PREFERRED_STACK_BOUNDARY
)
1250 crtl
->preferred_stack_boundary
= PREFERRED_STACK_BOUNDARY
;
1252 /* We will need to ensure that the address we return is aligned to
1253 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1254 always know its final value at this point in the compilation (it
1255 might depend on the size of the outgoing parameter lists, for
1256 example), so we must align the value to be returned in that case.
1257 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1258 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1259 We must also do an alignment operation on the returned value if
1260 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1262 If we have to align, we must leave space in SIZE for the hole
1263 that might result from the alignment operation. */
1265 must_align
= (crtl
->preferred_stack_boundary
< required_align
);
1268 if (required_align
> PREFERRED_STACK_BOUNDARY
)
1269 extra_align
= PREFERRED_STACK_BOUNDARY
;
1270 else if (required_align
> STACK_BOUNDARY
)
1271 extra_align
= STACK_BOUNDARY
;
1273 extra_align
= BITS_PER_UNIT
;
1276 /* ??? STACK_POINTER_OFFSET is always defined now. */
1277 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1279 extra_align
= BITS_PER_UNIT
;
1284 unsigned extra
= (required_align
- extra_align
) / BITS_PER_UNIT
;
1286 size
= plus_constant (Pmode
, size
, extra
);
1287 size
= force_operand (size
, NULL_RTX
);
1289 if (flag_stack_usage_info
)
1290 stack_usage_size
+= extra
;
1292 if (extra
&& size_align
> extra_align
)
1293 size_align
= extra_align
;
1296 /* Round the size to a multiple of the required stack alignment.
1297 Since the stack if presumed to be rounded before this allocation,
1298 this will maintain the required alignment.
1300 If the stack grows downward, we could save an insn by subtracting
1301 SIZE from the stack pointer and then aligning the stack pointer.
1302 The problem with this is that the stack pointer may be unaligned
1303 between the execution of the subtraction and alignment insns and
1304 some machines do not allow this. Even on those that do, some
1305 signal handlers malfunction if a signal should occur between those
1306 insns. Since this is an extremely rare event, we have no reliable
1307 way of knowing which systems have this problem. So we avoid even
1308 momentarily mis-aligning the stack. */
1309 if (size_align
% MAX_SUPPORTED_STACK_ALIGNMENT
!= 0)
1311 size
= round_push (size
);
1313 if (flag_stack_usage_info
)
1315 int align
= crtl
->preferred_stack_boundary
/ BITS_PER_UNIT
;
1316 stack_usage_size
= (stack_usage_size
+ align
- 1) / align
* align
;
1320 target
= gen_reg_rtx (Pmode
);
1322 /* The size is supposed to be fully adjusted at this point so record it
1323 if stack usage info is requested. */
1324 if (flag_stack_usage_info
)
1326 current_function_dynamic_stack_size
+= stack_usage_size
;
1328 /* ??? This is gross but the only safe stance in the absence
1329 of stack usage oriented flow analysis. */
1330 if (!cannot_accumulate
)
1331 current_function_has_unbounded_dynamic_stack_size
= 1;
1335 final_target
= NULL_RTX
;
1337 /* If we are splitting the stack, we need to ask the backend whether
1338 there is enough room on the current stack. If there isn't, or if
1339 the backend doesn't know how to tell is, then we need to call a
1340 function to allocate memory in some other way. This memory will
1341 be released when we release the current stack segment. The
1342 effect is that stack allocation becomes less efficient, but at
1343 least it doesn't cause a stack overflow. */
1344 if (flag_split_stack
)
1346 rtx_code_label
*available_label
;
1347 rtx ask
, space
, func
;
1349 available_label
= NULL
;
1351 if (targetm
.have_split_stack_space_check ())
1353 available_label
= gen_label_rtx ();
1355 /* This instruction will branch to AVAILABLE_LABEL if there
1356 are SIZE bytes available on the stack. */
1357 emit_insn (targetm
.gen_split_stack_space_check
1358 (size
, available_label
));
1361 /* The __morestack_allocate_stack_space function will allocate
1362 memory using malloc. If the alignment of the memory returned
1363 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1364 make sure we allocate enough space. */
1365 if (MALLOC_ABI_ALIGNMENT
>= required_align
)
1369 ask
= expand_binop (Pmode
, add_optab
, size
,
1370 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1372 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1376 func
= init_one_libfunc ("__morestack_allocate_stack_space");
1378 space
= emit_library_call_value (func
, target
, LCT_NORMAL
, Pmode
,
1381 if (available_label
== NULL_RTX
)
1384 final_target
= gen_reg_rtx (Pmode
);
1386 emit_move_insn (final_target
, space
);
1388 final_label
= gen_label_rtx ();
1389 emit_jump (final_label
);
1391 emit_label (available_label
);
1394 do_pending_stack_adjust ();
1396 /* We ought to be called always on the toplevel and stack ought to be aligned
1398 gcc_assert (!(stack_pointer_delta
1399 % (PREFERRED_STACK_BOUNDARY
/ BITS_PER_UNIT
)));
1401 /* If needed, check that we have the required amount of stack. Take into
1402 account what has already been checked. */
1403 if (STACK_CHECK_MOVING_SP
)
1405 else if (flag_stack_check
== GENERIC_STACK_CHECK
)
1406 probe_stack_range (STACK_OLD_CHECK_PROTECT
+ STACK_CHECK_MAX_FRAME_SIZE
,
1408 else if (flag_stack_check
== STATIC_BUILTIN_STACK_CHECK
)
1409 probe_stack_range (STACK_CHECK_PROTECT
, size
);
1411 /* Don't let anti_adjust_stack emit notes. */
1412 suppress_reg_args_size
= true;
1414 /* Perform the required allocation from the stack. Some systems do
1415 this differently than simply incrementing/decrementing from the
1416 stack pointer, such as acquiring the space by calling malloc(). */
1417 if (targetm
.have_allocate_stack ())
1419 struct expand_operand ops
[2];
1420 /* We don't have to check against the predicate for operand 0 since
1421 TARGET is known to be a pseudo of the proper mode, which must
1422 be valid for the operand. */
1423 create_fixed_operand (&ops
[0], target
);
1424 create_convert_operand_to (&ops
[1], size
, STACK_SIZE_MODE
, true);
1425 expand_insn (targetm
.code_for_allocate_stack
, 2, ops
);
1429 int saved_stack_pointer_delta
;
1431 if (!STACK_GROWS_DOWNWARD
)
1432 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1434 /* Check stack bounds if necessary. */
1435 if (crtl
->limit_stack
)
1438 rtx_code_label
*space_available
= gen_label_rtx ();
1439 if (STACK_GROWS_DOWNWARD
)
1440 available
= expand_binop (Pmode
, sub_optab
,
1441 stack_pointer_rtx
, stack_limit_rtx
,
1442 NULL_RTX
, 1, OPTAB_WIDEN
);
1444 available
= expand_binop (Pmode
, sub_optab
,
1445 stack_limit_rtx
, stack_pointer_rtx
,
1446 NULL_RTX
, 1, OPTAB_WIDEN
);
1448 emit_cmp_and_jump_insns (available
, size
, GEU
, NULL_RTX
, Pmode
, 1,
1450 if (targetm
.have_trap ())
1451 emit_insn (targetm
.gen_trap ());
1453 error ("stack limits not supported on this target");
1455 emit_label (space_available
);
1458 saved_stack_pointer_delta
= stack_pointer_delta
;
1460 if (flag_stack_check
&& STACK_CHECK_MOVING_SP
)
1461 anti_adjust_stack_and_probe (size
, false);
1463 anti_adjust_stack (size
);
1465 /* Even if size is constant, don't modify stack_pointer_delta.
1466 The constant size alloca should preserve
1467 crtl->preferred_stack_boundary alignment. */
1468 stack_pointer_delta
= saved_stack_pointer_delta
;
1470 if (STACK_GROWS_DOWNWARD
)
1471 emit_move_insn (target
, virtual_stack_dynamic_rtx
);
1474 suppress_reg_args_size
= false;
1476 /* Finish up the split stack handling. */
1477 if (final_label
!= NULL_RTX
)
1479 gcc_assert (flag_split_stack
);
1480 emit_move_insn (final_target
, target
);
1481 emit_label (final_label
);
1482 target
= final_target
;
1487 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1488 but we know it can't. So add ourselves and then do
1490 target
= expand_binop (Pmode
, add_optab
, target
,
1491 gen_int_mode (required_align
/ BITS_PER_UNIT
- 1,
1493 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1494 target
= expand_divmod (0, TRUNC_DIV_EXPR
, Pmode
, target
,
1495 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1498 target
= expand_mult (Pmode
, target
,
1499 gen_int_mode (required_align
/ BITS_PER_UNIT
,
1504 /* Now that we've committed to a return value, mark its alignment. */
1505 mark_reg_pointer (target
, required_align
);
1507 /* Record the new stack level. */
1508 record_new_stack_level ();
1513 /* A front end may want to override GCC's stack checking by providing a
1514 run-time routine to call to check the stack, so provide a mechanism for
1515 calling that routine. */
1517 static GTY(()) rtx stack_check_libfunc
;
1520 set_stack_check_libfunc (const char *libfunc_name
)
1522 gcc_assert (stack_check_libfunc
== NULL_RTX
);
1523 stack_check_libfunc
= gen_rtx_SYMBOL_REF (Pmode
, libfunc_name
);
1526 /* Emit one stack probe at ADDRESS, an address within the stack. */
1529 emit_stack_probe (rtx address
)
1531 if (targetm
.have_probe_stack_address ())
1532 emit_insn (targetm
.gen_probe_stack_address (address
));
1535 rtx memref
= gen_rtx_MEM (word_mode
, address
);
1537 MEM_VOLATILE_P (memref
) = 1;
1539 /* See if we have an insn to probe the stack. */
1540 if (targetm
.have_probe_stack ())
1541 emit_insn (targetm
.gen_probe_stack (memref
));
1543 emit_move_insn (memref
, const0_rtx
);
1547 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1548 FIRST is a constant and size is a Pmode RTX. These are offsets from
1549 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1550 or subtract them from the stack pointer. */
1552 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1554 #if STACK_GROWS_DOWNWARD
1555 #define STACK_GROW_OP MINUS
1556 #define STACK_GROW_OPTAB sub_optab
1557 #define STACK_GROW_OFF(off) -(off)
1559 #define STACK_GROW_OP PLUS
1560 #define STACK_GROW_OPTAB add_optab
1561 #define STACK_GROW_OFF(off) (off)
1565 probe_stack_range (HOST_WIDE_INT first
, rtx size
)
1567 /* First ensure SIZE is Pmode. */
1568 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1569 size
= convert_to_mode (Pmode
, size
, 1);
1571 /* Next see if we have a function to check the stack. */
1572 if (stack_check_libfunc
)
1574 rtx addr
= memory_address (Pmode
,
1575 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1577 plus_constant (Pmode
,
1579 emit_library_call (stack_check_libfunc
, LCT_NORMAL
, VOIDmode
, 1, addr
,
1583 /* Next see if we have an insn to check the stack. */
1584 else if (targetm
.have_check_stack ())
1586 struct expand_operand ops
[1];
1587 rtx addr
= memory_address (Pmode
,
1588 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1590 plus_constant (Pmode
,
1593 create_input_operand (&ops
[0], addr
, Pmode
);
1594 success
= maybe_expand_insn (targetm
.code_for_check_stack
, 1, ops
);
1595 gcc_assert (success
);
1598 /* Otherwise we have to generate explicit probes. If we have a constant
1599 small number of them to generate, that's the easy case. */
1600 else if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1602 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1605 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1606 it exceeds SIZE. If only one probe is needed, this will not
1607 generate any code. Then probe at FIRST + SIZE. */
1608 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1610 addr
= memory_address (Pmode
,
1611 plus_constant (Pmode
, stack_pointer_rtx
,
1612 STACK_GROW_OFF (first
+ i
)));
1613 emit_stack_probe (addr
);
1616 addr
= memory_address (Pmode
,
1617 plus_constant (Pmode
, stack_pointer_rtx
,
1618 STACK_GROW_OFF (first
+ isize
)));
1619 emit_stack_probe (addr
);
1622 /* In the variable case, do the same as above, but in a loop. Note that we
1623 must be extra careful with variables wrapping around because we might be
1624 at the very top (or the very bottom) of the address space and we have to
1625 be able to handle this case properly; in particular, we use an equality
1626 test for the loop condition. */
1629 rtx rounded_size
, rounded_size_op
, test_addr
, last_addr
, temp
;
1630 rtx_code_label
*loop_lab
= gen_label_rtx ();
1631 rtx_code_label
*end_lab
= gen_label_rtx ();
1633 /* Step 1: round SIZE to the previous multiple of the interval. */
1635 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1637 = simplify_gen_binary (AND
, Pmode
, size
,
1638 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1639 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1642 /* Step 2: compute initial and final value of the loop counter. */
1644 /* TEST_ADDR = SP + FIRST. */
1645 test_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1647 gen_int_mode (first
, Pmode
)),
1650 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1651 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1653 rounded_size_op
), NULL_RTX
);
1658 while (TEST_ADDR != LAST_ADDR)
1660 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1664 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1665 until it is equal to ROUNDED_SIZE. */
1667 emit_label (loop_lab
);
1669 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1670 emit_cmp_and_jump_insns (test_addr
, last_addr
, EQ
, NULL_RTX
, Pmode
, 1,
1673 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1674 temp
= expand_binop (Pmode
, STACK_GROW_OPTAB
, test_addr
,
1675 gen_int_mode (PROBE_INTERVAL
, Pmode
), test_addr
,
1678 gcc_assert (temp
== test_addr
);
1680 /* Probe at TEST_ADDR. */
1681 emit_stack_probe (test_addr
);
1683 emit_jump (loop_lab
);
1685 emit_label (end_lab
);
1688 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1689 that SIZE is equal to ROUNDED_SIZE. */
1691 /* TEMP = SIZE - ROUNDED_SIZE. */
1692 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1693 if (temp
!= const0_rtx
)
1697 if (CONST_INT_P (temp
))
1699 /* Use [base + disp} addressing mode if supported. */
1700 HOST_WIDE_INT offset
= INTVAL (temp
);
1701 addr
= memory_address (Pmode
,
1702 plus_constant (Pmode
, last_addr
,
1703 STACK_GROW_OFF (offset
)));
1707 /* Manual CSE if the difference is not known at compile-time. */
1708 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1709 addr
= memory_address (Pmode
,
1710 gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1714 emit_stack_probe (addr
);
1718 /* Make sure nothing is scheduled before we are done. */
1719 emit_insn (gen_blockage ());
1722 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1723 while probing it. This pushes when SIZE is positive. SIZE need not
1724 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1725 by plus SIZE at the end. */
1728 anti_adjust_stack_and_probe (rtx size
, bool adjust_back
)
1730 /* We skip the probe for the first interval + a small dope of 4 words and
1731 probe that many bytes past the specified size to maintain a protection
1732 area at the botton of the stack. */
1733 const int dope
= 4 * UNITS_PER_WORD
;
1735 /* First ensure SIZE is Pmode. */
1736 if (GET_MODE (size
) != VOIDmode
&& GET_MODE (size
) != Pmode
)
1737 size
= convert_to_mode (Pmode
, size
, 1);
1739 /* If we have a constant small number of probes to generate, that's the
1741 if (CONST_INT_P (size
) && INTVAL (size
) < 7 * PROBE_INTERVAL
)
1743 HOST_WIDE_INT isize
= INTVAL (size
), i
;
1744 bool first_probe
= true;
1746 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1747 values of N from 1 until it exceeds SIZE. If only one probe is
1748 needed, this will not generate any code. Then adjust and probe
1749 to PROBE_INTERVAL + SIZE. */
1750 for (i
= PROBE_INTERVAL
; i
< isize
; i
+= PROBE_INTERVAL
)
1754 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL
+ dope
));
1755 first_probe
= false;
1758 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1759 emit_stack_probe (stack_pointer_rtx
);
1763 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1765 anti_adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
- i
));
1766 emit_stack_probe (stack_pointer_rtx
);
1769 /* In the variable case, do the same as above, but in a loop. Note that we
1770 must be extra careful with variables wrapping around because we might be
1771 at the very top (or the very bottom) of the address space and we have to
1772 be able to handle this case properly; in particular, we use an equality
1773 test for the loop condition. */
1776 rtx rounded_size
, rounded_size_op
, last_addr
, temp
;
1777 rtx_code_label
*loop_lab
= gen_label_rtx ();
1778 rtx_code_label
*end_lab
= gen_label_rtx ();
1781 /* Step 1: round SIZE to the previous multiple of the interval. */
1783 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1785 = simplify_gen_binary (AND
, Pmode
, size
,
1786 gen_int_mode (-PROBE_INTERVAL
, Pmode
));
1787 rounded_size_op
= force_operand (rounded_size
, NULL_RTX
);
1790 /* Step 2: compute initial and final value of the loop counter. */
1792 /* SP = SP_0 + PROBE_INTERVAL. */
1793 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1795 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1796 last_addr
= force_operand (gen_rtx_fmt_ee (STACK_GROW_OP
, Pmode
,
1798 rounded_size_op
), NULL_RTX
);
1803 while (SP != LAST_ADDR)
1805 SP = SP + PROBE_INTERVAL
1809 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1810 values of N from 1 until it is equal to ROUNDED_SIZE. */
1812 emit_label (loop_lab
);
1814 /* Jump to END_LAB if SP == LAST_ADDR. */
1815 emit_cmp_and_jump_insns (stack_pointer_rtx
, last_addr
, EQ
, NULL_RTX
,
1818 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1819 anti_adjust_stack (GEN_INT (PROBE_INTERVAL
));
1820 emit_stack_probe (stack_pointer_rtx
);
1822 emit_jump (loop_lab
);
1824 emit_label (end_lab
);
1827 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1828 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1830 /* TEMP = SIZE - ROUNDED_SIZE. */
1831 temp
= simplify_gen_binary (MINUS
, Pmode
, size
, rounded_size
);
1832 if (temp
!= const0_rtx
)
1834 /* Manual CSE if the difference is not known at compile-time. */
1835 if (GET_CODE (temp
) != CONST_INT
)
1836 temp
= gen_rtx_MINUS (Pmode
, size
, rounded_size_op
);
1837 anti_adjust_stack (temp
);
1838 emit_stack_probe (stack_pointer_rtx
);
1842 /* Adjust back and account for the additional first interval. */
1844 adjust_stack (plus_constant (Pmode
, size
, PROBE_INTERVAL
+ dope
));
1846 adjust_stack (GEN_INT (PROBE_INTERVAL
+ dope
));
1849 /* Return an rtx representing the register or memory location
1850 in which a scalar value of data type VALTYPE
1851 was returned by a function call to function FUNC.
1852 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1853 function is known, otherwise 0.
1854 OUTGOING is 1 if on a machine with register windows this function
1855 should return the register in which the function will put its result
1859 hard_function_value (const_tree valtype
, const_tree func
, const_tree fntype
,
1860 int outgoing ATTRIBUTE_UNUSED
)
1864 val
= targetm
.calls
.function_value (valtype
, func
? func
: fntype
, outgoing
);
1867 && GET_MODE (val
) == BLKmode
)
1869 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (valtype
);
1870 machine_mode tmpmode
;
1872 /* int_size_in_bytes can return -1. We don't need a check here
1873 since the value of bytes will then be large enough that no
1874 mode will match anyway. */
1876 for (tmpmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1877 tmpmode
!= VOIDmode
;
1878 tmpmode
= GET_MODE_WIDER_MODE (tmpmode
))
1880 /* Have we found a large enough mode? */
1881 if (GET_MODE_SIZE (tmpmode
) >= bytes
)
1885 /* No suitable mode found. */
1886 gcc_assert (tmpmode
!= VOIDmode
);
1888 PUT_MODE (val
, tmpmode
);
1893 /* Return an rtx representing the register or memory location
1894 in which a scalar value of mode MODE was returned by a library call. */
1897 hard_libcall_value (machine_mode mode
, rtx fun
)
1899 return targetm
.calls
.libcall_value (mode
, fun
);
1902 /* Look up the tree code for a given rtx code
1903 to provide the arithmetic operation for REAL_ARITHMETIC.
1904 The function returns an int because the caller may not know
1905 what `enum tree_code' means. */
1908 rtx_to_tree_code (enum rtx_code code
)
1910 enum tree_code tcode
;
1933 tcode
= LAST_AND_UNUSED_TREE_CODE
;
1936 return ((int) tcode
);
1939 #include "gt-explow.h"