2 /* Perform branch target register load optimizations.
3 Copyright (C) 2001-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "insn-config.h"
41 #include "insn-attr.h"
44 #include "diagnostic-core.h"
45 #include "tree-pass.h"
49 #include "cfgcleanup.h"
52 #include "fibonacci_heap.h"
56 /* Target register optimizations - these are performed after reload. */
71 /* If INSN has a single use of a single branch register, then
72 USE points to it within INSN. If there is more than
73 one branch register use, or the use is in some way ambiguous,
77 int first_reaching_def
;
78 char other_use_this_block
;
81 /* btr_def structs appear on three lists:
82 1. A list of all btr_def structures (head is
83 ALL_BTR_DEFS, linked by the NEXT field).
84 2. A list of branch reg definitions per basic block (head is
85 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
86 3. A list of all branch reg definitions belonging to the same
87 group (head is in a BTR_DEF_GROUP struct, linked by
88 NEXT_THIS_GROUP field). */
92 btr_def
*next_this_bb
;
93 btr_def
*next_this_group
;
99 /* For a branch register setting insn that has a constant
100 source (i.e. a label), group links together all the
101 insns with the same source. For other branch register
102 setting insns, group is NULL. */
103 btr_def_group
*group
;
105 /* If this def has a reaching use which is not a simple use
106 in a branch instruction, then has_ambiguous_use will be true,
107 and we will not attempt to migrate this definition. */
108 char has_ambiguous_use
;
109 /* live_range is an approximation to the true live range for this
110 def/use web, because it records the set of blocks that contain
111 the live range. There could be other live ranges for the same
112 branch register in that set of blocks, either in the block
113 containing the def (before the def), or in a block containing
114 a use (after the use). If there are such other live ranges, then
115 other_btr_uses_before_def or other_btr_uses_after_use must be set true
117 char other_btr_uses_before_def
;
118 char other_btr_uses_after_use
;
119 /* We set own_end when we have moved a definition into a dominator.
120 Thus, when a later combination removes this definition again, we know
121 to clear out trs_live_at_end again. */
126 typedef fibonacci_heap
<long, btr_def
> btr_heap_t
;
127 typedef fibonacci_node
<long, btr_def
> btr_heap_node_t
;
129 static int issue_rate
;
131 static int basic_block_freq (const_basic_block
);
132 static int insn_sets_btr_p (const rtx_insn
*, int, int *);
133 static void find_btr_def_group (btr_def_group
**, btr_def
*);
134 static btr_def
*add_btr_def (btr_heap_t
*, basic_block
, int, rtx_insn
*,
135 unsigned int, int, btr_def_group
**);
136 static btr_user
*new_btr_user (basic_block
, int, rtx_insn
*);
137 static void dump_hard_reg_set (HARD_REG_SET
);
138 static void dump_btrs_live (int);
139 static void note_other_use_this_block (unsigned int, btr_user
*);
140 static void compute_defs_uses_and_gen (btr_heap_t
*, btr_def
**, btr_user
**,
141 sbitmap
*, sbitmap
*, HARD_REG_SET
*);
142 static void compute_kill (sbitmap
*, sbitmap
*, HARD_REG_SET
*);
143 static void compute_out (sbitmap
*bb_out
, sbitmap
*, sbitmap
*, int);
144 static void link_btr_uses (btr_def
**, btr_user
**, sbitmap
*, sbitmap
*, int);
145 static void build_btr_def_use_webs (btr_heap_t
*);
146 static int block_at_edge_of_live_range_p (int, btr_def
*);
147 static void clear_btr_from_live_range (btr_def
*def
);
148 static void add_btr_to_live_range (btr_def
*, int);
149 static void augment_live_range (bitmap
, HARD_REG_SET
*, basic_block
,
151 static int choose_btr (HARD_REG_SET
);
152 static void combine_btr_defs (btr_def
*, HARD_REG_SET
*);
153 static void btr_def_live_range (btr_def
*, HARD_REG_SET
*);
154 static void move_btr_def (basic_block
, int, btr_def
*, bitmap
, HARD_REG_SET
*);
155 static int migrate_btr_def (btr_def
*, int);
156 static void migrate_btr_defs (enum reg_class
, int);
157 static int can_move_up (const_basic_block
, const rtx_insn
*, int);
158 static void note_btr_set (rtx
, const_rtx
, void *);
160 /* The following code performs code motion of target load instructions
161 (instructions that set branch target registers), to move them
162 forward away from the branch instructions and out of loops (or,
163 more generally, from a more frequently executed place to a less
164 frequently executed place).
165 Moving target load instructions further in front of the branch
166 instruction that uses the target register value means that the hardware
167 has a better chance of preloading the instructions at the branch
168 target by the time the branch is reached. This avoids bubbles
169 when a taken branch needs to flush out the pipeline.
170 Moving target load instructions out of loops means they are executed
173 /* An obstack to hold the def-use web data structures built up for
174 migrating branch target load instructions. */
175 static struct obstack migrate_btrl_obstack
;
177 /* Array indexed by basic block number, giving the set of registers
178 live in that block. */
179 static HARD_REG_SET
*btrs_live
;
181 /* Array indexed by basic block number, giving the set of registers live at
182 the end of that block, including any uses by a final jump insn, if any. */
183 static HARD_REG_SET
*btrs_live_at_end
;
185 /* Set of all target registers that we are willing to allocate. */
186 static HARD_REG_SET all_btrs
;
188 /* Provide lower and upper bounds for target register numbers, so that
189 we don't need to search through all the hard registers all the time. */
190 static int first_btr
, last_btr
;
194 /* Return an estimate of the frequency of execution of block bb. */
196 basic_block_freq (const_basic_block bb
)
198 return bb
->frequency
;
201 /* If X references (sets or reads) any branch target register, return one
202 such register. If EXCLUDEP is set, disregard any references within
205 find_btr_use (rtx x
, rtx
*excludep
= 0)
207 subrtx_ptr_iterator::array_type array
;
208 FOR_EACH_SUBRTX_PTR (iter
, array
, &x
, NONCONST
)
212 iter
.skip_subrtxes ();
217 && overlaps_hard_reg_set_p (all_btrs
, GET_MODE (x
), REGNO (x
)))
224 /* Return true if insn is an instruction that sets a target register.
225 if CHECK_CONST is true, only return true if the source is constant.
226 If such a set is found and REGNO is nonzero, assign the register number
227 of the destination register to *REGNO. */
229 insn_sets_btr_p (const rtx_insn
*insn
, int check_const
, int *regno
)
233 if (NONJUMP_INSN_P (insn
)
234 && (set
= single_set (insn
)))
236 rtx dest
= SET_DEST (set
);
237 rtx src
= SET_SRC (set
);
239 if (GET_CODE (dest
) == SUBREG
)
240 dest
= XEXP (dest
, 0);
243 && TEST_HARD_REG_BIT (all_btrs
, REGNO (dest
)))
245 gcc_assert (!find_btr_use (src
));
247 if (!check_const
|| CONSTANT_P (src
))
250 *regno
= REGNO (dest
);
258 /* Find the group that the target register definition DEF belongs
259 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
260 group exists, create one. Add def to the group. */
262 find_btr_def_group (btr_def_group
**all_btr_def_groups
, btr_def
*def
)
264 if (insn_sets_btr_p (def
->insn
, 1, NULL
))
266 btr_def_group
*this_group
;
267 rtx def_src
= SET_SRC (single_set (def
->insn
));
269 /* ?? This linear search is an efficiency concern, particularly
270 as the search will almost always fail to find a match. */
271 for (this_group
= *all_btr_def_groups
;
273 this_group
= this_group
->next
)
274 if (rtx_equal_p (def_src
, this_group
->src
))
279 this_group
= XOBNEW (&migrate_btrl_obstack
, btr_def_group
);
280 this_group
->src
= def_src
;
281 this_group
->members
= NULL
;
282 this_group
->next
= *all_btr_def_groups
;
283 *all_btr_def_groups
= this_group
;
285 def
->group
= this_group
;
286 def
->next_this_group
= this_group
->members
;
287 this_group
->members
= def
;
293 /* Create a new target register definition structure, for a definition in
294 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
295 the new definition. */
297 add_btr_def (btr_heap_t
*all_btr_defs
, basic_block bb
, int insn_luid
,
299 unsigned int dest_reg
, int other_btr_uses_before_def
,
300 btr_def_group
**all_btr_def_groups
)
302 btr_def
*this_def
= XOBNEW (&migrate_btrl_obstack
, btr_def
);
304 this_def
->luid
= insn_luid
;
305 this_def
->insn
= insn
;
306 this_def
->btr
= dest_reg
;
307 this_def
->cost
= basic_block_freq (bb
);
308 this_def
->has_ambiguous_use
= 0;
309 this_def
->other_btr_uses_before_def
= other_btr_uses_before_def
;
310 this_def
->other_btr_uses_after_use
= 0;
311 this_def
->next_this_bb
= NULL
;
312 this_def
->next_this_group
= NULL
;
313 this_def
->uses
= NULL
;
314 this_def
->live_range
= NULL
;
315 find_btr_def_group (all_btr_def_groups
, this_def
);
317 all_btr_defs
->insert (-this_def
->cost
, this_def
);
321 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
322 dest_reg
, bb
->index
, INSN_UID (insn
),
323 (this_def
->group
? "" : ":not const"), this_def
->cost
);
328 /* Create a new target register user structure, for a use in block BB,
329 instruction INSN. Return the new user. */
331 new_btr_user (basic_block bb
, int insn_luid
, rtx_insn
*insn
)
333 /* This instruction reads target registers. We need
334 to decide whether we can replace all target register
337 rtx
*usep
= find_btr_use (PATTERN (insn
));
339 btr_user
*user
= NULL
;
343 int unambiguous_single_use
;
345 /* We want to ensure that USE is the only use of a target
346 register in INSN, so that we know that to rewrite INSN to use
347 a different target register, all we have to do is replace USE. */
348 unambiguous_single_use
= !find_btr_use (PATTERN (insn
), usep
);
349 if (!unambiguous_single_use
)
352 use
= usep
? *usep
: NULL_RTX
;
353 user
= XOBNEW (&migrate_btrl_obstack
, btr_user
);
355 user
->luid
= insn_luid
;
358 user
->other_use_this_block
= 0;
360 user
->n_reaching_defs
= 0;
361 user
->first_reaching_def
= -1;
365 fprintf (dump_file
, "Uses target reg: { bb %d, insn %d }",
366 bb
->index
, INSN_UID (insn
));
369 fprintf (dump_file
, ": unambiguous use of reg %d\n",
376 /* Write the contents of S to the dump file. */
378 dump_hard_reg_set (HARD_REG_SET s
)
381 for (reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
382 if (TEST_HARD_REG_BIT (s
, reg
))
383 fprintf (dump_file
, " %d", reg
);
386 /* Write the set of target regs live in block BB to the dump file. */
388 dump_btrs_live (int bb
)
390 fprintf (dump_file
, "BB%d live:", bb
);
391 dump_hard_reg_set (btrs_live
[bb
]);
392 fprintf (dump_file
, "\n");
395 /* REGNO is the number of a branch target register that is being used or
396 set. USERS_THIS_BB is a list of preceding branch target register users;
397 If any of them use the same register, set their other_use_this_block
400 note_other_use_this_block (unsigned int regno
, btr_user
*users_this_bb
)
404 for (user
= users_this_bb
; user
!= NULL
; user
= user
->next
)
405 if (user
->use
&& REGNO (user
->use
) == regno
)
406 user
->other_use_this_block
= 1;
409 struct defs_uses_info
{
410 btr_user
*users_this_bb
;
411 HARD_REG_SET btrs_written_in_block
;
412 HARD_REG_SET btrs_live_in_block
;
417 /* Called via note_stores or directly to register stores into /
418 clobbers of a branch target register DEST that are not recognized as
419 straightforward definitions. DATA points to information about the
420 current basic block that needs updating. */
422 note_btr_set (rtx dest
, const_rtx set ATTRIBUTE_UNUSED
, void *data
)
424 defs_uses_info
*info
= (defs_uses_info
*) data
;
425 int regno
, end_regno
;
429 regno
= REGNO (dest
);
430 end_regno
= END_REGNO (dest
);
431 for (; regno
< end_regno
; regno
++)
432 if (TEST_HARD_REG_BIT (all_btrs
, regno
))
434 note_other_use_this_block (regno
, info
->users_this_bb
);
435 SET_HARD_REG_BIT (info
->btrs_written_in_block
, regno
);
436 SET_HARD_REG_BIT (info
->btrs_live_in_block
, regno
);
437 bitmap_and_compl (info
->bb_gen
, info
->bb_gen
,
438 info
->btr_defset
[regno
- first_btr
]);
443 compute_defs_uses_and_gen (btr_heap_t
*all_btr_defs
, btr_def
**def_array
,
444 btr_user
**use_array
, sbitmap
*btr_defset
,
445 sbitmap
*bb_gen
, HARD_REG_SET
*btrs_written
)
447 /* Scan the code building up the set of all defs and all uses.
448 For each target register, build the set of defs of that register.
449 For each block, calculate the set of target registers
450 written in that block.
451 Also calculate the set of btrs ever live in that block.
455 btr_def_group
*all_btr_def_groups
= NULL
;
458 bitmap_vector_clear (bb_gen
, last_basic_block_for_fn (cfun
));
459 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
461 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
463 btr_def
*defs_this_bb
= NULL
;
468 info
.users_this_bb
= NULL
;
469 info
.bb_gen
= bb_gen
[i
];
470 info
.btr_defset
= btr_defset
;
472 CLEAR_HARD_REG_SET (info
.btrs_live_in_block
);
473 CLEAR_HARD_REG_SET (info
.btrs_written_in_block
);
474 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
475 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
476 && REGNO_REG_SET_P (df_get_live_in (bb
), reg
))
477 SET_HARD_REG_BIT (info
.btrs_live_in_block
, reg
);
479 for (insn
= BB_HEAD (bb
), last
= NEXT_INSN (BB_END (bb
));
481 insn
= NEXT_INSN (insn
), insn_luid
++)
486 int insn_uid
= INSN_UID (insn
);
488 if (insn_sets_btr_p (insn
, 0, ®no
))
490 btr_def
*def
= add_btr_def (
491 all_btr_defs
, bb
, insn_luid
, insn
, regno
,
492 TEST_HARD_REG_BIT (info
.btrs_live_in_block
, regno
),
493 &all_btr_def_groups
);
495 def_array
[insn_uid
] = def
;
496 SET_HARD_REG_BIT (info
.btrs_written_in_block
, regno
);
497 SET_HARD_REG_BIT (info
.btrs_live_in_block
, regno
);
498 bitmap_and_compl (bb_gen
[i
], bb_gen
[i
],
499 btr_defset
[regno
- first_btr
]);
500 bitmap_set_bit (bb_gen
[i
], insn_uid
);
501 def
->next_this_bb
= defs_this_bb
;
503 bitmap_set_bit (btr_defset
[regno
- first_btr
], insn_uid
);
504 note_other_use_this_block (regno
, info
.users_this_bb
);
506 /* Check for the blockage emitted by expand_nl_goto_receiver. */
507 else if (cfun
->has_nonlocal_label
508 && GET_CODE (PATTERN (insn
)) == UNSPEC_VOLATILE
)
512 /* Do the equivalent of calling note_other_use_this_block
513 for every target register. */
514 for (user
= info
.users_this_bb
; user
!= NULL
;
517 user
->other_use_this_block
= 1;
518 IOR_HARD_REG_SET (info
.btrs_written_in_block
, all_btrs
);
519 IOR_HARD_REG_SET (info
.btrs_live_in_block
, all_btrs
);
520 bitmap_clear (info
.bb_gen
);
524 if (find_btr_use (PATTERN (insn
)))
526 btr_user
*user
= new_btr_user (bb
, insn_luid
, insn
);
528 use_array
[insn_uid
] = user
;
530 SET_HARD_REG_BIT (info
.btrs_live_in_block
,
535 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
536 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
537 && refers_to_regno_p (reg
, user
->insn
))
539 note_other_use_this_block (reg
,
541 SET_HARD_REG_BIT (info
.btrs_live_in_block
, reg
);
543 note_stores (PATTERN (insn
), note_btr_set
, &info
);
545 user
->next
= info
.users_this_bb
;
546 info
.users_this_bb
= user
;
550 HARD_REG_SET
*clobbered
= &call_used_reg_set
;
551 HARD_REG_SET call_saved
;
552 rtx pat
= PATTERN (insn
);
555 /* Check for sibcall. */
556 if (GET_CODE (pat
) == PARALLEL
)
557 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
558 if (ANY_RETURN_P (XVECEXP (pat
, 0, i
)))
560 COMPL_HARD_REG_SET (call_saved
,
562 clobbered
= &call_saved
;
565 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
566 if (TEST_HARD_REG_BIT (*clobbered
, regno
))
567 note_btr_set (regno_reg_rtx
[regno
], NULL_RTX
, &info
);
573 COPY_HARD_REG_SET (btrs_live
[i
], info
.btrs_live_in_block
);
574 COPY_HARD_REG_SET (btrs_written
[i
], info
.btrs_written_in_block
);
576 REG_SET_TO_HARD_REG_SET (btrs_live_at_end
[i
], df_get_live_out (bb
));
577 /* If this block ends in a jump insn, add any uses or even clobbers
578 of branch target registers that it might have. */
579 for (insn
= BB_END (bb
); insn
!= BB_HEAD (bb
) && ! INSN_P (insn
); )
580 insn
= PREV_INSN (insn
);
581 /* ??? for the fall-through edge, it would make sense to insert the
582 btr set on the edge, but that would require to split the block
583 early on so that we can distinguish between dominance from the fall
584 through edge - which can use the call-clobbered registers - from
585 dominance by the throw edge. */
586 if (can_throw_internal (insn
))
590 COPY_HARD_REG_SET (tmp
, call_used_reg_set
);
591 AND_HARD_REG_SET (tmp
, all_btrs
);
592 IOR_HARD_REG_SET (btrs_live_at_end
[i
], tmp
);
595 if (can_throw
|| JUMP_P (insn
))
599 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
600 if (refers_to_regno_p (regno
, insn
))
601 SET_HARD_REG_BIT (btrs_live_at_end
[i
], regno
);
610 compute_kill (sbitmap
*bb_kill
, sbitmap
*btr_defset
,
611 HARD_REG_SET
*btrs_written
)
616 /* For each basic block, form the set BB_KILL - the set
617 of definitions that the block kills. */
618 bitmap_vector_clear (bb_kill
, last_basic_block_for_fn (cfun
));
619 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
621 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
622 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
623 && TEST_HARD_REG_BIT (btrs_written
[i
], regno
))
624 bitmap_ior (bb_kill
[i
], bb_kill
[i
],
625 btr_defset
[regno
- first_btr
]);
630 compute_out (sbitmap
*bb_out
, sbitmap
*bb_gen
, sbitmap
*bb_kill
, int max_uid
)
632 /* Perform iterative dataflow:
633 Initially, for all blocks, BB_OUT = BB_GEN.
635 BB_IN = union over predecessors of BB_OUT(pred)
636 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
637 Iterate until the bb_out sets stop growing. */
640 sbitmap bb_in
= sbitmap_alloc (max_uid
);
642 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
643 bitmap_copy (bb_out
[i
], bb_gen
[i
]);
649 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
651 bitmap_union_of_preds (bb_in
, bb_out
, BASIC_BLOCK_FOR_FN (cfun
, i
));
652 changed
|= bitmap_ior_and_compl (bb_out
[i
], bb_gen
[i
],
656 sbitmap_free (bb_in
);
660 link_btr_uses (btr_def
**def_array
, btr_user
**use_array
, sbitmap
*bb_out
,
661 sbitmap
*btr_defset
, int max_uid
)
664 sbitmap reaching_defs
= sbitmap_alloc (max_uid
);
666 /* Link uses to the uses lists of all of their reaching defs.
667 Count up the number of reaching defs of each use. */
668 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
670 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
674 bitmap_union_of_preds (reaching_defs
, bb_out
, BASIC_BLOCK_FOR_FN (cfun
, i
));
675 for (insn
= BB_HEAD (bb
), last
= NEXT_INSN (BB_END (bb
));
677 insn
= NEXT_INSN (insn
))
681 int insn_uid
= INSN_UID (insn
);
683 btr_def
*def
= def_array
[insn_uid
];
684 btr_user
*user
= use_array
[insn_uid
];
687 /* Remove all reaching defs of regno except
689 bitmap_and_compl (reaching_defs
, reaching_defs
,
690 btr_defset
[def
->btr
- first_btr
]);
691 bitmap_set_bit (reaching_defs
, insn_uid
);
696 /* Find all the reaching defs for this use. */
697 sbitmap reaching_defs_of_reg
= sbitmap_alloc (max_uid
);
698 unsigned int uid
= 0;
699 sbitmap_iterator sbi
;
703 reaching_defs_of_reg
,
705 btr_defset
[REGNO (user
->use
) - first_btr
]);
710 bitmap_clear (reaching_defs_of_reg
);
711 for (reg
= first_btr
; reg
<= last_btr
; reg
++)
712 if (TEST_HARD_REG_BIT (all_btrs
, reg
)
713 && refers_to_regno_p (reg
, user
->insn
))
714 bitmap_or_and (reaching_defs_of_reg
,
715 reaching_defs_of_reg
,
717 btr_defset
[reg
- first_btr
]);
719 EXECUTE_IF_SET_IN_BITMAP (reaching_defs_of_reg
, 0, uid
, sbi
)
721 btr_def
*def
= def_array
[uid
];
723 /* We now know that def reaches user. */
727 "Def in insn %d reaches use in insn %d\n",
730 user
->n_reaching_defs
++;
732 def
->has_ambiguous_use
= 1;
733 if (user
->first_reaching_def
!= -1)
734 { /* There is more than one reaching def. This is
735 a rare case, so just give up on this def/use
736 web when it occurs. */
737 def
->has_ambiguous_use
= 1;
738 def_array
[user
->first_reaching_def
]
739 ->has_ambiguous_use
= 1;
742 "(use %d has multiple reaching defs)\n",
746 user
->first_reaching_def
= uid
;
747 if (user
->other_use_this_block
)
748 def
->other_btr_uses_after_use
= 1;
749 user
->next
= def
->uses
;
752 sbitmap_free (reaching_defs_of_reg
);
759 for (regno
= first_btr
; regno
<= last_btr
; regno
++)
760 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
761 && TEST_HARD_REG_BIT (call_used_reg_set
, regno
))
762 bitmap_and_compl (reaching_defs
, reaching_defs
,
763 btr_defset
[regno
- first_btr
]);
768 sbitmap_free (reaching_defs
);
772 build_btr_def_use_webs (btr_heap_t
*all_btr_defs
)
774 const int max_uid
= get_max_uid ();
775 btr_def
**def_array
= XCNEWVEC (btr_def
*, max_uid
);
776 btr_user
**use_array
= XCNEWVEC (btr_user
*, max_uid
);
777 sbitmap
*btr_defset
= sbitmap_vector_alloc (
778 (last_btr
- first_btr
) + 1, max_uid
);
779 sbitmap
*bb_gen
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
),
781 HARD_REG_SET
*btrs_written
= XCNEWVEC (HARD_REG_SET
,
782 last_basic_block_for_fn (cfun
));
786 bitmap_vector_clear (btr_defset
, (last_btr
- first_btr
) + 1);
788 compute_defs_uses_and_gen (all_btr_defs
, def_array
, use_array
, btr_defset
,
789 bb_gen
, btrs_written
);
791 bb_kill
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), max_uid
);
792 compute_kill (bb_kill
, btr_defset
, btrs_written
);
795 bb_out
= sbitmap_vector_alloc (last_basic_block_for_fn (cfun
), max_uid
);
796 compute_out (bb_out
, bb_gen
, bb_kill
, max_uid
);
798 sbitmap_vector_free (bb_gen
);
799 sbitmap_vector_free (bb_kill
);
801 link_btr_uses (def_array
, use_array
, bb_out
, btr_defset
, max_uid
);
803 sbitmap_vector_free (bb_out
);
804 sbitmap_vector_free (btr_defset
);
809 /* Return true if basic block BB contains the start or end of the
810 live range of the definition DEF, AND there are other live
811 ranges of the same target register that include BB. */
813 block_at_edge_of_live_range_p (int bb
, btr_def
*def
)
815 if (def
->other_btr_uses_before_def
816 && BASIC_BLOCK_FOR_FN (cfun
, bb
) == def
->bb
)
818 else if (def
->other_btr_uses_after_use
)
821 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
822 if (BASIC_BLOCK_FOR_FN (cfun
, bb
) == user
->bb
)
828 /* We are removing the def/use web DEF. The target register
829 used in this web is therefore no longer live in the live range
830 of this web, so remove it from the live set of all basic blocks
831 in the live range of the web.
832 Blocks at the boundary of the live range may contain other live
833 ranges for the same target register, so we have to be careful
834 to remove the target register from the live set of these blocks
835 only if they do not contain other live ranges for the same register. */
837 clear_btr_from_live_range (btr_def
*def
)
842 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
844 if ((!def
->other_btr_uses_before_def
845 && !def
->other_btr_uses_after_use
)
846 || !block_at_edge_of_live_range_p (bb
, def
))
848 CLEAR_HARD_REG_BIT (btrs_live
[bb
], def
->btr
);
849 CLEAR_HARD_REG_BIT (btrs_live_at_end
[bb
], def
->btr
);
855 CLEAR_HARD_REG_BIT (btrs_live_at_end
[def
->bb
->index
], def
->btr
);
859 /* We are adding the def/use web DEF. Add the target register used
860 in this web to the live set of all of the basic blocks that contain
861 the live range of the web.
862 If OWN_END is set, also show that the register is live from our
863 definitions at the end of the basic block where it is defined. */
865 add_btr_to_live_range (btr_def
*def
, int own_end
)
870 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
872 SET_HARD_REG_BIT (btrs_live
[bb
], def
->btr
);
873 SET_HARD_REG_BIT (btrs_live_at_end
[bb
], def
->btr
);
879 SET_HARD_REG_BIT (btrs_live_at_end
[def
->bb
->index
], def
->btr
);
884 /* Update a live range to contain the basic block NEW_BLOCK, and all
885 blocks on paths between the existing live range and NEW_BLOCK.
886 HEAD is a block contained in the existing live range that dominates
887 all other blocks in the existing live range.
888 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
889 are live in the blocks that we add to the live range.
890 If FULL_RANGE is set, include the full live range of NEW_BB;
891 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
892 are life at the end of NEW_BB for NEW_BB itself.
893 It is a precondition that either NEW_BLOCK dominates HEAD,or
894 HEAD dom NEW_BLOCK. This is used to speed up the
895 implementation of this function. */
897 augment_live_range (bitmap live_range
, HARD_REG_SET
*btrs_live_in_range
,
898 basic_block head_bb
, basic_block new_bb
, int full_range
)
900 basic_block
*worklist
, *tos
;
902 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
) + 1);
904 if (dominated_by_p (CDI_DOMINATORS
, new_bb
, head_bb
))
906 if (new_bb
== head_bb
)
909 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[new_bb
->index
]);
919 int new_block
= new_bb
->index
;
921 gcc_assert (dominated_by_p (CDI_DOMINATORS
, head_bb
, new_bb
));
923 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[head_bb
->index
]);
924 bitmap_set_bit (live_range
, new_block
);
925 /* A previous btr migration could have caused a register to be
926 live just at the end of new_block which we need in full, so
927 use trs_live_at_end even if full_range is set. */
928 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live_at_end
[new_block
]);
930 IOR_HARD_REG_SET (*btrs_live_in_range
, btrs_live
[new_block
]);
934 "Adding end of block %d and rest of %d to live range\n",
935 new_block
, head_bb
->index
);
936 fprintf (dump_file
,"Now live btrs are ");
937 dump_hard_reg_set (*btrs_live_in_range
);
938 fprintf (dump_file
, "\n");
940 FOR_EACH_EDGE (e
, ei
, head_bb
->preds
)
944 while (tos
!= worklist
)
946 basic_block bb
= *--tos
;
947 if (!bitmap_bit_p (live_range
, bb
->index
))
952 bitmap_set_bit (live_range
, bb
->index
);
953 IOR_HARD_REG_SET (*btrs_live_in_range
,
954 btrs_live
[bb
->index
]);
955 /* A previous btr migration could have caused a register to be
956 live just at the end of a block which we need in full. */
957 IOR_HARD_REG_SET (*btrs_live_in_range
,
958 btrs_live_at_end
[bb
->index
]);
962 "Adding block %d to live range\n", bb
->index
);
963 fprintf (dump_file
,"Now live btrs are ");
964 dump_hard_reg_set (*btrs_live_in_range
);
965 fprintf (dump_file
, "\n");
968 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
970 basic_block pred
= e
->src
;
971 if (!bitmap_bit_p (live_range
, pred
->index
))
980 /* Return the most desirable target register that is not in
981 the set USED_BTRS. */
983 choose_btr (HARD_REG_SET used_btrs
)
987 if (!hard_reg_set_subset_p (all_btrs
, used_btrs
))
988 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
990 #ifdef REG_ALLOC_ORDER
991 int regno
= reg_alloc_order
[i
];
995 if (TEST_HARD_REG_BIT (all_btrs
, regno
)
996 && !TEST_HARD_REG_BIT (used_btrs
, regno
))
1002 /* Calculate the set of basic blocks that contain the live range of
1003 the def/use web DEF.
1004 Also calculate the set of target registers that are live at time
1005 in this live range, but ignore the live range represented by DEF
1006 when calculating this set. */
1008 btr_def_live_range (btr_def
*def
, HARD_REG_SET
*btrs_live_in_range
)
1010 if (!def
->live_range
)
1014 def
->live_range
= BITMAP_ALLOC (NULL
);
1016 bitmap_set_bit (def
->live_range
, def
->bb
->index
);
1017 COPY_HARD_REG_SET (*btrs_live_in_range
,
1018 (flag_btr_bb_exclusive
1019 ? btrs_live
: btrs_live_at_end
)[def
->bb
->index
]);
1021 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1022 augment_live_range (def
->live_range
, btrs_live_in_range
,
1024 (flag_btr_bb_exclusive
1025 || user
->insn
!= BB_END (def
->bb
)
1026 || !JUMP_P (user
->insn
)));
1030 /* def->live_range is accurate, but we need to recompute
1031 the set of target registers live over it, because migration
1032 of other PT instructions may have affected it.
1035 unsigned def_bb
= flag_btr_bb_exclusive
? -1 : def
->bb
->index
;
1038 CLEAR_HARD_REG_SET (*btrs_live_in_range
);
1039 EXECUTE_IF_SET_IN_BITMAP (def
->live_range
, 0, bb
, bi
)
1041 IOR_HARD_REG_SET (*btrs_live_in_range
,
1043 ? btrs_live_at_end
: btrs_live
) [bb
]);
1046 if (!def
->other_btr_uses_before_def
&&
1047 !def
->other_btr_uses_after_use
)
1048 CLEAR_HARD_REG_BIT (*btrs_live_in_range
, def
->btr
);
1051 /* Merge into the def/use web DEF any other def/use webs in the same
1052 group that are dominated by DEF, provided that there is a target
1053 register available to allocate to the merged web. */
1055 combine_btr_defs (btr_def
*def
, HARD_REG_SET
*btrs_live_in_range
)
1059 for (other_def
= def
->group
->members
;
1061 other_def
= other_def
->next_this_group
)
1063 if (other_def
!= def
1064 && other_def
->uses
!= NULL
1065 && ! other_def
->has_ambiguous_use
1066 && dominated_by_p (CDI_DOMINATORS
, other_def
->bb
, def
->bb
))
1068 /* def->bb dominates the other def, so def and other_def could
1070 /* Merge their live ranges, and get the set of
1071 target registers live over the merged range. */
1073 HARD_REG_SET combined_btrs_live
;
1074 bitmap combined_live_range
= BITMAP_ALLOC (NULL
);
1077 if (other_def
->live_range
== NULL
)
1079 HARD_REG_SET dummy_btrs_live_in_range
;
1080 btr_def_live_range (other_def
, &dummy_btrs_live_in_range
);
1082 COPY_HARD_REG_SET (combined_btrs_live
, *btrs_live_in_range
);
1083 bitmap_copy (combined_live_range
, def
->live_range
);
1085 for (user
= other_def
->uses
; user
!= NULL
; user
= user
->next
)
1086 augment_live_range (combined_live_range
, &combined_btrs_live
,
1088 (flag_btr_bb_exclusive
1089 || user
->insn
!= BB_END (def
->bb
)
1090 || !JUMP_P (user
->insn
)));
1092 btr
= choose_btr (combined_btrs_live
);
1095 /* We can combine them. */
1098 "Combining def in insn %d with def in insn %d\n",
1099 INSN_UID (other_def
->insn
), INSN_UID (def
->insn
));
1102 user
= other_def
->uses
;
1103 while (user
!= NULL
)
1105 btr_user
*next
= user
->next
;
1107 user
->next
= def
->uses
;
1111 /* Combining def/use webs can make target registers live
1112 after uses where they previously were not. This means
1113 some REG_DEAD notes may no longer be correct. We could
1114 be more precise about this if we looked at the combined
1115 live range, but here I just delete any REG_DEAD notes
1116 in case they are no longer correct. */
1117 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1118 remove_note (user
->insn
,
1119 find_regno_note (user
->insn
, REG_DEAD
,
1120 REGNO (user
->use
)));
1121 clear_btr_from_live_range (other_def
);
1122 other_def
->uses
= NULL
;
1123 bitmap_copy (def
->live_range
, combined_live_range
);
1124 if (other_def
->btr
== btr
&& other_def
->other_btr_uses_after_use
)
1125 def
->other_btr_uses_after_use
= 1;
1126 COPY_HARD_REG_SET (*btrs_live_in_range
, combined_btrs_live
);
1128 /* Delete the old target register initialization. */
1129 delete_insn (other_def
->insn
);
1132 BITMAP_FREE (combined_live_range
);
1137 /* Move the definition DEF from its current position to basic
1138 block NEW_DEF_BB, and modify it to use branch target register BTR.
1139 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1140 Update all reaching uses of DEF in the RTL to use BTR.
1141 If this new position means that other defs in the
1142 same group can be combined with DEF then combine them. */
1144 move_btr_def (basic_block new_def_bb
, int btr
, btr_def
*def
, bitmap live_range
,
1145 HARD_REG_SET
*btrs_live_in_range
)
1147 /* We can move the instruction.
1148 Set a target register in block NEW_DEF_BB to the value
1149 needed for this target register definition.
1150 Replace all uses of the old target register definition by
1151 uses of the new definition. Delete the old definition. */
1152 basic_block b
= new_def_bb
;
1153 rtx_insn
*insp
= BB_HEAD (b
);
1154 rtx_insn
*old_insn
= def
->insn
;
1158 machine_mode btr_mode
;
1163 fprintf(dump_file
, "migrating to basic block %d, using reg %d\n",
1164 new_def_bb
->index
, btr
);
1166 clear_btr_from_live_range (def
);
1168 def
->bb
= new_def_bb
;
1170 def
->cost
= basic_block_freq (new_def_bb
);
1171 bitmap_copy (def
->live_range
, live_range
);
1172 combine_btr_defs (def
, btrs_live_in_range
);
1174 def
->other_btr_uses_before_def
1175 = TEST_HARD_REG_BIT (btrs_live
[b
->index
], btr
) ? 1 : 0;
1176 add_btr_to_live_range (def
, 1);
1178 insp
= NEXT_INSN (insp
);
1179 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1180 optimizations can result in insp being both first and last insn of
1182 /* ?? some assertions to check that insp is sensible? */
1184 if (def
->other_btr_uses_before_def
)
1187 for (insp
= BB_END (b
); ! INSN_P (insp
); insp
= PREV_INSN (insp
))
1188 gcc_assert (insp
!= BB_HEAD (b
));
1190 if (JUMP_P (insp
) || can_throw_internal (insp
))
1191 insp
= PREV_INSN (insp
);
1194 set
= single_set (old_insn
);
1195 src
= SET_SRC (set
);
1196 btr_mode
= GET_MODE (SET_DEST (set
));
1197 btr_rtx
= gen_rtx_REG (btr_mode
, btr
);
1199 new_insn
= gen_move_insn (btr_rtx
, src
);
1201 /* Insert target register initialization at head of basic block. */
1202 def
->insn
= emit_insn_after (new_insn
, insp
);
1204 df_set_regs_ever_live (btr
, true);
1207 fprintf (dump_file
, "New pt is insn %d, inserted after insn %d\n",
1208 INSN_UID (def
->insn
), INSN_UID (insp
));
1210 /* Delete the old target register initialization. */
1211 delete_insn (old_insn
);
1213 /* Replace each use of the old target register by a use of the new target
1215 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1217 /* Some extra work here to ensure consistent modes, because
1218 it seems that a target register REG rtx can be given a different
1219 mode depending on the context (surely that should not be
1221 rtx replacement_rtx
;
1222 if (GET_MODE (user
->use
) == GET_MODE (btr_rtx
)
1223 || GET_MODE (user
->use
) == VOIDmode
)
1224 replacement_rtx
= btr_rtx
;
1226 replacement_rtx
= gen_rtx_REG (GET_MODE (user
->use
), btr
);
1227 validate_replace_rtx (user
->use
, replacement_rtx
, user
->insn
);
1228 user
->use
= replacement_rtx
;
1232 /* We anticipate intra-block scheduling to be done. See if INSN could move
1233 up within BB by N_INSNS. */
1235 can_move_up (const_basic_block bb
, const rtx_insn
*insn
, int n_insns
)
1237 while (insn
!= BB_HEAD (bb
) && n_insns
> 0)
1239 insn
= PREV_INSN (insn
);
1240 /* ??? What if we have an anti-dependency that actually prevents the
1241 scheduler from doing the move? We'd like to re-allocate the register,
1242 but not necessarily put the load into another basic block. */
1246 return n_insns
<= 0;
1249 /* Attempt to migrate the target register definition DEF to an
1250 earlier point in the flowgraph.
1252 It is a precondition of this function that DEF is migratable:
1253 i.e. it has a constant source, and all uses are unambiguous.
1255 Only migrations that reduce the cost of DEF will be made.
1256 MIN_COST is the lower bound on the cost of the DEF after migration.
1257 If we migrate DEF so that its cost falls below MIN_COST,
1258 then we do not attempt to migrate further. The idea is that
1259 we migrate definitions in a priority order based on their cost,
1260 when the cost of this definition falls below MIN_COST, then
1261 there is another definition with cost == MIN_COST which now
1262 has a higher priority than this definition.
1264 Return nonzero if there may be benefit from attempting to
1265 migrate this DEF further (i.e. we have reduced the cost below
1266 MIN_COST, but we may be able to reduce it further).
1267 Return zero if no further migration is possible. */
1269 migrate_btr_def (btr_def
*def
, int min_cost
)
1272 HARD_REG_SET btrs_live_in_range
;
1273 int btr_used_near_def
= 0;
1274 int def_basic_block_freq
;
1275 basic_block attempt
;
1283 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1284 INSN_UID (def
->insn
), def
->cost
, min_cost
);
1286 if (!def
->group
|| def
->has_ambiguous_use
)
1287 /* These defs are not migratable. */
1290 fprintf (dump_file
, "it's not migratable\n");
1295 /* We have combined this def with another in the same group, so
1296 no need to consider it further.
1300 fprintf (dump_file
, "it's already combined with another pt\n");
1304 btr_def_live_range (def
, &btrs_live_in_range
);
1305 live_range
= BITMAP_ALLOC (NULL
);
1306 bitmap_copy (live_range
, def
->live_range
);
1308 #ifdef INSN_SCHEDULING
1309 def_latency
= insn_default_latency (def
->insn
) * issue_rate
;
1311 def_latency
= issue_rate
;
1314 for (user
= def
->uses
; user
!= NULL
; user
= user
->next
)
1316 if (user
->bb
== def
->bb
1317 && user
->luid
> def
->luid
1318 && (def
->luid
+ def_latency
) > user
->luid
1319 && ! can_move_up (def
->bb
, def
->insn
,
1320 (def
->luid
+ def_latency
) - user
->luid
))
1322 btr_used_near_def
= 1;
1327 def_basic_block_freq
= basic_block_freq (def
->bb
);
1329 for (attempt
= get_immediate_dominator (CDI_DOMINATORS
, def
->bb
);
1330 !give_up
&& attempt
&& attempt
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1331 && def
->cost
>= min_cost
;
1332 attempt
= get_immediate_dominator (CDI_DOMINATORS
, attempt
))
1334 /* Try to move the instruction that sets the target register into
1335 basic block ATTEMPT. */
1336 int try_freq
= basic_block_freq (attempt
);
1340 /* If ATTEMPT has abnormal edges, skip it. */
1341 FOR_EACH_EDGE (e
, ei
, attempt
->succs
)
1342 if (e
->flags
& EDGE_COMPLEX
)
1348 fprintf (dump_file
, "trying block %d ...", attempt
->index
);
1350 if (try_freq
< def_basic_block_freq
1351 || (try_freq
== def_basic_block_freq
&& btr_used_near_def
))
1354 augment_live_range (live_range
, &btrs_live_in_range
, def
->bb
, attempt
,
1355 flag_btr_bb_exclusive
);
1358 fprintf (dump_file
, "Now btrs live in range are: ");
1359 dump_hard_reg_set (btrs_live_in_range
);
1360 fprintf (dump_file
, "\n");
1362 btr
= choose_btr (btrs_live_in_range
);
1365 move_btr_def (attempt
, btr
, def
, live_range
, &btrs_live_in_range
);
1366 bitmap_copy (live_range
, def
->live_range
);
1367 btr_used_near_def
= 0;
1369 def_basic_block_freq
= basic_block_freq (def
->bb
);
1373 /* There are no free target registers available to move
1374 this far forward, so give up */
1378 "giving up because there are no free target registers\n");
1387 fprintf (dump_file
, "failed to move\n");
1389 BITMAP_FREE (live_range
);
1393 /* Attempt to move instructions that set target registers earlier
1394 in the flowgraph, away from their corresponding uses. */
1396 migrate_btr_defs (enum reg_class btr_class
, int allow_callee_save
)
1398 btr_heap_t
all_btr_defs (LONG_MIN
);
1401 gcc_obstack_init (&migrate_btrl_obstack
);
1406 for (i
= NUM_FIXED_BLOCKS
; i
< last_basic_block_for_fn (cfun
); i
++)
1408 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1410 "Basic block %d: count = %" PRId64
1411 " loop-depth = %d idom = %d\n",
1412 i
, (int64_t) bb
->count
, bb_loop_depth (bb
),
1413 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
1417 CLEAR_HARD_REG_SET (all_btrs
);
1418 for (first_btr
= -1, reg
= 0; reg
< FIRST_PSEUDO_REGISTER
; reg
++)
1419 if (TEST_HARD_REG_BIT (reg_class_contents
[(int) btr_class
], reg
)
1420 && (allow_callee_save
|| call_used_regs
[reg
]
1421 || df_regs_ever_live_p (reg
)))
1423 SET_HARD_REG_BIT (all_btrs
, reg
);
1429 btrs_live
= XCNEWVEC (HARD_REG_SET
, last_basic_block_for_fn (cfun
));
1430 btrs_live_at_end
= XCNEWVEC (HARD_REG_SET
, last_basic_block_for_fn (cfun
));
1432 build_btr_def_use_webs (&all_btr_defs
);
1434 while (!all_btr_defs
.empty ())
1436 int min_cost
= -all_btr_defs
.min_key ();
1437 btr_def
*def
= all_btr_defs
.extract_min ();
1438 if (migrate_btr_def (def
, min_cost
))
1440 all_btr_defs
.insert (-def
->cost
, def
);
1444 "Putting insn %d back on queue with priority %d\n",
1445 INSN_UID (def
->insn
), def
->cost
);
1449 BITMAP_FREE (def
->live_range
);
1453 free (btrs_live_at_end
);
1454 obstack_free (&migrate_btrl_obstack
, NULL
);
1458 branch_target_load_optimize (bool after_prologue_epilogue_gen
)
1460 enum reg_class klass
1461 = (enum reg_class
) targetm
.branch_target_register_class ();
1462 if (klass
!= NO_REGS
)
1464 /* Initialize issue_rate. */
1465 if (targetm
.sched
.issue_rate
)
1466 issue_rate
= targetm
.sched
.issue_rate ();
1470 if (!after_prologue_epilogue_gen
)
1472 /* Build the CFG for migrate_btr_defs. */
1474 /* This may or may not be needed, depending on where we
1476 cleanup_cfg (optimize
? CLEANUP_EXPENSIVE
: 0);
1482 /* Dominator info is also needed for migrate_btr_def. */
1483 calculate_dominance_info (CDI_DOMINATORS
);
1484 migrate_btr_defs (klass
,
1485 (targetm
.branch_target_register_callee_saved
1486 (after_prologue_epilogue_gen
)));
1488 free_dominance_info (CDI_DOMINATORS
);
1494 const pass_data pass_data_branch_target_load_optimize1
=
1496 RTL_PASS
, /* type */
1498 OPTGROUP_NONE
, /* optinfo_flags */
1499 TV_NONE
, /* tv_id */
1500 0, /* properties_required */
1501 0, /* properties_provided */
1502 0, /* properties_destroyed */
1503 0, /* todo_flags_start */
1504 0, /* todo_flags_finish */
1507 class pass_branch_target_load_optimize1
: public rtl_opt_pass
1510 pass_branch_target_load_optimize1 (gcc::context
*ctxt
)
1511 : rtl_opt_pass (pass_data_branch_target_load_optimize1
, ctxt
)
1514 /* opt_pass methods: */
1515 virtual bool gate (function
*) { return flag_branch_target_load_optimize
; }
1516 virtual unsigned int execute (function
*)
1518 branch_target_load_optimize (epilogue_completed
);
1522 }; // class pass_branch_target_load_optimize1
1527 make_pass_branch_target_load_optimize1 (gcc::context
*ctxt
)
1529 return new pass_branch_target_load_optimize1 (ctxt
);
1535 const pass_data pass_data_branch_target_load_optimize2
=
1537 RTL_PASS
, /* type */
1539 OPTGROUP_NONE
, /* optinfo_flags */
1540 TV_NONE
, /* tv_id */
1541 0, /* properties_required */
1542 0, /* properties_provided */
1543 0, /* properties_destroyed */
1544 0, /* todo_flags_start */
1545 0, /* todo_flags_finish */
1548 class pass_branch_target_load_optimize2
: public rtl_opt_pass
1551 pass_branch_target_load_optimize2 (gcc::context
*ctxt
)
1552 : rtl_opt_pass (pass_data_branch_target_load_optimize2
, ctxt
)
1555 /* opt_pass methods: */
1556 virtual bool gate (function
*)
1558 return (optimize
> 0 && flag_branch_target_load_optimize2
);
1561 virtual unsigned int execute (function
*);
1563 }; // class pass_branch_target_load_optimize2
1566 pass_branch_target_load_optimize2::execute (function
*)
1568 static int warned
= 0;
1570 /* Leave this a warning for now so that it is possible to experiment
1571 with running this pass twice. In 3.6, we should either make this
1572 an error, or use separate dump files. */
1573 if (flag_branch_target_load_optimize
1574 && flag_branch_target_load_optimize2
1577 warning (0, "branch target register load optimization is not intended "
1583 branch_target_load_optimize (epilogue_completed
);
1590 make_pass_branch_target_load_optimize2 (gcc::context
*ctxt
)
1592 return new pass_branch_target_load_optimize2 (ctxt
);