* doc/install.texi (*-*-aix): Update explanation of XLC bootstrap.
[official-gcc.git] / gcc / ada / s-taprop-mingw.adb
blobcb51841a54d2886d262825537caefb84fc038e06
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a NT (native) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Ada.Unchecked_Deallocation;
43 with Interfaces.C;
44 with Interfaces.C.Strings;
46 with System.Tasking.Debug;
47 with System.OS_Primitives;
48 with System.Task_Info;
49 with System.Interrupt_Management;
50 with System.Win32.Ext;
52 with System.Soft_Links;
53 -- We use System.Soft_Links instead of System.Tasking.Initialization because
54 -- the later is a higher level package that we shouldn't depend on. For
55 -- example when using the restricted run time, it is replaced by
56 -- System.Tasking.Restricted.Stages.
58 package body System.Task_Primitives.Operations is
60 package SSL renames System.Soft_Links;
62 use System.Tasking.Debug;
63 use System.Tasking;
64 use Interfaces.C;
65 use Interfaces.C.Strings;
66 use System.OS_Interface;
67 use System.Parameters;
68 use System.OS_Primitives;
69 use System.Task_Info;
70 use System.Win32;
71 use System.Win32.Ext;
73 pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
74 -- Change the default stack size (2 MB) for tasking programs on Windows.
75 -- This allows about 1000 tasks running at the same time. Note that
76 -- we set the stack size for non tasking programs on System unit.
77 -- Also note that under Windows XP, we use a Windows XP extension to
78 -- specify the stack size on a per task basis, as done under other OSes.
80 ---------------------
81 -- Local Functions --
82 ---------------------
84 procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
85 procedure InitializeCriticalSection
86 (pCriticalSection : access CRITICAL_SECTION);
87 pragma Import
88 (Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
90 procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
91 procedure EnterCriticalSection
92 (pCriticalSection : access CRITICAL_SECTION);
93 pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
95 procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
96 procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
97 pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
99 procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
100 procedure DeleteCriticalSection
101 (pCriticalSection : access CRITICAL_SECTION);
102 pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
104 ----------------
105 -- Local Data --
106 ----------------
108 Environment_Task_Id : Task_Id;
109 -- A variable to hold Task_Id for the environment task
111 Single_RTS_Lock : aliased RTS_Lock;
112 -- This is a lock to allow only one thread of control in the RTS at
113 -- a time; it is used to execute in mutual exclusion from all other tasks.
114 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
116 Time_Slice_Val : Integer;
117 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
119 Dispatching_Policy : Character;
120 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
122 function Get_Policy (Prio : System.Any_Priority) return Character;
123 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
124 -- Get priority specific dispatching policy
126 Foreign_Task_Elaborated : aliased Boolean := True;
127 -- Used to identified fake tasks (i.e., non-Ada Threads)
129 Annex_D : Boolean := False;
130 -- Set to True if running with Annex-D semantics
132 ------------------------------------
133 -- The thread local storage index --
134 ------------------------------------
136 TlsIndex : DWORD;
137 pragma Export (Ada, TlsIndex);
138 -- To ensure that this variable won't be local to this package, since
139 -- in some cases, inlining forces this variable to be global anyway.
141 --------------------
142 -- Local Packages --
143 --------------------
145 package Specific is
147 function Is_Valid_Task return Boolean;
148 pragma Inline (Is_Valid_Task);
149 -- Does executing thread have a TCB?
151 procedure Set (Self_Id : Task_Id);
152 pragma Inline (Set);
153 -- Set the self id for the current task
155 end Specific;
157 package body Specific is
159 function Is_Valid_Task return Boolean is
160 begin
161 return TlsGetValue (TlsIndex) /= System.Null_Address;
162 end Is_Valid_Task;
164 procedure Set (Self_Id : Task_Id) is
165 Succeeded : BOOL;
166 begin
167 Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
168 pragma Assert (Succeeded = Win32.TRUE);
169 end Set;
171 end Specific;
173 ---------------------------------
174 -- Support for foreign threads --
175 ---------------------------------
177 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
178 -- Allocate and Initialize a new ATCB for the current Thread
180 function Register_Foreign_Thread
181 (Thread : Thread_Id) return Task_Id is separate;
183 ----------------------------------
184 -- Condition Variable Functions --
185 ----------------------------------
187 procedure Initialize_Cond (Cond : not null access Condition_Variable);
188 -- Initialize given condition variable Cond
190 procedure Finalize_Cond (Cond : not null access Condition_Variable);
191 -- Finalize given condition variable Cond
193 procedure Cond_Signal (Cond : not null access Condition_Variable);
194 -- Signal condition variable Cond
196 procedure Cond_Wait
197 (Cond : not null access Condition_Variable;
198 L : not null access RTS_Lock);
199 -- Wait on conditional variable Cond, using lock L
201 procedure Cond_Timed_Wait
202 (Cond : not null access Condition_Variable;
203 L : not null access RTS_Lock;
204 Rel_Time : Duration;
205 Timed_Out : out Boolean;
206 Status : out Integer);
207 -- Do timed wait on condition variable Cond using lock L. The duration
208 -- of the timed wait is given by Rel_Time. When the condition is
209 -- signalled, Timed_Out shows whether or not a time out occurred.
210 -- Status is only valid if Timed_Out is False, in which case it
211 -- shows whether Cond_Timed_Wait completed successfully.
213 ---------------------
214 -- Initialize_Cond --
215 ---------------------
217 procedure Initialize_Cond (Cond : not null access Condition_Variable) is
218 hEvent : HANDLE;
219 begin
220 hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
221 pragma Assert (hEvent /= 0);
222 Cond.all := Condition_Variable (hEvent);
223 end Initialize_Cond;
225 -------------------
226 -- Finalize_Cond --
227 -------------------
229 -- No such problem here, DosCloseEventSem has been derived.
230 -- What does such refer to in above comment???
232 procedure Finalize_Cond (Cond : not null access Condition_Variable) is
233 Result : BOOL;
234 begin
235 Result := CloseHandle (HANDLE (Cond.all));
236 pragma Assert (Result = Win32.TRUE);
237 end Finalize_Cond;
239 -----------------
240 -- Cond_Signal --
241 -----------------
243 procedure Cond_Signal (Cond : not null access Condition_Variable) is
244 Result : BOOL;
245 begin
246 Result := SetEvent (HANDLE (Cond.all));
247 pragma Assert (Result = Win32.TRUE);
248 end Cond_Signal;
250 ---------------
251 -- Cond_Wait --
252 ---------------
254 -- Pre-condition: Cond is posted
255 -- L is locked.
257 -- Post-condition: Cond is posted
258 -- L is locked.
260 procedure Cond_Wait
261 (Cond : not null access Condition_Variable;
262 L : not null access RTS_Lock)
264 Result : DWORD;
265 Result_Bool : BOOL;
267 begin
268 -- Must reset Cond BEFORE L is unlocked
270 Result_Bool := ResetEvent (HANDLE (Cond.all));
271 pragma Assert (Result_Bool = Win32.TRUE);
272 Unlock (L, Global_Lock => True);
274 -- No problem if we are interrupted here: if the condition is signaled,
275 -- WaitForSingleObject will simply not block
277 Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
278 pragma Assert (Result = 0);
280 Write_Lock (L, Global_Lock => True);
281 end Cond_Wait;
283 ---------------------
284 -- Cond_Timed_Wait --
285 ---------------------
287 -- Pre-condition: Cond is posted
288 -- L is locked.
290 -- Post-condition: Cond is posted
291 -- L is locked.
293 procedure Cond_Timed_Wait
294 (Cond : not null access Condition_Variable;
295 L : not null access RTS_Lock;
296 Rel_Time : Duration;
297 Timed_Out : out Boolean;
298 Status : out Integer)
300 Time_Out_Max : constant DWORD := 16#FFFF0000#;
301 -- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
303 Time_Out : DWORD;
304 Result : BOOL;
305 Wait_Result : DWORD;
307 begin
308 -- Must reset Cond BEFORE L is unlocked
310 Result := ResetEvent (HANDLE (Cond.all));
311 pragma Assert (Result = Win32.TRUE);
312 Unlock (L, Global_Lock => True);
314 -- No problem if we are interrupted here: if the condition is signaled,
315 -- WaitForSingleObject will simply not block
317 if Rel_Time <= 0.0 then
318 Timed_Out := True;
319 Wait_Result := 0;
321 else
322 if Rel_Time >= Duration (Time_Out_Max) / 1000 then
323 Time_Out := Time_Out_Max;
324 else
325 Time_Out := DWORD (Rel_Time * 1000);
326 end if;
328 Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
330 if Wait_Result = WAIT_TIMEOUT then
331 Timed_Out := True;
332 Wait_Result := 0;
333 else
334 Timed_Out := False;
335 end if;
336 end if;
338 Write_Lock (L, Global_Lock => True);
340 -- Ensure post-condition
342 if Timed_Out then
343 Result := SetEvent (HANDLE (Cond.all));
344 pragma Assert (Result = Win32.TRUE);
345 end if;
347 Status := Integer (Wait_Result);
348 end Cond_Timed_Wait;
350 ------------------
351 -- Stack_Guard --
352 ------------------
354 -- The underlying thread system sets a guard page at the bottom of a thread
355 -- stack, so nothing is needed.
356 -- ??? Check the comment above
358 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
359 pragma Unreferenced (T, On);
360 begin
361 null;
362 end Stack_Guard;
364 --------------------
365 -- Get_Thread_Id --
366 --------------------
368 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
369 begin
370 return T.Common.LL.Thread;
371 end Get_Thread_Id;
373 ----------
374 -- Self --
375 ----------
377 function Self return Task_Id is
378 Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
379 begin
380 if Self_Id = null then
381 return Register_Foreign_Thread (GetCurrentThread);
382 else
383 return Self_Id;
384 end if;
385 end Self;
387 ---------------------
388 -- Initialize_Lock --
389 ---------------------
391 -- Note: mutexes and cond_variables needed per-task basis are initialized
392 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
393 -- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
394 -- status change of RTS. Therefore raising Storage_Error in the following
395 -- routines should be able to be handled safely.
397 procedure Initialize_Lock
398 (Prio : System.Any_Priority;
399 L : not null access Lock)
401 begin
402 InitializeCriticalSection (L.Mutex'Access);
403 L.Owner_Priority := 0;
404 L.Priority := Prio;
405 end Initialize_Lock;
407 procedure Initialize_Lock
408 (L : not null access RTS_Lock; Level : Lock_Level)
410 pragma Unreferenced (Level);
411 begin
412 InitializeCriticalSection (L);
413 end Initialize_Lock;
415 -------------------
416 -- Finalize_Lock --
417 -------------------
419 procedure Finalize_Lock (L : not null access Lock) is
420 begin
421 DeleteCriticalSection (L.Mutex'Access);
422 end Finalize_Lock;
424 procedure Finalize_Lock (L : not null access RTS_Lock) is
425 begin
426 DeleteCriticalSection (L);
427 end Finalize_Lock;
429 ----------------
430 -- Write_Lock --
431 ----------------
433 procedure Write_Lock
434 (L : not null access Lock; Ceiling_Violation : out Boolean) is
435 begin
436 L.Owner_Priority := Get_Priority (Self);
438 if L.Priority < L.Owner_Priority then
439 Ceiling_Violation := True;
440 return;
441 end if;
443 EnterCriticalSection (L.Mutex'Access);
445 Ceiling_Violation := False;
446 end Write_Lock;
448 procedure Write_Lock
449 (L : not null access RTS_Lock;
450 Global_Lock : Boolean := False)
452 begin
453 if not Single_Lock or else Global_Lock then
454 EnterCriticalSection (L);
455 end if;
456 end Write_Lock;
458 procedure Write_Lock (T : Task_Id) is
459 begin
460 if not Single_Lock then
461 EnterCriticalSection (T.Common.LL.L'Access);
462 end if;
463 end Write_Lock;
465 ---------------
466 -- Read_Lock --
467 ---------------
469 procedure Read_Lock
470 (L : not null access Lock; Ceiling_Violation : out Boolean) is
471 begin
472 Write_Lock (L, Ceiling_Violation);
473 end Read_Lock;
475 ------------
476 -- Unlock --
477 ------------
479 procedure Unlock (L : not null access Lock) is
480 begin
481 LeaveCriticalSection (L.Mutex'Access);
482 end Unlock;
484 procedure Unlock
485 (L : not null access RTS_Lock; Global_Lock : Boolean := False) is
486 begin
487 if not Single_Lock or else Global_Lock then
488 LeaveCriticalSection (L);
489 end if;
490 end Unlock;
492 procedure Unlock (T : Task_Id) is
493 begin
494 if not Single_Lock then
495 LeaveCriticalSection (T.Common.LL.L'Access);
496 end if;
497 end Unlock;
499 -----------------
500 -- Set_Ceiling --
501 -----------------
503 -- Dynamic priority ceilings are not supported by the underlying system
505 procedure Set_Ceiling
506 (L : not null access Lock;
507 Prio : System.Any_Priority)
509 pragma Unreferenced (L, Prio);
510 begin
511 null;
512 end Set_Ceiling;
514 -----------
515 -- Sleep --
516 -----------
518 procedure Sleep
519 (Self_ID : Task_Id;
520 Reason : System.Tasking.Task_States)
522 pragma Unreferenced (Reason);
524 begin
525 pragma Assert (Self_ID = Self);
527 if Single_Lock then
528 Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
529 else
530 Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
531 end if;
533 if Self_ID.Deferral_Level = 0
534 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
535 then
536 Unlock (Self_ID);
537 raise Standard'Abort_Signal;
538 end if;
539 end Sleep;
541 -----------------
542 -- Timed_Sleep --
543 -----------------
545 -- This is for use within the run-time system, so abort is assumed to be
546 -- already deferred, and the caller should be holding its own ATCB lock.
548 procedure Timed_Sleep
549 (Self_ID : Task_Id;
550 Time : Duration;
551 Mode : ST.Delay_Modes;
552 Reason : System.Tasking.Task_States;
553 Timedout : out Boolean;
554 Yielded : out Boolean)
556 pragma Unreferenced (Reason);
557 Check_Time : Duration := Monotonic_Clock;
558 Rel_Time : Duration;
559 Abs_Time : Duration;
561 Result : Integer;
562 pragma Unreferenced (Result);
564 Local_Timedout : Boolean;
566 begin
567 Timedout := True;
568 Yielded := False;
570 if Mode = Relative then
571 Rel_Time := Time;
572 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
573 else
574 Rel_Time := Time - Check_Time;
575 Abs_Time := Time;
576 end if;
578 if Rel_Time > 0.0 then
579 loop
580 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
582 if Single_Lock then
583 Cond_Timed_Wait
584 (Self_ID.Common.LL.CV'Access,
585 Single_RTS_Lock'Access,
586 Rel_Time, Local_Timedout, Result);
587 else
588 Cond_Timed_Wait
589 (Self_ID.Common.LL.CV'Access,
590 Self_ID.Common.LL.L'Access,
591 Rel_Time, Local_Timedout, Result);
592 end if;
594 Check_Time := Monotonic_Clock;
595 exit when Abs_Time <= Check_Time;
597 if not Local_Timedout then
599 -- Somebody may have called Wakeup for us
601 Timedout := False;
602 exit;
603 end if;
605 Rel_Time := Abs_Time - Check_Time;
606 end loop;
607 end if;
608 end Timed_Sleep;
610 -----------------
611 -- Timed_Delay --
612 -----------------
614 procedure Timed_Delay
615 (Self_ID : Task_Id;
616 Time : Duration;
617 Mode : ST.Delay_Modes)
619 Check_Time : Duration := Monotonic_Clock;
620 Rel_Time : Duration;
621 Abs_Time : Duration;
623 Timedout : Boolean;
624 Result : Integer;
625 pragma Unreferenced (Timedout, Result);
627 begin
628 if Single_Lock then
629 Lock_RTS;
630 end if;
632 Write_Lock (Self_ID);
634 if Mode = Relative then
635 Rel_Time := Time;
636 Abs_Time := Time + Check_Time;
637 else
638 Rel_Time := Time - Check_Time;
639 Abs_Time := Time;
640 end if;
642 if Rel_Time > 0.0 then
643 Self_ID.Common.State := Delay_Sleep;
645 loop
646 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
648 if Single_Lock then
649 Cond_Timed_Wait
650 (Self_ID.Common.LL.CV'Access,
651 Single_RTS_Lock'Access,
652 Rel_Time, Timedout, Result);
653 else
654 Cond_Timed_Wait
655 (Self_ID.Common.LL.CV'Access,
656 Self_ID.Common.LL.L'Access,
657 Rel_Time, Timedout, Result);
658 end if;
660 Check_Time := Monotonic_Clock;
661 exit when Abs_Time <= Check_Time;
663 Rel_Time := Abs_Time - Check_Time;
664 end loop;
666 Self_ID.Common.State := Runnable;
667 end if;
669 Unlock (Self_ID);
671 if Single_Lock then
672 Unlock_RTS;
673 end if;
675 Yield;
676 end Timed_Delay;
678 ------------
679 -- Wakeup --
680 ------------
682 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
683 pragma Unreferenced (Reason);
684 begin
685 Cond_Signal (T.Common.LL.CV'Access);
686 end Wakeup;
688 -----------
689 -- Yield --
690 -----------
692 procedure Yield (Do_Yield : Boolean := True) is
693 begin
694 if Do_Yield then
695 SwitchToThread;
697 elsif Annex_D then
698 -- If running with Annex-D semantics we need a delay
699 -- above 0 milliseconds here otherwise processes give
700 -- enough time to the other tasks to have a chance to
701 -- run.
703 -- This makes cxd8002 ACATS pass on Windows.
705 Sleep (1);
706 end if;
707 end Yield;
709 ------------------
710 -- Set_Priority --
711 ------------------
713 type Prio_Array_Type is array (System.Any_Priority) of Integer;
714 pragma Atomic_Components (Prio_Array_Type);
716 Prio_Array : Prio_Array_Type;
717 -- Global array containing the id of the currently running task for
718 -- each priority.
720 -- Note: we assume that we are on a single processor with run-til-blocked
721 -- scheduling.
723 procedure Set_Priority
724 (T : Task_Id;
725 Prio : System.Any_Priority;
726 Loss_Of_Inheritance : Boolean := False)
728 Res : BOOL;
729 Array_Item : Integer;
731 begin
732 Res := SetThreadPriority
733 (T.Common.LL.Thread, Interfaces.C.int (Underlying_Priorities (Prio)));
734 pragma Assert (Res = Win32.TRUE);
736 if Dispatching_Policy = 'F' or else Get_Policy (Prio) = 'F' then
738 -- Annex D requirement [RM D.2.2 par. 9]:
739 -- If the task drops its priority due to the loss of inherited
740 -- priority, it is added at the head of the ready queue for its
741 -- new active priority.
743 if Loss_Of_Inheritance
744 and then Prio < T.Common.Current_Priority
745 then
746 Array_Item := Prio_Array (T.Common.Base_Priority) + 1;
747 Prio_Array (T.Common.Base_Priority) := Array_Item;
749 loop
750 -- Let some processes a chance to arrive
752 Yield;
754 -- Then wait for our turn to proceed
756 exit when Array_Item = Prio_Array (T.Common.Base_Priority)
757 or else Prio_Array (T.Common.Base_Priority) = 1;
758 end loop;
760 Prio_Array (T.Common.Base_Priority) :=
761 Prio_Array (T.Common.Base_Priority) - 1;
762 end if;
763 end if;
765 T.Common.Current_Priority := Prio;
766 end Set_Priority;
768 ------------------
769 -- Get_Priority --
770 ------------------
772 function Get_Priority (T : Task_Id) return System.Any_Priority is
773 begin
774 return T.Common.Current_Priority;
775 end Get_Priority;
777 ----------------
778 -- Enter_Task --
779 ----------------
781 -- There were two paths were we needed to call Enter_Task :
782 -- 1) from System.Task_Primitives.Operations.Initialize
783 -- 2) from System.Tasking.Stages.Task_Wrapper
785 -- The thread initialisation has to be done only for the first case
787 -- This is because the GetCurrentThread NT call does not return the real
788 -- thread handler but only a "pseudo" one. It is not possible to release
789 -- the thread handle and free the system resources from this "pseudo"
790 -- handle. So we really want to keep the real thread handle set in
791 -- System.Task_Primitives.Operations.Create_Task during thread creation.
793 procedure Enter_Task (Self_ID : Task_Id) is
794 procedure Init_Float;
795 pragma Import (C, Init_Float, "__gnat_init_float");
796 -- Properly initializes the FPU for x86 systems
798 begin
799 Specific.Set (Self_ID);
800 Init_Float;
802 if Self_ID.Common.Task_Info /= null
803 and then
804 Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
805 then
806 raise Invalid_CPU_Number;
807 end if;
809 Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
810 end Enter_Task;
812 --------------
813 -- New_ATCB --
814 --------------
816 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
817 begin
818 return new Ada_Task_Control_Block (Entry_Num);
819 end New_ATCB;
821 -------------------
822 -- Is_Valid_Task --
823 -------------------
825 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
827 -----------------------------
828 -- Register_Foreign_Thread --
829 -----------------------------
831 function Register_Foreign_Thread return Task_Id is
832 begin
833 if Is_Valid_Task then
834 return Self;
835 else
836 return Register_Foreign_Thread (GetCurrentThread);
837 end if;
838 end Register_Foreign_Thread;
840 --------------------
841 -- Initialize_TCB --
842 --------------------
844 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
845 begin
846 -- Initialize thread ID to 0, this is needed to detect threads that
847 -- are not yet activated.
849 Self_ID.Common.LL.Thread := 0;
851 Initialize_Cond (Self_ID.Common.LL.CV'Access);
853 if not Single_Lock then
854 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
855 end if;
857 Succeeded := True;
858 end Initialize_TCB;
860 -----------------
861 -- Create_Task --
862 -----------------
864 procedure Create_Task
865 (T : Task_Id;
866 Wrapper : System.Address;
867 Stack_Size : System.Parameters.Size_Type;
868 Priority : System.Any_Priority;
869 Succeeded : out Boolean)
871 Initial_Stack_Size : constant := 1024;
872 -- We set the initial stack size to 1024. On Windows version prior to XP
873 -- there is no way to fix a task stack size. Only the initial stack size
874 -- can be set, the operating system will raise the task stack size if
875 -- needed.
877 function Is_Windows_XP return Integer;
878 pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
879 -- Returns 1 if running on Windows XP
881 hTask : HANDLE;
882 TaskId : aliased DWORD;
883 pTaskParameter : Win32.PVOID;
884 Result : DWORD;
885 Entry_Point : PTHREAD_START_ROUTINE;
887 begin
888 pTaskParameter := To_Address (T);
890 Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
892 if Is_Windows_XP = 1 then
893 hTask := CreateThread
894 (null,
895 DWORD (Stack_Size),
896 Entry_Point,
897 pTaskParameter,
898 DWORD (Create_Suspended) or
899 DWORD (Stack_Size_Param_Is_A_Reservation),
900 TaskId'Unchecked_Access);
901 else
902 hTask := CreateThread
903 (null,
904 Initial_Stack_Size,
905 Entry_Point,
906 pTaskParameter,
907 DWORD (Create_Suspended),
908 TaskId'Unchecked_Access);
909 end if;
911 -- Step 1: Create the thread in blocked mode
913 if hTask = 0 then
914 Succeeded := False;
915 return;
916 end if;
918 -- Step 2: set its TCB
920 T.Common.LL.Thread := hTask;
922 -- Step 3: set its priority (child has inherited priority from parent)
924 Set_Priority (T, Priority);
926 if Time_Slice_Val = 0
927 or else Dispatching_Policy = 'F'
928 or else Get_Policy (Priority) = 'F'
929 then
930 -- Here we need Annex D semantics so we disable the NT priority
931 -- boost. A priority boost is temporarily given by the system to a
932 -- thread when it is taken out of a wait state.
934 SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
935 end if;
937 -- Step 4: Handle Task_Info
939 if T.Common.Task_Info /= null then
940 if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
941 Result := SetThreadIdealProcessor (hTask, T.Common.Task_Info.CPU);
942 pragma Assert (Result = 1);
943 end if;
944 end if;
946 -- Step 5: Now, start it for good:
948 Result := ResumeThread (hTask);
949 pragma Assert (Result = 1);
951 Succeeded := Result = 1;
952 end Create_Task;
954 ------------------
955 -- Finalize_TCB --
956 ------------------
958 procedure Finalize_TCB (T : Task_Id) is
959 Self_ID : Task_Id := T;
960 Result : DWORD;
961 Succeeded : BOOL;
962 Is_Self : constant Boolean := T = Self;
964 procedure Free is new
965 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
967 begin
968 if not Single_Lock then
969 Finalize_Lock (T.Common.LL.L'Access);
970 end if;
972 Finalize_Cond (T.Common.LL.CV'Access);
974 if T.Known_Tasks_Index /= -1 then
975 Known_Tasks (T.Known_Tasks_Index) := null;
976 end if;
978 if Self_ID.Common.LL.Thread /= 0 then
980 -- This task has been activated. Wait for the thread to terminate
981 -- then close it. This is needed to release system resources.
983 Result := WaitForSingleObject (T.Common.LL.Thread, Wait_Infinite);
984 pragma Assert (Result /= WAIT_FAILED);
985 Succeeded := CloseHandle (T.Common.LL.Thread);
986 pragma Assert (Succeeded = Win32.TRUE);
987 end if;
989 Free (Self_ID);
991 if Is_Self then
992 Specific.Set (null);
993 end if;
994 end Finalize_TCB;
996 ---------------
997 -- Exit_Task --
998 ---------------
1000 procedure Exit_Task is
1001 begin
1002 Specific.Set (null);
1003 end Exit_Task;
1005 ----------------
1006 -- Abort_Task --
1007 ----------------
1009 procedure Abort_Task (T : Task_Id) is
1010 pragma Unreferenced (T);
1011 begin
1012 null;
1013 end Abort_Task;
1015 ----------------------
1016 -- Environment_Task --
1017 ----------------------
1019 function Environment_Task return Task_Id is
1020 begin
1021 return Environment_Task_Id;
1022 end Environment_Task;
1024 --------------
1025 -- Lock_RTS --
1026 --------------
1028 procedure Lock_RTS is
1029 begin
1030 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1031 end Lock_RTS;
1033 ----------------
1034 -- Unlock_RTS --
1035 ----------------
1037 procedure Unlock_RTS is
1038 begin
1039 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1040 end Unlock_RTS;
1042 ----------------
1043 -- Initialize --
1044 ----------------
1046 procedure Initialize (Environment_Task : Task_Id) is
1047 Discard : BOOL;
1048 pragma Unreferenced (Discard);
1050 begin
1051 Environment_Task_Id := Environment_Task;
1052 OS_Primitives.Initialize;
1053 Interrupt_Management.Initialize;
1055 if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
1056 -- Here we need Annex D semantics, switch the current process to the
1057 -- Realtime_Priority_Class.
1059 Discard := OS_Interface.SetPriorityClass
1060 (GetCurrentProcess, Realtime_Priority_Class);
1062 Annex_D := True;
1063 end if;
1065 TlsIndex := TlsAlloc;
1067 -- Initialize the lock used to synchronize chain of all ATCBs
1069 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1071 Environment_Task.Common.LL.Thread := GetCurrentThread;
1073 -- Make environment task known here because it doesn't go through
1074 -- Activate_Tasks, which does it for all other tasks.
1076 Known_Tasks (Known_Tasks'First) := Environment_Task;
1077 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1079 Enter_Task (Environment_Task);
1080 end Initialize;
1082 ---------------------
1083 -- Monotonic_Clock --
1084 ---------------------
1086 function Monotonic_Clock return Duration
1087 renames System.OS_Primitives.Monotonic_Clock;
1089 -------------------
1090 -- RT_Resolution --
1091 -------------------
1093 function RT_Resolution return Duration is
1094 begin
1095 return 0.000_001; -- 1 micro-second
1096 end RT_Resolution;
1098 ----------------
1099 -- Initialize --
1100 ----------------
1102 procedure Initialize (S : in out Suspension_Object) is
1103 begin
1104 -- Initialize internal state. It is always initialized to False (ARM
1105 -- D.10 par. 6).
1107 S.State := False;
1108 S.Waiting := False;
1110 -- Initialize internal mutex
1112 InitializeCriticalSection (S.L'Access);
1114 -- Initialize internal condition variable
1116 S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
1117 pragma Assert (S.CV /= 0);
1118 end Initialize;
1120 --------------
1121 -- Finalize --
1122 --------------
1124 procedure Finalize (S : in out Suspension_Object) is
1125 Result : BOOL;
1126 begin
1127 -- Destroy internal mutex
1129 DeleteCriticalSection (S.L'Access);
1131 -- Destroy internal condition variable
1133 Result := CloseHandle (S.CV);
1134 pragma Assert (Result = Win32.TRUE);
1135 end Finalize;
1137 -------------------
1138 -- Current_State --
1139 -------------------
1141 function Current_State (S : Suspension_Object) return Boolean is
1142 begin
1143 -- We do not want to use lock on this read operation. State is marked
1144 -- as Atomic so that we ensure that the value retrieved is correct.
1146 return S.State;
1147 end Current_State;
1149 ---------------
1150 -- Set_False --
1151 ---------------
1153 procedure Set_False (S : in out Suspension_Object) is
1154 begin
1155 SSL.Abort_Defer.all;
1157 EnterCriticalSection (S.L'Access);
1159 S.State := False;
1161 LeaveCriticalSection (S.L'Access);
1163 SSL.Abort_Undefer.all;
1164 end Set_False;
1166 --------------
1167 -- Set_True --
1168 --------------
1170 procedure Set_True (S : in out Suspension_Object) is
1171 Result : BOOL;
1172 begin
1173 SSL.Abort_Defer.all;
1175 EnterCriticalSection (S.L'Access);
1177 -- If there is already a task waiting on this suspension object then
1178 -- we resume it, leaving the state of the suspension object to False,
1179 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1180 -- the state to True.
1182 if S.Waiting then
1183 S.Waiting := False;
1184 S.State := False;
1186 Result := SetEvent (S.CV);
1187 pragma Assert (Result = Win32.TRUE);
1188 else
1189 S.State := True;
1190 end if;
1192 LeaveCriticalSection (S.L'Access);
1194 SSL.Abort_Undefer.all;
1195 end Set_True;
1197 ------------------------
1198 -- Suspend_Until_True --
1199 ------------------------
1201 procedure Suspend_Until_True (S : in out Suspension_Object) is
1202 Result : DWORD;
1203 Result_Bool : BOOL;
1204 begin
1205 SSL.Abort_Defer.all;
1207 EnterCriticalSection (S.L'Access);
1209 if S.Waiting then
1210 -- Program_Error must be raised upon calling Suspend_Until_True
1211 -- if another task is already waiting on that suspension object
1212 -- (ARM D.10 par. 10).
1214 LeaveCriticalSection (S.L'Access);
1216 SSL.Abort_Undefer.all;
1218 raise Program_Error;
1219 else
1220 -- Suspend the task if the state is False. Otherwise, the task
1221 -- continues its execution, and the state of the suspension object
1222 -- is set to False (ARM D.10 par. 9).
1224 if S.State then
1225 S.State := False;
1227 LeaveCriticalSection (S.L'Access);
1229 SSL.Abort_Undefer.all;
1230 else
1231 S.Waiting := True;
1233 -- Must reset CV BEFORE L is unlocked
1235 Result_Bool := ResetEvent (S.CV);
1236 pragma Assert (Result_Bool = Win32.TRUE);
1238 LeaveCriticalSection (S.L'Access);
1240 SSL.Abort_Undefer.all;
1242 Result := WaitForSingleObject (S.CV, Wait_Infinite);
1243 pragma Assert (Result = 0);
1244 end if;
1245 end if;
1246 end Suspend_Until_True;
1248 ----------------
1249 -- Check_Exit --
1250 ----------------
1252 -- Dummy versions. The only currently working versions is for solaris
1253 -- (native).
1255 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1256 pragma Unreferenced (Self_ID);
1257 begin
1258 return True;
1259 end Check_Exit;
1261 --------------------
1262 -- Check_No_Locks --
1263 --------------------
1265 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1266 pragma Unreferenced (Self_ID);
1267 begin
1268 return True;
1269 end Check_No_Locks;
1271 ------------------
1272 -- Suspend_Task --
1273 ------------------
1275 function Suspend_Task
1276 (T : ST.Task_Id;
1277 Thread_Self : Thread_Id) return Boolean
1279 begin
1280 if T.Common.LL.Thread /= Thread_Self then
1281 return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
1282 else
1283 return True;
1284 end if;
1285 end Suspend_Task;
1287 -----------------
1288 -- Resume_Task --
1289 -----------------
1291 function Resume_Task
1292 (T : ST.Task_Id;
1293 Thread_Self : Thread_Id) return Boolean
1295 begin
1296 if T.Common.LL.Thread /= Thread_Self then
1297 return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
1298 else
1299 return True;
1300 end if;
1301 end Resume_Task;
1303 --------------------
1304 -- Stop_All_Tasks --
1305 --------------------
1307 procedure Stop_All_Tasks is
1308 begin
1309 null;
1310 end Stop_All_Tasks;
1312 ---------------
1313 -- Stop_Task --
1314 ---------------
1316 function Stop_Task (T : ST.Task_Id) return Boolean is
1317 pragma Unreferenced (T);
1318 begin
1319 return False;
1320 end Stop_Task;
1322 -------------------
1323 -- Continue_Task --
1324 -------------------
1326 function Continue_Task (T : ST.Task_Id) return Boolean is
1327 pragma Unreferenced (T);
1328 begin
1329 return False;
1330 end Continue_Task;
1332 end System.Task_Primitives.Operations;