1 ------------------------------------------------------------------------------
3 -- GNAT LIBRARY COMPONENTS --
5 -- G N A T . R E G P A T --
9 -- Copyright (C) 1986 by University of Toronto. --
10 -- Copyright (C) 1999-2008, AdaCore --
12 -- GNAT is free software; you can redistribute it and/or modify it under --
13 -- terms of the GNU General Public License as published by the Free Soft- --
14 -- ware Foundation; either version 2, or (at your option) any later ver- --
15 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
16 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
17 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
18 -- for more details. You should have received a copy of the GNU General --
19 -- Public License distributed with GNAT; see file COPYING. If not, write --
20 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
21 -- Boston, MA 02110-1301, USA. --
23 -- As a special exception, if other files instantiate generics from this --
24 -- unit, or you link this unit with other files to produce an executable, --
25 -- this unit does not by itself cause the resulting executable to be --
26 -- covered by the GNU General Public License. This exception does not --
27 -- however invalidate any other reasons why the executable file might be --
28 -- covered by the GNU Public License. --
30 -- GNAT was originally developed by the GNAT team at New York University. --
31 -- Extensive contributions were provided by Ada Core Technologies Inc. --
33 ------------------------------------------------------------------------------
35 -- This is an altered Ada 95 version of the original V8 style regular
36 -- expression library written in C by Henry Spencer. Apart from the
37 -- translation to Ada, the interface has been considerably changed to
38 -- use the Ada String type instead of C-style nul-terminated strings.
40 -- Beware that some of this code is subtly aware of the way operator
41 -- precedence is structured in regular expressions. Serious changes in
42 -- regular-expression syntax might require a total rethink.
44 with System
.IO
; use System
.IO
;
45 with Ada
.Characters
.Handling
; use Ada
.Characters
.Handling
;
46 with Ada
.Unchecked_Conversion
;
48 package body System
.Regpat
is
50 MAGIC
: constant Character := Character'Val (10#
0234#
);
51 -- The first byte of the regexp internal "program" is actually
52 -- this magic number; the start node begins in the second byte.
54 -- This is used to make sure that a regular expression was correctly
57 ----------------------------
58 -- Implementation details --
59 ----------------------------
61 -- This is essentially a linear encoding of a nondeterministic
62 -- finite-state machine, also known as syntax charts or
63 -- "railroad normal form" in parsing technology.
65 -- Each node is an opcode plus a "next" pointer, possibly plus an
66 -- operand. "Next" pointers of all nodes except BRANCH implement
67 -- concatenation; a "next" pointer with a BRANCH on both ends of it
68 -- is connecting two alternatives.
70 -- The operand of some types of node is a literal string; for others,
71 -- it is a node leading into a sub-FSM. In particular, the operand of
72 -- a BRANCH node is the first node of the branch.
73 -- (NB this is *not* a tree structure: the tail of the branch connects
74 -- to the thing following the set of BRANCHes).
76 -- You can see the exact byte-compiled version by using the Dump
77 -- subprogram. However, here are a few examples:
80 -- 2 : BRANCH (next at 10)
81 -- 5 : EXACT (next at 18) operand=a
82 -- 10 : BRANCH (next at 18)
83 -- 13 : EXACT (next at 18) operand=b
84 -- 18 : EOP (next at 0)
87 -- 2 : CURLYX (next at 26) { 0, 32767}
88 -- 9 : OPEN 1 (next at 13)
89 -- 13 : EXACT (next at 19) operand=ab
90 -- 19 : CLOSE 1 (next at 23)
91 -- 23 : WHILEM (next at 0)
92 -- 26 : NOTHING (next at 29)
93 -- 29 : EOP (next at 0)
99 -- Name Operand? Meaning
101 (EOP
, -- no End of program
102 MINMOD
, -- no Next operator is not greedy
104 -- Classes of characters
106 ANY
, -- no Match any one character except newline
107 SANY
, -- no Match any character, including new line
108 ANYOF
, -- class Match any character in this class
109 EXACT
, -- str Match this string exactly
110 EXACTF
, -- str Match this string (case-folding is one)
111 NOTHING
, -- no Match empty string
112 SPACE
, -- no Match any whitespace character
113 NSPACE
, -- no Match any non-whitespace character
114 DIGIT
, -- no Match any numeric character
115 NDIGIT
, -- no Match any non-numeric character
116 ALNUM
, -- no Match any alphanumeric character
117 NALNUM
, -- no Match any non-alphanumeric character
121 BRANCH
, -- node Match this alternative, or the next
123 -- Simple loops (when the following node is one character in length)
125 STAR
, -- node Match this simple thing 0 or more times
126 PLUS
, -- node Match this simple thing 1 or more times
127 CURLY
, -- 2num node Match this simple thing between n and m times.
131 CURLYX
, -- 2num node Match this complex thing {n,m} times
132 -- The nums are coded on two characters each
134 WHILEM
, -- no Do curly processing and see if rest matches
136 -- Matches after or before a word
138 BOL
, -- no Match "" at beginning of line
139 MBOL
, -- no Same, assuming multiline (match after \n)
140 SBOL
, -- no Same, assuming single line (don't match at \n)
141 EOL
, -- no Match "" at end of line
142 MEOL
, -- no Same, assuming multiline (match before \n)
143 SEOL
, -- no Same, assuming single line (don't match at \n)
145 BOUND
, -- no Match "" at any word boundary
146 NBOUND
, -- no Match "" at any word non-boundary
148 -- Parenthesis groups handling
150 REFF
, -- num Match some already matched string, folded
151 OPEN
, -- num Mark this point in input as start of #n
152 CLOSE
); -- num Analogous to OPEN
154 for Opcode
'Size use 8;
159 -- The set of branches constituting a single choice are hooked
160 -- together with their "next" pointers, since precedence prevents
161 -- anything being concatenated to any individual branch. The
162 -- "next" pointer of the last BRANCH in a choice points to the
163 -- thing following the whole choice. This is also where the
164 -- final "next" pointer of each individual branch points; each
165 -- branch starts with the operand node of a BRANCH node.
168 -- '?', and complex '*' and '+', are implemented with CURLYX.
169 -- branches. Simple cases (one character per match) are implemented with
170 -- STAR and PLUS for speed and to minimize recursive plunges.
173 -- ...are numbered at compile time.
176 -- There are in fact two arguments, the first one is the length (minus
177 -- one of the string argument), coded on one character, the second
178 -- argument is the string itself, coded on length + 1 characters.
180 -- A node is one char of opcode followed by two chars of "next" pointer.
181 -- "Next" pointers are stored as two 8-bit pieces, high order first. The
182 -- value is a positive offset from the opcode of the node containing it.
183 -- An operand, if any, simply follows the node. (Note that much of the
184 -- code generation knows about this implicit relationship.)
186 -- Using two bytes for the "next" pointer is vast overkill for most
187 -- things, but allows patterns to get big without disasters.
189 -----------------------
190 -- Character classes --
191 -----------------------
192 -- This is the implementation for character classes ([...]) in the
193 -- syntax for regular expressions. Each character (0..256) has an
194 -- entry into the table. This makes for a very fast matching
197 type Class_Byte
is mod 256;
198 type Character_Class
is array (Class_Byte
range 0 .. 31) of Class_Byte
;
200 type Bit_Conversion_Array
is array (Class_Byte
range 0 .. 7) of Class_Byte
;
201 Bit_Conversion
: constant Bit_Conversion_Array
:=
202 (1, 2, 4, 8, 16, 32, 64, 128);
204 type Std_Class
is (ANYOF_NONE
,
205 ANYOF_ALNUM
, -- Alphanumeric class [a-zA-Z0-9]
207 ANYOF_SPACE
, -- Space class [ \t\n\r\f]
209 ANYOF_DIGIT
, -- Digit class [0-9]
211 ANYOF_ALNUMC
, -- Alphanumeric class [a-zA-Z0-9]
213 ANYOF_ALPHA
, -- Alpha class [a-zA-Z]
215 ANYOF_ASCII
, -- Ascii class (7 bits) 0..127
217 ANYOF_CNTRL
, -- Control class
219 ANYOF_GRAPH
, -- Graphic class
221 ANYOF_LOWER
, -- Lower case class [a-z]
223 ANYOF_PRINT
, -- printable class
227 ANYOF_UPPER
, -- Upper case class [A-Z]
229 ANYOF_XDIGIT
, -- Hexadecimal digit
233 procedure Set_In_Class
234 (Bitmap
: in out Character_Class
;
236 -- Set the entry to True for C in the class Bitmap
238 function Get_From_Class
239 (Bitmap
: Character_Class
;
240 C
: Character) return Boolean;
241 -- Return True if the entry is set for C in the class Bitmap
243 procedure Reset_Class
(Bitmap
: out Character_Class
);
244 -- Clear all the entries in the class Bitmap
246 pragma Inline
(Set_In_Class
);
247 pragma Inline
(Get_From_Class
);
248 pragma Inline
(Reset_Class
);
250 -----------------------
251 -- Local Subprograms --
252 -----------------------
254 function "=" (Left
: Character; Right
: Opcode
) return Boolean;
256 function Is_Alnum
(C
: Character) return Boolean;
257 -- Return True if C is an alphanum character or an underscore ('_')
259 function Is_White_Space
(C
: Character) return Boolean;
260 -- Return True if C is a whitespace character
262 function Is_Printable
(C
: Character) return Boolean;
263 -- Return True if C is a printable character
265 function Operand
(P
: Pointer
) return Pointer
;
266 -- Return a pointer to the first operand of the node at P
268 function String_Length
269 (Program
: Program_Data
;
270 P
: Pointer
) return Program_Size
;
271 -- Return the length of the string argument of the node at P
273 function String_Operand
(P
: Pointer
) return Pointer
;
274 -- Return a pointer to the string argument of the node at P
276 procedure Bitmap_Operand
277 (Program
: Program_Data
;
279 Op
: out Character_Class
);
280 -- Return a pointer to the string argument of the node at P
282 function Get_Next_Offset
283 (Program
: Program_Data
;
284 IP
: Pointer
) return Pointer
;
285 -- Get the offset field of a node. Used by Get_Next
288 (Program
: Program_Data
;
289 IP
: Pointer
) return Pointer
;
290 -- Dig the next instruction pointer out of a node
292 procedure Optimize
(Self
: in out Pattern_Matcher
);
293 -- Optimize a Pattern_Matcher by noting certain special cases
295 function Read_Natural
296 (Program
: Program_Data
;
297 IP
: Pointer
) return Natural;
298 -- Return the 2-byte natural coded at position IP
300 -- All of the subprograms above are tiny and should be inlined
303 pragma Inline
(Is_Alnum
);
304 pragma Inline
(Is_White_Space
);
305 pragma Inline
(Get_Next
);
306 pragma Inline
(Get_Next_Offset
);
307 pragma Inline
(Operand
);
308 pragma Inline
(Read_Natural
);
309 pragma Inline
(String_Length
);
310 pragma Inline
(String_Operand
);
312 type Expression_Flags
is record
313 Has_Width
, -- Known never to match null string
314 Simple
, -- Simple enough to be STAR/PLUS operand
315 SP_Start
: Boolean; -- Starts with * or +
318 Worst_Expression
: constant Expression_Flags
:= (others => False);
325 function "=" (Left
: Character; Right
: Opcode
) return Boolean is
327 return Character'Pos (Left
) = Opcode
'Pos (Right
);
334 procedure Bitmap_Operand
335 (Program
: Program_Data
;
337 Op
: out Character_Class
)
339 function Convert
is new Ada
.Unchecked_Conversion
340 (Program_Data
, Character_Class
);
343 Op
(0 .. 31) := Convert
(Program
(P
+ 3 .. P
+ 34));
351 (Matcher
: out Pattern_Matcher
;
353 Final_Code_Size
: out Program_Size
;
354 Flags
: Regexp_Flags
:= No_Flags
)
356 -- We can't allocate space until we know how big the compiled form
357 -- will be, but we can't compile it (and thus know how big it is)
358 -- until we've got a place to put the code. So we cheat: we compile
359 -- it twice, once with code generation turned off and size counting
360 -- turned on, and once "for real".
362 -- This also means that we don't allocate space until we are sure
363 -- that the thing really will compile successfully, and we never
364 -- have to move the code and thus invalidate pointers into it.
366 -- Beware that the optimization-preparation code in here knows
367 -- about some of the structure of the compiled regexp.
369 PM
: Pattern_Matcher
renames Matcher
;
370 Program
: Program_Data
renames PM
.Program
;
372 Emit_Code
: constant Boolean := PM
.Size
> 0;
373 Emit_Ptr
: Pointer
:= Program_First
;
375 Parse_Pos
: Natural := Expression
'First; -- Input-scan pointer
376 Parse_End
: constant Natural := Expression
'Last;
378 ----------------------------
379 -- Subprograms for Create --
380 ----------------------------
382 procedure Emit
(B
: Character);
383 -- Output the Character B to the Program. If code-generation is
384 -- disabled, simply increments the program counter.
386 function Emit_Node
(Op
: Opcode
) return Pointer
;
387 -- If code-generation is enabled, Emit_Node outputs the
388 -- opcode Op and reserves space for a pointer to the next node.
389 -- Return value is the location of new opcode, i.e. old Emit_Ptr.
391 procedure Emit_Natural
(IP
: Pointer
; N
: Natural);
392 -- Split N on two characters at position IP
394 procedure Emit_Class
(Bitmap
: Character_Class
);
395 -- Emits a character class
397 procedure Case_Emit
(C
: Character);
398 -- Emit C, after converting is to lower-case if the regular
399 -- expression is case insensitive.
402 (Parenthesized
: Boolean;
403 Flags
: out Expression_Flags
;
405 -- Parse regular expression, i.e. main body or parenthesized thing
406 -- Caller must absorb opening parenthesis.
408 procedure Parse_Branch
409 (Flags
: out Expression_Flags
;
412 -- Implements the concatenation operator and handles '|'
413 -- First should be true if this is the first item of the alternative.
415 procedure Parse_Piece
416 (Expr_Flags
: out Expression_Flags
;
418 -- Parse something followed by possible [*+?]
421 (Expr_Flags
: out Expression_Flags
;
423 -- Parse_Atom is the lowest level parse procedure.
424 -- Optimization: gobbles an entire sequence of ordinary characters
425 -- so that it can turn them into a single node, which is smaller to
426 -- store and faster to run. Backslashed characters are exceptions,
427 -- each becoming a separate node; the code is simpler that way and
428 -- it's not worth fixing.
430 procedure Insert_Operator
433 Greedy
: Boolean := True);
434 -- Insert_Operator inserts an operator in front of an
435 -- already-emitted operand and relocates the operand.
436 -- This applies to PLUS and STAR.
437 -- If Minmod is True, then the operator is non-greedy.
439 procedure Insert_Curly_Operator
444 Greedy
: Boolean := True);
445 -- Insert an operator for CURLY ({Min}, {Min,} or {Min,Max}).
446 -- If Minmod is True, then the operator is non-greedy.
448 procedure Link_Tail
(P
, Val
: Pointer
);
449 -- Link_Tail sets the next-pointer at the end of a node chain
451 procedure Link_Operand_Tail
(P
, Val
: Pointer
);
452 -- Link_Tail on operand of first argument; noop if operand-less
454 function Next_Instruction
(P
: Pointer
) return Pointer
;
455 -- Dig the "next" pointer out of a node
457 procedure Fail
(M
: String);
458 pragma No_Return
(Fail
);
459 -- Fail with a diagnostic message, if possible
461 function Is_Curly_Operator
(IP
: Natural) return Boolean;
462 -- Return True if IP is looking at a '{' that is the beginning
463 -- of a curly operator, i.e. it matches {\d+,?\d*}
465 function Is_Mult
(IP
: Natural) return Boolean;
466 -- Return True if C is a regexp multiplier: '+', '*' or '?'
468 procedure Get_Curly_Arguments
472 Greedy
: out Boolean);
473 -- Parse the argument list for a curly operator.
474 -- It is assumed that IP is indeed pointing at a valid operator.
475 -- So what is IP and how come IP is not referenced in the body ???
477 procedure Parse_Character_Class
(IP
: out Pointer
);
478 -- Parse a character class.
479 -- The calling subprogram should consume the opening '[' before.
481 procedure Parse_Literal
482 (Expr_Flags
: out Expression_Flags
;
484 -- Parse_Literal encodes a string of characters to be matched exactly
486 function Parse_Posix_Character_Class
return Std_Class
;
487 -- Parse a posix character class, like [:alpha:] or [:^alpha:].
488 -- The caller is supposed to absorb the opening [.
490 pragma Inline
(Is_Mult
);
491 pragma Inline
(Emit_Natural
);
492 pragma Inline
(Parse_Character_Class
); -- since used only once
498 procedure Case_Emit
(C
: Character) is
500 if (Flags
and Case_Insensitive
) /= 0 then
504 -- Dump current character
514 procedure Emit
(B
: Character) is
517 Program
(Emit_Ptr
) := B
;
520 Emit_Ptr
:= Emit_Ptr
+ 1;
527 procedure Emit_Class
(Bitmap
: Character_Class
) is
528 subtype Program31
is Program_Data
(0 .. 31);
530 function Convert
is new Ada
.Unchecked_Conversion
531 (Character_Class
, Program31
);
535 Program
(Emit_Ptr
.. Emit_Ptr
+ 31) := Convert
(Bitmap
);
538 Emit_Ptr
:= Emit_Ptr
+ 32;
545 procedure Emit_Natural
(IP
: Pointer
; N
: Natural) is
548 Program
(IP
+ 1) := Character'Val (N
/ 256);
549 Program
(IP
) := Character'Val (N
mod 256);
557 function Emit_Node
(Op
: Opcode
) return Pointer
is
558 Result
: constant Pointer
:= Emit_Ptr
;
562 Program
(Emit_Ptr
) := Character'Val (Opcode
'Pos (Op
));
563 Program
(Emit_Ptr
+ 1) := ASCII
.NUL
;
564 Program
(Emit_Ptr
+ 2) := ASCII
.NUL
;
567 Emit_Ptr
:= Emit_Ptr
+ 3;
575 procedure Fail
(M
: String) is
577 raise Expression_Error
with M
;
580 -------------------------
581 -- Get_Curly_Arguments --
582 -------------------------
584 procedure Get_Curly_Arguments
588 Greedy
: out Boolean)
590 pragma Unreferenced
(IP
);
592 Save_Pos
: Natural := Parse_Pos
+ 1;
596 Max
:= Max_Curly_Repeat
;
598 while Expression
(Parse_Pos
) /= '}'
599 and then Expression
(Parse_Pos
) /= ','
601 Parse_Pos
:= Parse_Pos
+ 1;
604 Min
:= Natural'Value (Expression
(Save_Pos
.. Parse_Pos
- 1));
606 if Expression
(Parse_Pos
) = ',' then
607 Save_Pos
:= Parse_Pos
+ 1;
608 while Expression
(Parse_Pos
) /= '}' loop
609 Parse_Pos
:= Parse_Pos
+ 1;
612 if Save_Pos
/= Parse_Pos
then
613 Max
:= Natural'Value (Expression
(Save_Pos
.. Parse_Pos
- 1));
620 if Parse_Pos
< Expression
'Last
621 and then Expression
(Parse_Pos
+ 1) = '?'
624 Parse_Pos
:= Parse_Pos
+ 1;
629 end Get_Curly_Arguments
;
631 ---------------------------
632 -- Insert_Curly_Operator --
633 ---------------------------
635 procedure Insert_Curly_Operator
640 Greedy
: Boolean := True)
642 Dest
: constant Pointer
:= Emit_Ptr
;
647 -- If the operand is not greedy, insert an extra operand before it
653 -- Move the operand in the byte-compilation, so that we can insert
654 -- the operator before it.
657 Program
(Operand
+ Size
.. Emit_Ptr
+ Size
) :=
658 Program
(Operand
.. Emit_Ptr
);
661 -- Insert the operator at the position previously occupied by the
667 Old
:= Emit_Node
(MINMOD
);
668 Link_Tail
(Old
, Old
+ 3);
671 Old
:= Emit_Node
(Op
);
672 Emit_Natural
(Old
+ 3, Min
);
673 Emit_Natural
(Old
+ 5, Max
);
675 Emit_Ptr
:= Dest
+ Size
;
676 end Insert_Curly_Operator
;
678 ---------------------
679 -- Insert_Operator --
680 ---------------------
682 procedure Insert_Operator
685 Greedy
: Boolean := True)
687 Dest
: constant Pointer
:= Emit_Ptr
;
692 pragma Warnings
(Off
, Discard
);
695 -- If not greedy, we have to emit another opcode first
701 -- Move the operand in the byte-compilation, so that we can insert
702 -- the operator before it.
705 Program
(Operand
+ Size
.. Emit_Ptr
+ Size
) :=
706 Program
(Operand
.. Emit_Ptr
);
709 -- Insert the operator at the position previously occupied by the
715 Old
:= Emit_Node
(MINMOD
);
716 Link_Tail
(Old
, Old
+ 3);
719 Discard
:= Emit_Node
(Op
);
720 Emit_Ptr
:= Dest
+ Size
;
723 -----------------------
724 -- Is_Curly_Operator --
725 -----------------------
727 function Is_Curly_Operator
(IP
: Natural) return Boolean is
728 Scan
: Natural := IP
;
731 if Expression
(Scan
) /= '{'
732 or else Scan
+ 2 > Expression
'Last
733 or else not Is_Digit
(Expression
(Scan
+ 1))
745 if Scan
> Expression
'Last then
749 exit when not Is_Digit
(Expression
(Scan
));
752 if Expression
(Scan
) = ',' then
756 if Scan
> Expression
'Last then
760 exit when not Is_Digit
(Expression
(Scan
));
764 return Expression
(Scan
) = '}';
765 end Is_Curly_Operator
;
771 function Is_Mult
(IP
: Natural) return Boolean is
772 C
: constant Character := Expression
(IP
);
778 or else (C
= '{' and then Is_Curly_Operator
(IP
));
781 -----------------------
782 -- Link_Operand_Tail --
783 -----------------------
785 procedure Link_Operand_Tail
(P
, Val
: Pointer
) is
787 if Emit_Code
and then Program
(P
) = BRANCH
then
788 Link_Tail
(Operand
(P
), Val
);
790 end Link_Operand_Tail
;
796 procedure Link_Tail
(P
, Val
: Pointer
) is
802 if not Emit_Code
then
810 Temp
:= Next_Instruction
(Scan
);
815 Offset
:= Val
- Scan
;
817 Emit_Natural
(Scan
+ 1, Natural (Offset
));
820 ----------------------
821 -- Next_Instruction --
822 ----------------------
824 function Next_Instruction
(P
: Pointer
) return Pointer
is
828 if not Emit_Code
then
832 Offset
:= Get_Next_Offset
(Program
, P
);
839 end Next_Instruction
;
845 -- Combining parenthesis handling with the base level
846 -- of regular expression is a trifle forced, but the
847 -- need to tie the tails of the branches to what follows
848 -- makes it hard to avoid.
851 (Parenthesized
: Boolean;
852 Flags
: out Expression_Flags
;
855 E
: String renames Expression
;
859 New_Flags
: Expression_Flags
;
860 Have_Branch
: Boolean := False;
863 Flags
:= (Has_Width
=> True, others => False); -- Tentatively
865 -- Make an OPEN node, if parenthesized
867 if Parenthesized
then
868 if Matcher
.Paren_Count
> Max_Paren_Count
then
869 Fail
("too many ()");
872 Par_No
:= Matcher
.Paren_Count
+ 1;
873 Matcher
.Paren_Count
:= Matcher
.Paren_Count
+ 1;
874 IP
:= Emit_Node
(OPEN
);
875 Emit
(Character'Val (Par_No
));
882 -- Pick up the branches, linking them together
884 Parse_Branch
(New_Flags
, True, Br
);
891 if Parse_Pos
<= Parse_End
892 and then E
(Parse_Pos
) = '|'
894 Insert_Operator
(BRANCH
, Br
);
899 Link_Tail
(IP
, Br
); -- OPEN -> first
904 if not New_Flags
.Has_Width
then
905 Flags
.Has_Width
:= False;
908 Flags
.SP_Start
:= Flags
.SP_Start
or New_Flags
.SP_Start
;
910 while Parse_Pos
<= Parse_End
911 and then (E
(Parse_Pos
) = '|')
913 Parse_Pos
:= Parse_Pos
+ 1;
914 Parse_Branch
(New_Flags
, False, Br
);
921 Link_Tail
(IP
, Br
); -- BRANCH -> BRANCH
923 if not New_Flags
.Has_Width
then
924 Flags
.Has_Width
:= False;
927 Flags
.SP_Start
:= Flags
.SP_Start
or New_Flags
.SP_Start
;
930 -- Make a closing node, and hook it on the end
932 if Parenthesized
then
933 Ender
:= Emit_Node
(CLOSE
);
934 Emit
(Character'Val (Par_No
));
936 Ender
:= Emit_Node
(EOP
);
939 Link_Tail
(IP
, Ender
);
943 -- Hook the tails of the branches to the closing node
948 Link_Operand_Tail
(Br
, Ender
);
949 Br
:= Next_Instruction
(Br
);
953 -- Check for proper termination
955 if Parenthesized
then
956 if Parse_Pos
> Parse_End
or else E
(Parse_Pos
) /= ')' then
957 Fail
("unmatched ()");
960 Parse_Pos
:= Parse_Pos
+ 1;
962 elsif Parse_Pos
<= Parse_End
then
963 if E
(Parse_Pos
) = ')' then
964 Fail
("unmatched ()");
966 Fail
("junk on end"); -- "Can't happen"
976 (Expr_Flags
: out Expression_Flags
;
982 -- Tentatively set worst expression case
984 Expr_Flags
:= Worst_Expression
;
986 C
:= Expression
(Parse_Pos
);
987 Parse_Pos
:= Parse_Pos
+ 1;
991 if (Flags
and Multiple_Lines
) /= 0 then
992 IP
:= Emit_Node
(MBOL
);
993 elsif (Flags
and Single_Line
) /= 0 then
994 IP
:= Emit_Node
(SBOL
);
996 IP
:= Emit_Node
(BOL
);
1000 if (Flags
and Multiple_Lines
) /= 0 then
1001 IP
:= Emit_Node
(MEOL
);
1002 elsif (Flags
and Single_Line
) /= 0 then
1003 IP
:= Emit_Node
(SEOL
);
1005 IP
:= Emit_Node
(EOL
);
1009 if (Flags
and Single_Line
) /= 0 then
1010 IP
:= Emit_Node
(SANY
);
1012 IP
:= Emit_Node
(ANY
);
1015 Expr_Flags
.Has_Width
:= True;
1016 Expr_Flags
.Simple
:= True;
1019 Parse_Character_Class
(IP
);
1020 Expr_Flags
.Has_Width
:= True;
1021 Expr_Flags
.Simple
:= True;
1025 New_Flags
: Expression_Flags
;
1028 Parse
(True, New_Flags
, IP
);
1034 Expr_Flags
.Has_Width
:=
1035 Expr_Flags
.Has_Width
or New_Flags
.Has_Width
;
1036 Expr_Flags
.SP_Start
:=
1037 Expr_Flags
.SP_Start
or New_Flags
.SP_Start
;
1040 when '|' | ASCII
.LF |
')' =>
1041 Fail
("internal urp"); -- Supposed to be caught earlier
1043 when '?' |
'+' |
'*' =>
1044 Fail
(C
& " follows nothing");
1047 if Is_Curly_Operator
(Parse_Pos
- 1) then
1048 Fail
(C
& " follows nothing");
1050 Parse_Literal
(Expr_Flags
, IP
);
1054 if Parse_Pos
> Parse_End
then
1055 Fail
("trailing \");
1058 Parse_Pos := Parse_Pos + 1;
1060 case Expression (Parse_Pos - 1) is
1062 IP := Emit_Node (BOUND);
1065 IP := Emit_Node (NBOUND);
1068 IP := Emit_Node (SPACE);
1069 Expr_Flags.Simple := True;
1070 Expr_Flags.Has_Width := True;
1073 IP := Emit_Node (NSPACE);
1074 Expr_Flags.Simple := True;
1075 Expr_Flags.Has_Width := True;
1078 IP := Emit_Node (DIGIT);
1079 Expr_Flags.Simple := True;
1080 Expr_Flags.Has_Width := True;
1083 IP := Emit_Node (NDIGIT);
1084 Expr_Flags.Simple := True;
1085 Expr_Flags.Has_Width := True;
1088 IP := Emit_Node (ALNUM);
1089 Expr_Flags.Simple := True;
1090 Expr_Flags.Has_Width := True;
1093 IP := Emit_Node (NALNUM);
1094 Expr_Flags.Simple := True;
1095 Expr_Flags.Has_Width := True;
1098 IP := Emit_Node (SBOL);
1101 IP := Emit_Node (SEOL);
1104 IP := Emit_Node (REFF);
1107 Save : constant Natural := Parse_Pos - 1;
1110 while Parse_Pos <= Expression'Last
1111 and then Is_Digit (Expression (Parse_Pos))
1113 Parse_Pos := Parse_Pos + 1;
1116 Emit (Character'Val (Natural'Value
1117 (Expression (Save .. Parse_Pos - 1))));
1121 Parse_Pos := Parse_Pos - 1;
1122 Parse_Literal (Expr_Flags, IP);
1126 Parse_Literal (Expr_Flags, IP);
1134 procedure Parse_Branch
1135 (Flags : out Expression_Flags;
1139 E : String renames Expression;
1142 New_Flags : Expression_Flags;
1145 pragma Warnings (Off, Discard);
1148 Flags := Worst_Expression; -- Tentatively
1153 IP := Emit_Node (BRANCH);
1158 while Parse_Pos <= Parse_End
1159 and then E (Parse_Pos) /= ')'
1160 and then E (Parse_Pos) /= ASCII.LF
1161 and then E (Parse_Pos) /= '|'
1163 Parse_Piece (New_Flags, Last);
1170 Flags.Has_Width := Flags.Has_Width or New_Flags.Has_Width;
1172 if Chain = 0 then -- First piece
1173 Flags.SP_Start := Flags.SP_Start or New_Flags.SP_Start;
1175 Link_Tail (Chain, Last);
1181 -- Case where loop ran zero CURLY
1184 Discard := Emit_Node (NOTHING);
1188 ---------------------------
1189 -- Parse_Character_Class --
1190 ---------------------------
1192 procedure Parse_Character_Class (IP : out Pointer) is
1193 Bitmap : Character_Class;
1194 Invert : Boolean := False;
1195 In_Range : Boolean := False;
1196 Named_Class : Std_Class := ANYOF_NONE;
1198 Last_Value : Character := ASCII.NUL;
1201 Reset_Class (Bitmap);
1203 -- Do we have an invert character class ?
1205 if Parse_Pos <= Parse_End
1206 and then Expression (Parse_Pos) = '^'
1209 Parse_Pos := Parse_Pos + 1;
1212 -- First character can be ] or - without closing the class
1214 if Parse_Pos <= Parse_End
1215 and then (Expression (Parse_Pos) = ']'
1216 or else Expression (Parse_Pos) = '-')
1218 Set_In_Class (Bitmap, Expression (Parse_Pos));
1219 Parse_Pos := Parse_Pos + 1;
1222 -- While we don't have the end of the class
1224 while Parse_Pos <= Parse_End
1225 and then Expression (Parse_Pos) /= ']'
1227 Named_Class := ANYOF_NONE;
1228 Value := Expression (Parse_Pos);
1229 Parse_Pos := Parse_Pos + 1;
1231 -- Do we have a Posix character class
1233 Named_Class := Parse_Posix_Character_Class;
1235 elsif Value = '\' then
1236 if Parse_Pos = Parse_End then
1237 Fail ("Trailing
\");
1239 Value
:= Expression
(Parse_Pos
);
1240 Parse_Pos
:= Parse_Pos
+ 1;
1243 when 'w' => Named_Class
:= ANYOF_ALNUM
;
1244 when 'W' => Named_Class
:= ANYOF_NALNUM
;
1245 when 's' => Named_Class
:= ANYOF_SPACE
;
1246 when 'S' => Named_Class
:= ANYOF_NSPACE
;
1247 when 'd' => Named_Class
:= ANYOF_DIGIT
;
1248 when 'D' => Named_Class
:= ANYOF_NDIGIT
;
1249 when 'n' => Value
:= ASCII
.LF
;
1250 when 'r' => Value
:= ASCII
.CR
;
1251 when 't' => Value
:= ASCII
.HT
;
1252 when 'f' => Value
:= ASCII
.FF
;
1253 when 'e' => Value
:= ASCII
.ESC
;
1254 when 'a' => Value
:= ASCII
.BEL
;
1256 -- when 'x' => ??? hexadecimal value
1257 -- when 'c' => ??? control character
1258 -- when '0'..'9' => ??? octal character
1260 when others => null;
1264 -- Do we have a character class?
1266 if Named_Class
/= ANYOF_NONE
then
1268 -- A range like 'a-\d' or 'a-[:digit:] is not a range
1271 Set_In_Class
(Bitmap
, Last_Value
);
1272 Set_In_Class
(Bitmap
, '-');
1279 when ANYOF_NONE
=> null;
1281 when ANYOF_ALNUM | ANYOF_ALNUMC
=>
1282 for Value
in Class_Byte
'Range loop
1283 if Is_Alnum
(Character'Val (Value
)) then
1284 Set_In_Class
(Bitmap
, Character'Val (Value
));
1288 when ANYOF_NALNUM | ANYOF_NALNUMC
=>
1289 for Value
in Class_Byte
'Range loop
1290 if not Is_Alnum
(Character'Val (Value
)) then
1291 Set_In_Class
(Bitmap
, Character'Val (Value
));
1296 for Value
in Class_Byte
'Range loop
1297 if Is_White_Space
(Character'Val (Value
)) then
1298 Set_In_Class
(Bitmap
, Character'Val (Value
));
1302 when ANYOF_NSPACE
=>
1303 for Value
in Class_Byte
'Range loop
1304 if not Is_White_Space
(Character'Val (Value
)) then
1305 Set_In_Class
(Bitmap
, Character'Val (Value
));
1310 for Value
in Class_Byte
'Range loop
1311 if Is_Digit
(Character'Val (Value
)) then
1312 Set_In_Class
(Bitmap
, Character'Val (Value
));
1316 when ANYOF_NDIGIT
=>
1317 for Value
in Class_Byte
'Range loop
1318 if not Is_Digit
(Character'Val (Value
)) then
1319 Set_In_Class
(Bitmap
, Character'Val (Value
));
1324 for Value
in Class_Byte
'Range loop
1325 if Is_Letter
(Character'Val (Value
)) then
1326 Set_In_Class
(Bitmap
, Character'Val (Value
));
1330 when ANYOF_NALPHA
=>
1331 for Value
in Class_Byte
'Range loop
1332 if not Is_Letter
(Character'Val (Value
)) then
1333 Set_In_Class
(Bitmap
, Character'Val (Value
));
1338 for Value
in 0 .. 127 loop
1339 Set_In_Class
(Bitmap
, Character'Val (Value
));
1342 when ANYOF_NASCII
=>
1343 for Value
in 128 .. 255 loop
1344 Set_In_Class
(Bitmap
, Character'Val (Value
));
1348 for Value
in Class_Byte
'Range loop
1349 if Is_Control
(Character'Val (Value
)) then
1350 Set_In_Class
(Bitmap
, Character'Val (Value
));
1354 when ANYOF_NCNTRL
=>
1355 for Value
in Class_Byte
'Range loop
1356 if not Is_Control
(Character'Val (Value
)) then
1357 Set_In_Class
(Bitmap
, Character'Val (Value
));
1362 for Value
in Class_Byte
'Range loop
1363 if Is_Graphic
(Character'Val (Value
)) then
1364 Set_In_Class
(Bitmap
, Character'Val (Value
));
1368 when ANYOF_NGRAPH
=>
1369 for Value
in Class_Byte
'Range loop
1370 if not Is_Graphic
(Character'Val (Value
)) then
1371 Set_In_Class
(Bitmap
, Character'Val (Value
));
1376 for Value
in Class_Byte
'Range loop
1377 if Is_Lower
(Character'Val (Value
)) then
1378 Set_In_Class
(Bitmap
, Character'Val (Value
));
1382 when ANYOF_NLOWER
=>
1383 for Value
in Class_Byte
'Range loop
1384 if not Is_Lower
(Character'Val (Value
)) then
1385 Set_In_Class
(Bitmap
, Character'Val (Value
));
1390 for Value
in Class_Byte
'Range loop
1391 if Is_Printable
(Character'Val (Value
)) then
1392 Set_In_Class
(Bitmap
, Character'Val (Value
));
1396 when ANYOF_NPRINT
=>
1397 for Value
in Class_Byte
'Range loop
1398 if not Is_Printable
(Character'Val (Value
)) then
1399 Set_In_Class
(Bitmap
, Character'Val (Value
));
1404 for Value
in Class_Byte
'Range loop
1405 if Is_Printable
(Character'Val (Value
))
1406 and then not Is_White_Space
(Character'Val (Value
))
1407 and then not Is_Alnum
(Character'Val (Value
))
1409 Set_In_Class
(Bitmap
, Character'Val (Value
));
1413 when ANYOF_NPUNCT
=>
1414 for Value
in Class_Byte
'Range loop
1415 if not Is_Printable
(Character'Val (Value
))
1416 or else Is_White_Space
(Character'Val (Value
))
1417 or else Is_Alnum
(Character'Val (Value
))
1419 Set_In_Class
(Bitmap
, Character'Val (Value
));
1424 for Value
in Class_Byte
'Range loop
1425 if Is_Upper
(Character'Val (Value
)) then
1426 Set_In_Class
(Bitmap
, Character'Val (Value
));
1430 when ANYOF_NUPPER
=>
1431 for Value
in Class_Byte
'Range loop
1432 if not Is_Upper
(Character'Val (Value
)) then
1433 Set_In_Class
(Bitmap
, Character'Val (Value
));
1437 when ANYOF_XDIGIT
=>
1438 for Value
in Class_Byte
'Range loop
1439 if Is_Hexadecimal_Digit
(Character'Val (Value
)) then
1440 Set_In_Class
(Bitmap
, Character'Val (Value
));
1444 when ANYOF_NXDIGIT
=>
1445 for Value
in Class_Byte
'Range loop
1446 if not Is_Hexadecimal_Digit
1447 (Character'Val (Value
))
1449 Set_In_Class
(Bitmap
, Character'Val (Value
));
1455 -- Not a character range
1457 elsif not In_Range
then
1458 Last_Value
:= Value
;
1460 if Parse_Pos
> Expression
'Last then
1461 Fail
("Empty character class []");
1464 if Expression
(Parse_Pos
) = '-'
1465 and then Parse_Pos
< Parse_End
1466 and then Expression
(Parse_Pos
+ 1) /= ']'
1468 Parse_Pos
:= Parse_Pos
+ 1;
1470 -- Do we have a range like '\d-a' and '[:space:]-a'
1471 -- which is not a real range
1473 if Named_Class
/= ANYOF_NONE
then
1474 Set_In_Class
(Bitmap
, '-');
1480 Set_In_Class
(Bitmap
, Value
);
1484 -- Else in a character range
1487 if Last_Value
> Value
then
1488 Fail
("Invalid Range [" & Last_Value
'Img
1489 & "-" & Value
'Img & "]");
1492 while Last_Value
<= Value
loop
1493 Set_In_Class
(Bitmap
, Last_Value
);
1494 Last_Value
:= Character'Succ (Last_Value
);
1503 -- Optimize case-insensitive ranges (put the upper case or lower
1504 -- case character into the bitmap)
1506 if (Flags
and Case_Insensitive
) /= 0 then
1507 for C
in Character'Range loop
1508 if Get_From_Class
(Bitmap
, C
) then
1509 Set_In_Class
(Bitmap
, To_Lower
(C
));
1510 Set_In_Class
(Bitmap
, To_Upper
(C
));
1515 -- Optimize inverted classes
1518 for J
in Bitmap
'Range loop
1519 Bitmap
(J
) := not Bitmap
(J
);
1523 Parse_Pos
:= Parse_Pos
+ 1;
1527 IP
:= Emit_Node
(ANYOF
);
1528 Emit_Class
(Bitmap
);
1529 end Parse_Character_Class
;
1535 -- This is a bit tricky due to quoted chars and due to
1536 -- the multiplier characters '*', '+', and '?' that
1537 -- take the SINGLE char previous as their operand.
1539 -- On entry, the character at Parse_Pos - 1 is going to go
1540 -- into the string, no matter what it is. It could be
1541 -- following a \ if Parse_Atom was entered from the '\' case.
1543 -- Basic idea is to pick up a good char in C and examine
1544 -- the next char. If Is_Mult (C) then twiddle, if it's a \
1545 -- then frozzle and if it's another magic char then push C and
1546 -- terminate the string. If none of the above, push C on the
1547 -- string and go around again.
1549 -- Start_Pos is used to remember where "the current character"
1550 -- starts in the string, if due to an Is_Mult we need to back
1551 -- up and put the current char in a separate 1-character string.
1552 -- When Start_Pos is 0, C is the only char in the string;
1553 -- this is used in Is_Mult handling, and in setting the SIMPLE
1556 procedure Parse_Literal
1557 (Expr_Flags
: out Expression_Flags
;
1560 Start_Pos
: Natural := 0;
1562 Length_Ptr
: Pointer
;
1564 Has_Special_Operator
: Boolean := False;
1567 Parse_Pos
:= Parse_Pos
- 1; -- Look at current character
1569 if (Flags
and Case_Insensitive
) /= 0 then
1570 IP
:= Emit_Node
(EXACTF
);
1572 IP
:= Emit_Node
(EXACT
);
1575 Length_Ptr
:= Emit_Ptr
;
1576 Emit_Ptr
:= String_Operand
(IP
);
1580 C
:= Expression
(Parse_Pos
); -- Get current character
1583 when '.' |
'[' |
'(' |
')' |
'|' | ASCII
.LF |
'$' |
'^' =>
1585 if Start_Pos
= 0 then
1586 Start_Pos
:= Parse_Pos
;
1587 Emit
(C
); -- First character is always emitted
1589 exit Parse_Loop
; -- Else we are done
1592 when '?' |
'+' |
'*' |
'{' =>
1594 if Start_Pos
= 0 then
1595 Start_Pos
:= Parse_Pos
;
1596 Emit
(C
); -- First character is always emitted
1598 -- Are we looking at an operator, or is this
1599 -- simply a normal character ?
1601 elsif not Is_Mult
(Parse_Pos
) then
1602 Start_Pos
:= Parse_Pos
;
1606 -- We've got something like "abc?d". Mark this as a
1607 -- special case. What we want to emit is a first
1608 -- constant string for "ab", then one for "c" that will
1609 -- ultimately be transformed with a CURLY operator, A
1610 -- special case has to be handled for "a?", since there
1611 -- is no initial string to emit.
1613 Has_Special_Operator
:= True;
1618 Start_Pos
:= Parse_Pos
;
1620 if Parse_Pos
= Parse_End
then
1621 Fail
("Trailing \");
1624 case Expression (Parse_Pos + 1) is
1625 when 'b' | 'B' | 's' | 'S' | 'd' | 'D'
1626 | 'w' | 'W' | '0' .. '9' | 'G' | 'A'
1628 when 'n' => Emit (ASCII.LF);
1629 when 't' => Emit (ASCII.HT);
1630 when 'r' => Emit (ASCII.CR);
1631 when 'f' => Emit (ASCII.FF);
1632 when 'e' => Emit (ASCII.ESC);
1633 when 'a' => Emit (ASCII.BEL);
1634 when others => Emit (Expression (Parse_Pos + 1));
1637 Parse_Pos := Parse_Pos + 1;
1641 Start_Pos := Parse_Pos;
1645 exit Parse_Loop when Emit_Ptr - Length_Ptr = 254;
1647 Parse_Pos := Parse_Pos + 1;
1649 exit Parse_Loop when Parse_Pos > Parse_End;
1650 end loop Parse_Loop;
1652 -- Is the string followed by a '*+?{' operator ? If yes, and if there
1653 -- is an initial string to emit, do it now.
1655 if Has_Special_Operator
1656 and then Emit_Ptr >= Length_Ptr + 3
1658 Emit_Ptr := Emit_Ptr - 1;
1659 Parse_Pos := Start_Pos;
1663 Program (Length_Ptr) := Character'Val (Emit_Ptr - Length_Ptr - 2);
1666 Expr_Flags.Has_Width := True;
1668 -- Slight optimization when there is a single character
1670 if Emit_Ptr = Length_Ptr + 2 then
1671 Expr_Flags.Simple := True;
1679 -- Note that the branching code sequences used for '?' and the
1680 -- general cases of '*' and + are somewhat optimized: they use
1681 -- the same NOTHING node as both the endmarker for their branch
1682 -- list and the body of the last branch. It might seem that
1683 -- this node could be dispensed with entirely, but the endmarker
1684 -- role is not redundant.
1686 procedure Parse_Piece
1687 (Expr_Flags : out Expression_Flags;
1691 New_Flags : Expression_Flags;
1692 Greedy : Boolean := True;
1695 Parse_Atom (New_Flags, IP);
1701 if Parse_Pos > Parse_End
1702 or else not Is_Mult (Parse_Pos)
1704 Expr_Flags := New_Flags;
1708 Op := Expression (Parse_Pos);
1711 Expr_Flags := (SP_Start => True, others => False);
1713 Expr_Flags := (Has_Width => True, others => False);
1716 -- Detect non greedy operators in the easy cases
1719 and then Parse_Pos + 1 <= Parse_End
1720 and then Expression (Parse_Pos + 1) = '?'
1723 Parse_Pos := Parse_Pos + 1;
1726 -- Generate the byte code
1731 if New_Flags.Simple then
1732 Insert_Operator (STAR, IP, Greedy);
1734 Link_Tail (IP, Emit_Node (WHILEM));
1735 Insert_Curly_Operator
1736 (CURLYX, 0, Max_Curly_Repeat, IP, Greedy);
1737 Link_Tail (IP, Emit_Node (NOTHING));
1742 if New_Flags.Simple then
1743 Insert_Operator (PLUS, IP, Greedy);
1745 Link_Tail (IP, Emit_Node (WHILEM));
1746 Insert_Curly_Operator
1747 (CURLYX, 1, Max_Curly_Repeat, IP, Greedy);
1748 Link_Tail (IP, Emit_Node (NOTHING));
1752 if New_Flags.Simple then
1753 Insert_Curly_Operator (CURLY, 0, 1, IP, Greedy);
1755 Link_Tail (IP, Emit_Node (WHILEM));
1756 Insert_Curly_Operator (CURLYX, 0, 1, IP, Greedy);
1757 Link_Tail (IP, Emit_Node (NOTHING));
1765 Get_Curly_Arguments (Parse_Pos, Min, Max, Greedy);
1767 if New_Flags.Simple then
1768 Insert_Curly_Operator (CURLY, Min, Max, IP, Greedy);
1770 Link_Tail (IP, Emit_Node (WHILEM));
1771 Insert_Curly_Operator (CURLYX, Min, Max, IP, Greedy);
1772 Link_Tail (IP, Emit_Node (NOTHING));
1780 Parse_Pos := Parse_Pos + 1;
1782 if Parse_Pos <= Parse_End
1783 and then Is_Mult (Parse_Pos)
1785 Fail ("nested
*+{");
1789 ---------------------------------
1790 -- Parse_Posix_Character_Class --
1791 ---------------------------------
1793 function Parse_Posix_Character_Class return Std_Class is
1794 Invert : Boolean := False;
1795 Class : Std_Class := ANYOF_NONE;
1796 E : String renames Expression;
1798 -- Class names. Note that code assumes that the length of all
1799 -- classes starting with the same letter have the same length.
1801 Alnum : constant String := "alnum
:]";
1802 Alpha : constant String := "alpha
:]";
1803 Ascii_C : constant String := "ascii
:]";
1804 Cntrl : constant String := "cntrl
:]";
1805 Digit : constant String := "digit
:]";
1806 Graph : constant String := "graph
:]";
1807 Lower : constant String := "lower
:]";
1808 Print : constant String := "print
:]";
1809 Punct : constant String := "punct
:]";
1810 Space : constant String := "space
:]";
1811 Upper : constant String := "upper
:]";
1812 Word : constant String := "word
:]";
1813 Xdigit : constant String := "xdigit
:]";
1816 -- Case of character class specified
1818 if Parse_Pos <= Parse_End
1819 and then Expression (Parse_Pos) = ':'
1821 Parse_Pos := Parse_Pos + 1;
1823 -- Do we have something like: [[:^alpha:]]
1825 if Parse_Pos <= Parse_End
1826 and then Expression (Parse_Pos) = '^'
1829 Parse_Pos := Parse_Pos + 1;
1832 -- Check for class names based on first letter
1834 case Expression (Parse_Pos) is
1837 -- All 'a' classes have the same length (Alnum'Length)
1839 if Parse_Pos + Alnum'Length - 1 <= Parse_End then
1841 E (Parse_Pos .. Parse_Pos + Alnum'Length - 1) = Alnum
1844 Class := ANYOF_NALNUMC;
1846 Class := ANYOF_ALNUMC;
1849 Parse_Pos := Parse_Pos + Alnum'Length;
1852 E (Parse_Pos .. Parse_Pos + Alpha'Length - 1) = Alpha
1855 Class := ANYOF_NALPHA;
1857 Class := ANYOF_ALPHA;
1860 Parse_Pos := Parse_Pos + Alpha'Length;
1862 elsif E (Parse_Pos .. Parse_Pos + Ascii_C'Length - 1) =
1866 Class := ANYOF_NASCII;
1868 Class := ANYOF_ASCII;
1871 Parse_Pos := Parse_Pos + Ascii_C'Length;
1874 Fail ("Invalid
character class
: " & E);
1878 Fail ("Invalid
character class
: " & E);
1882 if Parse_Pos + Cntrl'Length - 1 <= Parse_End
1884 E (Parse_Pos .. Parse_Pos + Cntrl'Length - 1) = Cntrl
1887 Class := ANYOF_NCNTRL;
1889 Class := ANYOF_CNTRL;
1892 Parse_Pos := Parse_Pos + Cntrl'Length;
1895 Fail ("Invalid
character class
: " & E);
1899 if Parse_Pos + Digit'Length - 1 <= Parse_End
1901 E (Parse_Pos .. Parse_Pos + Digit'Length - 1) = Digit
1904 Class := ANYOF_NDIGIT;
1906 Class := ANYOF_DIGIT;
1909 Parse_Pos := Parse_Pos + Digit'Length;
1913 if Parse_Pos + Graph'Length - 1 <= Parse_End
1915 E (Parse_Pos .. Parse_Pos + Graph'Length - 1) = Graph
1918 Class := ANYOF_NGRAPH;
1920 Class := ANYOF_GRAPH;
1923 Parse_Pos := Parse_Pos + Graph'Length;
1926 Fail ("Invalid
character class
: " & E);
1930 if Parse_Pos + Lower'Length - 1 <= Parse_End
1932 E (Parse_Pos .. Parse_Pos + Lower'Length - 1) = Lower
1935 Class := ANYOF_NLOWER;
1937 Class := ANYOF_LOWER;
1940 Parse_Pos := Parse_Pos + Lower'Length;
1943 Fail ("Invalid
character class
: " & E);
1948 -- All 'p' classes have the same length
1950 if Parse_Pos + Print'Length - 1 <= Parse_End then
1952 E (Parse_Pos .. Parse_Pos + Print'Length - 1) = Print
1955 Class := ANYOF_NPRINT;
1957 Class := ANYOF_PRINT;
1960 Parse_Pos := Parse_Pos + Print'Length;
1963 E (Parse_Pos .. Parse_Pos + Punct'Length - 1) = Punct
1966 Class := ANYOF_NPUNCT;
1968 Class := ANYOF_PUNCT;
1971 Parse_Pos := Parse_Pos + Punct'Length;
1974 Fail ("Invalid
character class
: " & E);
1978 Fail ("Invalid
character class
: " & E);
1982 if Parse_Pos + Space'Length - 1 <= Parse_End
1984 E (Parse_Pos .. Parse_Pos + Space'Length - 1) = Space
1987 Class := ANYOF_NSPACE;
1989 Class := ANYOF_SPACE;
1992 Parse_Pos := Parse_Pos + Space'Length;
1995 Fail ("Invalid
character class
: " & E);
1999 if Parse_Pos + Upper'Length - 1 <= Parse_End
2001 E (Parse_Pos .. Parse_Pos + Upper'Length - 1) = Upper
2004 Class := ANYOF_NUPPER;
2006 Class := ANYOF_UPPER;
2009 Parse_Pos := Parse_Pos + Upper'Length;
2012 Fail ("Invalid
character class
: " & E);
2016 if Parse_Pos + Word'Length - 1 <= Parse_End
2018 E (Parse_Pos .. Parse_Pos + Word'Length - 1) = Word
2021 Class := ANYOF_NALNUM;
2023 Class := ANYOF_ALNUM;
2026 Parse_Pos := Parse_Pos + Word'Length;
2029 Fail ("Invalid
character class
: " & E);
2033 if Parse_Pos + Xdigit'Length - 1 <= Parse_End
2035 E (Parse_Pos .. Parse_Pos + Xdigit'Length - 1) = Xdigit
2038 Class := ANYOF_NXDIGIT;
2040 Class := ANYOF_XDIGIT;
2043 Parse_Pos := Parse_Pos + Xdigit'Length;
2046 Fail ("Invalid
character class
: " & E);
2050 Fail ("Invalid
character class
: " & E);
2053 -- Character class not specified
2060 end Parse_Posix_Character_Class;
2062 -- Local Declarations
2066 Expr_Flags : Expression_Flags;
2067 pragma Unreferenced (Expr_Flags);
2069 -- Start of processing for Compile
2073 Parse (False, Expr_Flags, Result);
2076 Fail ("Couldn
't compile expression
");
2079 Final_Code_Size := Emit_Ptr - 1;
2081 -- Do we want to actually compile the expression, or simply get the
2092 (Expression : String;
2093 Flags : Regexp_Flags := No_Flags) return Pattern_Matcher
2095 Size : Program_Size;
2096 Dummy : Pattern_Matcher (0);
2097 pragma Unreferenced (Dummy);
2100 Compile (Dummy, Expression, Size, Flags);
2103 Result : Pattern_Matcher (Size);
2105 Compile (Result, Expression, Size, Flags);
2111 (Matcher : out Pattern_Matcher;
2112 Expression : String;
2113 Flags : Regexp_Flags := No_Flags)
2115 Size : Program_Size;
2116 pragma Unreferenced (Size);
2118 Compile (Matcher, Expression, Size, Flags);
2125 procedure Dump (Self : Pattern_Matcher) is
2127 Program : Program_Data renames Self.Program;
2129 procedure Dump_Until
2132 Indent : Natural := 0);
2133 -- Dump the program until the node Till (not included) is met.
2134 -- Every line is indented with Index spaces at the beginning
2135 -- Dumps till the end if Till is 0.
2141 procedure Dump_Until
2144 Indent : Natural := 0)
2148 Local_Indent : Natural := Indent;
2153 while Index < Till loop
2154 Op := Opcode'Val (Character'Pos ((Self.Program (Index))));
2157 Local_Indent := Local_Indent - 3;
2161 Point : constant String := Pointer'Image (Index);
2164 for J in 1 .. 6 - Point'Length loop
2170 & (1 .. Local_Indent => ' ')
2171 & Opcode'Image (Op));
2174 -- Print the parenthesis number
2176 if Op = OPEN or else Op = CLOSE or else Op = REFF then
2177 Put (Natural'Image (Character'Pos (Program (Index + 3))));
2180 Next := Index + Get_Next_Offset (Program, Index);
2182 if Next = Index then
2183 Put (" (next
at 0)");
2185 Put (" (next
at " & Pointer'Image (Next) & ")");
2190 -- Character class operand
2194 Bitmap : Character_Class;
2195 Last : Character := ASCII.NUL;
2196 Current : Natural := 0;
2198 Current_Char : Character;
2201 Bitmap_Operand (Program, Index, Bitmap);
2204 while Current <= 255 loop
2205 Current_Char := Character'Val (Current);
2207 -- First item in a range
2209 if Get_From_Class (Bitmap, Current_Char) then
2210 Last := Current_Char;
2212 -- Search for the last item in the range
2215 Current := Current + 1;
2216 exit when Current > 255;
2217 Current_Char := Character'Val (Current);
2219 not Get_From_Class (Bitmap, Current_Char);
2229 if Character'Succ (Last) /= Current_Char then
2230 Put ("-" & Character'Pred (Current_Char));
2234 Current := Current + 1;
2239 Index := Index + 3 + Bitmap'Length;
2244 when EXACT | EXACTF =>
2245 Length := String_Length (Program, Index);
2246 Put (" operand
(length
:" & Program_Size'Image (Length + 1)
2248 & String (Program (String_Operand (Index)
2249 .. String_Operand (Index)
2251 Index := String_Operand (Index) + Length + 1;
2258 Dump_Until (Index + 3, Next, Local_Indent + 3);
2264 -- Only one instruction
2266 Dump_Until (Index + 3, Index + 4, Local_Indent + 3);
2269 when CURLY | CURLYX =>
2271 & Natural'Image (Read_Natural (Program, Index + 3))
2273 & Natural'Image (Read_Natural (Program, Index + 5))
2276 Dump_Until (Index + 7, Next, Local_Indent + 3);
2282 Local_Indent := Local_Indent + 3;
2284 when CLOSE | REFF =>
2302 -- Start of processing for Dump
2305 pragma Assert (Self.Program (Program_First) = MAGIC,
2306 "Corrupted Pattern_Matcher
");
2308 Put_Line ("Must start
with (Self
.First
) = "
2309 & Character'Image (Self.First));
2311 if (Self.Flags and Case_Insensitive) /= 0 then
2312 Put_Line (" Case_Insensitive mode
");
2315 if (Self.Flags and Single_Line) /= 0 then
2316 Put_Line (" Single_Line mode
");
2319 if (Self.Flags and Multiple_Lines) /= 0 then
2320 Put_Line (" Multiple_Lines mode
");
2323 Put_Line (" 1 : MAGIC
");
2324 Dump_Until (Program_First + 1, Self.Program'Last + 1);
2327 --------------------
2328 -- Get_From_Class --
2329 --------------------
2331 function Get_From_Class
2332 (Bitmap : Character_Class;
2333 C : Character) return Boolean
2335 Value : constant Class_Byte := Character'Pos (C);
2338 (Bitmap (Value / 8) and Bit_Conversion (Value mod 8)) /= 0;
2345 function Get_Next (Program : Program_Data; IP : Pointer) return Pointer is
2346 Offset : constant Pointer := Get_Next_Offset (Program, IP);
2355 ---------------------
2356 -- Get_Next_Offset --
2357 ---------------------
2359 function Get_Next_Offset
2360 (Program : Program_Data;
2361 IP : Pointer) return Pointer
2364 return Pointer (Read_Natural (Program, IP + 1));
2365 end Get_Next_Offset;
2371 function Is_Alnum (C : Character) return Boolean is
2373 return Is_Alphanumeric (C) or else C = '_';
2380 function Is_Printable (C : Character) return Boolean is
2382 -- Printable if space or graphic character or other whitespace
2383 -- Other white space includes (HT/LF/VT/FF/CR = codes 9-13)
2385 return C in Character'Val (32) .. Character'Val (126)
2386 or else C in ASCII.HT .. ASCII.CR;
2389 --------------------
2390 -- Is_White_Space --
2391 --------------------
2393 function Is_White_Space (C : Character) return Boolean is
2395 -- Note: HT = 9, LF = 10, VT = 11, FF = 12, CR = 13
2397 return C = ' ' or else C in ASCII.HT .. ASCII.CR;
2405 (Self : Pattern_Matcher;
2407 Matches : out Match_Array;
2408 Data_First : Integer := -1;
2409 Data_Last : Positive := Positive'Last)
2411 Program : Program_Data renames Self.Program; -- Shorter notation
2413 First_In_Data : constant Integer := Integer'Max (Data_First, Data'First);
2414 Last_In_Data : constant Integer := Integer'Min (Data_Last, Data'Last);
2416 -- Global work variables
2418 Input_Pos : Natural; -- String-input pointer
2419 BOL_Pos : Natural; -- Beginning of input, for ^ check
2420 Matched : Boolean := False; -- Until proven True
2422 Matches_Full : Match_Array (0 .. Natural'Max (Self.Paren_Count,
2424 -- Stores the value of all the parenthesis pairs.
2425 -- We do not use directly Matches, so that we can also use back
2426 -- references (REFF) even if Matches is too small.
2428 type Natural_Array is array (Match_Count range <>) of Natural;
2429 Matches_Tmp : Natural_Array (Matches_Full'Range);
2430 -- Save the opening position of parenthesis
2432 Last_Paren : Natural := 0;
2433 -- Last parenthesis seen
2435 Greedy : Boolean := True;
2436 -- True if the next operator should be greedy
2438 type Current_Curly_Record;
2439 type Current_Curly_Access is access all Current_Curly_Record;
2440 type Current_Curly_Record is record
2441 Paren_Floor : Natural; -- How far back to strip parenthesis data
2442 Cur : Integer; -- How many instances of scan we've matched
2443 Min : Natural; -- Minimal number of scans to match
2444 Max : Natural; -- Maximal number of scans to match
2445 Greedy : Boolean; -- Whether to work our way up or down
2446 Scan : Pointer; -- The thing to match
2447 Next : Pointer; -- What has to match after it
2448 Lastloc : Natural; -- Where we started matching this scan
2449 Old_Cc : Current_Curly_Access; -- Before we started this one
2451 -- Data used to handle the curly operator and the plus and star
2452 -- operators for complex expressions.
2454 Current_Curly : Current_Curly_Access := null;
2455 -- The curly currently being processed
2457 -----------------------
2458 -- Local Subprograms --
2459 -----------------------
2461 function Index (Start : Positive; C : Character) return Natural;
2462 -- Find character C in Data starting at Start and return position
2466 Max : Natural := Natural'Last) return Natural;
2467 -- Repeatedly match something simple, report how many
2468 -- It only matches on things of length 1.
2469 -- Starting from Input_Pos, it matches at most Max CURLY.
2471 function Try (Pos : Positive) return Boolean;
2472 -- Try to match at specific point
2474 function Match (IP : Pointer) return Boolean;
2475 -- This is the main matching routine. Conceptually the strategy
2476 -- is simple: check to see whether the current node matches,
2477 -- call self recursively to see whether the rest matches,
2478 -- and then act accordingly.
2480 -- In practice Match makes some effort to avoid recursion, in
2481 -- particular by going through "ordinary
" nodes (that don't
2482 -- need to know whether the rest of the match failed) by
2483 -- using a loop instead of recursion.
2484 -- Why is the above comment part of the spec rather than body ???
2486 function Match_Whilem (IP : Pointer) return Boolean;
2487 -- Return True if a WHILEM matches
2488 -- How come IP is unreferenced in the body ???
2490 function Recurse_Match (IP : Pointer; From : Natural) return Boolean;
2491 pragma Inline (Recurse_Match);
2492 -- Calls Match recursively. It saves and restores the parenthesis
2493 -- status and location in the input stream correctly, so that
2494 -- backtracking is possible
2496 function Match_Simple_Operator
2500 Greedy : Boolean) return Boolean;
2501 -- Return True it the simple operator (possibly non-greedy) matches
2503 pragma Inline (Index);
2504 pragma Inline (Repeat);
2506 -- These are two complex functions, but used only once
2508 pragma Inline (Match_Whilem);
2509 pragma Inline (Match_Simple_Operator);
2515 function Index (Start : Positive; C : Character) return Natural is
2517 for J in Start .. Last_In_Data loop
2518 if Data (J) = C then
2530 function Recurse_Match (IP : Pointer; From : Natural) return Boolean is
2531 L : constant Natural := Last_Paren;
2533 Tmp_F : constant Match_Array :=
2534 Matches_Full (From + 1 .. Matches_Full'Last);
2536 Start : constant Natural_Array :=
2537 Matches_Tmp (From + 1 .. Matches_Tmp'Last);
2538 Input : constant Natural := Input_Pos;
2546 Matches_Full (Tmp_F'Range) := Tmp_F;
2547 Matches_Tmp (Start'Range) := Start;
2556 function Match (IP : Pointer) return Boolean is
2557 Scan : Pointer := IP;
2564 pragma Assert (Scan /= 0);
2566 -- Determine current opcode and count its usage in debug mode
2568 Op := Opcode'Val (Character'Pos (Program (Scan)));
2570 -- Calculate offset of next instruction.
2571 -- Second character is most significant in Program_Data.
2573 Next := Get_Next (Program, Scan);
2577 return True; -- Success !
2580 if Program (Next) /= BRANCH then
2581 Next := Operand (Scan); -- No choice, avoid recursion
2585 if Recurse_Match (Operand (Scan), 0) then
2589 Scan := Get_Next (Program, Scan);
2590 exit when Scan = 0 or else Program (Scan) /= BRANCH;
2600 exit State_Machine when Input_Pos /= BOL_Pos
2601 and then ((Self.Flags and Multiple_Lines) = 0
2602 or else Data (Input_Pos - 1) /= ASCII.LF);
2605 exit State_Machine when Input_Pos /= BOL_Pos
2606 and then Data (Input_Pos - 1) /= ASCII.LF;
2609 exit State_Machine when Input_Pos /= BOL_Pos;
2612 exit State_Machine when Input_Pos <= Data'Last
2613 and then ((Self.Flags and Multiple_Lines) = 0
2614 or else Data (Input_Pos) /= ASCII.LF);
2617 exit State_Machine when Input_Pos <= Data'Last
2618 and then Data (Input_Pos) /= ASCII.LF;
2621 exit State_Machine when Input_Pos <= Data'Last;
2623 when BOUND | NBOUND =>
2625 -- Was last char in word ?
2628 N : Boolean := False;
2629 Ln : Boolean := False;
2632 if Input_Pos /= First_In_Data then
2633 N := Is_Alnum (Data (Input_Pos - 1));
2636 if Input_Pos > Last_In_Data then
2639 Ln := Is_Alnum (Data (Input_Pos));
2654 exit State_Machine when Input_Pos > Last_In_Data
2655 or else not Is_White_Space (Data (Input_Pos));
2656 Input_Pos := Input_Pos + 1;
2659 exit State_Machine when Input_Pos > Last_In_Data
2660 or else Is_White_Space (Data (Input_Pos));
2661 Input_Pos := Input_Pos + 1;
2664 exit State_Machine when Input_Pos > Last_In_Data
2665 or else not Is_Digit (Data (Input_Pos));
2666 Input_Pos := Input_Pos + 1;
2669 exit State_Machine when Input_Pos > Last_In_Data
2670 or else Is_Digit (Data (Input_Pos));
2671 Input_Pos := Input_Pos + 1;
2674 exit State_Machine when Input_Pos > Last_In_Data
2675 or else not Is_Alnum (Data (Input_Pos));
2676 Input_Pos := Input_Pos + 1;
2679 exit State_Machine when Input_Pos > Last_In_Data
2680 or else Is_Alnum (Data (Input_Pos));
2681 Input_Pos := Input_Pos + 1;
2684 exit State_Machine when Input_Pos > Last_In_Data
2685 or else Data (Input_Pos) = ASCII.LF;
2686 Input_Pos := Input_Pos + 1;
2689 exit State_Machine when Input_Pos > Last_In_Data;
2690 Input_Pos := Input_Pos + 1;
2694 Opnd : Pointer := String_Operand (Scan);
2695 Current : Positive := Input_Pos;
2697 Last : constant Pointer :=
2698 Opnd + String_Length (Program, Scan);
2701 while Opnd <= Last loop
2702 exit State_Machine when Current > Last_In_Data
2703 or else Program (Opnd) /= Data (Current);
2704 Current := Current + 1;
2708 Input_Pos := Current;
2713 Opnd : Pointer := String_Operand (Scan);
2714 Current : Positive := Input_Pos;
2716 Last : constant Pointer :=
2717 Opnd + String_Length (Program, Scan);
2720 while Opnd <= Last loop
2721 exit State_Machine when Current > Last_In_Data
2722 or else Program (Opnd) /= To_Lower (Data (Current));
2723 Current := Current + 1;
2727 Input_Pos := Current;
2732 Bitmap : Character_Class;
2734 Bitmap_Operand (Program, Scan, Bitmap);
2735 exit State_Machine when Input_Pos > Last_In_Data
2736 or else not Get_From_Class (Bitmap, Data (Input_Pos));
2737 Input_Pos := Input_Pos + 1;
2742 No : constant Natural :=
2743 Character'Pos (Program (Operand (Scan)));
2745 Matches_Tmp (No) := Input_Pos;
2750 No : constant Natural :=
2751 Character'Pos (Program (Operand (Scan)));
2754 Matches_Full (No) := (Matches_Tmp (No), Input_Pos - 1);
2756 if Last_Paren < No then
2763 No : constant Natural :=
2764 Character'Pos (Program (Operand (Scan)));
2769 -- If we haven't seen that parenthesis yet
2771 if Last_Paren < No then
2775 Data_Pos := Matches_Full (No).First;
2777 while Data_Pos <= Matches_Full (No).Last loop
2778 if Input_Pos > Last_In_Data
2779 or else Data (Input_Pos) /= Data (Data_Pos)
2784 Input_Pos := Input_Pos + 1;
2785 Data_Pos := Data_Pos + 1;
2792 when STAR | PLUS | CURLY =>
2794 Greed : constant Boolean := Greedy;
2797 return Match_Simple_Operator (Op, Scan, Next, Greed);
2802 -- Looking at something like:
2804 -- 1: CURLYX {n,m} (->4)
2805 -- 2: code for complex thing (->3)
2810 Min : constant Natural :=
2811 Read_Natural (Program, Scan + 3);
2812 Max : constant Natural :=
2813 Read_Natural (Program, Scan + 5);
2814 Cc : aliased Current_Curly_Record;
2816 Has_Match : Boolean;
2819 Cc := (Paren_Floor => Last_Paren,
2827 Old_Cc => Current_Curly);
2828 Current_Curly := Cc'Unchecked_Access;
2830 Has_Match := Match (Next - 3);
2832 -- Start on the WHILEM
2834 Current_Curly := Cc.Old_Cc;
2839 return Match_Whilem (IP);
2843 end loop State_Machine;
2845 -- If we get here, there is no match.
2846 -- For successful matches when EOP is the terminating point.
2851 ---------------------------
2852 -- Match_Simple_Operator --
2853 ---------------------------
2855 function Match_Simple_Operator
2859 Greedy : Boolean) return Boolean
2861 Next_Char : Character := ASCII.NUL;
2862 Next_Char_Known : Boolean := False;
2863 No : Integer; -- Can be negative
2865 Max : Natural := Natural'Last;
2866 Operand_Code : Pointer;
2869 Save : constant Natural := Input_Pos;
2872 -- Lookahead to avoid useless match attempts
2873 -- when we know what character comes next.
2875 if Program (Next) = EXACT then
2876 Next_Char := Program (String_Operand (Next));
2877 Next_Char_Known := True;
2880 -- Find the minimal and maximal values for the operator
2885 Operand_Code := Operand (Scan);
2889 Operand_Code := Operand (Scan);
2892 Min := Read_Natural (Program, Scan + 3);
2893 Max := Read_Natural (Program, Scan + 5);
2894 Operand_Code := Scan + 7;
2897 -- Non greedy operators
2901 -- Test the minimal repetitions
2904 and then Repeat (Operand_Code, Min) < Min
2911 -- Find the place where 'next' could work
2913 if Next_Char_Known then
2914 -- Last position to check
2916 if Max = Natural'Last then
2917 Last_Pos := Last_In_Data;
2919 Last_Pos := Input_Pos + Max;
2921 if Last_Pos > Last_In_Data then
2922 Last_Pos := Last_In_Data;
2926 -- Look for the first possible opportunity
2929 -- Find the next possible position
2931 while Input_Pos <= Last_Pos
2932 and then Data (Input_Pos) /= Next_Char
2934 Input_Pos := Input_Pos + 1;
2937 if Input_Pos > Last_Pos then
2941 -- Check that we still match if we stop
2942 -- at the position we just found.
2945 Num : constant Natural := Input_Pos - Old;
2950 if Repeat (Operand_Code, Num) < Num then
2955 -- Input_Pos now points to the new position
2957 if Match (Get_Next (Program, Scan)) then
2962 Input_Pos := Input_Pos + 1;
2965 -- We know what the next character is
2968 while Max >= Min loop
2970 -- If the next character matches
2972 if Match (Next) then
2976 Input_Pos := Save + Min;
2978 -- Could not or did not match -- move forward
2980 if Repeat (Operand_Code, 1) /= 0 then
2993 No := Repeat (Operand_Code, Max);
2995 -- ??? Perl has some special code here in case the
2996 -- next instruction is of type EOL, since $ and \Z
2997 -- can match before *and* after newline at the end.
2999 -- ??? Perl has some special code here in case (paren)
3002 -- Else, if we don't have any parenthesis
3004 while No >= Min loop
3005 if not Next_Char_Known
3006 or else (Input_Pos <= Last_In_Data
3007 and then Data (Input_Pos) = Next_Char)
3009 if Match (Next) then
3014 -- Could not or did not work, we back up
3017 Input_Pos := Save + No;
3022 end Match_Simple_Operator;
3028 -- This is really hard to understand, because after we match what we
3029 -- are trying to match, we must make sure the rest of the REx is going
3030 -- to match for sure, and to do that we have to go back UP the parse
3031 -- tree by recursing ever deeper. And if it fails, we have to reset
3032 -- our parent's current state that we can try again after backing off.
3034 function Match_Whilem (IP : Pointer) return Boolean is
3035 pragma Unreferenced (IP);
3037 Cc : constant Current_Curly_Access := Current_Curly;
3038 N : constant Natural := Cc.Cur + 1;
3041 Lastloc : constant Natural := Cc.Lastloc;
3042 -- Detection of 0-len
3045 -- If degenerate scan matches "", assume scan done
3047 if Input_Pos = Cc.Lastloc
3048 and then N >= Cc.Min
3050 -- Temporarily restore the old context, and check that we
3051 -- match was comes after CURLYX.
3053 Current_Curly := Cc.Old_Cc;
3055 if Current_Curly /= null then
3056 Ln := Current_Curly.Cur;
3059 if Match (Cc.Next) then
3063 if Current_Curly /= null then
3064 Current_Curly.Cur := Ln;
3067 Current_Curly := Cc;
3071 -- First, just match a string of min scans
3075 Cc.Lastloc := Input_Pos;
3077 if Match (Cc.Scan) then
3082 Cc.Lastloc := Lastloc;
3086 -- Prefer next over scan for minimal matching
3088 if not Cc.Greedy then
3089 Current_Curly := Cc.Old_Cc;
3091 if Current_Curly /= null then
3092 Ln := Current_Curly.Cur;
3095 if Recurse_Match (Cc.Next, Cc.Paren_Floor) then
3099 if Current_Curly /= null then
3100 Current_Curly.Cur := Ln;
3103 Current_Curly := Cc;
3105 -- Maximum greed exceeded ?
3111 -- Try scanning more and see if it helps
3113 Cc.Lastloc := Input_Pos;
3115 if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3120 Cc.Lastloc := Lastloc;
3124 -- Prefer scan over next for maximal matching
3126 if N < Cc.Max then -- more greed allowed ?
3128 Cc.Lastloc := Input_Pos;
3130 if Recurse_Match (Cc.Scan, Cc.Paren_Floor) then
3135 -- Failed deeper matches of scan, so see if this one works
3137 Current_Curly := Cc.Old_Cc;
3139 if Current_Curly /= null then
3140 Ln := Current_Curly.Cur;
3143 if Match (Cc.Next) then
3147 if Current_Curly /= null then
3148 Current_Curly.Cur := Ln;
3151 Current_Curly := Cc;
3153 Cc.Lastloc := Lastloc;
3163 Max : Natural := Natural'Last) return Natural
3165 Scan : Natural := Input_Pos;
3167 Op : constant Opcode := Opcode'Val (Character'Pos (Program (IP)));
3170 Is_First : Boolean := True;
3171 Bitmap : Character_Class;
3174 if Max = Natural'Last or else Scan + Max - 1 > Last_In_Data then
3175 Last := Last_In_Data;
3177 Last := Scan + Max - 1;
3183 and then Data (Scan) /= ASCII.LF
3193 -- The string has only one character if Repeat was called
3195 C := Program (String_Operand (IP));
3197 and then C = Data (Scan)
3204 -- The string has only one character if Repeat was called
3206 C := Program (String_Operand (IP));
3208 and then To_Lower (C) = Data (Scan)
3215 Bitmap_Operand (Program, IP, Bitmap);
3220 and then Get_From_Class (Bitmap, Data (Scan))
3227 and then Is_Alnum (Data (Scan))
3234 and then not Is_Alnum (Data (Scan))
3241 and then Is_White_Space (Data (Scan))
3248 and then not Is_White_Space (Data (Scan))
3255 and then Is_Digit (Data (Scan))
3262 and then not Is_Digit (Data (Scan))
3268 raise Program_Error;
3271 Count := Scan - Input_Pos;
3280 function Try (Pos : Positive) return Boolean is
3284 Matches_Full := (others => No_Match);
3286 if Match (Program_First + 1) then
3287 Matches_Full (0) := (Pos, Input_Pos - 1);
3294 -- Start of processing for Match
3297 -- Do we have the regexp Never_Match?
3299 if Self.Size = 0 then
3300 Matches := (others => No_Match);
3304 -- Check validity of program
3307 (Program (Program_First) = MAGIC,
3308 "Corrupted Pattern_Matcher
");
3310 -- If there is a "must appear
" string, look for it
3312 if Self.Must_Have_Length > 0 then
3314 First : constant Character := Program (Self.Must_Have);
3315 Must_First : constant Pointer := Self.Must_Have;
3316 Must_Last : constant Pointer :=
3317 Must_First + Pointer (Self.Must_Have_Length - 1);
3318 Next_Try : Natural := Index (First_In_Data, First);
3322 and then Data (Next_Try .. Next_Try + Self.Must_Have_Length - 1)
3323 = String (Program (Must_First .. Must_Last))
3325 Next_Try := Index (Next_Try + 1, First);
3328 if Next_Try = 0 then
3329 Matches := (others => No_Match);
3330 return; -- Not present
3335 -- Mark beginning of line for ^
3337 BOL_Pos := Data'First;
3339 -- Simplest case first: an anchored match need be tried only once
3341 if Self.Anchored and then (Self.Flags and Multiple_Lines) = 0 then
3342 Matched := Try (First_In_Data);
3344 elsif Self.Anchored then
3346 Next_Try : Natural := First_In_Data;
3348 -- Test the first position in the buffer
3349 Matched := Try (Next_Try);
3351 -- Else only test after newlines
3354 while Next_Try <= Last_In_Data loop
3355 while Next_Try <= Last_In_Data
3356 and then Data (Next_Try) /= ASCII.LF
3358 Next_Try := Next_Try + 1;
3361 Next_Try := Next_Try + 1;
3363 if Next_Try <= Last_In_Data then
3364 Matched := Try (Next_Try);
3371 elsif Self.First /= ASCII.NUL then
3372 -- We know what char it must start with
3375 Next_Try : Natural := Index (First_In_Data, Self.First);
3378 while Next_Try /= 0 loop
3379 Matched := Try (Next_Try);
3381 Next_Try := Index (Next_Try + 1, Self.First);
3386 -- Messy cases: try all locations (including for the empty string)
3388 Matched := Try (First_In_Data);
3391 for S in First_In_Data + 1 .. Last_In_Data loop
3398 -- Matched has its value
3400 for J in Last_Paren + 1 .. Matches'Last loop
3401 Matches_Full (J) := No_Match;
3404 Matches := Matches_Full (Matches'Range);
3412 (Self : Pattern_Matcher;
3414 Data_First : Integer := -1;
3415 Data_Last : Positive := Positive'Last) return Natural
3417 Matches : Match_Array (0 .. 0);
3420 Match (Self, Data, Matches, Data_First, Data_Last);
3421 if Matches (0) = No_Match then
3422 return Data'First - 1;
3424 return Matches (0).First;
3429 (Self : Pattern_Matcher;
3431 Data_First : Integer := -1;
3432 Data_Last : Positive := Positive'Last) return Boolean
3434 Matches : Match_Array (0 .. 0);
3437 Match (Self, Data, Matches, Data_First, Data_Last);
3438 return Matches (0).First >= Data'First;
3442 (Expression : String;
3444 Matches : out Match_Array;
3445 Size : Program_Size := Auto_Size;
3446 Data_First : Integer := -1;
3447 Data_Last : Positive := Positive'Last)
3449 PM : Pattern_Matcher (Size);
3450 Finalize_Size : Program_Size;
3451 pragma Unreferenced (Finalize_Size);
3454 Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3456 Compile (PM, Expression, Finalize_Size);
3457 Match (PM, Data, Matches, Data_First, Data_Last);
3466 (Expression : String;
3468 Size : Program_Size := Auto_Size;
3469 Data_First : Integer := -1;
3470 Data_Last : Positive := Positive'Last) return Natural
3472 PM : Pattern_Matcher (Size);
3473 Final_Size : Program_Size;
3474 pragma Unreferenced (Final_Size);
3477 return Match (Compile (Expression), Data, Data_First, Data_Last);
3479 Compile (PM, Expression, Final_Size);
3480 return Match (PM, Data, Data_First, Data_Last);
3489 (Expression : String;
3491 Size : Program_Size := Auto_Size;
3492 Data_First : Integer := -1;
3493 Data_Last : Positive := Positive'Last) return Boolean
3495 Matches : Match_Array (0 .. 0);
3496 PM : Pattern_Matcher (Size);
3497 Final_Size : Program_Size;
3498 pragma Unreferenced (Final_Size);
3501 Match (Compile (Expression), Data, Matches, Data_First, Data_Last);
3503 Compile (PM, Expression, Final_Size);
3504 Match (PM, Data, Matches, Data_First, Data_Last);
3507 return Matches (0).First >= Data'First;
3514 function Operand (P : Pointer) return Pointer is
3523 procedure Optimize (Self : in out Pattern_Matcher) is
3525 Program : Program_Data renames Self.Program;
3528 -- Start with safe defaults (no optimization):
3529 -- * No known first character of match
3530 -- * Does not necessarily start at beginning of line
3531 -- * No string known that has to appear in data
3533 Self.First := ASCII.NUL;
3534 Self.Anchored := False;
3535 Self.Must_Have := Program'Last + 1;
3536 Self.Must_Have_Length := 0;
3538 Scan := Program_First + 1; -- First instruction (can be anything)
3540 if Program (Scan) = EXACT then
3541 Self.First := Program (String_Operand (Scan));
3543 elsif Program (Scan) = BOL
3544 or else Program (Scan) = SBOL
3545 or else Program (Scan) = MBOL
3547 Self.Anchored := True;
3555 function Paren_Count (Regexp : Pattern_Matcher) return Match_Count is
3557 return Regexp.Paren_Count;
3564 function Quote (Str : String) return String is
3565 S : String (1 .. Str'Length * 2);
3566 Last : Natural := 0;
3569 for J in Str'Range loop
3571 when '^' | '$' | '|' | '*' | '+' | '?' | '{' |
3572 '}' | '[' | ']' | '(' | ')' | '\' | '.' =>
3574 S (Last + 1) := '\';
3575 S (Last + 2) := Str (J);
3579 S (Last + 1) := Str (J);
3584 return S (1 .. Last);
3591 function Read_Natural
3592 (Program : Program_Data;
3593 IP : Pointer) return Natural
3596 return Character'Pos (Program (IP)) +
3597 256 * Character'Pos (Program (IP + 1));
3604 procedure Reset_Class (Bitmap : out Character_Class) is
3606 Bitmap := (others => 0);
3613 procedure Set_In_Class
3614 (Bitmap : in out Character_Class;
3617 Value : constant Class_Byte := Character'Pos (C);
3619 Bitmap (Value / 8) := Bitmap (Value / 8)
3620 or Bit_Conversion (Value mod 8);
3627 function String_Length
3628 (Program : Program_Data;
3629 P : Pointer) return Program_Size
3632 pragma Assert (Program (P) = EXACT or else Program (P) = EXACTF);
3633 return Character'Pos (Program (P + 3));
3636 --------------------
3637 -- String_Operand --
3638 --------------------
3640 function String_Operand (P : Pointer) return Pointer is