1 /* Control flow optimization code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains optimizer of the control flow. The main entrypoint is
23 cleanup_cfg. Following optimizations are performed:
25 - Unreachable blocks removal
26 - Edge forwarding (edge to the forwarder block is forwarded to it's
27 successor. Simplification of the branch instruction is performed by
28 underlying infrastructure so branch can be converted to simplejump or
30 - Cross jumping (tail merging)
31 - Conditional jump-around-simplejump simplification
32 - Basic block merging. */
36 #include "coretypes.h"
39 #include "hard-reg-set.h"
40 #include "basic-block.h"
43 #include "insn-config.h"
52 /* cleanup_cfg maintains following flags for each basic block. */
56 /* Set if BB is the forwarder block to avoid too many
57 forwarder_block_p calls. */
58 BB_FORWARDER_BLOCK
= 1,
59 BB_NONTHREADABLE_BLOCK
= 2
62 #define BB_FLAGS(BB) (enum bb_flags) (BB)->aux
63 #define BB_SET_FLAG(BB, FLAG) \
64 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux | (FLAG))
65 #define BB_CLEAR_FLAG(BB, FLAG) \
66 (BB)->aux = (void *) (long) ((enum bb_flags) (BB)->aux & ~(FLAG))
68 #define FORWARDER_BLOCK_P(BB) (BB_FLAGS (BB) & BB_FORWARDER_BLOCK)
70 static bool try_crossjump_to_edge (int, edge
, edge
);
71 static bool try_crossjump_bb (int, basic_block
);
72 static bool outgoing_edges_match (int, basic_block
, basic_block
);
73 static int flow_find_cross_jump (int, basic_block
, basic_block
, rtx
*, rtx
*);
74 static bool insns_match_p (int, rtx
, rtx
);
76 static bool label_is_jump_target_p (rtx
, rtx
);
77 static bool tail_recursion_label_p (rtx
);
78 static void merge_blocks_move_predecessor_nojumps (basic_block
, basic_block
);
79 static void merge_blocks_move_successor_nojumps (basic_block
, basic_block
);
80 static bool try_optimize_cfg (int);
81 static bool try_simplify_condjump (basic_block
);
82 static bool try_forward_edges (int, basic_block
);
83 static edge
thread_jump (int, edge
, basic_block
);
84 static bool mark_effect (rtx
, bitmap
);
85 static void notice_new_block (basic_block
);
86 static void update_forwarder_flag (basic_block
);
87 static int mentions_nonequal_regs (rtx
*, void *);
89 /* Set flags for newly created block. */
92 notice_new_block (basic_block bb
)
97 if (forwarder_block_p (bb
))
98 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
101 /* Recompute forwarder flag after block has been modified. */
104 update_forwarder_flag (basic_block bb
)
106 if (forwarder_block_p (bb
))
107 BB_SET_FLAG (bb
, BB_FORWARDER_BLOCK
);
109 BB_CLEAR_FLAG (bb
, BB_FORWARDER_BLOCK
);
112 /* Simplify a conditional jump around an unconditional jump.
113 Return true if something changed. */
116 try_simplify_condjump (basic_block cbranch_block
)
118 basic_block jump_block
, jump_dest_block
, cbranch_dest_block
;
119 edge cbranch_jump_edge
, cbranch_fallthru_edge
;
124 /* Verify that there are exactly two successors. */
125 if (!cbranch_block
->succ
126 || !cbranch_block
->succ
->succ_next
127 || cbranch_block
->succ
->succ_next
->succ_next
)
130 /* Verify that we've got a normal conditional branch at the end
132 cbranch_insn
= cbranch_block
->end
;
133 if (!any_condjump_p (cbranch_insn
))
136 cbranch_fallthru_edge
= FALLTHRU_EDGE (cbranch_block
);
137 cbranch_jump_edge
= BRANCH_EDGE (cbranch_block
);
139 /* The next block must not have multiple predecessors, must not
140 be the last block in the function, and must contain just the
141 unconditional jump. */
142 jump_block
= cbranch_fallthru_edge
->dest
;
143 if (jump_block
->pred
->pred_next
144 || jump_block
->next_bb
== EXIT_BLOCK_PTR
145 || !FORWARDER_BLOCK_P (jump_block
))
147 jump_dest_block
= jump_block
->succ
->dest
;
149 /* The conditional branch must target the block after the
150 unconditional branch. */
151 cbranch_dest_block
= cbranch_jump_edge
->dest
;
153 if (!can_fallthru (jump_block
, cbranch_dest_block
))
156 /* Invert the conditional branch. */
157 if (!invert_jump (cbranch_insn
, block_label (jump_dest_block
), 0))
161 fprintf (rtl_dump_file
, "Simplifying condjump %i around jump %i\n",
162 INSN_UID (cbranch_insn
), INSN_UID (jump_block
->end
));
164 /* Success. Update the CFG to match. Note that after this point
165 the edge variable names appear backwards; the redirection is done
166 this way to preserve edge profile data. */
167 cbranch_jump_edge
= redirect_edge_succ_nodup (cbranch_jump_edge
,
169 cbranch_fallthru_edge
= redirect_edge_succ_nodup (cbranch_fallthru_edge
,
171 cbranch_jump_edge
->flags
|= EDGE_FALLTHRU
;
172 cbranch_fallthru_edge
->flags
&= ~EDGE_FALLTHRU
;
173 update_br_prob_note (cbranch_block
);
175 end
= jump_block
->end
;
176 /* Deleting a block may produce unreachable code warning even when we are
177 not deleting anything live. Supress it by moving all the line number
178 notes out of the block. */
179 for (insn
= jump_block
->head
; insn
!= NEXT_INSN (jump_block
->end
);
182 next
= NEXT_INSN (insn
);
183 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
185 if (insn
== jump_block
->end
)
187 jump_block
->end
= PREV_INSN (insn
);
191 reorder_insns_nobb (insn
, insn
, end
);
195 /* Delete the block with the unconditional jump, and clean up the mess. */
196 delete_block (jump_block
);
197 tidy_fallthru_edge (cbranch_jump_edge
, cbranch_block
, cbranch_dest_block
);
202 /* Attempt to prove that operation is NOOP using CSElib or mark the effect
203 on register. Used by jump threading. */
206 mark_effect (rtx exp
, regset nonequal
)
210 switch (GET_CODE (exp
))
212 /* In case we do clobber the register, mark it as equal, as we know the
213 value is dead so it don't have to match. */
215 if (REG_P (XEXP (exp
, 0)))
217 dest
= XEXP (exp
, 0);
218 regno
= REGNO (dest
);
219 CLEAR_REGNO_REG_SET (nonequal
, regno
);
220 if (regno
< FIRST_PSEUDO_REGISTER
)
222 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
224 CLEAR_REGNO_REG_SET (nonequal
, regno
+ n
);
230 if (rtx_equal_for_cselib_p (SET_DEST (exp
), SET_SRC (exp
)))
232 dest
= SET_DEST (exp
);
237 regno
= REGNO (dest
);
238 SET_REGNO_REG_SET (nonequal
, regno
);
239 if (regno
< FIRST_PSEUDO_REGISTER
)
241 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (dest
));
243 SET_REGNO_REG_SET (nonequal
, regno
+ n
);
252 /* Return nonzero if X is a register set in regset DATA.
253 Called via for_each_rtx. */
255 mentions_nonequal_regs (rtx
*x
, void *data
)
257 regset nonequal
= (regset
) data
;
263 if (REGNO_REG_SET_P (nonequal
, regno
))
265 if (regno
< FIRST_PSEUDO_REGISTER
)
267 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (*x
));
269 if (REGNO_REG_SET_P (nonequal
, regno
+ n
))
275 /* Attempt to prove that the basic block B will have no side effects and
276 always continues in the same edge if reached via E. Return the edge
277 if exist, NULL otherwise. */
280 thread_jump (int mode
, edge e
, basic_block b
)
282 rtx set1
, set2
, cond1
, cond2
, insn
;
283 enum rtx_code code1
, code2
, reversed_code2
;
284 bool reverse1
= false;
289 if (BB_FLAGS (b
) & BB_NONTHREADABLE_BLOCK
)
292 /* At the moment, we do handle only conditional jumps, but later we may
293 want to extend this code to tablejumps and others. */
294 if (!e
->src
->succ
->succ_next
|| e
->src
->succ
->succ_next
->succ_next
)
296 if (!b
->succ
|| !b
->succ
->succ_next
|| b
->succ
->succ_next
->succ_next
)
298 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
302 /* Second branch must end with onlyjump, as we will eliminate the jump. */
303 if (!any_condjump_p (e
->src
->end
))
306 if (!any_condjump_p (b
->end
) || !onlyjump_p (b
->end
))
308 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
312 set1
= pc_set (e
->src
->end
);
313 set2
= pc_set (b
->end
);
314 if (((e
->flags
& EDGE_FALLTHRU
) != 0)
315 != (XEXP (SET_SRC (set1
), 1) == pc_rtx
))
318 cond1
= XEXP (SET_SRC (set1
), 0);
319 cond2
= XEXP (SET_SRC (set2
), 0);
321 code1
= reversed_comparison_code (cond1
, e
->src
->end
);
323 code1
= GET_CODE (cond1
);
325 code2
= GET_CODE (cond2
);
326 reversed_code2
= reversed_comparison_code (cond2
, b
->end
);
328 if (!comparison_dominates_p (code1
, code2
)
329 && !comparison_dominates_p (code1
, reversed_code2
))
332 /* Ensure that the comparison operators are equivalent.
333 ??? This is far too pessimistic. We should allow swapped operands,
334 different CCmodes, or for example comparisons for interval, that
335 dominate even when operands are not equivalent. */
336 if (!rtx_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
337 || !rtx_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
340 /* Short circuit cases where block B contains some side effects, as we can't
342 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
);
343 insn
= NEXT_INSN (insn
))
344 if (INSN_P (insn
) && side_effects_p (PATTERN (insn
)))
346 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
352 /* First process all values computed in the source basic block. */
353 for (insn
= NEXT_INSN (e
->src
->head
); insn
!= NEXT_INSN (e
->src
->end
);
354 insn
= NEXT_INSN (insn
))
356 cselib_process_insn (insn
);
358 nonequal
= BITMAP_XMALLOC();
359 CLEAR_REG_SET (nonequal
);
361 /* Now assume that we've continued by the edge E to B and continue
362 processing as if it were same basic block.
363 Our goal is to prove that whole block is an NOOP. */
365 for (insn
= NEXT_INSN (b
->head
); insn
!= NEXT_INSN (b
->end
) && !failed
;
366 insn
= NEXT_INSN (insn
))
370 rtx pat
= PATTERN (insn
);
372 if (GET_CODE (pat
) == PARALLEL
)
374 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
375 failed
|= mark_effect (XVECEXP (pat
, 0, i
), nonequal
);
378 failed
|= mark_effect (pat
, nonequal
);
381 cselib_process_insn (insn
);
384 /* Later we should clear nonequal of dead registers. So far we don't
385 have life information in cfg_cleanup. */
388 BB_SET_FLAG (b
, BB_NONTHREADABLE_BLOCK
);
392 /* cond2 must not mention any register that is not equal to the
394 if (for_each_rtx (&cond2
, mentions_nonequal_regs
, nonequal
))
397 /* In case liveness information is available, we need to prove equivalence
398 only of the live values. */
399 if (mode
& CLEANUP_UPDATE_LIFE
)
400 AND_REG_SET (nonequal
, b
->global_live_at_end
);
402 EXECUTE_IF_SET_IN_REG_SET (nonequal
, 0, i
, goto failed_exit
;);
404 BITMAP_XFREE (nonequal
);
406 if ((comparison_dominates_p (code1
, code2
) != 0)
407 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
408 return BRANCH_EDGE (b
);
410 return FALLTHRU_EDGE (b
);
413 BITMAP_XFREE (nonequal
);
418 /* Attempt to forward edges leaving basic block B.
419 Return true if successful. */
422 try_forward_edges (int mode
, basic_block b
)
424 bool changed
= false;
425 edge e
, next
, *threaded_edges
= NULL
;
427 for (e
= b
->succ
; e
; e
= next
)
429 basic_block target
, first
;
431 bool threaded
= false;
432 int nthreaded_edges
= 0;
436 /* Skip complex edges because we don't know how to update them.
438 Still handle fallthru edges, as we can succeed to forward fallthru
439 edge to the same place as the branch edge of conditional branch
440 and turn conditional branch to an unconditional branch. */
441 if (e
->flags
& EDGE_COMPLEX
)
444 target
= first
= e
->dest
;
447 while (counter
< n_basic_blocks
)
449 basic_block new_target
= NULL
;
450 bool new_target_threaded
= false;
452 if (FORWARDER_BLOCK_P (target
)
453 && target
->succ
->dest
!= EXIT_BLOCK_PTR
)
455 /* Bypass trivial infinite loops. */
456 if (target
== target
->succ
->dest
)
457 counter
= n_basic_blocks
;
458 new_target
= target
->succ
->dest
;
461 /* Allow to thread only over one edge at time to simplify updating
463 else if (mode
& CLEANUP_THREADING
)
465 edge t
= thread_jump (mode
, e
, target
);
469 threaded_edges
= xmalloc (sizeof (*threaded_edges
)
475 /* Detect an infinite loop across blocks not
476 including the start block. */
477 for (i
= 0; i
< nthreaded_edges
; ++i
)
478 if (threaded_edges
[i
] == t
)
480 if (i
< nthreaded_edges
)
482 counter
= n_basic_blocks
;
487 /* Detect an infinite loop across the start block. */
491 if (nthreaded_edges
>= n_basic_blocks
)
493 threaded_edges
[nthreaded_edges
++] = t
;
495 new_target
= t
->dest
;
496 new_target_threaded
= true;
503 /* Avoid killing of loop pre-headers, as it is the place loop
504 optimizer wants to hoist code to.
506 For fallthru forwarders, the LOOP_BEG note must appear between
507 the header of block and CODE_LABEL of the loop, for non forwarders
508 it must appear before the JUMP_INSN. */
509 if ((mode
& CLEANUP_PRE_LOOP
) && optimize
)
511 rtx insn
= (target
->succ
->flags
& EDGE_FALLTHRU
512 ? target
->head
: prev_nonnote_insn (target
->end
));
514 if (GET_CODE (insn
) != NOTE
)
515 insn
= NEXT_INSN (insn
);
517 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& !INSN_P (insn
);
518 insn
= NEXT_INSN (insn
))
519 if (GET_CODE (insn
) == NOTE
520 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
523 if (GET_CODE (insn
) == NOTE
)
526 /* Do not clean up branches to just past the end of a loop
527 at this time; it can mess up the loop optimizer's
528 recognition of some patterns. */
530 insn
= PREV_INSN (target
->head
);
531 if (insn
&& GET_CODE (insn
) == NOTE
532 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
538 threaded
|= new_target_threaded
;
541 if (counter
>= n_basic_blocks
)
544 fprintf (rtl_dump_file
, "Infinite loop in BB %i.\n",
547 else if (target
== first
)
548 ; /* We didn't do anything. */
551 /* Save the values now, as the edge may get removed. */
552 gcov_type edge_count
= e
->count
;
553 int edge_probability
= e
->probability
;
557 /* Don't force if target is exit block. */
558 if (threaded
&& target
!= EXIT_BLOCK_PTR
)
560 notice_new_block (redirect_edge_and_branch_force (e
, target
));
562 fprintf (rtl_dump_file
, "Conditionals threaded.\n");
564 else if (!redirect_edge_and_branch (e
, target
))
567 fprintf (rtl_dump_file
,
568 "Forwarding edge %i->%i to %i failed.\n",
569 b
->index
, e
->dest
->index
, target
->index
);
573 /* We successfully forwarded the edge. Now update profile
574 data: for each edge we traversed in the chain, remove
575 the original edge's execution count. */
576 edge_frequency
= ((edge_probability
* b
->frequency
577 + REG_BR_PROB_BASE
/ 2)
580 if (!FORWARDER_BLOCK_P (b
) && forwarder_block_p (b
))
581 BB_SET_FLAG (b
, BB_FORWARDER_BLOCK
);
587 first
->count
-= edge_count
;
588 if (first
->count
< 0)
590 first
->frequency
-= edge_frequency
;
591 if (first
->frequency
< 0)
592 first
->frequency
= 0;
593 if (first
->succ
->succ_next
)
597 if (n
>= nthreaded_edges
)
599 t
= threaded_edges
[n
++];
602 if (first
->frequency
)
603 prob
= edge_frequency
* REG_BR_PROB_BASE
/ first
->frequency
;
606 if (prob
> t
->probability
)
607 prob
= t
->probability
;
608 t
->probability
-= prob
;
609 prob
= REG_BR_PROB_BASE
- prob
;
612 first
->succ
->probability
= REG_BR_PROB_BASE
;
613 first
->succ
->succ_next
->probability
= 0;
616 for (e
= first
->succ
; e
; e
= e
->succ_next
)
617 e
->probability
= ((e
->probability
* REG_BR_PROB_BASE
)
619 update_br_prob_note (first
);
623 /* It is possible that as the result of
624 threading we've removed edge as it is
625 threaded to the fallthru edge. Avoid
626 getting out of sync. */
627 if (n
< nthreaded_edges
628 && first
== threaded_edges
[n
]->src
)
633 t
->count
-= edge_count
;
638 while (first
!= target
);
645 free (threaded_edges
);
649 /* Return true if LABEL is a target of JUMP_INSN. This applies only
650 to non-complex jumps. That is, direct unconditional, conditional,
651 and tablejumps, but not computed jumps or returns. It also does
652 not apply to the fallthru case of a conditional jump. */
655 label_is_jump_target_p (rtx label
, rtx jump_insn
)
657 rtx tmp
= JUMP_LABEL (jump_insn
);
662 if (tablejump_p (jump_insn
, NULL
, &tmp
))
664 rtvec vec
= XVEC (tmp
, GET_CODE (tmp
) == ADDR_DIFF_VEC
);
665 int i
, veclen
= GET_NUM_ELEM (vec
);
667 for (i
= 0; i
< veclen
; ++i
)
668 if (XEXP (RTVEC_ELT (vec
, i
), 0) == label
)
675 /* Return true if LABEL is used for tail recursion. */
678 tail_recursion_label_p (rtx label
)
682 for (x
= tail_recursion_label_list
; x
; x
= XEXP (x
, 1))
683 if (label
== XEXP (x
, 0))
689 /* Blocks A and B are to be merged into a single block. A has no incoming
690 fallthru edge, so it can be moved before B without adding or modifying
691 any jumps (aside from the jump from A to B). */
694 merge_blocks_move_predecessor_nojumps (basic_block a
, basic_block b
)
698 barrier
= next_nonnote_insn (a
->end
);
699 if (GET_CODE (barrier
) != BARRIER
)
701 delete_insn (barrier
);
703 /* Move block and loop notes out of the chain so that we do not
706 ??? A better solution would be to squeeze out all the non-nested notes
707 and adjust the block trees appropriately. Even better would be to have
708 a tighter connection between block trees and rtl so that this is not
710 if (squeeze_notes (&a
->head
, &a
->end
))
713 /* Scramble the insn chain. */
714 if (a
->end
!= PREV_INSN (b
->head
))
715 reorder_insns_nobb (a
->head
, a
->end
, PREV_INSN (b
->head
));
716 a
->flags
|= BB_DIRTY
;
719 fprintf (rtl_dump_file
, "Moved block %d before %d and merged.\n",
722 /* Swap the records for the two blocks around. */
725 link_block (a
, b
->prev_bb
);
727 /* Now blocks A and B are contiguous. Merge them. */
731 /* Blocks A and B are to be merged into a single block. B has no outgoing
732 fallthru edge, so it can be moved after A without adding or modifying
733 any jumps (aside from the jump from A to B). */
736 merge_blocks_move_successor_nojumps (basic_block a
, basic_block b
)
738 rtx barrier
, real_b_end
;
743 /* If there is a jump table following block B temporarily add the jump table
744 to block B so that it will also be moved to the correct location. */
745 if (tablejump_p (b
->end
, &label
, &table
)
746 && prev_active_insn (label
) == b
->end
)
751 /* There had better have been a barrier there. Delete it. */
752 barrier
= NEXT_INSN (b
->end
);
753 if (barrier
&& GET_CODE (barrier
) == BARRIER
)
754 delete_insn (barrier
);
756 /* Move block and loop notes out of the chain so that we do not
759 ??? A better solution would be to squeeze out all the non-nested notes
760 and adjust the block trees appropriately. Even better would be to have
761 a tighter connection between block trees and rtl so that this is not
763 if (squeeze_notes (&b
->head
, &b
->end
))
766 /* Scramble the insn chain. */
767 reorder_insns_nobb (b
->head
, b
->end
, a
->end
);
769 /* Restore the real end of b. */
773 fprintf (rtl_dump_file
, "Moved block %d after %d and merged.\n",
776 /* Now blocks A and B are contiguous. Merge them. */
780 /* Attempt to merge basic blocks that are potentially non-adjacent.
781 Return NULL iff the attempt failed, otherwise return basic block
782 where cleanup_cfg should continue. Because the merging commonly
783 moves basic block away or introduces another optimization
784 possibility, return basic block just before B so cleanup_cfg don't
787 It may be good idea to return basic block before C in the case
788 C has been moved after B and originally appeared earlier in the
789 insn sequence, but we have no information available about the
790 relative ordering of these two. Hopefully it is not too common. */
793 merge_blocks_move (edge e
, basic_block b
, basic_block c
, int mode
)
796 /* If C has a tail recursion label, do not merge. There is no
797 edge recorded from the call_placeholder back to this label, as
798 that would make optimize_sibling_and_tail_recursive_calls more
799 complex for no gain. */
800 if ((mode
& CLEANUP_PRE_SIBCALL
)
801 && GET_CODE (c
->head
) == CODE_LABEL
802 && tail_recursion_label_p (c
->head
))
805 /* If B has a fallthru edge to C, no need to move anything. */
806 if (e
->flags
& EDGE_FALLTHRU
)
808 int b_index
= b
->index
, c_index
= c
->index
;
810 update_forwarder_flag (b
);
813 fprintf (rtl_dump_file
, "Merged %d and %d without moving.\n",
816 return b
->prev_bb
== ENTRY_BLOCK_PTR
? b
: b
->prev_bb
;
819 /* Otherwise we will need to move code around. Do that only if expensive
820 transformations are allowed. */
821 else if (mode
& CLEANUP_EXPENSIVE
)
823 edge tmp_edge
, b_fallthru_edge
;
824 bool c_has_outgoing_fallthru
;
825 bool b_has_incoming_fallthru
;
827 /* Avoid overactive code motion, as the forwarder blocks should be
828 eliminated by edge redirection instead. One exception might have
829 been if B is a forwarder block and C has no fallthru edge, but
830 that should be cleaned up by bb-reorder instead. */
831 if (FORWARDER_BLOCK_P (b
) || FORWARDER_BLOCK_P (c
))
834 /* We must make sure to not munge nesting of lexical blocks,
835 and loop notes. This is done by squeezing out all the notes
836 and leaving them there to lie. Not ideal, but functional. */
838 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
839 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
842 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
844 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
845 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
848 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
849 b_fallthru_edge
= tmp_edge
;
852 next
= next
->prev_bb
;
854 /* Otherwise, we're going to try to move C after B. If C does
855 not have an outgoing fallthru, then it can be moved
856 immediately after B without introducing or modifying jumps. */
857 if (! c_has_outgoing_fallthru
)
859 merge_blocks_move_successor_nojumps (b
, c
);
860 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
863 /* If B does not have an incoming fallthru, then it can be moved
864 immediately before C without introducing or modifying jumps.
865 C cannot be the first block, so we do not have to worry about
866 accessing a non-existent block. */
868 if (b_has_incoming_fallthru
)
872 if (b_fallthru_edge
->src
== ENTRY_BLOCK_PTR
)
874 bb
= force_nonfallthru (b_fallthru_edge
);
876 notice_new_block (bb
);
879 merge_blocks_move_predecessor_nojumps (b
, c
);
880 return next
== ENTRY_BLOCK_PTR
? next
->next_bb
: next
;
887 /* Return true if I1 and I2 are equivalent and thus can be crossjumped. */
890 insns_match_p (int mode ATTRIBUTE_UNUSED
, rtx i1
, rtx i2
)
894 /* Verify that I1 and I2 are equivalent. */
895 if (GET_CODE (i1
) != GET_CODE (i2
))
901 if (GET_CODE (p1
) != GET_CODE (p2
))
904 /* If this is a CALL_INSN, compare register usage information.
905 If we don't check this on stack register machines, the two
906 CALL_INSNs might be merged leaving reg-stack.c with mismatching
907 numbers of stack registers in the same basic block.
908 If we don't check this on machines with delay slots, a delay slot may
909 be filled that clobbers a parameter expected by the subroutine.
911 ??? We take the simple route for now and assume that if they're
912 equal, they were constructed identically. */
914 if (GET_CODE (i1
) == CALL_INSN
915 && (!rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1
),
916 CALL_INSN_FUNCTION_USAGE (i2
))
917 || SIBLING_CALL_P (i1
) != SIBLING_CALL_P (i2
)))
921 /* If cross_jump_death_matters is not 0, the insn's mode
922 indicates whether or not the insn contains any stack-like
925 if ((mode
& CLEANUP_POST_REGSTACK
) && stack_regs_mentioned (i1
))
927 /* If register stack conversion has already been done, then
928 death notes must also be compared before it is certain that
929 the two instruction streams match. */
932 HARD_REG_SET i1_regset
, i2_regset
;
934 CLEAR_HARD_REG_SET (i1_regset
);
935 CLEAR_HARD_REG_SET (i2_regset
);
937 for (note
= REG_NOTES (i1
); note
; note
= XEXP (note
, 1))
938 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
939 SET_HARD_REG_BIT (i1_regset
, REGNO (XEXP (note
, 0)));
941 for (note
= REG_NOTES (i2
); note
; note
= XEXP (note
, 1))
942 if (REG_NOTE_KIND (note
) == REG_DEAD
&& STACK_REG_P (XEXP (note
, 0)))
943 SET_HARD_REG_BIT (i2_regset
, REGNO (XEXP (note
, 0)));
945 GO_IF_HARD_REG_EQUAL (i1_regset
, i2_regset
, done
);
955 ? rtx_renumbered_equal_p (p1
, p2
) : rtx_equal_p (p1
, p2
))
958 /* Do not do EQUIV substitution after reload. First, we're undoing the
959 work of reload_cse. Second, we may be undoing the work of the post-
960 reload splitting pass. */
961 /* ??? Possibly add a new phase switch variable that can be used by
962 targets to disallow the troublesome insns after splitting. */
963 if (!reload_completed
)
965 /* The following code helps take care of G++ cleanups. */
966 rtx equiv1
= find_reg_equal_equiv_note (i1
);
967 rtx equiv2
= find_reg_equal_equiv_note (i2
);
970 /* If the equivalences are not to a constant, they may
971 reference pseudos that no longer exist, so we can't
973 && (! reload_completed
974 || (CONSTANT_P (XEXP (equiv1
, 0))
975 && rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))))
977 rtx s1
= single_set (i1
);
978 rtx s2
= single_set (i2
);
979 if (s1
!= 0 && s2
!= 0
980 && rtx_renumbered_equal_p (SET_DEST (s1
), SET_DEST (s2
)))
982 validate_change (i1
, &SET_SRC (s1
), XEXP (equiv1
, 0), 1);
983 validate_change (i2
, &SET_SRC (s2
), XEXP (equiv2
, 0), 1);
984 if (! rtx_renumbered_equal_p (p1
, p2
))
986 else if (apply_change_group ())
995 /* Look through the insns at the end of BB1 and BB2 and find the longest
996 sequence that are equivalent. Store the first insns for that sequence
997 in *F1 and *F2 and return the sequence length.
999 To simplify callers of this function, if the blocks match exactly,
1000 store the head of the blocks in *F1 and *F2. */
1003 flow_find_cross_jump (int mode ATTRIBUTE_UNUSED
, basic_block bb1
,
1004 basic_block bb2
, rtx
*f1
, rtx
*f2
)
1006 rtx i1
, i2
, last1
, last2
, afterlast1
, afterlast2
;
1009 /* Skip simple jumps at the end of the blocks. Complex jumps still
1010 need to be compared for equivalence, which we'll do below. */
1013 last1
= afterlast1
= last2
= afterlast2
= NULL_RTX
;
1015 || (returnjump_p (i1
) && !side_effects_p (PATTERN (i1
))))
1018 i1
= PREV_INSN (i1
);
1023 || (returnjump_p (i2
) && !side_effects_p (PATTERN (i2
))))
1026 /* Count everything except for unconditional jump as insn. */
1027 if (!simplejump_p (i2
) && !returnjump_p (i2
) && last1
)
1029 i2
= PREV_INSN (i2
);
1035 while (!INSN_P (i1
) && i1
!= bb1
->head
)
1036 i1
= PREV_INSN (i1
);
1038 while (!INSN_P (i2
) && i2
!= bb2
->head
)
1039 i2
= PREV_INSN (i2
);
1041 if (i1
== bb1
->head
|| i2
== bb2
->head
)
1044 if (!insns_match_p (mode
, i1
, i2
))
1047 /* Don't begin a cross-jump with a NOTE insn. */
1050 /* If the merged insns have different REG_EQUAL notes, then
1052 rtx equiv1
= find_reg_equal_equiv_note (i1
);
1053 rtx equiv2
= find_reg_equal_equiv_note (i2
);
1055 if (equiv1
&& !equiv2
)
1056 remove_note (i1
, equiv1
);
1057 else if (!equiv1
&& equiv2
)
1058 remove_note (i2
, equiv2
);
1059 else if (equiv1
&& equiv2
1060 && !rtx_equal_p (XEXP (equiv1
, 0), XEXP (equiv2
, 0)))
1062 remove_note (i1
, equiv1
);
1063 remove_note (i2
, equiv2
);
1066 afterlast1
= last1
, afterlast2
= last2
;
1067 last1
= i1
, last2
= i2
;
1071 i1
= PREV_INSN (i1
);
1072 i2
= PREV_INSN (i2
);
1076 /* Don't allow the insn after a compare to be shared by
1077 cross-jumping unless the compare is also shared. */
1078 if (ninsns
&& reg_mentioned_p (cc0_rtx
, last1
) && ! sets_cc0_p (last1
))
1079 last1
= afterlast1
, last2
= afterlast2
, ninsns
--;
1082 /* Include preceding notes and labels in the cross-jump. One,
1083 this may bring us to the head of the blocks as requested above.
1084 Two, it keeps line number notes as matched as may be. */
1087 while (last1
!= bb1
->head
&& !INSN_P (PREV_INSN (last1
)))
1088 last1
= PREV_INSN (last1
);
1090 if (last1
!= bb1
->head
&& GET_CODE (PREV_INSN (last1
)) == CODE_LABEL
)
1091 last1
= PREV_INSN (last1
);
1093 while (last2
!= bb2
->head
&& !INSN_P (PREV_INSN (last2
)))
1094 last2
= PREV_INSN (last2
);
1096 if (last2
!= bb2
->head
&& GET_CODE (PREV_INSN (last2
)) == CODE_LABEL
)
1097 last2
= PREV_INSN (last2
);
1106 /* Return true iff outgoing edges of BB1 and BB2 match, together with
1107 the branch instruction. This means that if we commonize the control
1108 flow before end of the basic block, the semantic remains unchanged.
1110 We may assume that there exists one edge with a common destination. */
1113 outgoing_edges_match (int mode
, basic_block bb1
, basic_block bb2
)
1115 int nehedges1
= 0, nehedges2
= 0;
1116 edge fallthru1
= 0, fallthru2
= 0;
1119 /* If BB1 has only one successor, we may be looking at either an
1120 unconditional jump, or a fake edge to exit. */
1121 if (bb1
->succ
&& !bb1
->succ
->succ_next
1122 && (bb1
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1123 && (GET_CODE (bb1
->end
) != JUMP_INSN
|| simplejump_p (bb1
->end
)))
1124 return (bb2
->succ
&& !bb2
->succ
->succ_next
1125 && (bb2
->succ
->flags
& (EDGE_COMPLEX
| EDGE_FAKE
)) == 0
1126 && (GET_CODE (bb2
->end
) != JUMP_INSN
|| simplejump_p (bb2
->end
)));
1128 /* Match conditional jumps - this may get tricky when fallthru and branch
1129 edges are crossed. */
1131 && bb1
->succ
->succ_next
1132 && !bb1
->succ
->succ_next
->succ_next
1133 && any_condjump_p (bb1
->end
)
1134 && onlyjump_p (bb1
->end
))
1136 edge b1
, f1
, b2
, f2
;
1137 bool reverse
, match
;
1138 rtx set1
, set2
, cond1
, cond2
;
1139 enum rtx_code code1
, code2
;
1142 || !bb2
->succ
->succ_next
1143 || bb2
->succ
->succ_next
->succ_next
1144 || !any_condjump_p (bb2
->end
)
1145 || !onlyjump_p (bb2
->end
))
1148 b1
= BRANCH_EDGE (bb1
);
1149 b2
= BRANCH_EDGE (bb2
);
1150 f1
= FALLTHRU_EDGE (bb1
);
1151 f2
= FALLTHRU_EDGE (bb2
);
1153 /* Get around possible forwarders on fallthru edges. Other cases
1154 should be optimized out already. */
1155 if (FORWARDER_BLOCK_P (f1
->dest
))
1156 f1
= f1
->dest
->succ
;
1158 if (FORWARDER_BLOCK_P (f2
->dest
))
1159 f2
= f2
->dest
->succ
;
1161 /* To simplify use of this function, return false if there are
1162 unneeded forwarder blocks. These will get eliminated later
1163 during cleanup_cfg. */
1164 if (FORWARDER_BLOCK_P (f1
->dest
)
1165 || FORWARDER_BLOCK_P (f2
->dest
)
1166 || FORWARDER_BLOCK_P (b1
->dest
)
1167 || FORWARDER_BLOCK_P (b2
->dest
))
1170 if (f1
->dest
== f2
->dest
&& b1
->dest
== b2
->dest
)
1172 else if (f1
->dest
== b2
->dest
&& b1
->dest
== f2
->dest
)
1177 set1
= pc_set (bb1
->end
);
1178 set2
= pc_set (bb2
->end
);
1179 if ((XEXP (SET_SRC (set1
), 1) == pc_rtx
)
1180 != (XEXP (SET_SRC (set2
), 1) == pc_rtx
))
1183 cond1
= XEXP (SET_SRC (set1
), 0);
1184 cond2
= XEXP (SET_SRC (set2
), 0);
1185 code1
= GET_CODE (cond1
);
1187 code2
= reversed_comparison_code (cond2
, bb2
->end
);
1189 code2
= GET_CODE (cond2
);
1191 if (code2
== UNKNOWN
)
1194 /* Verify codes and operands match. */
1195 match
= ((code1
== code2
1196 && rtx_renumbered_equal_p (XEXP (cond1
, 0), XEXP (cond2
, 0))
1197 && rtx_renumbered_equal_p (XEXP (cond1
, 1), XEXP (cond2
, 1)))
1198 || (code1
== swap_condition (code2
)
1199 && rtx_renumbered_equal_p (XEXP (cond1
, 1),
1201 && rtx_renumbered_equal_p (XEXP (cond1
, 0),
1204 /* If we return true, we will join the blocks. Which means that
1205 we will only have one branch prediction bit to work with. Thus
1206 we require the existing branches to have probabilities that are
1210 && maybe_hot_bb_p (bb1
)
1211 && maybe_hot_bb_p (bb2
))
1215 if (b1
->dest
== b2
->dest
)
1216 prob2
= b2
->probability
;
1218 /* Do not use f2 probability as f2 may be forwarded. */
1219 prob2
= REG_BR_PROB_BASE
- b2
->probability
;
1221 /* Fail if the difference in probabilities is greater than 50%.
1222 This rules out two well-predicted branches with opposite
1224 if (abs (b1
->probability
- prob2
) > REG_BR_PROB_BASE
/ 2)
1227 fprintf (rtl_dump_file
,
1228 "Outcomes of branch in bb %i and %i differs to much (%i %i)\n",
1229 bb1
->index
, bb2
->index
, b1
->probability
, prob2
);
1235 if (rtl_dump_file
&& match
)
1236 fprintf (rtl_dump_file
, "Conditionals in bb %i and %i match.\n",
1237 bb1
->index
, bb2
->index
);
1242 /* Generic case - we are seeing a computed jump, table jump or trapping
1245 #ifndef CASE_DROPS_THROUGH
1246 /* Check whether there are tablejumps in the end of BB1 and BB2.
1247 Return true if they are identical. */
1252 if (tablejump_p (bb1
->end
, &label1
, &table1
)
1253 && tablejump_p (bb2
->end
, &label2
, &table2
)
1254 && GET_CODE (PATTERN (table1
)) == GET_CODE (PATTERN (table2
)))
1256 /* The labels should never be the same rtx. If they really are same
1257 the jump tables are same too. So disable crossjumping of blocks BB1
1258 and BB2 because when deleting the common insns in the end of BB1
1259 by delete_block () the jump table would be deleted too. */
1260 /* If LABEL2 is referenced in BB1->END do not do anything
1261 because we would loose information when replacing
1262 LABEL1 by LABEL2 and then LABEL2 by LABEL1 in BB1->END. */
1263 if (label1
!= label2
&& !rtx_referenced_p (label2
, bb1
->end
))
1265 /* Set IDENTICAL to true when the tables are identical. */
1266 bool identical
= false;
1269 p1
= PATTERN (table1
);
1270 p2
= PATTERN (table2
);
1271 if (GET_CODE (p1
) == ADDR_VEC
&& rtx_equal_p (p1
, p2
))
1275 else if (GET_CODE (p1
) == ADDR_DIFF_VEC
1276 && (XVECLEN (p1
, 1) == XVECLEN (p2
, 1))
1277 && rtx_equal_p (XEXP (p1
, 2), XEXP (p2
, 2))
1278 && rtx_equal_p (XEXP (p1
, 3), XEXP (p2
, 3)))
1283 for (i
= XVECLEN (p1
, 1) - 1; i
>= 0 && identical
; i
--)
1284 if (!rtx_equal_p (XVECEXP (p1
, 1, i
), XVECEXP (p2
, 1, i
)))
1290 replace_label_data rr
;
1293 /* Temporarily replace references to LABEL1 with LABEL2
1294 in BB1->END so that we could compare the instructions. */
1297 rr
.update_label_nuses
= false;
1298 for_each_rtx (&bb1
->end
, replace_label
, &rr
);
1300 match
= insns_match_p (mode
, bb1
->end
, bb2
->end
);
1301 if (rtl_dump_file
&& match
)
1302 fprintf (rtl_dump_file
,
1303 "Tablejumps in bb %i and %i match.\n",
1304 bb1
->index
, bb2
->index
);
1306 /* Set the original label in BB1->END because when deleting
1307 a block whose end is a tablejump, the tablejump referenced
1308 from the instruction is deleted too. */
1311 for_each_rtx (&bb1
->end
, replace_label
, &rr
);
1321 /* First ensure that the instructions match. There may be many outgoing
1322 edges so this test is generally cheaper. */
1323 if (!insns_match_p (mode
, bb1
->end
, bb2
->end
))
1326 /* Search the outgoing edges, ensure that the counts do match, find possible
1327 fallthru and exception handling edges since these needs more
1329 for (e1
= bb1
->succ
, e2
= bb2
->succ
; e1
&& e2
;
1330 e1
= e1
->succ_next
, e2
= e2
->succ_next
)
1332 if (e1
->flags
& EDGE_EH
)
1335 if (e2
->flags
& EDGE_EH
)
1338 if (e1
->flags
& EDGE_FALLTHRU
)
1340 if (e2
->flags
& EDGE_FALLTHRU
)
1344 /* If number of edges of various types does not match, fail. */
1346 || nehedges1
!= nehedges2
1347 || (fallthru1
!= 0) != (fallthru2
!= 0))
1350 /* fallthru edges must be forwarded to the same destination. */
1353 basic_block d1
= (forwarder_block_p (fallthru1
->dest
)
1354 ? fallthru1
->dest
->succ
->dest
: fallthru1
->dest
);
1355 basic_block d2
= (forwarder_block_p (fallthru2
->dest
)
1356 ? fallthru2
->dest
->succ
->dest
: fallthru2
->dest
);
1362 /* Ensure the same EH region. */
1364 rtx n1
= find_reg_note (bb1
->end
, REG_EH_REGION
, 0);
1365 rtx n2
= find_reg_note (bb2
->end
, REG_EH_REGION
, 0);
1370 if (n1
&& (!n2
|| XEXP (n1
, 0) != XEXP (n2
, 0)))
1374 /* We don't need to match the rest of edges as above checks should be enough
1375 to ensure that they are equivalent. */
1379 /* E1 and E2 are edges with the same destination block. Search their
1380 predecessors for common code. If found, redirect control flow from
1381 (maybe the middle of) E1->SRC to (maybe the middle of) E2->SRC. */
1384 try_crossjump_to_edge (int mode
, edge e1
, edge e2
)
1387 basic_block src1
= e1
->src
, src2
= e2
->src
;
1388 basic_block redirect_to
, redirect_from
, to_remove
;
1389 rtx newpos1
, newpos2
;
1392 /* Search backward through forwarder blocks. We don't need to worry
1393 about multiple entry or chained forwarders, as they will be optimized
1394 away. We do this to look past the unconditional jump following a
1395 conditional jump that is required due to the current CFG shape. */
1397 && !src1
->pred
->pred_next
1398 && FORWARDER_BLOCK_P (src1
))
1399 e1
= src1
->pred
, src1
= e1
->src
;
1402 && !src2
->pred
->pred_next
1403 && FORWARDER_BLOCK_P (src2
))
1404 e2
= src2
->pred
, src2
= e2
->src
;
1406 /* Nothing to do if we reach ENTRY, or a common source block. */
1407 if (src1
== ENTRY_BLOCK_PTR
|| src2
== ENTRY_BLOCK_PTR
)
1412 /* Seeing more than 1 forwarder blocks would confuse us later... */
1413 if (FORWARDER_BLOCK_P (e1
->dest
)
1414 && FORWARDER_BLOCK_P (e1
->dest
->succ
->dest
))
1417 if (FORWARDER_BLOCK_P (e2
->dest
)
1418 && FORWARDER_BLOCK_P (e2
->dest
->succ
->dest
))
1421 /* Likewise with dead code (possibly newly created by the other optimizations
1423 if (!src1
->pred
|| !src2
->pred
)
1426 /* Look for the common insn sequence, part the first ... */
1427 if (!outgoing_edges_match (mode
, src1
, src2
))
1430 /* ... and part the second. */
1431 nmatch
= flow_find_cross_jump (mode
, src1
, src2
, &newpos1
, &newpos2
);
1435 #ifndef CASE_DROPS_THROUGH
1436 /* Here we know that the insns in the end of SRC1 which are common with SRC2
1438 If we have tablejumps in the end of SRC1 and SRC2
1439 they have been already compared for equivalence in outgoing_edges_match ()
1440 so replace the references to TABLE1 by references to TABLE2. */
1445 if (tablejump_p (src1
->end
, &label1
, &table1
)
1446 && tablejump_p (src2
->end
, &label2
, &table2
)
1447 && label1
!= label2
)
1449 replace_label_data rr
;
1452 /* Replace references to LABEL1 with LABEL2. */
1455 rr
.update_label_nuses
= true;
1456 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1458 /* Do not replace the label in SRC1->END because when deleting
1459 a block whose end is a tablejump, the tablejump referenced
1460 from the instruction is deleted too. */
1461 if (insn
!= src1
->end
)
1462 for_each_rtx (&insn
, replace_label
, &rr
);
1468 /* Avoid splitting if possible. */
1469 if (newpos2
== src2
->head
)
1474 fprintf (rtl_dump_file
, "Splitting bb %i before %i insns\n",
1475 src2
->index
, nmatch
);
1476 redirect_to
= split_block (src2
, PREV_INSN (newpos2
))->dest
;
1480 fprintf (rtl_dump_file
,
1481 "Cross jumping from bb %i to bb %i; %i common insns\n",
1482 src1
->index
, src2
->index
, nmatch
);
1484 redirect_to
->count
+= src1
->count
;
1485 redirect_to
->frequency
+= src1
->frequency
;
1486 /* We may have some registers visible trought the block. */
1487 redirect_to
->flags
|= BB_DIRTY
;
1489 /* Recompute the frequencies and counts of outgoing edges. */
1490 for (s
= redirect_to
->succ
; s
; s
= s
->succ_next
)
1493 basic_block d
= s
->dest
;
1495 if (FORWARDER_BLOCK_P (d
))
1498 for (s2
= src1
->succ
; ; s2
= s2
->succ_next
)
1500 basic_block d2
= s2
->dest
;
1501 if (FORWARDER_BLOCK_P (d2
))
1502 d2
= d2
->succ
->dest
;
1507 s
->count
+= s2
->count
;
1509 /* Take care to update possible forwarder blocks. We verified
1510 that there is no more than one in the chain, so we can't run
1511 into infinite loop. */
1512 if (FORWARDER_BLOCK_P (s
->dest
))
1514 s
->dest
->succ
->count
+= s2
->count
;
1515 s
->dest
->count
+= s2
->count
;
1516 s
->dest
->frequency
+= EDGE_FREQUENCY (s
);
1519 if (FORWARDER_BLOCK_P (s2
->dest
))
1521 s2
->dest
->succ
->count
-= s2
->count
;
1522 if (s2
->dest
->succ
->count
< 0)
1523 s2
->dest
->succ
->count
= 0;
1524 s2
->dest
->count
-= s2
->count
;
1525 s2
->dest
->frequency
-= EDGE_FREQUENCY (s
);
1526 if (s2
->dest
->frequency
< 0)
1527 s2
->dest
->frequency
= 0;
1528 if (s2
->dest
->count
< 0)
1529 s2
->dest
->count
= 0;
1532 if (!redirect_to
->frequency
&& !src1
->frequency
)
1533 s
->probability
= (s
->probability
+ s2
->probability
) / 2;
1536 = ((s
->probability
* redirect_to
->frequency
+
1537 s2
->probability
* src1
->frequency
)
1538 / (redirect_to
->frequency
+ src1
->frequency
));
1541 update_br_prob_note (redirect_to
);
1543 /* Edit SRC1 to go to REDIRECT_TO at NEWPOS1. */
1545 /* Skip possible basic block header. */
1546 if (GET_CODE (newpos1
) == CODE_LABEL
)
1547 newpos1
= NEXT_INSN (newpos1
);
1549 if (GET_CODE (newpos1
) == NOTE
)
1550 newpos1
= NEXT_INSN (newpos1
);
1552 redirect_from
= split_block (src1
, PREV_INSN (newpos1
))->src
;
1553 to_remove
= redirect_from
->succ
->dest
;
1555 redirect_edge_and_branch_force (redirect_from
->succ
, redirect_to
);
1556 delete_block (to_remove
);
1558 update_forwarder_flag (redirect_from
);
1563 /* Search the predecessors of BB for common insn sequences. When found,
1564 share code between them by redirecting control flow. Return true if
1565 any changes made. */
1568 try_crossjump_bb (int mode
, basic_block bb
)
1570 edge e
, e2
, nexte2
, nexte
, fallthru
;
1574 /* Nothing to do if there is not at least two incoming edges. */
1575 if (!bb
->pred
|| !bb
->pred
->pred_next
)
1578 /* It is always cheapest to redirect a block that ends in a branch to
1579 a block that falls through into BB, as that adds no branches to the
1580 program. We'll try that combination first. */
1582 max
= PARAM_VALUE (PARAM_MAX_CROSSJUMP_EDGES
);
1583 for (e
= bb
->pred
; e
; e
= e
->pred_next
, n
++)
1585 if (e
->flags
& EDGE_FALLTHRU
)
1592 for (e
= bb
->pred
; e
; e
= nexte
)
1594 nexte
= e
->pred_next
;
1596 /* As noted above, first try with the fallthru predecessor. */
1599 /* Don't combine the fallthru edge into anything else.
1600 If there is a match, we'll do it the other way around. */
1604 if (try_crossjump_to_edge (mode
, e
, fallthru
))
1612 /* Non-obvious work limiting check: Recognize that we're going
1613 to call try_crossjump_bb on every basic block. So if we have
1614 two blocks with lots of outgoing edges (a switch) and they
1615 share lots of common destinations, then we would do the
1616 cross-jump check once for each common destination.
1618 Now, if the blocks actually are cross-jump candidates, then
1619 all of their destinations will be shared. Which means that
1620 we only need check them for cross-jump candidacy once. We
1621 can eliminate redundant checks of crossjump(A,B) by arbitrarily
1622 choosing to do the check from the block for which the edge
1623 in question is the first successor of A. */
1624 if (e
->src
->succ
!= e
)
1627 for (e2
= bb
->pred
; e2
; e2
= nexte2
)
1629 nexte2
= e2
->pred_next
;
1634 /* We've already checked the fallthru edge above. */
1638 /* The "first successor" check above only prevents multiple
1639 checks of crossjump(A,B). In order to prevent redundant
1640 checks of crossjump(B,A), require that A be the block
1641 with the lowest index. */
1642 if (e
->src
->index
> e2
->src
->index
)
1645 if (try_crossjump_to_edge (mode
, e
, e2
))
1657 /* Do simple CFG optimizations - basic block merging, simplifying of jump
1658 instructions etc. Return nonzero if changes were made. */
1661 try_optimize_cfg (int mode
)
1663 bool changed_overall
= false;
1666 basic_block bb
, b
, next
;
1668 if (mode
& CLEANUP_CROSSJUMP
)
1669 add_noreturn_fake_exit_edges ();
1672 update_forwarder_flag (bb
);
1674 if (mode
& CLEANUP_UPDATE_LIFE
)
1677 if (! (* targetm
.cannot_modify_jumps_p
) ())
1679 /* Attempt to merge blocks as made possible by edge removal. If
1680 a block has only one successor, and the successor has only
1681 one predecessor, they may be combined. */
1688 fprintf (rtl_dump_file
,
1689 "\n\ntry_optimize_cfg iteration %i\n\n",
1692 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
;)
1696 bool changed_here
= false;
1698 /* Delete trivially dead basic blocks. */
1699 while (b
->pred
== NULL
)
1703 fprintf (rtl_dump_file
, "Deleting block %i.\n",
1707 if (!(mode
& CLEANUP_CFGLAYOUT
))
1712 /* Remove code labels no longer used. Don't do this
1713 before CALL_PLACEHOLDER is removed, as some branches
1714 may be hidden within. */
1715 if (b
->pred
->pred_next
== NULL
1716 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1717 && !(b
->pred
->flags
& EDGE_COMPLEX
)
1718 && GET_CODE (b
->head
) == CODE_LABEL
1719 && (!(mode
& CLEANUP_PRE_SIBCALL
)
1720 || !tail_recursion_label_p (b
->head
))
1721 /* If the previous block ends with a branch to this
1722 block, we can't delete the label. Normally this
1723 is a condjump that is yet to be simplified, but
1724 if CASE_DROPS_THRU, this can be a tablejump with
1725 some element going to the same place as the
1726 default (fallthru). */
1727 && (b
->pred
->src
== ENTRY_BLOCK_PTR
1728 || GET_CODE (b
->pred
->src
->end
) != JUMP_INSN
1729 || ! label_is_jump_target_p (b
->head
,
1730 b
->pred
->src
->end
)))
1732 rtx label
= b
->head
;
1734 delete_insn_chain (label
, label
);
1735 /* In the case label is undeletable, move it after the
1736 BASIC_BLOCK note. */
1737 if (NOTE_LINE_NUMBER (b
->head
) == NOTE_INSN_DELETED_LABEL
)
1739 rtx bb_note
= NEXT_INSN (b
->head
);
1741 reorder_insns_nobb (label
, label
, bb_note
);
1745 fprintf (rtl_dump_file
, "Deleted label in block %i.\n",
1749 /* If we fall through an empty block, we can remove it. */
1750 if (!(mode
& CLEANUP_CFGLAYOUT
)
1751 && b
->pred
->pred_next
== NULL
1752 && (b
->pred
->flags
& EDGE_FALLTHRU
)
1753 && GET_CODE (b
->head
) != CODE_LABEL
1754 && FORWARDER_BLOCK_P (b
)
1755 /* Note that forwarder_block_p true ensures that
1756 there is a successor for this block. */
1757 && (b
->succ
->flags
& EDGE_FALLTHRU
)
1758 && n_basic_blocks
> 1)
1761 fprintf (rtl_dump_file
,
1762 "Deleting fallthru block %i.\n",
1765 c
= b
->prev_bb
== ENTRY_BLOCK_PTR
? b
->next_bb
: b
->prev_bb
;
1766 redirect_edge_succ_nodup (b
->pred
, b
->succ
->dest
);
1772 if ((s
= b
->succ
) != NULL
1773 && s
->succ_next
== NULL
1774 && !(s
->flags
& EDGE_COMPLEX
)
1775 && (c
= s
->dest
) != EXIT_BLOCK_PTR
1776 && c
->pred
->pred_next
== NULL
1779 /* When not in cfg_layout mode use code aware of reordering
1780 INSN. This code possibly creates new basic blocks so it
1781 does not fit merge_blocks interface and is kept here in
1782 hope that it will become useless once more of compiler
1783 is transformed to use cfg_layout mode. */
1785 if ((mode
& CLEANUP_CFGLAYOUT
)
1786 && can_merge_blocks_p (b
, c
))
1788 merge_blocks (b
, c
);
1789 update_forwarder_flag (b
);
1790 changed_here
= true;
1792 else if (!(mode
& CLEANUP_CFGLAYOUT
)
1793 /* If the jump insn has side effects,
1794 we can't kill the edge. */
1795 && (GET_CODE (b
->end
) != JUMP_INSN
1797 ? simplejump_p (b
->end
)
1798 : onlyjump_p (b
->end
)))
1799 && (next
= merge_blocks_move (s
, b
, c
, mode
)))
1802 changed_here
= true;
1806 /* Simplify branch over branch. */
1807 if ((mode
& CLEANUP_EXPENSIVE
)
1808 && !(mode
& CLEANUP_CFGLAYOUT
)
1809 && try_simplify_condjump (b
))
1810 changed_here
= true;
1812 /* If B has a single outgoing edge, but uses a
1813 non-trivial jump instruction without side-effects, we
1814 can either delete the jump entirely, or replace it
1815 with a simple unconditional jump. Use
1816 redirect_edge_and_branch to do the dirty work. */
1818 && ! b
->succ
->succ_next
1819 && b
->succ
->dest
!= EXIT_BLOCK_PTR
1820 && onlyjump_p (b
->end
)
1821 && redirect_edge_and_branch (b
->succ
, b
->succ
->dest
))
1823 update_forwarder_flag (b
);
1824 changed_here
= true;
1827 /* Simplify branch to branch. */
1828 if (try_forward_edges (mode
, b
))
1829 changed_here
= true;
1831 /* Look for shared code between blocks. */
1832 if ((mode
& CLEANUP_CROSSJUMP
)
1833 && try_crossjump_bb (mode
, b
))
1834 changed_here
= true;
1836 /* Don't get confused by the index shift caused by
1844 if ((mode
& CLEANUP_CROSSJUMP
)
1845 && try_crossjump_bb (mode
, EXIT_BLOCK_PTR
))
1848 #ifdef ENABLE_CHECKING
1850 verify_flow_info ();
1853 changed_overall
|= changed
;
1858 if (mode
& CLEANUP_CROSSJUMP
)
1859 remove_fake_edges ();
1861 clear_aux_for_blocks ();
1863 return changed_overall
;
1866 /* Delete all unreachable basic blocks. */
1869 delete_unreachable_blocks (void)
1871 bool changed
= false;
1872 basic_block b
, next_bb
;
1874 find_unreachable_blocks ();
1876 /* Delete all unreachable basic blocks. */
1878 for (b
= ENTRY_BLOCK_PTR
->next_bb
; b
!= EXIT_BLOCK_PTR
; b
= next_bb
)
1880 next_bb
= b
->next_bb
;
1882 if (!(b
->flags
& BB_REACHABLE
))
1890 tidy_fallthru_edges ();
1894 /* Tidy the CFG by deleting unreachable code and whatnot. */
1897 cleanup_cfg (int mode
)
1899 bool changed
= false;
1901 timevar_push (TV_CLEANUP_CFG
);
1902 if (delete_unreachable_blocks ())
1905 /* We've possibly created trivially dead code. Cleanup it right
1906 now to introduce more opportunities for try_optimize_cfg. */
1907 if (!(mode
& (CLEANUP_NO_INSN_DEL
1908 | CLEANUP_UPDATE_LIFE
| CLEANUP_PRE_SIBCALL
))
1909 && !reload_completed
)
1910 delete_trivially_dead_insns (get_insns(), max_reg_num ());
1915 while (try_optimize_cfg (mode
))
1917 delete_unreachable_blocks (), changed
= true;
1918 if (mode
& CLEANUP_UPDATE_LIFE
)
1920 /* Cleaning up CFG introduces more opportunities for dead code
1921 removal that in turn may introduce more opportunities for
1922 cleaning up the CFG. */
1923 if (!update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES
,
1925 | PROP_SCAN_DEAD_CODE
1926 | PROP_KILL_DEAD_CODE
1930 else if (!(mode
& (CLEANUP_NO_INSN_DEL
| CLEANUP_PRE_SIBCALL
))
1931 && (mode
& CLEANUP_EXPENSIVE
)
1932 && !reload_completed
)
1934 if (!delete_trivially_dead_insns (get_insns(), max_reg_num ()))
1939 delete_dead_jumptables ();
1942 /* Kill the data we won't maintain. */
1943 free_EXPR_LIST_list (&label_value_list
);
1944 timevar_pop (TV_CLEANUP_CFG
);