PR testsuite/37630
[official-gcc.git] / gcc / testsuite / lib / target-supports.exp
blob383889941b41f52885f0d65eb1658d1a54488e2f
1 # Copyright (C) 1999, 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009
2 # Free Software Foundation, Inc.
4 # This program is free software; you can redistribute it and/or modify
5 # it under the terms of the GNU General Public License as published by
6 # the Free Software Foundation; either version 3 of the License, or
7 # (at your option) any later version.
9 # This program is distributed in the hope that it will be useful,
10 # but WITHOUT ANY WARRANTY; without even the implied warranty of
11 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 # GNU General Public License for more details.
14 # You should have received a copy of the GNU General Public License
15 # along with GCC; see the file COPYING3. If not see
16 # <http://www.gnu.org/licenses/>.
18 # Please email any bugs, comments, and/or additions to this file to:
19 # gcc-patches@gcc.gnu.org
21 # This file defines procs for determining features supported by the target.
23 # Try to compile the code given by CONTENTS into an output file of
24 # type TYPE, where TYPE is as for target_compile. Return a list
25 # whose first element contains the compiler messages and whose
26 # second element is the name of the output file.
28 # BASENAME is a prefix to use for source and output files.
29 # If ARGS is not empty, its first element is a string that
30 # should be added to the command line.
32 # Assume by default that CONTENTS is C code. C++ code should contain
33 # "// C++" and Fortran code should contain "! Fortran".
34 proc check_compile {basename type contents args} {
35 global tool
37 if { [llength $args] > 0 } {
38 set options [list "additional_flags=[lindex $args 0]"]
39 } else {
40 set options ""
42 switch -glob -- $contents {
43 "*! Fortran*" { set src ${basename}[pid].f90 }
44 "*// C++*" { set src ${basename}[pid].cc }
45 default { set src ${basename}[pid].c }
47 set compile_type $type
48 switch -glob $type {
49 assembly { set output ${basename}[pid].s }
50 object { set output ${basename}[pid].o }
51 executable { set output ${basename}[pid].exe }
52 "rtl-*" {
53 set output ${basename}[pid].s
54 lappend options "additional_flags=-fdump-$type"
55 set compile_type assembly
58 set f [open $src "w"]
59 puts $f $contents
60 close $f
61 set lines [${tool}_target_compile $src $output $compile_type "$options"]
62 file delete $src
64 set scan_output $output
65 # Don't try folding this into the switch above; calling "glob" before the
66 # file is created won't work.
67 if [regexp "rtl-(.*)" $type dummy rtl_type] {
68 set scan_output "[glob $src.\[0-9\]\[0-9\]\[0-9\]r.$rtl_type]"
69 file delete $output
72 return [list $lines $scan_output]
75 proc current_target_name { } {
76 global target_info
77 if [info exists target_info(target,name)] {
78 set answer $target_info(target,name)
79 } else {
80 set answer ""
82 return $answer
85 # Implement an effective-target check for property PROP by invoking
86 # the Tcl command ARGS and seeing if it returns true.
88 proc check_cached_effective_target { prop args } {
89 global et_cache
91 set target [current_target_name]
92 if {![info exists et_cache($prop,target)]
93 || $et_cache($prop,target) != $target} {
94 verbose "check_cached_effective_target $prop: checking $target" 2
95 set et_cache($prop,target) $target
96 set et_cache($prop,value) [uplevel eval $args]
98 set value $et_cache($prop,value)
99 verbose "check_cached_effective_target $prop: returning $value for $target" 2
100 return $value
103 # Like check_compile, but delete the output file and return true if the
104 # compiler printed no messages.
105 proc check_no_compiler_messages_nocache {args} {
106 set result [eval check_compile $args]
107 set lines [lindex $result 0]
108 set output [lindex $result 1]
109 remote_file build delete $output
110 return [string match "" $lines]
113 # Like check_no_compiler_messages_nocache, but cache the result.
114 # PROP is the property we're checking, and doubles as a prefix for
115 # temporary filenames.
116 proc check_no_compiler_messages {prop args} {
117 return [check_cached_effective_target $prop {
118 eval [list check_no_compiler_messages_nocache $prop] $args
122 # Like check_compile, but return true if the compiler printed no
123 # messages and if the contents of the output file satisfy PATTERN.
124 # If PATTERN has the form "!REGEXP", the contents satisfy it if they
125 # don't match regular expression REGEXP, otherwise they satisfy it
126 # if they do match regular expression PATTERN. (PATTERN can start
127 # with something like "[!]" if the regular expression needs to match
128 # "!" as the first character.)
130 # Delete the output file before returning. The other arguments are
131 # as for check_compile.
132 proc check_no_messages_and_pattern_nocache {basename pattern args} {
133 global tool
135 set result [eval [list check_compile $basename] $args]
136 set lines [lindex $result 0]
137 set output [lindex $result 1]
139 set ok 0
140 if { [string match "" $lines] } {
141 set chan [open "$output"]
142 set invert [regexp {^!(.*)} $pattern dummy pattern]
143 set ok [expr { [regexp $pattern [read $chan]] != $invert }]
144 close $chan
147 remote_file build delete $output
148 return $ok
151 # Like check_no_messages_and_pattern_nocache, but cache the result.
152 # PROP is the property we're checking, and doubles as a prefix for
153 # temporary filenames.
154 proc check_no_messages_and_pattern {prop pattern args} {
155 return [check_cached_effective_target $prop {
156 eval [list check_no_messages_and_pattern_nocache $prop $pattern] $args
160 # Try to compile and run an executable from code CONTENTS. Return true
161 # if the compiler reports no messages and if execution "passes" in the
162 # usual DejaGNU sense. The arguments are as for check_compile, with
163 # TYPE implicitly being "executable".
164 proc check_runtime_nocache {basename contents args} {
165 global tool
167 set result [eval [list check_compile $basename executable $contents] $args]
168 set lines [lindex $result 0]
169 set output [lindex $result 1]
171 set ok 0
172 if { [string match "" $lines] } {
173 # No error messages, everything is OK.
174 set result [remote_load target "./$output" "" ""]
175 set status [lindex $result 0]
176 verbose "check_runtime_nocache $basename: status is <$status>" 2
177 if { $status == "pass" } {
178 set ok 1
181 remote_file build delete $output
182 return $ok
185 # Like check_runtime_nocache, but cache the result. PROP is the
186 # property we're checking, and doubles as a prefix for temporary
187 # filenames.
188 proc check_runtime {prop args} {
189 global tool
191 return [check_cached_effective_target $prop {
192 eval [list check_runtime_nocache $prop] $args
196 ###############################
197 # proc check_weak_available { }
198 ###############################
200 # weak symbols are only supported in some configs/object formats
201 # this proc returns 1 if they're supported, 0 if they're not, or -1 if unsure
203 proc check_weak_available { } {
204 global target_triplet
205 global target_cpu
207 # All mips targets should support it
209 if { [ string first "mips" $target_cpu ] >= 0 } {
210 return 1
213 # All solaris2 targets should support it
215 if { [regexp ".*-solaris2.*" $target_triplet] } {
216 return 1
219 # DEC OSF/1/Digital UNIX/Tru64 UNIX supports it
221 if { [regexp "alpha.*osf.*" $target_triplet] } {
222 return 1
225 # Windows targets Cygwin and MingW32 support it
227 if { [regexp ".*mingw32|.*cygwin" $target_triplet] } {
228 return 1
231 # HP-UX 10.X doesn't support it
233 if { [istarget "hppa*-*-hpux10*"] } {
234 return 0
237 # ELF and ECOFF support it. a.out does with gas/gld but may also with
238 # other linkers, so we should try it
240 set objformat [gcc_target_object_format]
242 switch $objformat {
243 elf { return 1 }
244 ecoff { return 1 }
245 a.out { return 1 }
246 mach-o { return 1 }
247 som { return 1 }
248 unknown { return -1 }
249 default { return 0 }
253 ###############################
254 # proc check_weak_override_available { }
255 ###############################
257 # Like check_weak_available, but return 0 if weak symbol definitions
258 # cannot be overridden.
260 proc check_weak_override_available { } {
261 if { [istarget "*-*-mingw*"] } {
262 return 0
264 return [check_weak_available]
267 ###############################
268 # proc check_visibility_available { what_kind }
269 ###############################
271 # The visibility attribute is only support in some object formats
272 # This proc returns 1 if it is supported, 0 if not.
273 # The argument is the kind of visibility, default/protected/hidden/internal.
275 proc check_visibility_available { what_kind } {
276 global tool
277 global target_triplet
279 # On NetWare, support makes no sense.
280 if { [istarget *-*-netware*] } {
281 return 0
284 if [string match "" $what_kind] { set what_kind "hidden" }
286 return [check_no_compiler_messages visibility_available_$what_kind object "
287 void f() __attribute__((visibility(\"$what_kind\")));
288 void f() {}
292 ###############################
293 # proc check_alias_available { }
294 ###############################
296 # Determine if the target toolchain supports the alias attribute.
298 # Returns 2 if the target supports aliases. Returns 1 if the target
299 # only supports weak aliased. Returns 0 if the target does not
300 # support aliases at all. Returns -1 if support for aliases could not
301 # be determined.
303 proc check_alias_available { } {
304 global alias_available_saved
305 global tool
307 if [info exists alias_available_saved] {
308 verbose "check_alias_available returning saved $alias_available_saved" 2
309 } else {
310 set src alias[pid].c
311 set obj alias[pid].o
312 verbose "check_alias_available compiling testfile $src" 2
313 set f [open $src "w"]
314 # Compile a small test program. The definition of "g" is
315 # necessary to keep the Solaris assembler from complaining
316 # about the program.
317 puts $f "#ifdef __cplusplus\nextern \"C\"\n#endif\n"
318 puts $f "void g() {} void f() __attribute__((alias(\"g\")));"
319 close $f
320 set lines [${tool}_target_compile $src $obj object ""]
321 file delete $src
322 remote_file build delete $obj
324 if [string match "" $lines] then {
325 # No error messages, everything is OK.
326 set alias_available_saved 2
327 } else {
328 if [regexp "alias definitions not supported" $lines] {
329 verbose "check_alias_available target does not support aliases" 2
331 set objformat [gcc_target_object_format]
333 if { $objformat == "elf" } {
334 verbose "check_alias_available but target uses ELF format, so it ought to" 2
335 set alias_available_saved -1
336 } else {
337 set alias_available_saved 0
339 } else {
340 if [regexp "only weak aliases are supported" $lines] {
341 verbose "check_alias_available target supports only weak aliases" 2
342 set alias_available_saved 1
343 } else {
344 set alias_available_saved -1
349 verbose "check_alias_available returning $alias_available_saved" 2
352 return $alias_available_saved
355 # Returns true if --gc-sections is supported on the target.
357 proc check_gc_sections_available { } {
358 global gc_sections_available_saved
359 global tool
361 if {![info exists gc_sections_available_saved]} {
362 # Some targets don't support gc-sections despite whatever's
363 # advertised by ld's options.
364 if { [istarget alpha*-*-*]
365 || [istarget ia64-*-*] } {
366 set gc_sections_available_saved 0
367 return 0
370 # elf2flt uses -q (--emit-relocs), which is incompatible with
371 # --gc-sections.
372 if { [board_info target exists ldflags]
373 && [regexp " -elf2flt\[ =\]" " [board_info target ldflags] "] } {
374 set gc_sections_available_saved 0
375 return 0
378 # VxWorks kernel modules are relocatable objects linked with -r,
379 # while RTP executables are linked with -q (--emit-relocs).
380 # Both of these options are incompatible with --gc-sections.
381 if { [istarget *-*-vxworks*] } {
382 set gc_sections_available_saved 0
383 return 0
386 # Check if the ld used by gcc supports --gc-sections.
387 set gcc_spec [${tool}_target_compile "-dumpspecs" "" "none" ""]
388 regsub ".*\n\*linker:\[ \t\]*\n(\[^ \t\n\]*).*" "$gcc_spec" {\1} linker
389 set gcc_ld [lindex [${tool}_target_compile "-print-prog-name=$linker" "" "none" ""] 0]
390 set ld_output [remote_exec host "$gcc_ld" "--help"]
391 if { [ string first "--gc-sections" $ld_output ] >= 0 } {
392 set gc_sections_available_saved 1
393 } else {
394 set gc_sections_available_saved 0
397 return $gc_sections_available_saved
400 # Return 1 if according to target_info struct and explicit target list
401 # target is supposed to support trampolines.
403 proc check_effective_target_trampolines { } {
404 if [target_info exists no_trampolines] {
405 return 0
407 if { [istarget avr-*-*]
408 || [istarget hppa2.0w-hp-hpux11.23]
409 || [istarget hppa64-hp-hpux11.23] } {
410 return 0;
412 return 1
415 # Return 1 if according to target_info struct and explicit target list
416 # target is supposed to keep null pointer checks. This could be due to
417 # use of option fno-delete-null-pointer-checks or hardwired in target.
419 proc check_effective_target_keeps_null_pointer_checks { } {
420 if [target_info exists keeps_null_pointer_checks] {
421 return 1
423 if { [istarget avr-*-*] } {
424 return 1;
426 return 0
429 # Return true if profiling is supported on the target.
431 proc check_profiling_available { test_what } {
432 global profiling_available_saved
434 verbose "Profiling argument is <$test_what>" 1
436 # These conditions depend on the argument so examine them before
437 # looking at the cache variable.
439 # Support for -p on solaris2 relies on mcrt1.o which comes with the
440 # vendor compiler. We cannot reliably predict the directory where the
441 # vendor compiler (and thus mcrt1.o) is installed so we can't
442 # necessarily find mcrt1.o even if we have it.
443 if { [istarget *-*-solaris2*] && [lindex $test_what 1] == "-p" } {
444 return 0
447 # Support for -p on irix relies on libprof1.a which doesn't appear to
448 # exist on any irix6 system currently posting testsuite results.
449 # Support for -pg on irix relies on gcrt1.o which doesn't exist yet.
450 # See: http://gcc.gnu.org/ml/gcc/2002-10/msg00169.html
451 if { [istarget mips*-*-irix*]
452 && ([lindex $test_what 1] == "-p" || [lindex $test_what 1] == "-pg") } {
453 return 0
456 # We don't yet support profiling for MIPS16.
457 if { [istarget mips*-*-*]
458 && ![check_effective_target_nomips16]
459 && ([lindex $test_what 1] == "-p"
460 || [lindex $test_what 1] == "-pg") } {
461 return 0
464 # MinGW does not support -p.
465 if { [istarget *-*-mingw*] && [lindex $test_what 1] == "-p" } {
466 return 0
469 # uClibc does not have gcrt1.o.
470 if { [check_effective_target_uclibc]
471 && ([lindex $test_what 1] == "-p"
472 || [lindex $test_what 1] == "-pg") } {
473 return 0
476 # Now examine the cache variable.
477 if {![info exists profiling_available_saved]} {
478 # Some targets don't have any implementation of __bb_init_func or are
479 # missing other needed machinery.
480 if { [istarget mmix-*-*]
481 || [istarget arm*-*-eabi*]
482 || [istarget picochip-*-*]
483 || [istarget *-*-netware*]
484 || [istarget arm*-*-elf]
485 || [istarget arm*-*-symbianelf*]
486 || [istarget avr-*-*]
487 || [istarget bfin-*-*]
488 || [istarget powerpc-*-eabi*]
489 || [istarget cris-*-*]
490 || [istarget crisv32-*-*]
491 || [istarget fido-*-elf]
492 || [istarget h8300-*-*]
493 || [istarget m32c-*-elf]
494 || [istarget m68k-*-elf]
495 || [istarget m68k-*-uclinux*]
496 || [istarget mips*-*-elf*]
497 || [istarget xstormy16-*]
498 || [istarget xtensa*-*-elf]
499 || [istarget *-*-rtems*]
500 || [istarget *-*-vxworks*] } {
501 set profiling_available_saved 0
502 } else {
503 set profiling_available_saved 1
507 return $profiling_available_saved
510 # Check to see if a target is "freestanding". This is as per the definition
511 # in Section 4 of C99 standard. Effectively, it is a target which supports no
512 # extra headers or libraries other than what is considered essential.
513 proc check_effective_target_freestanding { } {
514 if { [istarget picochip-*-*] } then {
515 return 1
516 } else {
517 return 0
521 # Return 1 if target has packed layout of structure members by
522 # default, 0 otherwise. Note that this is slightly different than
523 # whether the target has "natural alignment": both attributes may be
524 # false.
526 proc check_effective_target_default_packed { } {
527 return [check_no_compiler_messages default_packed assembly {
528 struct x { char a; long b; } c;
529 int s[sizeof (c) == sizeof (char) + sizeof (long) ? 1 : -1];
533 # Return 1 if target has PCC_BITFIELD_TYPE_MATTERS defined. See
534 # documentation, where the test also comes from.
536 proc check_effective_target_pcc_bitfield_type_matters { } {
537 # PCC_BITFIELD_TYPE_MATTERS isn't just about unnamed or empty
538 # bitfields, but let's stick to the example code from the docs.
539 return [check_no_compiler_messages pcc_bitfield_type_matters assembly {
540 struct foo1 { char x; char :0; char y; };
541 struct foo2 { char x; int :0; char y; };
542 int s[sizeof (struct foo1) != sizeof (struct foo2) ? 1 : -1];
546 # Return 1 if thread local storage (TLS) is supported, 0 otherwise.
548 # This won't change for different subtargets so cache the result.
550 proc check_effective_target_tls {} {
551 return [check_no_compiler_messages tls assembly {
552 __thread int i;
553 int f (void) { return i; }
554 void g (int j) { i = j; }
558 # Return 1 if *native* thread local storage (TLS) is supported, 0 otherwise.
560 # This won't change for different subtargets so cache the result.
562 proc check_effective_target_tls_native {} {
563 # VxWorks uses emulated TLS machinery, but with non-standard helper
564 # functions, so we fail to automatically detect it.
565 global target_triplet
566 if { [regexp ".*-.*-vxworks.*" $target_triplet] } {
567 return 0
570 return [check_no_messages_and_pattern tls_native "!emutls" assembly {
571 __thread int i;
572 int f (void) { return i; }
573 void g (int j) { i = j; }
577 # Return 1 if TLS executables can run correctly, 0 otherwise.
579 # This won't change for different subtargets so cache the result.
581 proc check_effective_target_tls_runtime {} {
582 return [check_runtime tls_runtime {
583 __thread int thr = 0;
584 int main (void) { return thr; }
588 # Return 1 if compilation with -fgraphite is error-free for trivial
589 # code, 0 otherwise.
591 proc check_effective_target_fgraphite {} {
592 return [check_no_compiler_messages fgraphite object {
593 void foo (void) { }
594 } "-O1 -fgraphite"]
597 # Return 1 if compilation with -fopenmp is error-free for trivial
598 # code, 0 otherwise.
600 proc check_effective_target_fopenmp {} {
601 return [check_no_compiler_messages fopenmp object {
602 void foo (void) { }
603 } "-fopenmp"]
606 # Return 1 if compilation with -pthread is error-free for trivial
607 # code, 0 otherwise.
609 proc check_effective_target_pthread {} {
610 return [check_no_compiler_messages pthread object {
611 void foo (void) { }
612 } "-pthread"]
615 # Return 1 if the target supports -fstack-protector
616 proc check_effective_target_fstack_protector {} {
617 return [check_runtime fstack_protector {
618 int main (void) { return 0; }
619 } "-fstack-protector"]
622 # Return 1 if compilation with -freorder-blocks-and-partition is error-free
623 # for trivial code, 0 otherwise.
625 proc check_effective_target_freorder {} {
626 return [check_no_compiler_messages freorder object {
627 void foo (void) { }
628 } "-freorder-blocks-and-partition"]
631 # Return 1 if -fpic and -fPIC are supported, as in no warnings or errors
632 # emitted, 0 otherwise. Whether a shared library can actually be built is
633 # out of scope for this test.
635 proc check_effective_target_fpic { } {
636 # Note that M68K has a multilib that supports -fpic but not
637 # -fPIC, so we need to check both. We test with a program that
638 # requires GOT references.
639 foreach arg {fpic fPIC} {
640 if [check_no_compiler_messages $arg object {
641 extern int foo (void); extern int bar;
642 int baz (void) { return foo () + bar; }
643 } "-$arg"] {
644 return 1
647 return 0
650 # Return true if the target supports -mpaired-single (as used on MIPS).
652 proc check_effective_target_mpaired_single { } {
653 return [check_no_compiler_messages mpaired_single object {
654 void foo (void) { }
655 } "-mpaired-single"]
658 # Return true if the target has access to FPU instructions.
660 proc check_effective_target_hard_float { } {
661 if { [istarget mips*-*-*] } {
662 return [check_no_compiler_messages hard_float assembly {
663 #if (defined __mips_soft_float || defined __mips16)
664 #error FOO
665 #endif
669 # The generic test equates hard_float with "no call for adding doubles".
670 return [check_no_messages_and_pattern hard_float "!\\(call" rtl-expand {
671 double a (double b, double c) { return b + c; }
675 # Return true if the target is a 64-bit MIPS target.
677 proc check_effective_target_mips64 { } {
678 return [check_no_compiler_messages mips64 assembly {
679 #ifndef __mips64
680 #error FOO
681 #endif
685 # Return true if the target is a MIPS target that does not produce
686 # MIPS16 code.
688 proc check_effective_target_nomips16 { } {
689 return [check_no_compiler_messages nomips16 object {
690 #ifndef __mips
691 #error FOO
692 #else
693 /* A cheap way of testing for -mflip-mips16. */
694 void foo (void) { asm ("addiu $20,$20,1"); }
695 void bar (void) { asm ("addiu $20,$20,1"); }
696 #endif
700 # Add the options needed for MIPS16 function attributes. At the moment,
701 # we don't support MIPS16 PIC.
703 proc add_options_for_mips16_attribute { flags } {
704 return "$flags -mno-abicalls -fno-pic -DMIPS16=__attribute__((mips16))"
707 # Return true if we can force a mode that allows MIPS16 code generation.
708 # We don't support MIPS16 PIC, and only support MIPS16 -mhard-float
709 # for o32 and o64.
711 proc check_effective_target_mips16_attribute { } {
712 return [check_no_compiler_messages mips16_attribute assembly {
713 #ifdef PIC
714 #error FOO
715 #endif
716 #if defined __mips_hard_float \
717 && (!defined _ABIO32 || _MIPS_SIM != _ABIO32) \
718 && (!defined _ABIO64 || _MIPS_SIM != _ABIO64)
719 #error FOO
720 #endif
721 } [add_options_for_mips16_attribute ""]]
724 # Return 1 if the current multilib does not generate PIC by default.
726 proc check_effective_target_nonpic { } {
727 return [check_no_compiler_messages nonpic assembly {
728 #if __PIC__
729 #error FOO
730 #endif
734 # Return 1 if the target does not use a status wrapper.
736 proc check_effective_target_unwrapped { } {
737 if { [target_info needs_status_wrapper] != "" \
738 && [target_info needs_status_wrapper] != "0" } {
739 return 0
741 return 1
744 # Return true if iconv is supported on the target. In particular IBM1047.
746 proc check_iconv_available { test_what } {
747 global libiconv
749 # If the tool configuration file has not set libiconv, try "-liconv"
750 if { ![info exists libiconv] } {
751 set libiconv "-liconv"
753 set test_what [lindex $test_what 1]
754 return [check_runtime_nocache $test_what [subst {
755 #include <iconv.h>
756 int main (void)
758 iconv_t cd;
760 cd = iconv_open ("$test_what", "UTF-8");
761 if (cd == (iconv_t) -1)
762 return 1;
763 return 0;
765 }] $libiconv]
768 # Return true if named sections are supported on this target.
770 proc check_named_sections_available { } {
771 return [check_no_compiler_messages named_sections assembly {
772 int __attribute__ ((section("whatever"))) foo;
776 # Return 1 if the target supports Fortran real kinds larger than real(8),
777 # 0 otherwise.
779 # When the target name changes, replace the cached result.
781 proc check_effective_target_fortran_large_real { } {
782 return [check_no_compiler_messages fortran_large_real executable {
783 ! Fortran
784 integer,parameter :: k = selected_real_kind (precision (0.0_8) + 1)
785 real(kind=k) :: x
786 x = cos (x)
791 # Return 1 if the target supports Fortran integer kinds larger than
792 # integer(8), 0 otherwise.
794 # When the target name changes, replace the cached result.
796 proc check_effective_target_fortran_large_int { } {
797 return [check_no_compiler_messages fortran_large_int executable {
798 ! Fortran
799 integer,parameter :: k = selected_int_kind (range (0_8) + 1)
800 integer(kind=k) :: i
805 # Return 1 if the target supports Fortran integer(16), 0 otherwise.
807 # When the target name changes, replace the cached result.
809 proc check_effective_target_fortran_integer_16 { } {
810 return [check_no_compiler_messages fortran_integer_16 executable {
811 ! Fortran
812 integer(16) :: i
817 # Return 1 if we can statically link libgfortran, 0 otherwise.
819 # When the target name changes, replace the cached result.
821 proc check_effective_target_static_libgfortran { } {
822 return [check_no_compiler_messages static_libgfortran executable {
823 ! Fortran
824 print *, 'test'
826 } "-static"]
829 # Return 1 if the target supports executing 750CL paired-single instructions, 0
830 # otherwise. Cache the result.
832 proc check_750cl_hw_available { } {
833 return [check_cached_effective_target 750cl_hw_available {
834 # If this is not the right target then we can skip the test.
835 if { ![istarget powerpc-*paired*] } {
836 expr 0
837 } else {
838 check_runtime_nocache 750cl_hw_available {
839 int main()
841 #ifdef __MACH__
842 asm volatile ("ps_mul v0,v0,v0");
843 #else
844 asm volatile ("ps_mul 0,0,0");
845 #endif
846 return 0;
848 } "-mpaired"
853 # Return 1 if the target supports executing SSE2 instructions, 0
854 # otherwise. Cache the result.
856 proc check_sse2_hw_available { } {
857 return [check_cached_effective_target sse2_hw_available {
858 # If this is not the right target then we can skip the test.
859 if { !([istarget x86_64-*-*] || [istarget i?86-*-*]) } {
860 expr 0
861 } else {
862 check_runtime_nocache sse2_hw_available {
863 #include "cpuid.h"
864 int main ()
866 unsigned int eax, ebx, ecx, edx = 0;
867 if (__get_cpuid (1, &eax, &ebx, &ecx, &edx))
868 return !(edx & bit_SSE2);
869 return 1;
871 } ""
876 # Return 1 if the target supports executing AltiVec instructions, 0
877 # otherwise. Cache the result.
879 proc check_vmx_hw_available { } {
880 return [check_cached_effective_target vmx_hw_available {
881 # Some simulators are known to not support VMX instructions.
882 if { [istarget powerpc-*-eabi] || [istarget powerpc*-*-eabispe] } {
883 expr 0
884 } else {
885 # Most targets don't require special flags for this test case, but
886 # Darwin does.
887 if { [istarget *-*-darwin*]
888 || [istarget *-*-aix*] } {
889 set options "-maltivec"
890 } else {
891 set options ""
893 check_runtime_nocache vmx_hw_available {
894 int main()
896 #ifdef __MACH__
897 asm volatile ("vor v0,v0,v0");
898 #else
899 asm volatile ("vor 0,0,0");
900 #endif
901 return 0;
903 } $options
908 # Return 1 if the target supports executing AltiVec and Cell PPU
909 # instructions, 0 otherwise. Cache the result.
911 proc check_effective_target_cell_hw { } {
912 return [check_cached_effective_target cell_hw_available {
913 # Some simulators are known to not support VMX and PPU instructions.
914 if { [istarget powerpc-*-eabi*] } {
915 expr 0
916 } else {
917 # Most targets don't require special flags for this test
918 # case, but Darwin and AIX do.
919 if { [istarget *-*-darwin*]
920 || [istarget *-*-aix*] } {
921 set options "-maltivec -mcpu=cell"
922 } else {
923 set options "-mcpu=cell"
925 check_runtime_nocache cell_hw_available {
926 int main()
928 #ifdef __MACH__
929 asm volatile ("vor v0,v0,v0");
930 asm volatile ("lvlx v0,r0,r0");
931 #else
932 asm volatile ("vor 0,0,0");
933 asm volatile ("lvlx 0,0,0");
934 #endif
935 return 0;
937 } $options
942 # Return 1 if the target supports executing 64-bit instructions, 0
943 # otherwise. Cache the result.
945 proc check_effective_target_powerpc64 { } {
946 global powerpc64_available_saved
947 global tool
949 if [info exists powerpc64_available_saved] {
950 verbose "check_effective_target_powerpc64 returning saved $powerpc64_available_saved" 2
951 } else {
952 set powerpc64_available_saved 0
954 # Some simulators are known to not support powerpc64 instructions.
955 if { [istarget powerpc-*-eabi*] || [istarget powerpc-ibm-aix*] } {
956 verbose "check_effective_target_powerpc64 returning 0" 2
957 return $powerpc64_available_saved
960 # Set up, compile, and execute a test program containing a 64-bit
961 # instruction. Include the current process ID in the file
962 # names to prevent conflicts with invocations for multiple
963 # testsuites.
964 set src ppc[pid].c
965 set exe ppc[pid].x
967 set f [open $src "w"]
968 puts $f "int main() {"
969 puts $f "#ifdef __MACH__"
970 puts $f " asm volatile (\"extsw r0,r0\");"
971 puts $f "#else"
972 puts $f " asm volatile (\"extsw 0,0\");"
973 puts $f "#endif"
974 puts $f " return 0; }"
975 close $f
977 set opts "additional_flags=-mcpu=G5"
979 verbose "check_effective_target_powerpc64 compiling testfile $src" 2
980 set lines [${tool}_target_compile $src $exe executable "$opts"]
981 file delete $src
983 if [string match "" $lines] then {
984 # No error message, compilation succeeded.
985 set result [${tool}_load "./$exe" "" ""]
986 set status [lindex $result 0]
987 remote_file build delete $exe
988 verbose "check_effective_target_powerpc64 testfile status is <$status>" 2
990 if { $status == "pass" } then {
991 set powerpc64_available_saved 1
993 } else {
994 verbose "check_effective_target_powerpc64 testfile compilation failed" 2
998 return $powerpc64_available_saved
1001 # GCC 3.4.0 for powerpc64-*-linux* included an ABI fix for passing
1002 # complex float arguments. This affects gfortran tests that call cabsf
1003 # in libm built by an earlier compiler. Return 1 if libm uses the same
1004 # argument passing as the compiler under test, 0 otherwise.
1006 # When the target name changes, replace the cached result.
1008 proc check_effective_target_broken_cplxf_arg { } {
1009 return [check_cached_effective_target broken_cplxf_arg {
1010 # Skip the work for targets known not to be affected.
1011 if { ![istarget powerpc64-*-linux*] } {
1012 expr 0
1013 } elseif { ![is-effective-target lp64] } {
1014 expr 0
1015 } else {
1016 check_runtime_nocache broken_cplxf_arg {
1017 #include <complex.h>
1018 extern void abort (void);
1019 float fabsf (float);
1020 float cabsf (_Complex float);
1021 int main ()
1023 _Complex float cf;
1024 float f;
1025 cf = 3 + 4.0fi;
1026 f = cabsf (cf);
1027 if (fabsf (f - 5.0) > 0.0001)
1028 abort ();
1029 return 0;
1031 } "-lm"
1036 proc check_alpha_max_hw_available { } {
1037 return [check_runtime alpha_max_hw_available {
1038 int main() { return __builtin_alpha_amask(1<<8) != 0; }
1042 # Returns true iff the FUNCTION is available on the target system.
1043 # (This is essentially a Tcl implementation of Autoconf's
1044 # AC_CHECK_FUNC.)
1046 proc check_function_available { function } {
1047 return [check_no_compiler_messages ${function}_available \
1048 executable [subst {
1049 #ifdef __cplusplus
1050 extern "C"
1051 #endif
1052 char $function ();
1053 int main () { $function (); }
1057 # Returns true iff "fork" is available on the target system.
1059 proc check_fork_available {} {
1060 return [check_function_available "fork"]
1063 # Returns true iff "mkfifo" is available on the target system.
1065 proc check_mkfifo_available {} {
1066 if {[istarget *-*-cygwin*]} {
1067 # Cygwin has mkfifo, but support is incomplete.
1068 return 0
1071 return [check_function_available "mkfifo"]
1074 # Returns true iff "__cxa_atexit" is used on the target system.
1076 proc check_cxa_atexit_available { } {
1077 return [check_cached_effective_target cxa_atexit_available {
1078 if { [istarget "hppa*-*-hpux10*"] } {
1079 # HP-UX 10 doesn't have __cxa_atexit but subsequent test passes.
1080 expr 0
1081 } else {
1082 check_runtime_nocache cxa_atexit_available {
1083 // C++
1084 #include <stdlib.h>
1085 static unsigned int count;
1086 struct X
1088 X() { count = 1; }
1089 ~X()
1091 if (count != 3)
1092 exit(1);
1093 count = 4;
1096 void f()
1098 static X x;
1100 struct Y
1102 Y() { f(); count = 2; }
1103 ~Y()
1105 if (count != 2)
1106 exit(1);
1107 count = 3;
1110 Y y;
1111 int main() { return 0; }
1118 # Return 1 if we're generating 32-bit code using default options, 0
1119 # otherwise.
1121 proc check_effective_target_ilp32 { } {
1122 return [check_no_compiler_messages ilp32 object {
1123 int dummy[sizeof (int) == 4
1124 && sizeof (void *) == 4
1125 && sizeof (long) == 4 ? 1 : -1];
1129 # Return 1 if we're generating 32-bit or larger integers using default
1130 # options, 0 otherwise.
1132 proc check_effective_target_int32plus { } {
1133 return [check_no_compiler_messages int32plus object {
1134 int dummy[sizeof (int) >= 4 ? 1 : -1];
1138 # Return 1 if we're generating 32-bit or larger pointers using default
1139 # options, 0 otherwise.
1141 proc check_effective_target_ptr32plus { } {
1142 return [check_no_compiler_messages ptr32plus object {
1143 int dummy[sizeof (void *) >= 4 ? 1 : -1];
1147 # Return 1 if we support 32-bit or larger array and structure sizes
1148 # using default options, 0 otherwise.
1150 proc check_effective_target_size32plus { } {
1151 return [check_no_compiler_messages size32plus object {
1152 char dummy[65537];
1156 # Returns 1 if we're generating 16-bit or smaller integers with the
1157 # default options, 0 otherwise.
1159 proc check_effective_target_int16 { } {
1160 return [check_no_compiler_messages int16 object {
1161 int dummy[sizeof (int) < 4 ? 1 : -1];
1165 # Return 1 if we're generating 64-bit code using default options, 0
1166 # otherwise.
1168 proc check_effective_target_lp64 { } {
1169 return [check_no_compiler_messages lp64 object {
1170 int dummy[sizeof (int) == 4
1171 && sizeof (void *) == 8
1172 && sizeof (long) == 8 ? 1 : -1];
1176 # Return 1 if we're generating 64-bit code using default llp64 options,
1177 # 0 otherwise.
1179 proc check_effective_target_llp64 { } {
1180 return [check_no_compiler_messages llp64 object {
1181 int dummy[sizeof (int) == 4
1182 && sizeof (void *) == 8
1183 && sizeof (long long) == 8
1184 && sizeof (long) == 4 ? 1 : -1];
1188 # Return 1 if the target supports long double larger than double,
1189 # 0 otherwise.
1191 proc check_effective_target_large_long_double { } {
1192 return [check_no_compiler_messages large_long_double object {
1193 int dummy[sizeof(long double) > sizeof(double) ? 1 : -1];
1197 # Return 1 if the target supports compiling fixed-point,
1198 # 0 otherwise.
1200 proc check_effective_target_fixed_point { } {
1201 return [check_no_compiler_messages fixed_point object {
1202 _Sat _Fract x; _Sat _Accum y;
1206 # Return 1 if the target supports compiling decimal floating point,
1207 # 0 otherwise.
1209 proc check_effective_target_dfp_nocache { } {
1210 verbose "check_effective_target_dfp_nocache: compiling source" 2
1211 set ret [check_no_compiler_messages_nocache dfp object {
1212 _Decimal32 x; _Decimal64 y; _Decimal128 z;
1214 verbose "check_effective_target_dfp_nocache: returning $ret" 2
1215 return $ret
1218 proc check_effective_target_dfprt_nocache { } {
1219 return [check_runtime_nocache dfprt {
1220 _Decimal32 x = 1.2df; _Decimal64 y = 2.3dd; _Decimal128 z;
1221 int main () { z = x + y; return 0; }
1225 # Return 1 if the target supports compiling Decimal Floating Point,
1226 # 0 otherwise.
1228 # This won't change for different subtargets so cache the result.
1230 proc check_effective_target_dfp { } {
1231 return [check_cached_effective_target dfp {
1232 check_effective_target_dfp_nocache
1236 # Return 1 if the target supports linking and executing Decimal Floating
1237 # Point, # 0 otherwise.
1239 # This won't change for different subtargets so cache the result.
1241 proc check_effective_target_dfprt { } {
1242 return [check_cached_effective_target dfprt {
1243 check_effective_target_dfprt_nocache
1247 # Return 1 if the target needs a command line argument to enable a SIMD
1248 # instruction set.
1250 proc check_effective_target_vect_cmdline_needed { } {
1251 global et_vect_cmdline_needed_saved
1252 global et_vect_cmdline_needed_target_name
1254 if { ![info exists et_vect_cmdline_needed_target_name] } {
1255 set et_vect_cmdline_needed_target_name ""
1258 # If the target has changed since we set the cached value, clear it.
1259 set current_target [current_target_name]
1260 if { $current_target != $et_vect_cmdline_needed_target_name } {
1261 verbose "check_effective_target_vect_cmdline_needed: `$et_vect_cmdline_needed_target_name' `$current_target'" 2
1262 set et_vect_cmdline_needed_target_name $current_target
1263 if { [info exists et_vect_cmdline_needed_saved] } {
1264 verbose "check_effective_target_vect_cmdline_needed: removing cached result" 2
1265 unset et_vect_cmdline_needed_saved
1269 if [info exists et_vect_cmdline_needed_saved] {
1270 verbose "check_effective_target_vect_cmdline_needed: using cached result" 2
1271 } else {
1272 set et_vect_cmdline_needed_saved 1
1273 if { [istarget ia64-*-*]
1274 || (([istarget x86_64-*-*] || [istarget i?86-*-*])
1275 && [check_effective_target_lp64])
1276 || ([istarget powerpc*-*-*]
1277 && ([check_effective_target_powerpc_spe]
1278 || [check_effective_target_powerpc_altivec]))
1279 || [istarget spu-*-*]
1280 || ([istarget arm*-*-*] && [check_effective_target_arm_neon]) } {
1281 set et_vect_cmdline_needed_saved 0
1285 verbose "check_effective_target_vect_cmdline_needed: returning $et_vect_cmdline_needed_saved" 2
1286 return $et_vect_cmdline_needed_saved
1289 # Return 1 if the target supports hardware vectors of int, 0 otherwise.
1291 # This won't change for different subtargets so cache the result.
1293 proc check_effective_target_vect_int { } {
1294 global et_vect_int_saved
1296 if [info exists et_vect_int_saved] {
1297 verbose "check_effective_target_vect_int: using cached result" 2
1298 } else {
1299 set et_vect_int_saved 0
1300 if { [istarget i?86-*-*]
1301 || ([istarget powerpc*-*-*]
1302 && ![istarget powerpc-*-linux*paired*])
1303 || [istarget spu-*-*]
1304 || [istarget x86_64-*-*]
1305 || [istarget sparc*-*-*]
1306 || [istarget alpha*-*-*]
1307 || [istarget ia64-*-*]
1308 || [check_effective_target_arm32] } {
1309 set et_vect_int_saved 1
1313 verbose "check_effective_target_vect_int: returning $et_vect_int_saved" 2
1314 return $et_vect_int_saved
1317 # Return 1 if the target supports int->float conversion
1320 proc check_effective_target_vect_intfloat_cvt { } {
1321 global et_vect_intfloat_cvt_saved
1323 if [info exists et_vect_intfloat_cvt_saved] {
1324 verbose "check_effective_target_vect_intfloat_cvt: using cached result" 2
1325 } else {
1326 set et_vect_intfloat_cvt_saved 0
1327 if { [istarget i?86-*-*]
1328 || ([istarget powerpc*-*-*]
1329 && ![istarget powerpc-*-linux*paired*])
1330 || [istarget x86_64-*-*] } {
1331 set et_vect_intfloat_cvt_saved 1
1335 verbose "check_effective_target_vect_intfloat_cvt: returning $et_vect_intfloat_cvt_saved" 2
1336 return $et_vect_intfloat_cvt_saved
1340 # Return 1 if the target supports float->int conversion
1343 proc check_effective_target_vect_floatint_cvt { } {
1344 global et_vect_floatint_cvt_saved
1346 if [info exists et_vect_floatint_cvt_saved] {
1347 verbose "check_effective_target_vect_floatint_cvt: using cached result" 2
1348 } else {
1349 set et_vect_floatint_cvt_saved 0
1350 if { [istarget i?86-*-*]
1351 || ([istarget powerpc*-*-*]
1352 && ![istarget powerpc-*-linux*paired*])
1353 || [istarget x86_64-*-*] } {
1354 set et_vect_floatint_cvt_saved 1
1358 verbose "check_effective_target_vect_floatint_cvt: returning $et_vect_floatint_cvt_saved" 2
1359 return $et_vect_floatint_cvt_saved
1362 # Return 1 is this is an arm target using 32-bit instructions
1363 proc check_effective_target_arm32 { } {
1364 return [check_no_compiler_messages arm32 assembly {
1365 #if !defined(__arm__) || (defined(__thumb__) && !defined(__thumb2__))
1366 #error FOO
1367 #endif
1371 # Return 1 if this is an ARM target supporting -mfpu=vfp
1372 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
1373 # options.
1375 proc check_effective_target_arm_vfp_ok { } {
1376 if { [check_effective_target_arm32] } {
1377 return [check_no_compiler_messages arm_vfp_ok object {
1378 int dummy;
1379 } "-mfpu=vfp -mfloat-abi=softfp"]
1380 } else {
1381 return 0
1385 # Return 1 if this is an ARM target supporting -mfpu=neon
1386 # -mfloat-abi=softfp. Some multilibs may be incompatible with these
1387 # options.
1389 proc check_effective_target_arm_neon_ok { } {
1390 if { [check_effective_target_arm32] } {
1391 return [check_no_compiler_messages arm_neon_ok object {
1392 int dummy;
1393 } "-mfpu=neon -mfloat-abi=softfp"]
1394 } else {
1395 return 0
1399 # Return 1 is this is an ARM target where -mthumb causes Thumb-1 to be
1400 # used.
1402 proc check_effective_target_arm_thumb1_ok { } {
1403 return [check_no_compiler_messages arm_thumb1_ok assembly {
1404 #if !defined(__arm__) || !defined(__thumb__) || defined(__thumb2__)
1405 #error FOO
1406 #endif
1407 } "-mthumb"]
1410 # Return 1 if the target supports executing NEON instructions, 0
1411 # otherwise. Cache the result.
1413 proc check_effective_target_arm_neon_hw { } {
1414 return [check_runtime arm_neon_hw_available {
1416 main (void)
1418 long long a = 0, b = 1;
1419 asm ("vorr %P0, %P1, %P2"
1420 : "=w" (a)
1421 : "0" (a), "w" (b));
1422 return (a != 1);
1424 } "-mfpu=neon -mfloat-abi=softfp"]
1427 # Return 1 if this is a ARM target with NEON enabled.
1429 proc check_effective_target_arm_neon { } {
1430 if { [check_effective_target_arm32] } {
1431 return [check_no_compiler_messages arm_neon object {
1432 #ifndef __ARM_NEON__
1433 #error not NEON
1434 #else
1435 int dummy;
1436 #endif
1438 } else {
1439 return 0
1443 # Return 1 if this a Loongson-2E or -2F target using an ABI that supports
1444 # the Loongson vector modes.
1446 proc check_effective_target_mips_loongson { } {
1447 return [check_no_compiler_messages loongson assembly {
1448 #if !defined(__mips_loongson_vector_rev)
1449 #error FOO
1450 #endif
1454 # Return 1 if this is an ARM target that adheres to the ABI for the ARM
1455 # Architecture.
1457 proc check_effective_target_arm_eabi { } {
1458 return [check_no_compiler_messages arm_eabi object {
1459 #ifndef __ARM_EABI__
1460 #error not EABI
1461 #else
1462 int dummy;
1463 #endif
1467 # Return 1 if this is a PowerPC target with floating-point registers.
1469 proc check_effective_target_powerpc_fprs { } {
1470 if { [istarget powerpc*-*-*]
1471 || [istarget rs6000-*-*] } {
1472 return [check_no_compiler_messages powerpc_fprs object {
1473 #ifdef __NO_FPRS__
1474 #error no FPRs
1475 #else
1476 int dummy;
1477 #endif
1479 } else {
1480 return 0
1484 # Return 1 if this is a PowerPC target with hardware double-precision
1485 # floating point.
1487 proc check_effective_target_powerpc_hard_double { } {
1488 if { [istarget powerpc*-*-*]
1489 || [istarget rs6000-*-*] } {
1490 return [check_no_compiler_messages powerpc_hard_double object {
1491 #ifdef _SOFT_DOUBLE
1492 #error soft double
1493 #else
1494 int dummy;
1495 #endif
1497 } else {
1498 return 0
1502 # Return 1 if this is a PowerPC target supporting -maltivec.
1504 proc check_effective_target_powerpc_altivec_ok { } {
1505 if { ([istarget powerpc*-*-*]
1506 && ![istarget powerpc-*-linux*paired*])
1507 || [istarget rs6000-*-*] } {
1508 # AltiVec is not supported on AIX before 5.3.
1509 if { [istarget powerpc*-*-aix4*]
1510 || [istarget powerpc*-*-aix5.1*]
1511 || [istarget powerpc*-*-aix5.2*] } {
1512 return 0
1514 return [check_no_compiler_messages powerpc_altivec_ok object {
1515 int dummy;
1516 } "-maltivec"]
1517 } else {
1518 return 0
1522 # Return 1 if this is a PowerPC target supporting -mcpu=cell.
1524 proc check_effective_target_powerpc_ppu_ok { } {
1525 if [check_effective_target_powerpc_altivec_ok] {
1526 return [check_no_compiler_messages cell_asm_available object {
1527 int main (void) {
1528 #ifdef __MACH__
1529 asm volatile ("lvlx v0,v0,v0");
1530 #else
1531 asm volatile ("lvlx 0,0,0");
1532 #endif
1533 return 0;
1536 } else {
1537 return 0
1541 # Return 1 if this is a PowerPC target that supports SPU.
1543 proc check_effective_target_powerpc_spu { } {
1544 if [istarget powerpc*-*-linux*] {
1545 return [check_effective_target_powerpc_altivec_ok]
1546 } else {
1547 return 0
1551 # Return 1 if this is a PowerPC SPE target. The check includes options
1552 # specified by dg-options for this test, so don't cache the result.
1554 proc check_effective_target_powerpc_spe_nocache { } {
1555 if { [istarget powerpc*-*-*] } {
1556 return [check_no_compiler_messages_nocache powerpc_spe object {
1557 #ifndef __SPE__
1558 #error not SPE
1559 #else
1560 int dummy;
1561 #endif
1562 } [current_compiler_flags]]
1563 } else {
1564 return 0
1568 # Return 1 if this is a PowerPC target with SPE enabled.
1570 proc check_effective_target_powerpc_spe { } {
1571 if { [istarget powerpc*-*-*] } {
1572 return [check_no_compiler_messages powerpc_spe object {
1573 #ifndef __SPE__
1574 #error not SPE
1575 #else
1576 int dummy;
1577 #endif
1579 } else {
1580 return 0
1584 # Return 1 if this is a PowerPC target with Altivec enabled.
1586 proc check_effective_target_powerpc_altivec { } {
1587 if { [istarget powerpc*-*-*] } {
1588 return [check_no_compiler_messages powerpc_altivec object {
1589 #ifndef __ALTIVEC__
1590 #error not Altivec
1591 #else
1592 int dummy;
1593 #endif
1595 } else {
1596 return 0
1600 # Return 1 if this is a PowerPC 405 target. The check includes options
1601 # specified by dg-options for this test, so don't cache the result.
1603 proc check_effective_target_powerpc_405_nocache { } {
1604 if { [istarget powerpc*-*-*] || [istarget rs6000-*-*] } {
1605 return [check_no_compiler_messages_nocache powerpc_405 object {
1606 #ifdef __PPC405__
1607 int dummy;
1608 #else
1609 #error not a PPC405
1610 #endif
1611 } [current_compiler_flags]]
1612 } else {
1613 return 0
1617 # Return 1 if this is a SPU target with a toolchain that
1618 # supports automatic overlay generation.
1620 proc check_effective_target_spu_auto_overlay { } {
1621 if { [istarget spu*-*-elf*] } {
1622 return [check_no_compiler_messages spu_auto_overlay executable {
1623 int main (void) { }
1624 } "-Wl,--auto-overlay" ]
1625 } else {
1626 return 0
1630 # The VxWorks SPARC simulator accepts only EM_SPARC executables and
1631 # chokes on EM_SPARC32PLUS or EM_SPARCV9 executables. Return 1 if the
1632 # test environment appears to run executables on such a simulator.
1634 proc check_effective_target_ultrasparc_hw { } {
1635 return [check_runtime ultrasparc_hw {
1636 int main() { return 0; }
1637 } "-mcpu=ultrasparc"]
1640 # Return 1 if the target supports hardware vector shift operation.
1642 proc check_effective_target_vect_shift { } {
1643 global et_vect_shift_saved
1645 if [info exists et_vect_shift_saved] {
1646 verbose "check_effective_target_vect_shift: using cached result" 2
1647 } else {
1648 set et_vect_shift_saved 0
1649 if { ([istarget powerpc*-*-*]
1650 && ![istarget powerpc-*-linux*paired*])
1651 || [istarget ia64-*-*]
1652 || [istarget i?86-*-*]
1653 || [istarget x86_64-*-*]
1654 || [check_effective_target_arm32] } {
1655 set et_vect_shift_saved 1
1659 verbose "check_effective_target_vect_shift: returning $et_vect_shift_saved" 2
1660 return $et_vect_shift_saved
1663 # Return 1 if the target supports hardware vectors of long, 0 otherwise.
1665 # This can change for different subtargets so do not cache the result.
1667 proc check_effective_target_vect_long { } {
1668 if { [istarget i?86-*-*]
1669 || (([istarget powerpc*-*-*]
1670 && ![istarget powerpc-*-linux*paired*])
1671 && [check_effective_target_ilp32])
1672 || [istarget x86_64-*-*]
1673 || [check_effective_target_arm32]
1674 || ([istarget sparc*-*-*] && [check_effective_target_ilp32]) } {
1675 set answer 1
1676 } else {
1677 set answer 0
1680 verbose "check_effective_target_vect_long: returning $answer" 2
1681 return $answer
1684 # Return 1 if the target supports hardware vectors of float, 0 otherwise.
1686 # This won't change for different subtargets so cache the result.
1688 proc check_effective_target_vect_float { } {
1689 global et_vect_float_saved
1691 if [info exists et_vect_float_saved] {
1692 verbose "check_effective_target_vect_float: using cached result" 2
1693 } else {
1694 set et_vect_float_saved 0
1695 if { [istarget i?86-*-*]
1696 || [istarget powerpc*-*-*]
1697 || [istarget spu-*-*]
1698 || [istarget mipsisa64*-*-*]
1699 || [istarget x86_64-*-*]
1700 || [istarget ia64-*-*]
1701 || [check_effective_target_arm32] } {
1702 set et_vect_float_saved 1
1706 verbose "check_effective_target_vect_float: returning $et_vect_float_saved" 2
1707 return $et_vect_float_saved
1710 # Return 1 if the target supports hardware vectors of double, 0 otherwise.
1712 # This won't change for different subtargets so cache the result.
1714 proc check_effective_target_vect_double { } {
1715 global et_vect_double_saved
1717 if [info exists et_vect_double_saved] {
1718 verbose "check_effective_target_vect_double: using cached result" 2
1719 } else {
1720 set et_vect_double_saved 0
1721 if { [istarget i?86-*-*]
1722 || [istarget x86_64-*-*]
1723 || [istarget spu-*-*] } {
1724 set et_vect_double_saved 1
1728 verbose "check_effective_target_vect_double: returning $et_vect_double_saved" 2
1729 return $et_vect_double_saved
1732 # Return 1 if the target supports hardware vectors of long long, 0 otherwise.
1734 # This won't change for different subtargets so cache the result.
1736 proc check_effective_target_vect_long_long { } {
1737 global et_vect_long_long_saved
1739 if [info exists et_vect_long_long_saved] {
1740 verbose "check_effective_target_vect_long_long: using cached result" 2
1741 } else {
1742 set et_vect_long_long_saved 0
1743 if { [istarget i?86-*-*]
1744 || [istarget x86_64-*-*] } {
1745 set et_vect_long_long_saved 1
1749 verbose "check_effective_target_vect_long_long: returning $et_vect_long_long_saved" 2
1750 return $et_vect_long_long_saved
1754 # Return 1 if the target plus current options does not support a vector
1755 # max instruction on "int", 0 otherwise.
1757 # This won't change for different subtargets so cache the result.
1759 proc check_effective_target_vect_no_int_max { } {
1760 global et_vect_no_int_max_saved
1762 if [info exists et_vect_no_int_max_saved] {
1763 verbose "check_effective_target_vect_no_int_max: using cached result" 2
1764 } else {
1765 set et_vect_no_int_max_saved 0
1766 if { [istarget sparc*-*-*]
1767 || [istarget spu-*-*]
1768 || [istarget alpha*-*-*] } {
1769 set et_vect_no_int_max_saved 1
1772 verbose "check_effective_target_vect_no_int_max: returning $et_vect_no_int_max_saved" 2
1773 return $et_vect_no_int_max_saved
1776 # Return 1 if the target plus current options does not support a vector
1777 # add instruction on "int", 0 otherwise.
1779 # This won't change for different subtargets so cache the result.
1781 proc check_effective_target_vect_no_int_add { } {
1782 global et_vect_no_int_add_saved
1784 if [info exists et_vect_no_int_add_saved] {
1785 verbose "check_effective_target_vect_no_int_add: using cached result" 2
1786 } else {
1787 set et_vect_no_int_add_saved 0
1788 # Alpha only supports vector add on V8QI and V4HI.
1789 if { [istarget alpha*-*-*] } {
1790 set et_vect_no_int_add_saved 1
1793 verbose "check_effective_target_vect_no_int_add: returning $et_vect_no_int_add_saved" 2
1794 return $et_vect_no_int_add_saved
1797 # Return 1 if the target plus current options does not support vector
1798 # bitwise instructions, 0 otherwise.
1800 # This won't change for different subtargets so cache the result.
1802 proc check_effective_target_vect_no_bitwise { } {
1803 global et_vect_no_bitwise_saved
1805 if [info exists et_vect_no_bitwise_saved] {
1806 verbose "check_effective_target_vect_no_bitwise: using cached result" 2
1807 } else {
1808 set et_vect_no_bitwise_saved 0
1810 verbose "check_effective_target_vect_no_bitwise: returning $et_vect_no_bitwise_saved" 2
1811 return $et_vect_no_bitwise_saved
1814 # Return 1 if the target plus current options supports vector permutation,
1815 # 0 otherwise.
1817 # This won't change for different subtargets so cache the result.
1819 proc check_effective_target_vect_perm { } {
1820 global et_vect_perm
1822 if [info exists et_vect_perm_saved] {
1823 verbose "check_effective_target_vect_perm: using cached result" 2
1824 } else {
1825 set et_vect_perm_saved 0
1826 if { [istarget powerpc*-*-*]
1827 || [istarget spu-*-*] } {
1828 set et_vect_perm_saved 1
1831 verbose "check_effective_target_vect_perm: returning $et_vect_perm_saved" 2
1832 return $et_vect_perm_saved
1836 # Return 1 if the target plus current options supports a vector
1837 # widening summation of *short* args into *int* result, 0 otherwise.
1838 # A target can also support this widening summation if it can support
1839 # promotion (unpacking) from shorts to ints.
1841 # This won't change for different subtargets so cache the result.
1843 proc check_effective_target_vect_widen_sum_hi_to_si { } {
1844 global et_vect_widen_sum_hi_to_si
1846 if [info exists et_vect_widen_sum_hi_to_si_saved] {
1847 verbose "check_effective_target_vect_widen_sum_hi_to_si: using cached result" 2
1848 } else {
1849 set et_vect_widen_sum_hi_to_si_saved [check_effective_target_vect_unpack]
1850 if { [istarget powerpc*-*-*]
1851 || [istarget ia64-*-*] } {
1852 set et_vect_widen_sum_hi_to_si_saved 1
1855 verbose "check_effective_target_vect_widen_sum_hi_to_si: returning $et_vect_widen_sum_hi_to_si_saved" 2
1856 return $et_vect_widen_sum_hi_to_si_saved
1859 # Return 1 if the target plus current options supports a vector
1860 # widening summation of *char* args into *short* result, 0 otherwise.
1861 # A target can also support this widening summation if it can support
1862 # promotion (unpacking) from chars to shorts.
1864 # This won't change for different subtargets so cache the result.
1866 proc check_effective_target_vect_widen_sum_qi_to_hi { } {
1867 global et_vect_widen_sum_qi_to_hi
1869 if [info exists et_vect_widen_sum_qi_to_hi_saved] {
1870 verbose "check_effective_target_vect_widen_sum_qi_to_hi: using cached result" 2
1871 } else {
1872 set et_vect_widen_sum_qi_to_hi_saved 0
1873 if { [check_effective_target_vect_unpack]
1874 || [istarget ia64-*-*] } {
1875 set et_vect_widen_sum_qi_to_hi_saved 1
1878 verbose "check_effective_target_vect_widen_sum_qi_to_hi: returning $et_vect_widen_sum_qi_to_hi_saved" 2
1879 return $et_vect_widen_sum_qi_to_hi_saved
1882 # Return 1 if the target plus current options supports a vector
1883 # widening summation of *char* args into *int* result, 0 otherwise.
1885 # This won't change for different subtargets so cache the result.
1887 proc check_effective_target_vect_widen_sum_qi_to_si { } {
1888 global et_vect_widen_sum_qi_to_si
1890 if [info exists et_vect_widen_sum_qi_to_si_saved] {
1891 verbose "check_effective_target_vect_widen_sum_qi_to_si: using cached result" 2
1892 } else {
1893 set et_vect_widen_sum_qi_to_si_saved 0
1894 if { [istarget powerpc*-*-*] } {
1895 set et_vect_widen_sum_qi_to_si_saved 1
1898 verbose "check_effective_target_vect_widen_sum_qi_to_si: returning $et_vect_widen_sum_qi_to_si_saved" 2
1899 return $et_vect_widen_sum_qi_to_si_saved
1902 # Return 1 if the target plus current options supports a vector
1903 # widening multiplication of *char* args into *short* result, 0 otherwise.
1904 # A target can also support this widening multplication if it can support
1905 # promotion (unpacking) from chars to shorts, and vect_short_mult (non-widening
1906 # multiplication of shorts).
1908 # This won't change for different subtargets so cache the result.
1911 proc check_effective_target_vect_widen_mult_qi_to_hi { } {
1912 global et_vect_widen_mult_qi_to_hi
1914 if [info exists et_vect_widen_mult_qi_to_hi_saved] {
1915 verbose "check_effective_target_vect_widen_mult_qi_to_hi: using cached result" 2
1916 } else {
1917 if { [check_effective_target_vect_unpack]
1918 && [check_effective_target_vect_short_mult] } {
1919 set et_vect_widen_mult_qi_to_hi_saved 1
1920 } else {
1921 set et_vect_widen_mult_qi_to_hi_saved 0
1923 if { [istarget powerpc*-*-*] } {
1924 set et_vect_widen_mult_qi_to_hi_saved 1
1927 verbose "check_effective_target_vect_widen_mult_qi_to_hi: returning $et_vect_widen_mult_qi_to_hi_saved" 2
1928 return $et_vect_widen_mult_qi_to_hi_saved
1931 # Return 1 if the target plus current options supports a vector
1932 # widening multiplication of *short* args into *int* result, 0 otherwise.
1933 # A target can also support this widening multplication if it can support
1934 # promotion (unpacking) from shorts to ints, and vect_int_mult (non-widening
1935 # multiplication of ints).
1937 # This won't change for different subtargets so cache the result.
1940 proc check_effective_target_vect_widen_mult_hi_to_si { } {
1941 global et_vect_widen_mult_hi_to_si
1943 if [info exists et_vect_widen_mult_hi_to_si_saved] {
1944 verbose "check_effective_target_vect_widen_mult_hi_to_si: using cached result" 2
1945 } else {
1946 if { [check_effective_target_vect_unpack]
1947 && [check_effective_target_vect_int_mult] } {
1948 set et_vect_widen_mult_hi_to_si_saved 1
1949 } else {
1950 set et_vect_widen_mult_hi_to_si_saved 0
1952 if { [istarget powerpc*-*-*]
1953 || [istarget spu-*-*]
1954 || [istarget i?86-*-*]
1955 || [istarget x86_64-*-*] } {
1956 set et_vect_widen_mult_hi_to_si_saved 1
1959 verbose "check_effective_target_vect_widen_mult_hi_to_si: returning $et_vect_widen_mult_hi_to_si_saved" 2
1960 return $et_vect_widen_mult_hi_to_si_saved
1963 # Return 1 if the target plus current options supports a vector
1964 # dot-product of signed chars, 0 otherwise.
1966 # This won't change for different subtargets so cache the result.
1968 proc check_effective_target_vect_sdot_qi { } {
1969 global et_vect_sdot_qi
1971 if [info exists et_vect_sdot_qi_saved] {
1972 verbose "check_effective_target_vect_sdot_qi: using cached result" 2
1973 } else {
1974 set et_vect_sdot_qi_saved 0
1976 verbose "check_effective_target_vect_sdot_qi: returning $et_vect_sdot_qi_saved" 2
1977 return $et_vect_sdot_qi_saved
1980 # Return 1 if the target plus current options supports a vector
1981 # dot-product of unsigned chars, 0 otherwise.
1983 # This won't change for different subtargets so cache the result.
1985 proc check_effective_target_vect_udot_qi { } {
1986 global et_vect_udot_qi
1988 if [info exists et_vect_udot_qi_saved] {
1989 verbose "check_effective_target_vect_udot_qi: using cached result" 2
1990 } else {
1991 set et_vect_udot_qi_saved 0
1992 if { [istarget powerpc*-*-*] } {
1993 set et_vect_udot_qi_saved 1
1996 verbose "check_effective_target_vect_udot_qi: returning $et_vect_udot_qi_saved" 2
1997 return $et_vect_udot_qi_saved
2000 # Return 1 if the target plus current options supports a vector
2001 # dot-product of signed shorts, 0 otherwise.
2003 # This won't change for different subtargets so cache the result.
2005 proc check_effective_target_vect_sdot_hi { } {
2006 global et_vect_sdot_hi
2008 if [info exists et_vect_sdot_hi_saved] {
2009 verbose "check_effective_target_vect_sdot_hi: using cached result" 2
2010 } else {
2011 set et_vect_sdot_hi_saved 0
2012 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2013 || [istarget i?86-*-*]
2014 || [istarget x86_64-*-*] } {
2015 set et_vect_sdot_hi_saved 1
2018 verbose "check_effective_target_vect_sdot_hi: returning $et_vect_sdot_hi_saved" 2
2019 return $et_vect_sdot_hi_saved
2022 # Return 1 if the target plus current options supports a vector
2023 # dot-product of unsigned shorts, 0 otherwise.
2025 # This won't change for different subtargets so cache the result.
2027 proc check_effective_target_vect_udot_hi { } {
2028 global et_vect_udot_hi
2030 if [info exists et_vect_udot_hi_saved] {
2031 verbose "check_effective_target_vect_udot_hi: using cached result" 2
2032 } else {
2033 set et_vect_udot_hi_saved 0
2034 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*]) } {
2035 set et_vect_udot_hi_saved 1
2038 verbose "check_effective_target_vect_udot_hi: returning $et_vect_udot_hi_saved" 2
2039 return $et_vect_udot_hi_saved
2043 # Return 1 if the target plus current options supports a vector
2044 # demotion (packing) of shorts (to chars) and ints (to shorts)
2045 # using modulo arithmetic, 0 otherwise.
2047 # This won't change for different subtargets so cache the result.
2049 proc check_effective_target_vect_pack_trunc { } {
2050 global et_vect_pack_trunc
2052 if [info exists et_vect_pack_trunc_saved] {
2053 verbose "check_effective_target_vect_pack_trunc: using cached result" 2
2054 } else {
2055 set et_vect_pack_trunc_saved 0
2056 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2057 || [istarget i?86-*-*]
2058 || [istarget x86_64-*-*]
2059 || [istarget spu-*-*] } {
2060 set et_vect_pack_trunc_saved 1
2063 verbose "check_effective_target_vect_pack_trunc: returning $et_vect_pack_trunc_saved" 2
2064 return $et_vect_pack_trunc_saved
2067 # Return 1 if the target plus current options supports a vector
2068 # promotion (unpacking) of chars (to shorts) and shorts (to ints), 0 otherwise.
2070 # This won't change for different subtargets so cache the result.
2072 proc check_effective_target_vect_unpack { } {
2073 global et_vect_unpack
2075 if [info exists et_vect_unpack_saved] {
2076 verbose "check_effective_target_vect_unpack: using cached result" 2
2077 } else {
2078 set et_vect_unpack_saved 0
2079 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*paired*])
2080 || [istarget i?86-*-*]
2081 || [istarget x86_64-*-*]
2082 || [istarget spu-*-*] } {
2083 set et_vect_unpack_saved 1
2086 verbose "check_effective_target_vect_unpack: returning $et_vect_unpack_saved" 2
2087 return $et_vect_unpack_saved
2090 # Return 1 if the target plus current options does not guarantee
2091 # that its STACK_BOUNDARY is >= the reguired vector alignment.
2093 # This won't change for different subtargets so cache the result.
2095 proc check_effective_target_unaligned_stack { } {
2096 global et_unaligned_stack_saved
2098 if [info exists et_unaligned_stack_saved] {
2099 verbose "check_effective_target_unaligned_stack: using cached result" 2
2100 } else {
2101 set et_unaligned_stack_saved 0
2103 verbose "check_effective_target_unaligned_stack: returning $et_unaligned_stack_saved" 2
2104 return $et_unaligned_stack_saved
2107 # Return 1 if the target plus current options does not support a vector
2108 # alignment mechanism, 0 otherwise.
2110 # This won't change for different subtargets so cache the result.
2112 proc check_effective_target_vect_no_align { } {
2113 global et_vect_no_align_saved
2115 if [info exists et_vect_no_align_saved] {
2116 verbose "check_effective_target_vect_no_align: using cached result" 2
2117 } else {
2118 set et_vect_no_align_saved 0
2119 if { [istarget mipsisa64*-*-*]
2120 || [istarget sparc*-*-*]
2121 || [istarget ia64-*-*]
2122 || [check_effective_target_arm32] } {
2123 set et_vect_no_align_saved 1
2126 verbose "check_effective_target_vect_no_align: returning $et_vect_no_align_saved" 2
2127 return $et_vect_no_align_saved
2130 # Return 1 if arrays are aligned to the vector alignment
2131 # boundary, 0 otherwise.
2133 # This won't change for different subtargets so cache the result.
2135 proc check_effective_target_vect_aligned_arrays { } {
2136 global et_vect_aligned_arrays
2138 if [info exists et_vect_aligned_arrays_saved] {
2139 verbose "check_effective_target_vect_aligned_arrays: using cached result" 2
2140 } else {
2141 set et_vect_aligned_arrays_saved 0
2142 if { (([istarget x86_64-*-*]
2143 || [istarget i?86-*-*]) && [is-effective-target lp64])
2144 || [istarget spu-*-*] } {
2145 set et_vect_aligned_arrays_saved 1
2148 verbose "check_effective_target_vect_aligned_arrays: returning $et_vect_aligned_arrays_saved" 2
2149 return $et_vect_aligned_arrays_saved
2152 # Return 1 if types of size 32 bit or less are naturally aligned
2153 # (aligned to their type-size), 0 otherwise.
2155 # This won't change for different subtargets so cache the result.
2157 proc check_effective_target_natural_alignment_32 { } {
2158 global et_natural_alignment_32
2160 if [info exists et_natural_alignment_32_saved] {
2161 verbose "check_effective_target_natural_alignment_32: using cached result" 2
2162 } else {
2163 # FIXME: 32bit powerpc: guaranteed only if MASK_ALIGN_NATURAL/POWER.
2164 set et_natural_alignment_32_saved 1
2165 if { ([istarget *-*-darwin*] && [is-effective-target lp64]) } {
2166 set et_natural_alignment_32_saved 0
2169 verbose "check_effective_target_natural_alignment_32: returning $et_natural_alignment_32_saved" 2
2170 return $et_natural_alignment_32_saved
2173 # Return 1 if types of size 64 bit or less are naturally aligned (aligned to their
2174 # type-size), 0 otherwise.
2176 # This won't change for different subtargets so cache the result.
2178 proc check_effective_target_natural_alignment_64 { } {
2179 global et_natural_alignment_64
2181 if [info exists et_natural_alignment_64_saved] {
2182 verbose "check_effective_target_natural_alignment_64: using cached result" 2
2183 } else {
2184 set et_natural_alignment_64_saved 0
2185 if { ([is-effective-target lp64] && ![istarget *-*-darwin*])
2186 || [istarget spu-*-*] } {
2187 set et_natural_alignment_64_saved 1
2190 verbose "check_effective_target_natural_alignment_64: returning $et_natural_alignment_64_saved" 2
2191 return $et_natural_alignment_64_saved
2194 # Return 1 if vector alignment (for types of size 32 bit or less) is reachable, 0 otherwise.
2196 # This won't change for different subtargets so cache the result.
2198 proc check_effective_target_vector_alignment_reachable { } {
2199 global et_vector_alignment_reachable
2201 if [info exists et_vector_alignment_reachable_saved] {
2202 verbose "check_effective_target_vector_alignment_reachable: using cached result" 2
2203 } else {
2204 if { [check_effective_target_vect_aligned_arrays]
2205 || [check_effective_target_natural_alignment_32] } {
2206 set et_vector_alignment_reachable_saved 1
2207 } else {
2208 set et_vector_alignment_reachable_saved 0
2211 verbose "check_effective_target_vector_alignment_reachable: returning $et_vector_alignment_reachable_saved" 2
2212 return $et_vector_alignment_reachable_saved
2215 # Return 1 if vector alignment for 64 bit is reachable, 0 otherwise.
2217 # This won't change for different subtargets so cache the result.
2219 proc check_effective_target_vector_alignment_reachable_for_64bit { } {
2220 global et_vector_alignment_reachable_for_64bit
2222 if [info exists et_vector_alignment_reachable_for_64bit_saved] {
2223 verbose "check_effective_target_vector_alignment_reachable_for_64bit: using cached result" 2
2224 } else {
2225 if { [check_effective_target_vect_aligned_arrays]
2226 || [check_effective_target_natural_alignment_64] } {
2227 set et_vector_alignment_reachable_for_64bit_saved 1
2228 } else {
2229 set et_vector_alignment_reachable_for_64bit_saved 0
2232 verbose "check_effective_target_vector_alignment_reachable_for_64bit: returning $et_vector_alignment_reachable_for_64bit_saved" 2
2233 return $et_vector_alignment_reachable_for_64bit_saved
2236 # Return 1 if the target supports vector conditional operations, 0 otherwise.
2238 proc check_effective_target_vect_condition { } {
2239 global et_vect_cond_saved
2241 if [info exists et_vect_cond_saved] {
2242 verbose "check_effective_target_vect_cond: using cached result" 2
2243 } else {
2244 set et_vect_cond_saved 0
2245 if { [istarget powerpc*-*-*]
2246 || [istarget ia64-*-*]
2247 || [istarget i?86-*-*]
2248 || [istarget spu-*-*]
2249 || [istarget x86_64-*-*] } {
2250 set et_vect_cond_saved 1
2254 verbose "check_effective_target_vect_cond: returning $et_vect_cond_saved" 2
2255 return $et_vect_cond_saved
2258 # Return 1 if the target supports vector char multiplication, 0 otherwise.
2260 proc check_effective_target_vect_char_mult { } {
2261 global et_vect_char_mult_saved
2263 if [info exists et_vect_char_mult_saved] {
2264 verbose "check_effective_target_vect_char_mult: using cached result" 2
2265 } else {
2266 set et_vect_char_mult_saved 0
2267 if { [istarget ia64-*-*]
2268 || [istarget i?86-*-*]
2269 || [istarget x86_64-*-*] } {
2270 set et_vect_char_mult_saved 1
2274 verbose "check_effective_target_vect_char_mult: returning $et_vect_char_mult_saved" 2
2275 return $et_vect_char_mult_saved
2278 # Return 1 if the target supports vector short multiplication, 0 otherwise.
2280 proc check_effective_target_vect_short_mult { } {
2281 global et_vect_short_mult_saved
2283 if [info exists et_vect_short_mult_saved] {
2284 verbose "check_effective_target_vect_short_mult: using cached result" 2
2285 } else {
2286 set et_vect_short_mult_saved 0
2287 if { [istarget ia64-*-*]
2288 || [istarget spu-*-*]
2289 || [istarget i?86-*-*]
2290 || [istarget x86_64-*-*]
2291 || [istarget powerpc*-*-*]
2292 || [check_effective_target_arm32] } {
2293 set et_vect_short_mult_saved 1
2297 verbose "check_effective_target_vect_short_mult: returning $et_vect_short_mult_saved" 2
2298 return $et_vect_short_mult_saved
2301 # Return 1 if the target supports vector int multiplication, 0 otherwise.
2303 proc check_effective_target_vect_int_mult { } {
2304 global et_vect_int_mult_saved
2306 if [info exists et_vect_int_mult_saved] {
2307 verbose "check_effective_target_vect_int_mult: using cached result" 2
2308 } else {
2309 set et_vect_int_mult_saved 0
2310 if { ([istarget powerpc*-*-*] && ![istarget powerpc-*-linux*paired*])
2311 || [istarget spu-*-*]
2312 || [istarget i?86-*-*]
2313 || [istarget x86_64-*-*]
2314 || [check_effective_target_arm32] } {
2315 set et_vect_int_mult_saved 1
2319 verbose "check_effective_target_vect_int_mult: returning $et_vect_int_mult_saved" 2
2320 return $et_vect_int_mult_saved
2323 # Return 1 if the target supports vector even/odd elements extraction, 0 otherwise.
2325 proc check_effective_target_vect_extract_even_odd { } {
2326 global et_vect_extract_even_odd_saved
2328 if [info exists et_vect_extract_even_odd_saved] {
2329 verbose "check_effective_target_vect_extract_even_odd: using cached result" 2
2330 } else {
2331 set et_vect_extract_even_odd_saved 0
2332 if { [istarget powerpc*-*-*]
2333 || [istarget spu-*-*] } {
2334 set et_vect_extract_even_odd_saved 1
2338 verbose "check_effective_target_vect_extract_even_odd: returning $et_vect_extract_even_odd_saved" 2
2339 return $et_vect_extract_even_odd_saved
2342 # Return 1 if the target supports vector even/odd elements extraction of
2343 # vectors with SImode elements or larger, 0 otherwise.
2345 proc check_effective_target_vect_extract_even_odd_wide { } {
2346 global et_vect_extract_even_odd_wide_saved
2348 if [info exists et_vect_extract_even_odd_wide_saved] {
2349 verbose "check_effective_target_vect_extract_even_odd_wide: using cached result" 2
2350 } else {
2351 set et_vect_extract_even_odd_wide_saved 0
2352 if { [istarget powerpc*-*-*]
2353 || [istarget i?86-*-*]
2354 || [istarget x86_64-*-*]
2355 || [istarget spu-*-*] } {
2356 set et_vect_extract_even_odd_wide_saved 1
2360 verbose "check_effective_target_vect_extract_even_wide_odd: returning $et_vect_extract_even_odd_wide_saved" 2
2361 return $et_vect_extract_even_odd_wide_saved
2364 # Return 1 if the target supports vector interleaving, 0 otherwise.
2366 proc check_effective_target_vect_interleave { } {
2367 global et_vect_interleave_saved
2369 if [info exists et_vect_interleave_saved] {
2370 verbose "check_effective_target_vect_interleave: using cached result" 2
2371 } else {
2372 set et_vect_interleave_saved 0
2373 if { [istarget powerpc*-*-*]
2374 || [istarget i?86-*-*]
2375 || [istarget x86_64-*-*]
2376 || [istarget spu-*-*] } {
2377 set et_vect_interleave_saved 1
2381 verbose "check_effective_target_vect_interleave: returning $et_vect_interleave_saved" 2
2382 return $et_vect_interleave_saved
2385 # Return 1 if the target supports vector interleaving and extract even/odd, 0 otherwise.
2386 proc check_effective_target_vect_strided { } {
2387 global et_vect_strided_saved
2389 if [info exists et_vect_strided_saved] {
2390 verbose "check_effective_target_vect_strided: using cached result" 2
2391 } else {
2392 set et_vect_strided_saved 0
2393 if { [check_effective_target_vect_interleave]
2394 && [check_effective_target_vect_extract_even_odd] } {
2395 set et_vect_strided_saved 1
2399 verbose "check_effective_target_vect_strided: returning $et_vect_strided_saved" 2
2400 return $et_vect_strided_saved
2403 # Return 1 if the target supports vector interleaving and extract even/odd
2404 # for wide element types, 0 otherwise.
2405 proc check_effective_target_vect_strided_wide { } {
2406 global et_vect_strided_wide_saved
2408 if [info exists et_vect_strided_wide_saved] {
2409 verbose "check_effective_target_vect_strided_wide: using cached result" 2
2410 } else {
2411 set et_vect_strided_wide_saved 0
2412 if { [check_effective_target_vect_interleave]
2413 && [check_effective_target_vect_extract_even_odd_wide] } {
2414 set et_vect_strided_wide_saved 1
2418 verbose "check_effective_target_vect_strided_wide: returning $et_vect_strided_wide_saved" 2
2419 return $et_vect_strided_wide_saved
2422 # Return 1 if the target supports section-anchors
2424 proc check_effective_target_section_anchors { } {
2425 global et_section_anchors_saved
2427 if [info exists et_section_anchors_saved] {
2428 verbose "check_effective_target_section_anchors: using cached result" 2
2429 } else {
2430 set et_section_anchors_saved 0
2431 if { [istarget powerpc*-*-*] } {
2432 set et_section_anchors_saved 1
2436 verbose "check_effective_target_section_anchors: returning $et_section_anchors_saved" 2
2437 return $et_section_anchors_saved
2440 # Return 1 if the target supports atomic operations on "int" and "long".
2442 proc check_effective_target_sync_int_long { } {
2443 global et_sync_int_long_saved
2445 if [info exists et_sync_int_long_saved] {
2446 verbose "check_effective_target_sync_int_long: using cached result" 2
2447 } else {
2448 set et_sync_int_long_saved 0
2449 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
2450 # load-reserved/store-conditional instructions.
2451 if { [istarget ia64-*-*]
2452 || [istarget i?86-*-*]
2453 || [istarget x86_64-*-*]
2454 || [istarget alpha*-*-*]
2455 || [istarget s390*-*-*]
2456 || [istarget powerpc*-*-*]
2457 || [istarget sparc64-*-*]
2458 || [istarget sparcv9-*-*]
2459 || [istarget mips*-*-*] } {
2460 set et_sync_int_long_saved 1
2464 verbose "check_effective_target_sync_int_long: returning $et_sync_int_long_saved" 2
2465 return $et_sync_int_long_saved
2468 # Return 1 if the target supports atomic operations on "char" and "short".
2470 proc check_effective_target_sync_char_short { } {
2471 global et_sync_char_short_saved
2473 if [info exists et_sync_char_short_saved] {
2474 verbose "check_effective_target_sync_char_short: using cached result" 2
2475 } else {
2476 set et_sync_char_short_saved 0
2477 # This is intentionally powerpc but not rs6000, rs6000 doesn't have the
2478 # load-reserved/store-conditional instructions.
2479 if { [istarget ia64-*-*]
2480 || [istarget i?86-*-*]
2481 || [istarget x86_64-*-*]
2482 || [istarget alpha*-*-*]
2483 || [istarget s390*-*-*]
2484 || [istarget powerpc*-*-*]
2485 || [istarget sparc64-*-*]
2486 || [istarget sparcv9-*-*]
2487 || [istarget mips*-*-*] } {
2488 set et_sync_char_short_saved 1
2492 verbose "check_effective_target_sync_char_short: returning $et_sync_char_short_saved" 2
2493 return $et_sync_char_short_saved
2496 # Return 1 if the target uses a ColdFire FPU.
2498 proc check_effective_target_coldfire_fpu { } {
2499 return [check_no_compiler_messages coldfire_fpu assembly {
2500 #ifndef __mcffpu__
2501 #error FOO
2502 #endif
2506 # Return true if this is a uClibc target.
2508 proc check_effective_target_uclibc {} {
2509 return [check_no_compiler_messages uclibc object {
2510 #include <features.h>
2511 #if !defined (__UCLIBC__)
2512 #error FOO
2513 #endif
2517 # Return true if this is a uclibc target and if the uclibc feature
2518 # described by __$feature__ is not present.
2520 proc check_missing_uclibc_feature {feature} {
2521 return [check_no_compiler_messages $feature object "
2522 #include <features.h>
2523 #if !defined (__UCLIBC) || defined (__${feature}__)
2524 #error FOO
2525 #endif
2529 # Return true if this is a Newlib target.
2531 proc check_effective_target_newlib {} {
2532 return [check_no_compiler_messages newlib object {
2533 #include <newlib.h>
2537 # Return 1 if
2538 # (a) an error of a few ULP is expected in string to floating-point
2539 # conversion functions; and
2540 # (b) overflow is not always detected correctly by those functions.
2542 proc check_effective_target_lax_strtofp {} {
2543 # By default, assume that all uClibc targets suffer from this.
2544 return [check_effective_target_uclibc]
2547 # Return 1 if this is a target for which wcsftime is a dummy
2548 # function that always returns 0.
2550 proc check_effective_target_dummy_wcsftime {} {
2551 # By default, assume that all uClibc targets suffer from this.
2552 return [check_effective_target_uclibc]
2555 # Return 1 if constructors with initialization priority arguments are
2556 # supposed on this target.
2558 proc check_effective_target_init_priority {} {
2559 return [check_no_compiler_messages init_priority assembly "
2560 void f() __attribute__((constructor (1000)));
2561 void f() \{\}
2565 # Return 1 if the target matches the effective target 'arg', 0 otherwise.
2566 # This can be used with any check_* proc that takes no argument and
2567 # returns only 1 or 0. It could be used with check_* procs that take
2568 # arguments with keywords that pass particular arguments.
2570 proc is-effective-target { arg } {
2571 set selected 0
2572 if { [info procs check_effective_target_${arg}] != [list] } {
2573 set selected [check_effective_target_${arg}]
2574 } else {
2575 switch $arg {
2576 "vmx_hw" { set selected [check_vmx_hw_available] }
2577 "named_sections" { set selected [check_named_sections_available] }
2578 "gc_sections" { set selected [check_gc_sections_available] }
2579 "cxa_atexit" { set selected [check_cxa_atexit_available] }
2580 default { error "unknown effective target keyword `$arg'" }
2583 verbose "is-effective-target: $arg $selected" 2
2584 return $selected
2587 # Return 1 if the argument is an effective-target keyword, 0 otherwise.
2589 proc is-effective-target-keyword { arg } {
2590 if { [info procs check_effective_target_${arg}] != [list] } {
2591 return 1
2592 } else {
2593 # These have different names for their check_* procs.
2594 switch $arg {
2595 "vmx_hw" { return 1 }
2596 "named_sections" { return 1 }
2597 "gc_sections" { return 1 }
2598 "cxa_atexit" { return 1 }
2599 default { return 0 }
2604 # Return 1 if target default to short enums
2606 proc check_effective_target_short_enums { } {
2607 return [check_no_compiler_messages short_enums assembly {
2608 enum foo { bar };
2609 int s[sizeof (enum foo) == 1 ? 1 : -1];
2613 # Return 1 if target supports merging string constants at link time.
2615 proc check_effective_target_string_merging { } {
2616 return [check_no_messages_and_pattern string_merging \
2617 "rodata\\.str" assembly {
2618 const char *var = "String";
2619 } {-O2}]
2622 # Return 1 if target has the basic signed and unsigned types in
2623 # <stdint.h>, 0 otherwise.
2625 proc check_effective_target_stdint_types { } {
2626 return [check_no_compiler_messages stdint_types assembly {
2627 #include <stdint.h>
2628 int8_t a; int16_t b; int32_t c; int64_t d;
2629 uint8_t e; uint16_t f; uint32_t g; uint64_t h;
2633 # Return 1 if programs are intended to be run on a simulator
2634 # (i.e. slowly) rather than hardware (i.e. fast).
2636 proc check_effective_target_simulator { } {
2638 # All "src/sim" simulators set this one.
2639 if [board_info target exists is_simulator] {
2640 return [board_info target is_simulator]
2643 # The "sid" simulators don't set that one, but at least they set
2644 # this one.
2645 if [board_info target exists slow_simulator] {
2646 return [board_info target slow_simulator]
2649 return 0
2652 # Return 1 if the target is a VxWorks kernel.
2654 proc check_effective_target_vxworks_kernel { } {
2655 return [check_no_compiler_messages vxworks_kernel assembly {
2656 #if !defined __vxworks || defined __RTP__
2657 #error NO
2658 #endif
2662 # Return 1 if the target is a VxWorks RTP.
2664 proc check_effective_target_vxworks_rtp { } {
2665 return [check_no_compiler_messages vxworks_rtp assembly {
2666 #if !defined __vxworks || !defined __RTP__
2667 #error NO
2668 #endif
2672 # Return 1 if the target is expected to provide wide character support.
2674 proc check_effective_target_wchar { } {
2675 if {[check_missing_uclibc_feature UCLIBC_HAS_WCHAR]} {
2676 return 0
2678 return [check_no_compiler_messages wchar assembly {
2679 #include <wchar.h>
2683 # Return 1 if the target has <pthread.h>.
2685 proc check_effective_target_pthread_h { } {
2686 return [check_no_compiler_messages pthread_h assembly {
2687 #include <pthread.h>
2691 # Return 1 if the target can truncate a file from a file-descriptor,
2692 # as used by libgfortran/io/unix.c:fd_truncate; i.e. ftruncate or
2693 # chsize. We test for a trivially functional truncation; no stubs.
2694 # As libgfortran uses _FILE_OFFSET_BITS 64, we do too; it'll cause a
2695 # different function to be used.
2697 proc check_effective_target_fd_truncate { } {
2698 set prog {
2699 #define _FILE_OFFSET_BITS 64
2700 #include <unistd.h>
2701 #include <stdio.h>
2702 #include <stdlib.h>
2703 int main ()
2705 FILE *f = fopen ("tst.tmp", "wb");
2706 int fd;
2707 const char t[] = "test writing more than ten characters";
2708 char s[11];
2709 fd = fileno (f);
2710 write (fd, t, sizeof (t) - 1);
2711 lseek (fd, 0, 0);
2712 if (ftruncate (fd, 10) != 0)
2713 exit (1);
2714 close (fd);
2715 f = fopen ("tst.tmp", "rb");
2716 if (fread (s, 1, sizeof (s), f) != 10 || strncmp (s, t, 10) != 0)
2717 exit (1);
2718 exit (0);
2722 if { [check_runtime ftruncate $prog] } {
2723 return 1;
2726 regsub "ftruncate" $prog "chsize" prog
2727 return [check_runtime chsize $prog]
2730 # Add to FLAGS all the target-specific flags needed to access the c99 runtime.
2732 proc add_options_for_c99_runtime { flags } {
2733 if { [istarget *-*-solaris2*] } {
2734 return "$flags -std=c99"
2736 if { [istarget powerpc-*-darwin*] } {
2737 return "$flags -mmacosx-version-min=10.3"
2739 return $flags
2742 # Return 1 if the target provides a full C99 runtime.
2744 proc check_effective_target_c99_runtime { } {
2745 return [check_cached_effective_target c99_runtime {
2746 global srcdir
2748 set file [open "$srcdir/gcc.dg/builtins-config.h"]
2749 set contents [read $file]
2750 close $file
2751 append contents {
2752 #ifndef HAVE_C99_RUNTIME
2753 #error FOO
2754 #endif
2756 check_no_compiler_messages_nocache c99_runtime assembly \
2757 $contents [add_options_for_c99_runtime ""]
2761 # Return 1 if target wchar_t is at least 4 bytes.
2763 proc check_effective_target_4byte_wchar_t { } {
2764 return [check_no_compiler_messages 4byte_wchar_t object {
2765 int dummy[sizeof (__WCHAR_TYPE__) >= 4 ? 1 : -1];
2769 # Return 1 if the target supports automatic stack alignment.
2771 proc check_effective_target_automatic_stack_alignment { } {
2772 if { [istarget i?86*-*-*]
2773 || [istarget x86_64-*-*] } then {
2774 return 1
2775 } else {
2776 return 0
2780 # Return 1 if avx instructions can be compiled.
2782 proc check_effective_target_avx { } {
2783 return [check_no_compiler_messages avx object {
2784 void _mm256_zeroall (void)
2786 __builtin_ia32_vzeroall ();
2788 } "-O2 -mavx" ]
2791 # Return 1 if C wchar_t type is compatible with char16_t.
2793 proc check_effective_target_wchar_t_char16_t_compatible { } {
2794 return [check_no_compiler_messages wchar_t_char16_t object {
2795 __WCHAR_TYPE__ wc;
2796 __CHAR16_TYPE__ *p16 = &wc;
2797 char t[(((__CHAR16_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
2801 # Return 1 if C wchar_t type is compatible with char32_t.
2803 proc check_effective_target_wchar_t_char32_t_compatible { } {
2804 return [check_no_compiler_messages wchar_t_char32_t object {
2805 __WCHAR_TYPE__ wc;
2806 __CHAR32_TYPE__ *p32 = &wc;
2807 char t[(((__CHAR32_TYPE__) -1) < 0 == ((__WCHAR_TYPE__) -1) < 0) ? 1 : -1];
2811 # Return 1 if pow10 function exists.
2813 proc check_effective_target_pow10 { } {
2814 return [check_runtime pow10 {
2815 #include <math.h>
2816 int main () {
2817 double x;
2818 x = pow10 (1);
2819 return 0;
2821 } "-lm" ]
2824 # Return 1 if current options generate DFP instructions, 0 otherwise.
2826 proc check_effective_target_hard_dfp {} {
2827 return [check_no_messages_and_pattern hard_dfp "!adddd3" assembly {
2828 _Decimal64 x, y, z;
2829 void foo (void) { z = x + y; }
2833 # Return 1 if string.h and wchar.h headers provide C++ requires overloads
2834 # for strchr etc. functions.
2836 proc check_effective_target_correct_iso_cpp_string_wchar_protos { } {
2837 return [check_no_compiler_messages correct_iso_cpp_string_wchar_protos assembly {
2838 #include <string.h>
2839 #include <wchar.h>
2840 #if !defined(__cplusplus) \
2841 || !defined(__CORRECT_ISO_CPP_STRING_H_PROTO) \
2842 || !defined(__CORRECT_ISO_CPP_WCHAR_H_PROTO)
2843 ISO C++ correct string.h and wchar.h protos not supported.
2844 #else
2845 int i;
2846 #endif
2850 # Return 1 if the target supports IEEE arithmetic.
2852 proc check_effective_target_ieee { } {
2853 global et_ieee_saved
2855 if { ![info exists et_ieee_saved] } {
2856 set et_ieee_saved 1
2857 if { [istarget vax-*-*]
2858 || [istarget powerpc-*-*spe*] } {
2859 set et_ieee_saved 0
2863 return $et_ieee_saved