1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
52 #include "double-int.h"
60 #include "hard-reg-set.h"
64 #include "insn-config.h"
65 #include "insn-attr.h"
67 #include "conditions.h"
72 #include "rtl-error.h"
73 #include "toplev.h" /* exact_log2, floor_log2 */
77 #include "dominance.h"
80 #include "basic-block.h"
82 #include "targhooks.h"
85 #include "statistics.h"
87 #include "fixed-value.h"
95 #include "tree-pass.h"
98 #include "plugin-api.h"
101 #include "tree-ssa.h"
102 #include "coverage.h"
107 #include "tree-pretty-print.h" /* for dump_function_header */
109 #include "wide-int-print.h"
110 #include "rtl-iter.h"
112 #ifdef XCOFF_DEBUGGING_INFO
113 #include "xcoffout.h" /* Needed for external data
114 declarations for e.g. AIX 4.x. */
117 #include "dwarf2out.h"
119 #ifdef DBX_DEBUGGING_INFO
123 #ifdef SDB_DEBUGGING_INFO
127 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
128 So define a null default for it to save conditionalization later. */
129 #ifndef CC_STATUS_INIT
130 #define CC_STATUS_INIT
133 /* Is the given character a logical line separator for the assembler? */
134 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
135 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
138 #ifndef JUMP_TABLES_IN_TEXT_SECTION
139 #define JUMP_TABLES_IN_TEXT_SECTION 0
142 /* Bitflags used by final_scan_insn. */
144 #define SEEN_EMITTED 2
146 /* Last insn processed by final_scan_insn. */
147 static rtx_insn
*debug_insn
;
148 rtx_insn
*current_output_insn
;
150 /* Line number of last NOTE. */
151 static int last_linenum
;
153 /* Last discriminator written to assembly. */
154 static int last_discriminator
;
156 /* Discriminator of current block. */
157 static int discriminator
;
159 /* Highest line number in current block. */
160 static int high_block_linenum
;
162 /* Likewise for function. */
163 static int high_function_linenum
;
165 /* Filename of last NOTE. */
166 static const char *last_filename
;
168 /* Override filename and line number. */
169 static const char *override_filename
;
170 static int override_linenum
;
172 /* Whether to force emission of a line note before the next insn. */
173 static bool force_source_line
= false;
175 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
177 /* Nonzero while outputting an `asm' with operands.
178 This means that inconsistencies are the user's fault, so don't die.
179 The precise value is the insn being output, to pass to error_for_asm. */
180 const rtx_insn
*this_is_asm_operands
;
182 /* Number of operands of this insn, for an `asm' with operands. */
183 static unsigned int insn_noperands
;
185 /* Compare optimization flag. */
187 static rtx last_ignored_compare
= 0;
189 /* Assign a unique number to each insn that is output.
190 This can be used to generate unique local labels. */
192 static int insn_counter
= 0;
194 /* This variable contains machine-dependent flags (defined in tm.h)
195 set and examined by output routines
196 that describe how to interpret the condition codes properly. */
200 /* During output of an insn, this contains a copy of cc_status
201 from before the insn. */
203 CC_STATUS cc_prev_status
;
205 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
207 static int block_depth
;
209 /* Nonzero if have enabled APP processing of our assembler output. */
213 /* If we are outputting an insn sequence, this contains the sequence rtx.
216 rtx_sequence
*final_sequence
;
218 #ifdef ASSEMBLER_DIALECT
220 /* Number of the assembler dialect to use, starting at 0. */
221 static int dialect_number
;
224 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
225 rtx current_insn_predicate
;
227 /* True if printing into -fdump-final-insns= dump. */
228 bool final_insns_dump_p
;
230 /* True if profile_function should be called, but hasn't been called yet. */
231 static bool need_profile_function
;
233 static int asm_insn_count (rtx
);
234 static void profile_function (FILE *);
235 static void profile_after_prologue (FILE *);
236 static bool notice_source_line (rtx_insn
*, bool *);
237 static rtx
walk_alter_subreg (rtx
*, bool *);
238 static void output_asm_name (void);
239 static void output_alternate_entry_point (FILE *, rtx_insn
*);
240 static tree
get_mem_expr_from_op (rtx
, int *);
241 static void output_asm_operand_names (rtx
*, int *, int);
242 #ifdef LEAF_REGISTERS
243 static void leaf_renumber_regs (rtx_insn
*);
246 static int alter_cond (rtx
);
248 #ifndef ADDR_VEC_ALIGN
249 static int final_addr_vec_align (rtx
);
251 static int align_fuzz (rtx
, rtx
, int, unsigned);
252 static void collect_fn_hard_reg_usage (void);
253 static tree
get_call_fndecl (rtx_insn
*);
255 /* Initialize data in final at the beginning of a compilation. */
258 init_final (const char *filename ATTRIBUTE_UNUSED
)
263 #ifdef ASSEMBLER_DIALECT
264 dialect_number
= ASSEMBLER_DIALECT
;
268 /* Default target function prologue and epilogue assembler output.
270 If not overridden for epilogue code, then the function body itself
271 contains return instructions wherever needed. */
273 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
274 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
279 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
280 tree decl ATTRIBUTE_UNUSED
,
281 bool new_is_cold ATTRIBUTE_UNUSED
)
285 /* Default target hook that outputs nothing to a stream. */
287 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
291 /* Enable APP processing of subsequent output.
292 Used before the output from an `asm' statement. */
299 fputs (ASM_APP_ON
, asm_out_file
);
304 /* Disable APP processing of subsequent output.
305 Called from varasm.c before most kinds of output. */
312 fputs (ASM_APP_OFF
, asm_out_file
);
317 /* Return the number of slots filled in the current
318 delayed branch sequence (we don't count the insn needing the
319 delay slot). Zero if not in a delayed branch sequence. */
323 dbr_sequence_length (void)
325 if (final_sequence
!= 0)
326 return XVECLEN (final_sequence
, 0) - 1;
332 /* The next two pages contain routines used to compute the length of an insn
333 and to shorten branches. */
335 /* Arrays for insn lengths, and addresses. The latter is referenced by
336 `insn_current_length'. */
338 static int *insn_lengths
;
340 vec
<int> insn_addresses_
;
342 /* Max uid for which the above arrays are valid. */
343 static int insn_lengths_max_uid
;
345 /* Address of insn being processed. Used by `insn_current_length'. */
346 int insn_current_address
;
348 /* Address of insn being processed in previous iteration. */
349 int insn_last_address
;
351 /* known invariant alignment of insn being processed. */
352 int insn_current_align
;
354 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
355 gives the next following alignment insn that increases the known
356 alignment, or NULL_RTX if there is no such insn.
357 For any alignment obtained this way, we can again index uid_align with
358 its uid to obtain the next following align that in turn increases the
359 alignment, till we reach NULL_RTX; the sequence obtained this way
360 for each insn we'll call the alignment chain of this insn in the following
363 struct label_alignment
369 static rtx
*uid_align
;
370 static int *uid_shuid
;
371 static struct label_alignment
*label_align
;
373 /* Indicate that branch shortening hasn't yet been done. */
376 init_insn_lengths (void)
387 insn_lengths_max_uid
= 0;
389 if (HAVE_ATTR_length
)
390 INSN_ADDRESSES_FREE ();
398 /* Obtain the current length of an insn. If branch shortening has been done,
399 get its actual length. Otherwise, use FALLBACK_FN to calculate the
402 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
408 if (!HAVE_ATTR_length
)
411 if (insn_lengths_max_uid
> INSN_UID (insn
))
412 return insn_lengths
[INSN_UID (insn
)];
414 switch (GET_CODE (insn
))
424 length
= fallback_fn (insn
);
428 body
= PATTERN (insn
);
429 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
432 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
433 length
= asm_insn_count (body
) * fallback_fn (insn
);
434 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
435 for (i
= 0; i
< seq
->len (); i
++)
436 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
438 length
= fallback_fn (insn
);
445 #ifdef ADJUST_INSN_LENGTH
446 ADJUST_INSN_LENGTH (insn
, length
);
451 /* Obtain the current length of an insn. If branch shortening has been done,
452 get its actual length. Otherwise, get its maximum length. */
454 get_attr_length (rtx_insn
*insn
)
456 return get_attr_length_1 (insn
, insn_default_length
);
459 /* Obtain the current length of an insn. If branch shortening has been done,
460 get its actual length. Otherwise, get its minimum length. */
462 get_attr_min_length (rtx_insn
*insn
)
464 return get_attr_length_1 (insn
, insn_min_length
);
467 /* Code to handle alignment inside shorten_branches. */
469 /* Here is an explanation how the algorithm in align_fuzz can give
472 Call a sequence of instructions beginning with alignment point X
473 and continuing until the next alignment point `block X'. When `X'
474 is used in an expression, it means the alignment value of the
477 Call the distance between the start of the first insn of block X, and
478 the end of the last insn of block X `IX', for the `inner size of X'.
479 This is clearly the sum of the instruction lengths.
481 Likewise with the next alignment-delimited block following X, which we
484 Call the distance between the start of the first insn of block X, and
485 the start of the first insn of block Y `OX', for the `outer size of X'.
487 The estimated padding is then OX - IX.
489 OX can be safely estimated as
494 OX = round_up(IX, X) + Y - X
496 Clearly est(IX) >= real(IX), because that only depends on the
497 instruction lengths, and those being overestimated is a given.
499 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
500 we needn't worry about that when thinking about OX.
502 When X >= Y, the alignment provided by Y adds no uncertainty factor
503 for branch ranges starting before X, so we can just round what we have.
504 But when X < Y, we don't know anything about the, so to speak,
505 `middle bits', so we have to assume the worst when aligning up from an
506 address mod X to one mod Y, which is Y - X. */
509 #define LABEL_ALIGN(LABEL) align_labels_log
513 #define LOOP_ALIGN(LABEL) align_loops_log
516 #ifndef LABEL_ALIGN_AFTER_BARRIER
517 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
521 #define JUMP_ALIGN(LABEL) align_jumps_log
525 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
531 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
533 return align_loops_max_skip
;
537 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
539 return align_labels_max_skip
;
543 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
545 return align_jumps_max_skip
;
548 #ifndef ADDR_VEC_ALIGN
550 final_addr_vec_align (rtx addr_vec
)
552 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
554 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
555 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
556 return exact_log2 (align
);
560 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
563 #ifndef INSN_LENGTH_ALIGNMENT
564 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
567 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
569 static int min_labelno
, max_labelno
;
571 #define LABEL_TO_ALIGNMENT(LABEL) \
572 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
574 #define LABEL_TO_MAX_SKIP(LABEL) \
575 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
577 /* For the benefit of port specific code do this also as a function. */
580 label_to_alignment (rtx label
)
582 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
583 return LABEL_TO_ALIGNMENT (label
);
588 label_to_max_skip (rtx label
)
590 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
591 return LABEL_TO_MAX_SKIP (label
);
595 /* The differences in addresses
596 between a branch and its target might grow or shrink depending on
597 the alignment the start insn of the range (the branch for a forward
598 branch or the label for a backward branch) starts out on; if these
599 differences are used naively, they can even oscillate infinitely.
600 We therefore want to compute a 'worst case' address difference that
601 is independent of the alignment the start insn of the range end
602 up on, and that is at least as large as the actual difference.
603 The function align_fuzz calculates the amount we have to add to the
604 naively computed difference, by traversing the part of the alignment
605 chain of the start insn of the range that is in front of the end insn
606 of the range, and considering for each alignment the maximum amount
607 that it might contribute to a size increase.
609 For casesi tables, we also want to know worst case minimum amounts of
610 address difference, in case a machine description wants to introduce
611 some common offset that is added to all offsets in a table.
612 For this purpose, align_fuzz with a growth argument of 0 computes the
613 appropriate adjustment. */
615 /* Compute the maximum delta by which the difference of the addresses of
616 START and END might grow / shrink due to a different address for start
617 which changes the size of alignment insns between START and END.
618 KNOWN_ALIGN_LOG is the alignment known for START.
619 GROWTH should be ~0 if the objective is to compute potential code size
620 increase, and 0 if the objective is to compute potential shrink.
621 The return value is undefined for any other value of GROWTH. */
624 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
626 int uid
= INSN_UID (start
);
628 int known_align
= 1 << known_align_log
;
629 int end_shuid
= INSN_SHUID (end
);
632 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
634 int align_addr
, new_align
;
636 uid
= INSN_UID (align_label
);
637 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
638 if (uid_shuid
[uid
] > end_shuid
)
640 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
641 new_align
= 1 << known_align_log
;
642 if (new_align
< known_align
)
644 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
645 known_align
= new_align
;
650 /* Compute a worst-case reference address of a branch so that it
651 can be safely used in the presence of aligned labels. Since the
652 size of the branch itself is unknown, the size of the branch is
653 not included in the range. I.e. for a forward branch, the reference
654 address is the end address of the branch as known from the previous
655 branch shortening pass, minus a value to account for possible size
656 increase due to alignment. For a backward branch, it is the start
657 address of the branch as known from the current pass, plus a value
658 to account for possible size increase due to alignment.
659 NB.: Therefore, the maximum offset allowed for backward branches needs
660 to exclude the branch size. */
663 insn_current_reference_address (rtx_insn
*branch
)
668 if (! INSN_ADDRESSES_SET_P ())
671 seq
= NEXT_INSN (PREV_INSN (branch
));
672 seq_uid
= INSN_UID (seq
);
673 if (!JUMP_P (branch
))
674 /* This can happen for example on the PA; the objective is to know the
675 offset to address something in front of the start of the function.
676 Thus, we can treat it like a backward branch.
677 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
678 any alignment we'd encounter, so we skip the call to align_fuzz. */
679 return insn_current_address
;
680 dest
= JUMP_LABEL (branch
);
682 /* BRANCH has no proper alignment chain set, so use SEQ.
683 BRANCH also has no INSN_SHUID. */
684 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
686 /* Forward branch. */
687 return (insn_last_address
+ insn_lengths
[seq_uid
]
688 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
692 /* Backward branch. */
693 return (insn_current_address
694 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
698 /* Compute branch alignments based on frequency information in the
702 compute_alignments (void)
704 int log
, max_skip
, max_log
;
707 int freq_threshold
= 0;
715 max_labelno
= max_label_num ();
716 min_labelno
= get_first_label_num ();
717 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
719 /* If not optimizing or optimizing for size, don't assign any alignments. */
720 if (! optimize
|| optimize_function_for_size_p (cfun
))
725 dump_reg_info (dump_file
);
726 dump_flow_info (dump_file
, TDF_DETAILS
);
727 flow_loops_dump (dump_file
, NULL
, 1);
729 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
730 FOR_EACH_BB_FN (bb
, cfun
)
731 if (bb
->frequency
> freq_max
)
732 freq_max
= bb
->frequency
;
733 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
736 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
737 FOR_EACH_BB_FN (bb
, cfun
)
739 rtx_insn
*label
= BB_HEAD (bb
);
740 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
745 || optimize_bb_for_size_p (bb
))
749 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
750 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
754 max_log
= LABEL_ALIGN (label
);
755 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
757 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
759 if (e
->flags
& EDGE_FALLTHRU
)
760 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
762 branch_frequency
+= EDGE_FREQUENCY (e
);
766 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
767 " %2i fall %4i branch %4i",
768 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
770 fallthru_frequency
, branch_frequency
);
771 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
772 fprintf (dump_file
, " inner_loop");
773 if (bb
->loop_father
->header
== bb
)
774 fprintf (dump_file
, " loop_header");
775 fprintf (dump_file
, "\n");
778 /* There are two purposes to align block with no fallthru incoming edge:
779 1) to avoid fetch stalls when branch destination is near cache boundary
780 2) to improve cache efficiency in case the previous block is not executed
781 (so it does not need to be in the cache).
783 We to catch first case, we align frequently executed blocks.
784 To catch the second, we align blocks that are executed more frequently
785 than the predecessor and the predecessor is likely to not be executed
786 when function is called. */
789 && (branch_frequency
> freq_threshold
790 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
791 && (bb
->prev_bb
->frequency
792 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
794 log
= JUMP_ALIGN (label
);
796 fprintf (dump_file
, " jump alignment added.\n");
800 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
803 /* In case block is frequent and reached mostly by non-fallthru edge,
804 align it. It is most likely a first block of loop. */
806 && !(single_succ_p (bb
)
807 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
808 && optimize_bb_for_speed_p (bb
)
809 && branch_frequency
+ fallthru_frequency
> freq_threshold
811 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
813 log
= LOOP_ALIGN (label
);
815 fprintf (dump_file
, " internal loop alignment added.\n");
819 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
822 LABEL_TO_ALIGNMENT (label
) = max_log
;
823 LABEL_TO_MAX_SKIP (label
) = max_skip
;
826 loop_optimizer_finalize ();
827 free_dominance_info (CDI_DOMINATORS
);
831 /* Grow the LABEL_ALIGN array after new labels are created. */
834 grow_label_align (void)
836 int old
= max_labelno
;
840 max_labelno
= max_label_num ();
842 n_labels
= max_labelno
- min_labelno
+ 1;
843 n_old_labels
= old
- min_labelno
+ 1;
845 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
847 /* Range of labels grows monotonically in the function. Failing here
848 means that the initialization of array got lost. */
849 gcc_assert (n_old_labels
<= n_labels
);
851 memset (label_align
+ n_old_labels
, 0,
852 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
855 /* Update the already computed alignment information. LABEL_PAIRS is a vector
856 made up of pairs of labels for which the alignment information of the first
857 element will be copied from that of the second element. */
860 update_alignments (vec
<rtx
> &label_pairs
)
863 rtx iter
, label
= NULL_RTX
;
865 if (max_labelno
!= max_label_num ())
868 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
871 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
872 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
880 const pass_data pass_data_compute_alignments
=
883 "alignments", /* name */
884 OPTGROUP_NONE
, /* optinfo_flags */
886 0, /* properties_required */
887 0, /* properties_provided */
888 0, /* properties_destroyed */
889 0, /* todo_flags_start */
890 0, /* todo_flags_finish */
893 class pass_compute_alignments
: public rtl_opt_pass
896 pass_compute_alignments (gcc::context
*ctxt
)
897 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
900 /* opt_pass methods: */
901 virtual unsigned int execute (function
*) { return compute_alignments (); }
903 }; // class pass_compute_alignments
908 make_pass_compute_alignments (gcc::context
*ctxt
)
910 return new pass_compute_alignments (ctxt
);
914 /* Make a pass over all insns and compute their actual lengths by shortening
915 any branches of variable length if possible. */
917 /* shorten_branches might be called multiple times: for example, the SH
918 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
919 In order to do this, it needs proper length information, which it obtains
920 by calling shorten_branches. This cannot be collapsed with
921 shorten_branches itself into a single pass unless we also want to integrate
922 reorg.c, since the branch splitting exposes new instructions with delay
926 shorten_branches (rtx_insn
*first
)
933 #define MAX_CODE_ALIGN 16
935 int something_changed
= 1;
936 char *varying_length
;
939 rtx align_tab
[MAX_CODE_ALIGN
];
941 /* Compute maximum UID and allocate label_align / uid_shuid. */
942 max_uid
= get_max_uid ();
944 /* Free uid_shuid before reallocating it. */
947 uid_shuid
= XNEWVEC (int, max_uid
);
949 if (max_labelno
!= max_label_num ())
952 /* Initialize label_align and set up uid_shuid to be strictly
953 monotonically rising with insn order. */
954 /* We use max_log here to keep track of the maximum alignment we want to
955 impose on the next CODE_LABEL (or the current one if we are processing
956 the CODE_LABEL itself). */
961 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
965 INSN_SHUID (insn
) = i
++;
972 bool next_is_jumptable
;
974 /* Merge in alignments computed by compute_alignments. */
975 log
= LABEL_TO_ALIGNMENT (insn
);
979 max_skip
= LABEL_TO_MAX_SKIP (insn
);
982 next
= next_nonnote_insn (insn
);
983 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
984 if (!next_is_jumptable
)
986 log
= LABEL_ALIGN (insn
);
990 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
993 /* ADDR_VECs only take room if read-only data goes into the text
995 if ((JUMP_TABLES_IN_TEXT_SECTION
996 || readonly_data_section
== text_section
)
997 && next_is_jumptable
)
999 log
= ADDR_VEC_ALIGN (next
);
1003 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
1006 LABEL_TO_ALIGNMENT (insn
) = max_log
;
1007 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
1011 else if (BARRIER_P (insn
))
1015 for (label
= insn
; label
&& ! INSN_P (label
);
1016 label
= NEXT_INSN (label
))
1017 if (LABEL_P (label
))
1019 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1023 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1029 if (!HAVE_ATTR_length
)
1032 /* Allocate the rest of the arrays. */
1033 insn_lengths
= XNEWVEC (int, max_uid
);
1034 insn_lengths_max_uid
= max_uid
;
1035 /* Syntax errors can lead to labels being outside of the main insn stream.
1036 Initialize insn_addresses, so that we get reproducible results. */
1037 INSN_ADDRESSES_ALLOC (max_uid
);
1039 varying_length
= XCNEWVEC (char, max_uid
);
1041 /* Initialize uid_align. We scan instructions
1042 from end to start, and keep in align_tab[n] the last seen insn
1043 that does an alignment of at least n+1, i.e. the successor
1044 in the alignment chain for an insn that does / has a known
1046 uid_align
= XCNEWVEC (rtx
, max_uid
);
1048 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1049 align_tab
[i
] = NULL_RTX
;
1050 seq
= get_last_insn ();
1051 for (; seq
; seq
= PREV_INSN (seq
))
1053 int uid
= INSN_UID (seq
);
1055 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1056 uid_align
[uid
] = align_tab
[0];
1059 /* Found an alignment label. */
1060 uid_align
[uid
] = align_tab
[log
];
1061 for (i
= log
- 1; i
>= 0; i
--)
1066 /* When optimizing, we start assuming minimum length, and keep increasing
1067 lengths as we find the need for this, till nothing changes.
1068 When not optimizing, we start assuming maximum lengths, and
1069 do a single pass to update the lengths. */
1070 bool increasing
= optimize
!= 0;
1072 #ifdef CASE_VECTOR_SHORTEN_MODE
1075 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1078 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1079 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1082 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1084 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1085 int len
, i
, min
, max
, insn_shuid
;
1087 addr_diff_vec_flags flags
;
1089 if (! JUMP_TABLE_DATA_P (insn
)
1090 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1092 pat
= PATTERN (insn
);
1093 len
= XVECLEN (pat
, 1);
1094 gcc_assert (len
> 0);
1095 min_align
= MAX_CODE_ALIGN
;
1096 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1098 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1099 int shuid
= INSN_SHUID (lab
);
1110 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1111 min_align
= LABEL_TO_ALIGNMENT (lab
);
1113 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1114 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1115 insn_shuid
= INSN_SHUID (insn
);
1116 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1117 memset (&flags
, 0, sizeof (flags
));
1118 flags
.min_align
= min_align
;
1119 flags
.base_after_vec
= rel
> insn_shuid
;
1120 flags
.min_after_vec
= min
> insn_shuid
;
1121 flags
.max_after_vec
= max
> insn_shuid
;
1122 flags
.min_after_base
= min
> rel
;
1123 flags
.max_after_base
= max
> rel
;
1124 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1127 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1130 #endif /* CASE_VECTOR_SHORTEN_MODE */
1132 /* Compute initial lengths, addresses, and varying flags for each insn. */
1133 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1135 for (insn_current_address
= 0, insn
= first
;
1137 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1139 uid
= INSN_UID (insn
);
1141 insn_lengths
[uid
] = 0;
1145 int log
= LABEL_TO_ALIGNMENT (insn
);
1148 int align
= 1 << log
;
1149 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1150 insn_lengths
[uid
] = new_address
- insn_current_address
;
1154 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1156 if (NOTE_P (insn
) || BARRIER_P (insn
)
1157 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1159 if (insn
->deleted ())
1162 body
= PATTERN (insn
);
1163 if (JUMP_TABLE_DATA_P (insn
))
1165 /* This only takes room if read-only data goes into the text
1167 if (JUMP_TABLES_IN_TEXT_SECTION
1168 || readonly_data_section
== text_section
)
1169 insn_lengths
[uid
] = (XVECLEN (body
,
1170 GET_CODE (body
) == ADDR_DIFF_VEC
)
1171 * GET_MODE_SIZE (GET_MODE (body
)));
1172 /* Alignment is handled by ADDR_VEC_ALIGN. */
1174 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1175 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1176 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1179 int const_delay_slots
;
1181 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1183 const_delay_slots
= 0;
1185 int (*inner_length_fun
) (rtx_insn
*)
1186 = const_delay_slots
? length_fun
: insn_default_length
;
1187 /* Inside a delay slot sequence, we do not do any branch shortening
1188 if the shortening could change the number of delay slots
1190 for (i
= 0; i
< body_seq
->len (); i
++)
1192 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1193 int inner_uid
= INSN_UID (inner_insn
);
1196 if (GET_CODE (body
) == ASM_INPUT
1197 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1198 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1199 * insn_default_length (inner_insn
));
1201 inner_length
= inner_length_fun (inner_insn
);
1203 insn_lengths
[inner_uid
] = inner_length
;
1204 if (const_delay_slots
)
1206 if ((varying_length
[inner_uid
]
1207 = insn_variable_length_p (inner_insn
)) != 0)
1208 varying_length
[uid
] = 1;
1209 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1210 + insn_lengths
[uid
]);
1213 varying_length
[inner_uid
] = 0;
1214 insn_lengths
[uid
] += inner_length
;
1217 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1219 insn_lengths
[uid
] = length_fun (insn
);
1220 varying_length
[uid
] = insn_variable_length_p (insn
);
1223 /* If needed, do any adjustment. */
1224 #ifdef ADJUST_INSN_LENGTH
1225 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1226 if (insn_lengths
[uid
] < 0)
1227 fatal_insn ("negative insn length", insn
);
1231 /* Now loop over all the insns finding varying length insns. For each,
1232 get the current insn length. If it has changed, reflect the change.
1233 When nothing changes for a full pass, we are done. */
1235 while (something_changed
)
1237 something_changed
= 0;
1238 insn_current_align
= MAX_CODE_ALIGN
- 1;
1239 for (insn_current_address
= 0, insn
= first
;
1241 insn
= NEXT_INSN (insn
))
1244 #ifdef ADJUST_INSN_LENGTH
1249 uid
= INSN_UID (insn
);
1253 int log
= LABEL_TO_ALIGNMENT (insn
);
1255 #ifdef CASE_VECTOR_SHORTEN_MODE
1256 /* If the mode of a following jump table was changed, we
1257 may need to update the alignment of this label. */
1259 bool next_is_jumptable
;
1261 next
= next_nonnote_insn (insn
);
1262 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1263 if ((JUMP_TABLES_IN_TEXT_SECTION
1264 || readonly_data_section
== text_section
)
1265 && next_is_jumptable
)
1267 int newlog
= ADDR_VEC_ALIGN (next
);
1271 LABEL_TO_ALIGNMENT (insn
) = log
;
1272 something_changed
= 1;
1277 if (log
> insn_current_align
)
1279 int align
= 1 << log
;
1280 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1281 insn_lengths
[uid
] = new_address
- insn_current_address
;
1282 insn_current_align
= log
;
1283 insn_current_address
= new_address
;
1286 insn_lengths
[uid
] = 0;
1287 INSN_ADDRESSES (uid
) = insn_current_address
;
1291 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1292 if (length_align
< insn_current_align
)
1293 insn_current_align
= length_align
;
1295 insn_last_address
= INSN_ADDRESSES (uid
);
1296 INSN_ADDRESSES (uid
) = insn_current_address
;
1298 #ifdef CASE_VECTOR_SHORTEN_MODE
1300 && JUMP_TABLE_DATA_P (insn
)
1301 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1303 rtx body
= PATTERN (insn
);
1304 int old_length
= insn_lengths
[uid
];
1306 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1307 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1308 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1309 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1310 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1311 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1314 addr_diff_vec_flags flags
;
1315 machine_mode vec_mode
;
1317 /* Avoid automatic aggregate initialization. */
1318 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1320 /* Try to find a known alignment for rel_lab. */
1321 for (prev
= rel_lab
;
1323 && ! insn_lengths
[INSN_UID (prev
)]
1324 && ! (varying_length
[INSN_UID (prev
)] & 1);
1325 prev
= PREV_INSN (prev
))
1326 if (varying_length
[INSN_UID (prev
)] & 2)
1328 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1332 /* See the comment on addr_diff_vec_flags in rtl.h for the
1333 meaning of the flags values. base: REL_LAB vec: INSN */
1334 /* Anything after INSN has still addresses from the last
1335 pass; adjust these so that they reflect our current
1336 estimate for this pass. */
1337 if (flags
.base_after_vec
)
1338 rel_addr
+= insn_current_address
- insn_last_address
;
1339 if (flags
.min_after_vec
)
1340 min_addr
+= insn_current_address
- insn_last_address
;
1341 if (flags
.max_after_vec
)
1342 max_addr
+= insn_current_address
- insn_last_address
;
1343 /* We want to know the worst case, i.e. lowest possible value
1344 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1345 its offset is positive, and we have to be wary of code shrink;
1346 otherwise, it is negative, and we have to be vary of code
1348 if (flags
.min_after_base
)
1350 /* If INSN is between REL_LAB and MIN_LAB, the size
1351 changes we are about to make can change the alignment
1352 within the observed offset, therefore we have to break
1353 it up into two parts that are independent. */
1354 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1356 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1357 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1360 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1364 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1366 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1367 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1370 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1372 /* Likewise, determine the highest lowest possible value
1373 for the offset of MAX_LAB. */
1374 if (flags
.max_after_base
)
1376 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1378 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1379 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1382 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1386 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1388 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1389 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1392 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1394 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1395 max_addr
- rel_addr
, body
);
1397 || (GET_MODE_SIZE (vec_mode
)
1398 >= GET_MODE_SIZE (GET_MODE (body
))))
1399 PUT_MODE (body
, vec_mode
);
1400 if (JUMP_TABLES_IN_TEXT_SECTION
1401 || readonly_data_section
== text_section
)
1404 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1405 insn_current_address
+= insn_lengths
[uid
];
1406 if (insn_lengths
[uid
] != old_length
)
1407 something_changed
= 1;
1412 #endif /* CASE_VECTOR_SHORTEN_MODE */
1414 if (! (varying_length
[uid
]))
1416 if (NONJUMP_INSN_P (insn
)
1417 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1421 body
= PATTERN (insn
);
1422 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1424 rtx inner_insn
= XVECEXP (body
, 0, i
);
1425 int inner_uid
= INSN_UID (inner_insn
);
1427 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1429 insn_current_address
+= insn_lengths
[inner_uid
];
1433 insn_current_address
+= insn_lengths
[uid
];
1438 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1440 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1443 body
= PATTERN (insn
);
1445 for (i
= 0; i
< seqn
->len (); i
++)
1447 rtx_insn
*inner_insn
= seqn
->insn (i
);
1448 int inner_uid
= INSN_UID (inner_insn
);
1451 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1453 /* insn_current_length returns 0 for insns with a
1454 non-varying length. */
1455 if (! varying_length
[inner_uid
])
1456 inner_length
= insn_lengths
[inner_uid
];
1458 inner_length
= insn_current_length (inner_insn
);
1460 if (inner_length
!= insn_lengths
[inner_uid
])
1462 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1464 insn_lengths
[inner_uid
] = inner_length
;
1465 something_changed
= 1;
1468 inner_length
= insn_lengths
[inner_uid
];
1470 insn_current_address
+= inner_length
;
1471 new_length
+= inner_length
;
1476 new_length
= insn_current_length (insn
);
1477 insn_current_address
+= new_length
;
1480 #ifdef ADJUST_INSN_LENGTH
1481 /* If needed, do any adjustment. */
1482 tmp_length
= new_length
;
1483 ADJUST_INSN_LENGTH (insn
, new_length
);
1484 insn_current_address
+= (new_length
- tmp_length
);
1487 if (new_length
!= insn_lengths
[uid
]
1488 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1490 insn_lengths
[uid
] = new_length
;
1491 something_changed
= 1;
1494 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1496 /* For a non-optimizing compile, do only a single pass. */
1501 free (varying_length
);
1504 /* Given the body of an INSN known to be generated by an ASM statement, return
1505 the number of machine instructions likely to be generated for this insn.
1506 This is used to compute its length. */
1509 asm_insn_count (rtx body
)
1513 if (GET_CODE (body
) == ASM_INPUT
)
1514 templ
= XSTR (body
, 0);
1516 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1518 return asm_str_count (templ
);
1521 /* Return the number of machine instructions likely to be generated for the
1522 inline-asm template. */
1524 asm_str_count (const char *templ
)
1531 for (; *templ
; templ
++)
1532 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1539 /* ??? This is probably the wrong place for these. */
1540 /* Structure recording the mapping from source file and directory
1541 names at compile time to those to be embedded in debug
1543 typedef struct debug_prefix_map
1545 const char *old_prefix
;
1546 const char *new_prefix
;
1549 struct debug_prefix_map
*next
;
1552 /* Linked list of such structures. */
1553 static debug_prefix_map
*debug_prefix_maps
;
1556 /* Record a debug file prefix mapping. ARG is the argument to
1557 -fdebug-prefix-map and must be of the form OLD=NEW. */
1560 add_debug_prefix_map (const char *arg
)
1562 debug_prefix_map
*map
;
1565 p
= strchr (arg
, '=');
1568 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1571 map
= XNEW (debug_prefix_map
);
1572 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1573 map
->old_len
= p
- arg
;
1575 map
->new_prefix
= xstrdup (p
);
1576 map
->new_len
= strlen (p
);
1577 map
->next
= debug_prefix_maps
;
1578 debug_prefix_maps
= map
;
1581 /* Perform user-specified mapping of debug filename prefixes. Return
1582 the new name corresponding to FILENAME. */
1585 remap_debug_filename (const char *filename
)
1587 debug_prefix_map
*map
;
1592 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1593 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1597 name
= filename
+ map
->old_len
;
1598 name_len
= strlen (name
) + 1;
1599 s
= (char *) alloca (name_len
+ map
->new_len
);
1600 memcpy (s
, map
->new_prefix
, map
->new_len
);
1601 memcpy (s
+ map
->new_len
, name
, name_len
);
1602 return ggc_strdup (s
);
1605 /* Return true if DWARF2 debug info can be emitted for DECL. */
1608 dwarf2_debug_info_emitted_p (tree decl
)
1610 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1613 if (DECL_IGNORED_P (decl
))
1619 /* Return scope resulting from combination of S1 and S2. */
1621 choose_inner_scope (tree s1
, tree s2
)
1627 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1632 /* Emit lexical block notes needed to change scope from S1 to S2. */
1635 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1637 rtx_insn
*insn
= orig_insn
;
1638 tree com
= NULL_TREE
;
1639 tree ts1
= s1
, ts2
= s2
;
1644 gcc_assert (ts1
&& ts2
);
1645 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1646 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1647 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1648 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1651 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1652 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1661 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1662 NOTE_BLOCK (note
) = s
;
1663 s
= BLOCK_SUPERCONTEXT (s
);
1670 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1671 NOTE_BLOCK (insn
) = s
;
1672 s
= BLOCK_SUPERCONTEXT (s
);
1676 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1677 on the scope tree and the newly reordered instructions. */
1680 reemit_insn_block_notes (void)
1682 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1686 insn
= get_insns ();
1687 for (; insn
; insn
= NEXT_INSN (insn
))
1691 /* Prevent lexical blocks from straddling section boundaries. */
1692 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1694 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1695 s
= BLOCK_SUPERCONTEXT (s
))
1697 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1698 NOTE_BLOCK (note
) = s
;
1699 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1700 NOTE_BLOCK (note
) = s
;
1704 if (!active_insn_p (insn
))
1707 /* Avoid putting scope notes between jump table and its label. */
1708 if (JUMP_TABLE_DATA_P (insn
))
1711 this_block
= insn_scope (insn
);
1712 /* For sequences compute scope resulting from merging all scopes
1713 of instructions nested inside. */
1714 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1719 for (i
= 0; i
< body
->len (); i
++)
1720 this_block
= choose_inner_scope (this_block
,
1721 insn_scope (body
->insn (i
)));
1725 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1728 this_block
= DECL_INITIAL (cfun
->decl
);
1731 if (this_block
!= cur_block
)
1733 change_scope (insn
, cur_block
, this_block
);
1734 cur_block
= this_block
;
1738 /* change_scope emits before the insn, not after. */
1739 note
= emit_note (NOTE_INSN_DELETED
);
1740 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1746 static const char *some_local_dynamic_name
;
1748 /* Locate some local-dynamic symbol still in use by this function
1749 so that we can print its name in local-dynamic base patterns.
1750 Return null if there are no local-dynamic references. */
1753 get_some_local_dynamic_name ()
1755 subrtx_iterator::array_type array
;
1758 if (some_local_dynamic_name
)
1759 return some_local_dynamic_name
;
1761 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1762 if (NONDEBUG_INSN_P (insn
))
1763 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1765 const_rtx x
= *iter
;
1766 if (GET_CODE (x
) == SYMBOL_REF
)
1768 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1769 return some_local_dynamic_name
= XSTR (x
, 0);
1770 if (CONSTANT_POOL_ADDRESS_P (x
))
1771 iter
.substitute (get_pool_constant (x
));
1778 /* Output assembler code for the start of a function,
1779 and initialize some of the variables in this file
1780 for the new function. The label for the function and associated
1781 assembler pseudo-ops have already been output in `assemble_start_function'.
1783 FIRST is the first insn of the rtl for the function being compiled.
1784 FILE is the file to write assembler code to.
1785 OPTIMIZE_P is nonzero if we should eliminate redundant
1786 test and compare insns. */
1789 final_start_function (rtx_insn
*first
, FILE *file
,
1790 int optimize_p ATTRIBUTE_UNUSED
)
1794 this_is_asm_operands
= 0;
1796 need_profile_function
= false;
1798 last_filename
= LOCATION_FILE (prologue_location
);
1799 last_linenum
= LOCATION_LINE (prologue_location
);
1800 last_discriminator
= discriminator
= 0;
1802 high_block_linenum
= high_function_linenum
= last_linenum
;
1804 if (flag_sanitize
& SANITIZE_ADDRESS
)
1805 asan_function_start ();
1807 if (!DECL_IGNORED_P (current_function_decl
))
1808 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1810 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1811 dwarf2out_begin_prologue (0, NULL
);
1813 #ifdef LEAF_REG_REMAP
1814 if (crtl
->uses_only_leaf_regs
)
1815 leaf_renumber_regs (first
);
1818 /* The Sun386i and perhaps other machines don't work right
1819 if the profiling code comes after the prologue. */
1820 if (targetm
.profile_before_prologue () && crtl
->profile
)
1822 if (targetm
.asm_out
.function_prologue
1823 == default_function_pro_epilogue
1824 #ifdef HAVE_prologue
1830 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1836 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1837 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1839 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1840 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1849 need_profile_function
= true;
1851 profile_function (file
);
1854 profile_function (file
);
1857 /* If debugging, assign block numbers to all of the blocks in this
1861 reemit_insn_block_notes ();
1862 number_blocks (current_function_decl
);
1863 /* We never actually put out begin/end notes for the top-level
1864 block in the function. But, conceptually, that block is
1866 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1869 if (warn_frame_larger_than
1870 && get_frame_size () > frame_larger_than_size
)
1872 /* Issue a warning */
1873 warning (OPT_Wframe_larger_than_
,
1874 "the frame size of %wd bytes is larger than %wd bytes",
1875 get_frame_size (), frame_larger_than_size
);
1878 /* First output the function prologue: code to set up the stack frame. */
1879 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1881 /* If the machine represents the prologue as RTL, the profiling code must
1882 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1883 #ifdef HAVE_prologue
1884 if (! HAVE_prologue
)
1886 profile_after_prologue (file
);
1890 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1892 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1893 profile_function (file
);
1897 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1899 #ifndef NO_PROFILE_COUNTERS
1900 # define NO_PROFILE_COUNTERS 0
1902 #ifdef ASM_OUTPUT_REG_PUSH
1903 rtx sval
= NULL
, chain
= NULL
;
1905 if (cfun
->returns_struct
)
1906 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1908 if (cfun
->static_chain_decl
)
1909 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1910 #endif /* ASM_OUTPUT_REG_PUSH */
1912 if (! NO_PROFILE_COUNTERS
)
1914 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1915 switch_to_section (data_section
);
1916 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1917 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1918 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1921 switch_to_section (current_function_section ());
1923 #ifdef ASM_OUTPUT_REG_PUSH
1924 if (sval
&& REG_P (sval
))
1925 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1926 if (chain
&& REG_P (chain
))
1927 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1930 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1932 #ifdef ASM_OUTPUT_REG_PUSH
1933 if (chain
&& REG_P (chain
))
1934 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1935 if (sval
&& REG_P (sval
))
1936 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1940 /* Output assembler code for the end of a function.
1941 For clarity, args are same as those of `final_start_function'
1942 even though not all of them are needed. */
1945 final_end_function (void)
1949 if (!DECL_IGNORED_P (current_function_decl
))
1950 debug_hooks
->end_function (high_function_linenum
);
1952 /* Finally, output the function epilogue:
1953 code to restore the stack frame and return to the caller. */
1954 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1956 /* And debug output. */
1957 if (!DECL_IGNORED_P (current_function_decl
))
1958 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1960 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1961 && dwarf2out_do_frame ())
1962 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1964 some_local_dynamic_name
= 0;
1968 /* Dumper helper for basic block information. FILE is the assembly
1969 output file, and INSN is the instruction being emitted. */
1972 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1973 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1977 if (!flag_debug_asm
)
1980 if (INSN_UID (insn
) < bb_map_size
1981 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1986 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1988 fprintf (file
, " freq:%d", bb
->frequency
);
1990 fprintf (file
, " count:%"PRId64
,
1992 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1993 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1994 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1996 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1998 fprintf (file
, "\n");
2000 if (INSN_UID (insn
) < bb_map_size
2001 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
2006 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
2007 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2009 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
2011 fprintf (file
, "\n");
2015 /* Output assembler code for some insns: all or part of a function.
2016 For description of args, see `final_start_function', above. */
2019 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
2021 rtx_insn
*insn
, *next
;
2024 /* Used for -dA dump. */
2025 basic_block
*start_to_bb
= NULL
;
2026 basic_block
*end_to_bb
= NULL
;
2027 int bb_map_size
= 0;
2030 last_ignored_compare
= 0;
2033 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2035 /* If CC tracking across branches is enabled, record the insn which
2036 jumps to each branch only reached from one place. */
2037 if (optimize_p
&& JUMP_P (insn
))
2039 rtx lab
= JUMP_LABEL (insn
);
2040 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2042 LABEL_REFS (lab
) = insn
;
2055 bb_map_size
= get_max_uid () + 1;
2056 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2057 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2059 /* There is no cfg for a thunk. */
2060 if (!cfun
->is_thunk
)
2061 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2063 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2064 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2068 /* Output the insns. */
2069 for (insn
= first
; insn
;)
2071 if (HAVE_ATTR_length
)
2073 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2075 /* This can be triggered by bugs elsewhere in the compiler if
2076 new insns are created after init_insn_lengths is called. */
2077 gcc_assert (NOTE_P (insn
));
2078 insn_current_address
= -1;
2081 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2084 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2085 bb_map_size
, &bb_seqn
);
2086 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2095 /* Remove CFI notes, to avoid compare-debug failures. */
2096 for (insn
= first
; insn
; insn
= next
)
2098 next
= NEXT_INSN (insn
);
2100 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2101 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2107 get_insn_template (int code
, rtx insn
)
2109 switch (insn_data
[code
].output_format
)
2111 case INSN_OUTPUT_FORMAT_SINGLE
:
2112 return insn_data
[code
].output
.single
;
2113 case INSN_OUTPUT_FORMAT_MULTI
:
2114 return insn_data
[code
].output
.multi
[which_alternative
];
2115 case INSN_OUTPUT_FORMAT_FUNCTION
:
2117 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2118 as_a
<rtx_insn
*> (insn
));
2125 /* Emit the appropriate declaration for an alternate-entry-point
2126 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2127 LABEL_KIND != LABEL_NORMAL.
2129 The case fall-through in this function is intentional. */
2131 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2133 const char *name
= LABEL_NAME (insn
);
2135 switch (LABEL_KIND (insn
))
2137 case LABEL_WEAK_ENTRY
:
2138 #ifdef ASM_WEAKEN_LABEL
2139 ASM_WEAKEN_LABEL (file
, name
);
2141 case LABEL_GLOBAL_ENTRY
:
2142 targetm
.asm_out
.globalize_label (file
, name
);
2143 case LABEL_STATIC_ENTRY
:
2144 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2145 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2147 ASM_OUTPUT_LABEL (file
, name
);
2156 /* Given a CALL_INSN, find and return the nested CALL. */
2158 call_from_call_insn (rtx_call_insn
*insn
)
2161 gcc_assert (CALL_P (insn
));
2164 while (GET_CODE (x
) != CALL
)
2166 switch (GET_CODE (x
))
2171 x
= COND_EXEC_CODE (x
);
2174 x
= XVECEXP (x
, 0, 0);
2184 /* The final scan for one insn, INSN.
2185 Args are same as in `final', except that INSN
2186 is the insn being scanned.
2187 Value returned is the next insn to be scanned.
2189 NOPEEPHOLES is the flag to disallow peephole processing (currently
2190 used for within delayed branch sequence output).
2192 SEEN is used to track the end of the prologue, for emitting
2193 debug information. We force the emission of a line note after
2194 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2197 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2198 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2207 /* Ignore deleted insns. These can occur when we split insns (due to a
2208 template of "#") while not optimizing. */
2209 if (insn
->deleted ())
2210 return NEXT_INSN (insn
);
2212 switch (GET_CODE (insn
))
2215 switch (NOTE_KIND (insn
))
2217 case NOTE_INSN_DELETED
:
2220 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2221 in_cold_section_p
= !in_cold_section_p
;
2223 if (dwarf2out_do_frame ())
2224 dwarf2out_switch_text_section ();
2225 else if (!DECL_IGNORED_P (current_function_decl
))
2226 debug_hooks
->switch_text_section ();
2228 switch_to_section (current_function_section ());
2229 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2230 current_function_decl
,
2232 /* Emit a label for the split cold section. Form label name by
2233 suffixing "cold" to the original function's name. */
2234 if (in_cold_section_p
)
2236 tree cold_function_name
2237 = clone_function_name (current_function_decl
, "cold");
2238 ASM_OUTPUT_LABEL (asm_out_file
,
2239 IDENTIFIER_POINTER (cold_function_name
));
2243 case NOTE_INSN_BASIC_BLOCK
:
2244 if (need_profile_function
)
2246 profile_function (asm_out_file
);
2247 need_profile_function
= false;
2250 if (targetm
.asm_out
.unwind_emit
)
2251 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2253 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2257 case NOTE_INSN_EH_REGION_BEG
:
2258 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2259 NOTE_EH_HANDLER (insn
));
2262 case NOTE_INSN_EH_REGION_END
:
2263 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2264 NOTE_EH_HANDLER (insn
));
2267 case NOTE_INSN_PROLOGUE_END
:
2268 targetm
.asm_out
.function_end_prologue (file
);
2269 profile_after_prologue (file
);
2271 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2273 *seen
|= SEEN_EMITTED
;
2274 force_source_line
= true;
2281 case NOTE_INSN_EPILOGUE_BEG
:
2282 if (!DECL_IGNORED_P (current_function_decl
))
2283 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2284 targetm
.asm_out
.function_begin_epilogue (file
);
2288 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2291 case NOTE_INSN_CFI_LABEL
:
2292 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2293 NOTE_LABEL_NUMBER (insn
));
2296 case NOTE_INSN_FUNCTION_BEG
:
2297 if (need_profile_function
)
2299 profile_function (asm_out_file
);
2300 need_profile_function
= false;
2304 if (!DECL_IGNORED_P (current_function_decl
))
2305 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2307 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2309 *seen
|= SEEN_EMITTED
;
2310 force_source_line
= true;
2317 case NOTE_INSN_BLOCK_BEG
:
2318 if (debug_info_level
== DINFO_LEVEL_NORMAL
2319 || debug_info_level
== DINFO_LEVEL_VERBOSE
2320 || write_symbols
== DWARF2_DEBUG
2321 || write_symbols
== VMS_AND_DWARF2_DEBUG
2322 || write_symbols
== VMS_DEBUG
)
2324 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2328 high_block_linenum
= last_linenum
;
2330 /* Output debugging info about the symbol-block beginning. */
2331 if (!DECL_IGNORED_P (current_function_decl
))
2332 debug_hooks
->begin_block (last_linenum
, n
);
2334 /* Mark this block as output. */
2335 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2337 if (write_symbols
== DBX_DEBUG
2338 || write_symbols
== SDB_DEBUG
)
2340 location_t
*locus_ptr
2341 = block_nonartificial_location (NOTE_BLOCK (insn
));
2343 if (locus_ptr
!= NULL
)
2345 override_filename
= LOCATION_FILE (*locus_ptr
);
2346 override_linenum
= LOCATION_LINE (*locus_ptr
);
2351 case NOTE_INSN_BLOCK_END
:
2352 if (debug_info_level
== DINFO_LEVEL_NORMAL
2353 || debug_info_level
== DINFO_LEVEL_VERBOSE
2354 || write_symbols
== DWARF2_DEBUG
2355 || write_symbols
== VMS_AND_DWARF2_DEBUG
2356 || write_symbols
== VMS_DEBUG
)
2358 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2362 /* End of a symbol-block. */
2364 gcc_assert (block_depth
>= 0);
2366 if (!DECL_IGNORED_P (current_function_decl
))
2367 debug_hooks
->end_block (high_block_linenum
, n
);
2369 if (write_symbols
== DBX_DEBUG
2370 || write_symbols
== SDB_DEBUG
)
2372 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2373 location_t
*locus_ptr
2374 = block_nonartificial_location (outer_block
);
2376 if (locus_ptr
!= NULL
)
2378 override_filename
= LOCATION_FILE (*locus_ptr
);
2379 override_linenum
= LOCATION_LINE (*locus_ptr
);
2383 override_filename
= NULL
;
2384 override_linenum
= 0;
2389 case NOTE_INSN_DELETED_LABEL
:
2390 /* Emit the label. We may have deleted the CODE_LABEL because
2391 the label could be proved to be unreachable, though still
2392 referenced (in the form of having its address taken. */
2393 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2396 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2397 /* Similarly, but need to use different namespace for it. */
2398 if (CODE_LABEL_NUMBER (insn
) != -1)
2399 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2402 case NOTE_INSN_VAR_LOCATION
:
2403 case NOTE_INSN_CALL_ARG_LOCATION
:
2404 if (!DECL_IGNORED_P (current_function_decl
))
2405 debug_hooks
->var_location (insn
);
2418 /* The target port might emit labels in the output function for
2419 some insn, e.g. sh.c output_branchy_insn. */
2420 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2422 int align
= LABEL_TO_ALIGNMENT (insn
);
2423 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2424 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2427 if (align
&& NEXT_INSN (insn
))
2429 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2430 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2432 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2433 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2435 ASM_OUTPUT_ALIGN (file
, align
);
2442 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2443 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2447 next
= next_nonnote_insn (insn
);
2448 /* If this label is followed by a jump-table, make sure we put
2449 the label in the read-only section. Also possibly write the
2450 label and jump table together. */
2451 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2453 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2454 /* In this case, the case vector is being moved by the
2455 target, so don't output the label at all. Leave that
2456 to the back end macros. */
2458 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2462 switch_to_section (targetm
.asm_out
.function_rodata_section
2463 (current_function_decl
));
2465 #ifdef ADDR_VEC_ALIGN
2466 log_align
= ADDR_VEC_ALIGN (next
);
2468 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2470 ASM_OUTPUT_ALIGN (file
, log_align
);
2473 switch_to_section (current_function_section ());
2475 #ifdef ASM_OUTPUT_CASE_LABEL
2476 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2479 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2484 if (LABEL_ALT_ENTRY_P (insn
))
2485 output_alternate_entry_point (file
, insn
);
2487 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2492 rtx body
= PATTERN (insn
);
2493 int insn_code_number
;
2497 /* Reset this early so it is correct for ASM statements. */
2498 current_insn_predicate
= NULL_RTX
;
2500 /* An INSN, JUMP_INSN or CALL_INSN.
2501 First check for special kinds that recog doesn't recognize. */
2503 if (GET_CODE (body
) == USE
/* These are just declarations. */
2504 || GET_CODE (body
) == CLOBBER
)
2509 /* If there is a REG_CC_SETTER note on this insn, it means that
2510 the setting of the condition code was done in the delay slot
2511 of the insn that branched here. So recover the cc status
2512 from the insn that set it. */
2514 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2517 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2518 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2519 cc_prev_status
= cc_status
;
2524 /* Detect insns that are really jump-tables
2525 and output them as such. */
2527 if (JUMP_TABLE_DATA_P (insn
))
2529 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2533 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2534 switch_to_section (targetm
.asm_out
.function_rodata_section
2535 (current_function_decl
));
2537 switch_to_section (current_function_section ());
2541 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2542 if (GET_CODE (body
) == ADDR_VEC
)
2544 #ifdef ASM_OUTPUT_ADDR_VEC
2545 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2552 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2553 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2559 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2560 for (idx
= 0; idx
< vlen
; idx
++)
2562 if (GET_CODE (body
) == ADDR_VEC
)
2564 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2565 ASM_OUTPUT_ADDR_VEC_ELT
2566 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2573 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2574 ASM_OUTPUT_ADDR_DIFF_ELT
2577 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2578 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2584 #ifdef ASM_OUTPUT_CASE_END
2585 ASM_OUTPUT_CASE_END (file
,
2586 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2591 switch_to_section (current_function_section ());
2595 /* Output this line note if it is the first or the last line
2597 if (!DECL_IGNORED_P (current_function_decl
)
2598 && notice_source_line (insn
, &is_stmt
))
2599 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2600 last_discriminator
, is_stmt
);
2602 if (GET_CODE (body
) == ASM_INPUT
)
2604 const char *string
= XSTR (body
, 0);
2606 /* There's no telling what that did to the condition codes. */
2611 expanded_location loc
;
2614 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2615 if (*loc
.file
&& loc
.line
)
2616 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2617 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2618 fprintf (asm_out_file
, "\t%s\n", string
);
2619 #if HAVE_AS_LINE_ZERO
2620 if (*loc
.file
&& loc
.line
)
2621 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2627 /* Detect `asm' construct with operands. */
2628 if (asm_noperands (body
) >= 0)
2630 unsigned int noperands
= asm_noperands (body
);
2631 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2634 expanded_location expanded
;
2636 /* There's no telling what that did to the condition codes. */
2639 /* Get out the operand values. */
2640 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2641 /* Inhibit dying on what would otherwise be compiler bugs. */
2642 insn_noperands
= noperands
;
2643 this_is_asm_operands
= insn
;
2644 expanded
= expand_location (loc
);
2646 #ifdef FINAL_PRESCAN_INSN
2647 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2650 /* Output the insn using them. */
2654 if (expanded
.file
&& expanded
.line
)
2655 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2656 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2657 output_asm_insn (string
, ops
);
2658 #if HAVE_AS_LINE_ZERO
2659 if (expanded
.file
&& expanded
.line
)
2660 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2664 if (targetm
.asm_out
.final_postscan_insn
)
2665 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2668 this_is_asm_operands
= 0;
2674 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2676 /* A delayed-branch sequence */
2679 final_sequence
= seq
;
2681 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2682 force the restoration of a comparison that was previously
2683 thought unnecessary. If that happens, cancel this sequence
2684 and cause that insn to be restored. */
2686 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2687 if (next
!= seq
->insn (1))
2693 for (i
= 1; i
< seq
->len (); i
++)
2695 rtx_insn
*insn
= seq
->insn (i
);
2696 rtx_insn
*next
= NEXT_INSN (insn
);
2697 /* We loop in case any instruction in a delay slot gets
2700 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2701 while (insn
!= next
);
2703 #ifdef DBR_OUTPUT_SEQEND
2704 DBR_OUTPUT_SEQEND (file
);
2708 /* If the insn requiring the delay slot was a CALL_INSN, the
2709 insns in the delay slot are actually executed before the
2710 called function. Hence we don't preserve any CC-setting
2711 actions in these insns and the CC must be marked as being
2712 clobbered by the function. */
2713 if (CALL_P (seq
->insn (0)))
2720 /* We have a real machine instruction as rtl. */
2722 body
= PATTERN (insn
);
2725 set
= single_set (insn
);
2727 /* Check for redundant test and compare instructions
2728 (when the condition codes are already set up as desired).
2729 This is done only when optimizing; if not optimizing,
2730 it should be possible for the user to alter a variable
2731 with the debugger in between statements
2732 and the next statement should reexamine the variable
2733 to compute the condition codes. */
2738 && GET_CODE (SET_DEST (set
)) == CC0
2739 && insn
!= last_ignored_compare
)
2742 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2743 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2745 src1
= SET_SRC (set
);
2747 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2749 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2750 XEXP (SET_SRC (set
), 0)
2751 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2752 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2753 XEXP (SET_SRC (set
), 1)
2754 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2755 if (XEXP (SET_SRC (set
), 1)
2756 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2757 src2
= XEXP (SET_SRC (set
), 0);
2759 if ((cc_status
.value1
!= 0
2760 && rtx_equal_p (src1
, cc_status
.value1
))
2761 || (cc_status
.value2
!= 0
2762 && rtx_equal_p (src1
, cc_status
.value2
))
2763 || (src2
!= 0 && cc_status
.value1
!= 0
2764 && rtx_equal_p (src2
, cc_status
.value1
))
2765 || (src2
!= 0 && cc_status
.value2
!= 0
2766 && rtx_equal_p (src2
, cc_status
.value2
)))
2768 /* Don't delete insn if it has an addressing side-effect. */
2769 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2770 /* or if anything in it is volatile. */
2771 && ! volatile_refs_p (PATTERN (insn
)))
2773 /* We don't really delete the insn; just ignore it. */
2774 last_ignored_compare
= insn
;
2781 /* If this is a conditional branch, maybe modify it
2782 if the cc's are in a nonstandard state
2783 so that it accomplishes the same thing that it would
2784 do straightforwardly if the cc's were set up normally. */
2786 if (cc_status
.flags
!= 0
2788 && GET_CODE (body
) == SET
2789 && SET_DEST (body
) == pc_rtx
2790 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2791 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2792 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2794 /* This function may alter the contents of its argument
2795 and clear some of the cc_status.flags bits.
2796 It may also return 1 meaning condition now always true
2797 or -1 meaning condition now always false
2798 or 2 meaning condition nontrivial but altered. */
2799 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2800 /* If condition now has fixed value, replace the IF_THEN_ELSE
2801 with its then-operand or its else-operand. */
2803 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2805 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2807 /* The jump is now either unconditional or a no-op.
2808 If it has become a no-op, don't try to output it.
2809 (It would not be recognized.) */
2810 if (SET_SRC (body
) == pc_rtx
)
2815 else if (ANY_RETURN_P (SET_SRC (body
)))
2816 /* Replace (set (pc) (return)) with (return). */
2817 PATTERN (insn
) = body
= SET_SRC (body
);
2819 /* Rerecognize the instruction if it has changed. */
2821 INSN_CODE (insn
) = -1;
2824 /* If this is a conditional trap, maybe modify it if the cc's
2825 are in a nonstandard state so that it accomplishes the same
2826 thing that it would do straightforwardly if the cc's were
2828 if (cc_status
.flags
!= 0
2829 && NONJUMP_INSN_P (insn
)
2830 && GET_CODE (body
) == TRAP_IF
2831 && COMPARISON_P (TRAP_CONDITION (body
))
2832 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2834 /* This function may alter the contents of its argument
2835 and clear some of the cc_status.flags bits.
2836 It may also return 1 meaning condition now always true
2837 or -1 meaning condition now always false
2838 or 2 meaning condition nontrivial but altered. */
2839 int result
= alter_cond (TRAP_CONDITION (body
));
2841 /* If TRAP_CONDITION has become always false, delete the
2849 /* If TRAP_CONDITION has become always true, replace
2850 TRAP_CONDITION with const_true_rtx. */
2852 TRAP_CONDITION (body
) = const_true_rtx
;
2854 /* Rerecognize the instruction if it has changed. */
2856 INSN_CODE (insn
) = -1;
2859 /* Make same adjustments to instructions that examine the
2860 condition codes without jumping and instructions that
2861 handle conditional moves (if this machine has either one). */
2863 if (cc_status
.flags
!= 0
2866 rtx cond_rtx
, then_rtx
, else_rtx
;
2869 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2871 cond_rtx
= XEXP (SET_SRC (set
), 0);
2872 then_rtx
= XEXP (SET_SRC (set
), 1);
2873 else_rtx
= XEXP (SET_SRC (set
), 2);
2877 cond_rtx
= SET_SRC (set
);
2878 then_rtx
= const_true_rtx
;
2879 else_rtx
= const0_rtx
;
2882 if (COMPARISON_P (cond_rtx
)
2883 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2886 result
= alter_cond (cond_rtx
);
2888 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2889 else if (result
== -1)
2890 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2891 else if (result
== 2)
2892 INSN_CODE (insn
) = -1;
2893 if (SET_DEST (set
) == SET_SRC (set
))
2900 #ifdef HAVE_peephole
2901 /* Do machine-specific peephole optimizations if desired. */
2903 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2905 rtx_insn
*next
= peephole (insn
);
2906 /* When peepholing, if there were notes within the peephole,
2907 emit them before the peephole. */
2908 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2910 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2912 for (note
= NEXT_INSN (insn
); note
!= next
;
2913 note
= NEXT_INSN (note
))
2914 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2916 /* Put the notes in the proper position for a later
2917 rescan. For example, the SH target can do this
2918 when generating a far jump in a delayed branch
2920 note
= NEXT_INSN (insn
);
2921 SET_PREV_INSN (note
) = prev
;
2922 SET_NEXT_INSN (prev
) = note
;
2923 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2924 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2925 SET_NEXT_INSN (insn
) = next
;
2926 SET_PREV_INSN (next
) = insn
;
2929 /* PEEPHOLE might have changed this. */
2930 body
= PATTERN (insn
);
2934 /* Try to recognize the instruction.
2935 If successful, verify that the operands satisfy the
2936 constraints for the instruction. Crash if they don't,
2937 since `reload' should have changed them so that they do. */
2939 insn_code_number
= recog_memoized (insn
);
2940 cleanup_subreg_operands (insn
);
2942 /* Dump the insn in the assembly for debugging (-dAP).
2943 If the final dump is requested as slim RTL, dump slim
2944 RTL to the assembly file also. */
2945 if (flag_dump_rtl_in_asm
)
2947 print_rtx_head
= ASM_COMMENT_START
;
2948 if (! (dump_flags
& TDF_SLIM
))
2949 print_rtl_single (asm_out_file
, insn
);
2951 dump_insn_slim (asm_out_file
, insn
);
2952 print_rtx_head
= "";
2955 if (! constrain_operands_cached (insn
, 1))
2956 fatal_insn_not_found (insn
);
2958 /* Some target machines need to prescan each insn before
2961 #ifdef FINAL_PRESCAN_INSN
2962 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2965 if (targetm
.have_conditional_execution ()
2966 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2967 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2970 cc_prev_status
= cc_status
;
2972 /* Update `cc_status' for this instruction.
2973 The instruction's output routine may change it further.
2974 If the output routine for a jump insn needs to depend
2975 on the cc status, it should look at cc_prev_status. */
2977 NOTICE_UPDATE_CC (body
, insn
);
2980 current_output_insn
= debug_insn
= insn
;
2982 /* Find the proper template for this insn. */
2983 templ
= get_insn_template (insn_code_number
, insn
);
2985 /* If the C code returns 0, it means that it is a jump insn
2986 which follows a deleted test insn, and that test insn
2987 needs to be reinserted. */
2992 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2994 /* We have already processed the notes between the setter and
2995 the user. Make sure we don't process them again, this is
2996 particularly important if one of the notes is a block
2997 scope note or an EH note. */
2999 prev
!= last_ignored_compare
;
3000 prev
= PREV_INSN (prev
))
3003 delete_insn (prev
); /* Use delete_note. */
3009 /* If the template is the string "#", it means that this insn must
3011 if (templ
[0] == '#' && templ
[1] == '\0')
3013 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
3015 /* If we didn't split the insn, go away. */
3016 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
3017 fatal_insn ("could not split insn", insn
);
3019 /* If we have a length attribute, this instruction should have
3020 been split in shorten_branches, to ensure that we would have
3021 valid length info for the splitees. */
3022 gcc_assert (!HAVE_ATTR_length
);
3027 /* ??? This will put the directives in the wrong place if
3028 get_insn_template outputs assembly directly. However calling it
3029 before get_insn_template breaks if the insns is split. */
3030 if (targetm
.asm_out
.unwind_emit_before_insn
3031 && targetm
.asm_out
.unwind_emit
)
3032 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3034 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3036 rtx x
= call_from_call_insn (call_insn
);
3038 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3042 t
= SYMBOL_REF_DECL (x
);
3044 assemble_external (t
);
3046 if (!DECL_IGNORED_P (current_function_decl
))
3047 debug_hooks
->var_location (insn
);
3050 /* Output assembler code from the template. */
3051 output_asm_insn (templ
, recog_data
.operand
);
3053 /* Some target machines need to postscan each insn after
3055 if (targetm
.asm_out
.final_postscan_insn
)
3056 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3057 recog_data
.n_operands
);
3059 if (!targetm
.asm_out
.unwind_emit_before_insn
3060 && targetm
.asm_out
.unwind_emit
)
3061 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3063 current_output_insn
= debug_insn
= 0;
3066 return NEXT_INSN (insn
);
3069 /* Return whether a source line note needs to be emitted before INSN.
3070 Sets IS_STMT to TRUE if the line should be marked as a possible
3071 breakpoint location. */
3074 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3076 const char *filename
;
3079 if (override_filename
)
3081 filename
= override_filename
;
3082 linenum
= override_linenum
;
3084 else if (INSN_HAS_LOCATION (insn
))
3086 expanded_location xloc
= insn_location (insn
);
3087 filename
= xloc
.file
;
3088 linenum
= xloc
.line
;
3096 if (filename
== NULL
)
3099 if (force_source_line
3100 || filename
!= last_filename
3101 || last_linenum
!= linenum
)
3103 force_source_line
= false;
3104 last_filename
= filename
;
3105 last_linenum
= linenum
;
3106 last_discriminator
= discriminator
;
3108 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3109 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3113 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3115 /* If the discriminator changed, but the line number did not,
3116 output the line table entry with is_stmt false so the
3117 debugger does not treat this as a breakpoint location. */
3118 last_discriminator
= discriminator
;
3126 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3127 directly to the desired hard register. */
3130 cleanup_subreg_operands (rtx_insn
*insn
)
3133 bool changed
= false;
3134 extract_insn_cached (insn
);
3135 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3137 /* The following test cannot use recog_data.operand when testing
3138 for a SUBREG: the underlying object might have been changed
3139 already if we are inside a match_operator expression that
3140 matches the else clause. Instead we test the underlying
3141 expression directly. */
3142 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3144 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3147 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3148 || GET_CODE (recog_data
.operand
[i
]) == MULT
3149 || MEM_P (recog_data
.operand
[i
]))
3150 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3153 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3155 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3157 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3160 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3161 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3162 || MEM_P (*recog_data
.dup_loc
[i
]))
3163 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3166 df_insn_rescan (insn
);
3169 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3170 the thing it is a subreg of. Do it anyway if FINAL_P. */
3173 alter_subreg (rtx
*xp
, bool final_p
)
3176 rtx y
= SUBREG_REG (x
);
3178 /* simplify_subreg does not remove subreg from volatile references.
3179 We are required to. */
3182 int offset
= SUBREG_BYTE (x
);
3184 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3185 contains 0 instead of the proper offset. See simplify_subreg. */
3187 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3189 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3190 - GET_MODE_SIZE (GET_MODE (x
));
3191 if (WORDS_BIG_ENDIAN
)
3192 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3193 if (BYTES_BIG_ENDIAN
)
3194 offset
+= difference
% UNITS_PER_WORD
;
3198 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3200 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3202 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3204 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3209 else if (final_p
&& REG_P (y
))
3211 /* Simplify_subreg can't handle some REG cases, but we have to. */
3213 HOST_WIDE_INT offset
;
3215 regno
= subreg_regno (x
);
3216 if (subreg_lowpart_p (x
))
3217 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3219 offset
= SUBREG_BYTE (x
);
3220 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3227 /* Do alter_subreg on all the SUBREGs contained in X. */
3230 walk_alter_subreg (rtx
*xp
, bool *changed
)
3233 switch (GET_CODE (x
))
3238 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3239 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3244 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3249 return alter_subreg (xp
, true);
3260 /* Given BODY, the body of a jump instruction, alter the jump condition
3261 as required by the bits that are set in cc_status.flags.
3262 Not all of the bits there can be handled at this level in all cases.
3264 The value is normally 0.
3265 1 means that the condition has become always true.
3266 -1 means that the condition has become always false.
3267 2 means that COND has been altered. */
3270 alter_cond (rtx cond
)
3274 if (cc_status
.flags
& CC_REVERSED
)
3277 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3280 if (cc_status
.flags
& CC_INVERTED
)
3283 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3286 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3287 switch (GET_CODE (cond
))
3292 /* Jump becomes unconditional. */
3298 /* Jump becomes no-op. */
3302 PUT_CODE (cond
, EQ
);
3307 PUT_CODE (cond
, NE
);
3315 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3316 switch (GET_CODE (cond
))
3320 /* Jump becomes unconditional. */
3325 /* Jump becomes no-op. */
3330 PUT_CODE (cond
, EQ
);
3336 PUT_CODE (cond
, NE
);
3344 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3345 switch (GET_CODE (cond
))
3348 /* Jump becomes unconditional. */
3352 PUT_CODE (cond
, EQ
);
3357 PUT_CODE (cond
, NE
);
3362 /* Jump becomes no-op. */
3369 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3370 switch (GET_CODE (cond
))
3376 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3381 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3386 if (cc_status
.flags
& CC_NOT_SIGNED
)
3387 /* The flags are valid if signed condition operators are converted
3389 switch (GET_CODE (cond
))
3392 PUT_CODE (cond
, LEU
);
3397 PUT_CODE (cond
, LTU
);
3402 PUT_CODE (cond
, GTU
);
3407 PUT_CODE (cond
, GEU
);
3419 /* Report inconsistency between the assembler template and the operands.
3420 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3423 output_operand_lossage (const char *cmsgid
, ...)
3427 const char *pfx_str
;
3430 va_start (ap
, cmsgid
);
3432 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3433 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3434 new_message
= xvasprintf (fmt_string
, ap
);
3436 if (this_is_asm_operands
)
3437 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3439 internal_error ("%s", new_message
);
3446 /* Output of assembler code from a template, and its subroutines. */
3448 /* Annotate the assembly with a comment describing the pattern and
3449 alternative used. */
3452 output_asm_name (void)
3456 int num
= INSN_CODE (debug_insn
);
3457 fprintf (asm_out_file
, "\t%s %d\t%s",
3458 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3459 insn_data
[num
].name
);
3460 if (insn_data
[num
].n_alternatives
> 1)
3461 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3463 if (HAVE_ATTR_length
)
3464 fprintf (asm_out_file
, "\t[length = %d]",
3465 get_attr_length (debug_insn
));
3467 /* Clear this so only the first assembler insn
3468 of any rtl insn will get the special comment for -dp. */
3473 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3474 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3475 corresponds to the address of the object and 0 if to the object. */
3478 get_mem_expr_from_op (rtx op
, int *paddressp
)
3486 return REG_EXPR (op
);
3487 else if (!MEM_P (op
))
3490 if (MEM_EXPR (op
) != 0)
3491 return MEM_EXPR (op
);
3493 /* Otherwise we have an address, so indicate it and look at the address. */
3497 /* First check if we have a decl for the address, then look at the right side
3498 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3499 But don't allow the address to itself be indirect. */
3500 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3502 else if (GET_CODE (op
) == PLUS
3503 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3507 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3510 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3511 return inner_addressp
? 0 : expr
;
3514 /* Output operand names for assembler instructions. OPERANDS is the
3515 operand vector, OPORDER is the order to write the operands, and NOPS
3516 is the number of operands to write. */
3519 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3524 for (i
= 0; i
< nops
; i
++)
3527 rtx op
= operands
[oporder
[i
]];
3528 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3530 fprintf (asm_out_file
, "%c%s",
3531 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3535 fprintf (asm_out_file
, "%s",
3536 addressp
? "*" : "");
3537 print_mem_expr (asm_out_file
, expr
);
3540 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3541 && ORIGINAL_REGNO (op
) != REGNO (op
))
3542 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3546 #ifdef ASSEMBLER_DIALECT
3547 /* Helper function to parse assembler dialects in the asm string.
3548 This is called from output_asm_insn and asm_fprintf. */
3550 do_assembler_dialects (const char *p
, int *dialect
)
3561 output_operand_lossage ("nested assembly dialect alternatives");
3565 /* If we want the first dialect, do nothing. Otherwise, skip
3566 DIALECT_NUMBER of strings ending with '|'. */
3567 for (i
= 0; i
< dialect_number
; i
++)
3569 while (*p
&& *p
!= '}')
3577 /* Skip over any character after a percent sign. */
3589 output_operand_lossage ("unterminated assembly dialect alternative");
3596 /* Skip to close brace. */
3601 output_operand_lossage ("unterminated assembly dialect alternative");
3605 /* Skip over any character after a percent sign. */
3606 if (*p
== '%' && p
[1])
3620 putc (c
, asm_out_file
);
3625 putc (c
, asm_out_file
);
3636 /* Output text from TEMPLATE to the assembler output file,
3637 obeying %-directions to substitute operands taken from
3638 the vector OPERANDS.
3640 %N (for N a digit) means print operand N in usual manner.
3641 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3642 and print the label name with no punctuation.
3643 %cN means require operand N to be a constant
3644 and print the constant expression with no punctuation.
3645 %aN means expect operand N to be a memory address
3646 (not a memory reference!) and print a reference
3648 %nN means expect operand N to be a constant
3649 and print a constant expression for minus the value
3650 of the operand, with no other punctuation. */
3653 output_asm_insn (const char *templ
, rtx
*operands
)
3657 #ifdef ASSEMBLER_DIALECT
3660 int oporder
[MAX_RECOG_OPERANDS
];
3661 char opoutput
[MAX_RECOG_OPERANDS
];
3664 /* An insn may return a null string template
3665 in a case where no assembler code is needed. */
3669 memset (opoutput
, 0, sizeof opoutput
);
3671 putc ('\t', asm_out_file
);
3673 #ifdef ASM_OUTPUT_OPCODE
3674 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3681 if (flag_verbose_asm
)
3682 output_asm_operand_names (operands
, oporder
, ops
);
3683 if (flag_print_asm_name
)
3687 memset (opoutput
, 0, sizeof opoutput
);
3689 putc (c
, asm_out_file
);
3690 #ifdef ASM_OUTPUT_OPCODE
3691 while ((c
= *p
) == '\t')
3693 putc (c
, asm_out_file
);
3696 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3700 #ifdef ASSEMBLER_DIALECT
3704 p
= do_assembler_dialects (p
, &dialect
);
3709 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3710 if ASSEMBLER_DIALECT defined and these characters have a special
3711 meaning as dialect delimiters.*/
3713 #ifdef ASSEMBLER_DIALECT
3714 || *p
== '{' || *p
== '}' || *p
== '|'
3718 putc (*p
, asm_out_file
);
3721 /* %= outputs a number which is unique to each insn in the entire
3722 compilation. This is useful for making local labels that are
3723 referred to more than once in a given insn. */
3727 fprintf (asm_out_file
, "%d", insn_counter
);
3729 /* % followed by a letter and some digits
3730 outputs an operand in a special way depending on the letter.
3731 Letters `acln' are implemented directly.
3732 Other letters are passed to `output_operand' so that
3733 the TARGET_PRINT_OPERAND hook can define them. */
3734 else if (ISALPHA (*p
))
3737 unsigned long opnum
;
3740 opnum
= strtoul (p
, &endptr
, 10);
3743 output_operand_lossage ("operand number missing "
3745 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3746 output_operand_lossage ("operand number out of range");
3747 else if (letter
== 'l')
3748 output_asm_label (operands
[opnum
]);
3749 else if (letter
== 'a')
3750 output_address (operands
[opnum
]);
3751 else if (letter
== 'c')
3753 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3754 output_addr_const (asm_out_file
, operands
[opnum
]);
3756 output_operand (operands
[opnum
], 'c');
3758 else if (letter
== 'n')
3760 if (CONST_INT_P (operands
[opnum
]))
3761 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3762 - INTVAL (operands
[opnum
]));
3765 putc ('-', asm_out_file
);
3766 output_addr_const (asm_out_file
, operands
[opnum
]);
3770 output_operand (operands
[opnum
], letter
);
3772 if (!opoutput
[opnum
])
3773 oporder
[ops
++] = opnum
;
3774 opoutput
[opnum
] = 1;
3779 /* % followed by a digit outputs an operand the default way. */
3780 else if (ISDIGIT (*p
))
3782 unsigned long opnum
;
3785 opnum
= strtoul (p
, &endptr
, 10);
3786 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3787 output_operand_lossage ("operand number out of range");
3789 output_operand (operands
[opnum
], 0);
3791 if (!opoutput
[opnum
])
3792 oporder
[ops
++] = opnum
;
3793 opoutput
[opnum
] = 1;
3798 /* % followed by punctuation: output something for that
3799 punctuation character alone, with no operand. The
3800 TARGET_PRINT_OPERAND hook decides what is actually done. */
3801 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3802 output_operand (NULL_RTX
, *p
++);
3804 output_operand_lossage ("invalid %%-code");
3808 putc (c
, asm_out_file
);
3811 /* Write out the variable names for operands, if we know them. */
3812 if (flag_verbose_asm
)
3813 output_asm_operand_names (operands
, oporder
, ops
);
3814 if (flag_print_asm_name
)
3817 putc ('\n', asm_out_file
);
3820 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3823 output_asm_label (rtx x
)
3827 if (GET_CODE (x
) == LABEL_REF
)
3828 x
= LABEL_REF_LABEL (x
);
3831 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3832 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3834 output_operand_lossage ("'%%l' operand isn't a label");
3836 assemble_name (asm_out_file
, buf
);
3839 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3842 mark_symbol_refs_as_used (rtx x
)
3844 subrtx_iterator::array_type array
;
3845 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3847 const_rtx x
= *iter
;
3848 if (GET_CODE (x
) == SYMBOL_REF
)
3849 if (tree t
= SYMBOL_REF_DECL (x
))
3850 assemble_external (t
);
3854 /* Print operand X using machine-dependent assembler syntax.
3855 CODE is a non-digit that preceded the operand-number in the % spec,
3856 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3857 between the % and the digits.
3858 When CODE is a non-letter, X is 0.
3860 The meanings of the letters are machine-dependent and controlled
3861 by TARGET_PRINT_OPERAND. */
3864 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3866 if (x
&& GET_CODE (x
) == SUBREG
)
3867 x
= alter_subreg (&x
, true);
3869 /* X must not be a pseudo reg. */
3870 if (!targetm
.no_register_allocation
)
3871 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3873 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3878 mark_symbol_refs_as_used (x
);
3881 /* Print a memory reference operand for address X using
3882 machine-dependent assembler syntax. */
3885 output_address (rtx x
)
3887 bool changed
= false;
3888 walk_alter_subreg (&x
, &changed
);
3889 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3892 /* Print an integer constant expression in assembler syntax.
3893 Addition and subtraction are the only arithmetic
3894 that may appear in these expressions. */
3897 output_addr_const (FILE *file
, rtx x
)
3902 switch (GET_CODE (x
))
3909 if (SYMBOL_REF_DECL (x
))
3910 assemble_external (SYMBOL_REF_DECL (x
));
3911 #ifdef ASM_OUTPUT_SYMBOL_REF
3912 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3914 assemble_name (file
, XSTR (x
, 0));
3919 x
= LABEL_REF_LABEL (x
);
3922 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3923 #ifdef ASM_OUTPUT_LABEL_REF
3924 ASM_OUTPUT_LABEL_REF (file
, buf
);
3926 assemble_name (file
, buf
);
3931 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3935 /* This used to output parentheses around the expression,
3936 but that does not work on the 386 (either ATT or BSD assembler). */
3937 output_addr_const (file
, XEXP (x
, 0));
3940 case CONST_WIDE_INT
:
3941 /* We do not know the mode here so we have to use a round about
3942 way to build a wide-int to get it printed properly. */
3944 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3945 CONST_WIDE_INT_NUNITS (x
),
3946 CONST_WIDE_INT_NUNITS (x
)
3947 * HOST_BITS_PER_WIDE_INT
,
3949 print_decs (w
, file
);
3954 if (CONST_DOUBLE_AS_INT_P (x
))
3956 /* We can use %d if the number is one word and positive. */
3957 if (CONST_DOUBLE_HIGH (x
))
3958 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3959 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3960 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3961 else if (CONST_DOUBLE_LOW (x
) < 0)
3962 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3963 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3965 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3968 /* We can't handle floating point constants;
3969 PRINT_OPERAND must handle them. */
3970 output_operand_lossage ("floating constant misused");
3974 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3978 /* Some assemblers need integer constants to appear last (eg masm). */
3979 if (CONST_INT_P (XEXP (x
, 0)))
3981 output_addr_const (file
, XEXP (x
, 1));
3982 if (INTVAL (XEXP (x
, 0)) >= 0)
3983 fprintf (file
, "+");
3984 output_addr_const (file
, XEXP (x
, 0));
3988 output_addr_const (file
, XEXP (x
, 0));
3989 if (!CONST_INT_P (XEXP (x
, 1))
3990 || INTVAL (XEXP (x
, 1)) >= 0)
3991 fprintf (file
, "+");
3992 output_addr_const (file
, XEXP (x
, 1));
3997 /* Avoid outputting things like x-x or x+5-x,
3998 since some assemblers can't handle that. */
3999 x
= simplify_subtraction (x
);
4000 if (GET_CODE (x
) != MINUS
)
4003 output_addr_const (file
, XEXP (x
, 0));
4004 fprintf (file
, "-");
4005 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
4006 || GET_CODE (XEXP (x
, 1)) == PC
4007 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
4008 output_addr_const (file
, XEXP (x
, 1));
4011 fputs (targetm
.asm_out
.open_paren
, file
);
4012 output_addr_const (file
, XEXP (x
, 1));
4013 fputs (targetm
.asm_out
.close_paren
, file
);
4021 output_addr_const (file
, XEXP (x
, 0));
4025 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4028 output_operand_lossage ("invalid expression as operand");
4032 /* Output a quoted string. */
4035 output_quoted_string (FILE *asm_file
, const char *string
)
4037 #ifdef OUTPUT_QUOTED_STRING
4038 OUTPUT_QUOTED_STRING (asm_file
, string
);
4042 putc ('\"', asm_file
);
4043 while ((c
= *string
++) != 0)
4047 if (c
== '\"' || c
== '\\')
4048 putc ('\\', asm_file
);
4052 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4054 putc ('\"', asm_file
);
4058 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4061 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4063 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4068 char *p
= buf
+ sizeof (buf
);
4070 *--p
= "0123456789abcdef"[value
% 16];
4071 while ((value
/= 16) != 0);
4074 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4078 /* Internal function that prints an unsigned long in decimal in reverse.
4079 The output string IS NOT null-terminated. */
4082 sprint_ul_rev (char *s
, unsigned long value
)
4087 s
[i
] = "0123456789"[value
% 10];
4090 /* alternate version, without modulo */
4091 /* oldval = value; */
4093 /* s[i] = "0123456789" [oldval - 10*value]; */
4100 /* Write an unsigned long as decimal to a file, fast. */
4103 fprint_ul (FILE *f
, unsigned long value
)
4105 /* python says: len(str(2**64)) == 20 */
4109 i
= sprint_ul_rev (s
, value
);
4111 /* It's probably too small to bother with string reversal and fputs. */
4120 /* Write an unsigned long as decimal to a string, fast.
4121 s must be wide enough to not overflow, at least 21 chars.
4122 Returns the length of the string (without terminating '\0'). */
4125 sprint_ul (char *s
, unsigned long value
)
4132 len
= sprint_ul_rev (s
, value
);
4135 /* Reverse the string. */
4149 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4150 %R prints the value of REGISTER_PREFIX.
4151 %L prints the value of LOCAL_LABEL_PREFIX.
4152 %U prints the value of USER_LABEL_PREFIX.
4153 %I prints the value of IMMEDIATE_PREFIX.
4154 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4155 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4157 We handle alternate assembler dialects here, just like output_asm_insn. */
4160 asm_fprintf (FILE *file
, const char *p
, ...)
4164 #ifdef ASSEMBLER_DIALECT
4169 va_start (argptr
, p
);
4176 #ifdef ASSEMBLER_DIALECT
4180 p
= do_assembler_dialects (p
, &dialect
);
4187 while (strchr ("-+ #0", c
))
4192 while (ISDIGIT (c
) || c
== '.')
4203 case 'd': case 'i': case 'u':
4204 case 'x': case 'X': case 'o':
4208 fprintf (file
, buf
, va_arg (argptr
, int));
4212 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4213 'o' cases, but we do not check for those cases. It
4214 means that the value is a HOST_WIDE_INT, which may be
4215 either `long' or `long long'. */
4216 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4217 q
+= strlen (HOST_WIDE_INT_PRINT
);
4220 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4225 #ifdef HAVE_LONG_LONG
4231 fprintf (file
, buf
, va_arg (argptr
, long long));
4238 fprintf (file
, buf
, va_arg (argptr
, long));
4246 fprintf (file
, buf
, va_arg (argptr
, char *));
4250 #ifdef ASM_OUTPUT_OPCODE
4251 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4256 #ifdef REGISTER_PREFIX
4257 fprintf (file
, "%s", REGISTER_PREFIX
);
4262 #ifdef IMMEDIATE_PREFIX
4263 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4268 #ifdef LOCAL_LABEL_PREFIX
4269 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4274 fputs (user_label_prefix
, file
);
4277 #ifdef ASM_FPRINTF_EXTENSIONS
4278 /* Uppercase letters are reserved for general use by asm_fprintf
4279 and so are not available to target specific code. In order to
4280 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4281 they are defined here. As they get turned into real extensions
4282 to asm_fprintf they should be removed from this list. */
4283 case 'A': case 'B': case 'C': case 'D': case 'E':
4284 case 'F': case 'G': case 'H': case 'J': case 'K':
4285 case 'M': case 'N': case 'P': case 'Q': case 'S':
4286 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4289 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4302 /* Return nonzero if this function has no function calls. */
4305 leaf_function_p (void)
4309 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4310 functions even if they call mcount. */
4311 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4314 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4317 && ! SIBLING_CALL_P (insn
))
4319 if (NONJUMP_INSN_P (insn
)
4320 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4321 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4322 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4329 /* Return 1 if branch is a forward branch.
4330 Uses insn_shuid array, so it works only in the final pass. May be used by
4331 output templates to customary add branch prediction hints.
4334 final_forward_branch_p (rtx_insn
*insn
)
4336 int insn_id
, label_id
;
4338 gcc_assert (uid_shuid
);
4339 insn_id
= INSN_SHUID (insn
);
4340 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4341 /* We've hit some insns that does not have id information available. */
4342 gcc_assert (insn_id
&& label_id
);
4343 return insn_id
< label_id
;
4346 /* On some machines, a function with no call insns
4347 can run faster if it doesn't create its own register window.
4348 When output, the leaf function should use only the "output"
4349 registers. Ordinarily, the function would be compiled to use
4350 the "input" registers to find its arguments; it is a candidate
4351 for leaf treatment if it uses only the "input" registers.
4352 Leaf function treatment means renumbering so the function
4353 uses the "output" registers instead. */
4355 #ifdef LEAF_REGISTERS
4357 /* Return 1 if this function uses only the registers that can be
4358 safely renumbered. */
4361 only_leaf_regs_used (void)
4364 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4366 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4367 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4368 && ! permitted_reg_in_leaf_functions
[i
])
4371 if (crtl
->uses_pic_offset_table
4372 && pic_offset_table_rtx
!= 0
4373 && REG_P (pic_offset_table_rtx
)
4374 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4380 /* Scan all instructions and renumber all registers into those
4381 available in leaf functions. */
4384 leaf_renumber_regs (rtx_insn
*first
)
4388 /* Renumber only the actual patterns.
4389 The reg-notes can contain frame pointer refs,
4390 and renumbering them could crash, and should not be needed. */
4391 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4393 leaf_renumber_regs_insn (PATTERN (insn
));
4396 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4397 available in leaf functions. */
4400 leaf_renumber_regs_insn (rtx in_rtx
)
4403 const char *format_ptr
;
4408 /* Renumber all input-registers into output-registers.
4409 renumbered_regs would be 1 for an output-register;
4416 /* Don't renumber the same reg twice. */
4420 newreg
= REGNO (in_rtx
);
4421 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4422 to reach here as part of a REG_NOTE. */
4423 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4428 newreg
= LEAF_REG_REMAP (newreg
);
4429 gcc_assert (newreg
>= 0);
4430 df_set_regs_ever_live (REGNO (in_rtx
), false);
4431 df_set_regs_ever_live (newreg
, true);
4432 SET_REGNO (in_rtx
, newreg
);
4436 if (INSN_P (in_rtx
))
4438 /* Inside a SEQUENCE, we find insns.
4439 Renumber just the patterns of these insns,
4440 just as we do for the top-level insns. */
4441 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4445 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4447 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4448 switch (*format_ptr
++)
4451 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4455 if (NULL
!= XVEC (in_rtx
, i
))
4457 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4458 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4477 /* Turn the RTL into assembly. */
4479 rest_of_handle_final (void)
4481 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4483 assemble_start_function (current_function_decl
, fnname
);
4484 final_start_function (get_insns (), asm_out_file
, optimize
);
4485 final (get_insns (), asm_out_file
, optimize
);
4487 collect_fn_hard_reg_usage ();
4488 final_end_function ();
4490 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4491 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4492 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4493 output_function_exception_table (fnname
);
4495 assemble_end_function (current_function_decl
, fnname
);
4497 user_defined_section_attribute
= false;
4499 /* Free up reg info memory. */
4503 fflush (asm_out_file
);
4505 /* Write DBX symbols if requested. */
4507 /* Note that for those inline functions where we don't initially
4508 know for certain that we will be generating an out-of-line copy,
4509 the first invocation of this routine (rest_of_compilation) will
4510 skip over this code by doing a `goto exit_rest_of_compilation;'.
4511 Later on, wrapup_global_declarations will (indirectly) call
4512 rest_of_compilation again for those inline functions that need
4513 to have out-of-line copies generated. During that call, we
4514 *will* be routed past here. */
4516 timevar_push (TV_SYMOUT
);
4517 if (!DECL_IGNORED_P (current_function_decl
))
4518 debug_hooks
->function_decl (current_function_decl
);
4519 timevar_pop (TV_SYMOUT
);
4521 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4522 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4524 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4525 && targetm
.have_ctors_dtors
)
4526 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4527 decl_init_priority_lookup
4528 (current_function_decl
));
4529 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4530 && targetm
.have_ctors_dtors
)
4531 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4532 decl_fini_priority_lookup
4533 (current_function_decl
));
4539 const pass_data pass_data_final
=
4541 RTL_PASS
, /* type */
4543 OPTGROUP_NONE
, /* optinfo_flags */
4544 TV_FINAL
, /* tv_id */
4545 0, /* properties_required */
4546 0, /* properties_provided */
4547 0, /* properties_destroyed */
4548 0, /* todo_flags_start */
4549 0, /* todo_flags_finish */
4552 class pass_final
: public rtl_opt_pass
4555 pass_final (gcc::context
*ctxt
)
4556 : rtl_opt_pass (pass_data_final
, ctxt
)
4559 /* opt_pass methods: */
4560 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4562 }; // class pass_final
4567 make_pass_final (gcc::context
*ctxt
)
4569 return new pass_final (ctxt
);
4574 rest_of_handle_shorten_branches (void)
4576 /* Shorten branches. */
4577 shorten_branches (get_insns ());
4583 const pass_data pass_data_shorten_branches
=
4585 RTL_PASS
, /* type */
4586 "shorten", /* name */
4587 OPTGROUP_NONE
, /* optinfo_flags */
4588 TV_SHORTEN_BRANCH
, /* tv_id */
4589 0, /* properties_required */
4590 0, /* properties_provided */
4591 0, /* properties_destroyed */
4592 0, /* todo_flags_start */
4593 0, /* todo_flags_finish */
4596 class pass_shorten_branches
: public rtl_opt_pass
4599 pass_shorten_branches (gcc::context
*ctxt
)
4600 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4603 /* opt_pass methods: */
4604 virtual unsigned int execute (function
*)
4606 return rest_of_handle_shorten_branches ();
4609 }; // class pass_shorten_branches
4614 make_pass_shorten_branches (gcc::context
*ctxt
)
4616 return new pass_shorten_branches (ctxt
);
4621 rest_of_clean_state (void)
4623 rtx_insn
*insn
, *next
;
4624 FILE *final_output
= NULL
;
4625 int save_unnumbered
= flag_dump_unnumbered
;
4626 int save_noaddr
= flag_dump_noaddr
;
4628 if (flag_dump_final_insns
)
4630 final_output
= fopen (flag_dump_final_insns
, "a");
4633 error ("could not open final insn dump file %qs: %m",
4634 flag_dump_final_insns
);
4635 flag_dump_final_insns
= NULL
;
4639 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4640 if (flag_compare_debug_opt
|| flag_compare_debug
)
4641 dump_flags
|= TDF_NOUID
;
4642 dump_function_header (final_output
, current_function_decl
,
4644 final_insns_dump_p
= true;
4646 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4648 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4652 set_block_for_insn (insn
, NULL
);
4653 INSN_UID (insn
) = 0;
4658 /* It is very important to decompose the RTL instruction chain here:
4659 debug information keeps pointing into CODE_LABEL insns inside the function
4660 body. If these remain pointing to the other insns, we end up preserving
4661 whole RTL chain and attached detailed debug info in memory. */
4662 for (insn
= get_insns (); insn
; insn
= next
)
4664 next
= NEXT_INSN (insn
);
4665 SET_NEXT_INSN (insn
) = NULL
;
4666 SET_PREV_INSN (insn
) = NULL
;
4669 && (!NOTE_P (insn
) ||
4670 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4671 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4672 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4673 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4674 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4675 print_rtl_single (final_output
, insn
);
4680 flag_dump_noaddr
= save_noaddr
;
4681 flag_dump_unnumbered
= save_unnumbered
;
4682 final_insns_dump_p
= false;
4684 if (fclose (final_output
))
4686 error ("could not close final insn dump file %qs: %m",
4687 flag_dump_final_insns
);
4688 flag_dump_final_insns
= NULL
;
4692 /* In case the function was not output,
4693 don't leave any temporary anonymous types
4694 queued up for sdb output. */
4695 #ifdef SDB_DEBUGGING_INFO
4696 if (write_symbols
== SDB_DEBUG
)
4697 sdbout_types (NULL_TREE
);
4700 flag_rerun_cse_after_global_opts
= 0;
4701 reload_completed
= 0;
4702 epilogue_completed
= 0;
4704 regstack_completed
= 0;
4707 /* Clear out the insn_length contents now that they are no
4709 init_insn_lengths ();
4711 /* Show no temporary slots allocated. */
4714 free_bb_for_insn ();
4718 /* We can reduce stack alignment on call site only when we are sure that
4719 the function body just produced will be actually used in the final
4721 if (decl_binds_to_current_def_p (current_function_decl
))
4723 unsigned int pref
= crtl
->preferred_stack_boundary
;
4724 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4725 pref
= crtl
->stack_alignment_needed
;
4726 cgraph_node::rtl_info (current_function_decl
)
4727 ->preferred_incoming_stack_boundary
= pref
;
4730 /* Make sure volatile mem refs aren't considered valid operands for
4731 arithmetic insns. We must call this here if this is a nested inline
4732 function, since the above code leaves us in the init_recog state,
4733 and the function context push/pop code does not save/restore volatile_ok.
4735 ??? Maybe it isn't necessary for expand_start_function to call this
4736 anymore if we do it here? */
4738 init_recog_no_volatile ();
4740 /* We're done with this function. Free up memory if we can. */
4741 free_after_parsing (cfun
);
4742 free_after_compilation (cfun
);
4748 const pass_data pass_data_clean_state
=
4750 RTL_PASS
, /* type */
4751 "*clean_state", /* name */
4752 OPTGROUP_NONE
, /* optinfo_flags */
4753 TV_FINAL
, /* tv_id */
4754 0, /* properties_required */
4755 0, /* properties_provided */
4756 PROP_rtl
, /* properties_destroyed */
4757 0, /* todo_flags_start */
4758 0, /* todo_flags_finish */
4761 class pass_clean_state
: public rtl_opt_pass
4764 pass_clean_state (gcc::context
*ctxt
)
4765 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4768 /* opt_pass methods: */
4769 virtual unsigned int execute (function
*)
4771 return rest_of_clean_state ();
4774 }; // class pass_clean_state
4779 make_pass_clean_state (gcc::context
*ctxt
)
4781 return new pass_clean_state (ctxt
);
4784 /* Return true if INSN is a call to the the current function. */
4787 self_recursive_call_p (rtx_insn
*insn
)
4789 tree fndecl
= get_call_fndecl (insn
);
4790 return (fndecl
== current_function_decl
4791 && decl_binds_to_current_def_p (fndecl
));
4794 /* Collect hard register usage for the current function. */
4797 collect_fn_hard_reg_usage (void)
4803 struct cgraph_rtl_info
*node
;
4804 HARD_REG_SET function_used_regs
;
4806 /* ??? To be removed when all the ports have been fixed. */
4807 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4810 CLEAR_HARD_REG_SET (function_used_regs
);
4812 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4814 HARD_REG_SET insn_used_regs
;
4816 if (!NONDEBUG_INSN_P (insn
))
4820 && !self_recursive_call_p (insn
))
4822 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4826 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4829 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4830 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4833 /* Be conservative - mark fixed and global registers as used. */
4834 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4837 /* Handle STACK_REGS conservatively, since the df-framework does not
4838 provide accurate information for them. */
4840 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4841 SET_HARD_REG_BIT (function_used_regs
, i
);
4844 /* The information we have gathered is only interesting if it exposes a
4845 register from the call_used_regs that is not used in this function. */
4846 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4849 node
= cgraph_node::rtl_info (current_function_decl
);
4850 gcc_assert (node
!= NULL
);
4852 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4853 node
->function_used_regs_valid
= 1;
4856 /* Get the declaration of the function called by INSN. */
4859 get_call_fndecl (rtx_insn
*insn
)
4863 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4864 if (note
== NULL_RTX
)
4867 datum
= XEXP (note
, 0);
4868 if (datum
!= NULL_RTX
)
4869 return SYMBOL_REF_DECL (datum
);
4874 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4875 call targets that can be overwritten. */
4877 static struct cgraph_rtl_info
*
4878 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4882 if (insn
== NULL_RTX
)
4885 fndecl
= get_call_fndecl (insn
);
4886 if (fndecl
== NULL_TREE
4887 || !decl_binds_to_current_def_p (fndecl
))
4890 return cgraph_node::rtl_info (fndecl
);
4893 /* Find hard registers used by function call instruction INSN, and return them
4894 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4897 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4898 HARD_REG_SET default_set
)
4902 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4904 && node
->function_used_regs_valid
)
4906 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4907 AND_HARD_REG_SET (*reg_set
, default_set
);
4912 COPY_HARD_REG_SET (*reg_set
, default_set
);