re PR libstdc++/43622 (Incomplete C++ library support for __float128)
[official-gcc.git] / gcc / ipa-profile.c
blob99d13098534550828995f87d02cfec10da74b603
1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complete only with LTO,
26 otherwise it contains information only about the current unit.
28 Similar histogram is also estimated by coverage runtime. This histogram
29 is not dependent on LTO, but it suffers from various defects; first
30 gcov runtime is not weighting individual basic block by estimated execution
31 time and second the merging of multiple runs makes assumption that the
32 histogram distribution did not change. Consequentely histogram constructed
33 here may be more precise.
35 The information is used to set hot/cold thresholds.
36 - Next speculative indirect call resolution is performed: the local
37 profile pass assigns profile-id to each function and provide us with a
38 histogram specifying the most common target. We look up the callgraph
39 node corresponding to the target and produce a speculative call.
41 This call may or may not survive through IPA optimization based on decision
42 of inliner.
43 - Finally we propagate the following flags: unlikely executed, executed
44 once, executed at startup and executed at exit. These flags are used to
45 control code size/performance threshold and and code placement (by producing
46 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51 #include "tree.h"
52 #include "predict.h"
53 #include "dominance.h"
54 #include "cfg.h"
55 #include "basic-block.h"
56 #include "hash-map.h"
57 #include "is-a.h"
58 #include "plugin-api.h"
59 #include "vec.h"
60 #include "hashtab.h"
61 #include "hash-set.h"
62 #include "machmode.h"
63 #include "hard-reg-set.h"
64 #include "input.h"
65 #include "function.h"
66 #include "ipa-ref.h"
67 #include "cgraph.h"
68 #include "tree-pass.h"
69 #include "tree-ssa-alias.h"
70 #include "internal-fn.h"
71 #include "gimple-expr.h"
72 #include "gimple.h"
73 #include "gimple-iterator.h"
74 #include "flags.h"
75 #include "target.h"
76 #include "tree-iterator.h"
77 #include "ipa-utils.h"
78 #include "profile.h"
79 #include "params.h"
80 #include "value-prof.h"
81 #include "alloc-pool.h"
82 #include "tree-inline.h"
83 #include "lto-streamer.h"
84 #include "data-streamer.h"
85 #include "ipa-prop.h"
86 #include "ipa-inline.h"
88 /* Entry in the histogram. */
90 struct histogram_entry
92 gcov_type count;
93 int time;
94 int size;
97 /* Histogram of profile values.
98 The histogram is represented as an ordered vector of entries allocated via
99 histogram_pool. During construction a separate hashtable is kept to lookup
100 duplicate entries. */
102 vec<histogram_entry *> histogram;
103 static alloc_pool histogram_pool;
105 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
107 struct histogram_hash : typed_noop_remove <histogram_entry>
109 typedef histogram_entry value_type;
110 typedef histogram_entry compare_type;
111 static inline hashval_t hash (const value_type *);
112 static inline int equal (const value_type *, const compare_type *);
115 inline hashval_t
116 histogram_hash::hash (const histogram_entry *val)
118 return val->count;
121 inline int
122 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
124 return val->count == val2->count;
127 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
128 HASHTABLE is the on-side hash kept to avoid duplicates. */
130 static void
131 account_time_size (hash_table<histogram_hash> *hashtable,
132 vec<histogram_entry *> &histogram,
133 gcov_type count, int time, int size)
135 histogram_entry key = {count, 0, 0};
136 histogram_entry **val = hashtable->find_slot (&key, INSERT);
138 if (!*val)
140 *val = (histogram_entry *) pool_alloc (histogram_pool);
141 **val = key;
142 histogram.safe_push (*val);
144 (*val)->time += time;
145 (*val)->size += size;
149 cmp_counts (const void *v1, const void *v2)
151 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
152 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
153 if (h1->count < h2->count)
154 return 1;
155 if (h1->count > h2->count)
156 return -1;
157 return 0;
160 /* Dump HISTOGRAM to FILE. */
162 static void
163 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
165 unsigned int i;
166 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
168 fprintf (dump_file, "Histogram:\n");
169 for (i = 0; i < histogram.length (); i++)
171 overall_time += histogram[i]->count * histogram[i]->time;
172 overall_size += histogram[i]->size;
174 if (!overall_time)
175 overall_time = 1;
176 if (!overall_size)
177 overall_size = 1;
178 for (i = 0; i < histogram.length (); i++)
180 cumulated_time += histogram[i]->count * histogram[i]->time;
181 cumulated_size += histogram[i]->size;
182 fprintf (file, " %"PRId64": time:%i (%2.2f) size:%i (%2.2f)\n",
183 (int64_t) histogram[i]->count,
184 histogram[i]->time,
185 cumulated_time * 100.0 / overall_time,
186 histogram[i]->size,
187 cumulated_size * 100.0 / overall_size);
191 /* Collect histogram from CFG profiles. */
193 static void
194 ipa_profile_generate_summary (void)
196 struct cgraph_node *node;
197 gimple_stmt_iterator gsi;
198 basic_block bb;
200 hash_table<histogram_hash> hashtable (10);
201 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
202 10);
204 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
205 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
207 int time = 0;
208 int size = 0;
209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
211 gimple stmt = gsi_stmt (gsi);
212 if (gimple_code (stmt) == GIMPLE_CALL
213 && !gimple_call_fndecl (stmt))
215 histogram_value h;
216 h = gimple_histogram_value_of_type
217 (DECL_STRUCT_FUNCTION (node->decl),
218 stmt, HIST_TYPE_INDIR_CALL);
219 /* No need to do sanity check: gimple_ic_transform already
220 takes away bad histograms. */
221 if (h)
223 /* counter 0 is target, counter 1 is number of execution we called target,
224 counter 2 is total number of executions. */
225 if (h->hvalue.counters[2])
227 struct cgraph_edge * e = node->get_edge (stmt);
228 if (e && !e->indirect_unknown_callee)
229 continue;
230 e->indirect_info->common_target_id
231 = h->hvalue.counters [0];
232 e->indirect_info->common_target_probability
233 = GCOV_COMPUTE_SCALE (h->hvalue.counters [1], h->hvalue.counters [2]);
234 if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
236 if (dump_file)
237 fprintf (dump_file, "Probability capped to 1\n");
238 e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
241 gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
242 stmt, h);
245 time += estimate_num_insns (stmt, &eni_time_weights);
246 size += estimate_num_insns (stmt, &eni_size_weights);
248 account_time_size (&hashtable, histogram, bb->count, time, size);
250 histogram.qsort (cmp_counts);
253 /* Serialize the ipa info for lto. */
255 static void
256 ipa_profile_write_summary (void)
258 struct lto_simple_output_block *ob
259 = lto_create_simple_output_block (LTO_section_ipa_profile);
260 unsigned int i;
262 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
263 for (i = 0; i < histogram.length (); i++)
265 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
266 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
267 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
269 lto_destroy_simple_output_block (ob);
272 /* Deserialize the ipa info for lto. */
274 static void
275 ipa_profile_read_summary (void)
277 struct lto_file_decl_data ** file_data_vec
278 = lto_get_file_decl_data ();
279 struct lto_file_decl_data * file_data;
280 int j = 0;
282 hash_table<histogram_hash> hashtable (10);
283 histogram_pool = create_alloc_pool ("IPA histogram", sizeof (struct histogram_entry),
284 10);
286 while ((file_data = file_data_vec[j++]))
288 const char *data;
289 size_t len;
290 struct lto_input_block *ib
291 = lto_create_simple_input_block (file_data,
292 LTO_section_ipa_profile,
293 &data, &len);
294 if (ib)
296 unsigned int num = streamer_read_uhwi (ib);
297 unsigned int n;
298 for (n = 0; n < num; n++)
300 gcov_type count = streamer_read_gcov_count (ib);
301 int time = streamer_read_uhwi (ib);
302 int size = streamer_read_uhwi (ib);
303 account_time_size (&hashtable, histogram,
304 count, time, size);
306 lto_destroy_simple_input_block (file_data,
307 LTO_section_ipa_profile,
308 ib, data, len);
311 histogram.qsort (cmp_counts);
314 /* Data used by ipa_propagate_frequency. */
316 struct ipa_propagate_frequency_data
318 bool maybe_unlikely_executed;
319 bool maybe_executed_once;
320 bool only_called_at_startup;
321 bool only_called_at_exit;
324 /* Worker for ipa_propagate_frequency_1. */
326 static bool
327 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
329 struct ipa_propagate_frequency_data *d;
330 struct cgraph_edge *edge;
332 d = (struct ipa_propagate_frequency_data *)data;
333 for (edge = node->callers;
334 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
335 || d->only_called_at_startup || d->only_called_at_exit);
336 edge = edge->next_caller)
338 if (edge->caller != node)
340 d->only_called_at_startup &= edge->caller->only_called_at_startup;
341 /* It makes sense to put main() together with the static constructors.
342 It will be executed for sure, but rest of functions called from
343 main are definitely not at startup only. */
344 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
345 d->only_called_at_startup = 0;
346 d->only_called_at_exit &= edge->caller->only_called_at_exit;
349 /* When profile feedback is available, do not try to propagate too hard;
350 counts are already good guide on function frequencies and roundoff
351 errors can make us to push function into unlikely section even when
352 it is executed by the train run. Transfer the function only if all
353 callers are unlikely executed. */
354 if (profile_info && flag_branch_probabilities
355 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
356 || (edge->caller->global.inlined_to
357 && edge->caller->global.inlined_to->frequency
358 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
359 d->maybe_unlikely_executed = false;
360 if (!edge->frequency)
361 continue;
362 switch (edge->caller->frequency)
364 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
365 break;
366 case NODE_FREQUENCY_EXECUTED_ONCE:
367 if (dump_file && (dump_flags & TDF_DETAILS))
368 fprintf (dump_file, " Called by %s that is executed once\n",
369 edge->caller->name ());
370 d->maybe_unlikely_executed = false;
371 if (inline_edge_summary (edge)->loop_depth)
373 d->maybe_executed_once = false;
374 if (dump_file && (dump_flags & TDF_DETAILS))
375 fprintf (dump_file, " Called in loop\n");
377 break;
378 case NODE_FREQUENCY_HOT:
379 case NODE_FREQUENCY_NORMAL:
380 if (dump_file && (dump_flags & TDF_DETAILS))
381 fprintf (dump_file, " Called by %s that is normal or hot\n",
382 edge->caller->name ());
383 d->maybe_unlikely_executed = false;
384 d->maybe_executed_once = false;
385 break;
388 return edge != NULL;
391 /* Return ture if NODE contains hot calls. */
393 bool
394 contains_hot_call_p (struct cgraph_node *node)
396 struct cgraph_edge *e;
397 for (e = node->callees; e; e = e->next_callee)
398 if (e->maybe_hot_p ())
399 return true;
400 else if (!e->inline_failed
401 && contains_hot_call_p (e->callee))
402 return true;
403 for (e = node->indirect_calls; e; e = e->next_callee)
404 if (e->maybe_hot_p ())
405 return true;
406 return false;
409 /* See if the frequency of NODE can be updated based on frequencies of its
410 callers. */
411 bool
412 ipa_propagate_frequency (struct cgraph_node *node)
414 struct ipa_propagate_frequency_data d = {true, true, true, true};
415 bool changed = false;
417 /* We can not propagate anything useful about externally visible functions
418 nor about virtuals. */
419 if (!node->local.local
420 || node->alias
421 || (flag_devirtualize && DECL_VIRTUAL_P (node->decl)))
422 return false;
423 gcc_assert (node->analyzed);
424 if (dump_file && (dump_flags & TDF_DETAILS))
425 fprintf (dump_file, "Processing frequency %s\n", node->name ());
427 node->call_for_symbol_thunks_and_aliases (ipa_propagate_frequency_1, &d,
428 true);
430 if ((d.only_called_at_startup && !d.only_called_at_exit)
431 && !node->only_called_at_startup)
433 node->only_called_at_startup = true;
434 if (dump_file)
435 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
436 node->name ());
437 changed = true;
439 if ((d.only_called_at_exit && !d.only_called_at_startup)
440 && !node->only_called_at_exit)
442 node->only_called_at_exit = true;
443 if (dump_file)
444 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
445 node->name ());
446 changed = true;
449 /* With profile we can decide on hot/normal based on count. */
450 if (node->count)
452 bool hot = false;
453 if (node->count >= get_hot_bb_threshold ())
454 hot = true;
455 if (!hot)
456 hot |= contains_hot_call_p (node);
457 if (hot)
459 if (node->frequency != NODE_FREQUENCY_HOT)
461 if (dump_file)
462 fprintf (dump_file, "Node %s promoted to hot.\n",
463 node->name ());
464 node->frequency = NODE_FREQUENCY_HOT;
465 return true;
467 return false;
469 else if (node->frequency == NODE_FREQUENCY_HOT)
471 if (dump_file)
472 fprintf (dump_file, "Node %s reduced to normal.\n",
473 node->name ());
474 node->frequency = NODE_FREQUENCY_NORMAL;
475 changed = true;
478 /* These come either from profile or user hints; never update them. */
479 if (node->frequency == NODE_FREQUENCY_HOT
480 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
481 return changed;
482 if (d.maybe_unlikely_executed)
484 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
485 if (dump_file)
486 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
487 node->name ());
488 changed = true;
490 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
492 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
493 if (dump_file)
494 fprintf (dump_file, "Node %s promoted to executed once.\n",
495 node->name ());
496 changed = true;
498 return changed;
501 /* Simple ipa profile pass propagating frequencies across the callgraph. */
503 static unsigned int
504 ipa_profile (void)
506 struct cgraph_node **order;
507 struct cgraph_edge *e;
508 int order_pos;
509 bool something_changed = false;
510 int i;
511 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
512 struct cgraph_node *n,*n2;
513 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
514 bool node_map_initialized = false;
516 if (dump_file)
517 dump_histogram (dump_file, histogram);
518 for (i = 0; i < (int)histogram.length (); i++)
520 overall_time += histogram[i]->count * histogram[i]->time;
521 overall_size += histogram[i]->size;
523 if (overall_time)
525 gcov_type threshold;
527 gcc_assert (overall_size);
528 if (dump_file)
530 gcov_type min, cumulated_time = 0, cumulated_size = 0;
532 fprintf (dump_file, "Overall time: %"PRId64"\n",
533 (int64_t)overall_time);
534 min = get_hot_bb_threshold ();
535 for (i = 0; i < (int)histogram.length () && histogram[i]->count >= min;
536 i++)
538 cumulated_time += histogram[i]->count * histogram[i]->time;
539 cumulated_size += histogram[i]->size;
541 fprintf (dump_file, "GCOV min count: %"PRId64
542 " Time:%3.2f%% Size:%3.2f%%\n",
543 (int64_t)min,
544 cumulated_time * 100.0 / overall_time,
545 cumulated_size * 100.0 / overall_size);
547 cutoff = (overall_time * PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE) + 500) / 1000;
548 threshold = 0;
549 for (i = 0; cumulated < cutoff; i++)
551 cumulated += histogram[i]->count * histogram[i]->time;
552 threshold = histogram[i]->count;
554 if (!threshold)
555 threshold = 1;
556 if (dump_file)
558 gcov_type cumulated_time = 0, cumulated_size = 0;
560 for (i = 0;
561 i < (int)histogram.length () && histogram[i]->count >= threshold;
562 i++)
564 cumulated_time += histogram[i]->count * histogram[i]->time;
565 cumulated_size += histogram[i]->size;
567 fprintf (dump_file, "Determined min count: %"PRId64
568 " Time:%3.2f%% Size:%3.2f%%\n",
569 (int64_t)threshold,
570 cumulated_time * 100.0 / overall_time,
571 cumulated_size * 100.0 / overall_size);
573 if (threshold > get_hot_bb_threshold ()
574 || in_lto_p)
576 if (dump_file)
577 fprintf (dump_file, "Threshold updated.\n");
578 set_hot_bb_threshold (threshold);
581 histogram.release ();
582 free_alloc_pool (histogram_pool);
584 /* Produce speculative calls: we saved common traget from porfiling into
585 e->common_target_id. Now, at link time, we can look up corresponding
586 function node and produce speculative call. */
588 FOR_EACH_DEFINED_FUNCTION (n)
590 bool update = false;
592 for (e = n->indirect_calls; e; e = e->next_callee)
594 if (n->count)
595 nindirect++;
596 if (e->indirect_info->common_target_id)
598 if (!node_map_initialized)
599 init_node_map (false);
600 node_map_initialized = true;
601 ncommon++;
602 n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
603 if (n2)
605 if (dump_file)
607 fprintf (dump_file, "Indirect call -> direct call from"
608 " other module %s/%i => %s/%i, prob %3.2f\n",
609 xstrdup (n->name ()), n->order,
610 xstrdup (n2->name ()), n2->order,
611 e->indirect_info->common_target_probability
612 / (float)REG_BR_PROB_BASE);
614 if (e->indirect_info->common_target_probability
615 < REG_BR_PROB_BASE / 2)
617 nuseless++;
618 if (dump_file)
619 fprintf (dump_file,
620 "Not speculating: probability is too low.\n");
622 else if (!e->maybe_hot_p ())
624 nuseless++;
625 if (dump_file)
626 fprintf (dump_file,
627 "Not speculating: call is cold.\n");
629 else if (n2->get_availability () <= AVAIL_INTERPOSABLE
630 && n2->can_be_discarded_p ())
632 nuseless++;
633 if (dump_file)
634 fprintf (dump_file,
635 "Not speculating: target is overwritable "
636 "and can be discarded.\n");
638 else
640 /* Target may be overwritable, but profile says that
641 control flow goes to this particular implementation
642 of N2. Speculate on the local alias to allow inlining.
644 if (!n2->can_be_discarded_p ())
646 cgraph_node *alias;
647 alias = dyn_cast<cgraph_node *> (n2->noninterposable_alias ());
648 if (alias)
649 n2 = alias;
651 nconverted++;
652 e->make_speculative
653 (n2,
654 apply_scale (e->count,
655 e->indirect_info->common_target_probability),
656 apply_scale (e->frequency,
657 e->indirect_info->common_target_probability));
658 update = true;
661 else
663 if (dump_file)
664 fprintf (dump_file, "Function with profile-id %i not found.\n",
665 e->indirect_info->common_target_id);
666 nunknown++;
670 if (update)
671 inline_update_overall_summary (n);
673 if (node_map_initialized)
674 del_node_map ();
675 if (dump_file && nindirect)
676 fprintf (dump_file,
677 "%i indirect calls trained.\n"
678 "%i (%3.2f%%) have common target.\n"
679 "%i (%3.2f%%) targets was not found.\n"
680 "%i (%3.2f%%) speculations seems useless.\n"
681 "%i (%3.2f%%) speculations produced.\n",
682 nindirect,
683 ncommon, ncommon * 100.0 / nindirect,
684 nunknown, nunknown * 100.0 / nindirect,
685 nuseless, nuseless * 100.0 / nindirect,
686 nconverted, nconverted * 100.0 / nindirect);
688 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
689 order_pos = ipa_reverse_postorder (order);
690 for (i = order_pos - 1; i >= 0; i--)
692 if (order[i]->local.local && ipa_propagate_frequency (order[i]))
694 for (e = order[i]->callees; e; e = e->next_callee)
695 if (e->callee->local.local && !e->callee->aux)
697 something_changed = true;
698 e->callee->aux = (void *)1;
701 order[i]->aux = NULL;
704 while (something_changed)
706 something_changed = false;
707 for (i = order_pos - 1; i >= 0; i--)
709 if (order[i]->aux && ipa_propagate_frequency (order[i]))
711 for (e = order[i]->callees; e; e = e->next_callee)
712 if (e->callee->local.local && !e->callee->aux)
714 something_changed = true;
715 e->callee->aux = (void *)1;
718 order[i]->aux = NULL;
721 free (order);
722 return 0;
725 namespace {
727 const pass_data pass_data_ipa_profile =
729 IPA_PASS, /* type */
730 "profile_estimate", /* name */
731 OPTGROUP_NONE, /* optinfo_flags */
732 TV_IPA_PROFILE, /* tv_id */
733 0, /* properties_required */
734 0, /* properties_provided */
735 0, /* properties_destroyed */
736 0, /* todo_flags_start */
737 0, /* todo_flags_finish */
740 class pass_ipa_profile : public ipa_opt_pass_d
742 public:
743 pass_ipa_profile (gcc::context *ctxt)
744 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
745 ipa_profile_generate_summary, /* generate_summary */
746 ipa_profile_write_summary, /* write_summary */
747 ipa_profile_read_summary, /* read_summary */
748 NULL, /* write_optimization_summary */
749 NULL, /* read_optimization_summary */
750 NULL, /* stmt_fixup */
751 0, /* function_transform_todo_flags_start */
752 NULL, /* function_transform */
753 NULL) /* variable_transform */
756 /* opt_pass methods: */
757 virtual bool gate (function *) { return flag_ipa_profile; }
758 virtual unsigned int execute (function *) { return ipa_profile (); }
760 }; // class pass_ipa_profile
762 } // anon namespace
764 ipa_opt_pass_d *
765 make_pass_ipa_profile (gcc::context *ctxt)
767 return new pass_ipa_profile (ctxt);