new (placement delete): Remove unused paramater names.
[official-gcc.git] / gcc / final.c
blobe0b38601dbfb6b3e1dd6a69edee69bbcb715f3db
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
47 #include "config.h"
48 #include "system.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
113 /* Line number of last NOTE. */
114 static int last_linenum;
116 /* Highest line number in current block. */
117 static int high_block_linenum;
119 /* Likewise for function. */
120 static int high_function_linenum;
122 /* Filename of last NOTE. */
123 static const char *last_filename;
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
135 /* Compare optimization flag. */
137 static rtx last_ignored_compare = 0;
139 /* Flag indicating this insn is the start of a new basic block. */
141 static int new_block = 1;
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
146 static int insn_counter = 0;
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
153 CC_STATUS cc_status;
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
158 CC_STATUS cc_prev_status;
159 #endif
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
176 int frame_pointer_needed;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Indexed by line number, nonzero if there is a note for that line. */
199 static char *line_note_exists;
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
206 struct function_list
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
226 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
227 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
228 static void output_operand PARAMS ((rtx, int));
229 #ifdef LEAF_REGISTERS
230 static void leaf_renumber_regs PARAMS ((rtx));
231 #endif
232 #ifdef HAVE_cc0
233 static int alter_cond PARAMS ((rtx));
234 #endif
235 #ifndef ADDR_VEC_ALIGN
236 static int final_addr_vec_align PARAMS ((rtx));
237 #endif
238 #ifdef HAVE_ATTR_length
239 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
240 #endif
242 /* Initialize data in final at the beginning of a compilation. */
244 void
245 init_final (filename)
246 const char *filename ATTRIBUTE_UNUSED;
248 app_on = 0;
249 final_sequence = 0;
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number = ASSEMBLER_DIALECT;
253 #endif
256 /* Called at end of source file,
257 to output the arc-profiling table for this entire compilation. */
259 void
260 end_final (filename)
261 const char *filename;
263 if (profile_arc_flag && profile_info.count_instrumented_edges)
265 char name[20];
266 tree string_type, string_cst;
267 tree structure_decl, structure_value, structure_pointer_type;
268 tree field_decl, decl_chain, value_chain;
269 tree sizeof_field_value, domain_type;
271 /* Build types. */
272 string_type = build_pointer_type (char_type_node);
274 /* Libgcc2 bb structure. */
275 structure_decl = make_node (RECORD_TYPE);
276 structure_pointer_type = build_pointer_type (structure_decl);
278 /* Output the main header, of 7 words:
279 0: 1 if this file is initialized, else 0.
280 1: address of file name (LPBX1).
281 2: address of table of counts (LPBX2).
282 3: number of counts in the table.
283 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
285 The following are GNU extensions:
287 5: Number of bytes in this header.
288 6: address of table of function checksums (LPBX7). */
290 /* The zero word. */
291 decl_chain =
292 build_decl (FIELD_DECL, get_identifier ("zero_word"),
293 long_integer_type_node);
294 value_chain = build_tree_list (decl_chain,
295 convert (long_integer_type_node,
296 integer_zero_node));
298 /* Address of filename. */
300 char *cwd, *da_filename;
301 int da_filename_len;
303 field_decl =
304 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
305 TREE_CHAIN (field_decl) = decl_chain;
306 decl_chain = field_decl;
308 cwd = getpwd ();
309 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
310 da_filename = (char *) alloca (da_filename_len);
311 strcpy (da_filename, cwd);
312 strcat (da_filename, "/");
313 strcat (da_filename, filename);
314 strip_off_ending (da_filename, da_filename_len - 3);
315 strcat (da_filename, ".da");
316 da_filename_len = strlen (da_filename);
317 string_cst = build_string (da_filename_len + 1, da_filename);
318 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
319 TREE_TYPE (string_cst)
320 = build_array_type (char_type_node, domain_type);
321 value_chain = tree_cons (field_decl,
322 build1 (ADDR_EXPR, string_type, string_cst),
323 value_chain);
326 /* Table of counts. */
328 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
329 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
330 tree domain_tree
331 = build_index_type (build_int_2 (profile_info.
332 count_instrumented_edges - 1, 0));
333 tree gcov_type_array_type
334 = build_array_type (gcov_type_type, domain_tree);
335 tree gcov_type_array_pointer_type
336 = build_pointer_type (gcov_type_array_type);
337 tree counts_table;
339 field_decl =
340 build_decl (FIELD_DECL, get_identifier ("counts"),
341 gcov_type_pointer_type);
342 TREE_CHAIN (field_decl) = decl_chain;
343 decl_chain = field_decl;
345 /* No values. */
346 counts_table
347 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
348 TREE_STATIC (counts_table) = 1;
349 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
350 DECL_NAME (counts_table) = get_identifier (name);
351 assemble_variable (counts_table, 0, 0, 0);
353 value_chain = tree_cons (field_decl,
354 build1 (ADDR_EXPR,
355 gcov_type_array_pointer_type,
356 counts_table), value_chain);
359 /* Count of the # of instrumented arcs. */
360 field_decl
361 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
362 long_integer_type_node);
363 TREE_CHAIN (field_decl) = decl_chain;
364 decl_chain = field_decl;
366 value_chain = tree_cons (field_decl,
367 convert (long_integer_type_node,
368 build_int_2 (profile_info.
369 count_instrumented_edges,
370 0)), value_chain);
371 /* Pointer to the next bb. */
372 field_decl
373 = build_decl (FIELD_DECL, get_identifier ("next"),
374 structure_pointer_type);
375 TREE_CHAIN (field_decl) = decl_chain;
376 decl_chain = field_decl;
378 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
380 /* sizeof(struct bb). We'll set this after entire structure
381 is laid out. */
382 field_decl
383 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
384 long_integer_type_node);
385 TREE_CHAIN (field_decl) = decl_chain;
386 decl_chain = field_decl;
388 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
389 value_chain = sizeof_field_value;
391 /* struct bb_function []. */
393 struct function_list *item;
394 int num_nodes;
395 tree checksum_field, arc_count_field, name_field;
396 tree domain;
397 tree array_value_chain = NULL_TREE;
398 tree bb_fn_struct_type;
399 tree bb_fn_struct_array_type;
400 tree bb_fn_struct_array_pointer_type;
401 tree bb_fn_struct_pointer_type;
402 tree field_value, field_value_chain;
404 bb_fn_struct_type = make_node (RECORD_TYPE);
406 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
407 long_integer_type_node);
409 arc_count_field
410 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
411 integer_type_node);
412 TREE_CHAIN (checksum_field) = arc_count_field;
414 name_field
415 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
416 TREE_CHAIN (arc_count_field) = name_field;
418 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
420 num_nodes = 0;
422 for (item = functions_head; item != 0; item = item->next)
423 num_nodes++;
425 /* Note that the array contains a terminator, hence no - 1. */
426 domain = build_index_type (build_int_2 (num_nodes, 0));
428 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
429 bb_fn_struct_array_type
430 = build_array_type (bb_fn_struct_type, domain);
431 bb_fn_struct_array_pointer_type
432 = build_pointer_type (bb_fn_struct_array_type);
434 layout_type (bb_fn_struct_type);
435 layout_type (bb_fn_struct_pointer_type);
436 layout_type (bb_fn_struct_array_type);
437 layout_type (bb_fn_struct_array_pointer_type);
439 for (item = functions_head; item != 0; item = item->next)
441 size_t name_len;
443 /* create constructor for structure. */
444 field_value_chain
445 = build_tree_list (checksum_field,
446 convert (long_integer_type_node,
447 build_int_2 (item->cfg_checksum, 0)));
448 field_value_chain
449 = tree_cons (arc_count_field,
450 convert (integer_type_node,
451 build_int_2 (item->count_edges, 0)),
452 field_value_chain);
454 name_len = strlen (item->name);
455 string_cst = build_string (name_len + 1, item->name);
456 domain_type = build_index_type (build_int_2 (name_len, 0));
457 TREE_TYPE (string_cst)
458 = build_array_type (char_type_node, domain_type);
459 field_value_chain = tree_cons (name_field,
460 build1 (ADDR_EXPR, string_type,
461 string_cst),
462 field_value_chain);
464 /* Add to chain. */
465 array_value_chain
466 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
467 bb_fn_struct_type, NULL_TREE,
468 nreverse (field_value_chain)),
469 array_value_chain);
472 /* Add terminator. */
473 field_value = build_tree_list (arc_count_field,
474 convert (integer_type_node,
475 build_int_2 (-1, 0)));
477 array_value_chain = tree_cons (NULL_TREE,
478 build (CONSTRUCTOR, bb_fn_struct_type,
479 NULL_TREE, field_value),
480 array_value_chain);
483 /* Create constructor for array. */
484 field_decl
485 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
486 bb_fn_struct_pointer_type);
487 value_chain = tree_cons (field_decl,
488 build1 (ADDR_EXPR,
489 bb_fn_struct_array_pointer_type,
490 build (CONSTRUCTOR,
491 bb_fn_struct_array_type,
492 NULL_TREE,
493 nreverse
494 (array_value_chain))),
495 value_chain);
496 TREE_CHAIN (field_decl) = decl_chain;
497 decl_chain = field_decl;
500 /* Finish structure. */
501 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
502 layout_type (structure_decl);
504 structure_value
505 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
506 DECL_INITIAL (structure_value)
507 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
508 nreverse (value_chain));
509 TREE_STATIC (structure_value) = 1;
510 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
511 DECL_NAME (structure_value) = get_identifier (name);
513 /* Size of this structure. */
514 TREE_VALUE (sizeof_field_value)
515 = convert (long_integer_type_node,
516 build_int_2 (int_size_in_bytes (structure_decl), 0));
518 /* Build structure. */
519 assemble_variable (structure_value, 0, 0, 0);
523 /* Default target function prologue and epilogue assembler output.
525 If not overridden for epilogue code, then the function body itself
526 contains return instructions wherever needed. */
527 void
528 default_function_pro_epilogue (file, size)
529 FILE *file ATTRIBUTE_UNUSED;
530 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
534 /* Default target hook that outputs nothing to a stream. */
535 void
536 no_asm_to_stream (file)
537 FILE *file ATTRIBUTE_UNUSED;
541 /* Enable APP processing of subsequent output.
542 Used before the output from an `asm' statement. */
544 void
545 app_enable ()
547 if (! app_on)
549 fputs (ASM_APP_ON, asm_out_file);
550 app_on = 1;
554 /* Disable APP processing of subsequent output.
555 Called from varasm.c before most kinds of output. */
557 void
558 app_disable ()
560 if (app_on)
562 fputs (ASM_APP_OFF, asm_out_file);
563 app_on = 0;
567 /* Return the number of slots filled in the current
568 delayed branch sequence (we don't count the insn needing the
569 delay slot). Zero if not in a delayed branch sequence. */
571 #ifdef DELAY_SLOTS
573 dbr_sequence_length ()
575 if (final_sequence != 0)
576 return XVECLEN (final_sequence, 0) - 1;
577 else
578 return 0;
580 #endif
582 /* The next two pages contain routines used to compute the length of an insn
583 and to shorten branches. */
585 /* Arrays for insn lengths, and addresses. The latter is referenced by
586 `insn_current_length'. */
588 static int *insn_lengths;
590 varray_type insn_addresses_;
592 /* Max uid for which the above arrays are valid. */
593 static int insn_lengths_max_uid;
595 /* Address of insn being processed. Used by `insn_current_length'. */
596 int insn_current_address;
598 /* Address of insn being processed in previous iteration. */
599 int insn_last_address;
601 /* known invariant alignment of insn being processed. */
602 int insn_current_align;
604 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
605 gives the next following alignment insn that increases the known
606 alignment, or NULL_RTX if there is no such insn.
607 For any alignment obtained this way, we can again index uid_align with
608 its uid to obtain the next following align that in turn increases the
609 alignment, till we reach NULL_RTX; the sequence obtained this way
610 for each insn we'll call the alignment chain of this insn in the following
611 comments. */
613 struct label_alignment
615 short alignment;
616 short max_skip;
619 static rtx *uid_align;
620 static int *uid_shuid;
621 static struct label_alignment *label_align;
623 /* Indicate that branch shortening hasn't yet been done. */
625 void
626 init_insn_lengths ()
628 if (uid_shuid)
630 free (uid_shuid);
631 uid_shuid = 0;
633 if (insn_lengths)
635 free (insn_lengths);
636 insn_lengths = 0;
637 insn_lengths_max_uid = 0;
639 #ifdef HAVE_ATTR_length
640 INSN_ADDRESSES_FREE ();
641 #endif
642 if (uid_align)
644 free (uid_align);
645 uid_align = 0;
649 /* Obtain the current length of an insn. If branch shortening has been done,
650 get its actual length. Otherwise, get its maximum length. */
653 get_attr_length (insn)
654 rtx insn ATTRIBUTE_UNUSED;
656 #ifdef HAVE_ATTR_length
657 rtx body;
658 int i;
659 int length = 0;
661 if (insn_lengths_max_uid > INSN_UID (insn))
662 return insn_lengths[INSN_UID (insn)];
663 else
664 switch (GET_CODE (insn))
666 case NOTE:
667 case BARRIER:
668 case CODE_LABEL:
669 return 0;
671 case CALL_INSN:
672 length = insn_default_length (insn);
673 break;
675 case JUMP_INSN:
676 body = PATTERN (insn);
677 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
679 /* Alignment is machine-dependent and should be handled by
680 ADDR_VEC_ALIGN. */
682 else
683 length = insn_default_length (insn);
684 break;
686 case INSN:
687 body = PATTERN (insn);
688 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
689 return 0;
691 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
692 length = asm_insn_count (body) * insn_default_length (insn);
693 else if (GET_CODE (body) == SEQUENCE)
694 for (i = 0; i < XVECLEN (body, 0); i++)
695 length += get_attr_length (XVECEXP (body, 0, i));
696 else
697 length = insn_default_length (insn);
698 break;
700 default:
701 break;
704 #ifdef ADJUST_INSN_LENGTH
705 ADJUST_INSN_LENGTH (insn, length);
706 #endif
707 return length;
708 #else /* not HAVE_ATTR_length */
709 return 0;
710 #endif /* not HAVE_ATTR_length */
713 /* Code to handle alignment inside shorten_branches. */
715 /* Here is an explanation how the algorithm in align_fuzz can give
716 proper results:
718 Call a sequence of instructions beginning with alignment point X
719 and continuing until the next alignment point `block X'. When `X'
720 is used in an expression, it means the alignment value of the
721 alignment point.
723 Call the distance between the start of the first insn of block X, and
724 the end of the last insn of block X `IX', for the `inner size of X'.
725 This is clearly the sum of the instruction lengths.
727 Likewise with the next alignment-delimited block following X, which we
728 shall call block Y.
730 Call the distance between the start of the first insn of block X, and
731 the start of the first insn of block Y `OX', for the `outer size of X'.
733 The estimated padding is then OX - IX.
735 OX can be safely estimated as
737 if (X >= Y)
738 OX = round_up(IX, Y)
739 else
740 OX = round_up(IX, X) + Y - X
742 Clearly est(IX) >= real(IX), because that only depends on the
743 instruction lengths, and those being overestimated is a given.
745 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
746 we needn't worry about that when thinking about OX.
748 When X >= Y, the alignment provided by Y adds no uncertainty factor
749 for branch ranges starting before X, so we can just round what we have.
750 But when X < Y, we don't know anything about the, so to speak,
751 `middle bits', so we have to assume the worst when aligning up from an
752 address mod X to one mod Y, which is Y - X. */
754 #ifndef LABEL_ALIGN
755 #define LABEL_ALIGN(LABEL) align_labels_log
756 #endif
758 #ifndef LABEL_ALIGN_MAX_SKIP
759 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
760 #endif
762 #ifndef LOOP_ALIGN
763 #define LOOP_ALIGN(LABEL) align_loops_log
764 #endif
766 #ifndef LOOP_ALIGN_MAX_SKIP
767 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
768 #endif
770 #ifndef LABEL_ALIGN_AFTER_BARRIER
771 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
772 #endif
774 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
775 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
776 #endif
778 #ifndef JUMP_ALIGN
779 #define JUMP_ALIGN(LABEL) align_jumps_log
780 #endif
782 #ifndef JUMP_ALIGN_MAX_SKIP
783 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
784 #endif
786 #ifndef ADDR_VEC_ALIGN
787 static int
788 final_addr_vec_align (addr_vec)
789 rtx addr_vec;
791 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
793 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
794 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
795 return exact_log2 (align);
799 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
800 #endif
802 #ifndef INSN_LENGTH_ALIGNMENT
803 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
804 #endif
806 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
808 static int min_labelno, max_labelno;
810 #define LABEL_TO_ALIGNMENT(LABEL) \
811 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
813 #define LABEL_TO_MAX_SKIP(LABEL) \
814 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
816 /* For the benefit of port specific code do this also as a function. */
819 label_to_alignment (label)
820 rtx label;
822 return LABEL_TO_ALIGNMENT (label);
825 #ifdef HAVE_ATTR_length
826 /* The differences in addresses
827 between a branch and its target might grow or shrink depending on
828 the alignment the start insn of the range (the branch for a forward
829 branch or the label for a backward branch) starts out on; if these
830 differences are used naively, they can even oscillate infinitely.
831 We therefore want to compute a 'worst case' address difference that
832 is independent of the alignment the start insn of the range end
833 up on, and that is at least as large as the actual difference.
834 The function align_fuzz calculates the amount we have to add to the
835 naively computed difference, by traversing the part of the alignment
836 chain of the start insn of the range that is in front of the end insn
837 of the range, and considering for each alignment the maximum amount
838 that it might contribute to a size increase.
840 For casesi tables, we also want to know worst case minimum amounts of
841 address difference, in case a machine description wants to introduce
842 some common offset that is added to all offsets in a table.
843 For this purpose, align_fuzz with a growth argument of 0 computes the
844 appropriate adjustment. */
846 /* Compute the maximum delta by which the difference of the addresses of
847 START and END might grow / shrink due to a different address for start
848 which changes the size of alignment insns between START and END.
849 KNOWN_ALIGN_LOG is the alignment known for START.
850 GROWTH should be ~0 if the objective is to compute potential code size
851 increase, and 0 if the objective is to compute potential shrink.
852 The return value is undefined for any other value of GROWTH. */
854 static int
855 align_fuzz (start, end, known_align_log, growth)
856 rtx start, end;
857 int known_align_log;
858 unsigned growth;
860 int uid = INSN_UID (start);
861 rtx align_label;
862 int known_align = 1 << known_align_log;
863 int end_shuid = INSN_SHUID (end);
864 int fuzz = 0;
866 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
868 int align_addr, new_align;
870 uid = INSN_UID (align_label);
871 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
872 if (uid_shuid[uid] > end_shuid)
873 break;
874 known_align_log = LABEL_TO_ALIGNMENT (align_label);
875 new_align = 1 << known_align_log;
876 if (new_align < known_align)
877 continue;
878 fuzz += (-align_addr ^ growth) & (new_align - known_align);
879 known_align = new_align;
881 return fuzz;
884 /* Compute a worst-case reference address of a branch so that it
885 can be safely used in the presence of aligned labels. Since the
886 size of the branch itself is unknown, the size of the branch is
887 not included in the range. I.e. for a forward branch, the reference
888 address is the end address of the branch as known from the previous
889 branch shortening pass, minus a value to account for possible size
890 increase due to alignment. For a backward branch, it is the start
891 address of the branch as known from the current pass, plus a value
892 to account for possible size increase due to alignment.
893 NB.: Therefore, the maximum offset allowed for backward branches needs
894 to exclude the branch size. */
897 insn_current_reference_address (branch)
898 rtx branch;
900 rtx dest, seq;
901 int seq_uid;
903 if (! INSN_ADDRESSES_SET_P ())
904 return 0;
906 seq = NEXT_INSN (PREV_INSN (branch));
907 seq_uid = INSN_UID (seq);
908 if (GET_CODE (branch) != JUMP_INSN)
909 /* This can happen for example on the PA; the objective is to know the
910 offset to address something in front of the start of the function.
911 Thus, we can treat it like a backward branch.
912 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
913 any alignment we'd encounter, so we skip the call to align_fuzz. */
914 return insn_current_address;
915 dest = JUMP_LABEL (branch);
917 /* BRANCH has no proper alignment chain set, so use SEQ.
918 BRANCH also has no INSN_SHUID. */
919 if (INSN_SHUID (seq) < INSN_SHUID (dest))
921 /* Forward branch. */
922 return (insn_last_address + insn_lengths[seq_uid]
923 - align_fuzz (seq, dest, length_unit_log, ~0));
925 else
927 /* Backward branch. */
928 return (insn_current_address
929 + align_fuzz (dest, seq, length_unit_log, ~0));
932 #endif /* HAVE_ATTR_length */
934 void
935 compute_alignments ()
937 int log, max_skip, max_log;
938 basic_block bb;
940 if (label_align)
942 free (label_align);
943 label_align = 0;
946 max_labelno = max_label_num ();
947 min_labelno = get_first_label_num ();
948 label_align = (struct label_alignment *)
949 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
951 /* If not optimizing or optimizing for size, don't assign any alignments. */
952 if (! optimize || optimize_size)
953 return;
955 FOR_EACH_BB (bb)
957 rtx label = bb->head;
958 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
959 edge e;
961 if (GET_CODE (label) != CODE_LABEL)
962 continue;
963 max_log = LABEL_ALIGN (label);
964 max_skip = LABEL_ALIGN_MAX_SKIP;
966 for (e = bb->pred; e; e = e->pred_next)
968 if (e->flags & EDGE_FALLTHRU)
969 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
970 else
971 branch_frequency += EDGE_FREQUENCY (e);
974 /* There are two purposes to align block with no fallthru incoming edge:
975 1) to avoid fetch stalls when branch destination is near cache boundary
976 2) to improve cache efficiency in case the previous block is not executed
977 (so it does not need to be in the cache).
979 We to catch first case, we align frequently executed blocks.
980 To catch the second, we align blocks that are executed more frequently
981 than the predecessor and the predecessor is likely to not be executed
982 when function is called. */
984 if (!has_fallthru
985 && (branch_frequency > BB_FREQ_MAX / 10
986 || (bb->frequency > bb->prev_bb->frequency * 10
987 && (bb->prev_bb->frequency
988 <= ENTRY_BLOCK_PTR->frequency / 2))))
990 log = JUMP_ALIGN (label);
991 if (max_log < log)
993 max_log = log;
994 max_skip = JUMP_ALIGN_MAX_SKIP;
997 /* In case block is frequent and reached mostly by non-fallthru edge,
998 align it. It is most likely an first block of loop. */
999 if (has_fallthru
1000 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1001 && branch_frequency > fallthru_frequency * 5)
1003 log = LOOP_ALIGN (label);
1004 if (max_log < log)
1006 max_log = log;
1007 max_skip = LOOP_ALIGN_MAX_SKIP;
1010 LABEL_TO_ALIGNMENT (label) = max_log;
1011 LABEL_TO_MAX_SKIP (label) = max_skip;
1015 /* Make a pass over all insns and compute their actual lengths by shortening
1016 any branches of variable length if possible. */
1018 /* Give a default value for the lowest address in a function. */
1020 #ifndef FIRST_INSN_ADDRESS
1021 #define FIRST_INSN_ADDRESS 0
1022 #endif
1024 /* shorten_branches might be called multiple times: for example, the SH
1025 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1026 In order to do this, it needs proper length information, which it obtains
1027 by calling shorten_branches. This cannot be collapsed with
1028 shorten_branches itself into a single pass unless we also want to integrate
1029 reorg.c, since the branch splitting exposes new instructions with delay
1030 slots. */
1032 void
1033 shorten_branches (first)
1034 rtx first ATTRIBUTE_UNUSED;
1036 rtx insn;
1037 int max_uid;
1038 int i;
1039 int max_log;
1040 int max_skip;
1041 #ifdef HAVE_ATTR_length
1042 #define MAX_CODE_ALIGN 16
1043 rtx seq;
1044 int something_changed = 1;
1045 char *varying_length;
1046 rtx body;
1047 int uid;
1048 rtx align_tab[MAX_CODE_ALIGN];
1050 #endif
1052 /* Compute maximum UID and allocate label_align / uid_shuid. */
1053 max_uid = get_max_uid ();
1055 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1057 if (max_labelno != max_label_num ())
1059 int old = max_labelno;
1060 int n_labels;
1061 int n_old_labels;
1063 max_labelno = max_label_num ();
1065 n_labels = max_labelno - min_labelno + 1;
1066 n_old_labels = old - min_labelno + 1;
1068 label_align = (struct label_alignment *) xrealloc
1069 (label_align, n_labels * sizeof (struct label_alignment));
1071 /* Range of labels grows monotonically in the function. Abort here
1072 means that the initialization of array got lost. */
1073 if (n_old_labels > n_labels)
1074 abort ();
1076 memset (label_align + n_old_labels, 0,
1077 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1080 /* Initialize label_align and set up uid_shuid to be strictly
1081 monotonically rising with insn order. */
1082 /* We use max_log here to keep track of the maximum alignment we want to
1083 impose on the next CODE_LABEL (or the current one if we are processing
1084 the CODE_LABEL itself). */
1086 max_log = 0;
1087 max_skip = 0;
1089 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1091 int log;
1093 INSN_SHUID (insn) = i++;
1094 if (INSN_P (insn))
1096 /* reorg might make the first insn of a loop being run once only,
1097 and delete the label in front of it. Then we want to apply
1098 the loop alignment to the new label created by reorg, which
1099 is separated by the former loop start insn from the
1100 NOTE_INSN_LOOP_BEG. */
1102 else if (GET_CODE (insn) == CODE_LABEL)
1104 rtx next;
1106 /* Merge in alignments computed by compute_alignments. */
1107 log = LABEL_TO_ALIGNMENT (insn);
1108 if (max_log < log)
1110 max_log = log;
1111 max_skip = LABEL_TO_MAX_SKIP (insn);
1114 log = LABEL_ALIGN (insn);
1115 if (max_log < log)
1117 max_log = log;
1118 max_skip = LABEL_ALIGN_MAX_SKIP;
1120 next = NEXT_INSN (insn);
1121 /* ADDR_VECs only take room if read-only data goes into the text
1122 section. */
1123 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1124 if (next && GET_CODE (next) == JUMP_INSN)
1126 rtx nextbody = PATTERN (next);
1127 if (GET_CODE (nextbody) == ADDR_VEC
1128 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1130 log = ADDR_VEC_ALIGN (next);
1131 if (max_log < log)
1133 max_log = log;
1134 max_skip = LABEL_ALIGN_MAX_SKIP;
1138 LABEL_TO_ALIGNMENT (insn) = max_log;
1139 LABEL_TO_MAX_SKIP (insn) = max_skip;
1140 max_log = 0;
1141 max_skip = 0;
1143 else if (GET_CODE (insn) == BARRIER)
1145 rtx label;
1147 for (label = insn; label && ! INSN_P (label);
1148 label = NEXT_INSN (label))
1149 if (GET_CODE (label) == CODE_LABEL)
1151 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1152 if (max_log < log)
1154 max_log = log;
1155 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1157 break;
1161 #ifdef HAVE_ATTR_length
1163 /* Allocate the rest of the arrays. */
1164 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1165 insn_lengths_max_uid = max_uid;
1166 /* Syntax errors can lead to labels being outside of the main insn stream.
1167 Initialize insn_addresses, so that we get reproducible results. */
1168 INSN_ADDRESSES_ALLOC (max_uid);
1170 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1172 /* Initialize uid_align. We scan instructions
1173 from end to start, and keep in align_tab[n] the last seen insn
1174 that does an alignment of at least n+1, i.e. the successor
1175 in the alignment chain for an insn that does / has a known
1176 alignment of n. */
1177 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1179 for (i = MAX_CODE_ALIGN; --i >= 0;)
1180 align_tab[i] = NULL_RTX;
1181 seq = get_last_insn ();
1182 for (; seq; seq = PREV_INSN (seq))
1184 int uid = INSN_UID (seq);
1185 int log;
1186 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1187 uid_align[uid] = align_tab[0];
1188 if (log)
1190 /* Found an alignment label. */
1191 uid_align[uid] = align_tab[log];
1192 for (i = log - 1; i >= 0; i--)
1193 align_tab[i] = seq;
1196 #ifdef CASE_VECTOR_SHORTEN_MODE
1197 if (optimize)
1199 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1200 label fields. */
1202 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1203 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1204 int rel;
1206 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1208 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1209 int len, i, min, max, insn_shuid;
1210 int min_align;
1211 addr_diff_vec_flags flags;
1213 if (GET_CODE (insn) != JUMP_INSN
1214 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1215 continue;
1216 pat = PATTERN (insn);
1217 len = XVECLEN (pat, 1);
1218 if (len <= 0)
1219 abort ();
1220 min_align = MAX_CODE_ALIGN;
1221 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1223 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1224 int shuid = INSN_SHUID (lab);
1225 if (shuid < min)
1227 min = shuid;
1228 min_lab = lab;
1230 if (shuid > max)
1232 max = shuid;
1233 max_lab = lab;
1235 if (min_align > LABEL_TO_ALIGNMENT (lab))
1236 min_align = LABEL_TO_ALIGNMENT (lab);
1238 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1239 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1240 insn_shuid = INSN_SHUID (insn);
1241 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1242 flags.min_align = min_align;
1243 flags.base_after_vec = rel > insn_shuid;
1244 flags.min_after_vec = min > insn_shuid;
1245 flags.max_after_vec = max > insn_shuid;
1246 flags.min_after_base = min > rel;
1247 flags.max_after_base = max > rel;
1248 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1251 #endif /* CASE_VECTOR_SHORTEN_MODE */
1253 /* Compute initial lengths, addresses, and varying flags for each insn. */
1254 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1255 insn != 0;
1256 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1258 uid = INSN_UID (insn);
1260 insn_lengths[uid] = 0;
1262 if (GET_CODE (insn) == CODE_LABEL)
1264 int log = LABEL_TO_ALIGNMENT (insn);
1265 if (log)
1267 int align = 1 << log;
1268 int new_address = (insn_current_address + align - 1) & -align;
1269 insn_lengths[uid] = new_address - insn_current_address;
1273 INSN_ADDRESSES (uid) = insn_current_address;
1275 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1276 || GET_CODE (insn) == CODE_LABEL)
1277 continue;
1278 if (INSN_DELETED_P (insn))
1279 continue;
1281 body = PATTERN (insn);
1282 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1284 /* This only takes room if read-only data goes into the text
1285 section. */
1286 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1287 insn_lengths[uid] = (XVECLEN (body,
1288 GET_CODE (body) == ADDR_DIFF_VEC)
1289 * GET_MODE_SIZE (GET_MODE (body)));
1290 /* Alignment is handled by ADDR_VEC_ALIGN. */
1292 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1293 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1294 else if (GET_CODE (body) == SEQUENCE)
1296 int i;
1297 int const_delay_slots;
1298 #ifdef DELAY_SLOTS
1299 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1300 #else
1301 const_delay_slots = 0;
1302 #endif
1303 /* Inside a delay slot sequence, we do not do any branch shortening
1304 if the shortening could change the number of delay slots
1305 of the branch. */
1306 for (i = 0; i < XVECLEN (body, 0); i++)
1308 rtx inner_insn = XVECEXP (body, 0, i);
1309 int inner_uid = INSN_UID (inner_insn);
1310 int inner_length;
1312 if (GET_CODE (body) == ASM_INPUT
1313 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1314 inner_length = (asm_insn_count (PATTERN (inner_insn))
1315 * insn_default_length (inner_insn));
1316 else
1317 inner_length = insn_default_length (inner_insn);
1319 insn_lengths[inner_uid] = inner_length;
1320 if (const_delay_slots)
1322 if ((varying_length[inner_uid]
1323 = insn_variable_length_p (inner_insn)) != 0)
1324 varying_length[uid] = 1;
1325 INSN_ADDRESSES (inner_uid) = (insn_current_address
1326 + insn_lengths[uid]);
1328 else
1329 varying_length[inner_uid] = 0;
1330 insn_lengths[uid] += inner_length;
1333 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1335 insn_lengths[uid] = insn_default_length (insn);
1336 varying_length[uid] = insn_variable_length_p (insn);
1339 /* If needed, do any adjustment. */
1340 #ifdef ADJUST_INSN_LENGTH
1341 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1342 if (insn_lengths[uid] < 0)
1343 fatal_insn ("negative insn length", insn);
1344 #endif
1347 /* Now loop over all the insns finding varying length insns. For each,
1348 get the current insn length. If it has changed, reflect the change.
1349 When nothing changes for a full pass, we are done. */
1351 while (something_changed)
1353 something_changed = 0;
1354 insn_current_align = MAX_CODE_ALIGN - 1;
1355 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1356 insn != 0;
1357 insn = NEXT_INSN (insn))
1359 int new_length;
1360 #ifdef ADJUST_INSN_LENGTH
1361 int tmp_length;
1362 #endif
1363 int length_align;
1365 uid = INSN_UID (insn);
1367 if (GET_CODE (insn) == CODE_LABEL)
1369 int log = LABEL_TO_ALIGNMENT (insn);
1370 if (log > insn_current_align)
1372 int align = 1 << log;
1373 int new_address= (insn_current_address + align - 1) & -align;
1374 insn_lengths[uid] = new_address - insn_current_address;
1375 insn_current_align = log;
1376 insn_current_address = new_address;
1378 else
1379 insn_lengths[uid] = 0;
1380 INSN_ADDRESSES (uid) = insn_current_address;
1381 continue;
1384 length_align = INSN_LENGTH_ALIGNMENT (insn);
1385 if (length_align < insn_current_align)
1386 insn_current_align = length_align;
1388 insn_last_address = INSN_ADDRESSES (uid);
1389 INSN_ADDRESSES (uid) = insn_current_address;
1391 #ifdef CASE_VECTOR_SHORTEN_MODE
1392 if (optimize && GET_CODE (insn) == JUMP_INSN
1393 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1395 rtx body = PATTERN (insn);
1396 int old_length = insn_lengths[uid];
1397 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1398 rtx min_lab = XEXP (XEXP (body, 2), 0);
1399 rtx max_lab = XEXP (XEXP (body, 3), 0);
1400 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1401 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1402 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1403 rtx prev;
1404 int rel_align = 0;
1405 addr_diff_vec_flags flags;
1407 /* Avoid automatic aggregate initialization. */
1408 flags = ADDR_DIFF_VEC_FLAGS (body);
1410 /* Try to find a known alignment for rel_lab. */
1411 for (prev = rel_lab;
1412 prev
1413 && ! insn_lengths[INSN_UID (prev)]
1414 && ! (varying_length[INSN_UID (prev)] & 1);
1415 prev = PREV_INSN (prev))
1416 if (varying_length[INSN_UID (prev)] & 2)
1418 rel_align = LABEL_TO_ALIGNMENT (prev);
1419 break;
1422 /* See the comment on addr_diff_vec_flags in rtl.h for the
1423 meaning of the flags values. base: REL_LAB vec: INSN */
1424 /* Anything after INSN has still addresses from the last
1425 pass; adjust these so that they reflect our current
1426 estimate for this pass. */
1427 if (flags.base_after_vec)
1428 rel_addr += insn_current_address - insn_last_address;
1429 if (flags.min_after_vec)
1430 min_addr += insn_current_address - insn_last_address;
1431 if (flags.max_after_vec)
1432 max_addr += insn_current_address - insn_last_address;
1433 /* We want to know the worst case, i.e. lowest possible value
1434 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1435 its offset is positive, and we have to be wary of code shrink;
1436 otherwise, it is negative, and we have to be vary of code
1437 size increase. */
1438 if (flags.min_after_base)
1440 /* If INSN is between REL_LAB and MIN_LAB, the size
1441 changes we are about to make can change the alignment
1442 within the observed offset, therefore we have to break
1443 it up into two parts that are independent. */
1444 if (! flags.base_after_vec && flags.min_after_vec)
1446 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1447 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1449 else
1450 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1452 else
1454 if (flags.base_after_vec && ! flags.min_after_vec)
1456 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1457 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1459 else
1460 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1462 /* Likewise, determine the highest lowest possible value
1463 for the offset of MAX_LAB. */
1464 if (flags.max_after_base)
1466 if (! flags.base_after_vec && flags.max_after_vec)
1468 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1469 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1471 else
1472 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1474 else
1476 if (flags.base_after_vec && ! flags.max_after_vec)
1478 max_addr += align_fuzz (max_lab, insn, 0, 0);
1479 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1481 else
1482 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1484 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1485 max_addr - rel_addr,
1486 body));
1487 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1489 insn_lengths[uid]
1490 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1491 insn_current_address += insn_lengths[uid];
1492 if (insn_lengths[uid] != old_length)
1493 something_changed = 1;
1496 continue;
1498 #endif /* CASE_VECTOR_SHORTEN_MODE */
1500 if (! (varying_length[uid]))
1502 if (GET_CODE (insn) == INSN
1503 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1505 int i;
1507 body = PATTERN (insn);
1508 for (i = 0; i < XVECLEN (body, 0); i++)
1510 rtx inner_insn = XVECEXP (body, 0, i);
1511 int inner_uid = INSN_UID (inner_insn);
1513 INSN_ADDRESSES (inner_uid) = insn_current_address;
1515 insn_current_address += insn_lengths[inner_uid];
1518 else
1519 insn_current_address += insn_lengths[uid];
1521 continue;
1524 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1526 int i;
1528 body = PATTERN (insn);
1529 new_length = 0;
1530 for (i = 0; i < XVECLEN (body, 0); i++)
1532 rtx inner_insn = XVECEXP (body, 0, i);
1533 int inner_uid = INSN_UID (inner_insn);
1534 int inner_length;
1536 INSN_ADDRESSES (inner_uid) = insn_current_address;
1538 /* insn_current_length returns 0 for insns with a
1539 non-varying length. */
1540 if (! varying_length[inner_uid])
1541 inner_length = insn_lengths[inner_uid];
1542 else
1543 inner_length = insn_current_length (inner_insn);
1545 if (inner_length != insn_lengths[inner_uid])
1547 insn_lengths[inner_uid] = inner_length;
1548 something_changed = 1;
1550 insn_current_address += insn_lengths[inner_uid];
1551 new_length += inner_length;
1554 else
1556 new_length = insn_current_length (insn);
1557 insn_current_address += new_length;
1560 #ifdef ADJUST_INSN_LENGTH
1561 /* If needed, do any adjustment. */
1562 tmp_length = new_length;
1563 ADJUST_INSN_LENGTH (insn, new_length);
1564 insn_current_address += (new_length - tmp_length);
1565 #endif
1567 if (new_length != insn_lengths[uid])
1569 insn_lengths[uid] = new_length;
1570 something_changed = 1;
1573 /* For a non-optimizing compile, do only a single pass. */
1574 if (!optimize)
1575 break;
1578 free (varying_length);
1580 #endif /* HAVE_ATTR_length */
1583 #ifdef HAVE_ATTR_length
1584 /* Given the body of an INSN known to be generated by an ASM statement, return
1585 the number of machine instructions likely to be generated for this insn.
1586 This is used to compute its length. */
1588 static int
1589 asm_insn_count (body)
1590 rtx body;
1592 const char *template;
1593 int count = 1;
1595 if (GET_CODE (body) == ASM_INPUT)
1596 template = XSTR (body, 0);
1597 else
1598 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1600 for (; *template; template++)
1601 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1602 count++;
1604 return count;
1606 #endif
1608 /* Output assembler code for the start of a function,
1609 and initialize some of the variables in this file
1610 for the new function. The label for the function and associated
1611 assembler pseudo-ops have already been output in `assemble_start_function'.
1613 FIRST is the first insn of the rtl for the function being compiled.
1614 FILE is the file to write assembler code to.
1615 OPTIMIZE is nonzero if we should eliminate redundant
1616 test and compare insns. */
1618 void
1619 final_start_function (first, file, optimize)
1620 rtx first;
1621 FILE *file;
1622 int optimize ATTRIBUTE_UNUSED;
1624 block_depth = 0;
1626 this_is_asm_operands = 0;
1628 #ifdef NON_SAVING_SETJMP
1629 /* A function that calls setjmp should save and restore all the
1630 call-saved registers on a system where longjmp clobbers them. */
1631 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1633 int i;
1635 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1636 if (!call_used_regs[i])
1637 regs_ever_live[i] = 1;
1639 #endif
1641 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1642 notice_source_line (first);
1643 high_block_linenum = high_function_linenum = last_linenum;
1645 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1647 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1648 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1649 dwarf2out_begin_prologue (0, NULL);
1650 #endif
1652 #ifdef LEAF_REG_REMAP
1653 if (current_function_uses_only_leaf_regs)
1654 leaf_renumber_regs (first);
1655 #endif
1657 /* The Sun386i and perhaps other machines don't work right
1658 if the profiling code comes after the prologue. */
1659 #ifdef PROFILE_BEFORE_PROLOGUE
1660 if (current_function_profile)
1661 profile_function (file);
1662 #endif /* PROFILE_BEFORE_PROLOGUE */
1664 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1665 if (dwarf2out_do_frame ())
1666 dwarf2out_frame_debug (NULL_RTX);
1667 #endif
1669 /* If debugging, assign block numbers to all of the blocks in this
1670 function. */
1671 if (write_symbols)
1673 remove_unnecessary_notes ();
1674 scope_to_insns_finalize ();
1675 number_blocks (current_function_decl);
1676 /* We never actually put out begin/end notes for the top-level
1677 block in the function. But, conceptually, that block is
1678 always needed. */
1679 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1682 /* First output the function prologue: code to set up the stack frame. */
1683 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1685 #ifdef VMS_DEBUGGING_INFO
1686 /* Output label after the prologue of the function. */
1687 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1688 vmsdbgout_after_prologue ();
1689 #endif
1691 /* If the machine represents the prologue as RTL, the profiling code must
1692 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1693 #ifdef HAVE_prologue
1694 if (! HAVE_prologue)
1695 #endif
1696 profile_after_prologue (file);
1699 static void
1700 profile_after_prologue (file)
1701 FILE *file ATTRIBUTE_UNUSED;
1703 #ifndef PROFILE_BEFORE_PROLOGUE
1704 if (current_function_profile)
1705 profile_function (file);
1706 #endif /* not PROFILE_BEFORE_PROLOGUE */
1709 static void
1710 profile_function (file)
1711 FILE *file ATTRIBUTE_UNUSED;
1713 #ifndef NO_PROFILE_COUNTERS
1714 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1715 #endif
1716 #if defined(ASM_OUTPUT_REG_PUSH)
1717 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1718 int sval = current_function_returns_struct;
1719 #endif
1720 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1721 int cxt = current_function_needs_context;
1722 #endif
1723 #endif /* ASM_OUTPUT_REG_PUSH */
1725 #ifndef NO_PROFILE_COUNTERS
1726 data_section ();
1727 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1728 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1729 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1730 #endif
1732 function_section (current_function_decl);
1734 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1735 if (sval)
1736 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1737 #else
1738 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1739 if (sval)
1741 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1743 #endif
1744 #endif
1746 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1747 if (cxt)
1748 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1749 #else
1750 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1751 if (cxt)
1753 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1755 #endif
1756 #endif
1758 FUNCTION_PROFILER (file, current_function_funcdef_no);
1760 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1761 if (cxt)
1762 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1763 #else
1764 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1765 if (cxt)
1767 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1769 #endif
1770 #endif
1772 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1773 if (sval)
1774 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1775 #else
1776 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1777 if (sval)
1779 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1781 #endif
1782 #endif
1785 /* Output assembler code for the end of a function.
1786 For clarity, args are same as those of `final_start_function'
1787 even though not all of them are needed. */
1789 void
1790 final_end_function ()
1792 app_disable ();
1794 (*debug_hooks->end_function) (high_function_linenum);
1796 /* Finally, output the function epilogue:
1797 code to restore the stack frame and return to the caller. */
1798 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1800 /* And debug output. */
1801 (*debug_hooks->end_epilogue) ();
1803 #if defined (DWARF2_UNWIND_INFO)
1804 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1805 && dwarf2out_do_frame ())
1806 dwarf2out_end_epilogue ();
1807 #endif
1810 /* Output assembler code for some insns: all or part of a function.
1811 For description of args, see `final_start_function', above.
1813 PRESCAN is 1 if we are not really outputting,
1814 just scanning as if we were outputting.
1815 Prescanning deletes and rearranges insns just like ordinary output.
1816 PRESCAN is -2 if we are outputting after having prescanned.
1817 In this case, don't try to delete or rearrange insns
1818 because that has already been done.
1819 Prescanning is done only on certain machines. */
1821 void
1822 final (first, file, optimize, prescan)
1823 rtx first;
1824 FILE *file;
1825 int optimize;
1826 int prescan;
1828 rtx insn;
1829 int max_line = 0;
1830 int max_uid = 0;
1832 last_ignored_compare = 0;
1833 new_block = 1;
1835 /* Make a map indicating which line numbers appear in this function.
1836 When producing SDB debugging info, delete troublesome line number
1837 notes from inlined functions in other files as well as duplicate
1838 line number notes. */
1839 #ifdef SDB_DEBUGGING_INFO
1840 if (write_symbols == SDB_DEBUG)
1842 rtx last = 0;
1843 for (insn = first; insn; insn = NEXT_INSN (insn))
1844 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1846 if ((RTX_INTEGRATED_P (insn)
1847 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1848 || (last != 0
1849 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1850 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1852 delete_insn (insn); /* Use delete_note. */
1853 continue;
1855 last = insn;
1856 if (NOTE_LINE_NUMBER (insn) > max_line)
1857 max_line = NOTE_LINE_NUMBER (insn);
1860 else
1861 #endif
1863 for (insn = first; insn; insn = NEXT_INSN (insn))
1864 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1865 max_line = NOTE_LINE_NUMBER (insn);
1868 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1870 for (insn = first; insn; insn = NEXT_INSN (insn))
1872 if (INSN_UID (insn) > max_uid) /* find largest UID */
1873 max_uid = INSN_UID (insn);
1874 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1875 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1876 #ifdef HAVE_cc0
1877 /* If CC tracking across branches is enabled, record the insn which
1878 jumps to each branch only reached from one place. */
1879 if (optimize && GET_CODE (insn) == JUMP_INSN)
1881 rtx lab = JUMP_LABEL (insn);
1882 if (lab && LABEL_NUSES (lab) == 1)
1884 LABEL_REFS (lab) = insn;
1887 #endif
1890 init_recog ();
1892 CC_STATUS_INIT;
1894 /* Output the insns. */
1895 for (insn = NEXT_INSN (first); insn;)
1897 #ifdef HAVE_ATTR_length
1898 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1900 /* This can be triggered by bugs elsewhere in the compiler if
1901 new insns are created after init_insn_lengths is called. */
1902 if (GET_CODE (insn) == NOTE)
1903 insn_current_address = -1;
1904 else
1905 abort ();
1907 else
1908 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1909 #endif /* HAVE_ATTR_length */
1911 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1914 /* Store function names for edge-profiling. */
1915 /* ??? Probably should re-use the existing struct function. */
1917 if (cfun->arc_profile)
1919 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1921 *functions_tail = new_item;
1922 functions_tail = &new_item->next;
1924 new_item->next = 0;
1925 new_item->name = xstrdup (current_function_name);
1926 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1927 new_item->count_edges = profile_info.count_edges_instrumented_now;
1930 free (line_note_exists);
1931 line_note_exists = NULL;
1934 const char *
1935 get_insn_template (code, insn)
1936 int code;
1937 rtx insn;
1939 const void *output = insn_data[code].output;
1940 switch (insn_data[code].output_format)
1942 case INSN_OUTPUT_FORMAT_SINGLE:
1943 return (const char *) output;
1944 case INSN_OUTPUT_FORMAT_MULTI:
1945 return ((const char *const *) output)[which_alternative];
1946 case INSN_OUTPUT_FORMAT_FUNCTION:
1947 if (insn == NULL)
1948 abort ();
1949 return (*(insn_output_fn) output) (recog_data.operand, insn);
1951 default:
1952 abort ();
1956 /* Emit the appropriate declaration for an alternate-entry-point
1957 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1958 LABEL_KIND != LABEL_NORMAL.
1960 The case fall-through in this function is intentional. */
1961 static void
1962 output_alternate_entry_point (file, insn)
1963 FILE *file;
1964 rtx insn;
1966 const char *name = LABEL_NAME (insn);
1968 switch (LABEL_KIND (insn))
1970 case LABEL_WEAK_ENTRY:
1971 #ifdef ASM_WEAKEN_LABEL
1972 ASM_WEAKEN_LABEL (file, name);
1973 #endif
1974 case LABEL_GLOBAL_ENTRY:
1975 ASM_GLOBALIZE_LABEL (file, name);
1976 case LABEL_STATIC_ENTRY:
1977 /* FIXME output a .type directive here if appropriate. */
1978 ASM_OUTPUT_LABEL (file, name);
1979 break;
1981 case LABEL_NORMAL:
1982 default:
1983 abort ();
1987 /* The final scan for one insn, INSN.
1988 Args are same as in `final', except that INSN
1989 is the insn being scanned.
1990 Value returned is the next insn to be scanned.
1992 NOPEEPHOLES is the flag to disallow peephole processing (currently
1993 used for within delayed branch sequence output). */
1996 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1997 rtx insn;
1998 FILE *file;
1999 int optimize ATTRIBUTE_UNUSED;
2000 int prescan;
2001 int nopeepholes ATTRIBUTE_UNUSED;
2003 #ifdef HAVE_cc0
2004 rtx set;
2005 #endif
2007 insn_counter++;
2009 /* Ignore deleted insns. These can occur when we split insns (due to a
2010 template of "#") while not optimizing. */
2011 if (INSN_DELETED_P (insn))
2012 return NEXT_INSN (insn);
2014 switch (GET_CODE (insn))
2016 case NOTE:
2017 if (prescan > 0)
2018 break;
2020 switch (NOTE_LINE_NUMBER (insn))
2022 case NOTE_INSN_DELETED:
2023 case NOTE_INSN_LOOP_BEG:
2024 case NOTE_INSN_LOOP_END:
2025 case NOTE_INSN_LOOP_END_TOP_COND:
2026 case NOTE_INSN_LOOP_CONT:
2027 case NOTE_INSN_LOOP_VTOP:
2028 case NOTE_INSN_FUNCTION_END:
2029 case NOTE_INSN_REPEATED_LINE_NUMBER:
2030 case NOTE_INSN_EXPECTED_VALUE:
2031 break;
2033 case NOTE_INSN_BASIC_BLOCK:
2034 #ifdef IA64_UNWIND_INFO
2035 IA64_UNWIND_EMIT (asm_out_file, insn);
2036 #endif
2037 if (flag_debug_asm)
2038 fprintf (asm_out_file, "\t%s basic block %d\n",
2039 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2040 break;
2042 case NOTE_INSN_EH_REGION_BEG:
2043 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2044 NOTE_EH_HANDLER (insn));
2045 break;
2047 case NOTE_INSN_EH_REGION_END:
2048 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2049 NOTE_EH_HANDLER (insn));
2050 break;
2052 case NOTE_INSN_PROLOGUE_END:
2053 (*targetm.asm_out.function_end_prologue) (file);
2054 profile_after_prologue (file);
2055 break;
2057 case NOTE_INSN_EPILOGUE_BEG:
2058 (*targetm.asm_out.function_begin_epilogue) (file);
2059 break;
2061 case NOTE_INSN_FUNCTION_BEG:
2062 app_disable ();
2063 (*debug_hooks->end_prologue) (last_linenum);
2064 break;
2066 case NOTE_INSN_BLOCK_BEG:
2067 if (debug_info_level == DINFO_LEVEL_NORMAL
2068 || debug_info_level == DINFO_LEVEL_VERBOSE
2069 || write_symbols == DWARF_DEBUG
2070 || write_symbols == DWARF2_DEBUG
2071 || write_symbols == VMS_AND_DWARF2_DEBUG
2072 || write_symbols == VMS_DEBUG)
2074 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2076 app_disable ();
2077 ++block_depth;
2078 high_block_linenum = last_linenum;
2080 /* Output debugging info about the symbol-block beginning. */
2081 (*debug_hooks->begin_block) (last_linenum, n);
2083 /* Mark this block as output. */
2084 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2086 break;
2088 case NOTE_INSN_BLOCK_END:
2089 if (debug_info_level == DINFO_LEVEL_NORMAL
2090 || debug_info_level == DINFO_LEVEL_VERBOSE
2091 || write_symbols == DWARF_DEBUG
2092 || write_symbols == DWARF2_DEBUG
2093 || write_symbols == VMS_AND_DWARF2_DEBUG
2094 || write_symbols == VMS_DEBUG)
2096 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2098 app_disable ();
2100 /* End of a symbol-block. */
2101 --block_depth;
2102 if (block_depth < 0)
2103 abort ();
2105 (*debug_hooks->end_block) (high_block_linenum, n);
2107 break;
2109 case NOTE_INSN_DELETED_LABEL:
2110 /* Emit the label. We may have deleted the CODE_LABEL because
2111 the label could be proved to be unreachable, though still
2112 referenced (in the form of having its address taken. */
2113 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2114 break;
2116 case 0:
2117 break;
2119 default:
2120 if (NOTE_LINE_NUMBER (insn) <= 0)
2121 abort ();
2123 /* This note is a line-number. */
2125 rtx note;
2126 int note_after = 0;
2128 /* If there is anything real after this note, output it.
2129 If another line note follows, omit this one. */
2130 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2132 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2133 break;
2135 /* These types of notes can be significant
2136 so make sure the preceding line number stays. */
2137 else if (GET_CODE (note) == NOTE
2138 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2139 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2140 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2141 break;
2142 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2144 /* Another line note follows; we can delete this note
2145 if no intervening line numbers have notes elsewhere. */
2146 int num;
2147 for (num = NOTE_LINE_NUMBER (insn) + 1;
2148 num < NOTE_LINE_NUMBER (note);
2149 num++)
2150 if (line_note_exists[num])
2151 break;
2153 if (num >= NOTE_LINE_NUMBER (note))
2154 note_after = 1;
2155 break;
2159 /* Output this line note if it is the first or the last line
2160 note in a row. */
2161 if (!note_after)
2163 notice_source_line (insn);
2164 (*debug_hooks->source_line) (last_linenum, last_filename);
2167 break;
2169 break;
2171 case BARRIER:
2172 #if defined (DWARF2_UNWIND_INFO)
2173 if (dwarf2out_do_frame ())
2174 dwarf2out_frame_debug (insn);
2175 #endif
2176 break;
2178 case CODE_LABEL:
2179 /* The target port might emit labels in the output function for
2180 some insn, e.g. sh.c output_branchy_insn. */
2181 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2183 int align = LABEL_TO_ALIGNMENT (insn);
2184 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2185 int max_skip = LABEL_TO_MAX_SKIP (insn);
2186 #endif
2188 if (align && NEXT_INSN (insn))
2190 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2191 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2192 #else
2193 ASM_OUTPUT_ALIGN (file, align);
2194 #endif
2197 #ifdef HAVE_cc0
2198 CC_STATUS_INIT;
2199 /* If this label is reached from only one place, set the condition
2200 codes from the instruction just before the branch. */
2202 /* Disabled because some insns set cc_status in the C output code
2203 and NOTICE_UPDATE_CC alone can set incorrect status. */
2204 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2206 rtx jump = LABEL_REFS (insn);
2207 rtx barrier = prev_nonnote_insn (insn);
2208 rtx prev;
2209 /* If the LABEL_REFS field of this label has been set to point
2210 at a branch, the predecessor of the branch is a regular
2211 insn, and that branch is the only way to reach this label,
2212 set the condition codes based on the branch and its
2213 predecessor. */
2214 if (barrier && GET_CODE (barrier) == BARRIER
2215 && jump && GET_CODE (jump) == JUMP_INSN
2216 && (prev = prev_nonnote_insn (jump))
2217 && GET_CODE (prev) == INSN)
2219 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2220 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2223 #endif
2224 if (prescan > 0)
2225 break;
2226 new_block = 1;
2228 #ifdef FINAL_PRESCAN_LABEL
2229 FINAL_PRESCAN_INSN (insn, NULL, 0);
2230 #endif
2232 if (LABEL_NAME (insn))
2233 (*debug_hooks->label) (insn);
2235 if (app_on)
2237 fputs (ASM_APP_OFF, file);
2238 app_on = 0;
2240 if (NEXT_INSN (insn) != 0
2241 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2243 rtx nextbody = PATTERN (NEXT_INSN (insn));
2245 /* If this label is followed by a jump-table,
2246 make sure we put the label in the read-only section. Also
2247 possibly write the label and jump table together. */
2249 if (GET_CODE (nextbody) == ADDR_VEC
2250 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2252 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2253 /* In this case, the case vector is being moved by the
2254 target, so don't output the label at all. Leave that
2255 to the back end macros. */
2256 #else
2257 if (! JUMP_TABLES_IN_TEXT_SECTION)
2259 int log_align;
2261 readonly_data_section ();
2263 #ifdef ADDR_VEC_ALIGN
2264 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2265 #else
2266 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2267 #endif
2268 ASM_OUTPUT_ALIGN (file, log_align);
2270 else
2271 function_section (current_function_decl);
2273 #ifdef ASM_OUTPUT_CASE_LABEL
2274 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2275 NEXT_INSN (insn));
2276 #else
2277 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2278 #endif
2279 #endif
2280 break;
2283 if (LABEL_ALT_ENTRY_P (insn))
2284 output_alternate_entry_point (file, insn);
2285 else
2286 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2287 break;
2289 default:
2291 rtx body = PATTERN (insn);
2292 int insn_code_number;
2293 const char *template;
2294 rtx note;
2296 /* An INSN, JUMP_INSN or CALL_INSN.
2297 First check for special kinds that recog doesn't recognize. */
2299 if (GET_CODE (body) == USE /* These are just declarations */
2300 || GET_CODE (body) == CLOBBER)
2301 break;
2303 #ifdef HAVE_cc0
2304 /* If there is a REG_CC_SETTER note on this insn, it means that
2305 the setting of the condition code was done in the delay slot
2306 of the insn that branched here. So recover the cc status
2307 from the insn that set it. */
2309 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2310 if (note)
2312 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2313 cc_prev_status = cc_status;
2315 #endif
2317 /* Detect insns that are really jump-tables
2318 and output them as such. */
2320 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2322 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2323 int vlen, idx;
2324 #endif
2326 if (prescan > 0)
2327 break;
2329 if (app_on)
2331 fputs (ASM_APP_OFF, file);
2332 app_on = 0;
2335 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2336 if (GET_CODE (body) == ADDR_VEC)
2338 #ifdef ASM_OUTPUT_ADDR_VEC
2339 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2340 #else
2341 abort ();
2342 #endif
2344 else
2346 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2347 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2348 #else
2349 abort ();
2350 #endif
2352 #else
2353 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2354 for (idx = 0; idx < vlen; idx++)
2356 if (GET_CODE (body) == ADDR_VEC)
2358 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2359 ASM_OUTPUT_ADDR_VEC_ELT
2360 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2361 #else
2362 abort ();
2363 #endif
2365 else
2367 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2368 ASM_OUTPUT_ADDR_DIFF_ELT
2369 (file,
2370 body,
2371 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2372 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2373 #else
2374 abort ();
2375 #endif
2378 #ifdef ASM_OUTPUT_CASE_END
2379 ASM_OUTPUT_CASE_END (file,
2380 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2381 insn);
2382 #endif
2383 #endif
2385 function_section (current_function_decl);
2387 break;
2390 if (GET_CODE (body) == ASM_INPUT)
2392 const char *string = XSTR (body, 0);
2394 /* There's no telling what that did to the condition codes. */
2395 CC_STATUS_INIT;
2396 if (prescan > 0)
2397 break;
2399 if (string[0])
2401 if (! app_on)
2403 fputs (ASM_APP_ON, file);
2404 app_on = 1;
2406 fprintf (asm_out_file, "\t%s\n", string);
2408 break;
2411 /* Detect `asm' construct with operands. */
2412 if (asm_noperands (body) >= 0)
2414 unsigned int noperands = asm_noperands (body);
2415 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2416 const char *string;
2418 /* There's no telling what that did to the condition codes. */
2419 CC_STATUS_INIT;
2420 if (prescan > 0)
2421 break;
2423 /* Get out the operand values. */
2424 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2425 /* Inhibit aborts on what would otherwise be compiler bugs. */
2426 insn_noperands = noperands;
2427 this_is_asm_operands = insn;
2429 /* Output the insn using them. */
2430 if (string[0])
2432 if (! app_on)
2434 fputs (ASM_APP_ON, file);
2435 app_on = 1;
2437 output_asm_insn (string, ops);
2440 this_is_asm_operands = 0;
2441 break;
2444 if (prescan <= 0 && app_on)
2446 fputs (ASM_APP_OFF, file);
2447 app_on = 0;
2450 if (GET_CODE (body) == SEQUENCE)
2452 /* A delayed-branch sequence */
2453 int i;
2454 rtx next;
2456 if (prescan > 0)
2457 break;
2458 final_sequence = body;
2460 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2461 force the restoration of a comparison that was previously
2462 thought unnecessary. If that happens, cancel this sequence
2463 and cause that insn to be restored. */
2465 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2466 if (next != XVECEXP (body, 0, 1))
2468 final_sequence = 0;
2469 return next;
2472 for (i = 1; i < XVECLEN (body, 0); i++)
2474 rtx insn = XVECEXP (body, 0, i);
2475 rtx next = NEXT_INSN (insn);
2476 /* We loop in case any instruction in a delay slot gets
2477 split. */
2479 insn = final_scan_insn (insn, file, 0, prescan, 1);
2480 while (insn != next);
2482 #ifdef DBR_OUTPUT_SEQEND
2483 DBR_OUTPUT_SEQEND (file);
2484 #endif
2485 final_sequence = 0;
2487 /* If the insn requiring the delay slot was a CALL_INSN, the
2488 insns in the delay slot are actually executed before the
2489 called function. Hence we don't preserve any CC-setting
2490 actions in these insns and the CC must be marked as being
2491 clobbered by the function. */
2492 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2494 CC_STATUS_INIT;
2496 break;
2499 /* We have a real machine instruction as rtl. */
2501 body = PATTERN (insn);
2503 #ifdef HAVE_cc0
2504 set = single_set (insn);
2506 /* Check for redundant test and compare instructions
2507 (when the condition codes are already set up as desired).
2508 This is done only when optimizing; if not optimizing,
2509 it should be possible for the user to alter a variable
2510 with the debugger in between statements
2511 and the next statement should reexamine the variable
2512 to compute the condition codes. */
2514 if (optimize)
2516 #if 0
2517 rtx set = single_set (insn);
2518 #endif
2520 if (set
2521 && GET_CODE (SET_DEST (set)) == CC0
2522 && insn != last_ignored_compare)
2524 if (GET_CODE (SET_SRC (set)) == SUBREG)
2525 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2526 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2528 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2529 XEXP (SET_SRC (set), 0)
2530 = alter_subreg (&XEXP (SET_SRC (set), 0));
2531 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2532 XEXP (SET_SRC (set), 1)
2533 = alter_subreg (&XEXP (SET_SRC (set), 1));
2535 if ((cc_status.value1 != 0
2536 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2537 || (cc_status.value2 != 0
2538 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2540 /* Don't delete insn if it has an addressing side-effect. */
2541 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2542 /* or if anything in it is volatile. */
2543 && ! volatile_refs_p (PATTERN (insn)))
2545 /* We don't really delete the insn; just ignore it. */
2546 last_ignored_compare = insn;
2547 break;
2552 #endif
2554 #ifndef STACK_REGS
2555 /* Don't bother outputting obvious no-ops, even without -O.
2556 This optimization is fast and doesn't interfere with debugging.
2557 Don't do this if the insn is in a delay slot, since this
2558 will cause an improper number of delay insns to be written. */
2559 if (final_sequence == 0
2560 && prescan >= 0
2561 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2562 && GET_CODE (SET_SRC (body)) == REG
2563 && GET_CODE (SET_DEST (body)) == REG
2564 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2565 break;
2566 #endif
2568 #ifdef HAVE_cc0
2569 /* If this is a conditional branch, maybe modify it
2570 if the cc's are in a nonstandard state
2571 so that it accomplishes the same thing that it would
2572 do straightforwardly if the cc's were set up normally. */
2574 if (cc_status.flags != 0
2575 && GET_CODE (insn) == JUMP_INSN
2576 && GET_CODE (body) == SET
2577 && SET_DEST (body) == pc_rtx
2578 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2579 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2580 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2581 /* This is done during prescan; it is not done again
2582 in final scan when prescan has been done. */
2583 && prescan >= 0)
2585 /* This function may alter the contents of its argument
2586 and clear some of the cc_status.flags bits.
2587 It may also return 1 meaning condition now always true
2588 or -1 meaning condition now always false
2589 or 2 meaning condition nontrivial but altered. */
2590 int result = alter_cond (XEXP (SET_SRC (body), 0));
2591 /* If condition now has fixed value, replace the IF_THEN_ELSE
2592 with its then-operand or its else-operand. */
2593 if (result == 1)
2594 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2595 if (result == -1)
2596 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2598 /* The jump is now either unconditional or a no-op.
2599 If it has become a no-op, don't try to output it.
2600 (It would not be recognized.) */
2601 if (SET_SRC (body) == pc_rtx)
2603 delete_insn (insn);
2604 break;
2606 else if (GET_CODE (SET_SRC (body)) == RETURN)
2607 /* Replace (set (pc) (return)) with (return). */
2608 PATTERN (insn) = body = SET_SRC (body);
2610 /* Rerecognize the instruction if it has changed. */
2611 if (result != 0)
2612 INSN_CODE (insn) = -1;
2615 /* Make same adjustments to instructions that examine the
2616 condition codes without jumping and instructions that
2617 handle conditional moves (if this machine has either one). */
2619 if (cc_status.flags != 0
2620 && set != 0)
2622 rtx cond_rtx, then_rtx, else_rtx;
2624 if (GET_CODE (insn) != JUMP_INSN
2625 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2627 cond_rtx = XEXP (SET_SRC (set), 0);
2628 then_rtx = XEXP (SET_SRC (set), 1);
2629 else_rtx = XEXP (SET_SRC (set), 2);
2631 else
2633 cond_rtx = SET_SRC (set);
2634 then_rtx = const_true_rtx;
2635 else_rtx = const0_rtx;
2638 switch (GET_CODE (cond_rtx))
2640 case GTU:
2641 case GT:
2642 case LTU:
2643 case LT:
2644 case GEU:
2645 case GE:
2646 case LEU:
2647 case LE:
2648 case EQ:
2649 case NE:
2651 int result;
2652 if (XEXP (cond_rtx, 0) != cc0_rtx)
2653 break;
2654 result = alter_cond (cond_rtx);
2655 if (result == 1)
2656 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2657 else if (result == -1)
2658 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2659 else if (result == 2)
2660 INSN_CODE (insn) = -1;
2661 if (SET_DEST (set) == SET_SRC (set))
2662 delete_insn (insn);
2664 break;
2666 default:
2667 break;
2671 #endif
2673 #ifdef HAVE_peephole
2674 /* Do machine-specific peephole optimizations if desired. */
2676 if (optimize && !flag_no_peephole && !nopeepholes)
2678 rtx next = peephole (insn);
2679 /* When peepholing, if there were notes within the peephole,
2680 emit them before the peephole. */
2681 if (next != 0 && next != NEXT_INSN (insn))
2683 rtx prev = PREV_INSN (insn);
2685 for (note = NEXT_INSN (insn); note != next;
2686 note = NEXT_INSN (note))
2687 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2689 /* In case this is prescan, put the notes
2690 in proper position for later rescan. */
2691 note = NEXT_INSN (insn);
2692 PREV_INSN (note) = prev;
2693 NEXT_INSN (prev) = note;
2694 NEXT_INSN (PREV_INSN (next)) = insn;
2695 PREV_INSN (insn) = PREV_INSN (next);
2696 NEXT_INSN (insn) = next;
2697 PREV_INSN (next) = insn;
2700 /* PEEPHOLE might have changed this. */
2701 body = PATTERN (insn);
2703 #endif
2705 /* Try to recognize the instruction.
2706 If successful, verify that the operands satisfy the
2707 constraints for the instruction. Crash if they don't,
2708 since `reload' should have changed them so that they do. */
2710 insn_code_number = recog_memoized (insn);
2711 cleanup_subreg_operands (insn);
2713 /* Dump the insn in the assembly for debugging. */
2714 if (flag_dump_rtl_in_asm)
2716 print_rtx_head = ASM_COMMENT_START;
2717 print_rtl_single (asm_out_file, insn);
2718 print_rtx_head = "";
2721 if (! constrain_operands_cached (1))
2722 fatal_insn_not_found (insn);
2724 /* Some target machines need to prescan each insn before
2725 it is output. */
2727 #ifdef FINAL_PRESCAN_INSN
2728 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2729 #endif
2731 #ifdef HAVE_conditional_execution
2732 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2733 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2734 else
2735 current_insn_predicate = NULL_RTX;
2736 #endif
2738 #ifdef HAVE_cc0
2739 cc_prev_status = cc_status;
2741 /* Update `cc_status' for this instruction.
2742 The instruction's output routine may change it further.
2743 If the output routine for a jump insn needs to depend
2744 on the cc status, it should look at cc_prev_status. */
2746 NOTICE_UPDATE_CC (body, insn);
2747 #endif
2749 current_output_insn = debug_insn = insn;
2751 #if defined (DWARF2_UNWIND_INFO)
2752 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2753 dwarf2out_frame_debug (insn);
2754 #endif
2756 /* Find the proper template for this insn. */
2757 template = get_insn_template (insn_code_number, insn);
2759 /* If the C code returns 0, it means that it is a jump insn
2760 which follows a deleted test insn, and that test insn
2761 needs to be reinserted. */
2762 if (template == 0)
2764 rtx prev;
2766 if (prev_nonnote_insn (insn) != last_ignored_compare)
2767 abort ();
2768 new_block = 0;
2770 /* We have already processed the notes between the setter and
2771 the user. Make sure we don't process them again, this is
2772 particularly important if one of the notes is a block
2773 scope note or an EH note. */
2774 for (prev = insn;
2775 prev != last_ignored_compare;
2776 prev = PREV_INSN (prev))
2778 if (GET_CODE (prev) == NOTE)
2779 delete_insn (prev); /* Use delete_note. */
2782 return prev;
2785 /* If the template is the string "#", it means that this insn must
2786 be split. */
2787 if (template[0] == '#' && template[1] == '\0')
2789 rtx new = try_split (body, insn, 0);
2791 /* If we didn't split the insn, go away. */
2792 if (new == insn && PATTERN (new) == body)
2793 fatal_insn ("could not split insn", insn);
2795 #ifdef HAVE_ATTR_length
2796 /* This instruction should have been split in shorten_branches,
2797 to ensure that we would have valid length info for the
2798 splitees. */
2799 abort ();
2800 #endif
2802 new_block = 0;
2803 return new;
2806 if (prescan > 0)
2807 break;
2809 #ifdef IA64_UNWIND_INFO
2810 IA64_UNWIND_EMIT (asm_out_file, insn);
2811 #endif
2812 /* Output assembler code from the template. */
2814 output_asm_insn (template, recog_data.operand);
2816 #if defined (DWARF2_UNWIND_INFO)
2817 #if defined (HAVE_prologue)
2818 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2819 dwarf2out_frame_debug (insn);
2820 #else
2821 if (!ACCUMULATE_OUTGOING_ARGS
2822 && GET_CODE (insn) == INSN
2823 && dwarf2out_do_frame ())
2824 dwarf2out_frame_debug (insn);
2825 #endif
2826 #endif
2828 #if 0
2829 /* It's not at all clear why we did this and doing so interferes
2830 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2831 with this out. */
2833 /* Mark this insn as having been output. */
2834 INSN_DELETED_P (insn) = 1;
2835 #endif
2837 /* Emit information for vtable gc. */
2838 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2839 if (note)
2840 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2841 INTVAL (XEXP (XEXP (note, 0), 1)));
2843 current_output_insn = debug_insn = 0;
2846 return NEXT_INSN (insn);
2849 /* Output debugging info to the assembler file FILE
2850 based on the NOTE-insn INSN, assumed to be a line number. */
2852 static void
2853 notice_source_line (insn)
2854 rtx insn;
2856 const char *filename = NOTE_SOURCE_FILE (insn);
2858 last_filename = filename;
2859 last_linenum = NOTE_LINE_NUMBER (insn);
2860 high_block_linenum = MAX (last_linenum, high_block_linenum);
2861 high_function_linenum = MAX (last_linenum, high_function_linenum);
2864 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2865 directly to the desired hard register. */
2867 void
2868 cleanup_subreg_operands (insn)
2869 rtx insn;
2871 int i;
2872 extract_insn_cached (insn);
2873 for (i = 0; i < recog_data.n_operands; i++)
2875 /* The following test cannot use recog_data.operand when tesing
2876 for a SUBREG: the underlying object might have been changed
2877 already if we are inside a match_operator expression that
2878 matches the else clause. Instead we test the underlying
2879 expression directly. */
2880 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2881 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2882 else if (GET_CODE (recog_data.operand[i]) == PLUS
2883 || GET_CODE (recog_data.operand[i]) == MULT
2884 || GET_CODE (recog_data.operand[i]) == MEM)
2885 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2888 for (i = 0; i < recog_data.n_dups; i++)
2890 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2891 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2892 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2893 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2894 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2895 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2899 /* If X is a SUBREG, replace it with a REG or a MEM,
2900 based on the thing it is a subreg of. */
2903 alter_subreg (xp)
2904 rtx *xp;
2906 rtx x = *xp;
2907 rtx y = SUBREG_REG (x);
2909 /* simplify_subreg does not remove subreg from volatile references.
2910 We are required to. */
2911 if (GET_CODE (y) == MEM)
2912 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2913 else
2915 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2916 SUBREG_BYTE (x));
2918 if (new != 0)
2919 *xp = new;
2920 /* Simplify_subreg can't handle some REG cases, but we have to. */
2921 else if (GET_CODE (y) == REG)
2923 unsigned int regno = subreg_hard_regno (x, 1);
2924 PUT_CODE (x, REG);
2925 REGNO (x) = regno;
2926 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2927 /* This field has a different meaning for REGs and SUBREGs. Make
2928 sure to clear it! */
2929 RTX_FLAG (x, used) = 0;
2931 else
2932 abort ();
2935 return *xp;
2938 /* Do alter_subreg on all the SUBREGs contained in X. */
2940 static rtx
2941 walk_alter_subreg (xp)
2942 rtx *xp;
2944 rtx x = *xp;
2945 switch (GET_CODE (x))
2947 case PLUS:
2948 case MULT:
2949 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2950 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2951 break;
2953 case MEM:
2954 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2955 break;
2957 case SUBREG:
2958 return alter_subreg (xp);
2960 default:
2961 break;
2964 return *xp;
2967 #ifdef HAVE_cc0
2969 /* Given BODY, the body of a jump instruction, alter the jump condition
2970 as required by the bits that are set in cc_status.flags.
2971 Not all of the bits there can be handled at this level in all cases.
2973 The value is normally 0.
2974 1 means that the condition has become always true.
2975 -1 means that the condition has become always false.
2976 2 means that COND has been altered. */
2978 static int
2979 alter_cond (cond)
2980 rtx cond;
2982 int value = 0;
2984 if (cc_status.flags & CC_REVERSED)
2986 value = 2;
2987 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2990 if (cc_status.flags & CC_INVERTED)
2992 value = 2;
2993 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2996 if (cc_status.flags & CC_NOT_POSITIVE)
2997 switch (GET_CODE (cond))
2999 case LE:
3000 case LEU:
3001 case GEU:
3002 /* Jump becomes unconditional. */
3003 return 1;
3005 case GT:
3006 case GTU:
3007 case LTU:
3008 /* Jump becomes no-op. */
3009 return -1;
3011 case GE:
3012 PUT_CODE (cond, EQ);
3013 value = 2;
3014 break;
3016 case LT:
3017 PUT_CODE (cond, NE);
3018 value = 2;
3019 break;
3021 default:
3022 break;
3025 if (cc_status.flags & CC_NOT_NEGATIVE)
3026 switch (GET_CODE (cond))
3028 case GE:
3029 case GEU:
3030 /* Jump becomes unconditional. */
3031 return 1;
3033 case LT:
3034 case LTU:
3035 /* Jump becomes no-op. */
3036 return -1;
3038 case LE:
3039 case LEU:
3040 PUT_CODE (cond, EQ);
3041 value = 2;
3042 break;
3044 case GT:
3045 case GTU:
3046 PUT_CODE (cond, NE);
3047 value = 2;
3048 break;
3050 default:
3051 break;
3054 if (cc_status.flags & CC_NO_OVERFLOW)
3055 switch (GET_CODE (cond))
3057 case GEU:
3058 /* Jump becomes unconditional. */
3059 return 1;
3061 case LEU:
3062 PUT_CODE (cond, EQ);
3063 value = 2;
3064 break;
3066 case GTU:
3067 PUT_CODE (cond, NE);
3068 value = 2;
3069 break;
3071 case LTU:
3072 /* Jump becomes no-op. */
3073 return -1;
3075 default:
3076 break;
3079 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3080 switch (GET_CODE (cond))
3082 default:
3083 abort ();
3085 case NE:
3086 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3087 value = 2;
3088 break;
3090 case EQ:
3091 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3092 value = 2;
3093 break;
3096 if (cc_status.flags & CC_NOT_SIGNED)
3097 /* The flags are valid if signed condition operators are converted
3098 to unsigned. */
3099 switch (GET_CODE (cond))
3101 case LE:
3102 PUT_CODE (cond, LEU);
3103 value = 2;
3104 break;
3106 case LT:
3107 PUT_CODE (cond, LTU);
3108 value = 2;
3109 break;
3111 case GT:
3112 PUT_CODE (cond, GTU);
3113 value = 2;
3114 break;
3116 case GE:
3117 PUT_CODE (cond, GEU);
3118 value = 2;
3119 break;
3121 default:
3122 break;
3125 return value;
3127 #endif
3129 /* Report inconsistency between the assembler template and the operands.
3130 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3132 void
3133 output_operand_lossage VPARAMS ((const char *msgid, ...))
3135 char *fmt_string;
3136 char *new_message;
3137 const char *pfx_str;
3138 VA_OPEN (ap, msgid);
3139 VA_FIXEDARG (ap, const char *, msgid);
3141 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3142 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3143 vasprintf (&new_message, fmt_string, ap);
3145 if (this_is_asm_operands)
3146 error_for_asm (this_is_asm_operands, "%s", new_message);
3147 else
3148 internal_error ("%s", new_message);
3150 free (fmt_string);
3151 free (new_message);
3152 VA_CLOSE (ap);
3155 /* Output of assembler code from a template, and its subroutines. */
3157 /* Annotate the assembly with a comment describing the pattern and
3158 alternative used. */
3160 static void
3161 output_asm_name ()
3163 if (debug_insn)
3165 int num = INSN_CODE (debug_insn);
3166 fprintf (asm_out_file, "\t%s %d\t%s",
3167 ASM_COMMENT_START, INSN_UID (debug_insn),
3168 insn_data[num].name);
3169 if (insn_data[num].n_alternatives > 1)
3170 fprintf (asm_out_file, "/%d", which_alternative + 1);
3171 #ifdef HAVE_ATTR_length
3172 fprintf (asm_out_file, "\t[length = %d]",
3173 get_attr_length (debug_insn));
3174 #endif
3175 /* Clear this so only the first assembler insn
3176 of any rtl insn will get the special comment for -dp. */
3177 debug_insn = 0;
3181 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3182 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3183 corresponds to the address of the object and 0 if to the object. */
3185 static tree
3186 get_mem_expr_from_op (op, paddressp)
3187 rtx op;
3188 int *paddressp;
3190 tree expr;
3191 int inner_addressp;
3193 *paddressp = 0;
3195 if (op == NULL)
3196 return 0;
3198 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3199 return REGNO_DECL (ORIGINAL_REGNO (op));
3200 else if (GET_CODE (op) != MEM)
3201 return 0;
3203 if (MEM_EXPR (op) != 0)
3204 return MEM_EXPR (op);
3206 /* Otherwise we have an address, so indicate it and look at the address. */
3207 *paddressp = 1;
3208 op = XEXP (op, 0);
3210 /* First check if we have a decl for the address, then look at the right side
3211 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3212 But don't allow the address to itself be indirect. */
3213 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3214 return expr;
3215 else if (GET_CODE (op) == PLUS
3216 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3217 return expr;
3219 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3220 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3221 op = XEXP (op, 0);
3223 expr = get_mem_expr_from_op (op, &inner_addressp);
3224 return inner_addressp ? 0 : expr;
3227 /* Output operand names for assembler instructions. OPERANDS is the
3228 operand vector, OPORDER is the order to write the operands, and NOPS
3229 is the number of operands to write. */
3231 static void
3232 output_asm_operand_names (operands, oporder, nops)
3233 rtx *operands;
3234 int *oporder;
3235 int nops;
3237 int wrote = 0;
3238 int i;
3240 for (i = 0; i < nops; i++)
3242 int addressp;
3243 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3245 if (expr)
3247 fprintf (asm_out_file, "%c%s %s",
3248 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3249 addressp ? "*" : "");
3250 print_mem_expr (asm_out_file, expr);
3251 wrote = 1;
3256 /* Output text from TEMPLATE to the assembler output file,
3257 obeying %-directions to substitute operands taken from
3258 the vector OPERANDS.
3260 %N (for N a digit) means print operand N in usual manner.
3261 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3262 and print the label name with no punctuation.
3263 %cN means require operand N to be a constant
3264 and print the constant expression with no punctuation.
3265 %aN means expect operand N to be a memory address
3266 (not a memory reference!) and print a reference
3267 to that address.
3268 %nN means expect operand N to be a constant
3269 and print a constant expression for minus the value
3270 of the operand, with no other punctuation. */
3272 void
3273 output_asm_insn (template, operands)
3274 const char *template;
3275 rtx *operands;
3277 const char *p;
3278 int c;
3279 #ifdef ASSEMBLER_DIALECT
3280 int dialect = 0;
3281 #endif
3282 int oporder[MAX_RECOG_OPERANDS];
3283 char opoutput[MAX_RECOG_OPERANDS];
3284 int ops = 0;
3286 /* An insn may return a null string template
3287 in a case where no assembler code is needed. */
3288 if (*template == 0)
3289 return;
3291 memset (opoutput, 0, sizeof opoutput);
3292 p = template;
3293 putc ('\t', asm_out_file);
3295 #ifdef ASM_OUTPUT_OPCODE
3296 ASM_OUTPUT_OPCODE (asm_out_file, p);
3297 #endif
3299 while ((c = *p++))
3300 switch (c)
3302 case '\n':
3303 if (flag_verbose_asm)
3304 output_asm_operand_names (operands, oporder, ops);
3305 if (flag_print_asm_name)
3306 output_asm_name ();
3308 ops = 0;
3309 memset (opoutput, 0, sizeof opoutput);
3311 putc (c, asm_out_file);
3312 #ifdef ASM_OUTPUT_OPCODE
3313 while ((c = *p) == '\t')
3315 putc (c, asm_out_file);
3316 p++;
3318 ASM_OUTPUT_OPCODE (asm_out_file, p);
3319 #endif
3320 break;
3322 #ifdef ASSEMBLER_DIALECT
3323 case '{':
3325 int i;
3327 if (dialect)
3328 output_operand_lossage ("nested assembly dialect alternatives");
3329 else
3330 dialect = 1;
3332 /* If we want the first dialect, do nothing. Otherwise, skip
3333 DIALECT_NUMBER of strings ending with '|'. */
3334 for (i = 0; i < dialect_number; i++)
3336 while (*p && *p != '}' && *p++ != '|')
3338 if (*p == '}')
3339 break;
3340 if (*p == '|')
3341 p++;
3344 if (*p == '\0')
3345 output_operand_lossage ("unterminated assembly dialect alternative");
3347 break;
3349 case '|':
3350 if (dialect)
3352 /* Skip to close brace. */
3355 if (*p == '\0')
3357 output_operand_lossage ("unterminated assembly dialect alternative");
3358 break;
3361 while (*p++ != '}');
3362 dialect = 0;
3364 else
3365 putc (c, asm_out_file);
3366 break;
3368 case '}':
3369 if (! dialect)
3370 putc (c, asm_out_file);
3371 dialect = 0;
3372 break;
3373 #endif
3375 case '%':
3376 /* %% outputs a single %. */
3377 if (*p == '%')
3379 p++;
3380 putc (c, asm_out_file);
3382 /* %= outputs a number which is unique to each insn in the entire
3383 compilation. This is useful for making local labels that are
3384 referred to more than once in a given insn. */
3385 else if (*p == '=')
3387 p++;
3388 fprintf (asm_out_file, "%d", insn_counter);
3390 /* % followed by a letter and some digits
3391 outputs an operand in a special way depending on the letter.
3392 Letters `acln' are implemented directly.
3393 Other letters are passed to `output_operand' so that
3394 the PRINT_OPERAND macro can define them. */
3395 else if (ISALPHA (*p))
3397 int letter = *p++;
3398 c = atoi (p);
3400 if (! ISDIGIT (*p))
3401 output_operand_lossage ("operand number missing after %%-letter");
3402 else if (this_is_asm_operands
3403 && (c < 0 || (unsigned int) c >= insn_noperands))
3404 output_operand_lossage ("operand number out of range");
3405 else if (letter == 'l')
3406 output_asm_label (operands[c]);
3407 else if (letter == 'a')
3408 output_address (operands[c]);
3409 else if (letter == 'c')
3411 if (CONSTANT_ADDRESS_P (operands[c]))
3412 output_addr_const (asm_out_file, operands[c]);
3413 else
3414 output_operand (operands[c], 'c');
3416 else if (letter == 'n')
3418 if (GET_CODE (operands[c]) == CONST_INT)
3419 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3420 - INTVAL (operands[c]));
3421 else
3423 putc ('-', asm_out_file);
3424 output_addr_const (asm_out_file, operands[c]);
3427 else
3428 output_operand (operands[c], letter);
3430 if (!opoutput[c])
3431 oporder[ops++] = c;
3432 opoutput[c] = 1;
3434 while (ISDIGIT (c = *p))
3435 p++;
3437 /* % followed by a digit outputs an operand the default way. */
3438 else if (ISDIGIT (*p))
3440 c = atoi (p);
3441 if (this_is_asm_operands
3442 && (c < 0 || (unsigned int) c >= insn_noperands))
3443 output_operand_lossage ("operand number out of range");
3444 else
3445 output_operand (operands[c], 0);
3447 if (!opoutput[c])
3448 oporder[ops++] = c;
3449 opoutput[c] = 1;
3451 while (ISDIGIT (c = *p))
3452 p++;
3454 /* % followed by punctuation: output something for that
3455 punctuation character alone, with no operand.
3456 The PRINT_OPERAND macro decides what is actually done. */
3457 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3458 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3459 output_operand (NULL_RTX, *p++);
3460 #endif
3461 else
3462 output_operand_lossage ("invalid %%-code");
3463 break;
3465 default:
3466 putc (c, asm_out_file);
3469 /* Write out the variable names for operands, if we know them. */
3470 if (flag_verbose_asm)
3471 output_asm_operand_names (operands, oporder, ops);
3472 if (flag_print_asm_name)
3473 output_asm_name ();
3475 putc ('\n', asm_out_file);
3478 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3480 void
3481 output_asm_label (x)
3482 rtx x;
3484 char buf[256];
3486 if (GET_CODE (x) == LABEL_REF)
3487 x = XEXP (x, 0);
3488 if (GET_CODE (x) == CODE_LABEL
3489 || (GET_CODE (x) == NOTE
3490 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3491 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3492 else
3493 output_operand_lossage ("`%%l' operand isn't a label");
3495 assemble_name (asm_out_file, buf);
3498 /* Print operand X using machine-dependent assembler syntax.
3499 The macro PRINT_OPERAND is defined just to control this function.
3500 CODE is a non-digit that preceded the operand-number in the % spec,
3501 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3502 between the % and the digits.
3503 When CODE is a non-letter, X is 0.
3505 The meanings of the letters are machine-dependent and controlled
3506 by PRINT_OPERAND. */
3508 static void
3509 output_operand (x, code)
3510 rtx x;
3511 int code ATTRIBUTE_UNUSED;
3513 if (x && GET_CODE (x) == SUBREG)
3514 x = alter_subreg (&x);
3516 /* If X is a pseudo-register, abort now rather than writing trash to the
3517 assembler file. */
3519 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3520 abort ();
3522 PRINT_OPERAND (asm_out_file, x, code);
3525 /* Print a memory reference operand for address X
3526 using machine-dependent assembler syntax.
3527 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3529 void
3530 output_address (x)
3531 rtx x;
3533 walk_alter_subreg (&x);
3534 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3537 /* Print an integer constant expression in assembler syntax.
3538 Addition and subtraction are the only arithmetic
3539 that may appear in these expressions. */
3541 void
3542 output_addr_const (file, x)
3543 FILE *file;
3544 rtx x;
3546 char buf[256];
3548 restart:
3549 switch (GET_CODE (x))
3551 case PC:
3552 putc ('.', file);
3553 break;
3555 case SYMBOL_REF:
3556 #ifdef ASM_OUTPUT_SYMBOL_REF
3557 ASM_OUTPUT_SYMBOL_REF (file, x);
3558 #else
3559 assemble_name (file, XSTR (x, 0));
3560 #endif
3561 break;
3563 case LABEL_REF:
3564 x = XEXP (x, 0);
3565 /* Fall through. */
3566 case CODE_LABEL:
3567 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3568 #ifdef ASM_OUTPUT_LABEL_REF
3569 ASM_OUTPUT_LABEL_REF (file, buf);
3570 #else
3571 assemble_name (file, buf);
3572 #endif
3573 break;
3575 case CONST_INT:
3576 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3577 break;
3579 case CONST:
3580 /* This used to output parentheses around the expression,
3581 but that does not work on the 386 (either ATT or BSD assembler). */
3582 output_addr_const (file, XEXP (x, 0));
3583 break;
3585 case CONST_DOUBLE:
3586 if (GET_MODE (x) == VOIDmode)
3588 /* We can use %d if the number is one word and positive. */
3589 if (CONST_DOUBLE_HIGH (x))
3590 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3591 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3592 else if (CONST_DOUBLE_LOW (x) < 0)
3593 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3594 else
3595 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3597 else
3598 /* We can't handle floating point constants;
3599 PRINT_OPERAND must handle them. */
3600 output_operand_lossage ("floating constant misused");
3601 break;
3603 case PLUS:
3604 /* Some assemblers need integer constants to appear last (eg masm). */
3605 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3607 output_addr_const (file, XEXP (x, 1));
3608 if (INTVAL (XEXP (x, 0)) >= 0)
3609 fprintf (file, "+");
3610 output_addr_const (file, XEXP (x, 0));
3612 else
3614 output_addr_const (file, XEXP (x, 0));
3615 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3616 || INTVAL (XEXP (x, 1)) >= 0)
3617 fprintf (file, "+");
3618 output_addr_const (file, XEXP (x, 1));
3620 break;
3622 case MINUS:
3623 /* Avoid outputting things like x-x or x+5-x,
3624 since some assemblers can't handle that. */
3625 x = simplify_subtraction (x);
3626 if (GET_CODE (x) != MINUS)
3627 goto restart;
3629 output_addr_const (file, XEXP (x, 0));
3630 fprintf (file, "-");
3631 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3632 || GET_CODE (XEXP (x, 1)) == PC
3633 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3634 output_addr_const (file, XEXP (x, 1));
3635 else
3637 fputs (targetm.asm_out.open_paren, file);
3638 output_addr_const (file, XEXP (x, 1));
3639 fputs (targetm.asm_out.close_paren, file);
3641 break;
3643 case ZERO_EXTEND:
3644 case SIGN_EXTEND:
3645 case SUBREG:
3646 output_addr_const (file, XEXP (x, 0));
3647 break;
3649 default:
3650 #ifdef OUTPUT_ADDR_CONST_EXTRA
3651 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3652 break;
3654 fail:
3655 #endif
3656 output_operand_lossage ("invalid expression as operand");
3660 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3661 %R prints the value of REGISTER_PREFIX.
3662 %L prints the value of LOCAL_LABEL_PREFIX.
3663 %U prints the value of USER_LABEL_PREFIX.
3664 %I prints the value of IMMEDIATE_PREFIX.
3665 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3666 Also supported are %d, %x, %s, %e, %f, %g and %%.
3668 We handle alternate assembler dialects here, just like output_asm_insn. */
3670 void
3671 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3673 char buf[10];
3674 char *q, c;
3676 VA_OPEN (argptr, p);
3677 VA_FIXEDARG (argptr, FILE *, file);
3678 VA_FIXEDARG (argptr, const char *, p);
3680 buf[0] = '%';
3682 while ((c = *p++))
3683 switch (c)
3685 #ifdef ASSEMBLER_DIALECT
3686 case '{':
3688 int i;
3690 /* If we want the first dialect, do nothing. Otherwise, skip
3691 DIALECT_NUMBER of strings ending with '|'. */
3692 for (i = 0; i < dialect_number; i++)
3694 while (*p && *p++ != '|')
3697 if (*p == '|')
3698 p++;
3701 break;
3703 case '|':
3704 /* Skip to close brace. */
3705 while (*p && *p++ != '}')
3707 break;
3709 case '}':
3710 break;
3711 #endif
3713 case '%':
3714 c = *p++;
3715 q = &buf[1];
3716 while (ISDIGIT (c) || c == '.')
3718 *q++ = c;
3719 c = *p++;
3721 switch (c)
3723 case '%':
3724 fprintf (file, "%%");
3725 break;
3727 case 'd': case 'i': case 'u':
3728 case 'x': case 'p': case 'X':
3729 case 'o':
3730 *q++ = c;
3731 *q = 0;
3732 fprintf (file, buf, va_arg (argptr, int));
3733 break;
3735 case 'w':
3736 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3737 but we do not check for those cases. It means that the value
3738 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3740 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3741 #else
3742 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3743 *q++ = 'l';
3744 #else
3745 *q++ = 'l';
3746 *q++ = 'l';
3747 #endif
3748 #endif
3750 *q++ = *p++;
3751 *q = 0;
3752 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3753 break;
3755 case 'l':
3756 *q++ = c;
3757 *q++ = *p++;
3758 *q = 0;
3759 fprintf (file, buf, va_arg (argptr, long));
3760 break;
3762 case 'e':
3763 case 'f':
3764 case 'g':
3765 *q++ = c;
3766 *q = 0;
3767 fprintf (file, buf, va_arg (argptr, double));
3768 break;
3770 case 's':
3771 *q++ = c;
3772 *q = 0;
3773 fprintf (file, buf, va_arg (argptr, char *));
3774 break;
3776 case 'O':
3777 #ifdef ASM_OUTPUT_OPCODE
3778 ASM_OUTPUT_OPCODE (asm_out_file, p);
3779 #endif
3780 break;
3782 case 'R':
3783 #ifdef REGISTER_PREFIX
3784 fprintf (file, "%s", REGISTER_PREFIX);
3785 #endif
3786 break;
3788 case 'I':
3789 #ifdef IMMEDIATE_PREFIX
3790 fprintf (file, "%s", IMMEDIATE_PREFIX);
3791 #endif
3792 break;
3794 case 'L':
3795 #ifdef LOCAL_LABEL_PREFIX
3796 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3797 #endif
3798 break;
3800 case 'U':
3801 fputs (user_label_prefix, file);
3802 break;
3804 #ifdef ASM_FPRINTF_EXTENSIONS
3805 /* Upper case letters are reserved for general use by asm_fprintf
3806 and so are not available to target specific code. In order to
3807 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3808 they are defined here. As they get turned into real extensions
3809 to asm_fprintf they should be removed from this list. */
3810 case 'A': case 'B': case 'C': case 'D': case 'E':
3811 case 'F': case 'G': case 'H': case 'J': case 'K':
3812 case 'M': case 'N': case 'P': case 'Q': case 'S':
3813 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3814 break;
3816 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3817 #endif
3818 default:
3819 abort ();
3821 break;
3823 default:
3824 fputc (c, file);
3826 VA_CLOSE (argptr);
3829 /* Split up a CONST_DOUBLE or integer constant rtx
3830 into two rtx's for single words,
3831 storing in *FIRST the word that comes first in memory in the target
3832 and in *SECOND the other. */
3834 void
3835 split_double (value, first, second)
3836 rtx value;
3837 rtx *first, *second;
3839 if (GET_CODE (value) == CONST_INT)
3841 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3843 /* In this case the CONST_INT holds both target words.
3844 Extract the bits from it into two word-sized pieces.
3845 Sign extend each half to HOST_WIDE_INT. */
3846 unsigned HOST_WIDE_INT low, high;
3847 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3849 /* Set sign_bit to the most significant bit of a word. */
3850 sign_bit = 1;
3851 sign_bit <<= BITS_PER_WORD - 1;
3853 /* Set mask so that all bits of the word are set. We could
3854 have used 1 << BITS_PER_WORD instead of basing the
3855 calculation on sign_bit. However, on machines where
3856 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3857 compiler warning, even though the code would never be
3858 executed. */
3859 mask = sign_bit << 1;
3860 mask--;
3862 /* Set sign_extend as any remaining bits. */
3863 sign_extend = ~mask;
3865 /* Pick the lower word and sign-extend it. */
3866 low = INTVAL (value);
3867 low &= mask;
3868 if (low & sign_bit)
3869 low |= sign_extend;
3871 /* Pick the higher word, shifted to the least significant
3872 bits, and sign-extend it. */
3873 high = INTVAL (value);
3874 high >>= BITS_PER_WORD - 1;
3875 high >>= 1;
3876 high &= mask;
3877 if (high & sign_bit)
3878 high |= sign_extend;
3880 /* Store the words in the target machine order. */
3881 if (WORDS_BIG_ENDIAN)
3883 *first = GEN_INT (high);
3884 *second = GEN_INT (low);
3886 else
3888 *first = GEN_INT (low);
3889 *second = GEN_INT (high);
3892 else
3894 /* The rule for using CONST_INT for a wider mode
3895 is that we regard the value as signed.
3896 So sign-extend it. */
3897 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3898 if (WORDS_BIG_ENDIAN)
3900 *first = high;
3901 *second = value;
3903 else
3905 *first = value;
3906 *second = high;
3910 else if (GET_CODE (value) != CONST_DOUBLE)
3912 if (WORDS_BIG_ENDIAN)
3914 *first = const0_rtx;
3915 *second = value;
3917 else
3919 *first = value;
3920 *second = const0_rtx;
3923 else if (GET_MODE (value) == VOIDmode
3924 /* This is the old way we did CONST_DOUBLE integers. */
3925 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3927 /* In an integer, the words are defined as most and least significant.
3928 So order them by the target's convention. */
3929 if (WORDS_BIG_ENDIAN)
3931 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3932 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3934 else
3936 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3937 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3940 else
3942 REAL_VALUE_TYPE r;
3943 long l[2];
3944 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3946 /* Note, this converts the REAL_VALUE_TYPE to the target's
3947 format, splits up the floating point double and outputs
3948 exactly 32 bits of it into each of l[0] and l[1] --
3949 not necessarily BITS_PER_WORD bits. */
3950 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3952 /* If 32 bits is an entire word for the target, but not for the host,
3953 then sign-extend on the host so that the number will look the same
3954 way on the host that it would on the target. See for instance
3955 simplify_unary_operation. The #if is needed to avoid compiler
3956 warnings. */
3958 #if HOST_BITS_PER_LONG > 32
3959 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3961 if (l[0] & ((long) 1 << 31))
3962 l[0] |= ((long) (-1) << 32);
3963 if (l[1] & ((long) 1 << 31))
3964 l[1] |= ((long) (-1) << 32);
3966 #endif
3968 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3969 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3973 /* Return nonzero if this function has no function calls. */
3976 leaf_function_p ()
3978 rtx insn;
3979 rtx link;
3981 if (current_function_profile || profile_arc_flag)
3982 return 0;
3984 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3986 if (GET_CODE (insn) == CALL_INSN
3987 && ! SIBLING_CALL_P (insn))
3988 return 0;
3989 if (GET_CODE (insn) == INSN
3990 && GET_CODE (PATTERN (insn)) == SEQUENCE
3991 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3992 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3993 return 0;
3995 for (link = current_function_epilogue_delay_list;
3996 link;
3997 link = XEXP (link, 1))
3999 insn = XEXP (link, 0);
4001 if (GET_CODE (insn) == CALL_INSN
4002 && ! SIBLING_CALL_P (insn))
4003 return 0;
4004 if (GET_CODE (insn) == INSN
4005 && GET_CODE (PATTERN (insn)) == SEQUENCE
4006 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4007 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4008 return 0;
4011 return 1;
4014 /* Return 1 if branch is an forward branch.
4015 Uses insn_shuid array, so it works only in the final pass. May be used by
4016 output templates to customary add branch prediction hints.
4019 final_forward_branch_p (insn)
4020 rtx insn;
4022 int insn_id, label_id;
4023 if (!uid_shuid)
4024 abort ();
4025 insn_id = INSN_SHUID (insn);
4026 label_id = INSN_SHUID (JUMP_LABEL (insn));
4027 /* We've hit some insns that does not have id information available. */
4028 if (!insn_id || !label_id)
4029 abort ();
4030 return insn_id < label_id;
4033 /* On some machines, a function with no call insns
4034 can run faster if it doesn't create its own register window.
4035 When output, the leaf function should use only the "output"
4036 registers. Ordinarily, the function would be compiled to use
4037 the "input" registers to find its arguments; it is a candidate
4038 for leaf treatment if it uses only the "input" registers.
4039 Leaf function treatment means renumbering so the function
4040 uses the "output" registers instead. */
4042 #ifdef LEAF_REGISTERS
4044 /* Return 1 if this function uses only the registers that can be
4045 safely renumbered. */
4048 only_leaf_regs_used ()
4050 int i;
4051 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4053 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4054 if ((regs_ever_live[i] || global_regs[i])
4055 && ! permitted_reg_in_leaf_functions[i])
4056 return 0;
4058 if (current_function_uses_pic_offset_table
4059 && pic_offset_table_rtx != 0
4060 && GET_CODE (pic_offset_table_rtx) == REG
4061 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4062 return 0;
4064 return 1;
4067 /* Scan all instructions and renumber all registers into those
4068 available in leaf functions. */
4070 static void
4071 leaf_renumber_regs (first)
4072 rtx first;
4074 rtx insn;
4076 /* Renumber only the actual patterns.
4077 The reg-notes can contain frame pointer refs,
4078 and renumbering them could crash, and should not be needed. */
4079 for (insn = first; insn; insn = NEXT_INSN (insn))
4080 if (INSN_P (insn))
4081 leaf_renumber_regs_insn (PATTERN (insn));
4082 for (insn = current_function_epilogue_delay_list;
4083 insn;
4084 insn = XEXP (insn, 1))
4085 if (INSN_P (XEXP (insn, 0)))
4086 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4089 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4090 available in leaf functions. */
4092 void
4093 leaf_renumber_regs_insn (in_rtx)
4094 rtx in_rtx;
4096 int i, j;
4097 const char *format_ptr;
4099 if (in_rtx == 0)
4100 return;
4102 /* Renumber all input-registers into output-registers.
4103 renumbered_regs would be 1 for an output-register;
4104 they */
4106 if (GET_CODE (in_rtx) == REG)
4108 int newreg;
4110 /* Don't renumber the same reg twice. */
4111 if (in_rtx->used)
4112 return;
4114 newreg = REGNO (in_rtx);
4115 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4116 to reach here as part of a REG_NOTE. */
4117 if (newreg >= FIRST_PSEUDO_REGISTER)
4119 in_rtx->used = 1;
4120 return;
4122 newreg = LEAF_REG_REMAP (newreg);
4123 if (newreg < 0)
4124 abort ();
4125 regs_ever_live[REGNO (in_rtx)] = 0;
4126 regs_ever_live[newreg] = 1;
4127 REGNO (in_rtx) = newreg;
4128 in_rtx->used = 1;
4131 if (INSN_P (in_rtx))
4133 /* Inside a SEQUENCE, we find insns.
4134 Renumber just the patterns of these insns,
4135 just as we do for the top-level insns. */
4136 leaf_renumber_regs_insn (PATTERN (in_rtx));
4137 return;
4140 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4142 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4143 switch (*format_ptr++)
4145 case 'e':
4146 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4147 break;
4149 case 'E':
4150 if (NULL != XVEC (in_rtx, i))
4152 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4153 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4155 break;
4157 case 'S':
4158 case 's':
4159 case '0':
4160 case 'i':
4161 case 'w':
4162 case 'n':
4163 case 'u':
4164 break;
4166 default:
4167 abort ();
4170 #endif