2002-05-05 David S. Miller <davem@redhat.com>
[official-gcc.git] / gcc / ggc-page.c
blobdb4266b9709b2277b7327a5e82c55c40015ff873
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "tree.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "toplev.h"
27 #include "varray.h"
28 #include "flags.h"
29 #include "ggc.h"
30 #include "timevar.h"
32 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
33 file open. Prefer either to valloc. */
34 #ifdef HAVE_MMAP_ANON
35 # undef HAVE_MMAP_DEV_ZERO
37 # include <sys/mman.h>
38 # ifndef MAP_FAILED
39 # define MAP_FAILED -1
40 # endif
41 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
42 # define MAP_ANONYMOUS MAP_ANON
43 # endif
44 # define USING_MMAP
46 #endif
48 #ifdef HAVE_MMAP_DEV_ZERO
50 # include <sys/mman.h>
51 # ifndef MAP_FAILED
52 # define MAP_FAILED -1
53 # endif
54 # define USING_MMAP
56 #endif
58 #ifndef USING_MMAP
59 #define USING_MALLOC_PAGE_GROUPS
60 #endif
62 /* Stategy:
64 This garbage-collecting allocator allocates objects on one of a set
65 of pages. Each page can allocate objects of a single size only;
66 available sizes are powers of two starting at four bytes. The size
67 of an allocation request is rounded up to the next power of two
68 (`order'), and satisfied from the appropriate page.
70 Each page is recorded in a page-entry, which also maintains an
71 in-use bitmap of object positions on the page. This allows the
72 allocation state of a particular object to be flipped without
73 touching the page itself.
75 Each page-entry also has a context depth, which is used to track
76 pushing and popping of allocation contexts. Only objects allocated
77 in the current (highest-numbered) context may be collected.
79 Page entries are arranged in an array of singly-linked lists. The
80 array is indexed by the allocation size, in bits, of the pages on
81 it; i.e. all pages on a list allocate objects of the same size.
82 Pages are ordered on the list such that all non-full pages precede
83 all full pages, with non-full pages arranged in order of decreasing
84 context depth.
86 Empty pages (of all orders) are kept on a single page cache list,
87 and are considered first when new pages are required; they are
88 deallocated at the start of the next collection if they haven't
89 been recycled by then. */
92 /* Define GGC_POISON to poison memory marked unused by the collector. */
93 #undef GGC_POISON
95 /* Define GGC_ALWAYS_COLLECT to perform collection every time
96 ggc_collect is invoked. Otherwise, collection is performed only
97 when a significant amount of memory has been allocated since the
98 last collection. */
99 #undef GGC_ALWAYS_COLLECT
101 #ifdef ENABLE_GC_CHECKING
102 #define GGC_POISON
103 #endif
104 #ifdef ENABLE_GC_ALWAYS_COLLECT
105 #define GGC_ALWAYS_COLLECT
106 #endif
108 /* Define GGC_DEBUG_LEVEL to print debugging information.
109 0: No debugging output.
110 1: GC statistics only.
111 2: Page-entry allocations/deallocations as well.
112 3: Object allocations as well.
113 4: Object marks as well. */
114 #define GGC_DEBUG_LEVEL (0)
116 #ifndef HOST_BITS_PER_PTR
117 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
118 #endif
121 /* A two-level tree is used to look up the page-entry for a given
122 pointer. Two chunks of the pointer's bits are extracted to index
123 the first and second levels of the tree, as follows:
125 HOST_PAGE_SIZE_BITS
126 32 | |
127 msb +----------------+----+------+------+ lsb
128 | | |
129 PAGE_L1_BITS |
131 PAGE_L2_BITS
133 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
134 pages are aligned on system page boundaries. The next most
135 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
136 index values in the lookup table, respectively.
138 For 32-bit architectures and the settings below, there are no
139 leftover bits. For architectures with wider pointers, the lookup
140 tree points to a list of pages, which must be scanned to find the
141 correct one. */
143 #define PAGE_L1_BITS (8)
144 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
145 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
146 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
148 #define LOOKUP_L1(p) \
149 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
151 #define LOOKUP_L2(p) \
152 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
154 /* The number of objects per allocation page, for objects on a page of
155 the indicated ORDER. */
156 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
158 /* The size of an object on a page of the indicated ORDER. */
159 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
161 /* The number of extra orders, not corresponding to power-of-two sized
162 objects. */
164 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
166 /* The Ith entry is the maximum size of an object to be stored in the
167 Ith extra order. Adding a new entry to this array is the *only*
168 thing you need to do to add a new special allocation size. */
170 static const size_t extra_order_size_table[] = {
171 sizeof (struct tree_decl),
172 sizeof (struct tree_list)
175 /* The total number of orders. */
177 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
179 /* We use this structure to determine the alignment required for
180 allocations. For power-of-two sized allocations, that's not a
181 problem, but it does matter for odd-sized allocations. */
183 struct max_alignment {
184 char c;
185 union {
186 HOST_WIDEST_INT i;
187 #ifdef HAVE_LONG_DOUBLE
188 long double d;
189 #else
190 double d;
191 #endif
192 } u;
195 /* The biggest alignment required. */
197 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
199 /* The Ith entry is the number of objects on a page or order I. */
201 static unsigned objects_per_page_table[NUM_ORDERS];
203 /* The Ith entry is the size of an object on a page of order I. */
205 static size_t object_size_table[NUM_ORDERS];
207 /* A page_entry records the status of an allocation page. This
208 structure is dynamically sized to fit the bitmap in_use_p. */
209 typedef struct page_entry
211 /* The next page-entry with objects of the same size, or NULL if
212 this is the last page-entry. */
213 struct page_entry *next;
215 /* The number of bytes allocated. (This will always be a multiple
216 of the host system page size.) */
217 size_t bytes;
219 /* The address at which the memory is allocated. */
220 char *page;
222 #ifdef USING_MALLOC_PAGE_GROUPS
223 /* Back pointer to the page group this page came from. */
224 struct page_group *group;
225 #endif
227 /* Saved in-use bit vector for pages that aren't in the topmost
228 context during collection. */
229 unsigned long *save_in_use_p;
231 /* Context depth of this page. */
232 unsigned short context_depth;
234 /* The number of free objects remaining on this page. */
235 unsigned short num_free_objects;
237 /* A likely candidate for the bit position of a free object for the
238 next allocation from this page. */
239 unsigned short next_bit_hint;
241 /* The lg of size of objects allocated from this page. */
242 unsigned char order;
244 /* A bit vector indicating whether or not objects are in use. The
245 Nth bit is one if the Nth object on this page is allocated. This
246 array is dynamically sized. */
247 unsigned long in_use_p[1];
248 } page_entry;
250 #ifdef USING_MALLOC_PAGE_GROUPS
251 /* A page_group describes a large allocation from malloc, from which
252 we parcel out aligned pages. */
253 typedef struct page_group
255 /* A linked list of all extant page groups. */
256 struct page_group *next;
258 /* The address we received from malloc. */
259 char *allocation;
261 /* The size of the block. */
262 size_t alloc_size;
264 /* A bitmask of pages in use. */
265 unsigned int in_use;
266 } page_group;
267 #endif
269 #if HOST_BITS_PER_PTR <= 32
271 /* On 32-bit hosts, we use a two level page table, as pictured above. */
272 typedef page_entry **page_table[PAGE_L1_SIZE];
274 #else
276 /* On 64-bit hosts, we use the same two level page tables plus a linked
277 list that disambiguates the top 32-bits. There will almost always be
278 exactly one entry in the list. */
279 typedef struct page_table_chain
281 struct page_table_chain *next;
282 size_t high_bits;
283 page_entry **table[PAGE_L1_SIZE];
284 } *page_table;
286 #endif
288 /* The rest of the global variables. */
289 static struct globals
291 /* The Nth element in this array is a page with objects of size 2^N.
292 If there are any pages with free objects, they will be at the
293 head of the list. NULL if there are no page-entries for this
294 object size. */
295 page_entry *pages[NUM_ORDERS];
297 /* The Nth element in this array is the last page with objects of
298 size 2^N. NULL if there are no page-entries for this object
299 size. */
300 page_entry *page_tails[NUM_ORDERS];
302 /* Lookup table for associating allocation pages with object addresses. */
303 page_table lookup;
305 /* The system's page size. */
306 size_t pagesize;
307 size_t lg_pagesize;
309 /* Bytes currently allocated. */
310 size_t allocated;
312 /* Bytes currently allocated at the end of the last collection. */
313 size_t allocated_last_gc;
315 /* Total amount of memory mapped. */
316 size_t bytes_mapped;
318 /* The current depth in the context stack. */
319 unsigned short context_depth;
321 /* A file descriptor open to /dev/zero for reading. */
322 #if defined (HAVE_MMAP_DEV_ZERO)
323 int dev_zero_fd;
324 #endif
326 /* A cache of free system pages. */
327 page_entry *free_pages;
329 #ifdef USING_MALLOC_PAGE_GROUPS
330 page_group *page_groups;
331 #endif
333 /* The file descriptor for debugging output. */
334 FILE *debug_file;
335 } G;
337 /* The size in bytes required to maintain a bitmap for the objects
338 on a page-entry. */
339 #define BITMAP_SIZE(Num_objects) \
340 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
342 /* Skip garbage collection if the current allocation is not at least
343 this factor times the allocation at the end of the last collection.
344 In other words, total allocation must expand by (this factor minus
345 one) before collection is performed. */
346 #define GGC_MIN_EXPAND_FOR_GC (1.3)
348 /* Bound `allocated_last_gc' to 4MB, to prevent the memory expansion
349 test from triggering too often when the heap is small. */
350 #define GGC_MIN_LAST_ALLOCATED (4 * 1024 * 1024)
352 /* Allocate pages in chunks of this size, to throttle calls to memory
353 allocation routines. The first page is used, the rest go onto the
354 free list. This cannot be larger than HOST_BITS_PER_INT for the
355 in_use bitmask for page_group. */
356 #define GGC_QUIRE_SIZE 16
358 static int ggc_allocated_p PARAMS ((const void *));
359 static page_entry *lookup_page_table_entry PARAMS ((const void *));
360 static void set_page_table_entry PARAMS ((void *, page_entry *));
361 #ifdef USING_MMAP
362 static char *alloc_anon PARAMS ((char *, size_t));
363 #endif
364 #ifdef USING_MALLOC_PAGE_GROUPS
365 static size_t page_group_index PARAMS ((char *, char *));
366 static void set_page_group_in_use PARAMS ((page_group *, char *));
367 static void clear_page_group_in_use PARAMS ((page_group *, char *));
368 #endif
369 static struct page_entry * alloc_page PARAMS ((unsigned));
370 static void free_page PARAMS ((struct page_entry *));
371 static void release_pages PARAMS ((void));
372 static void clear_marks PARAMS ((void));
373 static void sweep_pages PARAMS ((void));
374 static void ggc_recalculate_in_use_p PARAMS ((page_entry *));
376 #ifdef GGC_POISON
377 static void poison_pages PARAMS ((void));
378 #endif
380 void debug_print_page_list PARAMS ((int));
382 /* Returns non-zero if P was allocated in GC'able memory. */
384 static inline int
385 ggc_allocated_p (p)
386 const void *p;
388 page_entry ***base;
389 size_t L1, L2;
391 #if HOST_BITS_PER_PTR <= 32
392 base = &G.lookup[0];
393 #else
394 page_table table = G.lookup;
395 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
396 while (1)
398 if (table == NULL)
399 return 0;
400 if (table->high_bits == high_bits)
401 break;
402 table = table->next;
404 base = &table->table[0];
405 #endif
407 /* Extract the level 1 and 2 indices. */
408 L1 = LOOKUP_L1 (p);
409 L2 = LOOKUP_L2 (p);
411 return base[L1] && base[L1][L2];
414 /* Traverse the page table and find the entry for a page.
415 Die (probably) if the object wasn't allocated via GC. */
417 static inline page_entry *
418 lookup_page_table_entry(p)
419 const void *p;
421 page_entry ***base;
422 size_t L1, L2;
424 #if HOST_BITS_PER_PTR <= 32
425 base = &G.lookup[0];
426 #else
427 page_table table = G.lookup;
428 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
429 while (table->high_bits != high_bits)
430 table = table->next;
431 base = &table->table[0];
432 #endif
434 /* Extract the level 1 and 2 indices. */
435 L1 = LOOKUP_L1 (p);
436 L2 = LOOKUP_L2 (p);
438 return base[L1][L2];
441 /* Set the page table entry for a page. */
443 static void
444 set_page_table_entry(p, entry)
445 void *p;
446 page_entry *entry;
448 page_entry ***base;
449 size_t L1, L2;
451 #if HOST_BITS_PER_PTR <= 32
452 base = &G.lookup[0];
453 #else
454 page_table table;
455 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
456 for (table = G.lookup; table; table = table->next)
457 if (table->high_bits == high_bits)
458 goto found;
460 /* Not found -- allocate a new table. */
461 table = (page_table) xcalloc (1, sizeof(*table));
462 table->next = G.lookup;
463 table->high_bits = high_bits;
464 G.lookup = table;
465 found:
466 base = &table->table[0];
467 #endif
469 /* Extract the level 1 and 2 indices. */
470 L1 = LOOKUP_L1 (p);
471 L2 = LOOKUP_L2 (p);
473 if (base[L1] == NULL)
474 base[L1] = (page_entry **) xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
476 base[L1][L2] = entry;
479 /* Prints the page-entry for object size ORDER, for debugging. */
481 void
482 debug_print_page_list (order)
483 int order;
485 page_entry *p;
486 printf ("Head=%p, Tail=%p:\n", (PTR) G.pages[order],
487 (PTR) G.page_tails[order]);
488 p = G.pages[order];
489 while (p != NULL)
491 printf ("%p(%1d|%3d) -> ", (PTR) p, p->context_depth,
492 p->num_free_objects);
493 p = p->next;
495 printf ("NULL\n");
496 fflush (stdout);
499 #ifdef USING_MMAP
500 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
501 (if non-null). The ifdef structure here is intended to cause a
502 compile error unless exactly one of the HAVE_* is defined. */
504 static inline char *
505 alloc_anon (pref, size)
506 char *pref ATTRIBUTE_UNUSED;
507 size_t size;
509 #ifdef HAVE_MMAP_ANON
510 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
511 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
512 #endif
513 #ifdef HAVE_MMAP_DEV_ZERO
514 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
515 MAP_PRIVATE, G.dev_zero_fd, 0);
516 #endif
518 if (page == (char *) MAP_FAILED)
520 perror ("virtual memory exhausted");
521 exit (FATAL_EXIT_CODE);
524 /* Remember that we allocated this memory. */
525 G.bytes_mapped += size;
527 return page;
529 #endif
530 #ifdef USING_MALLOC_PAGE_GROUPS
531 /* Compute the index for this page into the page group. */
533 static inline size_t
534 page_group_index (allocation, page)
535 char *allocation, *page;
537 return (size_t) (page - allocation) >> G.lg_pagesize;
540 /* Set and clear the in_use bit for this page in the page group. */
542 static inline void
543 set_page_group_in_use (group, page)
544 page_group *group;
545 char *page;
547 group->in_use |= 1 << page_group_index (group->allocation, page);
550 static inline void
551 clear_page_group_in_use (group, page)
552 page_group *group;
553 char *page;
555 group->in_use &= ~(1 << page_group_index (group->allocation, page));
557 #endif
559 /* Allocate a new page for allocating objects of size 2^ORDER,
560 and return an entry for it. The entry is not added to the
561 appropriate page_table list. */
563 static inline struct page_entry *
564 alloc_page (order)
565 unsigned order;
567 struct page_entry *entry, *p, **pp;
568 char *page;
569 size_t num_objects;
570 size_t bitmap_size;
571 size_t page_entry_size;
572 size_t entry_size;
573 #ifdef USING_MALLOC_PAGE_GROUPS
574 page_group *group;
575 #endif
577 num_objects = OBJECTS_PER_PAGE (order);
578 bitmap_size = BITMAP_SIZE (num_objects + 1);
579 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
580 entry_size = num_objects * OBJECT_SIZE (order);
581 if (entry_size < G.pagesize)
582 entry_size = G.pagesize;
584 entry = NULL;
585 page = NULL;
587 /* Check the list of free pages for one we can use. */
588 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
589 if (p->bytes == entry_size)
590 break;
592 if (p != NULL)
594 /* Recycle the allocated memory from this page ... */
595 *pp = p->next;
596 page = p->page;
598 #ifdef USING_MALLOC_PAGE_GROUPS
599 group = p->group;
600 #endif
602 /* ... and, if possible, the page entry itself. */
603 if (p->order == order)
605 entry = p;
606 memset (entry, 0, page_entry_size);
608 else
609 free (p);
611 #ifdef USING_MMAP
612 else if (entry_size == G.pagesize)
614 /* We want just one page. Allocate a bunch of them and put the
615 extras on the freelist. (Can only do this optimization with
616 mmap for backing store.) */
617 struct page_entry *e, *f = G.free_pages;
618 int i;
620 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
622 /* This loop counts down so that the chain will be in ascending
623 memory order. */
624 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
626 e = (struct page_entry *) xcalloc (1, page_entry_size);
627 e->order = order;
628 e->bytes = G.pagesize;
629 e->page = page + (i << G.lg_pagesize);
630 e->next = f;
631 f = e;
634 G.free_pages = f;
636 else
637 page = alloc_anon (NULL, entry_size);
638 #endif
639 #ifdef USING_MALLOC_PAGE_GROUPS
640 else
642 /* Allocate a large block of memory and serve out the aligned
643 pages therein. This results in much less memory wastage
644 than the traditional implementation of valloc. */
646 char *allocation, *a, *enda;
647 size_t alloc_size, head_slop, tail_slop;
648 int multiple_pages = (entry_size == G.pagesize);
650 if (multiple_pages)
651 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
652 else
653 alloc_size = entry_size + G.pagesize - 1;
654 allocation = xmalloc (alloc_size);
656 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
657 head_slop = page - allocation;
658 if (multiple_pages)
659 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
660 else
661 tail_slop = alloc_size - entry_size - head_slop;
662 enda = allocation + alloc_size - tail_slop;
664 /* We allocated N pages, which are likely not aligned, leaving
665 us with N-1 usable pages. We plan to place the page_group
666 structure somewhere in the slop. */
667 if (head_slop >= sizeof (page_group))
668 group = (page_group *)page - 1;
669 else
671 /* We magically got an aligned allocation. Too bad, we have
672 to waste a page anyway. */
673 if (tail_slop == 0)
675 enda -= G.pagesize;
676 tail_slop += G.pagesize;
678 if (tail_slop < sizeof (page_group))
679 abort ();
680 group = (page_group *)enda;
681 tail_slop -= sizeof (page_group);
684 /* Remember that we allocated this memory. */
685 group->next = G.page_groups;
686 group->allocation = allocation;
687 group->alloc_size = alloc_size;
688 group->in_use = 0;
689 G.page_groups = group;
690 G.bytes_mapped += alloc_size;
692 /* If we allocated multiple pages, put the rest on the free list. */
693 if (multiple_pages)
695 struct page_entry *e, *f = G.free_pages;
696 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
698 e = (struct page_entry *) xcalloc (1, page_entry_size);
699 e->order = order;
700 e->bytes = G.pagesize;
701 e->page = a;
702 e->group = group;
703 e->next = f;
704 f = e;
706 G.free_pages = f;
709 #endif
711 if (entry == NULL)
712 entry = (struct page_entry *) xcalloc (1, page_entry_size);
714 entry->bytes = entry_size;
715 entry->page = page;
716 entry->context_depth = G.context_depth;
717 entry->order = order;
718 entry->num_free_objects = num_objects;
719 entry->next_bit_hint = 1;
721 #ifdef USING_MALLOC_PAGE_GROUPS
722 entry->group = group;
723 set_page_group_in_use (group, page);
724 #endif
726 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
727 increment the hint. */
728 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
729 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
731 set_page_table_entry (page, entry);
733 if (GGC_DEBUG_LEVEL >= 2)
734 fprintf (G.debug_file,
735 "Allocating page at %p, object size=%ld, data %p-%p\n",
736 (PTR) entry, (long) OBJECT_SIZE (order), page,
737 page + entry_size - 1);
739 return entry;
742 /* For a page that is no longer needed, put it on the free page list. */
744 static inline void
745 free_page (entry)
746 page_entry *entry;
748 if (GGC_DEBUG_LEVEL >= 2)
749 fprintf (G.debug_file,
750 "Deallocating page at %p, data %p-%p\n", (PTR) entry,
751 entry->page, entry->page + entry->bytes - 1);
753 set_page_table_entry (entry->page, NULL);
755 #ifdef USING_MALLOC_PAGE_GROUPS
756 clear_page_group_in_use (entry->group, entry->page);
757 #endif
759 entry->next = G.free_pages;
760 G.free_pages = entry;
763 /* Release the free page cache to the system. */
765 static void
766 release_pages ()
768 #ifdef USING_MMAP
769 page_entry *p, *next;
770 char *start;
771 size_t len;
773 /* Gather up adjacent pages so they are unmapped together. */
774 p = G.free_pages;
776 while (p)
778 start = p->page;
779 next = p->next;
780 len = p->bytes;
781 free (p);
782 p = next;
784 while (p && p->page == start + len)
786 next = p->next;
787 len += p->bytes;
788 free (p);
789 p = next;
792 munmap (start, len);
793 G.bytes_mapped -= len;
796 G.free_pages = NULL;
797 #endif
798 #ifdef USING_MALLOC_PAGE_GROUPS
799 page_entry **pp, *p;
800 page_group **gp, *g;
802 /* Remove all pages from free page groups from the list. */
803 pp = &G.free_pages;
804 while ((p = *pp) != NULL)
805 if (p->group->in_use == 0)
807 *pp = p->next;
808 free (p);
810 else
811 pp = &p->next;
813 /* Remove all free page groups, and release the storage. */
814 gp = &G.page_groups;
815 while ((g = *gp) != NULL)
816 if (g->in_use == 0)
818 *gp = g->next;
819 G.bytes_mapped -= g->alloc_size;
820 free (g->allocation);
822 else
823 gp = &g->next;
824 #endif
827 /* This table provides a fast way to determine ceil(log_2(size)) for
828 allocation requests. The minimum allocation size is eight bytes. */
830 static unsigned char size_lookup[257] =
832 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
833 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
834 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
835 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
836 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
837 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
838 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
839 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
840 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
841 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
842 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
843 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
844 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
845 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
846 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
847 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
851 /* Allocate a chunk of memory of SIZE bytes. If ZERO is non-zero, the
852 memory is zeroed; otherwise, its contents are undefined. */
854 void *
855 ggc_alloc (size)
856 size_t size;
858 unsigned order, word, bit, object_offset;
859 struct page_entry *entry;
860 void *result;
862 if (size <= 256)
863 order = size_lookup[size];
864 else
866 order = 9;
867 while (size > OBJECT_SIZE (order))
868 order++;
871 /* If there are non-full pages for this size allocation, they are at
872 the head of the list. */
873 entry = G.pages[order];
875 /* If there is no page for this object size, or all pages in this
876 context are full, allocate a new page. */
877 if (entry == NULL || entry->num_free_objects == 0)
879 struct page_entry *new_entry;
880 new_entry = alloc_page (order);
882 /* If this is the only entry, it's also the tail. */
883 if (entry == NULL)
884 G.page_tails[order] = new_entry;
886 /* Put new pages at the head of the page list. */
887 new_entry->next = entry;
888 entry = new_entry;
889 G.pages[order] = new_entry;
891 /* For a new page, we know the word and bit positions (in the
892 in_use bitmap) of the first available object -- they're zero. */
893 new_entry->next_bit_hint = 1;
894 word = 0;
895 bit = 0;
896 object_offset = 0;
898 else
900 /* First try to use the hint left from the previous allocation
901 to locate a clear bit in the in-use bitmap. We've made sure
902 that the one-past-the-end bit is always set, so if the hint
903 has run over, this test will fail. */
904 unsigned hint = entry->next_bit_hint;
905 word = hint / HOST_BITS_PER_LONG;
906 bit = hint % HOST_BITS_PER_LONG;
908 /* If the hint didn't work, scan the bitmap from the beginning. */
909 if ((entry->in_use_p[word] >> bit) & 1)
911 word = bit = 0;
912 while (~entry->in_use_p[word] == 0)
913 ++word;
914 while ((entry->in_use_p[word] >> bit) & 1)
915 ++bit;
916 hint = word * HOST_BITS_PER_LONG + bit;
919 /* Next time, try the next bit. */
920 entry->next_bit_hint = hint + 1;
922 object_offset = hint * OBJECT_SIZE (order);
925 /* Set the in-use bit. */
926 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
928 /* Keep a running total of the number of free objects. If this page
929 fills up, we may have to move it to the end of the list if the
930 next page isn't full. If the next page is full, all subsequent
931 pages are full, so there's no need to move it. */
932 if (--entry->num_free_objects == 0
933 && entry->next != NULL
934 && entry->next->num_free_objects > 0)
936 G.pages[order] = entry->next;
937 entry->next = NULL;
938 G.page_tails[order]->next = entry;
939 G.page_tails[order] = entry;
942 /* Calculate the object's address. */
943 result = entry->page + object_offset;
945 #ifdef GGC_POISON
946 /* `Poison' the entire allocated object, including any padding at
947 the end. */
948 memset (result, 0xaf, OBJECT_SIZE (order));
949 #endif
951 /* Keep track of how many bytes are being allocated. This
952 information is used in deciding when to collect. */
953 G.allocated += OBJECT_SIZE (order);
955 if (GGC_DEBUG_LEVEL >= 3)
956 fprintf (G.debug_file,
957 "Allocating object, requested size=%ld, actual=%ld at %p on %p\n",
958 (long) size, (long) OBJECT_SIZE (order), result, (PTR) entry);
960 return result;
963 /* If P is not marked, marks it and return false. Otherwise return true.
964 P must have been allocated by the GC allocator; it mustn't point to
965 static objects, stack variables, or memory allocated with malloc. */
968 ggc_set_mark (p)
969 const void *p;
971 page_entry *entry;
972 unsigned bit, word;
973 unsigned long mask;
975 /* Look up the page on which the object is alloced. If the object
976 wasn't allocated by the collector, we'll probably die. */
977 entry = lookup_page_table_entry (p);
978 #ifdef ENABLE_CHECKING
979 if (entry == NULL)
980 abort ();
981 #endif
983 /* Calculate the index of the object on the page; this is its bit
984 position in the in_use_p bitmap. */
985 bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
986 word = bit / HOST_BITS_PER_LONG;
987 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
989 /* If the bit was previously set, skip it. */
990 if (entry->in_use_p[word] & mask)
991 return 1;
993 /* Otherwise set it, and decrement the free object count. */
994 entry->in_use_p[word] |= mask;
995 entry->num_free_objects -= 1;
997 if (GGC_DEBUG_LEVEL >= 4)
998 fprintf (G.debug_file, "Marking %p\n", p);
1000 return 0;
1003 /* Return 1 if P has been marked, zero otherwise.
1004 P must have been allocated by the GC allocator; it mustn't point to
1005 static objects, stack variables, or memory allocated with malloc. */
1008 ggc_marked_p (p)
1009 const void *p;
1011 page_entry *entry;
1012 unsigned bit, word;
1013 unsigned long mask;
1015 /* Look up the page on which the object is alloced. If the object
1016 wasn't allocated by the collector, we'll probably die. */
1017 entry = lookup_page_table_entry (p);
1018 #ifdef ENABLE_CHECKING
1019 if (entry == NULL)
1020 abort ();
1021 #endif
1023 /* Calculate the index of the object on the page; this is its bit
1024 position in the in_use_p bitmap. */
1025 bit = (((const char *) p) - entry->page) / OBJECT_SIZE (entry->order);
1026 word = bit / HOST_BITS_PER_LONG;
1027 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1029 return (entry->in_use_p[word] & mask) != 0;
1032 /* Return the size of the gc-able object P. */
1034 size_t
1035 ggc_get_size (p)
1036 const void *p;
1038 page_entry *pe = lookup_page_table_entry (p);
1039 return OBJECT_SIZE (pe->order);
1042 /* Initialize the ggc-mmap allocator. */
1044 void
1045 init_ggc ()
1047 unsigned order;
1049 G.pagesize = getpagesize();
1050 G.lg_pagesize = exact_log2 (G.pagesize);
1052 #ifdef HAVE_MMAP_DEV_ZERO
1053 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1054 if (G.dev_zero_fd == -1)
1055 abort ();
1056 #endif
1058 #if 0
1059 G.debug_file = fopen ("ggc-mmap.debug", "w");
1060 #else
1061 G.debug_file = stdout;
1062 #endif
1064 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1066 #ifdef USING_MMAP
1067 /* StunOS has an amazing off-by-one error for the first mmap allocation
1068 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1069 believe, is an unaligned page allocation, which would cause us to
1070 hork badly if we tried to use it. */
1072 char *p = alloc_anon (NULL, G.pagesize);
1073 struct page_entry *e;
1074 if ((size_t)p & (G.pagesize - 1))
1076 /* How losing. Discard this one and try another. If we still
1077 can't get something useful, give up. */
1079 p = alloc_anon (NULL, G.pagesize);
1080 if ((size_t)p & (G.pagesize - 1))
1081 abort ();
1084 /* We have a good page, might as well hold onto it... */
1085 e = (struct page_entry *) xcalloc (1, sizeof (struct page_entry));
1086 e->bytes = G.pagesize;
1087 e->page = p;
1088 e->next = G.free_pages;
1089 G.free_pages = e;
1091 #endif
1093 /* Initialize the object size table. */
1094 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1095 object_size_table[order] = (size_t) 1 << order;
1096 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1098 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1100 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1101 so that we're sure of getting aligned memory. */
1102 s = CEIL (s, MAX_ALIGNMENT) * MAX_ALIGNMENT;
1103 object_size_table[order] = s;
1106 /* Initialize the objects-per-page table. */
1107 for (order = 0; order < NUM_ORDERS; ++order)
1109 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1110 if (objects_per_page_table[order] == 0)
1111 objects_per_page_table[order] = 1;
1114 /* Reset the size_lookup array to put appropriately sized objects in
1115 the special orders. All objects bigger than the previous power
1116 of two, but no greater than the special size, should go in the
1117 new order. */
1118 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1120 int o;
1121 int i;
1123 o = size_lookup[OBJECT_SIZE (order)];
1124 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1125 size_lookup[i] = order;
1129 /* Increment the `GC context'. Objects allocated in an outer context
1130 are never freed, eliminating the need to register their roots. */
1132 void
1133 ggc_push_context ()
1135 ++G.context_depth;
1137 /* Die on wrap. */
1138 if (G.context_depth == 0)
1139 abort ();
1142 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1143 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1145 static void
1146 ggc_recalculate_in_use_p (p)
1147 page_entry *p;
1149 unsigned int i;
1150 size_t num_objects;
1152 /* Because the past-the-end bit in in_use_p is always set, we
1153 pretend there is one additional object. */
1154 num_objects = OBJECTS_PER_PAGE (p->order) + 1;
1156 /* Reset the free object count. */
1157 p->num_free_objects = num_objects;
1159 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1160 for (i = 0;
1161 i < CEIL (BITMAP_SIZE (num_objects),
1162 sizeof (*p->in_use_p));
1163 ++i)
1165 unsigned long j;
1167 /* Something is in use if it is marked, or if it was in use in a
1168 context further down the context stack. */
1169 p->in_use_p[i] |= p->save_in_use_p[i];
1171 /* Decrement the free object count for every object allocated. */
1172 for (j = p->in_use_p[i]; j; j >>= 1)
1173 p->num_free_objects -= (j & 1);
1176 if (p->num_free_objects >= num_objects)
1177 abort ();
1180 /* Decrement the `GC context'. All objects allocated since the
1181 previous ggc_push_context are migrated to the outer context. */
1183 void
1184 ggc_pop_context ()
1186 unsigned order, depth;
1188 depth = --G.context_depth;
1190 /* Any remaining pages in the popped context are lowered to the new
1191 current context; i.e. objects allocated in the popped context and
1192 left over are imported into the previous context. */
1193 for (order = 2; order < NUM_ORDERS; order++)
1195 page_entry *p;
1197 for (p = G.pages[order]; p != NULL; p = p->next)
1199 if (p->context_depth > depth)
1200 p->context_depth = depth;
1202 /* If this page is now in the topmost context, and we'd
1203 saved its allocation state, restore it. */
1204 else if (p->context_depth == depth && p->save_in_use_p)
1206 ggc_recalculate_in_use_p (p);
1207 free (p->save_in_use_p);
1208 p->save_in_use_p = 0;
1214 /* Unmark all objects. */
1216 static inline void
1217 clear_marks ()
1219 unsigned order;
1221 for (order = 2; order < NUM_ORDERS; order++)
1223 size_t num_objects = OBJECTS_PER_PAGE (order);
1224 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1225 page_entry *p;
1227 for (p = G.pages[order]; p != NULL; p = p->next)
1229 #ifdef ENABLE_CHECKING
1230 /* The data should be page-aligned. */
1231 if ((size_t) p->page & (G.pagesize - 1))
1232 abort ();
1233 #endif
1235 /* Pages that aren't in the topmost context are not collected;
1236 nevertheless, we need their in-use bit vectors to store GC
1237 marks. So, back them up first. */
1238 if (p->context_depth < G.context_depth)
1240 if (! p->save_in_use_p)
1241 p->save_in_use_p = xmalloc (bitmap_size);
1242 memcpy (p->save_in_use_p, p->in_use_p, bitmap_size);
1245 /* Reset reset the number of free objects and clear the
1246 in-use bits. These will be adjusted by mark_obj. */
1247 p->num_free_objects = num_objects;
1248 memset (p->in_use_p, 0, bitmap_size);
1250 /* Make sure the one-past-the-end bit is always set. */
1251 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1252 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1257 /* Free all empty pages. Partially empty pages need no attention
1258 because the `mark' bit doubles as an `unused' bit. */
1260 static inline void
1261 sweep_pages ()
1263 unsigned order;
1265 for (order = 2; order < NUM_ORDERS; order++)
1267 /* The last page-entry to consider, regardless of entries
1268 placed at the end of the list. */
1269 page_entry * const last = G.page_tails[order];
1271 size_t num_objects = OBJECTS_PER_PAGE (order);
1272 size_t live_objects;
1273 page_entry *p, *previous;
1274 int done;
1276 p = G.pages[order];
1277 if (p == NULL)
1278 continue;
1280 previous = NULL;
1283 page_entry *next = p->next;
1285 /* Loop until all entries have been examined. */
1286 done = (p == last);
1288 /* Add all live objects on this page to the count of
1289 allocated memory. */
1290 live_objects = num_objects - p->num_free_objects;
1292 G.allocated += OBJECT_SIZE (order) * live_objects;
1294 /* Only objects on pages in the topmost context should get
1295 collected. */
1296 if (p->context_depth < G.context_depth)
1299 /* Remove the page if it's empty. */
1300 else if (live_objects == 0)
1302 if (! previous)
1303 G.pages[order] = next;
1304 else
1305 previous->next = next;
1307 /* Are we removing the last element? */
1308 if (p == G.page_tails[order])
1309 G.page_tails[order] = previous;
1310 free_page (p);
1311 p = previous;
1314 /* If the page is full, move it to the end. */
1315 else if (p->num_free_objects == 0)
1317 /* Don't move it if it's already at the end. */
1318 if (p != G.page_tails[order])
1320 /* Move p to the end of the list. */
1321 p->next = NULL;
1322 G.page_tails[order]->next = p;
1324 /* Update the tail pointer... */
1325 G.page_tails[order] = p;
1327 /* ... and the head pointer, if necessary. */
1328 if (! previous)
1329 G.pages[order] = next;
1330 else
1331 previous->next = next;
1332 p = previous;
1336 /* If we've fallen through to here, it's a page in the
1337 topmost context that is neither full nor empty. Such a
1338 page must precede pages at lesser context depth in the
1339 list, so move it to the head. */
1340 else if (p != G.pages[order])
1342 previous->next = p->next;
1343 p->next = G.pages[order];
1344 G.pages[order] = p;
1345 /* Are we moving the last element? */
1346 if (G.page_tails[order] == p)
1347 G.page_tails[order] = previous;
1348 p = previous;
1351 previous = p;
1352 p = next;
1354 while (! done);
1356 /* Now, restore the in_use_p vectors for any pages from contexts
1357 other than the current one. */
1358 for (p = G.pages[order]; p; p = p->next)
1359 if (p->context_depth != G.context_depth)
1360 ggc_recalculate_in_use_p (p);
1364 #ifdef GGC_POISON
1365 /* Clobber all free objects. */
1367 static inline void
1368 poison_pages ()
1370 unsigned order;
1372 for (order = 2; order < NUM_ORDERS; order++)
1374 size_t num_objects = OBJECTS_PER_PAGE (order);
1375 size_t size = OBJECT_SIZE (order);
1376 page_entry *p;
1378 for (p = G.pages[order]; p != NULL; p = p->next)
1380 size_t i;
1382 if (p->context_depth != G.context_depth)
1383 /* Since we don't do any collection for pages in pushed
1384 contexts, there's no need to do any poisoning. And
1385 besides, the IN_USE_P array isn't valid until we pop
1386 contexts. */
1387 continue;
1389 for (i = 0; i < num_objects; i++)
1391 size_t word, bit;
1392 word = i / HOST_BITS_PER_LONG;
1393 bit = i % HOST_BITS_PER_LONG;
1394 if (((p->in_use_p[word] >> bit) & 1) == 0)
1395 memset (p->page + i * size, 0xa5, size);
1400 #endif
1402 /* Top level mark-and-sweep routine. */
1404 void
1405 ggc_collect ()
1407 /* Avoid frequent unnecessary work by skipping collection if the
1408 total allocations haven't expanded much since the last
1409 collection. */
1410 #ifndef GGC_ALWAYS_COLLECT
1411 if (G.allocated < GGC_MIN_EXPAND_FOR_GC * G.allocated_last_gc)
1412 return;
1413 #endif
1415 timevar_push (TV_GC);
1416 if (!quiet_flag)
1417 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1419 /* Zero the total allocated bytes. This will be recalculated in the
1420 sweep phase. */
1421 G.allocated = 0;
1423 /* Release the pages we freed the last time we collected, but didn't
1424 reuse in the interim. */
1425 release_pages ();
1427 clear_marks ();
1428 ggc_mark_roots ();
1430 #ifdef GGC_POISON
1431 poison_pages ();
1432 #endif
1434 sweep_pages ();
1436 G.allocated_last_gc = G.allocated;
1437 if (G.allocated_last_gc < GGC_MIN_LAST_ALLOCATED)
1438 G.allocated_last_gc = GGC_MIN_LAST_ALLOCATED;
1440 timevar_pop (TV_GC);
1442 if (!quiet_flag)
1443 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1446 /* Print allocation statistics. */
1447 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1448 ? (x) \
1449 : ((x) < 1024*1024*10 \
1450 ? (x) / 1024 \
1451 : (x) / (1024*1024))))
1452 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1454 void
1455 ggc_print_statistics ()
1457 struct ggc_statistics stats;
1458 unsigned int i;
1459 size_t total_overhead = 0;
1461 /* Clear the statistics. */
1462 memset (&stats, 0, sizeof (stats));
1464 /* Make sure collection will really occur. */
1465 G.allocated_last_gc = 0;
1467 /* Collect and print the statistics common across collectors. */
1468 ggc_print_common_statistics (stderr, &stats);
1470 /* Release free pages so that we will not count the bytes allocated
1471 there as part of the total allocated memory. */
1472 release_pages ();
1474 /* Collect some information about the various sizes of
1475 allocation. */
1476 fprintf (stderr, "\n%-5s %10s %10s %10s\n",
1477 "Size", "Allocated", "Used", "Overhead");
1478 for (i = 0; i < NUM_ORDERS; ++i)
1480 page_entry *p;
1481 size_t allocated;
1482 size_t in_use;
1483 size_t overhead;
1485 /* Skip empty entries. */
1486 if (!G.pages[i])
1487 continue;
1489 overhead = allocated = in_use = 0;
1491 /* Figure out the total number of bytes allocated for objects of
1492 this size, and how many of them are actually in use. Also figure
1493 out how much memory the page table is using. */
1494 for (p = G.pages[i]; p; p = p->next)
1496 allocated += p->bytes;
1497 in_use +=
1498 (OBJECTS_PER_PAGE (i) - p->num_free_objects) * OBJECT_SIZE (i);
1500 overhead += (sizeof (page_entry) - sizeof (long)
1501 + BITMAP_SIZE (OBJECTS_PER_PAGE (i) + 1));
1503 fprintf (stderr, "%-5d %10ld%c %10ld%c %10ld%c\n", OBJECT_SIZE (i),
1504 SCALE (allocated), LABEL (allocated),
1505 SCALE (in_use), LABEL (in_use),
1506 SCALE (overhead), LABEL (overhead));
1507 total_overhead += overhead;
1509 fprintf (stderr, "%-5s %10ld%c %10ld%c %10ld%c\n", "Total",
1510 SCALE (G.bytes_mapped), LABEL (G.bytes_mapped),
1511 SCALE (G.allocated), LABEL(G.allocated),
1512 SCALE (total_overhead), LABEL (total_overhead));