2002-05-05 David S. Miller <davem@redhat.com>
[official-gcc.git] / gcc / combine.c
blobf3d43c49509cb0986e348282aa58d259eca3d587
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "rtl.h"
80 #include "tm_p.h"
81 #include "flags.h"
82 #include "regs.h"
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
86 #include "function.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
88 #include "expr.h"
89 #include "insn-attr.h"
90 #include "recog.h"
91 #include "real.h"
92 #include "toplev.h"
94 /* It is not safe to use ordinary gen_lowpart in combine.
95 Use gen_lowpart_for_combine instead. See comments there. */
96 #define gen_lowpart dont_use_gen_lowpart_you_dummy
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 /* Record last point of death of (hard or pseudo) register n. */
146 static rtx *reg_last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
150 static rtx *reg_last_set;
152 /* Record the cuid of the last insn that invalidated memory
153 (anything that writes memory, and subroutine calls, but not pushes). */
155 static int mem_last_set;
157 /* Record the cuid of the last CALL_INSN
158 so we can tell whether a potential combination crosses any calls. */
160 static int last_call_cuid;
162 /* When `subst' is called, this is the insn that is being modified
163 (by combining in a previous insn). The PATTERN of this insn
164 is still the old pattern partially modified and it should not be
165 looked at, but this may be used to examine the successors of the insn
166 to judge whether a simplification is valid. */
168 static rtx subst_insn;
170 /* This is an insn that belongs before subst_insn, but is not currently
171 on the insn chain. */
173 static rtx subst_prev_insn;
175 /* This is the lowest CUID that `subst' is currently dealing with.
176 get_last_value will not return a value if the register was set at or
177 after this CUID. If not for this mechanism, we could get confused if
178 I2 or I1 in try_combine were an insn that used the old value of a register
179 to obtain a new value. In that case, we might erroneously get the
180 new value of the register when we wanted the old one. */
182 static int subst_low_cuid;
184 /* This contains any hard registers that are used in newpat; reg_dead_at_p
185 must consider all these registers to be always live. */
187 static HARD_REG_SET newpat_used_regs;
189 /* This is an insn to which a LOG_LINKS entry has been added. If this
190 insn is the earlier than I2 or I3, combine should rescan starting at
191 that location. */
193 static rtx added_links_insn;
195 /* Basic block number of the block in which we are performing combines. */
196 static int this_basic_block;
198 /* A bitmap indicating which blocks had registers go dead at entry.
199 After combine, we'll need to re-do global life analysis with
200 those blocks as starting points. */
201 static sbitmap refresh_blocks;
202 static int need_refresh;
204 /* The next group of arrays allows the recording of the last value assigned
205 to (hard or pseudo) register n. We use this information to see if a
206 operation being processed is redundant given a prior operation performed
207 on the register. For example, an `and' with a constant is redundant if
208 all the zero bits are already known to be turned off.
210 We use an approach similar to that used by cse, but change it in the
211 following ways:
213 (1) We do not want to reinitialize at each label.
214 (2) It is useful, but not critical, to know the actual value assigned
215 to a register. Often just its form is helpful.
217 Therefore, we maintain the following arrays:
219 reg_last_set_value the last value assigned
220 reg_last_set_label records the value of label_tick when the
221 register was assigned
222 reg_last_set_table_tick records the value of label_tick when a
223 value using the register is assigned
224 reg_last_set_invalid set to non-zero when it is not valid
225 to use the value of this register in some
226 register's value
228 To understand the usage of these tables, it is important to understand
229 the distinction between the value in reg_last_set_value being valid
230 and the register being validly contained in some other expression in the
231 table.
233 Entry I in reg_last_set_value is valid if it is non-zero, and either
234 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
236 Register I may validly appear in any expression returned for the value
237 of another register if reg_n_sets[i] is 1. It may also appear in the
238 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
239 reg_last_set_invalid[j] is zero.
241 If an expression is found in the table containing a register which may
242 not validly appear in an expression, the register is replaced by
243 something that won't match, (clobber (const_int 0)).
245 reg_last_set_invalid[i] is set non-zero when register I is being assigned
246 to and reg_last_set_table_tick[i] == label_tick. */
248 /* Record last value assigned to (hard or pseudo) register n. */
250 static rtx *reg_last_set_value;
252 /* Record the value of label_tick when the value for register n is placed in
253 reg_last_set_value[n]. */
255 static int *reg_last_set_label;
257 /* Record the value of label_tick when an expression involving register n
258 is placed in reg_last_set_value. */
260 static int *reg_last_set_table_tick;
262 /* Set non-zero if references to register n in expressions should not be
263 used. */
265 static char *reg_last_set_invalid;
267 /* Incremented for each label. */
269 static int label_tick;
271 /* Some registers that are set more than once and used in more than one
272 basic block are nevertheless always set in similar ways. For example,
273 a QImode register may be loaded from memory in two places on a machine
274 where byte loads zero extend.
276 We record in the following array what we know about the nonzero
277 bits of a register, specifically which bits are known to be zero.
279 If an entry is zero, it means that we don't know anything special. */
281 static unsigned HOST_WIDE_INT *reg_nonzero_bits;
283 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
284 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
286 static enum machine_mode nonzero_bits_mode;
288 /* Nonzero if we know that a register has some leading bits that are always
289 equal to the sign bit. */
291 static unsigned char *reg_sign_bit_copies;
293 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
294 It is zero while computing them and after combine has completed. This
295 former test prevents propagating values based on previously set values,
296 which can be incorrect if a variable is modified in a loop. */
298 static int nonzero_sign_valid;
300 /* These arrays are maintained in parallel with reg_last_set_value
301 and are used to store the mode in which the register was last set,
302 the bits that were known to be zero when it was last set, and the
303 number of sign bits copies it was known to have when it was last set. */
305 static enum machine_mode *reg_last_set_mode;
306 static unsigned HOST_WIDE_INT *reg_last_set_nonzero_bits;
307 static char *reg_last_set_sign_bit_copies;
309 /* Record one modification to rtl structure
310 to be undone by storing old_contents into *where.
311 is_int is 1 if the contents are an int. */
313 struct undo
315 struct undo *next;
316 int is_int;
317 union {rtx r; unsigned int i;} old_contents;
318 union {rtx *r; unsigned int *i;} where;
321 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
322 num_undo says how many are currently recorded.
324 other_insn is nonzero if we have modified some other insn in the process
325 of working on subst_insn. It must be verified too. */
327 struct undobuf
329 struct undo *undos;
330 struct undo *frees;
331 rtx other_insn;
334 static struct undobuf undobuf;
336 /* Number of times the pseudo being substituted for
337 was found and replaced. */
339 static int n_occurrences;
341 static void do_SUBST PARAMS ((rtx *, rtx));
342 static void do_SUBST_INT PARAMS ((unsigned int *,
343 unsigned int));
344 static void init_reg_last_arrays PARAMS ((void));
345 static void setup_incoming_promotions PARAMS ((void));
346 static void set_nonzero_bits_and_sign_copies PARAMS ((rtx, rtx, void *));
347 static int cant_combine_insn_p PARAMS ((rtx));
348 static int can_combine_p PARAMS ((rtx, rtx, rtx, rtx, rtx *, rtx *));
349 static int sets_function_arg_p PARAMS ((rtx));
350 static int combinable_i3pat PARAMS ((rtx, rtx *, rtx, rtx, int, rtx *));
351 static int contains_muldiv PARAMS ((rtx));
352 static rtx try_combine PARAMS ((rtx, rtx, rtx, int *));
353 static void undo_all PARAMS ((void));
354 static void undo_commit PARAMS ((void));
355 static rtx *find_split_point PARAMS ((rtx *, rtx));
356 static rtx subst PARAMS ((rtx, rtx, rtx, int, int));
357 static rtx combine_simplify_rtx PARAMS ((rtx, enum machine_mode, int, int));
358 static rtx simplify_if_then_else PARAMS ((rtx));
359 static rtx simplify_set PARAMS ((rtx));
360 static rtx simplify_logical PARAMS ((rtx, int));
361 static rtx expand_compound_operation PARAMS ((rtx));
362 static rtx expand_field_assignment PARAMS ((rtx));
363 static rtx make_extraction PARAMS ((enum machine_mode, rtx, HOST_WIDE_INT,
364 rtx, unsigned HOST_WIDE_INT, int,
365 int, int));
366 static rtx extract_left_shift PARAMS ((rtx, int));
367 static rtx make_compound_operation PARAMS ((rtx, enum rtx_code));
368 static int get_pos_from_mask PARAMS ((unsigned HOST_WIDE_INT,
369 unsigned HOST_WIDE_INT *));
370 static rtx force_to_mode PARAMS ((rtx, enum machine_mode,
371 unsigned HOST_WIDE_INT, rtx, int));
372 static rtx if_then_else_cond PARAMS ((rtx, rtx *, rtx *));
373 static rtx known_cond PARAMS ((rtx, enum rtx_code, rtx, rtx));
374 static int rtx_equal_for_field_assignment_p PARAMS ((rtx, rtx));
375 static rtx make_field_assignment PARAMS ((rtx));
376 static rtx apply_distributive_law PARAMS ((rtx));
377 static rtx simplify_and_const_int PARAMS ((rtx, enum machine_mode, rtx,
378 unsigned HOST_WIDE_INT));
379 static unsigned HOST_WIDE_INT nonzero_bits PARAMS ((rtx, enum machine_mode));
380 static unsigned int num_sign_bit_copies PARAMS ((rtx, enum machine_mode));
381 static int merge_outer_ops PARAMS ((enum rtx_code *, HOST_WIDE_INT *,
382 enum rtx_code, HOST_WIDE_INT,
383 enum machine_mode, int *));
384 static rtx simplify_shift_const PARAMS ((rtx, enum rtx_code, enum machine_mode,
385 rtx, int));
386 static int recog_for_combine PARAMS ((rtx *, rtx, rtx *));
387 static rtx gen_lowpart_for_combine PARAMS ((enum machine_mode, rtx));
388 static rtx gen_binary PARAMS ((enum rtx_code, enum machine_mode,
389 rtx, rtx));
390 static enum rtx_code simplify_comparison PARAMS ((enum rtx_code, rtx *, rtx *));
391 static void update_table_tick PARAMS ((rtx));
392 static void record_value_for_reg PARAMS ((rtx, rtx, rtx));
393 static void check_promoted_subreg PARAMS ((rtx, rtx));
394 static void record_dead_and_set_regs_1 PARAMS ((rtx, rtx, void *));
395 static void record_dead_and_set_regs PARAMS ((rtx));
396 static int get_last_value_validate PARAMS ((rtx *, rtx, int, int));
397 static rtx get_last_value PARAMS ((rtx));
398 static int use_crosses_set_p PARAMS ((rtx, int));
399 static void reg_dead_at_p_1 PARAMS ((rtx, rtx, void *));
400 static int reg_dead_at_p PARAMS ((rtx, rtx));
401 static void move_deaths PARAMS ((rtx, rtx, int, rtx, rtx *));
402 static int reg_bitfield_target_p PARAMS ((rtx, rtx));
403 static void distribute_notes PARAMS ((rtx, rtx, rtx, rtx, rtx, rtx));
404 static void distribute_links PARAMS ((rtx));
405 static void mark_used_regs_combine PARAMS ((rtx));
406 static int insn_cuid PARAMS ((rtx));
407 static void record_promoted_value PARAMS ((rtx, rtx));
408 static rtx reversed_comparison PARAMS ((rtx, enum machine_mode, rtx, rtx));
409 static enum rtx_code combine_reversed_comparison_code PARAMS ((rtx));
411 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
412 insn. The substitution can be undone by undo_all. If INTO is already
413 set to NEWVAL, do not record this change. Because computing NEWVAL might
414 also call SUBST, we have to compute it before we put anything into
415 the undo table. */
417 static void
418 do_SUBST (into, newval)
419 rtx *into, newval;
421 struct undo *buf;
422 rtx oldval = *into;
424 if (oldval == newval)
425 return;
427 /* We'd like to catch as many invalid transformations here as
428 possible. Unfortunately, there are way too many mode changes
429 that are perfectly valid, so we'd waste too much effort for
430 little gain doing the checks here. Focus on catching invalid
431 transformations involving integer constants. */
432 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
433 && GET_CODE (newval) == CONST_INT)
435 /* Sanity check that we're replacing oldval with a CONST_INT
436 that is a valid sign-extension for the original mode. */
437 if (INTVAL (newval) != trunc_int_for_mode (INTVAL (newval),
438 GET_MODE (oldval)))
439 abort ();
441 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
442 CONST_INT is not valid, because after the replacement, the
443 original mode would be gone. Unfortunately, we can't tell
444 when do_SUBST is called to replace the operand thereof, so we
445 perform this test on oldval instead, checking whether an
446 invalid replacement took place before we got here. */
447 if ((GET_CODE (oldval) == SUBREG
448 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT)
449 || (GET_CODE (oldval) == ZERO_EXTEND
450 && GET_CODE (XEXP (oldval, 0)) == CONST_INT))
451 abort ();
454 if (undobuf.frees)
455 buf = undobuf.frees, undobuf.frees = buf->next;
456 else
457 buf = (struct undo *) xmalloc (sizeof (struct undo));
459 buf->is_int = 0;
460 buf->where.r = into;
461 buf->old_contents.r = oldval;
462 *into = newval;
464 buf->next = undobuf.undos, undobuf.undos = buf;
467 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
469 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
470 for the value of a HOST_WIDE_INT value (including CONST_INT) is
471 not safe. */
473 static void
474 do_SUBST_INT (into, newval)
475 unsigned int *into, newval;
477 struct undo *buf;
478 unsigned int oldval = *into;
480 if (oldval == newval)
481 return;
483 if (undobuf.frees)
484 buf = undobuf.frees, undobuf.frees = buf->next;
485 else
486 buf = (struct undo *) xmalloc (sizeof (struct undo));
488 buf->is_int = 1;
489 buf->where.i = into;
490 buf->old_contents.i = oldval;
491 *into = newval;
493 buf->next = undobuf.undos, undobuf.undos = buf;
496 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
498 /* Main entry point for combiner. F is the first insn of the function.
499 NREGS is the first unused pseudo-reg number.
501 Return non-zero if the combiner has turned an indirect jump
502 instruction into a direct jump. */
504 combine_instructions (f, nregs)
505 rtx f;
506 unsigned int nregs;
508 rtx insn, next;
509 #ifdef HAVE_cc0
510 rtx prev;
511 #endif
512 int i;
513 rtx links, nextlinks;
515 int new_direct_jump_p = 0;
517 combine_attempts = 0;
518 combine_merges = 0;
519 combine_extras = 0;
520 combine_successes = 0;
522 combine_max_regno = nregs;
524 reg_nonzero_bits = ((unsigned HOST_WIDE_INT *)
525 xcalloc (nregs, sizeof (unsigned HOST_WIDE_INT)));
526 reg_sign_bit_copies
527 = (unsigned char *) xcalloc (nregs, sizeof (unsigned char));
529 reg_last_death = (rtx *) xmalloc (nregs * sizeof (rtx));
530 reg_last_set = (rtx *) xmalloc (nregs * sizeof (rtx));
531 reg_last_set_value = (rtx *) xmalloc (nregs * sizeof (rtx));
532 reg_last_set_table_tick = (int *) xmalloc (nregs * sizeof (int));
533 reg_last_set_label = (int *) xmalloc (nregs * sizeof (int));
534 reg_last_set_invalid = (char *) xmalloc (nregs * sizeof (char));
535 reg_last_set_mode
536 = (enum machine_mode *) xmalloc (nregs * sizeof (enum machine_mode));
537 reg_last_set_nonzero_bits
538 = (unsigned HOST_WIDE_INT *) xmalloc (nregs * sizeof (HOST_WIDE_INT));
539 reg_last_set_sign_bit_copies
540 = (char *) xmalloc (nregs * sizeof (char));
542 init_reg_last_arrays ();
544 init_recog_no_volatile ();
546 /* Compute maximum uid value so uid_cuid can be allocated. */
548 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
549 if (INSN_UID (insn) > i)
550 i = INSN_UID (insn);
552 uid_cuid = (int *) xmalloc ((i + 1) * sizeof (int));
553 max_uid_cuid = i;
555 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
557 /* Don't use reg_nonzero_bits when computing it. This can cause problems
558 when, for example, we have j <<= 1 in a loop. */
560 nonzero_sign_valid = 0;
562 /* Compute the mapping from uids to cuids.
563 Cuids are numbers assigned to insns, like uids,
564 except that cuids increase monotonically through the code.
566 Scan all SETs and see if we can deduce anything about what
567 bits are known to be zero for some registers and how many copies
568 of the sign bit are known to exist for those registers.
570 Also set any known values so that we can use it while searching
571 for what bits are known to be set. */
573 label_tick = 1;
575 /* We need to initialize it here, because record_dead_and_set_regs may call
576 get_last_value. */
577 subst_prev_insn = NULL_RTX;
579 setup_incoming_promotions ();
581 refresh_blocks = sbitmap_alloc (n_basic_blocks);
582 sbitmap_zero (refresh_blocks);
583 need_refresh = 0;
585 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
587 uid_cuid[INSN_UID (insn)] = ++i;
588 subst_low_cuid = i;
589 subst_insn = insn;
591 if (INSN_P (insn))
593 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
594 NULL);
595 record_dead_and_set_regs (insn);
597 #ifdef AUTO_INC_DEC
598 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
599 if (REG_NOTE_KIND (links) == REG_INC)
600 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
601 NULL);
602 #endif
605 if (GET_CODE (insn) == CODE_LABEL)
606 label_tick++;
609 nonzero_sign_valid = 1;
611 /* Now scan all the insns in forward order. */
613 this_basic_block = -1;
614 label_tick = 1;
615 last_call_cuid = 0;
616 mem_last_set = 0;
617 init_reg_last_arrays ();
618 setup_incoming_promotions ();
620 for (insn = f; insn; insn = next ? next : NEXT_INSN (insn))
622 next = 0;
624 /* If INSN starts a new basic block, update our basic block number. */
625 if (this_basic_block + 1 < n_basic_blocks
626 && BLOCK_HEAD (this_basic_block + 1) == insn)
627 this_basic_block++;
629 if (GET_CODE (insn) == CODE_LABEL)
630 label_tick++;
632 else if (INSN_P (insn))
634 /* See if we know about function return values before this
635 insn based upon SUBREG flags. */
636 check_promoted_subreg (insn, PATTERN (insn));
638 /* Try this insn with each insn it links back to. */
640 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
641 if ((next = try_combine (insn, XEXP (links, 0),
642 NULL_RTX, &new_direct_jump_p)) != 0)
643 goto retry;
645 /* Try each sequence of three linked insns ending with this one. */
647 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
649 rtx link = XEXP (links, 0);
651 /* If the linked insn has been replaced by a note, then there
652 is no point in pursuing this chain any further. */
653 if (GET_CODE (link) == NOTE)
654 continue;
656 for (nextlinks = LOG_LINKS (link);
657 nextlinks;
658 nextlinks = XEXP (nextlinks, 1))
659 if ((next = try_combine (insn, link,
660 XEXP (nextlinks, 0),
661 &new_direct_jump_p)) != 0)
662 goto retry;
665 #ifdef HAVE_cc0
666 /* Try to combine a jump insn that uses CC0
667 with a preceding insn that sets CC0, and maybe with its
668 logical predecessor as well.
669 This is how we make decrement-and-branch insns.
670 We need this special code because data flow connections
671 via CC0 do not get entered in LOG_LINKS. */
673 if (GET_CODE (insn) == JUMP_INSN
674 && (prev = prev_nonnote_insn (insn)) != 0
675 && GET_CODE (prev) == INSN
676 && sets_cc0_p (PATTERN (prev)))
678 if ((next = try_combine (insn, prev,
679 NULL_RTX, &new_direct_jump_p)) != 0)
680 goto retry;
682 for (nextlinks = LOG_LINKS (prev); nextlinks;
683 nextlinks = XEXP (nextlinks, 1))
684 if ((next = try_combine (insn, prev,
685 XEXP (nextlinks, 0),
686 &new_direct_jump_p)) != 0)
687 goto retry;
690 /* Do the same for an insn that explicitly references CC0. */
691 if (GET_CODE (insn) == INSN
692 && (prev = prev_nonnote_insn (insn)) != 0
693 && GET_CODE (prev) == INSN
694 && sets_cc0_p (PATTERN (prev))
695 && GET_CODE (PATTERN (insn)) == SET
696 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
698 if ((next = try_combine (insn, prev,
699 NULL_RTX, &new_direct_jump_p)) != 0)
700 goto retry;
702 for (nextlinks = LOG_LINKS (prev); nextlinks;
703 nextlinks = XEXP (nextlinks, 1))
704 if ((next = try_combine (insn, prev,
705 XEXP (nextlinks, 0),
706 &new_direct_jump_p)) != 0)
707 goto retry;
710 /* Finally, see if any of the insns that this insn links to
711 explicitly references CC0. If so, try this insn, that insn,
712 and its predecessor if it sets CC0. */
713 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
714 if (GET_CODE (XEXP (links, 0)) == INSN
715 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
716 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
717 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
718 && GET_CODE (prev) == INSN
719 && sets_cc0_p (PATTERN (prev))
720 && (next = try_combine (insn, XEXP (links, 0),
721 prev, &new_direct_jump_p)) != 0)
722 goto retry;
723 #endif
725 /* Try combining an insn with two different insns whose results it
726 uses. */
727 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
728 for (nextlinks = XEXP (links, 1); nextlinks;
729 nextlinks = XEXP (nextlinks, 1))
730 if ((next = try_combine (insn, XEXP (links, 0),
731 XEXP (nextlinks, 0),
732 &new_direct_jump_p)) != 0)
733 goto retry;
735 if (GET_CODE (insn) != NOTE)
736 record_dead_and_set_regs (insn);
738 retry:
742 clear_bb_flags ();
744 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, this_basic_block,
745 BASIC_BLOCK (this_basic_block)->flags |= BB_DIRTY);
746 new_direct_jump_p |= purge_all_dead_edges (0);
747 delete_noop_moves (f);
749 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
750 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
751 | PROP_KILL_DEAD_CODE);
753 /* Clean up. */
754 sbitmap_free (refresh_blocks);
755 free (reg_nonzero_bits);
756 free (reg_sign_bit_copies);
757 free (reg_last_death);
758 free (reg_last_set);
759 free (reg_last_set_value);
760 free (reg_last_set_table_tick);
761 free (reg_last_set_label);
762 free (reg_last_set_invalid);
763 free (reg_last_set_mode);
764 free (reg_last_set_nonzero_bits);
765 free (reg_last_set_sign_bit_copies);
766 free (uid_cuid);
769 struct undo *undo, *next;
770 for (undo = undobuf.frees; undo; undo = next)
772 next = undo->next;
773 free (undo);
775 undobuf.frees = 0;
778 total_attempts += combine_attempts;
779 total_merges += combine_merges;
780 total_extras += combine_extras;
781 total_successes += combine_successes;
783 nonzero_sign_valid = 0;
785 /* Make recognizer allow volatile MEMs again. */
786 init_recog ();
788 return new_direct_jump_p;
791 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
793 static void
794 init_reg_last_arrays ()
796 unsigned int nregs = combine_max_regno;
798 memset ((char *) reg_last_death, 0, nregs * sizeof (rtx));
799 memset ((char *) reg_last_set, 0, nregs * sizeof (rtx));
800 memset ((char *) reg_last_set_value, 0, nregs * sizeof (rtx));
801 memset ((char *) reg_last_set_table_tick, 0, nregs * sizeof (int));
802 memset ((char *) reg_last_set_label, 0, nregs * sizeof (int));
803 memset (reg_last_set_invalid, 0, nregs * sizeof (char));
804 memset ((char *) reg_last_set_mode, 0, nregs * sizeof (enum machine_mode));
805 memset ((char *) reg_last_set_nonzero_bits, 0, nregs * sizeof (HOST_WIDE_INT));
806 memset (reg_last_set_sign_bit_copies, 0, nregs * sizeof (char));
809 /* Set up any promoted values for incoming argument registers. */
811 static void
812 setup_incoming_promotions ()
814 #ifdef PROMOTE_FUNCTION_ARGS
815 unsigned int regno;
816 rtx reg;
817 enum machine_mode mode;
818 int unsignedp;
819 rtx first = get_insns ();
821 #ifndef OUTGOING_REGNO
822 #define OUTGOING_REGNO(N) N
823 #endif
824 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
825 /* Check whether this register can hold an incoming pointer
826 argument. FUNCTION_ARG_REGNO_P tests outgoing register
827 numbers, so translate if necessary due to register windows. */
828 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
829 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
831 record_value_for_reg
832 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
833 : SIGN_EXTEND),
834 GET_MODE (reg),
835 gen_rtx_CLOBBER (mode, const0_rtx)));
837 #endif
840 /* Called via note_stores. If X is a pseudo that is narrower than
841 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
843 If we are setting only a portion of X and we can't figure out what
844 portion, assume all bits will be used since we don't know what will
845 be happening.
847 Similarly, set how many bits of X are known to be copies of the sign bit
848 at all locations in the function. This is the smallest number implied
849 by any set of X. */
851 static void
852 set_nonzero_bits_and_sign_copies (x, set, data)
853 rtx x;
854 rtx set;
855 void *data ATTRIBUTE_UNUSED;
857 unsigned int num;
859 if (GET_CODE (x) == REG
860 && REGNO (x) >= FIRST_PSEUDO_REGISTER
861 /* If this register is undefined at the start of the file, we can't
862 say what its contents were. */
863 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, REGNO (x))
864 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
866 if (set == 0 || GET_CODE (set) == CLOBBER)
868 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
869 reg_sign_bit_copies[REGNO (x)] = 1;
870 return;
873 /* If this is a complex assignment, see if we can convert it into a
874 simple assignment. */
875 set = expand_field_assignment (set);
877 /* If this is a simple assignment, or we have a paradoxical SUBREG,
878 set what we know about X. */
880 if (SET_DEST (set) == x
881 || (GET_CODE (SET_DEST (set)) == SUBREG
882 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
883 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
884 && SUBREG_REG (SET_DEST (set)) == x))
886 rtx src = SET_SRC (set);
888 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
889 /* If X is narrower than a word and SRC is a non-negative
890 constant that would appear negative in the mode of X,
891 sign-extend it for use in reg_nonzero_bits because some
892 machines (maybe most) will actually do the sign-extension
893 and this is the conservative approach.
895 ??? For 2.5, try to tighten up the MD files in this regard
896 instead of this kludge. */
898 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
899 && GET_CODE (src) == CONST_INT
900 && INTVAL (src) > 0
901 && 0 != (INTVAL (src)
902 & ((HOST_WIDE_INT) 1
903 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
904 src = GEN_INT (INTVAL (src)
905 | ((HOST_WIDE_INT) (-1)
906 << GET_MODE_BITSIZE (GET_MODE (x))));
907 #endif
909 /* Don't call nonzero_bits if it cannot change anything. */
910 if (reg_nonzero_bits[REGNO (x)] != ~(unsigned HOST_WIDE_INT) 0)
911 reg_nonzero_bits[REGNO (x)]
912 |= nonzero_bits (src, nonzero_bits_mode);
913 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
914 if (reg_sign_bit_copies[REGNO (x)] == 0
915 || reg_sign_bit_copies[REGNO (x)] > num)
916 reg_sign_bit_copies[REGNO (x)] = num;
918 else
920 reg_nonzero_bits[REGNO (x)] = GET_MODE_MASK (GET_MODE (x));
921 reg_sign_bit_copies[REGNO (x)] = 1;
926 /* See if INSN can be combined into I3. PRED and SUCC are optionally
927 insns that were previously combined into I3 or that will be combined
928 into the merger of INSN and I3.
930 Return 0 if the combination is not allowed for any reason.
932 If the combination is allowed, *PDEST will be set to the single
933 destination of INSN and *PSRC to the single source, and this function
934 will return 1. */
936 static int
937 can_combine_p (insn, i3, pred, succ, pdest, psrc)
938 rtx insn;
939 rtx i3;
940 rtx pred ATTRIBUTE_UNUSED;
941 rtx succ;
942 rtx *pdest, *psrc;
944 int i;
945 rtx set = 0, src, dest;
946 rtx p;
947 #ifdef AUTO_INC_DEC
948 rtx link;
949 #endif
950 int all_adjacent = (succ ? (next_active_insn (insn) == succ
951 && next_active_insn (succ) == i3)
952 : next_active_insn (insn) == i3);
954 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
955 or a PARALLEL consisting of such a SET and CLOBBERs.
957 If INSN has CLOBBER parallel parts, ignore them for our processing.
958 By definition, these happen during the execution of the insn. When it
959 is merged with another insn, all bets are off. If they are, in fact,
960 needed and aren't also supplied in I3, they may be added by
961 recog_for_combine. Otherwise, it won't match.
963 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
964 note.
966 Get the source and destination of INSN. If more than one, can't
967 combine. */
969 if (GET_CODE (PATTERN (insn)) == SET)
970 set = PATTERN (insn);
971 else if (GET_CODE (PATTERN (insn)) == PARALLEL
972 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
974 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
976 rtx elt = XVECEXP (PATTERN (insn), 0, i);
978 switch (GET_CODE (elt))
980 /* This is important to combine floating point insns
981 for the SH4 port. */
982 case USE:
983 /* Combining an isolated USE doesn't make sense.
984 We depend here on combinable_i3pat to reject them. */
985 /* The code below this loop only verifies that the inputs of
986 the SET in INSN do not change. We call reg_set_between_p
987 to verify that the REG in the USE does not change between
988 I3 and INSN.
989 If the USE in INSN was for a pseudo register, the matching
990 insn pattern will likely match any register; combining this
991 with any other USE would only be safe if we knew that the
992 used registers have identical values, or if there was
993 something to tell them apart, e.g. different modes. For
994 now, we forgo such complicated tests and simply disallow
995 combining of USES of pseudo registers with any other USE. */
996 if (GET_CODE (XEXP (elt, 0)) == REG
997 && GET_CODE (PATTERN (i3)) == PARALLEL)
999 rtx i3pat = PATTERN (i3);
1000 int i = XVECLEN (i3pat, 0) - 1;
1001 unsigned int regno = REGNO (XEXP (elt, 0));
1005 rtx i3elt = XVECEXP (i3pat, 0, i);
1007 if (GET_CODE (i3elt) == USE
1008 && GET_CODE (XEXP (i3elt, 0)) == REG
1009 && (REGNO (XEXP (i3elt, 0)) == regno
1010 ? reg_set_between_p (XEXP (elt, 0),
1011 PREV_INSN (insn), i3)
1012 : regno >= FIRST_PSEUDO_REGISTER))
1013 return 0;
1015 while (--i >= 0);
1017 break;
1019 /* We can ignore CLOBBERs. */
1020 case CLOBBER:
1021 break;
1023 case SET:
1024 /* Ignore SETs whose result isn't used but not those that
1025 have side-effects. */
1026 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1027 && ! side_effects_p (elt))
1028 break;
1030 /* If we have already found a SET, this is a second one and
1031 so we cannot combine with this insn. */
1032 if (set)
1033 return 0;
1035 set = elt;
1036 break;
1038 default:
1039 /* Anything else means we can't combine. */
1040 return 0;
1044 if (set == 0
1045 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1046 so don't do anything with it. */
1047 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1048 return 0;
1050 else
1051 return 0;
1053 if (set == 0)
1054 return 0;
1056 set = expand_field_assignment (set);
1057 src = SET_SRC (set), dest = SET_DEST (set);
1059 /* Don't eliminate a store in the stack pointer. */
1060 if (dest == stack_pointer_rtx
1061 /* If we couldn't eliminate a field assignment, we can't combine. */
1062 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == STRICT_LOW_PART
1063 /* Don't combine with an insn that sets a register to itself if it has
1064 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1065 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1066 /* Can't merge an ASM_OPERANDS. */
1067 || GET_CODE (src) == ASM_OPERANDS
1068 /* Can't merge a function call. */
1069 || GET_CODE (src) == CALL
1070 /* Don't eliminate a function call argument. */
1071 || (GET_CODE (i3) == CALL_INSN
1072 && (find_reg_fusage (i3, USE, dest)
1073 || (GET_CODE (dest) == REG
1074 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1075 && global_regs[REGNO (dest)])))
1076 /* Don't substitute into an incremented register. */
1077 || FIND_REG_INC_NOTE (i3, dest)
1078 || (succ && FIND_REG_INC_NOTE (succ, dest))
1079 #if 0
1080 /* Don't combine the end of a libcall into anything. */
1081 /* ??? This gives worse code, and appears to be unnecessary, since no
1082 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1083 use REG_RETVAL notes for noconflict blocks, but other code here
1084 makes sure that those insns don't disappear. */
1085 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1086 #endif
1087 /* Make sure that DEST is not used after SUCC but before I3. */
1088 || (succ && ! all_adjacent
1089 && reg_used_between_p (dest, succ, i3))
1090 /* Make sure that the value that is to be substituted for the register
1091 does not use any registers whose values alter in between. However,
1092 If the insns are adjacent, a use can't cross a set even though we
1093 think it might (this can happen for a sequence of insns each setting
1094 the same destination; reg_last_set of that register might point to
1095 a NOTE). If INSN has a REG_EQUIV note, the register is always
1096 equivalent to the memory so the substitution is valid even if there
1097 are intervening stores. Also, don't move a volatile asm or
1098 UNSPEC_VOLATILE across any other insns. */
1099 || (! all_adjacent
1100 && (((GET_CODE (src) != MEM
1101 || ! find_reg_note (insn, REG_EQUIV, src))
1102 && use_crosses_set_p (src, INSN_CUID (insn)))
1103 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1104 || GET_CODE (src) == UNSPEC_VOLATILE))
1105 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1106 better register allocation by not doing the combine. */
1107 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1108 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1109 /* Don't combine across a CALL_INSN, because that would possibly
1110 change whether the life span of some REGs crosses calls or not,
1111 and it is a pain to update that information.
1112 Exception: if source is a constant, moving it later can't hurt.
1113 Accept that special case, because it helps -fforce-addr a lot. */
1114 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1115 return 0;
1117 /* DEST must either be a REG or CC0. */
1118 if (GET_CODE (dest) == REG)
1120 /* If register alignment is being enforced for multi-word items in all
1121 cases except for parameters, it is possible to have a register copy
1122 insn referencing a hard register that is not allowed to contain the
1123 mode being copied and which would not be valid as an operand of most
1124 insns. Eliminate this problem by not combining with such an insn.
1126 Also, on some machines we don't want to extend the life of a hard
1127 register. */
1129 if (GET_CODE (src) == REG
1130 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1131 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1132 /* Don't extend the life of a hard register unless it is
1133 user variable (if we have few registers) or it can't
1134 fit into the desired register (meaning something special
1135 is going on).
1136 Also avoid substituting a return register into I3, because
1137 reload can't handle a conflict with constraints of other
1138 inputs. */
1139 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1140 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1141 return 0;
1143 else if (GET_CODE (dest) != CC0)
1144 return 0;
1146 /* Don't substitute for a register intended as a clobberable operand.
1147 Similarly, don't substitute an expression containing a register that
1148 will be clobbered in I3. */
1149 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1150 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1151 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER
1152 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0),
1153 src)
1154 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3), 0, i), 0), dest)))
1155 return 0;
1157 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1158 or not), reject, unless nothing volatile comes between it and I3 */
1160 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1162 /* Make sure succ doesn't contain a volatile reference. */
1163 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1164 return 0;
1166 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1167 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1168 return 0;
1171 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1172 to be an explicit register variable, and was chosen for a reason. */
1174 if (GET_CODE (src) == ASM_OPERANDS
1175 && GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1176 return 0;
1178 /* If there are any volatile insns between INSN and I3, reject, because
1179 they might affect machine state. */
1181 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1182 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1183 return 0;
1185 /* If INSN or I2 contains an autoincrement or autodecrement,
1186 make sure that register is not used between there and I3,
1187 and not already used in I3 either.
1188 Also insist that I3 not be a jump; if it were one
1189 and the incremented register were spilled, we would lose. */
1191 #ifdef AUTO_INC_DEC
1192 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1193 if (REG_NOTE_KIND (link) == REG_INC
1194 && (GET_CODE (i3) == JUMP_INSN
1195 || reg_used_between_p (XEXP (link, 0), insn, i3)
1196 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1197 return 0;
1198 #endif
1200 #ifdef HAVE_cc0
1201 /* Don't combine an insn that follows a CC0-setting insn.
1202 An insn that uses CC0 must not be separated from the one that sets it.
1203 We do, however, allow I2 to follow a CC0-setting insn if that insn
1204 is passed as I1; in that case it will be deleted also.
1205 We also allow combining in this case if all the insns are adjacent
1206 because that would leave the two CC0 insns adjacent as well.
1207 It would be more logical to test whether CC0 occurs inside I1 or I2,
1208 but that would be much slower, and this ought to be equivalent. */
1210 p = prev_nonnote_insn (insn);
1211 if (p && p != pred && GET_CODE (p) == INSN && sets_cc0_p (PATTERN (p))
1212 && ! all_adjacent)
1213 return 0;
1214 #endif
1216 /* If we get here, we have passed all the tests and the combination is
1217 to be allowed. */
1219 *pdest = dest;
1220 *psrc = src;
1222 return 1;
1225 /* Check if PAT is an insn - or a part of it - used to set up an
1226 argument for a function in a hard register. */
1228 static int
1229 sets_function_arg_p (pat)
1230 rtx pat;
1232 int i;
1233 rtx inner_dest;
1235 switch (GET_CODE (pat))
1237 case INSN:
1238 return sets_function_arg_p (PATTERN (pat));
1240 case PARALLEL:
1241 for (i = XVECLEN (pat, 0); --i >= 0;)
1242 if (sets_function_arg_p (XVECEXP (pat, 0, i)))
1243 return 1;
1245 break;
1247 case SET:
1248 inner_dest = SET_DEST (pat);
1249 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1250 || GET_CODE (inner_dest) == SUBREG
1251 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1252 inner_dest = XEXP (inner_dest, 0);
1254 return (GET_CODE (inner_dest) == REG
1255 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1256 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest)));
1258 default:
1259 break;
1262 return 0;
1265 /* LOC is the location within I3 that contains its pattern or the component
1266 of a PARALLEL of the pattern. We validate that it is valid for combining.
1268 One problem is if I3 modifies its output, as opposed to replacing it
1269 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1270 so would produce an insn that is not equivalent to the original insns.
1272 Consider:
1274 (set (reg:DI 101) (reg:DI 100))
1275 (set (subreg:SI (reg:DI 101) 0) <foo>)
1277 This is NOT equivalent to:
1279 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1280 (set (reg:DI 101) (reg:DI 100))])
1282 Not only does this modify 100 (in which case it might still be valid
1283 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1285 We can also run into a problem if I2 sets a register that I1
1286 uses and I1 gets directly substituted into I3 (not via I2). In that
1287 case, we would be getting the wrong value of I2DEST into I3, so we
1288 must reject the combination. This case occurs when I2 and I1 both
1289 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1290 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1291 of a SET must prevent combination from occurring.
1293 Before doing the above check, we first try to expand a field assignment
1294 into a set of logical operations.
1296 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1297 we place a register that is both set and used within I3. If more than one
1298 such register is detected, we fail.
1300 Return 1 if the combination is valid, zero otherwise. */
1302 static int
1303 combinable_i3pat (i3, loc, i2dest, i1dest, i1_not_in_src, pi3dest_killed)
1304 rtx i3;
1305 rtx *loc;
1306 rtx i2dest;
1307 rtx i1dest;
1308 int i1_not_in_src;
1309 rtx *pi3dest_killed;
1311 rtx x = *loc;
1313 if (GET_CODE (x) == SET)
1315 rtx set = expand_field_assignment (x);
1316 rtx dest = SET_DEST (set);
1317 rtx src = SET_SRC (set);
1318 rtx inner_dest = dest;
1320 #if 0
1321 rtx inner_src = src;
1322 #endif
1324 SUBST (*loc, set);
1326 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1327 || GET_CODE (inner_dest) == SUBREG
1328 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1329 inner_dest = XEXP (inner_dest, 0);
1331 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1332 was added. */
1333 #if 0
1334 while (GET_CODE (inner_src) == STRICT_LOW_PART
1335 || GET_CODE (inner_src) == SUBREG
1336 || GET_CODE (inner_src) == ZERO_EXTRACT)
1337 inner_src = XEXP (inner_src, 0);
1339 /* If it is better that two different modes keep two different pseudos,
1340 avoid combining them. This avoids producing the following pattern
1341 on a 386:
1342 (set (subreg:SI (reg/v:QI 21) 0)
1343 (lshiftrt:SI (reg/v:SI 20)
1344 (const_int 24)))
1345 If that were made, reload could not handle the pair of
1346 reg 20/21, since it would try to get any GENERAL_REGS
1347 but some of them don't handle QImode. */
1349 if (rtx_equal_p (inner_src, i2dest)
1350 && GET_CODE (inner_dest) == REG
1351 && ! MODES_TIEABLE_P (GET_MODE (i2dest), GET_MODE (inner_dest)))
1352 return 0;
1353 #endif
1355 /* Check for the case where I3 modifies its output, as
1356 discussed above. */
1357 if ((inner_dest != dest
1358 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1359 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1361 /* This is the same test done in can_combine_p except we can't test
1362 all_adjacent; we don't have to, since this instruction will stay
1363 in place, thus we are not considering increasing the lifetime of
1364 INNER_DEST.
1366 Also, if this insn sets a function argument, combining it with
1367 something that might need a spill could clobber a previous
1368 function argument; the all_adjacent test in can_combine_p also
1369 checks this; here, we do a more specific test for this case. */
1371 || (GET_CODE (inner_dest) == REG
1372 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1373 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1374 GET_MODE (inner_dest))))
1375 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1376 return 0;
1378 /* If DEST is used in I3, it is being killed in this insn,
1379 so record that for later.
1380 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1381 STACK_POINTER_REGNUM, since these are always considered to be
1382 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1383 if (pi3dest_killed && GET_CODE (dest) == REG
1384 && reg_referenced_p (dest, PATTERN (i3))
1385 && REGNO (dest) != FRAME_POINTER_REGNUM
1386 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1387 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1388 #endif
1389 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1390 && (REGNO (dest) != ARG_POINTER_REGNUM
1391 || ! fixed_regs [REGNO (dest)])
1392 #endif
1393 && REGNO (dest) != STACK_POINTER_REGNUM)
1395 if (*pi3dest_killed)
1396 return 0;
1398 *pi3dest_killed = dest;
1402 else if (GET_CODE (x) == PARALLEL)
1404 int i;
1406 for (i = 0; i < XVECLEN (x, 0); i++)
1407 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1408 i1_not_in_src, pi3dest_killed))
1409 return 0;
1412 return 1;
1415 /* Return 1 if X is an arithmetic expression that contains a multiplication
1416 and division. We don't count multiplications by powers of two here. */
1418 static int
1419 contains_muldiv (x)
1420 rtx x;
1422 switch (GET_CODE (x))
1424 case MOD: case DIV: case UMOD: case UDIV:
1425 return 1;
1427 case MULT:
1428 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1429 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1430 default:
1431 switch (GET_RTX_CLASS (GET_CODE (x)))
1433 case 'c': case '<': case '2':
1434 return contains_muldiv (XEXP (x, 0))
1435 || contains_muldiv (XEXP (x, 1));
1437 case '1':
1438 return contains_muldiv (XEXP (x, 0));
1440 default:
1441 return 0;
1446 /* Determine whether INSN can be used in a combination. Return nonzero if
1447 not. This is used in try_combine to detect early some cases where we
1448 can't perform combinations. */
1450 static int
1451 cant_combine_insn_p (insn)
1452 rtx insn;
1454 rtx set;
1455 rtx src, dest;
1457 /* If this isn't really an insn, we can't do anything.
1458 This can occur when flow deletes an insn that it has merged into an
1459 auto-increment address. */
1460 if (! INSN_P (insn))
1461 return 1;
1463 /* Never combine loads and stores involving hard regs. The register
1464 allocator can usually handle such reg-reg moves by tying. If we allow
1465 the combiner to make substitutions of hard regs, we risk aborting in
1466 reload on machines that have SMALL_REGISTER_CLASSES.
1467 As an exception, we allow combinations involving fixed regs; these are
1468 not available to the register allocator so there's no risk involved. */
1470 set = single_set (insn);
1471 if (! set)
1472 return 0;
1473 src = SET_SRC (set);
1474 dest = SET_DEST (set);
1475 if (GET_CODE (src) == SUBREG)
1476 src = SUBREG_REG (src);
1477 if (GET_CODE (dest) == SUBREG)
1478 dest = SUBREG_REG (dest);
1479 if (REG_P (src) && REG_P (dest)
1480 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1481 && ! fixed_regs[REGNO (src)])
1482 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1483 && ! fixed_regs[REGNO (dest)])))
1484 return 1;
1486 return 0;
1489 /* Try to combine the insns I1 and I2 into I3.
1490 Here I1 and I2 appear earlier than I3.
1491 I1 can be zero; then we combine just I2 into I3.
1493 If we are combining three insns and the resulting insn is not recognized,
1494 try splitting it into two insns. If that happens, I2 and I3 are retained
1495 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1496 are pseudo-deleted.
1498 Return 0 if the combination does not work. Then nothing is changed.
1499 If we did the combination, return the insn at which combine should
1500 resume scanning.
1502 Set NEW_DIRECT_JUMP_P to a non-zero value if try_combine creates a
1503 new direct jump instruction. */
1505 static rtx
1506 try_combine (i3, i2, i1, new_direct_jump_p)
1507 rtx i3, i2, i1;
1508 int *new_direct_jump_p;
1510 /* New patterns for I3 and I2, respectively. */
1511 rtx newpat, newi2pat = 0;
1512 int substed_i2 = 0, substed_i1 = 0;
1513 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1514 int added_sets_1, added_sets_2;
1515 /* Total number of SETs to put into I3. */
1516 int total_sets;
1517 /* Nonzero is I2's body now appears in I3. */
1518 int i2_is_used;
1519 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1520 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1521 /* Contains I3 if the destination of I3 is used in its source, which means
1522 that the old life of I3 is being killed. If that usage is placed into
1523 I2 and not in I3, a REG_DEAD note must be made. */
1524 rtx i3dest_killed = 0;
1525 /* SET_DEST and SET_SRC of I2 and I1. */
1526 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1527 /* PATTERN (I2), or a copy of it in certain cases. */
1528 rtx i2pat;
1529 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1530 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1531 int i1_feeds_i3 = 0;
1532 /* Notes that must be added to REG_NOTES in I3 and I2. */
1533 rtx new_i3_notes, new_i2_notes;
1534 /* Notes that we substituted I3 into I2 instead of the normal case. */
1535 int i3_subst_into_i2 = 0;
1536 /* Notes that I1, I2 or I3 is a MULT operation. */
1537 int have_mult = 0;
1539 int maxreg;
1540 rtx temp;
1541 rtx link;
1542 int i;
1544 /* Exit early if one of the insns involved can't be used for
1545 combinations. */
1546 if (cant_combine_insn_p (i3)
1547 || cant_combine_insn_p (i2)
1548 || (i1 && cant_combine_insn_p (i1))
1549 /* We also can't do anything if I3 has a
1550 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1551 libcall. */
1552 #if 0
1553 /* ??? This gives worse code, and appears to be unnecessary, since no
1554 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1555 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1556 #endif
1558 return 0;
1560 combine_attempts++;
1561 undobuf.other_insn = 0;
1563 /* Reset the hard register usage information. */
1564 CLEAR_HARD_REG_SET (newpat_used_regs);
1566 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1567 code below, set I1 to be the earlier of the two insns. */
1568 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1569 temp = i1, i1 = i2, i2 = temp;
1571 added_links_insn = 0;
1573 /* First check for one important special-case that the code below will
1574 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1575 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1576 we may be able to replace that destination with the destination of I3.
1577 This occurs in the common code where we compute both a quotient and
1578 remainder into a structure, in which case we want to do the computation
1579 directly into the structure to avoid register-register copies.
1581 Note that this case handles both multiple sets in I2 and also
1582 cases where I2 has a number of CLOBBER or PARALLELs.
1584 We make very conservative checks below and only try to handle the
1585 most common cases of this. For example, we only handle the case
1586 where I2 and I3 are adjacent to avoid making difficult register
1587 usage tests. */
1589 if (i1 == 0 && GET_CODE (i3) == INSN && GET_CODE (PATTERN (i3)) == SET
1590 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1591 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1592 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1593 && GET_CODE (PATTERN (i2)) == PARALLEL
1594 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1595 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1596 below would need to check what is inside (and reg_overlap_mentioned_p
1597 doesn't support those codes anyway). Don't allow those destinations;
1598 the resulting insn isn't likely to be recognized anyway. */
1599 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1600 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1601 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1602 SET_DEST (PATTERN (i3)))
1603 && next_real_insn (i2) == i3)
1605 rtx p2 = PATTERN (i2);
1607 /* Make sure that the destination of I3,
1608 which we are going to substitute into one output of I2,
1609 is not used within another output of I2. We must avoid making this:
1610 (parallel [(set (mem (reg 69)) ...)
1611 (set (reg 69) ...)])
1612 which is not well-defined as to order of actions.
1613 (Besides, reload can't handle output reloads for this.)
1615 The problem can also happen if the dest of I3 is a memory ref,
1616 if another dest in I2 is an indirect memory ref. */
1617 for (i = 0; i < XVECLEN (p2, 0); i++)
1618 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1619 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1620 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1621 SET_DEST (XVECEXP (p2, 0, i))))
1622 break;
1624 if (i == XVECLEN (p2, 0))
1625 for (i = 0; i < XVECLEN (p2, 0); i++)
1626 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1627 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1628 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1630 combine_merges++;
1632 subst_insn = i3;
1633 subst_low_cuid = INSN_CUID (i2);
1635 added_sets_2 = added_sets_1 = 0;
1636 i2dest = SET_SRC (PATTERN (i3));
1638 /* Replace the dest in I2 with our dest and make the resulting
1639 insn the new pattern for I3. Then skip to where we
1640 validate the pattern. Everything was set up above. */
1641 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1642 SET_DEST (PATTERN (i3)));
1644 newpat = p2;
1645 i3_subst_into_i2 = 1;
1646 goto validate_replacement;
1650 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1651 one of those words to another constant, merge them by making a new
1652 constant. */
1653 if (i1 == 0
1654 && (temp = single_set (i2)) != 0
1655 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1656 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1657 && GET_CODE (SET_DEST (temp)) == REG
1658 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1659 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1660 && GET_CODE (PATTERN (i3)) == SET
1661 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1662 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1663 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1664 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1665 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1667 HOST_WIDE_INT lo, hi;
1669 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1670 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1671 else
1673 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1674 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1677 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1679 /* We don't handle the case of the target word being wider
1680 than a host wide int. */
1681 if (HOST_BITS_PER_WIDE_INT < BITS_PER_WORD)
1682 abort ();
1684 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1685 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1686 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1688 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1689 hi = INTVAL (SET_SRC (PATTERN (i3)));
1690 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1692 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1693 >> (HOST_BITS_PER_WIDE_INT - 1));
1695 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1696 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1697 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1698 (INTVAL (SET_SRC (PATTERN (i3)))));
1699 if (hi == sign)
1700 hi = lo < 0 ? -1 : 0;
1702 else
1703 /* We don't handle the case of the higher word not fitting
1704 entirely in either hi or lo. */
1705 abort ();
1707 combine_merges++;
1708 subst_insn = i3;
1709 subst_low_cuid = INSN_CUID (i2);
1710 added_sets_2 = added_sets_1 = 0;
1711 i2dest = SET_DEST (temp);
1713 SUBST (SET_SRC (temp),
1714 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1716 newpat = PATTERN (i2);
1717 goto validate_replacement;
1720 #ifndef HAVE_cc0
1721 /* If we have no I1 and I2 looks like:
1722 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1723 (set Y OP)])
1724 make up a dummy I1 that is
1725 (set Y OP)
1726 and change I2 to be
1727 (set (reg:CC X) (compare:CC Y (const_int 0)))
1729 (We can ignore any trailing CLOBBERs.)
1731 This undoes a previous combination and allows us to match a branch-and-
1732 decrement insn. */
1734 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1735 && XVECLEN (PATTERN (i2), 0) >= 2
1736 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1737 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1738 == MODE_CC)
1739 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1740 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1741 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1742 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 1))) == REG
1743 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1744 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1746 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1747 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1748 break;
1750 if (i == 1)
1752 /* We make I1 with the same INSN_UID as I2. This gives it
1753 the same INSN_CUID for value tracking. Our fake I1 will
1754 never appear in the insn stream so giving it the same INSN_UID
1755 as I2 will not cause a problem. */
1757 subst_prev_insn = i1
1758 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1759 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1760 NULL_RTX);
1762 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1763 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1764 SET_DEST (PATTERN (i1)));
1767 #endif
1769 /* Verify that I2 and I1 are valid for combining. */
1770 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1771 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1773 undo_all ();
1774 return 0;
1777 /* Record whether I2DEST is used in I2SRC and similarly for the other
1778 cases. Knowing this will help in register status updating below. */
1779 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1780 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1781 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1783 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1784 in I2SRC. */
1785 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1787 /* Ensure that I3's pattern can be the destination of combines. */
1788 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1789 i1 && i2dest_in_i1src && i1_feeds_i3,
1790 &i3dest_killed))
1792 undo_all ();
1793 return 0;
1796 /* See if any of the insns is a MULT operation. Unless one is, we will
1797 reject a combination that is, since it must be slower. Be conservative
1798 here. */
1799 if (GET_CODE (i2src) == MULT
1800 || (i1 != 0 && GET_CODE (i1src) == MULT)
1801 || (GET_CODE (PATTERN (i3)) == SET
1802 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1803 have_mult = 1;
1805 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1806 We used to do this EXCEPT in one case: I3 has a post-inc in an
1807 output operand. However, that exception can give rise to insns like
1808 mov r3,(r3)+
1809 which is a famous insn on the PDP-11 where the value of r3 used as the
1810 source was model-dependent. Avoid this sort of thing. */
1812 #if 0
1813 if (!(GET_CODE (PATTERN (i3)) == SET
1814 && GET_CODE (SET_SRC (PATTERN (i3))) == REG
1815 && GET_CODE (SET_DEST (PATTERN (i3))) == MEM
1816 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1817 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1818 /* It's not the exception. */
1819 #endif
1820 #ifdef AUTO_INC_DEC
1821 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1822 if (REG_NOTE_KIND (link) == REG_INC
1823 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1824 || (i1 != 0
1825 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1827 undo_all ();
1828 return 0;
1830 #endif
1832 /* See if the SETs in I1 or I2 need to be kept around in the merged
1833 instruction: whenever the value set there is still needed past I3.
1834 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1836 For the SET in I1, we have two cases: If I1 and I2 independently
1837 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1838 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1839 in I1 needs to be kept around unless I1DEST dies or is set in either
1840 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1841 I1DEST. If so, we know I1 feeds into I2. */
1843 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1845 added_sets_1
1846 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1847 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1849 /* If the set in I2 needs to be kept around, we must make a copy of
1850 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1851 PATTERN (I2), we are only substituting for the original I1DEST, not into
1852 an already-substituted copy. This also prevents making self-referential
1853 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1854 I2DEST. */
1856 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1857 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1858 : PATTERN (i2));
1860 if (added_sets_2)
1861 i2pat = copy_rtx (i2pat);
1863 combine_merges++;
1865 /* Substitute in the latest insn for the regs set by the earlier ones. */
1867 maxreg = max_reg_num ();
1869 subst_insn = i3;
1871 /* It is possible that the source of I2 or I1 may be performing an
1872 unneeded operation, such as a ZERO_EXTEND of something that is known
1873 to have the high part zero. Handle that case by letting subst look at
1874 the innermost one of them.
1876 Another way to do this would be to have a function that tries to
1877 simplify a single insn instead of merging two or more insns. We don't
1878 do this because of the potential of infinite loops and because
1879 of the potential extra memory required. However, doing it the way
1880 we are is a bit of a kludge and doesn't catch all cases.
1882 But only do this if -fexpensive-optimizations since it slows things down
1883 and doesn't usually win. */
1885 if (flag_expensive_optimizations)
1887 /* Pass pc_rtx so no substitutions are done, just simplifications.
1888 The cases that we are interested in here do not involve the few
1889 cases were is_replaced is checked. */
1890 if (i1)
1892 subst_low_cuid = INSN_CUID (i1);
1893 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1895 else
1897 subst_low_cuid = INSN_CUID (i2);
1898 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1902 #ifndef HAVE_cc0
1903 /* Many machines that don't use CC0 have insns that can both perform an
1904 arithmetic operation and set the condition code. These operations will
1905 be represented as a PARALLEL with the first element of the vector
1906 being a COMPARE of an arithmetic operation with the constant zero.
1907 The second element of the vector will set some pseudo to the result
1908 of the same arithmetic operation. If we simplify the COMPARE, we won't
1909 match such a pattern and so will generate an extra insn. Here we test
1910 for this case, where both the comparison and the operation result are
1911 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1912 I2SRC. Later we will make the PARALLEL that contains I2. */
1914 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1915 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1916 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1917 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1919 #ifdef EXTRA_CC_MODES
1920 rtx *cc_use;
1921 enum machine_mode compare_mode;
1922 #endif
1924 newpat = PATTERN (i3);
1925 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1927 i2_is_used = 1;
1929 #ifdef EXTRA_CC_MODES
1930 /* See if a COMPARE with the operand we substituted in should be done
1931 with the mode that is currently being used. If not, do the same
1932 processing we do in `subst' for a SET; namely, if the destination
1933 is used only once, try to replace it with a register of the proper
1934 mode and also replace the COMPARE. */
1935 if (undobuf.other_insn == 0
1936 && (cc_use = find_single_use (SET_DEST (newpat), i3,
1937 &undobuf.other_insn))
1938 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
1939 i2src, const0_rtx))
1940 != GET_MODE (SET_DEST (newpat))))
1942 unsigned int regno = REGNO (SET_DEST (newpat));
1943 rtx new_dest = gen_rtx_REG (compare_mode, regno);
1945 if (regno < FIRST_PSEUDO_REGISTER
1946 || (REG_N_SETS (regno) == 1 && ! added_sets_2
1947 && ! REG_USERVAR_P (SET_DEST (newpat))))
1949 if (regno >= FIRST_PSEUDO_REGISTER)
1950 SUBST (regno_reg_rtx[regno], new_dest);
1952 SUBST (SET_DEST (newpat), new_dest);
1953 SUBST (XEXP (*cc_use, 0), new_dest);
1954 SUBST (SET_SRC (newpat),
1955 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
1957 else
1958 undobuf.other_insn = 0;
1960 #endif
1962 else
1963 #endif
1965 n_occurrences = 0; /* `subst' counts here */
1967 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1968 need to make a unique copy of I2SRC each time we substitute it
1969 to avoid self-referential rtl. */
1971 subst_low_cuid = INSN_CUID (i2);
1972 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
1973 ! i1_feeds_i3 && i1dest_in_i1src);
1974 substed_i2 = 1;
1976 /* Record whether i2's body now appears within i3's body. */
1977 i2_is_used = n_occurrences;
1980 /* If we already got a failure, don't try to do more. Otherwise,
1981 try to substitute in I1 if we have it. */
1983 if (i1 && GET_CODE (newpat) != CLOBBER)
1985 /* Before we can do this substitution, we must redo the test done
1986 above (see detailed comments there) that ensures that I1DEST
1987 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1989 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
1990 0, (rtx*) 0))
1992 undo_all ();
1993 return 0;
1996 n_occurrences = 0;
1997 subst_low_cuid = INSN_CUID (i1);
1998 newpat = subst (newpat, i1dest, i1src, 0, 0);
1999 substed_i1 = 1;
2002 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2003 to count all the ways that I2SRC and I1SRC can be used. */
2004 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2005 && i2_is_used + added_sets_2 > 1)
2006 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2007 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2008 > 1))
2009 /* Fail if we tried to make a new register (we used to abort, but there's
2010 really no reason to). */
2011 || max_reg_num () != maxreg
2012 /* Fail if we couldn't do something and have a CLOBBER. */
2013 || GET_CODE (newpat) == CLOBBER
2014 /* Fail if this new pattern is a MULT and we didn't have one before
2015 at the outer level. */
2016 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2017 && ! have_mult))
2019 undo_all ();
2020 return 0;
2023 /* If the actions of the earlier insns must be kept
2024 in addition to substituting them into the latest one,
2025 we must make a new PARALLEL for the latest insn
2026 to hold additional the SETs. */
2028 if (added_sets_1 || added_sets_2)
2030 combine_extras++;
2032 if (GET_CODE (newpat) == PARALLEL)
2034 rtvec old = XVEC (newpat, 0);
2035 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2036 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2037 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2038 sizeof (old->elem[0]) * old->num_elem);
2040 else
2042 rtx old = newpat;
2043 total_sets = 1 + added_sets_1 + added_sets_2;
2044 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2045 XVECEXP (newpat, 0, 0) = old;
2048 if (added_sets_1)
2049 XVECEXP (newpat, 0, --total_sets)
2050 = (GET_CODE (PATTERN (i1)) == PARALLEL
2051 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2053 if (added_sets_2)
2055 /* If there is no I1, use I2's body as is. We used to also not do
2056 the subst call below if I2 was substituted into I3,
2057 but that could lose a simplification. */
2058 if (i1 == 0)
2059 XVECEXP (newpat, 0, --total_sets) = i2pat;
2060 else
2061 /* See comment where i2pat is assigned. */
2062 XVECEXP (newpat, 0, --total_sets)
2063 = subst (i2pat, i1dest, i1src, 0, 0);
2067 /* We come here when we are replacing a destination in I2 with the
2068 destination of I3. */
2069 validate_replacement:
2071 /* Note which hard regs this insn has as inputs. */
2072 mark_used_regs_combine (newpat);
2074 /* Is the result of combination a valid instruction? */
2075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2077 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2078 the second SET's destination is a register that is unused. In that case,
2079 we just need the first SET. This can occur when simplifying a divmod
2080 insn. We *must* test for this case here because the code below that
2081 splits two independent SETs doesn't handle this case correctly when it
2082 updates the register status. Also check the case where the first
2083 SET's destination is unused. That would not cause incorrect code, but
2084 does cause an unneeded insn to remain. */
2086 if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2087 && XVECLEN (newpat, 0) == 2
2088 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2089 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2090 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == REG
2091 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 1)))
2092 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 1)))
2093 && asm_noperands (newpat) < 0)
2095 newpat = XVECEXP (newpat, 0, 0);
2096 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2099 else if (insn_code_number < 0 && GET_CODE (newpat) == PARALLEL
2100 && XVECLEN (newpat, 0) == 2
2101 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2102 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2103 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) == REG
2104 && find_reg_note (i3, REG_UNUSED, SET_DEST (XVECEXP (newpat, 0, 0)))
2105 && ! side_effects_p (SET_SRC (XVECEXP (newpat, 0, 0)))
2106 && asm_noperands (newpat) < 0)
2108 newpat = XVECEXP (newpat, 0, 1);
2109 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2112 /* If we were combining three insns and the result is a simple SET
2113 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2114 insns. There are two ways to do this. It can be split using a
2115 machine-specific method (like when you have an addition of a large
2116 constant) or by combine in the function find_split_point. */
2118 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2119 && asm_noperands (newpat) < 0)
2121 rtx m_split, *split;
2122 rtx ni2dest = i2dest;
2124 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2125 use I2DEST as a scratch register will help. In the latter case,
2126 convert I2DEST to the mode of the source of NEWPAT if we can. */
2128 m_split = split_insns (newpat, i3);
2130 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2131 inputs of NEWPAT. */
2133 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2134 possible to try that as a scratch reg. This would require adding
2135 more code to make it work though. */
2137 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2139 /* If I2DEST is a hard register or the only use of a pseudo,
2140 we can change its mode. */
2141 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2142 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2143 && GET_CODE (i2dest) == REG
2144 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2145 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2146 && ! REG_USERVAR_P (i2dest))))
2147 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2148 REGNO (i2dest));
2150 m_split = split_insns (gen_rtx_PARALLEL
2151 (VOIDmode,
2152 gen_rtvec (2, newpat,
2153 gen_rtx_CLOBBER (VOIDmode,
2154 ni2dest))),
2155 i3);
2156 /* If the split with the mode-changed register didn't work, try
2157 the original register. */
2158 if (! m_split && ni2dest != i2dest)
2160 ni2dest = i2dest;
2161 m_split = split_insns (gen_rtx_PARALLEL
2162 (VOIDmode,
2163 gen_rtvec (2, newpat,
2164 gen_rtx_CLOBBER (VOIDmode,
2165 i2dest))),
2166 i3);
2170 /* If we've split a jump pattern, we'll wind up with a sequence even
2171 with one instruction. We can handle that below, so extract it. */
2172 if (m_split && GET_CODE (m_split) == SEQUENCE
2173 && XVECLEN (m_split, 0) == 1)
2174 m_split = PATTERN (XVECEXP (m_split, 0, 0));
2176 if (m_split && GET_CODE (m_split) != SEQUENCE)
2178 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2179 if (insn_code_number >= 0)
2180 newpat = m_split;
2182 else if (m_split && GET_CODE (m_split) == SEQUENCE
2183 && XVECLEN (m_split, 0) == 2
2184 && (next_real_insn (i2) == i3
2185 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split, 0, 0)),
2186 INSN_CUID (i2))))
2188 rtx i2set, i3set;
2189 rtx newi3pat = PATTERN (XVECEXP (m_split, 0, 1));
2190 newi2pat = PATTERN (XVECEXP (m_split, 0, 0));
2192 i3set = single_set (XVECEXP (m_split, 0, 1));
2193 i2set = single_set (XVECEXP (m_split, 0, 0));
2195 /* In case we changed the mode of I2DEST, replace it in the
2196 pseudo-register table here. We can't do it above in case this
2197 code doesn't get executed and we do a split the other way. */
2199 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2200 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2202 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2204 /* If I2 or I3 has multiple SETs, we won't know how to track
2205 register status, so don't use these insns. If I2's destination
2206 is used between I2 and I3, we also can't use these insns. */
2208 if (i2_code_number >= 0 && i2set && i3set
2209 && (next_real_insn (i2) == i3
2210 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2211 insn_code_number = recog_for_combine (&newi3pat, i3,
2212 &new_i3_notes);
2213 if (insn_code_number >= 0)
2214 newpat = newi3pat;
2216 /* It is possible that both insns now set the destination of I3.
2217 If so, we must show an extra use of it. */
2219 if (insn_code_number >= 0)
2221 rtx new_i3_dest = SET_DEST (i3set);
2222 rtx new_i2_dest = SET_DEST (i2set);
2224 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2225 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2226 || GET_CODE (new_i3_dest) == SUBREG)
2227 new_i3_dest = XEXP (new_i3_dest, 0);
2229 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2230 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2231 || GET_CODE (new_i2_dest) == SUBREG)
2232 new_i2_dest = XEXP (new_i2_dest, 0);
2234 if (GET_CODE (new_i3_dest) == REG
2235 && GET_CODE (new_i2_dest) == REG
2236 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2237 REG_N_SETS (REGNO (new_i2_dest))++;
2241 /* If we can split it and use I2DEST, go ahead and see if that
2242 helps things be recognized. Verify that none of the registers
2243 are set between I2 and I3. */
2244 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2245 #ifdef HAVE_cc0
2246 && GET_CODE (i2dest) == REG
2247 #endif
2248 /* We need I2DEST in the proper mode. If it is a hard register
2249 or the only use of a pseudo, we can change its mode. */
2250 && (GET_MODE (*split) == GET_MODE (i2dest)
2251 || GET_MODE (*split) == VOIDmode
2252 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2253 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2254 && ! REG_USERVAR_P (i2dest)))
2255 && (next_real_insn (i2) == i3
2256 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2257 /* We can't overwrite I2DEST if its value is still used by
2258 NEWPAT. */
2259 && ! reg_referenced_p (i2dest, newpat))
2261 rtx newdest = i2dest;
2262 enum rtx_code split_code = GET_CODE (*split);
2263 enum machine_mode split_mode = GET_MODE (*split);
2265 /* Get NEWDEST as a register in the proper mode. We have already
2266 validated that we can do this. */
2267 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2269 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2271 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2272 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2275 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2276 an ASHIFT. This can occur if it was inside a PLUS and hence
2277 appeared to be a memory address. This is a kludge. */
2278 if (split_code == MULT
2279 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2280 && INTVAL (XEXP (*split, 1)) > 0
2281 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2283 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2284 XEXP (*split, 0), GEN_INT (i)));
2285 /* Update split_code because we may not have a multiply
2286 anymore. */
2287 split_code = GET_CODE (*split);
2290 #ifdef INSN_SCHEDULING
2291 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2292 be written as a ZERO_EXTEND. */
2293 if (split_code == SUBREG && GET_CODE (SUBREG_REG (*split)) == MEM)
2294 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2295 SUBREG_REG (*split)));
2296 #endif
2298 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2299 SUBST (*split, newdest);
2300 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2302 /* If the split point was a MULT and we didn't have one before,
2303 don't use one now. */
2304 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2305 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2309 /* Check for a case where we loaded from memory in a narrow mode and
2310 then sign extended it, but we need both registers. In that case,
2311 we have a PARALLEL with both loads from the same memory location.
2312 We can split this into a load from memory followed by a register-register
2313 copy. This saves at least one insn, more if register allocation can
2314 eliminate the copy.
2316 We cannot do this if the destination of the second assignment is
2317 a register that we have already assumed is zero-extended. Similarly
2318 for a SUBREG of such a register. */
2320 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2321 && GET_CODE (newpat) == PARALLEL
2322 && XVECLEN (newpat, 0) == 2
2323 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2324 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2325 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2326 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2327 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2328 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2329 INSN_CUID (i2))
2330 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2331 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2332 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2333 (GET_CODE (temp) == REG
2334 && reg_nonzero_bits[REGNO (temp)] != 0
2335 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2336 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2337 && (reg_nonzero_bits[REGNO (temp)]
2338 != GET_MODE_MASK (word_mode))))
2339 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2340 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2341 (GET_CODE (temp) == REG
2342 && reg_nonzero_bits[REGNO (temp)] != 0
2343 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2344 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2345 && (reg_nonzero_bits[REGNO (temp)]
2346 != GET_MODE_MASK (word_mode)))))
2347 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2348 SET_SRC (XVECEXP (newpat, 0, 1)))
2349 && ! find_reg_note (i3, REG_UNUSED,
2350 SET_DEST (XVECEXP (newpat, 0, 0))))
2352 rtx ni2dest;
2354 newi2pat = XVECEXP (newpat, 0, 0);
2355 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2356 newpat = XVECEXP (newpat, 0, 1);
2357 SUBST (SET_SRC (newpat),
2358 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat)), ni2dest));
2359 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2361 if (i2_code_number >= 0)
2362 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2364 if (insn_code_number >= 0)
2366 rtx insn;
2367 rtx link;
2369 /* If we will be able to accept this, we have made a change to the
2370 destination of I3. This can invalidate a LOG_LINKS pointing
2371 to I3. No other part of combine.c makes such a transformation.
2373 The new I3 will have a destination that was previously the
2374 destination of I1 or I2 and which was used in i2 or I3. Call
2375 distribute_links to make a LOG_LINK from the next use of
2376 that destination. */
2378 PATTERN (i3) = newpat;
2379 distribute_links (gen_rtx_INSN_LIST (VOIDmode, i3, NULL_RTX));
2381 /* I3 now uses what used to be its destination and which is
2382 now I2's destination. That means we need a LOG_LINK from
2383 I3 to I2. But we used to have one, so we still will.
2385 However, some later insn might be using I2's dest and have
2386 a LOG_LINK pointing at I3. We must remove this link.
2387 The simplest way to remove the link is to point it at I1,
2388 which we know will be a NOTE. */
2390 for (insn = NEXT_INSN (i3);
2391 insn && (this_basic_block == n_basic_blocks - 1
2392 || insn != BLOCK_HEAD (this_basic_block + 1));
2393 insn = NEXT_INSN (insn))
2395 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2397 for (link = LOG_LINKS (insn); link;
2398 link = XEXP (link, 1))
2399 if (XEXP (link, 0) == i3)
2400 XEXP (link, 0) = i1;
2402 break;
2408 /* Similarly, check for a case where we have a PARALLEL of two independent
2409 SETs but we started with three insns. In this case, we can do the sets
2410 as two separate insns. This case occurs when some SET allows two
2411 other insns to combine, but the destination of that SET is still live. */
2413 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2414 && GET_CODE (newpat) == PARALLEL
2415 && XVECLEN (newpat, 0) == 2
2416 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2417 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2418 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2419 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2420 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2421 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2422 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2423 INSN_CUID (i2))
2424 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2425 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2426 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2427 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2428 XVECEXP (newpat, 0, 0))
2429 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2430 XVECEXP (newpat, 0, 1))
2431 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2432 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2434 /* Normally, it doesn't matter which of the two is done first,
2435 but it does if one references cc0. In that case, it has to
2436 be first. */
2437 #ifdef HAVE_cc0
2438 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2440 newi2pat = XVECEXP (newpat, 0, 0);
2441 newpat = XVECEXP (newpat, 0, 1);
2443 else
2444 #endif
2446 newi2pat = XVECEXP (newpat, 0, 1);
2447 newpat = XVECEXP (newpat, 0, 0);
2450 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2452 if (i2_code_number >= 0)
2453 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2456 /* If it still isn't recognized, fail and change things back the way they
2457 were. */
2458 if ((insn_code_number < 0
2459 /* Is the result a reasonable ASM_OPERANDS? */
2460 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2462 undo_all ();
2463 return 0;
2466 /* If we had to change another insn, make sure it is valid also. */
2467 if (undobuf.other_insn)
2469 rtx other_pat = PATTERN (undobuf.other_insn);
2470 rtx new_other_notes;
2471 rtx note, next;
2473 CLEAR_HARD_REG_SET (newpat_used_regs);
2475 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2476 &new_other_notes);
2478 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2480 undo_all ();
2481 return 0;
2484 PATTERN (undobuf.other_insn) = other_pat;
2486 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2487 are still valid. Then add any non-duplicate notes added by
2488 recog_for_combine. */
2489 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2491 next = XEXP (note, 1);
2493 if (REG_NOTE_KIND (note) == REG_UNUSED
2494 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2496 if (GET_CODE (XEXP (note, 0)) == REG)
2497 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2499 remove_note (undobuf.other_insn, note);
2503 for (note = new_other_notes; note; note = XEXP (note, 1))
2504 if (GET_CODE (XEXP (note, 0)) == REG)
2505 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2507 distribute_notes (new_other_notes, undobuf.other_insn,
2508 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2510 #ifdef HAVE_cc0
2511 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2512 they are adjacent to each other or not. */
2514 rtx p = prev_nonnote_insn (i3);
2515 if (p && p != i2 && GET_CODE (p) == INSN && newi2pat
2516 && sets_cc0_p (newi2pat))
2518 undo_all ();
2519 return 0;
2522 #endif
2524 /* We now know that we can do this combination. Merge the insns and
2525 update the status of registers and LOG_LINKS. */
2528 rtx i3notes, i2notes, i1notes = 0;
2529 rtx i3links, i2links, i1links = 0;
2530 rtx midnotes = 0;
2531 unsigned int regno;
2532 /* Compute which registers we expect to eliminate. newi2pat may be setting
2533 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2534 same as i3dest, in which case newi2pat may be setting i1dest. */
2535 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2536 || i2dest_in_i2src || i2dest_in_i1src
2537 ? 0 : i2dest);
2538 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2539 || (newi2pat && reg_set_p (i1dest, newi2pat))
2540 ? 0 : i1dest);
2542 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2543 clear them. */
2544 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2545 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2546 if (i1)
2547 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2549 /* Ensure that we do not have something that should not be shared but
2550 occurs multiple times in the new insns. Check this by first
2551 resetting all the `used' flags and then copying anything is shared. */
2553 reset_used_flags (i3notes);
2554 reset_used_flags (i2notes);
2555 reset_used_flags (i1notes);
2556 reset_used_flags (newpat);
2557 reset_used_flags (newi2pat);
2558 if (undobuf.other_insn)
2559 reset_used_flags (PATTERN (undobuf.other_insn));
2561 i3notes = copy_rtx_if_shared (i3notes);
2562 i2notes = copy_rtx_if_shared (i2notes);
2563 i1notes = copy_rtx_if_shared (i1notes);
2564 newpat = copy_rtx_if_shared (newpat);
2565 newi2pat = copy_rtx_if_shared (newi2pat);
2566 if (undobuf.other_insn)
2567 reset_used_flags (PATTERN (undobuf.other_insn));
2569 INSN_CODE (i3) = insn_code_number;
2570 PATTERN (i3) = newpat;
2572 if (GET_CODE (i3) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (i3))
2574 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2576 reset_used_flags (call_usage);
2577 call_usage = copy_rtx (call_usage);
2579 if (substed_i2)
2580 replace_rtx (call_usage, i2dest, i2src);
2582 if (substed_i1)
2583 replace_rtx (call_usage, i1dest, i1src);
2585 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2588 if (undobuf.other_insn)
2589 INSN_CODE (undobuf.other_insn) = other_code_number;
2591 /* We had one special case above where I2 had more than one set and
2592 we replaced a destination of one of those sets with the destination
2593 of I3. In that case, we have to update LOG_LINKS of insns later
2594 in this basic block. Note that this (expensive) case is rare.
2596 Also, in this case, we must pretend that all REG_NOTEs for I2
2597 actually came from I3, so that REG_UNUSED notes from I2 will be
2598 properly handled. */
2600 if (i3_subst_into_i2)
2602 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2603 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2604 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2), 0, i))) == REG
2605 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2606 && ! find_reg_note (i2, REG_UNUSED,
2607 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2608 for (temp = NEXT_INSN (i2);
2609 temp && (this_basic_block == n_basic_blocks - 1
2610 || BLOCK_HEAD (this_basic_block) != temp);
2611 temp = NEXT_INSN (temp))
2612 if (temp != i3 && INSN_P (temp))
2613 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2614 if (XEXP (link, 0) == i2)
2615 XEXP (link, 0) = i3;
2617 if (i3notes)
2619 rtx link = i3notes;
2620 while (XEXP (link, 1))
2621 link = XEXP (link, 1);
2622 XEXP (link, 1) = i2notes;
2624 else
2625 i3notes = i2notes;
2626 i2notes = 0;
2629 LOG_LINKS (i3) = 0;
2630 REG_NOTES (i3) = 0;
2631 LOG_LINKS (i2) = 0;
2632 REG_NOTES (i2) = 0;
2634 if (newi2pat)
2636 INSN_CODE (i2) = i2_code_number;
2637 PATTERN (i2) = newi2pat;
2639 else
2641 PUT_CODE (i2, NOTE);
2642 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
2643 NOTE_SOURCE_FILE (i2) = 0;
2646 if (i1)
2648 LOG_LINKS (i1) = 0;
2649 REG_NOTES (i1) = 0;
2650 PUT_CODE (i1, NOTE);
2651 NOTE_LINE_NUMBER (i1) = NOTE_INSN_DELETED;
2652 NOTE_SOURCE_FILE (i1) = 0;
2655 /* Get death notes for everything that is now used in either I3 or
2656 I2 and used to die in a previous insn. If we built two new
2657 patterns, move from I1 to I2 then I2 to I3 so that we get the
2658 proper movement on registers that I2 modifies. */
2660 if (newi2pat)
2662 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2663 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2665 else
2666 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2667 i3, &midnotes);
2669 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2670 if (i3notes)
2671 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2672 elim_i2, elim_i1);
2673 if (i2notes)
2674 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2675 elim_i2, elim_i1);
2676 if (i1notes)
2677 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2678 elim_i2, elim_i1);
2679 if (midnotes)
2680 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2681 elim_i2, elim_i1);
2683 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2684 know these are REG_UNUSED and want them to go to the desired insn,
2685 so we always pass it as i3. We have not counted the notes in
2686 reg_n_deaths yet, so we need to do so now. */
2688 if (newi2pat && new_i2_notes)
2690 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2691 if (GET_CODE (XEXP (temp, 0)) == REG)
2692 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2694 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2697 if (new_i3_notes)
2699 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2700 if (GET_CODE (XEXP (temp, 0)) == REG)
2701 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2703 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
2706 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2707 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2708 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2709 in that case, it might delete I2. Similarly for I2 and I1.
2710 Show an additional death due to the REG_DEAD note we make here. If
2711 we discard it in distribute_notes, we will decrement it again. */
2713 if (i3dest_killed)
2715 if (GET_CODE (i3dest_killed) == REG)
2716 REG_N_DEATHS (REGNO (i3dest_killed))++;
2718 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2719 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2720 NULL_RTX),
2721 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
2722 else
2723 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2724 NULL_RTX),
2725 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2726 elim_i2, elim_i1);
2729 if (i2dest_in_i2src)
2731 if (GET_CODE (i2dest) == REG)
2732 REG_N_DEATHS (REGNO (i2dest))++;
2734 if (newi2pat && reg_set_p (i2dest, newi2pat))
2735 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2736 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2737 else
2738 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2739 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2740 NULL_RTX, NULL_RTX);
2743 if (i1dest_in_i1src)
2745 if (GET_CODE (i1dest) == REG)
2746 REG_N_DEATHS (REGNO (i1dest))++;
2748 if (newi2pat && reg_set_p (i1dest, newi2pat))
2749 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2750 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
2751 else
2752 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2753 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2754 NULL_RTX, NULL_RTX);
2757 distribute_links (i3links);
2758 distribute_links (i2links);
2759 distribute_links (i1links);
2761 if (GET_CODE (i2dest) == REG)
2763 rtx link;
2764 rtx i2_insn = 0, i2_val = 0, set;
2766 /* The insn that used to set this register doesn't exist, and
2767 this life of the register may not exist either. See if one of
2768 I3's links points to an insn that sets I2DEST. If it does,
2769 that is now the last known value for I2DEST. If we don't update
2770 this and I2 set the register to a value that depended on its old
2771 contents, we will get confused. If this insn is used, thing
2772 will be set correctly in combine_instructions. */
2774 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2775 if ((set = single_set (XEXP (link, 0))) != 0
2776 && rtx_equal_p (i2dest, SET_DEST (set)))
2777 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2779 record_value_for_reg (i2dest, i2_insn, i2_val);
2781 /* If the reg formerly set in I2 died only once and that was in I3,
2782 zero its use count so it won't make `reload' do any work. */
2783 if (! added_sets_2
2784 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2785 && ! i2dest_in_i2src)
2787 regno = REGNO (i2dest);
2788 REG_N_SETS (regno)--;
2792 if (i1 && GET_CODE (i1dest) == REG)
2794 rtx link;
2795 rtx i1_insn = 0, i1_val = 0, set;
2797 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2798 if ((set = single_set (XEXP (link, 0))) != 0
2799 && rtx_equal_p (i1dest, SET_DEST (set)))
2800 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2802 record_value_for_reg (i1dest, i1_insn, i1_val);
2804 regno = REGNO (i1dest);
2805 if (! added_sets_1 && ! i1dest_in_i1src)
2806 REG_N_SETS (regno)--;
2809 /* Update reg_nonzero_bits et al for any changes that may have been made
2810 to this insn. The order of set_nonzero_bits_and_sign_copies() is
2811 important. Because newi2pat can affect nonzero_bits of newpat */
2812 if (newi2pat)
2813 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2814 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2816 /* Set new_direct_jump_p if a new return or simple jump instruction
2817 has been created.
2819 If I3 is now an unconditional jump, ensure that it has a
2820 BARRIER following it since it may have initially been a
2821 conditional jump. It may also be the last nonnote insn. */
2823 if (GET_CODE (newpat) == RETURN || any_uncondjump_p (i3))
2825 *new_direct_jump_p = 1;
2827 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2828 || GET_CODE (temp) != BARRIER)
2829 emit_barrier_after (i3);
2831 /* An NOOP jump does not need barrier, but it does need cleaning up
2832 of CFG. */
2833 if (GET_CODE (newpat) == SET
2834 && SET_SRC (newpat) == pc_rtx
2835 && SET_DEST (newpat) == pc_rtx)
2836 *new_direct_jump_p = 1;
2839 combine_successes++;
2840 undo_commit ();
2842 /* Clear this here, so that subsequent get_last_value calls are not
2843 affected. */
2844 subst_prev_insn = NULL_RTX;
2846 if (added_links_insn
2847 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2848 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2849 return added_links_insn;
2850 else
2851 return newi2pat ? i2 : i3;
2854 /* Undo all the modifications recorded in undobuf. */
2856 static void
2857 undo_all ()
2859 struct undo *undo, *next;
2861 for (undo = undobuf.undos; undo; undo = next)
2863 next = undo->next;
2864 if (undo->is_int)
2865 *undo->where.i = undo->old_contents.i;
2866 else
2867 *undo->where.r = undo->old_contents.r;
2869 undo->next = undobuf.frees;
2870 undobuf.frees = undo;
2873 undobuf.undos = 0;
2875 /* Clear this here, so that subsequent get_last_value calls are not
2876 affected. */
2877 subst_prev_insn = NULL_RTX;
2880 /* We've committed to accepting the changes we made. Move all
2881 of the undos to the free list. */
2883 static void
2884 undo_commit ()
2886 struct undo *undo, *next;
2888 for (undo = undobuf.undos; undo; undo = next)
2890 next = undo->next;
2891 undo->next = undobuf.frees;
2892 undobuf.frees = undo;
2894 undobuf.undos = 0;
2898 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2899 where we have an arithmetic expression and return that point. LOC will
2900 be inside INSN.
2902 try_combine will call this function to see if an insn can be split into
2903 two insns. */
2905 static rtx *
2906 find_split_point (loc, insn)
2907 rtx *loc;
2908 rtx insn;
2910 rtx x = *loc;
2911 enum rtx_code code = GET_CODE (x);
2912 rtx *split;
2913 unsigned HOST_WIDE_INT len = 0;
2914 HOST_WIDE_INT pos = 0;
2915 int unsignedp = 0;
2916 rtx inner = NULL_RTX;
2918 /* First special-case some codes. */
2919 switch (code)
2921 case SUBREG:
2922 #ifdef INSN_SCHEDULING
2923 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2924 point. */
2925 if (GET_CODE (SUBREG_REG (x)) == MEM)
2926 return loc;
2927 #endif
2928 return find_split_point (&SUBREG_REG (x), insn);
2930 case MEM:
2931 #ifdef HAVE_lo_sum
2932 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2933 using LO_SUM and HIGH. */
2934 if (GET_CODE (XEXP (x, 0)) == CONST
2935 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2937 SUBST (XEXP (x, 0),
2938 gen_rtx_LO_SUM (Pmode,
2939 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
2940 XEXP (x, 0)));
2941 return &XEXP (XEXP (x, 0), 0);
2943 #endif
2945 /* If we have a PLUS whose second operand is a constant and the
2946 address is not valid, perhaps will can split it up using
2947 the machine-specific way to split large constants. We use
2948 the first pseudo-reg (one of the virtual regs) as a placeholder;
2949 it will not remain in the result. */
2950 if (GET_CODE (XEXP (x, 0)) == PLUS
2951 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2952 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
2954 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2955 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
2956 subst_insn);
2958 /* This should have produced two insns, each of which sets our
2959 placeholder. If the source of the second is a valid address,
2960 we can make put both sources together and make a split point
2961 in the middle. */
2963 if (seq && XVECLEN (seq, 0) == 2
2964 && GET_CODE (XVECEXP (seq, 0, 0)) == INSN
2965 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) == SET
2966 && SET_DEST (PATTERN (XVECEXP (seq, 0, 0))) == reg
2967 && ! reg_mentioned_p (reg,
2968 SET_SRC (PATTERN (XVECEXP (seq, 0, 0))))
2969 && GET_CODE (XVECEXP (seq, 0, 1)) == INSN
2970 && GET_CODE (PATTERN (XVECEXP (seq, 0, 1))) == SET
2971 && SET_DEST (PATTERN (XVECEXP (seq, 0, 1))) == reg
2972 && memory_address_p (GET_MODE (x),
2973 SET_SRC (PATTERN (XVECEXP (seq, 0, 1)))))
2975 rtx src1 = SET_SRC (PATTERN (XVECEXP (seq, 0, 0)));
2976 rtx src2 = SET_SRC (PATTERN (XVECEXP (seq, 0, 1)));
2978 /* Replace the placeholder in SRC2 with SRC1. If we can
2979 find where in SRC2 it was placed, that can become our
2980 split point and we can replace this address with SRC2.
2981 Just try two obvious places. */
2983 src2 = replace_rtx (src2, reg, src1);
2984 split = 0;
2985 if (XEXP (src2, 0) == src1)
2986 split = &XEXP (src2, 0);
2987 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
2988 && XEXP (XEXP (src2, 0), 0) == src1)
2989 split = &XEXP (XEXP (src2, 0), 0);
2991 if (split)
2993 SUBST (XEXP (x, 0), src2);
2994 return split;
2998 /* If that didn't work, perhaps the first operand is complex and
2999 needs to be computed separately, so make a split point there.
3000 This will occur on machines that just support REG + CONST
3001 and have a constant moved through some previous computation. */
3003 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) != 'o'
3004 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3005 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x, 0), 0))))
3006 == 'o')))
3007 return &XEXP (XEXP (x, 0), 0);
3009 break;
3011 case SET:
3012 #ifdef HAVE_cc0
3013 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3014 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3015 we need to put the operand into a register. So split at that
3016 point. */
3018 if (SET_DEST (x) == cc0_rtx
3019 && GET_CODE (SET_SRC (x)) != COMPARE
3020 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3021 && GET_RTX_CLASS (GET_CODE (SET_SRC (x))) != 'o'
3022 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3023 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x)))) == 'o'))
3024 return &SET_SRC (x);
3025 #endif
3027 /* See if we can split SET_SRC as it stands. */
3028 split = find_split_point (&SET_SRC (x), insn);
3029 if (split && split != &SET_SRC (x))
3030 return split;
3032 /* See if we can split SET_DEST as it stands. */
3033 split = find_split_point (&SET_DEST (x), insn);
3034 if (split && split != &SET_DEST (x))
3035 return split;
3037 /* See if this is a bitfield assignment with everything constant. If
3038 so, this is an IOR of an AND, so split it into that. */
3039 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3040 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3041 <= HOST_BITS_PER_WIDE_INT)
3042 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3043 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3044 && GET_CODE (SET_SRC (x)) == CONST_INT
3045 && ((INTVAL (XEXP (SET_DEST (x), 1))
3046 + INTVAL (XEXP (SET_DEST (x), 2)))
3047 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3048 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3050 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3051 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3052 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3053 rtx dest = XEXP (SET_DEST (x), 0);
3054 enum machine_mode mode = GET_MODE (dest);
3055 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3057 if (BITS_BIG_ENDIAN)
3058 pos = GET_MODE_BITSIZE (mode) - len - pos;
3060 if (src == mask)
3061 SUBST (SET_SRC (x),
3062 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3063 else
3064 SUBST (SET_SRC (x),
3065 gen_binary (IOR, mode,
3066 gen_binary (AND, mode, dest,
3067 gen_int_mode (~(mask << pos),
3068 mode)),
3069 GEN_INT (src << pos)));
3071 SUBST (SET_DEST (x), dest);
3073 split = find_split_point (&SET_SRC (x), insn);
3074 if (split && split != &SET_SRC (x))
3075 return split;
3078 /* Otherwise, see if this is an operation that we can split into two.
3079 If so, try to split that. */
3080 code = GET_CODE (SET_SRC (x));
3082 switch (code)
3084 case AND:
3085 /* If we are AND'ing with a large constant that is only a single
3086 bit and the result is only being used in a context where we
3087 need to know if it is zero or non-zero, replace it with a bit
3088 extraction. This will avoid the large constant, which might
3089 have taken more than one insn to make. If the constant were
3090 not a valid argument to the AND but took only one insn to make,
3091 this is no worse, but if it took more than one insn, it will
3092 be better. */
3094 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3095 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
3096 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3097 && GET_CODE (SET_DEST (x)) == REG
3098 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3099 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3100 && XEXP (*split, 0) == SET_DEST (x)
3101 && XEXP (*split, 1) == const0_rtx)
3103 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3104 XEXP (SET_SRC (x), 0),
3105 pos, NULL_RTX, 1, 1, 0, 0);
3106 if (extraction != 0)
3108 SUBST (SET_SRC (x), extraction);
3109 return find_split_point (loc, insn);
3112 break;
3114 case NE:
3115 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3116 is known to be on, this can be converted into a NEG of a shift. */
3117 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3118 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3119 && 1 <= (pos = exact_log2
3120 (nonzero_bits (XEXP (SET_SRC (x), 0),
3121 GET_MODE (XEXP (SET_SRC (x), 0))))))
3123 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3125 SUBST (SET_SRC (x),
3126 gen_rtx_NEG (mode,
3127 gen_rtx_LSHIFTRT (mode,
3128 XEXP (SET_SRC (x), 0),
3129 GEN_INT (pos))));
3131 split = find_split_point (&SET_SRC (x), insn);
3132 if (split && split != &SET_SRC (x))
3133 return split;
3135 break;
3137 case SIGN_EXTEND:
3138 inner = XEXP (SET_SRC (x), 0);
3140 /* We can't optimize if either mode is a partial integer
3141 mode as we don't know how many bits are significant
3142 in those modes. */
3143 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3144 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3145 break;
3147 pos = 0;
3148 len = GET_MODE_BITSIZE (GET_MODE (inner));
3149 unsignedp = 0;
3150 break;
3152 case SIGN_EXTRACT:
3153 case ZERO_EXTRACT:
3154 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3155 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3157 inner = XEXP (SET_SRC (x), 0);
3158 len = INTVAL (XEXP (SET_SRC (x), 1));
3159 pos = INTVAL (XEXP (SET_SRC (x), 2));
3161 if (BITS_BIG_ENDIAN)
3162 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3163 unsignedp = (code == ZERO_EXTRACT);
3165 break;
3167 default:
3168 break;
3171 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3173 enum machine_mode mode = GET_MODE (SET_SRC (x));
3175 /* For unsigned, we have a choice of a shift followed by an
3176 AND or two shifts. Use two shifts for field sizes where the
3177 constant might be too large. We assume here that we can
3178 always at least get 8-bit constants in an AND insn, which is
3179 true for every current RISC. */
3181 if (unsignedp && len <= 8)
3183 SUBST (SET_SRC (x),
3184 gen_rtx_AND (mode,
3185 gen_rtx_LSHIFTRT
3186 (mode, gen_lowpart_for_combine (mode, inner),
3187 GEN_INT (pos)),
3188 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3190 split = find_split_point (&SET_SRC (x), insn);
3191 if (split && split != &SET_SRC (x))
3192 return split;
3194 else
3196 SUBST (SET_SRC (x),
3197 gen_rtx_fmt_ee
3198 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3199 gen_rtx_ASHIFT (mode,
3200 gen_lowpart_for_combine (mode, inner),
3201 GEN_INT (GET_MODE_BITSIZE (mode)
3202 - len - pos)),
3203 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3205 split = find_split_point (&SET_SRC (x), insn);
3206 if (split && split != &SET_SRC (x))
3207 return split;
3211 /* See if this is a simple operation with a constant as the second
3212 operand. It might be that this constant is out of range and hence
3213 could be used as a split point. */
3214 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3215 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3216 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<')
3217 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3218 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x), 0))) == 'o'
3219 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3220 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x), 0))))
3221 == 'o'))))
3222 return &XEXP (SET_SRC (x), 1);
3224 /* Finally, see if this is a simple operation with its first operand
3225 not in a register. The operation might require this operand in a
3226 register, so return it as a split point. We can always do this
3227 because if the first operand were another operation, we would have
3228 already found it as a split point. */
3229 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '2'
3230 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == 'c'
3231 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '<'
3232 || GET_RTX_CLASS (GET_CODE (SET_SRC (x))) == '1')
3233 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3234 return &XEXP (SET_SRC (x), 0);
3236 return 0;
3238 case AND:
3239 case IOR:
3240 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3241 it is better to write this as (not (ior A B)) so we can split it.
3242 Similarly for IOR. */
3243 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3245 SUBST (*loc,
3246 gen_rtx_NOT (GET_MODE (x),
3247 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3248 GET_MODE (x),
3249 XEXP (XEXP (x, 0), 0),
3250 XEXP (XEXP (x, 1), 0))));
3251 return find_split_point (loc, insn);
3254 /* Many RISC machines have a large set of logical insns. If the
3255 second operand is a NOT, put it first so we will try to split the
3256 other operand first. */
3257 if (GET_CODE (XEXP (x, 1)) == NOT)
3259 rtx tem = XEXP (x, 0);
3260 SUBST (XEXP (x, 0), XEXP (x, 1));
3261 SUBST (XEXP (x, 1), tem);
3263 break;
3265 default:
3266 break;
3269 /* Otherwise, select our actions depending on our rtx class. */
3270 switch (GET_RTX_CLASS (code))
3272 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3273 case '3':
3274 split = find_split_point (&XEXP (x, 2), insn);
3275 if (split)
3276 return split;
3277 /* ... fall through ... */
3278 case '2':
3279 case 'c':
3280 case '<':
3281 split = find_split_point (&XEXP (x, 1), insn);
3282 if (split)
3283 return split;
3284 /* ... fall through ... */
3285 case '1':
3286 /* Some machines have (and (shift ...) ...) insns. If X is not
3287 an AND, but XEXP (X, 0) is, use it as our split point. */
3288 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3289 return &XEXP (x, 0);
3291 split = find_split_point (&XEXP (x, 0), insn);
3292 if (split)
3293 return split;
3294 return loc;
3297 /* Otherwise, we don't have a split point. */
3298 return 0;
3301 /* Throughout X, replace FROM with TO, and return the result.
3302 The result is TO if X is FROM;
3303 otherwise the result is X, but its contents may have been modified.
3304 If they were modified, a record was made in undobuf so that
3305 undo_all will (among other things) return X to its original state.
3307 If the number of changes necessary is too much to record to undo,
3308 the excess changes are not made, so the result is invalid.
3309 The changes already made can still be undone.
3310 undobuf.num_undo is incremented for such changes, so by testing that
3311 the caller can tell whether the result is valid.
3313 `n_occurrences' is incremented each time FROM is replaced.
3315 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3317 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3318 by copying if `n_occurrences' is non-zero. */
3320 static rtx
3321 subst (x, from, to, in_dest, unique_copy)
3322 rtx x, from, to;
3323 int in_dest;
3324 int unique_copy;
3326 enum rtx_code code = GET_CODE (x);
3327 enum machine_mode op0_mode = VOIDmode;
3328 const char *fmt;
3329 int len, i;
3330 rtx new;
3332 /* Two expressions are equal if they are identical copies of a shared
3333 RTX or if they are both registers with the same register number
3334 and mode. */
3336 #define COMBINE_RTX_EQUAL_P(X,Y) \
3337 ((X) == (Y) \
3338 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3339 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3341 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3343 n_occurrences++;
3344 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3347 /* If X and FROM are the same register but different modes, they will
3348 not have been seen as equal above. However, flow.c will make a
3349 LOG_LINKS entry for that case. If we do nothing, we will try to
3350 rerecognize our original insn and, when it succeeds, we will
3351 delete the feeding insn, which is incorrect.
3353 So force this insn not to match in this (rare) case. */
3354 if (! in_dest && code == REG && GET_CODE (from) == REG
3355 && REGNO (x) == REGNO (from))
3356 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3358 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3359 of which may contain things that can be combined. */
3360 if (code != MEM && code != LO_SUM && GET_RTX_CLASS (code) == 'o')
3361 return x;
3363 /* It is possible to have a subexpression appear twice in the insn.
3364 Suppose that FROM is a register that appears within TO.
3365 Then, after that subexpression has been scanned once by `subst',
3366 the second time it is scanned, TO may be found. If we were
3367 to scan TO here, we would find FROM within it and create a
3368 self-referent rtl structure which is completely wrong. */
3369 if (COMBINE_RTX_EQUAL_P (x, to))
3370 return to;
3372 /* Parallel asm_operands need special attention because all of the
3373 inputs are shared across the arms. Furthermore, unsharing the
3374 rtl results in recognition failures. Failure to handle this case
3375 specially can result in circular rtl.
3377 Solve this by doing a normal pass across the first entry of the
3378 parallel, and only processing the SET_DESTs of the subsequent
3379 entries. Ug. */
3381 if (code == PARALLEL
3382 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3383 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3385 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3387 /* If this substitution failed, this whole thing fails. */
3388 if (GET_CODE (new) == CLOBBER
3389 && XEXP (new, 0) == const0_rtx)
3390 return new;
3392 SUBST (XVECEXP (x, 0, 0), new);
3394 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3396 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3398 if (GET_CODE (dest) != REG
3399 && GET_CODE (dest) != CC0
3400 && GET_CODE (dest) != PC)
3402 new = subst (dest, from, to, 0, unique_copy);
3404 /* If this substitution failed, this whole thing fails. */
3405 if (GET_CODE (new) == CLOBBER
3406 && XEXP (new, 0) == const0_rtx)
3407 return new;
3409 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3413 else
3415 len = GET_RTX_LENGTH (code);
3416 fmt = GET_RTX_FORMAT (code);
3418 /* We don't need to process a SET_DEST that is a register, CC0,
3419 or PC, so set up to skip this common case. All other cases
3420 where we want to suppress replacing something inside a
3421 SET_SRC are handled via the IN_DEST operand. */
3422 if (code == SET
3423 && (GET_CODE (SET_DEST (x)) == REG
3424 || GET_CODE (SET_DEST (x)) == CC0
3425 || GET_CODE (SET_DEST (x)) == PC))
3426 fmt = "ie";
3428 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3429 constant. */
3430 if (fmt[0] == 'e')
3431 op0_mode = GET_MODE (XEXP (x, 0));
3433 for (i = 0; i < len; i++)
3435 if (fmt[i] == 'E')
3437 int j;
3438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3440 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3442 new = (unique_copy && n_occurrences
3443 ? copy_rtx (to) : to);
3444 n_occurrences++;
3446 else
3448 new = subst (XVECEXP (x, i, j), from, to, 0,
3449 unique_copy);
3451 /* If this substitution failed, this whole thing
3452 fails. */
3453 if (GET_CODE (new) == CLOBBER
3454 && XEXP (new, 0) == const0_rtx)
3455 return new;
3458 SUBST (XVECEXP (x, i, j), new);
3461 else if (fmt[i] == 'e')
3463 /* If this is a register being set, ignore it. */
3464 new = XEXP (x, i);
3465 if (in_dest
3466 && (code == SUBREG || code == STRICT_LOW_PART
3467 || code == ZERO_EXTRACT)
3468 && i == 0
3469 && GET_CODE (new) == REG)
3472 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3474 /* In general, don't install a subreg involving two
3475 modes not tieable. It can worsen register
3476 allocation, and can even make invalid reload
3477 insns, since the reg inside may need to be copied
3478 from in the outside mode, and that may be invalid
3479 if it is an fp reg copied in integer mode.
3481 We allow two exceptions to this: It is valid if
3482 it is inside another SUBREG and the mode of that
3483 SUBREG and the mode of the inside of TO is
3484 tieable and it is valid if X is a SET that copies
3485 FROM to CC0. */
3487 if (GET_CODE (to) == SUBREG
3488 && ! MODES_TIEABLE_P (GET_MODE (to),
3489 GET_MODE (SUBREG_REG (to)))
3490 && ! (code == SUBREG
3491 && MODES_TIEABLE_P (GET_MODE (x),
3492 GET_MODE (SUBREG_REG (to))))
3493 #ifdef HAVE_cc0
3494 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3495 #endif
3497 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3499 #ifdef CLASS_CANNOT_CHANGE_MODE
3500 if (code == SUBREG
3501 && GET_CODE (to) == REG
3502 && REGNO (to) < FIRST_PSEUDO_REGISTER
3503 && (TEST_HARD_REG_BIT
3504 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
3505 REGNO (to)))
3506 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (to),
3507 GET_MODE (x)))
3508 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3509 #endif
3511 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3512 n_occurrences++;
3514 else
3515 /* If we are in a SET_DEST, suppress most cases unless we
3516 have gone inside a MEM, in which case we want to
3517 simplify the address. We assume here that things that
3518 are actually part of the destination have their inner
3519 parts in the first expression. This is true for SUBREG,
3520 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3521 things aside from REG and MEM that should appear in a
3522 SET_DEST. */
3523 new = subst (XEXP (x, i), from, to,
3524 (((in_dest
3525 && (code == SUBREG || code == STRICT_LOW_PART
3526 || code == ZERO_EXTRACT))
3527 || code == SET)
3528 && i == 0), unique_copy);
3530 /* If we found that we will have to reject this combination,
3531 indicate that by returning the CLOBBER ourselves, rather than
3532 an expression containing it. This will speed things up as
3533 well as prevent accidents where two CLOBBERs are considered
3534 to be equal, thus producing an incorrect simplification. */
3536 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3537 return new;
3539 if (GET_CODE (new) == CONST_INT && GET_CODE (x) == SUBREG)
3541 if (VECTOR_MODE_P (GET_MODE (x)))
3542 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3544 x = simplify_subreg (GET_MODE (x), new,
3545 GET_MODE (SUBREG_REG (x)),
3546 SUBREG_BYTE (x));
3547 if (! x)
3548 abort ();
3550 else if (GET_CODE (new) == CONST_INT
3551 && GET_CODE (x) == ZERO_EXTEND)
3553 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3554 new, GET_MODE (XEXP (x, 0)));
3555 if (! x)
3556 abort ();
3558 else
3559 SUBST (XEXP (x, i), new);
3564 /* Try to simplify X. If the simplification changed the code, it is likely
3565 that further simplification will help, so loop, but limit the number
3566 of repetitions that will be performed. */
3568 for (i = 0; i < 4; i++)
3570 /* If X is sufficiently simple, don't bother trying to do anything
3571 with it. */
3572 if (code != CONST_INT && code != REG && code != CLOBBER)
3573 x = combine_simplify_rtx (x, op0_mode, i == 3, in_dest);
3575 if (GET_CODE (x) == code)
3576 break;
3578 code = GET_CODE (x);
3580 /* We no longer know the original mode of operand 0 since we
3581 have changed the form of X) */
3582 op0_mode = VOIDmode;
3585 return x;
3588 /* Simplify X, a piece of RTL. We just operate on the expression at the
3589 outer level; call `subst' to simplify recursively. Return the new
3590 expression.
3592 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3593 will be the iteration even if an expression with a code different from
3594 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3596 static rtx
3597 combine_simplify_rtx (x, op0_mode, last, in_dest)
3598 rtx x;
3599 enum machine_mode op0_mode;
3600 int last;
3601 int in_dest;
3603 enum rtx_code code = GET_CODE (x);
3604 enum machine_mode mode = GET_MODE (x);
3605 rtx temp;
3606 rtx reversed;
3607 int i;
3609 /* If this is a commutative operation, put a constant last and a complex
3610 expression first. We don't need to do this for comparisons here. */
3611 if (GET_RTX_CLASS (code) == 'c'
3612 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3614 temp = XEXP (x, 0);
3615 SUBST (XEXP (x, 0), XEXP (x, 1));
3616 SUBST (XEXP (x, 1), temp);
3619 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3620 sign extension of a PLUS with a constant, reverse the order of the sign
3621 extension and the addition. Note that this not the same as the original
3622 code, but overflow is undefined for signed values. Also note that the
3623 PLUS will have been partially moved "inside" the sign-extension, so that
3624 the first operand of X will really look like:
3625 (ashiftrt (plus (ashift A C4) C5) C4).
3626 We convert this to
3627 (plus (ashiftrt (ashift A C4) C2) C4)
3628 and replace the first operand of X with that expression. Later parts
3629 of this function may simplify the expression further.
3631 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3632 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3633 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3635 We do this to simplify address expressions. */
3637 if ((code == PLUS || code == MINUS || code == MULT)
3638 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3639 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3640 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3641 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3642 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3643 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3644 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3645 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3646 XEXP (XEXP (XEXP (x, 0), 0), 1),
3647 XEXP (XEXP (x, 0), 1))) != 0)
3649 rtx new
3650 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3651 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3652 INTVAL (XEXP (XEXP (x, 0), 1)));
3654 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3655 INTVAL (XEXP (XEXP (x, 0), 1)));
3657 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3660 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3661 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3662 things. Check for cases where both arms are testing the same
3663 condition.
3665 Don't do anything if all operands are very simple. */
3667 if (((GET_RTX_CLASS (code) == '2' || GET_RTX_CLASS (code) == 'c'
3668 || GET_RTX_CLASS (code) == '<')
3669 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3670 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3671 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3672 == 'o')))
3673 || (GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) != 'o'
3674 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3675 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 1))))
3676 == 'o')))))
3677 || (GET_RTX_CLASS (code) == '1'
3678 && ((GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) != 'o'
3679 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3680 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0))))
3681 == 'o'))))))
3683 rtx cond, true_rtx, false_rtx;
3685 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3686 if (cond != 0
3687 /* If everything is a comparison, what we have is highly unlikely
3688 to be simpler, so don't use it. */
3689 && ! (GET_RTX_CLASS (code) == '<'
3690 && (GET_RTX_CLASS (GET_CODE (true_rtx)) == '<'
3691 || GET_RTX_CLASS (GET_CODE (false_rtx)) == '<')))
3693 rtx cop1 = const0_rtx;
3694 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3696 if (cond_code == NE && GET_RTX_CLASS (GET_CODE (cond)) == '<')
3697 return x;
3699 /* Simplify the alternative arms; this may collapse the true and
3700 false arms to store-flag values. */
3701 true_rtx = subst (true_rtx, pc_rtx, pc_rtx, 0, 0);
3702 false_rtx = subst (false_rtx, pc_rtx, pc_rtx, 0, 0);
3704 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3705 is unlikely to be simpler. */
3706 if (general_operand (true_rtx, VOIDmode)
3707 && general_operand (false_rtx, VOIDmode))
3709 /* Restarting if we generate a store-flag expression will cause
3710 us to loop. Just drop through in this case. */
3712 /* If the result values are STORE_FLAG_VALUE and zero, we can
3713 just make the comparison operation. */
3714 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3715 x = gen_binary (cond_code, mode, cond, cop1);
3716 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3717 && reverse_condition (cond_code) != UNKNOWN)
3718 x = gen_binary (reverse_condition (cond_code),
3719 mode, cond, cop1);
3721 /* Likewise, we can make the negate of a comparison operation
3722 if the result values are - STORE_FLAG_VALUE and zero. */
3723 else if (GET_CODE (true_rtx) == CONST_INT
3724 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3725 && false_rtx == const0_rtx)
3726 x = simplify_gen_unary (NEG, mode,
3727 gen_binary (cond_code, mode, cond,
3728 cop1),
3729 mode);
3730 else if (GET_CODE (false_rtx) == CONST_INT
3731 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3732 && true_rtx == const0_rtx)
3733 x = simplify_gen_unary (NEG, mode,
3734 gen_binary (reverse_condition
3735 (cond_code),
3736 mode, cond, cop1),
3737 mode);
3738 else
3739 return gen_rtx_IF_THEN_ELSE (mode,
3740 gen_binary (cond_code, VOIDmode,
3741 cond, cop1),
3742 true_rtx, false_rtx);
3744 code = GET_CODE (x);
3745 op0_mode = VOIDmode;
3750 /* Try to fold this expression in case we have constants that weren't
3751 present before. */
3752 temp = 0;
3753 switch (GET_RTX_CLASS (code))
3755 case '1':
3756 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3757 break;
3758 case '<':
3760 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3761 if (cmp_mode == VOIDmode)
3763 cmp_mode = GET_MODE (XEXP (x, 1));
3764 if (cmp_mode == VOIDmode)
3765 cmp_mode = op0_mode;
3767 temp = simplify_relational_operation (code, cmp_mode,
3768 XEXP (x, 0), XEXP (x, 1));
3770 #ifdef FLOAT_STORE_FLAG_VALUE
3771 if (temp != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3773 if (temp == const0_rtx)
3774 temp = CONST0_RTX (mode);
3775 else
3776 temp = immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode), mode);
3778 #endif
3779 break;
3780 case 'c':
3781 case '2':
3782 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3783 break;
3784 case 'b':
3785 case '3':
3786 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3787 XEXP (x, 1), XEXP (x, 2));
3788 break;
3791 if (temp)
3793 x = temp;
3794 code = GET_CODE (temp);
3795 op0_mode = VOIDmode;
3796 mode = GET_MODE (temp);
3799 /* First see if we can apply the inverse distributive law. */
3800 if (code == PLUS || code == MINUS
3801 || code == AND || code == IOR || code == XOR)
3803 x = apply_distributive_law (x);
3804 code = GET_CODE (x);
3805 op0_mode = VOIDmode;
3808 /* If CODE is an associative operation not otherwise handled, see if we
3809 can associate some operands. This can win if they are constants or
3810 if they are logically related (i.e. (a & b) & a). */
3811 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3812 || code == AND || code == IOR || code == XOR
3813 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3814 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3815 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3817 if (GET_CODE (XEXP (x, 0)) == code)
3819 rtx other = XEXP (XEXP (x, 0), 0);
3820 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3821 rtx inner_op1 = XEXP (x, 1);
3822 rtx inner;
3824 /* Make sure we pass the constant operand if any as the second
3825 one if this is a commutative operation. */
3826 if (CONSTANT_P (inner_op0) && GET_RTX_CLASS (code) == 'c')
3828 rtx tem = inner_op0;
3829 inner_op0 = inner_op1;
3830 inner_op1 = tem;
3832 inner = simplify_binary_operation (code == MINUS ? PLUS
3833 : code == DIV ? MULT
3834 : code,
3835 mode, inner_op0, inner_op1);
3837 /* For commutative operations, try the other pair if that one
3838 didn't simplify. */
3839 if (inner == 0 && GET_RTX_CLASS (code) == 'c')
3841 other = XEXP (XEXP (x, 0), 1);
3842 inner = simplify_binary_operation (code, mode,
3843 XEXP (XEXP (x, 0), 0),
3844 XEXP (x, 1));
3847 if (inner)
3848 return gen_binary (code, mode, other, inner);
3852 /* A little bit of algebraic simplification here. */
3853 switch (code)
3855 case MEM:
3856 /* Ensure that our address has any ASHIFTs converted to MULT in case
3857 address-recognizing predicates are called later. */
3858 temp = make_compound_operation (XEXP (x, 0), MEM);
3859 SUBST (XEXP (x, 0), temp);
3860 break;
3862 case SUBREG:
3863 if (op0_mode == VOIDmode)
3864 op0_mode = GET_MODE (SUBREG_REG (x));
3866 /* simplify_subreg can't use gen_lowpart_for_combine. */
3867 if (CONSTANT_P (SUBREG_REG (x))
3868 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x))
3869 return gen_lowpart_for_combine (mode, SUBREG_REG (x));
3871 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3872 break;
3874 rtx temp;
3875 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3876 SUBREG_BYTE (x));
3877 if (temp)
3878 return temp;
3881 /* Don't change the mode of the MEM if that would change the meaning
3882 of the address. */
3883 if (GET_CODE (SUBREG_REG (x)) == MEM
3884 && (MEM_VOLATILE_P (SUBREG_REG (x))
3885 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3886 return gen_rtx_CLOBBER (mode, const0_rtx);
3888 /* Note that we cannot do any narrowing for non-constants since
3889 we might have been counting on using the fact that some bits were
3890 zero. We now do this in the SET. */
3892 break;
3894 case NOT:
3895 /* (not (plus X -1)) can become (neg X). */
3896 if (GET_CODE (XEXP (x, 0)) == PLUS
3897 && XEXP (XEXP (x, 0), 1) == constm1_rtx)
3898 return gen_rtx_NEG (mode, XEXP (XEXP (x, 0), 0));
3900 /* Similarly, (not (neg X)) is (plus X -1). */
3901 if (GET_CODE (XEXP (x, 0)) == NEG)
3902 return gen_rtx_PLUS (mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
3904 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
3905 if (GET_CODE (XEXP (x, 0)) == XOR
3906 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3907 && (temp = simplify_unary_operation (NOT, mode,
3908 XEXP (XEXP (x, 0), 1),
3909 mode)) != 0)
3910 return gen_binary (XOR, mode, XEXP (XEXP (x, 0), 0), temp);
3912 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3913 other than 1, but that is not valid. We could do a similar
3914 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3915 but this doesn't seem common enough to bother with. */
3916 if (GET_CODE (XEXP (x, 0)) == ASHIFT
3917 && XEXP (XEXP (x, 0), 0) == const1_rtx)
3918 return gen_rtx_ROTATE (mode, simplify_gen_unary (NOT, mode,
3919 const1_rtx, mode),
3920 XEXP (XEXP (x, 0), 1));
3922 if (GET_CODE (XEXP (x, 0)) == SUBREG
3923 && subreg_lowpart_p (XEXP (x, 0))
3924 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3925 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3926 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3927 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3929 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3931 x = gen_rtx_ROTATE (inner_mode,
3932 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3933 inner_mode),
3934 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3935 return gen_lowpart_for_combine (mode, x);
3938 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3939 reversing the comparison code if valid. */
3940 if (STORE_FLAG_VALUE == -1
3941 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
3942 && (reversed = reversed_comparison (x, mode, XEXP (XEXP (x, 0), 0),
3943 XEXP (XEXP (x, 0), 1))))
3944 return reversed;
3946 /* (not (ashiftrt foo C)) where C is the number of bits in FOO minus 1
3947 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3948 perform the above simplification. */
3950 if (STORE_FLAG_VALUE == -1
3951 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3952 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3953 && INTVAL (XEXP (XEXP (x, 0), 1)) == GET_MODE_BITSIZE (mode) - 1)
3954 return gen_rtx_GE (mode, XEXP (XEXP (x, 0), 0), const0_rtx);
3956 /* Apply De Morgan's laws to reduce number of patterns for machines
3957 with negating logical insns (and-not, nand, etc.). If result has
3958 only one NOT, put it first, since that is how the patterns are
3959 coded. */
3961 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
3963 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
3964 enum machine_mode op_mode;
3966 op_mode = GET_MODE (in1);
3967 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
3969 op_mode = GET_MODE (in2);
3970 if (op_mode == VOIDmode)
3971 op_mode = mode;
3972 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
3974 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
3976 rtx tem = in2;
3977 in2 = in1; in1 = tem;
3980 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
3981 mode, in1, in2);
3983 break;
3985 case NEG:
3986 /* (neg (plus X 1)) can become (not X). */
3987 if (GET_CODE (XEXP (x, 0)) == PLUS
3988 && XEXP (XEXP (x, 0), 1) == const1_rtx)
3989 return gen_rtx_NOT (mode, XEXP (XEXP (x, 0), 0));
3991 /* Similarly, (neg (not X)) is (plus X 1). */
3992 if (GET_CODE (XEXP (x, 0)) == NOT)
3993 return plus_constant (XEXP (XEXP (x, 0), 0), 1);
3995 /* (neg (minus X Y)) can become (minus Y X). This transformation
3996 isn't safe for modes with signed zeros, since if X and Y are
3997 both +0, (minus Y X) is the same as (minus X Y). If the rounding
3998 mode is towards +infinity (or -infinity) then the two expressions
3999 will be rounded differently. */
4000 if (GET_CODE (XEXP (x, 0)) == MINUS
4001 && !HONOR_SIGNED_ZEROS (mode)
4002 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
4003 return gen_binary (MINUS, mode, XEXP (XEXP (x, 0), 1),
4004 XEXP (XEXP (x, 0), 0));
4006 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4007 if (GET_CODE (XEXP (x, 0)) == XOR && XEXP (XEXP (x, 0), 1) == const1_rtx
4008 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4009 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4011 /* NEG commutes with ASHIFT since it is multiplication. Only do this
4012 if we can then eliminate the NEG (e.g.,
4013 if the operand is a constant). */
4015 if (GET_CODE (XEXP (x, 0)) == ASHIFT)
4017 temp = simplify_unary_operation (NEG, mode,
4018 XEXP (XEXP (x, 0), 0), mode);
4019 if (temp)
4020 return gen_binary (ASHIFT, mode, temp, XEXP (XEXP (x, 0), 1));
4023 temp = expand_compound_operation (XEXP (x, 0));
4025 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4026 replaced by (lshiftrt X C). This will convert
4027 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4029 if (GET_CODE (temp) == ASHIFTRT
4030 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4031 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4032 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4033 INTVAL (XEXP (temp, 1)));
4035 /* If X has only a single bit that might be nonzero, say, bit I, convert
4036 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4037 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4038 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4039 or a SUBREG of one since we'd be making the expression more
4040 complex if it was just a register. */
4042 if (GET_CODE (temp) != REG
4043 && ! (GET_CODE (temp) == SUBREG
4044 && GET_CODE (SUBREG_REG (temp)) == REG)
4045 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4047 rtx temp1 = simplify_shift_const
4048 (NULL_RTX, ASHIFTRT, mode,
4049 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4050 GET_MODE_BITSIZE (mode) - 1 - i),
4051 GET_MODE_BITSIZE (mode) - 1 - i);
4053 /* If all we did was surround TEMP with the two shifts, we
4054 haven't improved anything, so don't use it. Otherwise,
4055 we are better off with TEMP1. */
4056 if (GET_CODE (temp1) != ASHIFTRT
4057 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4058 || XEXP (XEXP (temp1, 0), 0) != temp)
4059 return temp1;
4061 break;
4063 case TRUNCATE:
4064 /* We can't handle truncation to a partial integer mode here
4065 because we don't know the real bitsize of the partial
4066 integer mode. */
4067 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4068 break;
4070 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4071 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4072 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4073 SUBST (XEXP (x, 0),
4074 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4075 GET_MODE_MASK (mode), NULL_RTX, 0));
4077 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4078 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4079 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4080 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4081 return XEXP (XEXP (x, 0), 0);
4083 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4084 (OP:SI foo:SI) if OP is NEG or ABS. */
4085 if ((GET_CODE (XEXP (x, 0)) == ABS
4086 || GET_CODE (XEXP (x, 0)) == NEG)
4087 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4088 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4089 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4090 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4091 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4093 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4094 (truncate:SI x). */
4095 if (GET_CODE (XEXP (x, 0)) == SUBREG
4096 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4097 && subreg_lowpart_p (XEXP (x, 0)))
4098 return SUBREG_REG (XEXP (x, 0));
4100 /* If we know that the value is already truncated, we can
4101 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4102 is nonzero for the corresponding modes. But don't do this
4103 for an (LSHIFTRT (MULT ...)) since this will cause problems
4104 with the umulXi3_highpart patterns. */
4105 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4106 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4107 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4108 >= GET_MODE_BITSIZE (mode) + 1
4109 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4110 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4111 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4113 /* A truncate of a comparison can be replaced with a subreg if
4114 STORE_FLAG_VALUE permits. This is like the previous test,
4115 but it works even if the comparison is done in a mode larger
4116 than HOST_BITS_PER_WIDE_INT. */
4117 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4118 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4119 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4120 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4122 /* Similarly, a truncate of a register whose value is a
4123 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4124 permits. */
4125 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4126 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4127 && (temp = get_last_value (XEXP (x, 0)))
4128 && GET_RTX_CLASS (GET_CODE (temp)) == '<')
4129 return gen_lowpart_for_combine (mode, XEXP (x, 0));
4131 break;
4133 case FLOAT_TRUNCATE:
4134 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4135 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4136 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4137 return XEXP (XEXP (x, 0), 0);
4139 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4140 (OP:SF foo:SF) if OP is NEG or ABS. */
4141 if ((GET_CODE (XEXP (x, 0)) == ABS
4142 || GET_CODE (XEXP (x, 0)) == NEG)
4143 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4144 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4145 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4146 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4148 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4149 is (float_truncate:SF x). */
4150 if (GET_CODE (XEXP (x, 0)) == SUBREG
4151 && subreg_lowpart_p (XEXP (x, 0))
4152 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4153 return SUBREG_REG (XEXP (x, 0));
4154 break;
4156 #ifdef HAVE_cc0
4157 case COMPARE:
4158 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4159 using cc0, in which case we want to leave it as a COMPARE
4160 so we can distinguish it from a register-register-copy. */
4161 if (XEXP (x, 1) == const0_rtx)
4162 return XEXP (x, 0);
4164 /* x - 0 is the same as x unless x's mode has signed zeros and
4165 allows rounding towards -infinity. Under those conditions,
4166 0 - 0 is -0. */
4167 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4168 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4169 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4170 return XEXP (x, 0);
4171 break;
4172 #endif
4174 case CONST:
4175 /* (const (const X)) can become (const X). Do it this way rather than
4176 returning the inner CONST since CONST can be shared with a
4177 REG_EQUAL note. */
4178 if (GET_CODE (XEXP (x, 0)) == CONST)
4179 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4180 break;
4182 #ifdef HAVE_lo_sum
4183 case LO_SUM:
4184 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4185 can add in an offset. find_split_point will split this address up
4186 again if it doesn't match. */
4187 if (GET_CODE (XEXP (x, 0)) == HIGH
4188 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4189 return XEXP (x, 1);
4190 break;
4191 #endif
4193 case PLUS:
4194 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4195 outermost. That's because that's the way indexed addresses are
4196 supposed to appear. This code used to check many more cases, but
4197 they are now checked elsewhere. */
4198 if (GET_CODE (XEXP (x, 0)) == PLUS
4199 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4200 return gen_binary (PLUS, mode,
4201 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4202 XEXP (x, 1)),
4203 XEXP (XEXP (x, 0), 1));
4205 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4206 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4207 bit-field and can be replaced by either a sign_extend or a
4208 sign_extract. The `and' may be a zero_extend and the two
4209 <c>, -<c> constants may be reversed. */
4210 if (GET_CODE (XEXP (x, 0)) == XOR
4211 && GET_CODE (XEXP (x, 1)) == CONST_INT
4212 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4213 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4214 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4215 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4217 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4218 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4219 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4220 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4221 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4222 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4223 == (unsigned int) i + 1))))
4224 return simplify_shift_const
4225 (NULL_RTX, ASHIFTRT, mode,
4226 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4227 XEXP (XEXP (XEXP (x, 0), 0), 0),
4228 GET_MODE_BITSIZE (mode) - (i + 1)),
4229 GET_MODE_BITSIZE (mode) - (i + 1));
4231 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4232 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4233 is 1. This produces better code than the alternative immediately
4234 below. */
4235 if (GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == '<'
4236 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4237 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4238 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4239 XEXP (XEXP (x, 0), 0),
4240 XEXP (XEXP (x, 0), 1))))
4241 return
4242 simplify_gen_unary (NEG, mode, reversed, mode);
4244 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4245 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4246 the bitsize of the mode - 1. This allows simplification of
4247 "a = (b & 8) == 0;" */
4248 if (XEXP (x, 1) == constm1_rtx
4249 && GET_CODE (XEXP (x, 0)) != REG
4250 && ! (GET_CODE (XEXP (x,0)) == SUBREG
4251 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == REG)
4252 && nonzero_bits (XEXP (x, 0), mode) == 1)
4253 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4254 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4255 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4256 GET_MODE_BITSIZE (mode) - 1),
4257 GET_MODE_BITSIZE (mode) - 1);
4259 /* If we are adding two things that have no bits in common, convert
4260 the addition into an IOR. This will often be further simplified,
4261 for example in cases like ((a & 1) + (a & 2)), which can
4262 become a & 3. */
4264 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4265 && (nonzero_bits (XEXP (x, 0), mode)
4266 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4268 /* Try to simplify the expression further. */
4269 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4270 temp = combine_simplify_rtx (tor, mode, last, in_dest);
4272 /* If we could, great. If not, do not go ahead with the IOR
4273 replacement, since PLUS appears in many special purpose
4274 address arithmetic instructions. */
4275 if (GET_CODE (temp) != CLOBBER && temp != tor)
4276 return temp;
4278 break;
4280 case MINUS:
4281 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4282 by reversing the comparison code if valid. */
4283 if (STORE_FLAG_VALUE == 1
4284 && XEXP (x, 0) == const1_rtx
4285 && GET_RTX_CLASS (GET_CODE (XEXP (x, 1))) == '<'
4286 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4287 XEXP (XEXP (x, 1), 0),
4288 XEXP (XEXP (x, 1), 1))))
4289 return reversed;
4291 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4292 (and <foo> (const_int pow2-1)) */
4293 if (GET_CODE (XEXP (x, 1)) == AND
4294 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4295 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4296 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4297 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4298 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4300 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4301 integers. */
4302 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4303 return gen_binary (MINUS, mode,
4304 gen_binary (MINUS, mode, XEXP (x, 0),
4305 XEXP (XEXP (x, 1), 0)),
4306 XEXP (XEXP (x, 1), 1));
4307 break;
4309 case MULT:
4310 /* If we have (mult (plus A B) C), apply the distributive law and then
4311 the inverse distributive law to see if things simplify. This
4312 occurs mostly in addresses, often when unrolling loops. */
4314 if (GET_CODE (XEXP (x, 0)) == PLUS)
4316 x = apply_distributive_law
4317 (gen_binary (PLUS, mode,
4318 gen_binary (MULT, mode,
4319 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4320 gen_binary (MULT, mode,
4321 XEXP (XEXP (x, 0), 1),
4322 copy_rtx (XEXP (x, 1)))));
4324 if (GET_CODE (x) != MULT)
4325 return x;
4327 /* Try simplify a*(b/c) as (a*b)/c. */
4328 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4329 && GET_CODE (XEXP (x, 0)) == DIV)
4331 rtx tem = simplify_binary_operation (MULT, mode,
4332 XEXP (XEXP (x, 0), 0),
4333 XEXP (x, 1));
4334 if (tem)
4335 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4337 break;
4339 case UDIV:
4340 /* If this is a divide by a power of two, treat it as a shift if
4341 its first operand is a shift. */
4342 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4343 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4344 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4345 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4346 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4347 || GET_CODE (XEXP (x, 0)) == ROTATE
4348 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4349 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4350 break;
4352 case EQ: case NE:
4353 case GT: case GTU: case GE: case GEU:
4354 case LT: case LTU: case LE: case LEU:
4355 case UNEQ: case LTGT:
4356 case UNGT: case UNGE:
4357 case UNLT: case UNLE:
4358 case UNORDERED: case ORDERED:
4359 /* If the first operand is a condition code, we can't do anything
4360 with it. */
4361 if (GET_CODE (XEXP (x, 0)) == COMPARE
4362 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4363 #ifdef HAVE_cc0
4364 && XEXP (x, 0) != cc0_rtx
4365 #endif
4368 rtx op0 = XEXP (x, 0);
4369 rtx op1 = XEXP (x, 1);
4370 enum rtx_code new_code;
4372 if (GET_CODE (op0) == COMPARE)
4373 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4375 /* Simplify our comparison, if possible. */
4376 new_code = simplify_comparison (code, &op0, &op1);
4378 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4379 if only the low-order bit is possibly nonzero in X (such as when
4380 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4381 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4382 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4383 (plus X 1).
4385 Remove any ZERO_EXTRACT we made when thinking this was a
4386 comparison. It may now be simpler to use, e.g., an AND. If a
4387 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4388 the call to make_compound_operation in the SET case. */
4390 if (STORE_FLAG_VALUE == 1
4391 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4392 && op1 == const0_rtx
4393 && mode == GET_MODE (op0)
4394 && nonzero_bits (op0, mode) == 1)
4395 return gen_lowpart_for_combine (mode,
4396 expand_compound_operation (op0));
4398 else if (STORE_FLAG_VALUE == 1
4399 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4400 && op1 == const0_rtx
4401 && mode == GET_MODE (op0)
4402 && (num_sign_bit_copies (op0, mode)
4403 == GET_MODE_BITSIZE (mode)))
4405 op0 = expand_compound_operation (op0);
4406 return simplify_gen_unary (NEG, mode,
4407 gen_lowpart_for_combine (mode, op0),
4408 mode);
4411 else if (STORE_FLAG_VALUE == 1
4412 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4413 && op1 == const0_rtx
4414 && mode == GET_MODE (op0)
4415 && nonzero_bits (op0, mode) == 1)
4417 op0 = expand_compound_operation (op0);
4418 return gen_binary (XOR, mode,
4419 gen_lowpart_for_combine (mode, op0),
4420 const1_rtx);
4423 else if (STORE_FLAG_VALUE == 1
4424 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4425 && op1 == const0_rtx
4426 && mode == GET_MODE (op0)
4427 && (num_sign_bit_copies (op0, mode)
4428 == GET_MODE_BITSIZE (mode)))
4430 op0 = expand_compound_operation (op0);
4431 return plus_constant (gen_lowpart_for_combine (mode, op0), 1);
4434 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4435 those above. */
4436 if (STORE_FLAG_VALUE == -1
4437 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4438 && op1 == const0_rtx
4439 && (num_sign_bit_copies (op0, mode)
4440 == GET_MODE_BITSIZE (mode)))
4441 return gen_lowpart_for_combine (mode,
4442 expand_compound_operation (op0));
4444 else if (STORE_FLAG_VALUE == -1
4445 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4446 && op1 == const0_rtx
4447 && mode == GET_MODE (op0)
4448 && nonzero_bits (op0, mode) == 1)
4450 op0 = expand_compound_operation (op0);
4451 return simplify_gen_unary (NEG, mode,
4452 gen_lowpart_for_combine (mode, op0),
4453 mode);
4456 else if (STORE_FLAG_VALUE == -1
4457 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4458 && op1 == const0_rtx
4459 && mode == GET_MODE (op0)
4460 && (num_sign_bit_copies (op0, mode)
4461 == GET_MODE_BITSIZE (mode)))
4463 op0 = expand_compound_operation (op0);
4464 return simplify_gen_unary (NOT, mode,
4465 gen_lowpart_for_combine (mode, op0),
4466 mode);
4469 /* If X is 0/1, (eq X 0) is X-1. */
4470 else if (STORE_FLAG_VALUE == -1
4471 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4472 && op1 == const0_rtx
4473 && mode == GET_MODE (op0)
4474 && nonzero_bits (op0, mode) == 1)
4476 op0 = expand_compound_operation (op0);
4477 return plus_constant (gen_lowpart_for_combine (mode, op0), -1);
4480 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4481 one bit that might be nonzero, we can convert (ne x 0) to
4482 (ashift x c) where C puts the bit in the sign bit. Remove any
4483 AND with STORE_FLAG_VALUE when we are done, since we are only
4484 going to test the sign bit. */
4485 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4486 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4487 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4488 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE(mode)-1))
4489 && op1 == const0_rtx
4490 && mode == GET_MODE (op0)
4491 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4493 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4494 expand_compound_operation (op0),
4495 GET_MODE_BITSIZE (mode) - 1 - i);
4496 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4497 return XEXP (x, 0);
4498 else
4499 return x;
4502 /* If the code changed, return a whole new comparison. */
4503 if (new_code != code)
4504 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4506 /* Otherwise, keep this operation, but maybe change its operands.
4507 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4508 SUBST (XEXP (x, 0), op0);
4509 SUBST (XEXP (x, 1), op1);
4511 break;
4513 case IF_THEN_ELSE:
4514 return simplify_if_then_else (x);
4516 case ZERO_EXTRACT:
4517 case SIGN_EXTRACT:
4518 case ZERO_EXTEND:
4519 case SIGN_EXTEND:
4520 /* If we are processing SET_DEST, we are done. */
4521 if (in_dest)
4522 return x;
4524 return expand_compound_operation (x);
4526 case SET:
4527 return simplify_set (x);
4529 case AND:
4530 case IOR:
4531 case XOR:
4532 return simplify_logical (x, last);
4534 case ABS:
4535 /* (abs (neg <foo>)) -> (abs <foo>) */
4536 if (GET_CODE (XEXP (x, 0)) == NEG)
4537 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4539 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4540 do nothing. */
4541 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4542 break;
4544 /* If operand is something known to be positive, ignore the ABS. */
4545 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4546 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4547 <= HOST_BITS_PER_WIDE_INT)
4548 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4549 & ((HOST_WIDE_INT) 1
4550 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4551 == 0)))
4552 return XEXP (x, 0);
4554 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4555 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4556 return gen_rtx_NEG (mode, XEXP (x, 0));
4558 break;
4560 case FFS:
4561 /* (ffs (*_extend <X>)) = (ffs <X>) */
4562 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4563 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4564 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4565 break;
4567 case FLOAT:
4568 /* (float (sign_extend <X>)) = (float <X>). */
4569 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4570 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4571 break;
4573 case ASHIFT:
4574 case LSHIFTRT:
4575 case ASHIFTRT:
4576 case ROTATE:
4577 case ROTATERT:
4578 /* If this is a shift by a constant amount, simplify it. */
4579 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4580 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4581 INTVAL (XEXP (x, 1)));
4583 #ifdef SHIFT_COUNT_TRUNCATED
4584 else if (SHIFT_COUNT_TRUNCATED && GET_CODE (XEXP (x, 1)) != REG)
4585 SUBST (XEXP (x, 1),
4586 force_to_mode (XEXP (x, 1), GET_MODE (x),
4587 ((HOST_WIDE_INT) 1
4588 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4589 - 1,
4590 NULL_RTX, 0));
4591 #endif
4593 break;
4595 case VEC_SELECT:
4597 rtx op0 = XEXP (x, 0);
4598 rtx op1 = XEXP (x, 1);
4599 int len;
4601 if (GET_CODE (op1) != PARALLEL)
4602 abort ();
4603 len = XVECLEN (op1, 0);
4604 if (len == 1
4605 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4606 && GET_CODE (op0) == VEC_CONCAT)
4608 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4610 /* Try to find the element in the VEC_CONCAT. */
4611 for (;;)
4613 if (GET_MODE (op0) == GET_MODE (x))
4614 return op0;
4615 if (GET_CODE (op0) == VEC_CONCAT)
4617 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4618 if (op0_size < offset)
4619 op0 = XEXP (op0, 0);
4620 else
4622 offset -= op0_size;
4623 op0 = XEXP (op0, 1);
4626 else
4627 break;
4632 break;
4634 default:
4635 break;
4638 return x;
4641 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4643 static rtx
4644 simplify_if_then_else (x)
4645 rtx x;
4647 enum machine_mode mode = GET_MODE (x);
4648 rtx cond = XEXP (x, 0);
4649 rtx true_rtx = XEXP (x, 1);
4650 rtx false_rtx = XEXP (x, 2);
4651 enum rtx_code true_code = GET_CODE (cond);
4652 int comparison_p = GET_RTX_CLASS (true_code) == '<';
4653 rtx temp;
4654 int i;
4655 enum rtx_code false_code;
4656 rtx reversed;
4658 /* Simplify storing of the truth value. */
4659 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4660 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4662 /* Also when the truth value has to be reversed. */
4663 if (comparison_p
4664 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4665 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4666 XEXP (cond, 1))))
4667 return reversed;
4669 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4670 in it is being compared against certain values. Get the true and false
4671 comparisons and see if that says anything about the value of each arm. */
4673 if (comparison_p
4674 && ((false_code = combine_reversed_comparison_code (cond))
4675 != UNKNOWN)
4676 && GET_CODE (XEXP (cond, 0)) == REG)
4678 HOST_WIDE_INT nzb;
4679 rtx from = XEXP (cond, 0);
4680 rtx true_val = XEXP (cond, 1);
4681 rtx false_val = true_val;
4682 int swapped = 0;
4684 /* If FALSE_CODE is EQ, swap the codes and arms. */
4686 if (false_code == EQ)
4688 swapped = 1, true_code = EQ, false_code = NE;
4689 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4692 /* If we are comparing against zero and the expression being tested has
4693 only a single bit that might be nonzero, that is its value when it is
4694 not equal to zero. Similarly if it is known to be -1 or 0. */
4696 if (true_code == EQ && true_val == const0_rtx
4697 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4698 false_code = EQ, false_val = GEN_INT (nzb);
4699 else if (true_code == EQ && true_val == const0_rtx
4700 && (num_sign_bit_copies (from, GET_MODE (from))
4701 == GET_MODE_BITSIZE (GET_MODE (from))))
4702 false_code = EQ, false_val = constm1_rtx;
4704 /* Now simplify an arm if we know the value of the register in the
4705 branch and it is used in the arm. Be careful due to the potential
4706 of locally-shared RTL. */
4708 if (reg_mentioned_p (from, true_rtx))
4709 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4710 from, true_val),
4711 pc_rtx, pc_rtx, 0, 0);
4712 if (reg_mentioned_p (from, false_rtx))
4713 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4714 from, false_val),
4715 pc_rtx, pc_rtx, 0, 0);
4717 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4718 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4720 true_rtx = XEXP (x, 1);
4721 false_rtx = XEXP (x, 2);
4722 true_code = GET_CODE (cond);
4725 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4726 reversed, do so to avoid needing two sets of patterns for
4727 subtract-and-branch insns. Similarly if we have a constant in the true
4728 arm, the false arm is the same as the first operand of the comparison, or
4729 the false arm is more complicated than the true arm. */
4731 if (comparison_p
4732 && combine_reversed_comparison_code (cond) != UNKNOWN
4733 && (true_rtx == pc_rtx
4734 || (CONSTANT_P (true_rtx)
4735 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4736 || true_rtx == const0_rtx
4737 || (GET_RTX_CLASS (GET_CODE (true_rtx)) == 'o'
4738 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4739 || (GET_CODE (true_rtx) == SUBREG
4740 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true_rtx))) == 'o'
4741 && GET_RTX_CLASS (GET_CODE (false_rtx)) != 'o')
4742 || reg_mentioned_p (true_rtx, false_rtx)
4743 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4745 true_code = reversed_comparison_code (cond, NULL);
4746 SUBST (XEXP (x, 0),
4747 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4748 XEXP (cond, 1)));
4750 SUBST (XEXP (x, 1), false_rtx);
4751 SUBST (XEXP (x, 2), true_rtx);
4753 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4754 cond = XEXP (x, 0);
4756 /* It is possible that the conditional has been simplified out. */
4757 true_code = GET_CODE (cond);
4758 comparison_p = GET_RTX_CLASS (true_code) == '<';
4761 /* If the two arms are identical, we don't need the comparison. */
4763 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4764 return true_rtx;
4766 /* Convert a == b ? b : a to "a". */
4767 if (true_code == EQ && ! side_effects_p (cond)
4768 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4769 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4770 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4771 return false_rtx;
4772 else if (true_code == NE && ! side_effects_p (cond)
4773 && (! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4774 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4775 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4776 return true_rtx;
4778 /* Look for cases where we have (abs x) or (neg (abs X)). */
4780 if (GET_MODE_CLASS (mode) == MODE_INT
4781 && GET_CODE (false_rtx) == NEG
4782 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4783 && comparison_p
4784 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4785 && ! side_effects_p (true_rtx))
4786 switch (true_code)
4788 case GT:
4789 case GE:
4790 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4791 case LT:
4792 case LE:
4793 return
4794 simplify_gen_unary (NEG, mode,
4795 simplify_gen_unary (ABS, mode, true_rtx, mode),
4796 mode);
4797 default:
4798 break;
4801 /* Look for MIN or MAX. */
4803 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4804 && comparison_p
4805 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4806 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4807 && ! side_effects_p (cond))
4808 switch (true_code)
4810 case GE:
4811 case GT:
4812 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4813 case LE:
4814 case LT:
4815 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4816 case GEU:
4817 case GTU:
4818 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4819 case LEU:
4820 case LTU:
4821 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4822 default:
4823 break;
4826 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4827 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4828 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4829 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4830 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4831 neither 1 or -1, but it isn't worth checking for. */
4833 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4834 && comparison_p && mode != VOIDmode && ! side_effects_p (x))
4836 rtx t = make_compound_operation (true_rtx, SET);
4837 rtx f = make_compound_operation (false_rtx, SET);
4838 rtx cond_op0 = XEXP (cond, 0);
4839 rtx cond_op1 = XEXP (cond, 1);
4840 enum rtx_code op = NIL, extend_op = NIL;
4841 enum machine_mode m = mode;
4842 rtx z = 0, c1 = NULL_RTX;
4844 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4845 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4846 || GET_CODE (t) == ASHIFT
4847 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4848 && rtx_equal_p (XEXP (t, 0), f))
4849 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4851 /* If an identity-zero op is commutative, check whether there
4852 would be a match if we swapped the operands. */
4853 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4854 || GET_CODE (t) == XOR)
4855 && rtx_equal_p (XEXP (t, 1), f))
4856 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4857 else if (GET_CODE (t) == SIGN_EXTEND
4858 && (GET_CODE (XEXP (t, 0)) == PLUS
4859 || GET_CODE (XEXP (t, 0)) == MINUS
4860 || GET_CODE (XEXP (t, 0)) == IOR
4861 || GET_CODE (XEXP (t, 0)) == XOR
4862 || GET_CODE (XEXP (t, 0)) == ASHIFT
4863 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4864 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4865 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4866 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4867 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4868 && (num_sign_bit_copies (f, GET_MODE (f))
4869 > (GET_MODE_BITSIZE (mode)
4870 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4872 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4873 extend_op = SIGN_EXTEND;
4874 m = GET_MODE (XEXP (t, 0));
4876 else if (GET_CODE (t) == SIGN_EXTEND
4877 && (GET_CODE (XEXP (t, 0)) == PLUS
4878 || GET_CODE (XEXP (t, 0)) == IOR
4879 || GET_CODE (XEXP (t, 0)) == XOR)
4880 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4881 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4882 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4883 && (num_sign_bit_copies (f, GET_MODE (f))
4884 > (GET_MODE_BITSIZE (mode)
4885 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4887 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4888 extend_op = SIGN_EXTEND;
4889 m = GET_MODE (XEXP (t, 0));
4891 else if (GET_CODE (t) == ZERO_EXTEND
4892 && (GET_CODE (XEXP (t, 0)) == PLUS
4893 || GET_CODE (XEXP (t, 0)) == MINUS
4894 || GET_CODE (XEXP (t, 0)) == IOR
4895 || GET_CODE (XEXP (t, 0)) == XOR
4896 || GET_CODE (XEXP (t, 0)) == ASHIFT
4897 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4898 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4899 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4900 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4901 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4902 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4903 && ((nonzero_bits (f, GET_MODE (f))
4904 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
4905 == 0))
4907 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4908 extend_op = ZERO_EXTEND;
4909 m = GET_MODE (XEXP (t, 0));
4911 else if (GET_CODE (t) == ZERO_EXTEND
4912 && (GET_CODE (XEXP (t, 0)) == PLUS
4913 || GET_CODE (XEXP (t, 0)) == IOR
4914 || GET_CODE (XEXP (t, 0)) == XOR)
4915 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4916 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4917 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4918 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4919 && ((nonzero_bits (f, GET_MODE (f))
4920 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
4921 == 0))
4923 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4924 extend_op = ZERO_EXTEND;
4925 m = GET_MODE (XEXP (t, 0));
4928 if (z)
4930 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
4931 pc_rtx, pc_rtx, 0, 0);
4932 temp = gen_binary (MULT, m, temp,
4933 gen_binary (MULT, m, c1, const_true_rtx));
4934 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
4935 temp = gen_binary (op, m, gen_lowpart_for_combine (m, z), temp);
4937 if (extend_op != NIL)
4938 temp = simplify_gen_unary (extend_op, mode, temp, m);
4940 return temp;
4944 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4945 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4946 negation of a single bit, we can convert this operation to a shift. We
4947 can actually do this more generally, but it doesn't seem worth it. */
4949 if (true_code == NE && XEXP (cond, 1) == const0_rtx
4950 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
4951 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
4952 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
4953 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
4954 == GET_MODE_BITSIZE (mode))
4955 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
4956 return
4957 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4958 gen_lowpart_for_combine (mode, XEXP (cond, 0)), i);
4960 return x;
4963 /* Simplify X, a SET expression. Return the new expression. */
4965 static rtx
4966 simplify_set (x)
4967 rtx x;
4969 rtx src = SET_SRC (x);
4970 rtx dest = SET_DEST (x);
4971 enum machine_mode mode
4972 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
4973 rtx other_insn;
4974 rtx *cc_use;
4976 /* (set (pc) (return)) gets written as (return). */
4977 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
4978 return src;
4980 /* Now that we know for sure which bits of SRC we are using, see if we can
4981 simplify the expression for the object knowing that we only need the
4982 low-order bits. */
4984 if (GET_MODE_CLASS (mode) == MODE_INT)
4986 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
4987 SUBST (SET_SRC (x), src);
4990 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4991 the comparison result and try to simplify it unless we already have used
4992 undobuf.other_insn. */
4993 if ((GET_CODE (src) == COMPARE
4994 #ifdef HAVE_cc0
4995 || dest == cc0_rtx
4996 #endif
4998 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
4999 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5000 && GET_RTX_CLASS (GET_CODE (*cc_use)) == '<'
5001 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5003 enum rtx_code old_code = GET_CODE (*cc_use);
5004 enum rtx_code new_code;
5005 rtx op0, op1;
5006 int other_changed = 0;
5007 enum machine_mode compare_mode = GET_MODE (dest);
5009 if (GET_CODE (src) == COMPARE)
5010 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5011 else
5012 op0 = src, op1 = const0_rtx;
5014 /* Simplify our comparison, if possible. */
5015 new_code = simplify_comparison (old_code, &op0, &op1);
5017 #ifdef EXTRA_CC_MODES
5018 /* If this machine has CC modes other than CCmode, check to see if we
5019 need to use a different CC mode here. */
5020 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5021 #endif /* EXTRA_CC_MODES */
5023 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
5024 /* If the mode changed, we have to change SET_DEST, the mode in the
5025 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5026 a hard register, just build new versions with the proper mode. If it
5027 is a pseudo, we lose unless it is only time we set the pseudo, in
5028 which case we can safely change its mode. */
5029 if (compare_mode != GET_MODE (dest))
5031 unsigned int regno = REGNO (dest);
5032 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5034 if (regno < FIRST_PSEUDO_REGISTER
5035 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5037 if (regno >= FIRST_PSEUDO_REGISTER)
5038 SUBST (regno_reg_rtx[regno], new_dest);
5040 SUBST (SET_DEST (x), new_dest);
5041 SUBST (XEXP (*cc_use, 0), new_dest);
5042 other_changed = 1;
5044 dest = new_dest;
5047 #endif
5049 /* If the code changed, we have to build a new comparison in
5050 undobuf.other_insn. */
5051 if (new_code != old_code)
5053 unsigned HOST_WIDE_INT mask;
5055 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5056 dest, const0_rtx));
5058 /* If the only change we made was to change an EQ into an NE or
5059 vice versa, OP0 has only one bit that might be nonzero, and OP1
5060 is zero, check if changing the user of the condition code will
5061 produce a valid insn. If it won't, we can keep the original code
5062 in that insn by surrounding our operation with an XOR. */
5064 if (((old_code == NE && new_code == EQ)
5065 || (old_code == EQ && new_code == NE))
5066 && ! other_changed && op1 == const0_rtx
5067 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5068 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5070 rtx pat = PATTERN (other_insn), note = 0;
5072 if ((recog_for_combine (&pat, other_insn, &note) < 0
5073 && ! check_asm_operands (pat)))
5075 PUT_CODE (*cc_use, old_code);
5076 other_insn = 0;
5078 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5082 other_changed = 1;
5085 if (other_changed)
5086 undobuf.other_insn = other_insn;
5088 #ifdef HAVE_cc0
5089 /* If we are now comparing against zero, change our source if
5090 needed. If we do not use cc0, we always have a COMPARE. */
5091 if (op1 == const0_rtx && dest == cc0_rtx)
5093 SUBST (SET_SRC (x), op0);
5094 src = op0;
5096 else
5097 #endif
5099 /* Otherwise, if we didn't previously have a COMPARE in the
5100 correct mode, we need one. */
5101 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5103 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5104 src = SET_SRC (x);
5106 else
5108 /* Otherwise, update the COMPARE if needed. */
5109 SUBST (XEXP (src, 0), op0);
5110 SUBST (XEXP (src, 1), op1);
5113 else
5115 /* Get SET_SRC in a form where we have placed back any
5116 compound expressions. Then do the checks below. */
5117 src = make_compound_operation (src, SET);
5118 SUBST (SET_SRC (x), src);
5121 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5122 and X being a REG or (subreg (reg)), we may be able to convert this to
5123 (set (subreg:m2 x) (op)).
5125 We can always do this if M1 is narrower than M2 because that means that
5126 we only care about the low bits of the result.
5128 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5129 perform a narrower operation than requested since the high-order bits will
5130 be undefined. On machine where it is defined, this transformation is safe
5131 as long as M1 and M2 have the same number of words. */
5133 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5134 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src))) != 'o'
5135 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5136 / UNITS_PER_WORD)
5137 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5139 #ifndef WORD_REGISTER_OPERATIONS
5140 && (GET_MODE_SIZE (GET_MODE (src))
5141 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5142 #endif
5143 #ifdef CLASS_CANNOT_CHANGE_MODE
5144 && ! (GET_CODE (dest) == REG && REGNO (dest) < FIRST_PSEUDO_REGISTER
5145 && (TEST_HARD_REG_BIT
5146 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
5147 REGNO (dest)))
5148 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (src),
5149 GET_MODE (SUBREG_REG (src))))
5150 #endif
5151 && (GET_CODE (dest) == REG
5152 || (GET_CODE (dest) == SUBREG
5153 && GET_CODE (SUBREG_REG (dest)) == REG)))
5155 SUBST (SET_DEST (x),
5156 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src)),
5157 dest));
5158 SUBST (SET_SRC (x), SUBREG_REG (src));
5160 src = SET_SRC (x), dest = SET_DEST (x);
5163 #ifdef LOAD_EXTEND_OP
5164 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5165 would require a paradoxical subreg. Replace the subreg with a
5166 zero_extend to avoid the reload that would otherwise be required. */
5168 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5169 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != NIL
5170 && SUBREG_BYTE (src) == 0
5171 && (GET_MODE_SIZE (GET_MODE (src))
5172 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5173 && GET_CODE (SUBREG_REG (src)) == MEM)
5175 SUBST (SET_SRC (x),
5176 gen_rtx (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5177 GET_MODE (src), SUBREG_REG (src)));
5179 src = SET_SRC (x);
5181 #endif
5183 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5184 are comparing an item known to be 0 or -1 against 0, use a logical
5185 operation instead. Check for one of the arms being an IOR of the other
5186 arm with some value. We compute three terms to be IOR'ed together. In
5187 practice, at most two will be nonzero. Then we do the IOR's. */
5189 if (GET_CODE (dest) != PC
5190 && GET_CODE (src) == IF_THEN_ELSE
5191 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5192 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5193 && XEXP (XEXP (src, 0), 1) == const0_rtx
5194 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5195 #ifdef HAVE_conditional_move
5196 && ! can_conditionally_move_p (GET_MODE (src))
5197 #endif
5198 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5199 GET_MODE (XEXP (XEXP (src, 0), 0)))
5200 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5201 && ! side_effects_p (src))
5203 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5204 ? XEXP (src, 1) : XEXP (src, 2));
5205 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5206 ? XEXP (src, 2) : XEXP (src, 1));
5207 rtx term1 = const0_rtx, term2, term3;
5209 if (GET_CODE (true_rtx) == IOR
5210 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5211 term1 = false_rtx, true_rtx = XEXP(true_rtx, 1), false_rtx = const0_rtx;
5212 else if (GET_CODE (true_rtx) == IOR
5213 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5214 term1 = false_rtx, true_rtx = XEXP(true_rtx, 0), false_rtx = const0_rtx;
5215 else if (GET_CODE (false_rtx) == IOR
5216 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5217 term1 = true_rtx, false_rtx = XEXP(false_rtx, 1), true_rtx = const0_rtx;
5218 else if (GET_CODE (false_rtx) == IOR
5219 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5220 term1 = true_rtx, false_rtx = XEXP(false_rtx, 0), true_rtx = const0_rtx;
5222 term2 = gen_binary (AND, GET_MODE (src),
5223 XEXP (XEXP (src, 0), 0), true_rtx);
5224 term3 = gen_binary (AND, GET_MODE (src),
5225 simplify_gen_unary (NOT, GET_MODE (src),
5226 XEXP (XEXP (src, 0), 0),
5227 GET_MODE (src)),
5228 false_rtx);
5230 SUBST (SET_SRC (x),
5231 gen_binary (IOR, GET_MODE (src),
5232 gen_binary (IOR, GET_MODE (src), term1, term2),
5233 term3));
5235 src = SET_SRC (x);
5238 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5239 whole thing fail. */
5240 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5241 return src;
5242 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5243 return dest;
5244 else
5245 /* Convert this into a field assignment operation, if possible. */
5246 return make_field_assignment (x);
5249 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5250 result. LAST is nonzero if this is the last retry. */
5252 static rtx
5253 simplify_logical (x, last)
5254 rtx x;
5255 int last;
5257 enum machine_mode mode = GET_MODE (x);
5258 rtx op0 = XEXP (x, 0);
5259 rtx op1 = XEXP (x, 1);
5260 rtx reversed;
5262 switch (GET_CODE (x))
5264 case AND:
5265 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5266 insn (and may simplify more). */
5267 if (GET_CODE (op0) == XOR
5268 && rtx_equal_p (XEXP (op0, 0), op1)
5269 && ! side_effects_p (op1))
5270 x = gen_binary (AND, mode,
5271 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5272 op1);
5274 if (GET_CODE (op0) == XOR
5275 && rtx_equal_p (XEXP (op0, 1), op1)
5276 && ! side_effects_p (op1))
5277 x = gen_binary (AND, mode,
5278 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5279 op1);
5281 /* Similarly for (~(A ^ B)) & A. */
5282 if (GET_CODE (op0) == NOT
5283 && GET_CODE (XEXP (op0, 0)) == XOR
5284 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5285 && ! side_effects_p (op1))
5286 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5288 if (GET_CODE (op0) == NOT
5289 && GET_CODE (XEXP (op0, 0)) == XOR
5290 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5291 && ! side_effects_p (op1))
5292 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5294 /* We can call simplify_and_const_int only if we don't lose
5295 any (sign) bits when converting INTVAL (op1) to
5296 "unsigned HOST_WIDE_INT". */
5297 if (GET_CODE (op1) == CONST_INT
5298 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5299 || INTVAL (op1) > 0))
5301 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5303 /* If we have (ior (and (X C1) C2)) and the next restart would be
5304 the last, simplify this by making C1 as small as possible
5305 and then exit. */
5306 if (last
5307 && GET_CODE (x) == IOR && GET_CODE (op0) == AND
5308 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5309 && GET_CODE (op1) == CONST_INT)
5310 return gen_binary (IOR, mode,
5311 gen_binary (AND, mode, XEXP (op0, 0),
5312 GEN_INT (INTVAL (XEXP (op0, 1))
5313 & ~INTVAL (op1))), op1);
5315 if (GET_CODE (x) != AND)
5316 return x;
5318 if (GET_RTX_CLASS (GET_CODE (x)) == 'c'
5319 || GET_RTX_CLASS (GET_CODE (x)) == '2')
5320 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5323 /* Convert (A | B) & A to A. */
5324 if (GET_CODE (op0) == IOR
5325 && (rtx_equal_p (XEXP (op0, 0), op1)
5326 || rtx_equal_p (XEXP (op0, 1), op1))
5327 && ! side_effects_p (XEXP (op0, 0))
5328 && ! side_effects_p (XEXP (op0, 1)))
5329 return op1;
5331 /* In the following group of tests (and those in case IOR below),
5332 we start with some combination of logical operations and apply
5333 the distributive law followed by the inverse distributive law.
5334 Most of the time, this results in no change. However, if some of
5335 the operands are the same or inverses of each other, simplifications
5336 will result.
5338 For example, (and (ior A B) (not B)) can occur as the result of
5339 expanding a bit field assignment. When we apply the distributive
5340 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5341 which then simplifies to (and (A (not B))).
5343 If we have (and (ior A B) C), apply the distributive law and then
5344 the inverse distributive law to see if things simplify. */
5346 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5348 x = apply_distributive_law
5349 (gen_binary (GET_CODE (op0), mode,
5350 gen_binary (AND, mode, XEXP (op0, 0), op1),
5351 gen_binary (AND, mode, XEXP (op0, 1),
5352 copy_rtx (op1))));
5353 if (GET_CODE (x) != AND)
5354 return x;
5357 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5358 return apply_distributive_law
5359 (gen_binary (GET_CODE (op1), mode,
5360 gen_binary (AND, mode, XEXP (op1, 0), op0),
5361 gen_binary (AND, mode, XEXP (op1, 1),
5362 copy_rtx (op0))));
5364 /* Similarly, taking advantage of the fact that
5365 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5367 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5368 return apply_distributive_law
5369 (gen_binary (XOR, mode,
5370 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5371 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5372 XEXP (op1, 1))));
5374 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5375 return apply_distributive_law
5376 (gen_binary (XOR, mode,
5377 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5378 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5379 break;
5381 case IOR:
5382 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5383 if (GET_CODE (op1) == CONST_INT
5384 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5385 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5386 return op1;
5388 /* Convert (A & B) | A to A. */
5389 if (GET_CODE (op0) == AND
5390 && (rtx_equal_p (XEXP (op0, 0), op1)
5391 || rtx_equal_p (XEXP (op0, 1), op1))
5392 && ! side_effects_p (XEXP (op0, 0))
5393 && ! side_effects_p (XEXP (op0, 1)))
5394 return op1;
5396 /* If we have (ior (and A B) C), apply the distributive law and then
5397 the inverse distributive law to see if things simplify. */
5399 if (GET_CODE (op0) == AND)
5401 x = apply_distributive_law
5402 (gen_binary (AND, mode,
5403 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5404 gen_binary (IOR, mode, XEXP (op0, 1),
5405 copy_rtx (op1))));
5407 if (GET_CODE (x) != IOR)
5408 return x;
5411 if (GET_CODE (op1) == AND)
5413 x = apply_distributive_law
5414 (gen_binary (AND, mode,
5415 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5416 gen_binary (IOR, mode, XEXP (op1, 1),
5417 copy_rtx (op0))));
5419 if (GET_CODE (x) != IOR)
5420 return x;
5423 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5424 mode size to (rotate A CX). */
5426 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5427 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5428 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5429 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5430 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5431 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5432 == GET_MODE_BITSIZE (mode)))
5433 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5434 (GET_CODE (op0) == ASHIFT
5435 ? XEXP (op0, 1) : XEXP (op1, 1)));
5437 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5438 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5439 does not affect any of the bits in OP1, it can really be done
5440 as a PLUS and we can associate. We do this by seeing if OP1
5441 can be safely shifted left C bits. */
5442 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5443 && GET_CODE (XEXP (op0, 0)) == PLUS
5444 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5445 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5446 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5448 int count = INTVAL (XEXP (op0, 1));
5449 HOST_WIDE_INT mask = INTVAL (op1) << count;
5451 if (mask >> count == INTVAL (op1)
5452 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5454 SUBST (XEXP (XEXP (op0, 0), 1),
5455 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5456 return op0;
5459 break;
5461 case XOR:
5462 /* If we are XORing two things that have no bits in common,
5463 convert them into an IOR. This helps to detect rotation encoded
5464 using those methods and possibly other simplifications. */
5466 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5467 && (nonzero_bits (op0, mode)
5468 & nonzero_bits (op1, mode)) == 0)
5469 return (gen_binary (IOR, mode, op0, op1));
5471 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5472 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5473 (NOT y). */
5475 int num_negated = 0;
5477 if (GET_CODE (op0) == NOT)
5478 num_negated++, op0 = XEXP (op0, 0);
5479 if (GET_CODE (op1) == NOT)
5480 num_negated++, op1 = XEXP (op1, 0);
5482 if (num_negated == 2)
5484 SUBST (XEXP (x, 0), op0);
5485 SUBST (XEXP (x, 1), op1);
5487 else if (num_negated == 1)
5488 return
5489 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5490 mode);
5493 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5494 correspond to a machine insn or result in further simplifications
5495 if B is a constant. */
5497 if (GET_CODE (op0) == AND
5498 && rtx_equal_p (XEXP (op0, 1), op1)
5499 && ! side_effects_p (op1))
5500 return gen_binary (AND, mode,
5501 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5502 op1);
5504 else if (GET_CODE (op0) == AND
5505 && rtx_equal_p (XEXP (op0, 0), op1)
5506 && ! side_effects_p (op1))
5507 return gen_binary (AND, mode,
5508 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5509 op1);
5511 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5512 comparison if STORE_FLAG_VALUE is 1. */
5513 if (STORE_FLAG_VALUE == 1
5514 && op1 == const1_rtx
5515 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5516 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5517 XEXP (op0, 1))))
5518 return reversed;
5520 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5521 is (lt foo (const_int 0)), so we can perform the above
5522 simplification if STORE_FLAG_VALUE is 1. */
5524 if (STORE_FLAG_VALUE == 1
5525 && op1 == const1_rtx
5526 && GET_CODE (op0) == LSHIFTRT
5527 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5528 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5529 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5531 /* (xor (comparison foo bar) (const_int sign-bit))
5532 when STORE_FLAG_VALUE is the sign bit. */
5533 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5534 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5535 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5536 && op1 == const_true_rtx
5537 && GET_RTX_CLASS (GET_CODE (op0)) == '<'
5538 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5539 XEXP (op0, 1))))
5540 return reversed;
5542 break;
5544 default:
5545 abort ();
5548 return x;
5551 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5552 operations" because they can be replaced with two more basic operations.
5553 ZERO_EXTEND is also considered "compound" because it can be replaced with
5554 an AND operation, which is simpler, though only one operation.
5556 The function expand_compound_operation is called with an rtx expression
5557 and will convert it to the appropriate shifts and AND operations,
5558 simplifying at each stage.
5560 The function make_compound_operation is called to convert an expression
5561 consisting of shifts and ANDs into the equivalent compound expression.
5562 It is the inverse of this function, loosely speaking. */
5564 static rtx
5565 expand_compound_operation (x)
5566 rtx x;
5568 unsigned HOST_WIDE_INT pos = 0, len;
5569 int unsignedp = 0;
5570 unsigned int modewidth;
5571 rtx tem;
5573 switch (GET_CODE (x))
5575 case ZERO_EXTEND:
5576 unsignedp = 1;
5577 case SIGN_EXTEND:
5578 /* We can't necessarily use a const_int for a multiword mode;
5579 it depends on implicitly extending the value.
5580 Since we don't know the right way to extend it,
5581 we can't tell whether the implicit way is right.
5583 Even for a mode that is no wider than a const_int,
5584 we can't win, because we need to sign extend one of its bits through
5585 the rest of it, and we don't know which bit. */
5586 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5587 return x;
5589 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5590 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5591 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5592 reloaded. If not for that, MEM's would very rarely be safe.
5594 Reject MODEs bigger than a word, because we might not be able
5595 to reference a two-register group starting with an arbitrary register
5596 (and currently gen_lowpart might crash for a SUBREG). */
5598 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5599 return x;
5601 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5602 /* If the inner object has VOIDmode (the only way this can happen
5603 is if it is an ASM_OPERANDS), we can't do anything since we don't
5604 know how much masking to do. */
5605 if (len == 0)
5606 return x;
5608 break;
5610 case ZERO_EXTRACT:
5611 unsignedp = 1;
5612 case SIGN_EXTRACT:
5613 /* If the operand is a CLOBBER, just return it. */
5614 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5615 return XEXP (x, 0);
5617 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5618 || GET_CODE (XEXP (x, 2)) != CONST_INT
5619 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5620 return x;
5622 len = INTVAL (XEXP (x, 1));
5623 pos = INTVAL (XEXP (x, 2));
5625 /* If this goes outside the object being extracted, replace the object
5626 with a (use (mem ...)) construct that only combine understands
5627 and is used only for this purpose. */
5628 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5629 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5631 if (BITS_BIG_ENDIAN)
5632 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5634 break;
5636 default:
5637 return x;
5639 /* Convert sign extension to zero extension, if we know that the high
5640 bit is not set, as this is easier to optimize. It will be converted
5641 back to cheaper alternative in make_extraction. */
5642 if (GET_CODE (x) == SIGN_EXTEND
5643 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5644 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5645 & ~(((unsigned HOST_WIDE_INT)
5646 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5647 >> 1))
5648 == 0)))
5650 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5651 return expand_compound_operation (temp);
5654 /* We can optimize some special cases of ZERO_EXTEND. */
5655 if (GET_CODE (x) == ZERO_EXTEND)
5657 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5658 know that the last value didn't have any inappropriate bits
5659 set. */
5660 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5661 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5662 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5663 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5664 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5665 return XEXP (XEXP (x, 0), 0);
5667 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5668 if (GET_CODE (XEXP (x, 0)) == SUBREG
5669 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5670 && subreg_lowpart_p (XEXP (x, 0))
5671 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5672 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5673 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5674 return SUBREG_REG (XEXP (x, 0));
5676 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5677 is a comparison and STORE_FLAG_VALUE permits. This is like
5678 the first case, but it works even when GET_MODE (x) is larger
5679 than HOST_WIDE_INT. */
5680 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5681 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5682 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x, 0), 0))) == '<'
5683 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5684 <= HOST_BITS_PER_WIDE_INT)
5685 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5686 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5687 return XEXP (XEXP (x, 0), 0);
5689 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5690 if (GET_CODE (XEXP (x, 0)) == SUBREG
5691 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5692 && subreg_lowpart_p (XEXP (x, 0))
5693 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x, 0)))) == '<'
5694 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5695 <= HOST_BITS_PER_WIDE_INT)
5696 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5697 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5698 return SUBREG_REG (XEXP (x, 0));
5702 /* If we reach here, we want to return a pair of shifts. The inner
5703 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5704 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5705 logical depending on the value of UNSIGNEDP.
5707 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5708 converted into an AND of a shift.
5710 We must check for the case where the left shift would have a negative
5711 count. This can happen in a case like (x >> 31) & 255 on machines
5712 that can't shift by a constant. On those machines, we would first
5713 combine the shift with the AND to produce a variable-position
5714 extraction. Then the constant of 31 would be substituted in to produce
5715 a such a position. */
5717 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5718 if (modewidth + len >= pos)
5719 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5720 GET_MODE (x),
5721 simplify_shift_const (NULL_RTX, ASHIFT,
5722 GET_MODE (x),
5723 XEXP (x, 0),
5724 modewidth - pos - len),
5725 modewidth - len);
5727 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5728 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5729 simplify_shift_const (NULL_RTX, LSHIFTRT,
5730 GET_MODE (x),
5731 XEXP (x, 0), pos),
5732 ((HOST_WIDE_INT) 1 << len) - 1);
5733 else
5734 /* Any other cases we can't handle. */
5735 return x;
5737 /* If we couldn't do this for some reason, return the original
5738 expression. */
5739 if (GET_CODE (tem) == CLOBBER)
5740 return x;
5742 return tem;
5745 /* X is a SET which contains an assignment of one object into
5746 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5747 or certain SUBREGS). If possible, convert it into a series of
5748 logical operations.
5750 We half-heartedly support variable positions, but do not at all
5751 support variable lengths. */
5753 static rtx
5754 expand_field_assignment (x)
5755 rtx x;
5757 rtx inner;
5758 rtx pos; /* Always counts from low bit. */
5759 int len;
5760 rtx mask;
5761 enum machine_mode compute_mode;
5763 /* Loop until we find something we can't simplify. */
5764 while (1)
5766 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5767 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5769 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5770 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5771 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5773 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5774 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5776 inner = XEXP (SET_DEST (x), 0);
5777 len = INTVAL (XEXP (SET_DEST (x), 1));
5778 pos = XEXP (SET_DEST (x), 2);
5780 /* If the position is constant and spans the width of INNER,
5781 surround INNER with a USE to indicate this. */
5782 if (GET_CODE (pos) == CONST_INT
5783 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5784 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5786 if (BITS_BIG_ENDIAN)
5788 if (GET_CODE (pos) == CONST_INT)
5789 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5790 - INTVAL (pos));
5791 else if (GET_CODE (pos) == MINUS
5792 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5793 && (INTVAL (XEXP (pos, 1))
5794 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5795 /* If position is ADJUST - X, new position is X. */
5796 pos = XEXP (pos, 0);
5797 else
5798 pos = gen_binary (MINUS, GET_MODE (pos),
5799 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5800 - len),
5801 pos);
5805 /* A SUBREG between two modes that occupy the same numbers of words
5806 can be done by moving the SUBREG to the source. */
5807 else if (GET_CODE (SET_DEST (x)) == SUBREG
5808 /* We need SUBREGs to compute nonzero_bits properly. */
5809 && nonzero_sign_valid
5810 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5811 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5812 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5813 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5815 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5816 gen_lowpart_for_combine
5817 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5818 SET_SRC (x)));
5819 continue;
5821 else
5822 break;
5824 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5825 inner = SUBREG_REG (inner);
5827 compute_mode = GET_MODE (inner);
5829 /* Don't attempt bitwise arithmetic on non-integral modes. */
5830 if (! INTEGRAL_MODE_P (compute_mode))
5832 enum machine_mode imode;
5834 /* Something is probably seriously wrong if this matches. */
5835 if (! FLOAT_MODE_P (compute_mode))
5836 break;
5838 /* Try to find an integral mode to pun with. */
5839 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
5840 if (imode == BLKmode)
5841 break;
5843 compute_mode = imode;
5844 inner = gen_lowpart_for_combine (imode, inner);
5847 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5848 if (len < HOST_BITS_PER_WIDE_INT)
5849 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
5850 else
5851 break;
5853 /* Now compute the equivalent expression. Make a copy of INNER
5854 for the SET_DEST in case it is a MEM into which we will substitute;
5855 we don't want shared RTL in that case. */
5856 x = gen_rtx_SET
5857 (VOIDmode, copy_rtx (inner),
5858 gen_binary (IOR, compute_mode,
5859 gen_binary (AND, compute_mode,
5860 simplify_gen_unary (NOT, compute_mode,
5861 gen_binary (ASHIFT,
5862 compute_mode,
5863 mask, pos),
5864 compute_mode),
5865 inner),
5866 gen_binary (ASHIFT, compute_mode,
5867 gen_binary (AND, compute_mode,
5868 gen_lowpart_for_combine
5869 (compute_mode, SET_SRC (x)),
5870 mask),
5871 pos)));
5874 return x;
5877 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5878 it is an RTX that represents a variable starting position; otherwise,
5879 POS is the (constant) starting bit position (counted from the LSB).
5881 INNER may be a USE. This will occur when we started with a bitfield
5882 that went outside the boundary of the object in memory, which is
5883 allowed on most machines. To isolate this case, we produce a USE
5884 whose mode is wide enough and surround the MEM with it. The only
5885 code that understands the USE is this routine. If it is not removed,
5886 it will cause the resulting insn not to match.
5888 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5889 signed reference.
5891 IN_DEST is non-zero if this is a reference in the destination of a
5892 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5893 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5894 be used.
5896 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5897 ZERO_EXTRACT should be built even for bits starting at bit 0.
5899 MODE is the desired mode of the result (if IN_DEST == 0).
5901 The result is an RTX for the extraction or NULL_RTX if the target
5902 can't handle it. */
5904 static rtx
5905 make_extraction (mode, inner, pos, pos_rtx, len,
5906 unsignedp, in_dest, in_compare)
5907 enum machine_mode mode;
5908 rtx inner;
5909 HOST_WIDE_INT pos;
5910 rtx pos_rtx;
5911 unsigned HOST_WIDE_INT len;
5912 int unsignedp;
5913 int in_dest, in_compare;
5915 /* This mode describes the size of the storage area
5916 to fetch the overall value from. Within that, we
5917 ignore the POS lowest bits, etc. */
5918 enum machine_mode is_mode = GET_MODE (inner);
5919 enum machine_mode inner_mode;
5920 enum machine_mode wanted_inner_mode = byte_mode;
5921 enum machine_mode wanted_inner_reg_mode = word_mode;
5922 enum machine_mode pos_mode = word_mode;
5923 enum machine_mode extraction_mode = word_mode;
5924 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
5925 int spans_byte = 0;
5926 rtx new = 0;
5927 rtx orig_pos_rtx = pos_rtx;
5928 HOST_WIDE_INT orig_pos;
5930 /* Get some information about INNER and get the innermost object. */
5931 if (GET_CODE (inner) == USE)
5932 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5933 /* We don't need to adjust the position because we set up the USE
5934 to pretend that it was a full-word object. */
5935 spans_byte = 1, inner = XEXP (inner, 0);
5936 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
5938 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5939 consider just the QI as the memory to extract from.
5940 The subreg adds or removes high bits; its mode is
5941 irrelevant to the meaning of this extraction,
5942 since POS and LEN count from the lsb. */
5943 if (GET_CODE (SUBREG_REG (inner)) == MEM)
5944 is_mode = GET_MODE (SUBREG_REG (inner));
5945 inner = SUBREG_REG (inner);
5948 inner_mode = GET_MODE (inner);
5950 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
5951 pos = INTVAL (pos_rtx), pos_rtx = 0;
5953 /* See if this can be done without an extraction. We never can if the
5954 width of the field is not the same as that of some integer mode. For
5955 registers, we can only avoid the extraction if the position is at the
5956 low-order bit and this is either not in the destination or we have the
5957 appropriate STRICT_LOW_PART operation available.
5959 For MEM, we can avoid an extract if the field starts on an appropriate
5960 boundary and we can change the mode of the memory reference. However,
5961 we cannot directly access the MEM if we have a USE and the underlying
5962 MEM is not TMODE. This combination means that MEM was being used in a
5963 context where bits outside its mode were being referenced; that is only
5964 valid in bit-field insns. */
5966 if (tmode != BLKmode
5967 && ! (spans_byte && inner_mode != tmode)
5968 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
5969 && GET_CODE (inner) != MEM
5970 && (! in_dest
5971 || (GET_CODE (inner) == REG
5972 && have_insn_for (STRICT_LOW_PART, tmode))))
5973 || (GET_CODE (inner) == MEM && pos_rtx == 0
5974 && (pos
5975 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
5976 : BITS_PER_UNIT)) == 0
5977 /* We can't do this if we are widening INNER_MODE (it
5978 may not be aligned, for one thing). */
5979 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
5980 && (inner_mode == tmode
5981 || (! mode_dependent_address_p (XEXP (inner, 0))
5982 && ! MEM_VOLATILE_P (inner))))))
5984 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5985 field. If the original and current mode are the same, we need not
5986 adjust the offset. Otherwise, we do if bytes big endian.
5988 If INNER is not a MEM, get a piece consisting of just the field
5989 of interest (in this case POS % BITS_PER_WORD must be 0). */
5991 if (GET_CODE (inner) == MEM)
5993 HOST_WIDE_INT offset;
5995 /* POS counts from lsb, but make OFFSET count in memory order. */
5996 if (BYTES_BIG_ENDIAN)
5997 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
5998 else
5999 offset = pos / BITS_PER_UNIT;
6001 new = adjust_address_nv (inner, tmode, offset);
6003 else if (GET_CODE (inner) == REG)
6005 /* We can't call gen_lowpart_for_combine here since we always want
6006 a SUBREG and it would sometimes return a new hard register. */
6007 if (tmode != inner_mode)
6009 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6011 if (WORDS_BIG_ENDIAN
6012 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6013 final_word = ((GET_MODE_SIZE (inner_mode)
6014 - GET_MODE_SIZE (tmode))
6015 / UNITS_PER_WORD) - final_word;
6017 final_word *= UNITS_PER_WORD;
6018 if (BYTES_BIG_ENDIAN &&
6019 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6020 final_word += (GET_MODE_SIZE (inner_mode)
6021 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6023 new = gen_rtx_SUBREG (tmode, inner, final_word);
6025 else
6026 new = inner;
6028 else
6029 new = force_to_mode (inner, tmode,
6030 len >= HOST_BITS_PER_WIDE_INT
6031 ? ~(unsigned HOST_WIDE_INT) 0
6032 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6033 NULL_RTX, 0);
6035 /* If this extraction is going into the destination of a SET,
6036 make a STRICT_LOW_PART unless we made a MEM. */
6038 if (in_dest)
6039 return (GET_CODE (new) == MEM ? new
6040 : (GET_CODE (new) != SUBREG
6041 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6042 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6044 if (mode == tmode)
6045 return new;
6047 if (GET_CODE (new) == CONST_INT)
6048 return gen_int_mode (INTVAL (new), mode);
6050 /* If we know that no extraneous bits are set, and that the high
6051 bit is not set, convert the extraction to the cheaper of
6052 sign and zero extension, that are equivalent in these cases. */
6053 if (flag_expensive_optimizations
6054 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6055 && ((nonzero_bits (new, tmode)
6056 & ~(((unsigned HOST_WIDE_INT)
6057 GET_MODE_MASK (tmode))
6058 >> 1))
6059 == 0)))
6061 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6062 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6064 /* Prefer ZERO_EXTENSION, since it gives more information to
6065 backends. */
6066 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6067 return temp;
6068 return temp1;
6071 /* Otherwise, sign- or zero-extend unless we already are in the
6072 proper mode. */
6074 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6075 mode, new));
6078 /* Unless this is a COMPARE or we have a funny memory reference,
6079 don't do anything with zero-extending field extracts starting at
6080 the low-order bit since they are simple AND operations. */
6081 if (pos_rtx == 0 && pos == 0 && ! in_dest
6082 && ! in_compare && ! spans_byte && unsignedp)
6083 return 0;
6085 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6086 we would be spanning bytes or if the position is not a constant and the
6087 length is not 1. In all other cases, we would only be going outside
6088 our object in cases when an original shift would have been
6089 undefined. */
6090 if (! spans_byte && GET_CODE (inner) == MEM
6091 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6092 || (pos_rtx != 0 && len != 1)))
6093 return 0;
6095 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6096 and the mode for the result. */
6097 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6099 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6100 pos_mode = mode_for_extraction (EP_insv, 2);
6101 extraction_mode = mode_for_extraction (EP_insv, 3);
6104 if (! in_dest && unsignedp
6105 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6107 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6108 pos_mode = mode_for_extraction (EP_extzv, 3);
6109 extraction_mode = mode_for_extraction (EP_extzv, 0);
6112 if (! in_dest && ! unsignedp
6113 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6115 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6116 pos_mode = mode_for_extraction (EP_extv, 3);
6117 extraction_mode = mode_for_extraction (EP_extv, 0);
6120 /* Never narrow an object, since that might not be safe. */
6122 if (mode != VOIDmode
6123 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6124 extraction_mode = mode;
6126 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6127 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6128 pos_mode = GET_MODE (pos_rtx);
6130 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6131 if we have to change the mode of memory and cannot, the desired mode is
6132 EXTRACTION_MODE. */
6133 if (GET_CODE (inner) != MEM)
6134 wanted_inner_mode = wanted_inner_reg_mode;
6135 else if (inner_mode != wanted_inner_mode
6136 && (mode_dependent_address_p (XEXP (inner, 0))
6137 || MEM_VOLATILE_P (inner)))
6138 wanted_inner_mode = extraction_mode;
6140 orig_pos = pos;
6142 if (BITS_BIG_ENDIAN)
6144 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6145 BITS_BIG_ENDIAN style. If position is constant, compute new
6146 position. Otherwise, build subtraction.
6147 Note that POS is relative to the mode of the original argument.
6148 If it's a MEM we need to recompute POS relative to that.
6149 However, if we're extracting from (or inserting into) a register,
6150 we want to recompute POS relative to wanted_inner_mode. */
6151 int width = (GET_CODE (inner) == MEM
6152 ? GET_MODE_BITSIZE (is_mode)
6153 : GET_MODE_BITSIZE (wanted_inner_mode));
6155 if (pos_rtx == 0)
6156 pos = width - len - pos;
6157 else
6158 pos_rtx
6159 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6160 /* POS may be less than 0 now, but we check for that below.
6161 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6164 /* If INNER has a wider mode, make it smaller. If this is a constant
6165 extract, try to adjust the byte to point to the byte containing
6166 the value. */
6167 if (wanted_inner_mode != VOIDmode
6168 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6169 && ((GET_CODE (inner) == MEM
6170 && (inner_mode == wanted_inner_mode
6171 || (! mode_dependent_address_p (XEXP (inner, 0))
6172 && ! MEM_VOLATILE_P (inner))))))
6174 int offset = 0;
6176 /* The computations below will be correct if the machine is big
6177 endian in both bits and bytes or little endian in bits and bytes.
6178 If it is mixed, we must adjust. */
6180 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6181 adjust OFFSET to compensate. */
6182 if (BYTES_BIG_ENDIAN
6183 && ! spans_byte
6184 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6185 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6187 /* If this is a constant position, we can move to the desired byte. */
6188 if (pos_rtx == 0)
6190 offset += pos / BITS_PER_UNIT;
6191 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6194 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6195 && ! spans_byte
6196 && is_mode != wanted_inner_mode)
6197 offset = (GET_MODE_SIZE (is_mode)
6198 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6200 if (offset != 0 || inner_mode != wanted_inner_mode)
6201 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6204 /* If INNER is not memory, we can always get it into the proper mode. If we
6205 are changing its mode, POS must be a constant and smaller than the size
6206 of the new mode. */
6207 else if (GET_CODE (inner) != MEM)
6209 if (GET_MODE (inner) != wanted_inner_mode
6210 && (pos_rtx != 0
6211 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6212 return 0;
6214 inner = force_to_mode (inner, wanted_inner_mode,
6215 pos_rtx
6216 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6217 ? ~(unsigned HOST_WIDE_INT) 0
6218 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6219 << orig_pos),
6220 NULL_RTX, 0);
6223 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6224 have to zero extend. Otherwise, we can just use a SUBREG. */
6225 if (pos_rtx != 0
6226 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6228 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6230 /* If we know that no extraneous bits are set, and that the high
6231 bit is not set, convert extraction to cheaper one - either
6232 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6233 cases. */
6234 if (flag_expensive_optimizations
6235 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6236 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6237 & ~(((unsigned HOST_WIDE_INT)
6238 GET_MODE_MASK (GET_MODE (pos_rtx)))
6239 >> 1))
6240 == 0)))
6242 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6244 /* Prefer ZERO_EXTENSION, since it gives more information to
6245 backends. */
6246 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6247 temp = temp1;
6249 pos_rtx = temp;
6251 else if (pos_rtx != 0
6252 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6253 pos_rtx = gen_lowpart_for_combine (pos_mode, pos_rtx);
6255 /* Make POS_RTX unless we already have it and it is correct. If we don't
6256 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6257 be a CONST_INT. */
6258 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6259 pos_rtx = orig_pos_rtx;
6261 else if (pos_rtx == 0)
6262 pos_rtx = GEN_INT (pos);
6264 /* Make the required operation. See if we can use existing rtx. */
6265 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6266 extraction_mode, inner, GEN_INT (len), pos_rtx);
6267 if (! in_dest)
6268 new = gen_lowpart_for_combine (mode, new);
6270 return new;
6273 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6274 with any other operations in X. Return X without that shift if so. */
6276 static rtx
6277 extract_left_shift (x, count)
6278 rtx x;
6279 int count;
6281 enum rtx_code code = GET_CODE (x);
6282 enum machine_mode mode = GET_MODE (x);
6283 rtx tem;
6285 switch (code)
6287 case ASHIFT:
6288 /* This is the shift itself. If it is wide enough, we will return
6289 either the value being shifted if the shift count is equal to
6290 COUNT or a shift for the difference. */
6291 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6292 && INTVAL (XEXP (x, 1)) >= count)
6293 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6294 INTVAL (XEXP (x, 1)) - count);
6295 break;
6297 case NEG: case NOT:
6298 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6299 return simplify_gen_unary (code, mode, tem, mode);
6301 break;
6303 case PLUS: case IOR: case XOR: case AND:
6304 /* If we can safely shift this constant and we find the inner shift,
6305 make a new operation. */
6306 if (GET_CODE (XEXP (x,1)) == CONST_INT
6307 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6308 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6309 return gen_binary (code, mode, tem,
6310 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6312 break;
6314 default:
6315 break;
6318 return 0;
6321 /* Look at the expression rooted at X. Look for expressions
6322 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6323 Form these expressions.
6325 Return the new rtx, usually just X.
6327 Also, for machines like the VAX that don't have logical shift insns,
6328 try to convert logical to arithmetic shift operations in cases where
6329 they are equivalent. This undoes the canonicalizations to logical
6330 shifts done elsewhere.
6332 We try, as much as possible, to re-use rtl expressions to save memory.
6334 IN_CODE says what kind of expression we are processing. Normally, it is
6335 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6336 being kludges), it is MEM. When processing the arguments of a comparison
6337 or a COMPARE against zero, it is COMPARE. */
6339 static rtx
6340 make_compound_operation (x, in_code)
6341 rtx x;
6342 enum rtx_code in_code;
6344 enum rtx_code code = GET_CODE (x);
6345 enum machine_mode mode = GET_MODE (x);
6346 int mode_width = GET_MODE_BITSIZE (mode);
6347 rtx rhs, lhs;
6348 enum rtx_code next_code;
6349 int i;
6350 rtx new = 0;
6351 rtx tem;
6352 const char *fmt;
6354 /* Select the code to be used in recursive calls. Once we are inside an
6355 address, we stay there. If we have a comparison, set to COMPARE,
6356 but once inside, go back to our default of SET. */
6358 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6359 : ((code == COMPARE || GET_RTX_CLASS (code) == '<')
6360 && XEXP (x, 1) == const0_rtx) ? COMPARE
6361 : in_code == COMPARE ? SET : in_code);
6363 /* Process depending on the code of this operation. If NEW is set
6364 non-zero, it will be returned. */
6366 switch (code)
6368 case ASHIFT:
6369 /* Convert shifts by constants into multiplications if inside
6370 an address. */
6371 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6372 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6373 && INTVAL (XEXP (x, 1)) >= 0)
6375 new = make_compound_operation (XEXP (x, 0), next_code);
6376 new = gen_rtx_MULT (mode, new,
6377 GEN_INT ((HOST_WIDE_INT) 1
6378 << INTVAL (XEXP (x, 1))));
6380 break;
6382 case AND:
6383 /* If the second operand is not a constant, we can't do anything
6384 with it. */
6385 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6386 break;
6388 /* If the constant is a power of two minus one and the first operand
6389 is a logical right shift, make an extraction. */
6390 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6391 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6393 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6394 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6395 0, in_code == COMPARE);
6398 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6399 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6400 && subreg_lowpart_p (XEXP (x, 0))
6401 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6402 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6404 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6405 next_code);
6406 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6407 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6408 0, in_code == COMPARE);
6410 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6411 else if ((GET_CODE (XEXP (x, 0)) == XOR
6412 || GET_CODE (XEXP (x, 0)) == IOR)
6413 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6414 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6415 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6417 /* Apply the distributive law, and then try to make extractions. */
6418 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6419 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6420 XEXP (x, 1)),
6421 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6422 XEXP (x, 1)));
6423 new = make_compound_operation (new, in_code);
6426 /* If we are have (and (rotate X C) M) and C is larger than the number
6427 of bits in M, this is an extraction. */
6429 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6430 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6431 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6432 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6434 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6435 new = make_extraction (mode, new,
6436 (GET_MODE_BITSIZE (mode)
6437 - INTVAL (XEXP (XEXP (x, 0), 1))),
6438 NULL_RTX, i, 1, 0, in_code == COMPARE);
6441 /* On machines without logical shifts, if the operand of the AND is
6442 a logical shift and our mask turns off all the propagated sign
6443 bits, we can replace the logical shift with an arithmetic shift. */
6444 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6445 && !have_insn_for (LSHIFTRT, mode)
6446 && have_insn_for (ASHIFTRT, mode)
6447 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6448 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6449 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6450 && mode_width <= HOST_BITS_PER_WIDE_INT)
6452 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6454 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6455 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6456 SUBST (XEXP (x, 0),
6457 gen_rtx_ASHIFTRT (mode,
6458 make_compound_operation
6459 (XEXP (XEXP (x, 0), 0), next_code),
6460 XEXP (XEXP (x, 0), 1)));
6463 /* If the constant is one less than a power of two, this might be
6464 representable by an extraction even if no shift is present.
6465 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6466 we are in a COMPARE. */
6467 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6468 new = make_extraction (mode,
6469 make_compound_operation (XEXP (x, 0),
6470 next_code),
6471 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6473 /* If we are in a comparison and this is an AND with a power of two,
6474 convert this into the appropriate bit extract. */
6475 else if (in_code == COMPARE
6476 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6477 new = make_extraction (mode,
6478 make_compound_operation (XEXP (x, 0),
6479 next_code),
6480 i, NULL_RTX, 1, 1, 0, 1);
6482 break;
6484 case LSHIFTRT:
6485 /* If the sign bit is known to be zero, replace this with an
6486 arithmetic shift. */
6487 if (have_insn_for (ASHIFTRT, mode)
6488 && ! have_insn_for (LSHIFTRT, mode)
6489 && mode_width <= HOST_BITS_PER_WIDE_INT
6490 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6492 new = gen_rtx_ASHIFTRT (mode,
6493 make_compound_operation (XEXP (x, 0),
6494 next_code),
6495 XEXP (x, 1));
6496 break;
6499 /* ... fall through ... */
6501 case ASHIFTRT:
6502 lhs = XEXP (x, 0);
6503 rhs = XEXP (x, 1);
6505 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6506 this is a SIGN_EXTRACT. */
6507 if (GET_CODE (rhs) == CONST_INT
6508 && GET_CODE (lhs) == ASHIFT
6509 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6510 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6512 new = make_compound_operation (XEXP (lhs, 0), next_code);
6513 new = make_extraction (mode, new,
6514 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6515 NULL_RTX, mode_width - INTVAL (rhs),
6516 code == LSHIFTRT, 0, in_code == COMPARE);
6517 break;
6520 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6521 If so, try to merge the shifts into a SIGN_EXTEND. We could
6522 also do this for some cases of SIGN_EXTRACT, but it doesn't
6523 seem worth the effort; the case checked for occurs on Alpha. */
6525 if (GET_RTX_CLASS (GET_CODE (lhs)) != 'o'
6526 && ! (GET_CODE (lhs) == SUBREG
6527 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs))) == 'o'))
6528 && GET_CODE (rhs) == CONST_INT
6529 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6530 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6531 new = make_extraction (mode, make_compound_operation (new, next_code),
6532 0, NULL_RTX, mode_width - INTVAL (rhs),
6533 code == LSHIFTRT, 0, in_code == COMPARE);
6535 break;
6537 case SUBREG:
6538 /* Call ourselves recursively on the inner expression. If we are
6539 narrowing the object and it has a different RTL code from
6540 what it originally did, do this SUBREG as a force_to_mode. */
6542 tem = make_compound_operation (SUBREG_REG (x), in_code);
6543 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6544 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6545 && subreg_lowpart_p (x))
6547 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6548 NULL_RTX, 0);
6550 /* If we have something other than a SUBREG, we might have
6551 done an expansion, so rerun ourselves. */
6552 if (GET_CODE (newer) != SUBREG)
6553 newer = make_compound_operation (newer, in_code);
6555 return newer;
6558 /* If this is a paradoxical subreg, and the new code is a sign or
6559 zero extension, omit the subreg and widen the extension. If it
6560 is a regular subreg, we can still get rid of the subreg by not
6561 widening so much, or in fact removing the extension entirely. */
6562 if ((GET_CODE (tem) == SIGN_EXTEND
6563 || GET_CODE (tem) == ZERO_EXTEND)
6564 && subreg_lowpart_p (x))
6566 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6567 || (GET_MODE_SIZE (mode) >
6568 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6569 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6570 else
6571 tem = gen_lowpart_for_combine (mode, XEXP (tem, 0));
6572 return tem;
6574 break;
6576 default:
6577 break;
6580 if (new)
6582 x = gen_lowpart_for_combine (mode, new);
6583 code = GET_CODE (x);
6586 /* Now recursively process each operand of this operation. */
6587 fmt = GET_RTX_FORMAT (code);
6588 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6589 if (fmt[i] == 'e')
6591 new = make_compound_operation (XEXP (x, i), next_code);
6592 SUBST (XEXP (x, i), new);
6595 return x;
6598 /* Given M see if it is a value that would select a field of bits
6599 within an item, but not the entire word. Return -1 if not.
6600 Otherwise, return the starting position of the field, where 0 is the
6601 low-order bit.
6603 *PLEN is set to the length of the field. */
6605 static int
6606 get_pos_from_mask (m, plen)
6607 unsigned HOST_WIDE_INT m;
6608 unsigned HOST_WIDE_INT *plen;
6610 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6611 int pos = exact_log2 (m & -m);
6612 int len;
6614 if (pos < 0)
6615 return -1;
6617 /* Now shift off the low-order zero bits and see if we have a power of
6618 two minus 1. */
6619 len = exact_log2 ((m >> pos) + 1);
6621 if (len <= 0)
6622 return -1;
6624 *plen = len;
6625 return pos;
6628 /* See if X can be simplified knowing that we will only refer to it in
6629 MODE and will only refer to those bits that are nonzero in MASK.
6630 If other bits are being computed or if masking operations are done
6631 that select a superset of the bits in MASK, they can sometimes be
6632 ignored.
6634 Return a possibly simplified expression, but always convert X to
6635 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6637 Also, if REG is non-zero and X is a register equal in value to REG,
6638 replace X with REG.
6640 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6641 are all off in X. This is used when X will be complemented, by either
6642 NOT, NEG, or XOR. */
6644 static rtx
6645 force_to_mode (x, mode, mask, reg, just_select)
6646 rtx x;
6647 enum machine_mode mode;
6648 unsigned HOST_WIDE_INT mask;
6649 rtx reg;
6650 int just_select;
6652 enum rtx_code code = GET_CODE (x);
6653 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6654 enum machine_mode op_mode;
6655 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6656 rtx op0, op1, temp;
6658 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6659 code below will do the wrong thing since the mode of such an
6660 expression is VOIDmode.
6662 Also do nothing if X is a CLOBBER; this can happen if X was
6663 the return value from a call to gen_lowpart_for_combine. */
6664 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6665 return x;
6667 /* We want to perform the operation is its present mode unless we know
6668 that the operation is valid in MODE, in which case we do the operation
6669 in MODE. */
6670 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6671 && have_insn_for (code, mode))
6672 ? mode : GET_MODE (x));
6674 /* It is not valid to do a right-shift in a narrower mode
6675 than the one it came in with. */
6676 if ((code == LSHIFTRT || code == ASHIFTRT)
6677 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6678 op_mode = GET_MODE (x);
6680 /* Truncate MASK to fit OP_MODE. */
6681 if (op_mode)
6682 mask &= GET_MODE_MASK (op_mode);
6684 /* When we have an arithmetic operation, or a shift whose count we
6685 do not know, we need to assume that all bit the up to the highest-order
6686 bit in MASK will be needed. This is how we form such a mask. */
6687 if (op_mode)
6688 fuller_mask = (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT
6689 ? GET_MODE_MASK (op_mode)
6690 : (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6691 - 1));
6692 else
6693 fuller_mask = ~(HOST_WIDE_INT) 0;
6695 /* Determine what bits of X are guaranteed to be (non)zero. */
6696 nonzero = nonzero_bits (x, mode);
6698 /* If none of the bits in X are needed, return a zero. */
6699 if (! just_select && (nonzero & mask) == 0)
6700 return const0_rtx;
6702 /* If X is a CONST_INT, return a new one. Do this here since the
6703 test below will fail. */
6704 if (GET_CODE (x) == CONST_INT)
6706 HOST_WIDE_INT cval = INTVAL (x) & mask;
6707 int width = GET_MODE_BITSIZE (mode);
6709 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6710 number, sign extend it. */
6711 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6712 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6713 cval |= (HOST_WIDE_INT) -1 << width;
6715 return GEN_INT (cval);
6718 /* If X is narrower than MODE and we want all the bits in X's mode, just
6719 get X in the proper mode. */
6720 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6721 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6722 return gen_lowpart_for_combine (mode, x);
6724 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6725 MASK are already known to be zero in X, we need not do anything. */
6726 if (GET_MODE (x) == mode && code != SUBREG && (~mask & nonzero) == 0)
6727 return x;
6729 switch (code)
6731 case CLOBBER:
6732 /* If X is a (clobber (const_int)), return it since we know we are
6733 generating something that won't match. */
6734 return x;
6736 case USE:
6737 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6738 spanned the boundary of the MEM. If we are now masking so it is
6739 within that boundary, we don't need the USE any more. */
6740 if (! BITS_BIG_ENDIAN
6741 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6742 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6743 break;
6745 case SIGN_EXTEND:
6746 case ZERO_EXTEND:
6747 case ZERO_EXTRACT:
6748 case SIGN_EXTRACT:
6749 x = expand_compound_operation (x);
6750 if (GET_CODE (x) != code)
6751 return force_to_mode (x, mode, mask, reg, next_select);
6752 break;
6754 case REG:
6755 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6756 || rtx_equal_p (reg, get_last_value (x))))
6757 x = reg;
6758 break;
6760 case SUBREG:
6761 if (subreg_lowpart_p (x)
6762 /* We can ignore the effect of this SUBREG if it narrows the mode or
6763 if the constant masks to zero all the bits the mode doesn't
6764 have. */
6765 && ((GET_MODE_SIZE (GET_MODE (x))
6766 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6767 || (0 == (mask
6768 & GET_MODE_MASK (GET_MODE (x))
6769 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6770 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6771 break;
6773 case AND:
6774 /* If this is an AND with a constant, convert it into an AND
6775 whose constant is the AND of that constant with MASK. If it
6776 remains an AND of MASK, delete it since it is redundant. */
6778 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6780 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6781 mask & INTVAL (XEXP (x, 1)));
6783 /* If X is still an AND, see if it is an AND with a mask that
6784 is just some low-order bits. If so, and it is MASK, we don't
6785 need it. */
6787 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6788 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6789 == (HOST_WIDE_INT) mask))
6790 x = XEXP (x, 0);
6792 /* If it remains an AND, try making another AND with the bits
6793 in the mode mask that aren't in MASK turned on. If the
6794 constant in the AND is wide enough, this might make a
6795 cheaper constant. */
6797 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6798 && GET_MODE_MASK (GET_MODE (x)) != mask
6799 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6801 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6802 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6803 int width = GET_MODE_BITSIZE (GET_MODE (x));
6804 rtx y;
6806 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6807 number, sign extend it. */
6808 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6809 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6810 cval |= (HOST_WIDE_INT) -1 << width;
6812 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6813 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6814 x = y;
6817 break;
6820 goto binop;
6822 case PLUS:
6823 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6824 low-order bits (as in an alignment operation) and FOO is already
6825 aligned to that boundary, mask C1 to that boundary as well.
6826 This may eliminate that PLUS and, later, the AND. */
6829 unsigned int width = GET_MODE_BITSIZE (mode);
6830 unsigned HOST_WIDE_INT smask = mask;
6832 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6833 number, sign extend it. */
6835 if (width < HOST_BITS_PER_WIDE_INT
6836 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6837 smask |= (HOST_WIDE_INT) -1 << width;
6839 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6840 && exact_log2 (- smask) >= 0
6841 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
6842 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
6843 return force_to_mode (plus_constant (XEXP (x, 0),
6844 (INTVAL (XEXP (x, 1)) & smask)),
6845 mode, smask, reg, next_select);
6848 /* ... fall through ... */
6850 case MULT:
6851 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6852 most significant bit in MASK since carries from those bits will
6853 affect the bits we are interested in. */
6854 mask = fuller_mask;
6855 goto binop;
6857 case MINUS:
6858 /* If X is (minus C Y) where C's least set bit is larger than any bit
6859 in the mask, then we may replace with (neg Y). */
6860 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6861 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
6862 & -INTVAL (XEXP (x, 0))))
6863 > mask))
6865 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
6866 GET_MODE (x));
6867 return force_to_mode (x, mode, mask, reg, next_select);
6870 /* Similarly, if C contains every bit in the mask, then we may
6871 replace with (not Y). */
6872 if (GET_CODE (XEXP (x, 0)) == CONST_INT
6873 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) mask)
6874 == INTVAL (XEXP (x, 0))))
6876 x = simplify_gen_unary (NOT, GET_MODE (x),
6877 XEXP (x, 1), GET_MODE (x));
6878 return force_to_mode (x, mode, mask, reg, next_select);
6881 mask = fuller_mask;
6882 goto binop;
6884 case IOR:
6885 case XOR:
6886 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6887 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6888 operation which may be a bitfield extraction. Ensure that the
6889 constant we form is not wider than the mode of X. */
6891 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6892 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6893 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6894 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6895 && GET_CODE (XEXP (x, 1)) == CONST_INT
6896 && ((INTVAL (XEXP (XEXP (x, 0), 1))
6897 + floor_log2 (INTVAL (XEXP (x, 1))))
6898 < GET_MODE_BITSIZE (GET_MODE (x)))
6899 && (INTVAL (XEXP (x, 1))
6900 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
6902 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
6903 << INTVAL (XEXP (XEXP (x, 0), 1)));
6904 temp = gen_binary (GET_CODE (x), GET_MODE (x),
6905 XEXP (XEXP (x, 0), 0), temp);
6906 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
6907 XEXP (XEXP (x, 0), 1));
6908 return force_to_mode (x, mode, mask, reg, next_select);
6911 binop:
6912 /* For most binary operations, just propagate into the operation and
6913 change the mode if we have an operation of that mode. */
6915 op0 = gen_lowpart_for_combine (op_mode,
6916 force_to_mode (XEXP (x, 0), mode, mask,
6917 reg, next_select));
6918 op1 = gen_lowpart_for_combine (op_mode,
6919 force_to_mode (XEXP (x, 1), mode, mask,
6920 reg, next_select));
6922 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6923 MASK since OP1 might have been sign-extended but we never want
6924 to turn on extra bits, since combine might have previously relied
6925 on them being off. */
6926 if (GET_CODE (op1) == CONST_INT && (code == IOR || code == XOR)
6927 && (INTVAL (op1) & mask) != 0)
6928 op1 = GEN_INT (INTVAL (op1) & mask);
6930 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
6931 x = gen_binary (code, op_mode, op0, op1);
6932 break;
6934 case ASHIFT:
6935 /* For left shifts, do the same, but just for the first operand.
6936 However, we cannot do anything with shifts where we cannot
6937 guarantee that the counts are smaller than the size of the mode
6938 because such a count will have a different meaning in a
6939 wider mode. */
6941 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
6942 && INTVAL (XEXP (x, 1)) >= 0
6943 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
6944 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
6945 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
6946 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
6947 break;
6949 /* If the shift count is a constant and we can do arithmetic in
6950 the mode of the shift, refine which bits we need. Otherwise, use the
6951 conservative form of the mask. */
6952 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6953 && INTVAL (XEXP (x, 1)) >= 0
6954 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
6955 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6956 mask >>= INTVAL (XEXP (x, 1));
6957 else
6958 mask = fuller_mask;
6960 op0 = gen_lowpart_for_combine (op_mode,
6961 force_to_mode (XEXP (x, 0), op_mode,
6962 mask, reg, next_select));
6964 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
6965 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
6966 break;
6968 case LSHIFTRT:
6969 /* Here we can only do something if the shift count is a constant,
6970 this shift constant is valid for the host, and we can do arithmetic
6971 in OP_MODE. */
6973 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6974 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6975 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
6977 rtx inner = XEXP (x, 0);
6978 unsigned HOST_WIDE_INT inner_mask;
6980 /* Select the mask of the bits we need for the shift operand. */
6981 inner_mask = mask << INTVAL (XEXP (x, 1));
6983 /* We can only change the mode of the shift if we can do arithmetic
6984 in the mode of the shift and INNER_MASK is no wider than the
6985 width of OP_MODE. */
6986 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT
6987 || (inner_mask & ~GET_MODE_MASK (op_mode)) != 0)
6988 op_mode = GET_MODE (x);
6990 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
6992 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
6993 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
6996 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6997 shift and AND produces only copies of the sign bit (C2 is one less
6998 than a power of two), we can do this with just a shift. */
7000 if (GET_CODE (x) == LSHIFTRT
7001 && GET_CODE (XEXP (x, 1)) == CONST_INT
7002 /* The shift puts one of the sign bit copies in the least significant
7003 bit. */
7004 && ((INTVAL (XEXP (x, 1))
7005 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7006 >= GET_MODE_BITSIZE (GET_MODE (x)))
7007 && exact_log2 (mask + 1) >= 0
7008 /* Number of bits left after the shift must be more than the mask
7009 needs. */
7010 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7011 <= GET_MODE_BITSIZE (GET_MODE (x)))
7012 /* Must be more sign bit copies than the mask needs. */
7013 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7014 >= exact_log2 (mask + 1)))
7015 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7016 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7017 - exact_log2 (mask + 1)));
7019 goto shiftrt;
7021 case ASHIFTRT:
7022 /* If we are just looking for the sign bit, we don't need this shift at
7023 all, even if it has a variable count. */
7024 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7025 && (mask == ((unsigned HOST_WIDE_INT) 1
7026 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7027 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7029 /* If this is a shift by a constant, get a mask that contains those bits
7030 that are not copies of the sign bit. We then have two cases: If
7031 MASK only includes those bits, this can be a logical shift, which may
7032 allow simplifications. If MASK is a single-bit field not within
7033 those bits, we are requesting a copy of the sign bit and hence can
7034 shift the sign bit to the appropriate location. */
7036 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7037 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7039 int i = -1;
7041 /* If the considered data is wider than HOST_WIDE_INT, we can't
7042 represent a mask for all its bits in a single scalar.
7043 But we only care about the lower bits, so calculate these. */
7045 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7047 nonzero = ~(HOST_WIDE_INT) 0;
7049 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7050 is the number of bits a full-width mask would have set.
7051 We need only shift if these are fewer than nonzero can
7052 hold. If not, we must keep all bits set in nonzero. */
7054 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7055 < HOST_BITS_PER_WIDE_INT)
7056 nonzero >>= INTVAL (XEXP (x, 1))
7057 + HOST_BITS_PER_WIDE_INT
7058 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7060 else
7062 nonzero = GET_MODE_MASK (GET_MODE (x));
7063 nonzero >>= INTVAL (XEXP (x, 1));
7066 if ((mask & ~nonzero) == 0
7067 || (i = exact_log2 (mask)) >= 0)
7069 x = simplify_shift_const
7070 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7071 i < 0 ? INTVAL (XEXP (x, 1))
7072 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7074 if (GET_CODE (x) != ASHIFTRT)
7075 return force_to_mode (x, mode, mask, reg, next_select);
7079 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7080 even if the shift count isn't a constant. */
7081 if (mask == 1)
7082 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7084 shiftrt:
7086 /* If this is a zero- or sign-extension operation that just affects bits
7087 we don't care about, remove it. Be sure the call above returned
7088 something that is still a shift. */
7090 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7091 && GET_CODE (XEXP (x, 1)) == CONST_INT
7092 && INTVAL (XEXP (x, 1)) >= 0
7093 && (INTVAL (XEXP (x, 1))
7094 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7095 && GET_CODE (XEXP (x, 0)) == ASHIFT
7096 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7097 && INTVAL (XEXP (XEXP (x, 0), 1)) == INTVAL (XEXP (x, 1)))
7098 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7099 reg, next_select);
7101 break;
7103 case ROTATE:
7104 case ROTATERT:
7105 /* If the shift count is constant and we can do computations
7106 in the mode of X, compute where the bits we care about are.
7107 Otherwise, we can't do anything. Don't change the mode of
7108 the shift or propagate MODE into the shift, though. */
7109 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7110 && INTVAL (XEXP (x, 1)) >= 0)
7112 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7113 GET_MODE (x), GEN_INT (mask),
7114 XEXP (x, 1));
7115 if (temp && GET_CODE(temp) == CONST_INT)
7116 SUBST (XEXP (x, 0),
7117 force_to_mode (XEXP (x, 0), GET_MODE (x),
7118 INTVAL (temp), reg, next_select));
7120 break;
7122 case NEG:
7123 /* If we just want the low-order bit, the NEG isn't needed since it
7124 won't change the low-order bit. */
7125 if (mask == 1)
7126 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7128 /* We need any bits less significant than the most significant bit in
7129 MASK since carries from those bits will affect the bits we are
7130 interested in. */
7131 mask = fuller_mask;
7132 goto unop;
7134 case NOT:
7135 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7136 same as the XOR case above. Ensure that the constant we form is not
7137 wider than the mode of X. */
7139 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7140 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7141 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7142 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7143 < GET_MODE_BITSIZE (GET_MODE (x)))
7144 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7146 temp = GEN_INT (mask << INTVAL (XEXP (XEXP (x, 0), 1)));
7147 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7148 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7150 return force_to_mode (x, mode, mask, reg, next_select);
7153 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7154 use the full mask inside the NOT. */
7155 mask = fuller_mask;
7157 unop:
7158 op0 = gen_lowpart_for_combine (op_mode,
7159 force_to_mode (XEXP (x, 0), mode, mask,
7160 reg, next_select));
7161 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7162 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7163 break;
7165 case NE:
7166 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7167 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7168 which is equal to STORE_FLAG_VALUE. */
7169 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7170 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7171 && nonzero_bits (XEXP (x, 0), mode) == STORE_FLAG_VALUE)
7172 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7174 break;
7176 case IF_THEN_ELSE:
7177 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7178 written in a narrower mode. We play it safe and do not do so. */
7180 SUBST (XEXP (x, 1),
7181 gen_lowpart_for_combine (GET_MODE (x),
7182 force_to_mode (XEXP (x, 1), mode,
7183 mask, reg, next_select)));
7184 SUBST (XEXP (x, 2),
7185 gen_lowpart_for_combine (GET_MODE (x),
7186 force_to_mode (XEXP (x, 2), mode,
7187 mask, reg,next_select)));
7188 break;
7190 default:
7191 break;
7194 /* Ensure we return a value of the proper mode. */
7195 return gen_lowpart_for_combine (mode, x);
7198 /* Return nonzero if X is an expression that has one of two values depending on
7199 whether some other value is zero or nonzero. In that case, we return the
7200 value that is being tested, *PTRUE is set to the value if the rtx being
7201 returned has a nonzero value, and *PFALSE is set to the other alternative.
7203 If we return zero, we set *PTRUE and *PFALSE to X. */
7205 static rtx
7206 if_then_else_cond (x, ptrue, pfalse)
7207 rtx x;
7208 rtx *ptrue, *pfalse;
7210 enum machine_mode mode = GET_MODE (x);
7211 enum rtx_code code = GET_CODE (x);
7212 rtx cond0, cond1, true0, true1, false0, false1;
7213 unsigned HOST_WIDE_INT nz;
7215 /* If we are comparing a value against zero, we are done. */
7216 if ((code == NE || code == EQ)
7217 && GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) == 0)
7219 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7220 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7221 return XEXP (x, 0);
7224 /* If this is a unary operation whose operand has one of two values, apply
7225 our opcode to compute those values. */
7226 else if (GET_RTX_CLASS (code) == '1'
7227 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7229 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7230 *pfalse = simplify_gen_unary (code, mode, false0,
7231 GET_MODE (XEXP (x, 0)));
7232 return cond0;
7235 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7236 make can't possibly match and would suppress other optimizations. */
7237 else if (code == COMPARE)
7240 /* If this is a binary operation, see if either side has only one of two
7241 values. If either one does or if both do and they are conditional on
7242 the same value, compute the new true and false values. */
7243 else if (GET_RTX_CLASS (code) == 'c' || GET_RTX_CLASS (code) == '2'
7244 || GET_RTX_CLASS (code) == '<')
7246 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7247 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7249 if ((cond0 != 0 || cond1 != 0)
7250 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7252 /* If if_then_else_cond returned zero, then true/false are the
7253 same rtl. We must copy one of them to prevent invalid rtl
7254 sharing. */
7255 if (cond0 == 0)
7256 true0 = copy_rtx (true0);
7257 else if (cond1 == 0)
7258 true1 = copy_rtx (true1);
7260 *ptrue = gen_binary (code, mode, true0, true1);
7261 *pfalse = gen_binary (code, mode, false0, false1);
7262 return cond0 ? cond0 : cond1;
7265 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7266 operands is zero when the other is non-zero, and vice-versa,
7267 and STORE_FLAG_VALUE is 1 or -1. */
7269 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7270 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7271 || code == UMAX)
7272 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7274 rtx op0 = XEXP (XEXP (x, 0), 1);
7275 rtx op1 = XEXP (XEXP (x, 1), 1);
7277 cond0 = XEXP (XEXP (x, 0), 0);
7278 cond1 = XEXP (XEXP (x, 1), 0);
7280 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7281 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7282 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7283 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7284 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7285 || ((swap_condition (GET_CODE (cond0))
7286 == combine_reversed_comparison_code (cond1))
7287 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7288 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7289 && ! side_effects_p (x))
7291 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7292 *pfalse = gen_binary (MULT, mode,
7293 (code == MINUS
7294 ? simplify_gen_unary (NEG, mode, op1,
7295 mode)
7296 : op1),
7297 const_true_rtx);
7298 return cond0;
7302 /* Similarly for MULT, AND and UMIN, except that for these the result
7303 is always zero. */
7304 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7305 && (code == MULT || code == AND || code == UMIN)
7306 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7308 cond0 = XEXP (XEXP (x, 0), 0);
7309 cond1 = XEXP (XEXP (x, 1), 0);
7311 if (GET_RTX_CLASS (GET_CODE (cond0)) == '<'
7312 && GET_RTX_CLASS (GET_CODE (cond1)) == '<'
7313 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7314 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7315 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7316 || ((swap_condition (GET_CODE (cond0))
7317 == combine_reversed_comparison_code (cond1))
7318 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7319 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7320 && ! side_effects_p (x))
7322 *ptrue = *pfalse = const0_rtx;
7323 return cond0;
7328 else if (code == IF_THEN_ELSE)
7330 /* If we have IF_THEN_ELSE already, extract the condition and
7331 canonicalize it if it is NE or EQ. */
7332 cond0 = XEXP (x, 0);
7333 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7334 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7335 return XEXP (cond0, 0);
7336 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7338 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7339 return XEXP (cond0, 0);
7341 else
7342 return cond0;
7345 /* If X is a SUBREG, we can narrow both the true and false values
7346 if the inner expression, if there is a condition. */
7347 else if (code == SUBREG
7348 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7349 &true0, &false0)))
7351 *ptrue = simplify_gen_subreg (mode, true0,
7352 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7353 *pfalse = simplify_gen_subreg (mode, false0,
7354 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7356 return cond0;
7359 /* If X is a constant, this isn't special and will cause confusions
7360 if we treat it as such. Likewise if it is equivalent to a constant. */
7361 else if (CONSTANT_P (x)
7362 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7365 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7366 will be least confusing to the rest of the compiler. */
7367 else if (mode == BImode)
7369 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7370 return x;
7373 /* If X is known to be either 0 or -1, those are the true and
7374 false values when testing X. */
7375 else if (x == constm1_rtx || x == const0_rtx
7376 || (mode != VOIDmode
7377 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7379 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7380 return x;
7383 /* Likewise for 0 or a single bit. */
7384 else if (mode != VOIDmode
7385 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7386 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7388 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7389 return x;
7392 /* Otherwise fail; show no condition with true and false values the same. */
7393 *ptrue = *pfalse = x;
7394 return 0;
7397 /* Return the value of expression X given the fact that condition COND
7398 is known to be true when applied to REG as its first operand and VAL
7399 as its second. X is known to not be shared and so can be modified in
7400 place.
7402 We only handle the simplest cases, and specifically those cases that
7403 arise with IF_THEN_ELSE expressions. */
7405 static rtx
7406 known_cond (x, cond, reg, val)
7407 rtx x;
7408 enum rtx_code cond;
7409 rtx reg, val;
7411 enum rtx_code code = GET_CODE (x);
7412 rtx temp;
7413 const char *fmt;
7414 int i, j;
7416 if (side_effects_p (x))
7417 return x;
7419 /* If either operand of the condition is a floating point value,
7420 then we have to avoid collapsing an EQ comparison. */
7421 if (cond == EQ
7422 && rtx_equal_p (x, reg)
7423 && ! FLOAT_MODE_P (GET_MODE (x))
7424 && ! FLOAT_MODE_P (GET_MODE (val)))
7425 return val;
7427 if (cond == UNEQ && rtx_equal_p (x, reg))
7428 return val;
7430 /* If X is (abs REG) and we know something about REG's relationship
7431 with zero, we may be able to simplify this. */
7433 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7434 switch (cond)
7436 case GE: case GT: case EQ:
7437 return XEXP (x, 0);
7438 case LT: case LE:
7439 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7440 XEXP (x, 0),
7441 GET_MODE (XEXP (x, 0)));
7442 default:
7443 break;
7446 /* The only other cases we handle are MIN, MAX, and comparisons if the
7447 operands are the same as REG and VAL. */
7449 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
7451 if (rtx_equal_p (XEXP (x, 0), val))
7452 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7454 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7456 if (GET_RTX_CLASS (code) == '<')
7458 if (comparison_dominates_p (cond, code))
7459 return const_true_rtx;
7461 code = combine_reversed_comparison_code (x);
7462 if (code != UNKNOWN
7463 && comparison_dominates_p (cond, code))
7464 return const0_rtx;
7465 else
7466 return x;
7468 else if (code == SMAX || code == SMIN
7469 || code == UMIN || code == UMAX)
7471 int unsignedp = (code == UMIN || code == UMAX);
7473 /* Do not reverse the condition when it is NE or EQ.
7474 This is because we cannot conclude anything about
7475 the value of 'SMAX (x, y)' when x is not equal to y,
7476 but we can when x equals y. */
7477 if ((code == SMAX || code == UMAX)
7478 && ! (cond == EQ || cond == NE))
7479 cond = reverse_condition (cond);
7481 switch (cond)
7483 case GE: case GT:
7484 return unsignedp ? x : XEXP (x, 1);
7485 case LE: case LT:
7486 return unsignedp ? x : XEXP (x, 0);
7487 case GEU: case GTU:
7488 return unsignedp ? XEXP (x, 1) : x;
7489 case LEU: case LTU:
7490 return unsignedp ? XEXP (x, 0) : x;
7491 default:
7492 break;
7497 else if (code == SUBREG)
7499 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7500 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7502 if (SUBREG_REG (x) != r)
7504 /* We must simplify subreg here, before we lose track of the
7505 original inner_mode. */
7506 new = simplify_subreg (GET_MODE (x), r,
7507 inner_mode, SUBREG_BYTE (x));
7508 if (new)
7509 return new;
7510 else
7511 SUBST (SUBREG_REG (x), r);
7514 return x;
7516 /* We don't have to handle SIGN_EXTEND here, because even in the
7517 case of replacing something with a modeless CONST_INT, a
7518 CONST_INT is already (supposed to be) a valid sign extension for
7519 its narrower mode, which implies it's already properly
7520 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7521 story is different. */
7522 else if (code == ZERO_EXTEND)
7524 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7525 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7527 if (XEXP (x, 0) != r)
7529 /* We must simplify the zero_extend here, before we lose
7530 track of the original inner_mode. */
7531 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7532 r, inner_mode);
7533 if (new)
7534 return new;
7535 else
7536 SUBST (XEXP (x, 0), r);
7539 return x;
7542 fmt = GET_RTX_FORMAT (code);
7543 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7545 if (fmt[i] == 'e')
7546 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7547 else if (fmt[i] == 'E')
7548 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7549 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7550 cond, reg, val));
7553 return x;
7556 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7557 assignment as a field assignment. */
7559 static int
7560 rtx_equal_for_field_assignment_p (x, y)
7561 rtx x;
7562 rtx y;
7564 if (x == y || rtx_equal_p (x, y))
7565 return 1;
7567 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7568 return 0;
7570 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7571 Note that all SUBREGs of MEM are paradoxical; otherwise they
7572 would have been rewritten. */
7573 if (GET_CODE (x) == MEM && GET_CODE (y) == SUBREG
7574 && GET_CODE (SUBREG_REG (y)) == MEM
7575 && rtx_equal_p (SUBREG_REG (y),
7576 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y)), x)))
7577 return 1;
7579 if (GET_CODE (y) == MEM && GET_CODE (x) == SUBREG
7580 && GET_CODE (SUBREG_REG (x)) == MEM
7581 && rtx_equal_p (SUBREG_REG (x),
7582 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x)), y)))
7583 return 1;
7585 /* We used to see if get_last_value of X and Y were the same but that's
7586 not correct. In one direction, we'll cause the assignment to have
7587 the wrong destination and in the case, we'll import a register into this
7588 insn that might have already have been dead. So fail if none of the
7589 above cases are true. */
7590 return 0;
7593 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7594 Return that assignment if so.
7596 We only handle the most common cases. */
7598 static rtx
7599 make_field_assignment (x)
7600 rtx x;
7602 rtx dest = SET_DEST (x);
7603 rtx src = SET_SRC (x);
7604 rtx assign;
7605 rtx rhs, lhs;
7606 HOST_WIDE_INT c1;
7607 HOST_WIDE_INT pos;
7608 unsigned HOST_WIDE_INT len;
7609 rtx other;
7610 enum machine_mode mode;
7612 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7613 a clear of a one-bit field. We will have changed it to
7614 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7615 for a SUBREG. */
7617 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7618 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7619 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7620 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7622 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7623 1, 1, 1, 0);
7624 if (assign != 0)
7625 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7626 return x;
7629 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7630 && subreg_lowpart_p (XEXP (src, 0))
7631 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7632 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7633 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7634 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7635 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7637 assign = make_extraction (VOIDmode, dest, 0,
7638 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7639 1, 1, 1, 0);
7640 if (assign != 0)
7641 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7642 return x;
7645 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7646 one-bit field. */
7647 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7648 && XEXP (XEXP (src, 0), 0) == const1_rtx
7649 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7651 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7652 1, 1, 1, 0);
7653 if (assign != 0)
7654 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7655 return x;
7658 /* The other case we handle is assignments into a constant-position
7659 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7660 a mask that has all one bits except for a group of zero bits and
7661 OTHER is known to have zeros where C1 has ones, this is such an
7662 assignment. Compute the position and length from C1. Shift OTHER
7663 to the appropriate position, force it to the required mode, and
7664 make the extraction. Check for the AND in both operands. */
7666 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7667 return x;
7669 rhs = expand_compound_operation (XEXP (src, 0));
7670 lhs = expand_compound_operation (XEXP (src, 1));
7672 if (GET_CODE (rhs) == AND
7673 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7674 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7675 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7676 else if (GET_CODE (lhs) == AND
7677 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7678 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7679 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7680 else
7681 return x;
7683 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7684 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7685 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7686 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7687 return x;
7689 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7690 if (assign == 0)
7691 return x;
7693 /* The mode to use for the source is the mode of the assignment, or of
7694 what is inside a possible STRICT_LOW_PART. */
7695 mode = (GET_CODE (assign) == STRICT_LOW_PART
7696 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7698 /* Shift OTHER right POS places and make it the source, restricting it
7699 to the proper length and mode. */
7701 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7702 GET_MODE (src), other, pos),
7703 mode,
7704 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7705 ? ~(unsigned HOST_WIDE_INT) 0
7706 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7707 dest, 0);
7709 return gen_rtx_SET (VOIDmode, assign, src);
7712 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7713 if so. */
7715 static rtx
7716 apply_distributive_law (x)
7717 rtx x;
7719 enum rtx_code code = GET_CODE (x);
7720 rtx lhs, rhs, other;
7721 rtx tem;
7722 enum rtx_code inner_code;
7724 /* Distributivity is not true for floating point.
7725 It can change the value. So don't do it.
7726 -- rms and moshier@world.std.com. */
7727 if (FLOAT_MODE_P (GET_MODE (x)))
7728 return x;
7730 /* The outer operation can only be one of the following: */
7731 if (code != IOR && code != AND && code != XOR
7732 && code != PLUS && code != MINUS)
7733 return x;
7735 lhs = XEXP (x, 0), rhs = XEXP (x, 1);
7737 /* If either operand is a primitive we can't do anything, so get out
7738 fast. */
7739 if (GET_RTX_CLASS (GET_CODE (lhs)) == 'o'
7740 || GET_RTX_CLASS (GET_CODE (rhs)) == 'o')
7741 return x;
7743 lhs = expand_compound_operation (lhs);
7744 rhs = expand_compound_operation (rhs);
7745 inner_code = GET_CODE (lhs);
7746 if (inner_code != GET_CODE (rhs))
7747 return x;
7749 /* See if the inner and outer operations distribute. */
7750 switch (inner_code)
7752 case LSHIFTRT:
7753 case ASHIFTRT:
7754 case AND:
7755 case IOR:
7756 /* These all distribute except over PLUS. */
7757 if (code == PLUS || code == MINUS)
7758 return x;
7759 break;
7761 case MULT:
7762 if (code != PLUS && code != MINUS)
7763 return x;
7764 break;
7766 case ASHIFT:
7767 /* This is also a multiply, so it distributes over everything. */
7768 break;
7770 case SUBREG:
7771 /* Non-paradoxical SUBREGs distributes over all operations, provided
7772 the inner modes and byte offsets are the same, this is an extraction
7773 of a low-order part, we don't convert an fp operation to int or
7774 vice versa, and we would not be converting a single-word
7775 operation into a multi-word operation. The latter test is not
7776 required, but it prevents generating unneeded multi-word operations.
7777 Some of the previous tests are redundant given the latter test, but
7778 are retained because they are required for correctness.
7780 We produce the result slightly differently in this case. */
7782 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7783 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7784 || ! subreg_lowpart_p (lhs)
7785 || (GET_MODE_CLASS (GET_MODE (lhs))
7786 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7787 || (GET_MODE_SIZE (GET_MODE (lhs))
7788 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7789 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7790 return x;
7792 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7793 SUBREG_REG (lhs), SUBREG_REG (rhs));
7794 return gen_lowpart_for_combine (GET_MODE (x), tem);
7796 default:
7797 return x;
7800 /* Set LHS and RHS to the inner operands (A and B in the example
7801 above) and set OTHER to the common operand (C in the example).
7802 These is only one way to do this unless the inner operation is
7803 commutative. */
7804 if (GET_RTX_CLASS (inner_code) == 'c'
7805 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7806 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7807 else if (GET_RTX_CLASS (inner_code) == 'c'
7808 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7809 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7810 else if (GET_RTX_CLASS (inner_code) == 'c'
7811 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7812 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7813 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7814 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7815 else
7816 return x;
7818 /* Form the new inner operation, seeing if it simplifies first. */
7819 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7821 /* There is one exception to the general way of distributing:
7822 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7823 if (code == XOR && inner_code == IOR)
7825 inner_code = AND;
7826 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
7829 /* We may be able to continuing distributing the result, so call
7830 ourselves recursively on the inner operation before forming the
7831 outer operation, which we return. */
7832 return gen_binary (inner_code, GET_MODE (x),
7833 apply_distributive_law (tem), other);
7836 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7837 in MODE.
7839 Return an equivalent form, if different from X. Otherwise, return X. If
7840 X is zero, we are to always construct the equivalent form. */
7842 static rtx
7843 simplify_and_const_int (x, mode, varop, constop)
7844 rtx x;
7845 enum machine_mode mode;
7846 rtx varop;
7847 unsigned HOST_WIDE_INT constop;
7849 unsigned HOST_WIDE_INT nonzero;
7850 int i;
7852 /* Simplify VAROP knowing that we will be only looking at some of the
7853 bits in it.
7855 Note by passing in CONSTOP, we guarantee that the bits not set in
7856 CONSTOP are not significant and will never be examined. We must
7857 ensure that is the case by explicitly masking out those bits
7858 before returning. */
7859 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
7861 /* If VAROP is a CLOBBER, we will fail so return it. */
7862 if (GET_CODE (varop) == CLOBBER)
7863 return varop;
7865 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
7866 to VAROP and return the new constant. */
7867 if (GET_CODE (varop) == CONST_INT)
7868 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
7870 /* See what bits may be nonzero in VAROP. Unlike the general case of
7871 a call to nonzero_bits, here we don't care about bits outside
7872 MODE. */
7874 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
7876 /* Turn off all bits in the constant that are known to already be zero.
7877 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7878 which is tested below. */
7880 constop &= nonzero;
7882 /* If we don't have any bits left, return zero. */
7883 if (constop == 0)
7884 return const0_rtx;
7886 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7887 a power of two, we can replace this with an ASHIFT. */
7888 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
7889 && (i = exact_log2 (constop)) >= 0)
7890 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
7892 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7893 or XOR, then try to apply the distributive law. This may eliminate
7894 operations if either branch can be simplified because of the AND.
7895 It may also make some cases more complex, but those cases probably
7896 won't match a pattern either with or without this. */
7898 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
7899 return
7900 gen_lowpart_for_combine
7901 (mode,
7902 apply_distributive_law
7903 (gen_binary (GET_CODE (varop), GET_MODE (varop),
7904 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7905 XEXP (varop, 0), constop),
7906 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
7907 XEXP (varop, 1), constop))));
7909 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
7910 the AND and see if one of the operands simplifies to zero. If so, we
7911 may eliminate it. */
7913 if (GET_CODE (varop) == PLUS
7914 && exact_log2 (constop + 1) >= 0)
7916 rtx o0, o1;
7918 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
7919 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
7920 if (o0 == const0_rtx)
7921 return o1;
7922 if (o1 == const0_rtx)
7923 return o0;
7926 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7927 if we already had one (just check for the simplest cases). */
7928 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
7929 && GET_MODE (XEXP (x, 0)) == mode
7930 && SUBREG_REG (XEXP (x, 0)) == varop)
7931 varop = XEXP (x, 0);
7932 else
7933 varop = gen_lowpart_for_combine (mode, varop);
7935 /* If we can't make the SUBREG, try to return what we were given. */
7936 if (GET_CODE (varop) == CLOBBER)
7937 return x ? x : varop;
7939 /* If we are only masking insignificant bits, return VAROP. */
7940 if (constop == nonzero)
7941 x = varop;
7942 else
7944 /* Otherwise, return an AND. */
7945 constop = trunc_int_for_mode (constop, mode);
7946 /* See how much, if any, of X we can use. */
7947 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
7948 x = gen_binary (AND, mode, varop, GEN_INT (constop));
7950 else
7952 if (GET_CODE (XEXP (x, 1)) != CONST_INT
7953 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
7954 SUBST (XEXP (x, 1), GEN_INT (constop));
7956 SUBST (XEXP (x, 0), varop);
7960 return x;
7963 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7964 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7965 is less useful. We can't allow both, because that results in exponential
7966 run time recursion. There is a nullstone testcase that triggered
7967 this. This macro avoids accidental uses of num_sign_bit_copies. */
7968 #define num_sign_bit_copies()
7970 /* Given an expression, X, compute which bits in X can be non-zero.
7971 We don't care about bits outside of those defined in MODE.
7973 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7974 a shift, AND, or zero_extract, we can do better. */
7976 static unsigned HOST_WIDE_INT
7977 nonzero_bits (x, mode)
7978 rtx x;
7979 enum machine_mode mode;
7981 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
7982 unsigned HOST_WIDE_INT inner_nz;
7983 enum rtx_code code;
7984 unsigned int mode_width = GET_MODE_BITSIZE (mode);
7985 rtx tem;
7987 /* For floating-point values, assume all bits are needed. */
7988 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
7989 return nonzero;
7991 /* If X is wider than MODE, use its mode instead. */
7992 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
7994 mode = GET_MODE (x);
7995 nonzero = GET_MODE_MASK (mode);
7996 mode_width = GET_MODE_BITSIZE (mode);
7999 if (mode_width > HOST_BITS_PER_WIDE_INT)
8000 /* Our only callers in this case look for single bit values. So
8001 just return the mode mask. Those tests will then be false. */
8002 return nonzero;
8004 #ifndef WORD_REGISTER_OPERATIONS
8005 /* If MODE is wider than X, but both are a single word for both the host
8006 and target machines, we can compute this from which bits of the
8007 object might be nonzero in its own mode, taking into account the fact
8008 that on many CISC machines, accessing an object in a wider mode
8009 causes the high-order bits to become undefined. So they are
8010 not known to be zero. */
8012 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
8013 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
8014 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
8015 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
8017 nonzero &= nonzero_bits (x, GET_MODE (x));
8018 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
8019 return nonzero;
8021 #endif
8023 code = GET_CODE (x);
8024 switch (code)
8026 case REG:
8027 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8028 /* If pointers extend unsigned and this is a pointer in Pmode, say that
8029 all the bits above ptr_mode are known to be zero. */
8030 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8031 && REG_POINTER (x))
8032 nonzero &= GET_MODE_MASK (ptr_mode);
8033 #endif
8035 /* Include declared information about alignment of pointers. */
8036 /* ??? We don't properly preserve REG_POINTER changes across
8037 pointer-to-integer casts, so we can't trust it except for
8038 things that we know must be pointers. See execute/960116-1.c. */
8039 if ((x == stack_pointer_rtx
8040 || x == frame_pointer_rtx
8041 || x == arg_pointer_rtx)
8042 && REGNO_POINTER_ALIGN (REGNO (x)))
8044 unsigned HOST_WIDE_INT alignment
8045 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
8047 #ifdef PUSH_ROUNDING
8048 /* If PUSH_ROUNDING is defined, it is possible for the
8049 stack to be momentarily aligned only to that amount,
8050 so we pick the least alignment. */
8051 if (x == stack_pointer_rtx && PUSH_ARGS)
8052 alignment = MIN (PUSH_ROUNDING (1), alignment);
8053 #endif
8055 nonzero &= ~(alignment - 1);
8058 /* If X is a register whose nonzero bits value is current, use it.
8059 Otherwise, if X is a register whose value we can find, use that
8060 value. Otherwise, use the previously-computed global nonzero bits
8061 for this register. */
8063 if (reg_last_set_value[REGNO (x)] != 0
8064 && (reg_last_set_mode[REGNO (x)] == mode
8065 || (GET_MODE_CLASS (reg_last_set_mode[REGNO (x)]) == MODE_INT
8066 && GET_MODE_CLASS (mode) == MODE_INT))
8067 && (reg_last_set_label[REGNO (x)] == label_tick
8068 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8069 && REG_N_SETS (REGNO (x)) == 1
8070 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8071 REGNO (x))))
8072 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8073 return reg_last_set_nonzero_bits[REGNO (x)] & nonzero;
8075 tem = get_last_value (x);
8077 if (tem)
8079 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8080 /* If X is narrower than MODE and TEM is a non-negative
8081 constant that would appear negative in the mode of X,
8082 sign-extend it for use in reg_nonzero_bits because some
8083 machines (maybe most) will actually do the sign-extension
8084 and this is the conservative approach.
8086 ??? For 2.5, try to tighten up the MD files in this regard
8087 instead of this kludge. */
8089 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width
8090 && GET_CODE (tem) == CONST_INT
8091 && INTVAL (tem) > 0
8092 && 0 != (INTVAL (tem)
8093 & ((HOST_WIDE_INT) 1
8094 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8095 tem = GEN_INT (INTVAL (tem)
8096 | ((HOST_WIDE_INT) (-1)
8097 << GET_MODE_BITSIZE (GET_MODE (x))));
8098 #endif
8099 return nonzero_bits (tem, mode) & nonzero;
8101 else if (nonzero_sign_valid && reg_nonzero_bits[REGNO (x)])
8103 unsigned HOST_WIDE_INT mask = reg_nonzero_bits[REGNO (x)];
8105 if (GET_MODE_BITSIZE (GET_MODE (x)) < mode_width)
8106 /* We don't know anything about the upper bits. */
8107 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8108 return nonzero & mask;
8110 else
8111 return nonzero;
8113 case CONST_INT:
8114 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8115 /* If X is negative in MODE, sign-extend the value. */
8116 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
8117 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
8118 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
8119 #endif
8121 return INTVAL (x);
8123 case MEM:
8124 #ifdef LOAD_EXTEND_OP
8125 /* In many, if not most, RISC machines, reading a byte from memory
8126 zeros the rest of the register. Noticing that fact saves a lot
8127 of extra zero-extends. */
8128 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
8129 nonzero &= GET_MODE_MASK (GET_MODE (x));
8130 #endif
8131 break;
8133 case EQ: case NE:
8134 case UNEQ: case LTGT:
8135 case GT: case GTU: case UNGT:
8136 case LT: case LTU: case UNLT:
8137 case GE: case GEU: case UNGE:
8138 case LE: case LEU: case UNLE:
8139 case UNORDERED: case ORDERED:
8141 /* If this produces an integer result, we know which bits are set.
8142 Code here used to clear bits outside the mode of X, but that is
8143 now done above. */
8145 if (GET_MODE_CLASS (mode) == MODE_INT
8146 && mode_width <= HOST_BITS_PER_WIDE_INT)
8147 nonzero = STORE_FLAG_VALUE;
8148 break;
8150 case NEG:
8151 #if 0
8152 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8153 and num_sign_bit_copies. */
8154 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8155 == GET_MODE_BITSIZE (GET_MODE (x)))
8156 nonzero = 1;
8157 #endif
8159 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
8160 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
8161 break;
8163 case ABS:
8164 #if 0
8165 /* Disabled to avoid exponential mutual recursion between nonzero_bits
8166 and num_sign_bit_copies. */
8167 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
8168 == GET_MODE_BITSIZE (GET_MODE (x)))
8169 nonzero = 1;
8170 #endif
8171 break;
8173 case TRUNCATE:
8174 nonzero &= (nonzero_bits (XEXP (x, 0), mode) & GET_MODE_MASK (mode));
8175 break;
8177 case ZERO_EXTEND:
8178 nonzero &= nonzero_bits (XEXP (x, 0), mode);
8179 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8180 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8181 break;
8183 case SIGN_EXTEND:
8184 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
8185 Otherwise, show all the bits in the outer mode but not the inner
8186 may be non-zero. */
8187 inner_nz = nonzero_bits (XEXP (x, 0), mode);
8188 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
8190 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
8191 if (inner_nz
8192 & (((HOST_WIDE_INT) 1
8193 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
8194 inner_nz |= (GET_MODE_MASK (mode)
8195 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
8198 nonzero &= inner_nz;
8199 break;
8201 case AND:
8202 nonzero &= (nonzero_bits (XEXP (x, 0), mode)
8203 & nonzero_bits (XEXP (x, 1), mode));
8204 break;
8206 case XOR: case IOR:
8207 case UMIN: case UMAX: case SMIN: case SMAX:
8209 unsigned HOST_WIDE_INT nonzero0 = nonzero_bits (XEXP (x, 0), mode);
8211 /* Don't call nonzero_bits for the second time if it cannot change
8212 anything. */
8213 if ((nonzero & nonzero0) != nonzero)
8214 nonzero &= (nonzero0 | nonzero_bits (XEXP (x, 1), mode));
8216 break;
8218 case PLUS: case MINUS:
8219 case MULT:
8220 case DIV: case UDIV:
8221 case MOD: case UMOD:
8222 /* We can apply the rules of arithmetic to compute the number of
8223 high- and low-order zero bits of these operations. We start by
8224 computing the width (position of the highest-order non-zero bit)
8225 and the number of low-order zero bits for each value. */
8227 unsigned HOST_WIDE_INT nz0 = nonzero_bits (XEXP (x, 0), mode);
8228 unsigned HOST_WIDE_INT nz1 = nonzero_bits (XEXP (x, 1), mode);
8229 int width0 = floor_log2 (nz0) + 1;
8230 int width1 = floor_log2 (nz1) + 1;
8231 int low0 = floor_log2 (nz0 & -nz0);
8232 int low1 = floor_log2 (nz1 & -nz1);
8233 HOST_WIDE_INT op0_maybe_minusp
8234 = (nz0 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8235 HOST_WIDE_INT op1_maybe_minusp
8236 = (nz1 & ((HOST_WIDE_INT) 1 << (mode_width - 1)));
8237 unsigned int result_width = mode_width;
8238 int result_low = 0;
8240 switch (code)
8242 case PLUS:
8243 result_width = MAX (width0, width1) + 1;
8244 result_low = MIN (low0, low1);
8245 break;
8246 case MINUS:
8247 result_low = MIN (low0, low1);
8248 break;
8249 case MULT:
8250 result_width = width0 + width1;
8251 result_low = low0 + low1;
8252 break;
8253 case DIV:
8254 if (width1 == 0)
8255 break;
8256 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8257 result_width = width0;
8258 break;
8259 case UDIV:
8260 if (width1 == 0)
8261 break;
8262 result_width = width0;
8263 break;
8264 case MOD:
8265 if (width1 == 0)
8266 break;
8267 if (! op0_maybe_minusp && ! op1_maybe_minusp)
8268 result_width = MIN (width0, width1);
8269 result_low = MIN (low0, low1);
8270 break;
8271 case UMOD:
8272 if (width1 == 0)
8273 break;
8274 result_width = MIN (width0, width1);
8275 result_low = MIN (low0, low1);
8276 break;
8277 default:
8278 abort ();
8281 if (result_width < mode_width)
8282 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
8284 if (result_low > 0)
8285 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
8287 #ifdef POINTERS_EXTEND_UNSIGNED
8288 /* If pointers extend unsigned and this is an addition or subtraction
8289 to a pointer in Pmode, all the bits above ptr_mode are known to be
8290 zero. */
8291 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
8292 && (code == PLUS || code == MINUS)
8293 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8294 nonzero &= GET_MODE_MASK (ptr_mode);
8295 #endif
8297 break;
8299 case ZERO_EXTRACT:
8300 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8301 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8302 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
8303 break;
8305 case SUBREG:
8306 /* If this is a SUBREG formed for a promoted variable that has
8307 been zero-extended, we know that at least the high-order bits
8308 are zero, though others might be too. */
8310 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
8311 nonzero = (GET_MODE_MASK (GET_MODE (x))
8312 & nonzero_bits (SUBREG_REG (x), GET_MODE (x)));
8314 /* If the inner mode is a single word for both the host and target
8315 machines, we can compute this from which bits of the inner
8316 object might be nonzero. */
8317 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
8318 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8319 <= HOST_BITS_PER_WIDE_INT))
8321 nonzero &= nonzero_bits (SUBREG_REG (x), mode);
8323 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8324 /* If this is a typical RISC machine, we only have to worry
8325 about the way loads are extended. */
8326 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
8327 ? (((nonzero
8328 & (((unsigned HOST_WIDE_INT) 1
8329 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
8330 != 0))
8331 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
8332 #endif
8334 /* On many CISC machines, accessing an object in a wider mode
8335 causes the high-order bits to become undefined. So they are
8336 not known to be zero. */
8337 if (GET_MODE_SIZE (GET_MODE (x))
8338 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8339 nonzero |= (GET_MODE_MASK (GET_MODE (x))
8340 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
8343 break;
8345 case ASHIFTRT:
8346 case LSHIFTRT:
8347 case ASHIFT:
8348 case ROTATE:
8349 /* The nonzero bits are in two classes: any bits within MODE
8350 that aren't in GET_MODE (x) are always significant. The rest of the
8351 nonzero bits are those that are significant in the operand of
8352 the shift when shifted the appropriate number of bits. This
8353 shows that high-order bits are cleared by the right shift and
8354 low-order bits by left shifts. */
8355 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8356 && INTVAL (XEXP (x, 1)) >= 0
8357 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8359 enum machine_mode inner_mode = GET_MODE (x);
8360 unsigned int width = GET_MODE_BITSIZE (inner_mode);
8361 int count = INTVAL (XEXP (x, 1));
8362 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
8363 unsigned HOST_WIDE_INT op_nonzero = nonzero_bits (XEXP (x, 0), mode);
8364 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
8365 unsigned HOST_WIDE_INT outer = 0;
8367 if (mode_width > width)
8368 outer = (op_nonzero & nonzero & ~mode_mask);
8370 if (code == LSHIFTRT)
8371 inner >>= count;
8372 else if (code == ASHIFTRT)
8374 inner >>= count;
8376 /* If the sign bit may have been nonzero before the shift, we
8377 need to mark all the places it could have been copied to
8378 by the shift as possibly nonzero. */
8379 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
8380 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
8382 else if (code == ASHIFT)
8383 inner <<= count;
8384 else
8385 inner = ((inner << (count % width)
8386 | (inner >> (width - (count % width)))) & mode_mask);
8388 nonzero &= (outer | inner);
8390 break;
8392 case FFS:
8393 /* This is at most the number of bits in the mode. */
8394 nonzero = ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width) + 1)) - 1;
8395 break;
8397 case IF_THEN_ELSE:
8398 nonzero &= (nonzero_bits (XEXP (x, 1), mode)
8399 | nonzero_bits (XEXP (x, 2), mode));
8400 break;
8402 default:
8403 break;
8406 return nonzero;
8409 /* See the macro definition above. */
8410 #undef num_sign_bit_copies
8412 /* Return the number of bits at the high-order end of X that are known to
8413 be equal to the sign bit. X will be used in mode MODE; if MODE is
8414 VOIDmode, X will be used in its own mode. The returned value will always
8415 be between 1 and the number of bits in MODE. */
8417 static unsigned int
8418 num_sign_bit_copies (x, mode)
8419 rtx x;
8420 enum machine_mode mode;
8422 enum rtx_code code = GET_CODE (x);
8423 unsigned int bitwidth;
8424 int num0, num1, result;
8425 unsigned HOST_WIDE_INT nonzero;
8426 rtx tem;
8428 /* If we weren't given a mode, use the mode of X. If the mode is still
8429 VOIDmode, we don't know anything. Likewise if one of the modes is
8430 floating-point. */
8432 if (mode == VOIDmode)
8433 mode = GET_MODE (x);
8435 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
8436 return 1;
8438 bitwidth = GET_MODE_BITSIZE (mode);
8440 /* For a smaller object, just ignore the high bits. */
8441 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
8443 num0 = num_sign_bit_copies (x, GET_MODE (x));
8444 return MAX (1,
8445 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
8448 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
8450 #ifndef WORD_REGISTER_OPERATIONS
8451 /* If this machine does not do all register operations on the entire
8452 register and MODE is wider than the mode of X, we can say nothing
8453 at all about the high-order bits. */
8454 return 1;
8455 #else
8456 /* Likewise on machines that do, if the mode of the object is smaller
8457 than a word and loads of that size don't sign extend, we can say
8458 nothing about the high order bits. */
8459 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
8460 #ifdef LOAD_EXTEND_OP
8461 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
8462 #endif
8464 return 1;
8465 #endif
8468 switch (code)
8470 case REG:
8472 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
8473 /* If pointers extend signed and this is a pointer in Pmode, say that
8474 all the bits above ptr_mode are known to be sign bit copies. */
8475 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
8476 && REG_POINTER (x))
8477 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
8478 #endif
8480 if (reg_last_set_value[REGNO (x)] != 0
8481 && reg_last_set_mode[REGNO (x)] == mode
8482 && (reg_last_set_label[REGNO (x)] == label_tick
8483 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8484 && REG_N_SETS (REGNO (x)) == 1
8485 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start,
8486 REGNO (x))))
8487 && INSN_CUID (reg_last_set[REGNO (x)]) < subst_low_cuid)
8488 return reg_last_set_sign_bit_copies[REGNO (x)];
8490 tem = get_last_value (x);
8491 if (tem != 0)
8492 return num_sign_bit_copies (tem, mode);
8494 if (nonzero_sign_valid && reg_sign_bit_copies[REGNO (x)] != 0
8495 && GET_MODE_BITSIZE (GET_MODE (x)) == bitwidth)
8496 return reg_sign_bit_copies[REGNO (x)];
8497 break;
8499 case MEM:
8500 #ifdef LOAD_EXTEND_OP
8501 /* Some RISC machines sign-extend all loads of smaller than a word. */
8502 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
8503 return MAX (1, ((int) bitwidth
8504 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
8505 #endif
8506 break;
8508 case CONST_INT:
8509 /* If the constant is negative, take its 1's complement and remask.
8510 Then see how many zero bits we have. */
8511 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
8512 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8513 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8514 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8516 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8518 case SUBREG:
8519 /* If this is a SUBREG for a promoted object that is sign-extended
8520 and we are looking at it in a wider mode, we know that at least the
8521 high-order bits are known to be sign bit copies. */
8523 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
8525 num0 = num_sign_bit_copies (SUBREG_REG (x), mode);
8526 return MAX ((int) bitwidth
8527 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
8528 num0);
8531 /* For a smaller object, just ignore the high bits. */
8532 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
8534 num0 = num_sign_bit_copies (SUBREG_REG (x), VOIDmode);
8535 return MAX (1, (num0
8536 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
8537 - bitwidth)));
8540 #ifdef WORD_REGISTER_OPERATIONS
8541 #ifdef LOAD_EXTEND_OP
8542 /* For paradoxical SUBREGs on machines where all register operations
8543 affect the entire register, just look inside. Note that we are
8544 passing MODE to the recursive call, so the number of sign bit copies
8545 will remain relative to that mode, not the inner mode. */
8547 /* This works only if loads sign extend. Otherwise, if we get a
8548 reload for the inner part, it may be loaded from the stack, and
8549 then we lose all sign bit copies that existed before the store
8550 to the stack. */
8552 if ((GET_MODE_SIZE (GET_MODE (x))
8553 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8554 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND)
8555 return num_sign_bit_copies (SUBREG_REG (x), mode);
8556 #endif
8557 #endif
8558 break;
8560 case SIGN_EXTRACT:
8561 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
8562 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
8563 break;
8565 case SIGN_EXTEND:
8566 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8567 + num_sign_bit_copies (XEXP (x, 0), VOIDmode));
8569 case TRUNCATE:
8570 /* For a smaller object, just ignore the high bits. */
8571 num0 = num_sign_bit_copies (XEXP (x, 0), VOIDmode);
8572 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
8573 - bitwidth)));
8575 case NOT:
8576 return num_sign_bit_copies (XEXP (x, 0), mode);
8578 case ROTATE: case ROTATERT:
8579 /* If we are rotating left by a number of bits less than the number
8580 of sign bit copies, we can just subtract that amount from the
8581 number. */
8582 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8583 && INTVAL (XEXP (x, 1)) >= 0
8584 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
8586 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8587 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
8588 : (int) bitwidth - INTVAL (XEXP (x, 1))));
8590 break;
8592 case NEG:
8593 /* In general, this subtracts one sign bit copy. But if the value
8594 is known to be positive, the number of sign bit copies is the
8595 same as that of the input. Finally, if the input has just one bit
8596 that might be nonzero, all the bits are copies of the sign bit. */
8597 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8598 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8599 return num0 > 1 ? num0 - 1 : 1;
8601 nonzero = nonzero_bits (XEXP (x, 0), mode);
8602 if (nonzero == 1)
8603 return bitwidth;
8605 if (num0 > 1
8606 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
8607 num0--;
8609 return num0;
8611 case IOR: case AND: case XOR:
8612 case SMIN: case SMAX: case UMIN: case UMAX:
8613 /* Logical operations will preserve the number of sign-bit copies.
8614 MIN and MAX operations always return one of the operands. */
8615 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8616 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8617 return MIN (num0, num1);
8619 case PLUS: case MINUS:
8620 /* For addition and subtraction, we can have a 1-bit carry. However,
8621 if we are subtracting 1 from a positive number, there will not
8622 be such a carry. Furthermore, if the positive number is known to
8623 be 0 or 1, we know the result is either -1 or 0. */
8625 if (code == PLUS && XEXP (x, 1) == constm1_rtx
8626 && bitwidth <= HOST_BITS_PER_WIDE_INT)
8628 nonzero = nonzero_bits (XEXP (x, 0), mode);
8629 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
8630 return (nonzero == 1 || nonzero == 0 ? bitwidth
8631 : bitwidth - floor_log2 (nonzero) - 1);
8634 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8635 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8636 result = MAX (1, MIN (num0, num1) - 1);
8638 #ifdef POINTERS_EXTEND_UNSIGNED
8639 /* If pointers extend signed and this is an addition or subtraction
8640 to a pointer in Pmode, all the bits above ptr_mode are known to be
8641 sign bit copies. */
8642 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
8643 && (code == PLUS || code == MINUS)
8644 && GET_CODE (XEXP (x, 0)) == REG && REG_POINTER (XEXP (x, 0)))
8645 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
8646 - GET_MODE_BITSIZE (ptr_mode) + 1),
8647 result);
8648 #endif
8649 return result;
8651 case MULT:
8652 /* The number of bits of the product is the sum of the number of
8653 bits of both terms. However, unless one of the terms if known
8654 to be positive, we must allow for an additional bit since negating
8655 a negative number can remove one sign bit copy. */
8657 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8658 num1 = num_sign_bit_copies (XEXP (x, 1), mode);
8660 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
8661 if (result > 0
8662 && (bitwidth > HOST_BITS_PER_WIDE_INT
8663 || (((nonzero_bits (XEXP (x, 0), mode)
8664 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8665 && ((nonzero_bits (XEXP (x, 1), mode)
8666 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
8667 result--;
8669 return MAX (1, result);
8671 case UDIV:
8672 /* The result must be <= the first operand. If the first operand
8673 has the high bit set, we know nothing about the number of sign
8674 bit copies. */
8675 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8676 return 1;
8677 else if ((nonzero_bits (XEXP (x, 0), mode)
8678 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8679 return 1;
8680 else
8681 return num_sign_bit_copies (XEXP (x, 0), mode);
8683 case UMOD:
8684 /* The result must be <= the second operand. */
8685 return num_sign_bit_copies (XEXP (x, 1), mode);
8687 case DIV:
8688 /* Similar to unsigned division, except that we have to worry about
8689 the case where the divisor is negative, in which case we have
8690 to add 1. */
8691 result = num_sign_bit_copies (XEXP (x, 0), mode);
8692 if (result > 1
8693 && (bitwidth > HOST_BITS_PER_WIDE_INT
8694 || (nonzero_bits (XEXP (x, 1), mode)
8695 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8696 result--;
8698 return result;
8700 case MOD:
8701 result = num_sign_bit_copies (XEXP (x, 1), mode);
8702 if (result > 1
8703 && (bitwidth > HOST_BITS_PER_WIDE_INT
8704 || (nonzero_bits (XEXP (x, 1), mode)
8705 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
8706 result--;
8708 return result;
8710 case ASHIFTRT:
8711 /* Shifts by a constant add to the number of bits equal to the
8712 sign bit. */
8713 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8714 if (GET_CODE (XEXP (x, 1)) == CONST_INT
8715 && INTVAL (XEXP (x, 1)) > 0)
8716 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
8718 return num0;
8720 case ASHIFT:
8721 /* Left shifts destroy copies. */
8722 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8723 || INTVAL (XEXP (x, 1)) < 0
8724 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
8725 return 1;
8727 num0 = num_sign_bit_copies (XEXP (x, 0), mode);
8728 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
8730 case IF_THEN_ELSE:
8731 num0 = num_sign_bit_copies (XEXP (x, 1), mode);
8732 num1 = num_sign_bit_copies (XEXP (x, 2), mode);
8733 return MIN (num0, num1);
8735 case EQ: case NE: case GE: case GT: case LE: case LT:
8736 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
8737 case GEU: case GTU: case LEU: case LTU:
8738 case UNORDERED: case ORDERED:
8739 /* If the constant is negative, take its 1's complement and remask.
8740 Then see how many zero bits we have. */
8741 nonzero = STORE_FLAG_VALUE;
8742 if (bitwidth <= HOST_BITS_PER_WIDE_INT
8743 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
8744 nonzero = (~nonzero) & GET_MODE_MASK (mode);
8746 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
8747 break;
8749 default:
8750 break;
8753 /* If we haven't been able to figure it out by one of the above rules,
8754 see if some of the high-order bits are known to be zero. If so,
8755 count those bits and return one less than that amount. If we can't
8756 safely compute the mask for this mode, always return BITWIDTH. */
8758 if (bitwidth > HOST_BITS_PER_WIDE_INT)
8759 return 1;
8761 nonzero = nonzero_bits (x, mode);
8762 return (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
8763 ? 1 : bitwidth - floor_log2 (nonzero) - 1);
8766 /* Return the number of "extended" bits there are in X, when interpreted
8767 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8768 unsigned quantities, this is the number of high-order zero bits.
8769 For signed quantities, this is the number of copies of the sign bit
8770 minus 1. In both case, this function returns the number of "spare"
8771 bits. For example, if two quantities for which this function returns
8772 at least 1 are added, the addition is known not to overflow.
8774 This function will always return 0 unless called during combine, which
8775 implies that it must be called from a define_split. */
8777 unsigned int
8778 extended_count (x, mode, unsignedp)
8779 rtx x;
8780 enum machine_mode mode;
8781 int unsignedp;
8783 if (nonzero_sign_valid == 0)
8784 return 0;
8786 return (unsignedp
8787 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8788 ? (GET_MODE_BITSIZE (mode) - 1
8789 - floor_log2 (nonzero_bits (x, mode)))
8790 : 0)
8791 : num_sign_bit_copies (x, mode) - 1);
8794 /* This function is called from `simplify_shift_const' to merge two
8795 outer operations. Specifically, we have already found that we need
8796 to perform operation *POP0 with constant *PCONST0 at the outermost
8797 position. We would now like to also perform OP1 with constant CONST1
8798 (with *POP0 being done last).
8800 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8801 the resulting operation. *PCOMP_P is set to 1 if we would need to
8802 complement the innermost operand, otherwise it is unchanged.
8804 MODE is the mode in which the operation will be done. No bits outside
8805 the width of this mode matter. It is assumed that the width of this mode
8806 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8808 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8809 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8810 result is simply *PCONST0.
8812 If the resulting operation cannot be expressed as one operation, we
8813 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8815 static int
8816 merge_outer_ops (pop0, pconst0, op1, const1, mode, pcomp_p)
8817 enum rtx_code *pop0;
8818 HOST_WIDE_INT *pconst0;
8819 enum rtx_code op1;
8820 HOST_WIDE_INT const1;
8821 enum machine_mode mode;
8822 int *pcomp_p;
8824 enum rtx_code op0 = *pop0;
8825 HOST_WIDE_INT const0 = *pconst0;
8827 const0 &= GET_MODE_MASK (mode);
8828 const1 &= GET_MODE_MASK (mode);
8830 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8831 if (op0 == AND)
8832 const1 &= const0;
8834 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8835 if OP0 is SET. */
8837 if (op1 == NIL || op0 == SET)
8838 return 1;
8840 else if (op0 == NIL)
8841 op0 = op1, const0 = const1;
8843 else if (op0 == op1)
8845 switch (op0)
8847 case AND:
8848 const0 &= const1;
8849 break;
8850 case IOR:
8851 const0 |= const1;
8852 break;
8853 case XOR:
8854 const0 ^= const1;
8855 break;
8856 case PLUS:
8857 const0 += const1;
8858 break;
8859 case NEG:
8860 op0 = NIL;
8861 break;
8862 default:
8863 break;
8867 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8868 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8869 return 0;
8871 /* If the two constants aren't the same, we can't do anything. The
8872 remaining six cases can all be done. */
8873 else if (const0 != const1)
8874 return 0;
8876 else
8877 switch (op0)
8879 case IOR:
8880 if (op1 == AND)
8881 /* (a & b) | b == b */
8882 op0 = SET;
8883 else /* op1 == XOR */
8884 /* (a ^ b) | b == a | b */
8886 break;
8888 case XOR:
8889 if (op1 == AND)
8890 /* (a & b) ^ b == (~a) & b */
8891 op0 = AND, *pcomp_p = 1;
8892 else /* op1 == IOR */
8893 /* (a | b) ^ b == a & ~b */
8894 op0 = AND, *pconst0 = ~const0;
8895 break;
8897 case AND:
8898 if (op1 == IOR)
8899 /* (a | b) & b == b */
8900 op0 = SET;
8901 else /* op1 == XOR */
8902 /* (a ^ b) & b) == (~a) & b */
8903 *pcomp_p = 1;
8904 break;
8905 default:
8906 break;
8909 /* Check for NO-OP cases. */
8910 const0 &= GET_MODE_MASK (mode);
8911 if (const0 == 0
8912 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8913 op0 = NIL;
8914 else if (const0 == 0 && op0 == AND)
8915 op0 = SET;
8916 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8917 && op0 == AND)
8918 op0 = NIL;
8920 /* ??? Slightly redundant with the above mask, but not entirely.
8921 Moving this above means we'd have to sign-extend the mode mask
8922 for the final test. */
8923 const0 = trunc_int_for_mode (const0, mode);
8925 *pop0 = op0;
8926 *pconst0 = const0;
8928 return 1;
8931 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8932 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8933 that we started with.
8935 The shift is normally computed in the widest mode we find in VAROP, as
8936 long as it isn't a different number of words than RESULT_MODE. Exceptions
8937 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8939 static rtx
8940 simplify_shift_const (x, code, result_mode, varop, orig_count)
8941 rtx x;
8942 enum rtx_code code;
8943 enum machine_mode result_mode;
8944 rtx varop;
8945 int orig_count;
8947 enum rtx_code orig_code = code;
8948 unsigned int count;
8949 int signed_count;
8950 enum machine_mode mode = result_mode;
8951 enum machine_mode shift_mode, tmode;
8952 unsigned int mode_words
8953 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8954 /* We form (outer_op (code varop count) (outer_const)). */
8955 enum rtx_code outer_op = NIL;
8956 HOST_WIDE_INT outer_const = 0;
8957 rtx const_rtx;
8958 int complement_p = 0;
8959 rtx new;
8961 /* Make sure and truncate the "natural" shift on the way in. We don't
8962 want to do this inside the loop as it makes it more difficult to
8963 combine shifts. */
8964 #ifdef SHIFT_COUNT_TRUNCATED
8965 if (SHIFT_COUNT_TRUNCATED)
8966 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8967 #endif
8969 /* If we were given an invalid count, don't do anything except exactly
8970 what was requested. */
8972 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8974 if (x)
8975 return x;
8977 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8980 count = orig_count;
8982 /* Unless one of the branches of the `if' in this loop does a `continue',
8983 we will `break' the loop after the `if'. */
8985 while (count != 0)
8987 /* If we have an operand of (clobber (const_int 0)), just return that
8988 value. */
8989 if (GET_CODE (varop) == CLOBBER)
8990 return varop;
8992 /* If we discovered we had to complement VAROP, leave. Making a NOT
8993 here would cause an infinite loop. */
8994 if (complement_p)
8995 break;
8997 /* Convert ROTATERT to ROTATE. */
8998 if (code == ROTATERT)
8999 code = ROTATE, count = GET_MODE_BITSIZE (result_mode) - count;
9001 /* We need to determine what mode we will do the shift in. If the
9002 shift is a right shift or a ROTATE, we must always do it in the mode
9003 it was originally done in. Otherwise, we can do it in MODE, the
9004 widest mode encountered. */
9005 shift_mode
9006 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9007 ? result_mode : mode);
9009 /* Handle cases where the count is greater than the size of the mode
9010 minus 1. For ASHIFT, use the size minus one as the count (this can
9011 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9012 take the count modulo the size. For other shifts, the result is
9013 zero.
9015 Since these shifts are being produced by the compiler by combining
9016 multiple operations, each of which are defined, we know what the
9017 result is supposed to be. */
9019 if (count > GET_MODE_BITSIZE (shift_mode) - 1)
9021 if (code == ASHIFTRT)
9022 count = GET_MODE_BITSIZE (shift_mode) - 1;
9023 else if (code == ROTATE || code == ROTATERT)
9024 count %= GET_MODE_BITSIZE (shift_mode);
9025 else
9027 /* We can't simply return zero because there may be an
9028 outer op. */
9029 varop = const0_rtx;
9030 count = 0;
9031 break;
9035 /* An arithmetic right shift of a quantity known to be -1 or 0
9036 is a no-op. */
9037 if (code == ASHIFTRT
9038 && (num_sign_bit_copies (varop, shift_mode)
9039 == GET_MODE_BITSIZE (shift_mode)))
9041 count = 0;
9042 break;
9045 /* If we are doing an arithmetic right shift and discarding all but
9046 the sign bit copies, this is equivalent to doing a shift by the
9047 bitsize minus one. Convert it into that shift because it will often
9048 allow other simplifications. */
9050 if (code == ASHIFTRT
9051 && (count + num_sign_bit_copies (varop, shift_mode)
9052 >= GET_MODE_BITSIZE (shift_mode)))
9053 count = GET_MODE_BITSIZE (shift_mode) - 1;
9055 /* We simplify the tests below and elsewhere by converting
9056 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9057 `make_compound_operation' will convert it to an ASHIFTRT for
9058 those machines (such as VAX) that don't have an LSHIFTRT. */
9059 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9060 && code == ASHIFTRT
9061 && ((nonzero_bits (varop, shift_mode)
9062 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9063 == 0))
9064 code = LSHIFTRT;
9066 switch (GET_CODE (varop))
9068 case SIGN_EXTEND:
9069 case ZERO_EXTEND:
9070 case SIGN_EXTRACT:
9071 case ZERO_EXTRACT:
9072 new = expand_compound_operation (varop);
9073 if (new != varop)
9075 varop = new;
9076 continue;
9078 break;
9080 case MEM:
9081 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9082 minus the width of a smaller mode, we can do this with a
9083 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9084 if ((code == ASHIFTRT || code == LSHIFTRT)
9085 && ! mode_dependent_address_p (XEXP (varop, 0))
9086 && ! MEM_VOLATILE_P (varop)
9087 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9088 MODE_INT, 1)) != BLKmode)
9090 new = adjust_address_nv (varop, tmode,
9091 BYTES_BIG_ENDIAN ? 0
9092 : count / BITS_PER_UNIT);
9094 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9095 : ZERO_EXTEND, mode, new);
9096 count = 0;
9097 continue;
9099 break;
9101 case USE:
9102 /* Similar to the case above, except that we can only do this if
9103 the resulting mode is the same as that of the underlying
9104 MEM and adjust the address depending on the *bits* endianness
9105 because of the way that bit-field extract insns are defined. */
9106 if ((code == ASHIFTRT || code == LSHIFTRT)
9107 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9108 MODE_INT, 1)) != BLKmode
9109 && tmode == GET_MODE (XEXP (varop, 0)))
9111 if (BITS_BIG_ENDIAN)
9112 new = XEXP (varop, 0);
9113 else
9115 new = copy_rtx (XEXP (varop, 0));
9116 SUBST (XEXP (new, 0),
9117 plus_constant (XEXP (new, 0),
9118 count / BITS_PER_UNIT));
9121 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9122 : ZERO_EXTEND, mode, new);
9123 count = 0;
9124 continue;
9126 break;
9128 case SUBREG:
9129 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9130 the same number of words as what we've seen so far. Then store
9131 the widest mode in MODE. */
9132 if (subreg_lowpart_p (varop)
9133 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9134 > GET_MODE_SIZE (GET_MODE (varop)))
9135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9137 == mode_words))
9139 varop = SUBREG_REG (varop);
9140 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9141 mode = GET_MODE (varop);
9142 continue;
9144 break;
9146 case MULT:
9147 /* Some machines use MULT instead of ASHIFT because MULT
9148 is cheaper. But it is still better on those machines to
9149 merge two shifts into one. */
9150 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9151 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9153 varop
9154 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
9155 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9156 continue;
9158 break;
9160 case UDIV:
9161 /* Similar, for when divides are cheaper. */
9162 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9163 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9165 varop
9166 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
9167 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
9168 continue;
9170 break;
9172 case ASHIFTRT:
9173 /* If we are extracting just the sign bit of an arithmetic
9174 right shift, that shift is not needed. However, the sign
9175 bit of a wider mode may be different from what would be
9176 interpreted as the sign bit in a narrower mode, so, if
9177 the result is narrower, don't discard the shift. */
9178 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9179 && (GET_MODE_BITSIZE (result_mode)
9180 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9182 varop = XEXP (varop, 0);
9183 continue;
9186 /* ... fall through ... */
9188 case LSHIFTRT:
9189 case ASHIFT:
9190 case ROTATE:
9191 /* Here we have two nested shifts. The result is usually the
9192 AND of a new shift with a mask. We compute the result below. */
9193 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9194 && INTVAL (XEXP (varop, 1)) >= 0
9195 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9196 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9197 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9199 enum rtx_code first_code = GET_CODE (varop);
9200 unsigned int first_count = INTVAL (XEXP (varop, 1));
9201 unsigned HOST_WIDE_INT mask;
9202 rtx mask_rtx;
9204 /* We have one common special case. We can't do any merging if
9205 the inner code is an ASHIFTRT of a smaller mode. However, if
9206 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9207 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9208 we can convert it to
9209 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9210 This simplifies certain SIGN_EXTEND operations. */
9211 if (code == ASHIFT && first_code == ASHIFTRT
9212 && (GET_MODE_BITSIZE (result_mode)
9213 - GET_MODE_BITSIZE (GET_MODE (varop))) == count)
9215 /* C3 has the low-order C1 bits zero. */
9217 mask = (GET_MODE_MASK (mode)
9218 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9220 varop = simplify_and_const_int (NULL_RTX, result_mode,
9221 XEXP (varop, 0), mask);
9222 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9223 varop, count);
9224 count = first_count;
9225 code = ASHIFTRT;
9226 continue;
9229 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9230 than C1 high-order bits equal to the sign bit, we can convert
9231 this to either an ASHIFT or an ASHIFTRT depending on the
9232 two counts.
9234 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9236 if (code == ASHIFTRT && first_code == ASHIFT
9237 && GET_MODE (varop) == shift_mode
9238 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9239 > first_count))
9241 varop = XEXP (varop, 0);
9243 signed_count = count - first_count;
9244 if (signed_count < 0)
9245 count = -signed_count, code = ASHIFT;
9246 else
9247 count = signed_count;
9249 continue;
9252 /* There are some cases we can't do. If CODE is ASHIFTRT,
9253 we can only do this if FIRST_CODE is also ASHIFTRT.
9255 We can't do the case when CODE is ROTATE and FIRST_CODE is
9256 ASHIFTRT.
9258 If the mode of this shift is not the mode of the outer shift,
9259 we can't do this if either shift is a right shift or ROTATE.
9261 Finally, we can't do any of these if the mode is too wide
9262 unless the codes are the same.
9264 Handle the case where the shift codes are the same
9265 first. */
9267 if (code == first_code)
9269 if (GET_MODE (varop) != result_mode
9270 && (code == ASHIFTRT || code == LSHIFTRT
9271 || code == ROTATE))
9272 break;
9274 count += first_count;
9275 varop = XEXP (varop, 0);
9276 continue;
9279 if (code == ASHIFTRT
9280 || (code == ROTATE && first_code == ASHIFTRT)
9281 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9282 || (GET_MODE (varop) != result_mode
9283 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9284 || first_code == ROTATE
9285 || code == ROTATE)))
9286 break;
9288 /* To compute the mask to apply after the shift, shift the
9289 nonzero bits of the inner shift the same way the
9290 outer shift will. */
9292 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9294 mask_rtx
9295 = simplify_binary_operation (code, result_mode, mask_rtx,
9296 GEN_INT (count));
9298 /* Give up if we can't compute an outer operation to use. */
9299 if (mask_rtx == 0
9300 || GET_CODE (mask_rtx) != CONST_INT
9301 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9302 INTVAL (mask_rtx),
9303 result_mode, &complement_p))
9304 break;
9306 /* If the shifts are in the same direction, we add the
9307 counts. Otherwise, we subtract them. */
9308 signed_count = count;
9309 if ((code == ASHIFTRT || code == LSHIFTRT)
9310 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9311 signed_count += first_count;
9312 else
9313 signed_count -= first_count;
9315 /* If COUNT is positive, the new shift is usually CODE,
9316 except for the two exceptions below, in which case it is
9317 FIRST_CODE. If the count is negative, FIRST_CODE should
9318 always be used */
9319 if (signed_count > 0
9320 && ((first_code == ROTATE && code == ASHIFT)
9321 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9322 code = first_code, count = signed_count;
9323 else if (signed_count < 0)
9324 code = first_code, count = -signed_count;
9325 else
9326 count = signed_count;
9328 varop = XEXP (varop, 0);
9329 continue;
9332 /* If we have (A << B << C) for any shift, we can convert this to
9333 (A << C << B). This wins if A is a constant. Only try this if
9334 B is not a constant. */
9336 else if (GET_CODE (varop) == code
9337 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9338 && 0 != (new
9339 = simplify_binary_operation (code, mode,
9340 XEXP (varop, 0),
9341 GEN_INT (count))))
9343 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9344 count = 0;
9345 continue;
9347 break;
9349 case NOT:
9350 /* Make this fit the case below. */
9351 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9352 GEN_INT (GET_MODE_MASK (mode)));
9353 continue;
9355 case IOR:
9356 case AND:
9357 case XOR:
9358 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9359 with C the size of VAROP - 1 and the shift is logical if
9360 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9361 we have an (le X 0) operation. If we have an arithmetic shift
9362 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9363 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9365 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9366 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9367 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9368 && (code == LSHIFTRT || code == ASHIFTRT)
9369 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9370 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9372 count = 0;
9373 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9374 const0_rtx);
9376 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9377 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9379 continue;
9382 /* If we have (shift (logical)), move the logical to the outside
9383 to allow it to possibly combine with another logical and the
9384 shift to combine with another shift. This also canonicalizes to
9385 what a ZERO_EXTRACT looks like. Also, some machines have
9386 (and (shift)) insns. */
9388 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9389 && (new = simplify_binary_operation (code, result_mode,
9390 XEXP (varop, 1),
9391 GEN_INT (count))) != 0
9392 && GET_CODE (new) == CONST_INT
9393 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9394 INTVAL (new), result_mode, &complement_p))
9396 varop = XEXP (varop, 0);
9397 continue;
9400 /* If we can't do that, try to simplify the shift in each arm of the
9401 logical expression, make a new logical expression, and apply
9402 the inverse distributive law. */
9404 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9405 XEXP (varop, 0), count);
9406 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9407 XEXP (varop, 1), count);
9409 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
9410 varop = apply_distributive_law (varop);
9412 count = 0;
9414 break;
9416 case EQ:
9417 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9418 says that the sign bit can be tested, FOO has mode MODE, C is
9419 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9420 that may be nonzero. */
9421 if (code == LSHIFTRT
9422 && XEXP (varop, 1) == const0_rtx
9423 && GET_MODE (XEXP (varop, 0)) == result_mode
9424 && count == GET_MODE_BITSIZE (result_mode) - 1
9425 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9426 && ((STORE_FLAG_VALUE
9427 & ((HOST_WIDE_INT) 1
9428 < (GET_MODE_BITSIZE (result_mode) - 1))))
9429 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9430 && merge_outer_ops (&outer_op, &outer_const, XOR,
9431 (HOST_WIDE_INT) 1, result_mode,
9432 &complement_p))
9434 varop = XEXP (varop, 0);
9435 count = 0;
9436 continue;
9438 break;
9440 case NEG:
9441 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9442 than the number of bits in the mode is equivalent to A. */
9443 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9444 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9446 varop = XEXP (varop, 0);
9447 count = 0;
9448 continue;
9451 /* NEG commutes with ASHIFT since it is multiplication. Move the
9452 NEG outside to allow shifts to combine. */
9453 if (code == ASHIFT
9454 && merge_outer_ops (&outer_op, &outer_const, NEG,
9455 (HOST_WIDE_INT) 0, result_mode,
9456 &complement_p))
9458 varop = XEXP (varop, 0);
9459 continue;
9461 break;
9463 case PLUS:
9464 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9465 is one less than the number of bits in the mode is
9466 equivalent to (xor A 1). */
9467 if (code == LSHIFTRT && count == GET_MODE_BITSIZE (result_mode) - 1
9468 && XEXP (varop, 1) == constm1_rtx
9469 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9470 && merge_outer_ops (&outer_op, &outer_const, XOR,
9471 (HOST_WIDE_INT) 1, result_mode,
9472 &complement_p))
9474 count = 0;
9475 varop = XEXP (varop, 0);
9476 continue;
9479 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9480 that might be nonzero in BAR are those being shifted out and those
9481 bits are known zero in FOO, we can replace the PLUS with FOO.
9482 Similarly in the other operand order. This code occurs when
9483 we are computing the size of a variable-size array. */
9485 if ((code == ASHIFTRT || code == LSHIFTRT)
9486 && count < HOST_BITS_PER_WIDE_INT
9487 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9488 && (nonzero_bits (XEXP (varop, 1), result_mode)
9489 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9491 varop = XEXP (varop, 0);
9492 continue;
9494 else if ((code == ASHIFTRT || code == LSHIFTRT)
9495 && count < HOST_BITS_PER_WIDE_INT
9496 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9497 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9498 >> count)
9499 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9500 & nonzero_bits (XEXP (varop, 1),
9501 result_mode)))
9503 varop = XEXP (varop, 1);
9504 continue;
9507 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9508 if (code == ASHIFT
9509 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9510 && (new = simplify_binary_operation (ASHIFT, result_mode,
9511 XEXP (varop, 1),
9512 GEN_INT (count))) != 0
9513 && GET_CODE (new) == CONST_INT
9514 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9515 INTVAL (new), result_mode, &complement_p))
9517 varop = XEXP (varop, 0);
9518 continue;
9520 break;
9522 case MINUS:
9523 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9524 with C the size of VAROP - 1 and the shift is logical if
9525 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9526 we have a (gt X 0) operation. If the shift is arithmetic with
9527 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9528 we have a (neg (gt X 0)) operation. */
9530 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9531 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9532 && count == GET_MODE_BITSIZE (GET_MODE (varop)) - 1
9533 && (code == LSHIFTRT || code == ASHIFTRT)
9534 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9535 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9536 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9538 count = 0;
9539 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9540 const0_rtx);
9542 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9543 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9545 continue;
9547 break;
9549 case TRUNCATE:
9550 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9551 if the truncate does not affect the value. */
9552 if (code == LSHIFTRT
9553 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9554 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9555 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9556 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9557 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9559 rtx varop_inner = XEXP (varop, 0);
9561 varop_inner
9562 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9563 XEXP (varop_inner, 0),
9564 GEN_INT
9565 (count + INTVAL (XEXP (varop_inner, 1))));
9566 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9567 count = 0;
9568 continue;
9570 break;
9572 default:
9573 break;
9576 break;
9579 /* We need to determine what mode to do the shift in. If the shift is
9580 a right shift or ROTATE, we must always do it in the mode it was
9581 originally done in. Otherwise, we can do it in MODE, the widest mode
9582 encountered. The code we care about is that of the shift that will
9583 actually be done, not the shift that was originally requested. */
9584 shift_mode
9585 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9586 ? result_mode : mode);
9588 /* We have now finished analyzing the shift. The result should be
9589 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9590 OUTER_OP is non-NIL, it is an operation that needs to be applied
9591 to the result of the shift. OUTER_CONST is the relevant constant,
9592 but we must turn off all bits turned off in the shift.
9594 If we were passed a value for X, see if we can use any pieces of
9595 it. If not, make new rtx. */
9597 if (x && GET_RTX_CLASS (GET_CODE (x)) == '2'
9598 && GET_CODE (XEXP (x, 1)) == CONST_INT
9599 && INTVAL (XEXP (x, 1)) == count)
9600 const_rtx = XEXP (x, 1);
9601 else
9602 const_rtx = GEN_INT (count);
9604 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9605 && GET_MODE (XEXP (x, 0)) == shift_mode
9606 && SUBREG_REG (XEXP (x, 0)) == varop)
9607 varop = XEXP (x, 0);
9608 else if (GET_MODE (varop) != shift_mode)
9609 varop = gen_lowpart_for_combine (shift_mode, varop);
9611 /* If we can't make the SUBREG, try to return what we were given. */
9612 if (GET_CODE (varop) == CLOBBER)
9613 return x ? x : varop;
9615 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9616 if (new != 0)
9617 x = new;
9618 else
9619 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9621 /* If we have an outer operation and we just made a shift, it is
9622 possible that we could have simplified the shift were it not
9623 for the outer operation. So try to do the simplification
9624 recursively. */
9626 if (outer_op != NIL && GET_CODE (x) == code
9627 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9628 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9629 INTVAL (XEXP (x, 1)));
9631 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9632 turn off all the bits that the shift would have turned off. */
9633 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9634 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9635 GET_MODE_MASK (result_mode) >> orig_count);
9637 /* Do the remainder of the processing in RESULT_MODE. */
9638 x = gen_lowpart_for_combine (result_mode, x);
9640 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9641 operation. */
9642 if (complement_p)
9643 x =simplify_gen_unary (NOT, result_mode, x, result_mode);
9645 if (outer_op != NIL)
9647 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9648 outer_const = trunc_int_for_mode (outer_const, result_mode);
9650 if (outer_op == AND)
9651 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9652 else if (outer_op == SET)
9653 /* This means that we have determined that the result is
9654 equivalent to a constant. This should be rare. */
9655 x = GEN_INT (outer_const);
9656 else if (GET_RTX_CLASS (outer_op) == '1')
9657 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9658 else
9659 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9662 return x;
9665 /* Like recog, but we receive the address of a pointer to a new pattern.
9666 We try to match the rtx that the pointer points to.
9667 If that fails, we may try to modify or replace the pattern,
9668 storing the replacement into the same pointer object.
9670 Modifications include deletion or addition of CLOBBERs.
9672 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9673 the CLOBBERs are placed.
9675 The value is the final insn code from the pattern ultimately matched,
9676 or -1. */
9678 static int
9679 recog_for_combine (pnewpat, insn, pnotes)
9680 rtx *pnewpat;
9681 rtx insn;
9682 rtx *pnotes;
9684 rtx pat = *pnewpat;
9685 int insn_code_number;
9686 int num_clobbers_to_add = 0;
9687 int i;
9688 rtx notes = 0;
9689 rtx dummy_insn;
9691 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9692 we use to indicate that something didn't match. If we find such a
9693 thing, force rejection. */
9694 if (GET_CODE (pat) == PARALLEL)
9695 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9696 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9697 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9698 return -1;
9700 /* *pnewpat does not have to be actual PATTERN (insn), so make a dummy
9701 instruction for pattern recognition. */
9702 dummy_insn = shallow_copy_rtx (insn);
9703 PATTERN (dummy_insn) = pat;
9704 REG_NOTES (dummy_insn) = 0;
9706 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9708 /* If it isn't, there is the possibility that we previously had an insn
9709 that clobbered some register as a side effect, but the combined
9710 insn doesn't need to do that. So try once more without the clobbers
9711 unless this represents an ASM insn. */
9713 if (insn_code_number < 0 && ! check_asm_operands (pat)
9714 && GET_CODE (pat) == PARALLEL)
9716 int pos;
9718 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9719 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9721 if (i != pos)
9722 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9723 pos++;
9726 SUBST_INT (XVECLEN (pat, 0), pos);
9728 if (pos == 1)
9729 pat = XVECEXP (pat, 0, 0);
9731 PATTERN (dummy_insn) = pat;
9732 insn_code_number = recog (pat, dummy_insn, &num_clobbers_to_add);
9735 /* Recognize all noop sets, these will be killed by followup pass. */
9736 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9737 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9739 /* If we had any clobbers to add, make a new pattern than contains
9740 them. Then check to make sure that all of them are dead. */
9741 if (num_clobbers_to_add)
9743 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9744 rtvec_alloc (GET_CODE (pat) == PARALLEL
9745 ? (XVECLEN (pat, 0)
9746 + num_clobbers_to_add)
9747 : num_clobbers_to_add + 1));
9749 if (GET_CODE (pat) == PARALLEL)
9750 for (i = 0; i < XVECLEN (pat, 0); i++)
9751 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9752 else
9753 XVECEXP (newpat, 0, 0) = pat;
9755 add_clobbers (newpat, insn_code_number);
9757 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9758 i < XVECLEN (newpat, 0); i++)
9760 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) == REG
9761 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9762 return -1;
9763 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9764 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9766 pat = newpat;
9769 *pnewpat = pat;
9770 *pnotes = notes;
9772 return insn_code_number;
9775 /* Like gen_lowpart but for use by combine. In combine it is not possible
9776 to create any new pseudoregs. However, it is safe to create
9777 invalid memory addresses, because combine will try to recognize
9778 them and all they will do is make the combine attempt fail.
9780 If for some reason this cannot do its job, an rtx
9781 (clobber (const_int 0)) is returned.
9782 An insn containing that will not be recognized. */
9784 #undef gen_lowpart
9786 static rtx
9787 gen_lowpart_for_combine (mode, x)
9788 enum machine_mode mode;
9789 rtx x;
9791 rtx result;
9793 if (GET_MODE (x) == mode)
9794 return x;
9796 /* We can only support MODE being wider than a word if X is a
9797 constant integer or has a mode the same size. */
9799 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9800 && ! ((GET_MODE (x) == VOIDmode
9801 && (GET_CODE (x) == CONST_INT
9802 || GET_CODE (x) == CONST_DOUBLE))
9803 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9804 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9806 /* simplify_gen_subreg does not know how to handle the case where we try
9807 to convert an integer constant to a vector.
9808 ??? We could try to teach it to generate CONST_VECTORs. */
9809 if (GET_MODE (x) == VOIDmode && VECTOR_MODE_P (mode))
9810 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9812 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9813 won't know what to do. So we will strip off the SUBREG here and
9814 process normally. */
9815 if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
9817 x = SUBREG_REG (x);
9818 if (GET_MODE (x) == mode)
9819 return x;
9822 result = gen_lowpart_common (mode, x);
9823 #ifdef CLASS_CANNOT_CHANGE_MODE
9824 if (result != 0
9825 && GET_CODE (result) == SUBREG
9826 && GET_CODE (SUBREG_REG (result)) == REG
9827 && REGNO (SUBREG_REG (result)) >= FIRST_PSEUDO_REGISTER
9828 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (result),
9829 GET_MODE (SUBREG_REG (result))))
9830 REG_CHANGES_MODE (REGNO (SUBREG_REG (result))) = 1;
9831 #endif
9833 if (result)
9834 return result;
9836 if (GET_CODE (x) == MEM)
9838 int offset = 0;
9840 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9841 address. */
9842 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9843 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9845 /* If we want to refer to something bigger than the original memref,
9846 generate a perverse subreg instead. That will force a reload
9847 of the original memref X. */
9848 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9849 return gen_rtx_SUBREG (mode, x, 0);
9851 if (WORDS_BIG_ENDIAN)
9852 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9853 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9855 if (BYTES_BIG_ENDIAN)
9857 /* Adjust the address so that the address-after-the-data is
9858 unchanged. */
9859 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9860 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9863 return adjust_address_nv (x, mode, offset);
9866 /* If X is a comparison operator, rewrite it in a new mode. This
9867 probably won't match, but may allow further simplifications. */
9868 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9869 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9871 /* If we couldn't simplify X any other way, just enclose it in a
9872 SUBREG. Normally, this SUBREG won't match, but some patterns may
9873 include an explicit SUBREG or we may simplify it further in combine. */
9874 else
9876 int offset = 0;
9877 rtx res;
9879 offset = subreg_lowpart_offset (mode, GET_MODE (x));
9880 res = simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9881 if (res)
9882 return res;
9883 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9887 /* These routines make binary and unary operations by first seeing if they
9888 fold; if not, a new expression is allocated. */
9890 static rtx
9891 gen_binary (code, mode, op0, op1)
9892 enum rtx_code code;
9893 enum machine_mode mode;
9894 rtx op0, op1;
9896 rtx result;
9897 rtx tem;
9899 if (GET_RTX_CLASS (code) == 'c'
9900 && swap_commutative_operands_p (op0, op1))
9901 tem = op0, op0 = op1, op1 = tem;
9903 if (GET_RTX_CLASS (code) == '<')
9905 enum machine_mode op_mode = GET_MODE (op0);
9907 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9908 just (REL_OP X Y). */
9909 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9911 op1 = XEXP (op0, 1);
9912 op0 = XEXP (op0, 0);
9913 op_mode = GET_MODE (op0);
9916 if (op_mode == VOIDmode)
9917 op_mode = GET_MODE (op1);
9918 result = simplify_relational_operation (code, op_mode, op0, op1);
9920 else
9921 result = simplify_binary_operation (code, mode, op0, op1);
9923 if (result)
9924 return result;
9926 /* Put complex operands first and constants second. */
9927 if (GET_RTX_CLASS (code) == 'c'
9928 && swap_commutative_operands_p (op0, op1))
9929 return gen_rtx_fmt_ee (code, mode, op1, op0);
9931 /* If we are turning off bits already known off in OP0, we need not do
9932 an AND. */
9933 else if (code == AND && GET_CODE (op1) == CONST_INT
9934 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9935 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9936 return op0;
9938 return gen_rtx_fmt_ee (code, mode, op0, op1);
9941 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9942 comparison code that will be tested.
9944 The result is a possibly different comparison code to use. *POP0 and
9945 *POP1 may be updated.
9947 It is possible that we might detect that a comparison is either always
9948 true or always false. However, we do not perform general constant
9949 folding in combine, so this knowledge isn't useful. Such tautologies
9950 should have been detected earlier. Hence we ignore all such cases. */
9952 static enum rtx_code
9953 simplify_comparison (code, pop0, pop1)
9954 enum rtx_code code;
9955 rtx *pop0;
9956 rtx *pop1;
9958 rtx op0 = *pop0;
9959 rtx op1 = *pop1;
9960 rtx tem, tem1;
9961 int i;
9962 enum machine_mode mode, tmode;
9964 /* Try a few ways of applying the same transformation to both operands. */
9965 while (1)
9967 #ifndef WORD_REGISTER_OPERATIONS
9968 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9969 so check specially. */
9970 if (code != GTU && code != GEU && code != LTU && code != LEU
9971 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9972 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9973 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9974 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9975 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9976 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9977 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9978 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9979 && GET_CODE (XEXP (op1, 1)) == CONST_INT
9980 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
9981 && GET_CODE (XEXP (XEXP (op1, 0), 1)) == CONST_INT
9982 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (op1, 1))
9983 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op0, 0), 1))
9984 && INTVAL (XEXP (op0, 1)) == INTVAL (XEXP (XEXP (op1, 0), 1))
9985 && (INTVAL (XEXP (op0, 1))
9986 == (GET_MODE_BITSIZE (GET_MODE (op0))
9987 - (GET_MODE_BITSIZE
9988 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9990 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9991 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9993 #endif
9995 /* If both operands are the same constant shift, see if we can ignore the
9996 shift. We can if the shift is a rotate or if the bits shifted out of
9997 this shift are known to be zero for both inputs and if the type of
9998 comparison is compatible with the shift. */
9999 if (GET_CODE (op0) == GET_CODE (op1)
10000 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10001 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10002 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10003 && (code != GT && code != LT && code != GE && code != LE))
10004 || (GET_CODE (op0) == ASHIFTRT
10005 && (code != GTU && code != LTU
10006 && code != GEU && code != LEU)))
10007 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10008 && INTVAL (XEXP (op0, 1)) >= 0
10009 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10010 && XEXP (op0, 1) == XEXP (op1, 1))
10012 enum machine_mode mode = GET_MODE (op0);
10013 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10014 int shift_count = INTVAL (XEXP (op0, 1));
10016 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10017 mask &= (mask >> shift_count) << shift_count;
10018 else if (GET_CODE (op0) == ASHIFT)
10019 mask = (mask & (mask << shift_count)) >> shift_count;
10021 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10022 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10023 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10024 else
10025 break;
10028 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10029 SUBREGs are of the same mode, and, in both cases, the AND would
10030 be redundant if the comparison was done in the narrower mode,
10031 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10032 and the operand's possibly nonzero bits are 0xffffff01; in that case
10033 if we only care about QImode, we don't need the AND). This case
10034 occurs if the output mode of an scc insn is not SImode and
10035 STORE_FLAG_VALUE == 1 (e.g., the 386).
10037 Similarly, check for a case where the AND's are ZERO_EXTEND
10038 operations from some narrower mode even though a SUBREG is not
10039 present. */
10041 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10042 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10043 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10045 rtx inner_op0 = XEXP (op0, 0);
10046 rtx inner_op1 = XEXP (op1, 0);
10047 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10048 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10049 int changed = 0;
10051 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10052 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10053 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10054 && (GET_MODE (SUBREG_REG (inner_op0))
10055 == GET_MODE (SUBREG_REG (inner_op1)))
10056 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10057 <= HOST_BITS_PER_WIDE_INT)
10058 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10059 GET_MODE (SUBREG_REG (inner_op0)))))
10060 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10061 GET_MODE (SUBREG_REG (inner_op1))))))
10063 op0 = SUBREG_REG (inner_op0);
10064 op1 = SUBREG_REG (inner_op1);
10066 /* The resulting comparison is always unsigned since we masked
10067 off the original sign bit. */
10068 code = unsigned_condition (code);
10070 changed = 1;
10073 else if (c0 == c1)
10074 for (tmode = GET_CLASS_NARROWEST_MODE
10075 (GET_MODE_CLASS (GET_MODE (op0)));
10076 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10077 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10079 op0 = gen_lowpart_for_combine (tmode, inner_op0);
10080 op1 = gen_lowpart_for_combine (tmode, inner_op1);
10081 code = unsigned_condition (code);
10082 changed = 1;
10083 break;
10086 if (! changed)
10087 break;
10090 /* If both operands are NOT, we can strip off the outer operation
10091 and adjust the comparison code for swapped operands; similarly for
10092 NEG, except that this must be an equality comparison. */
10093 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10094 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10095 && (code == EQ || code == NE)))
10096 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10098 else
10099 break;
10102 /* If the first operand is a constant, swap the operands and adjust the
10103 comparison code appropriately, but don't do this if the second operand
10104 is already a constant integer. */
10105 if (swap_commutative_operands_p (op0, op1))
10107 tem = op0, op0 = op1, op1 = tem;
10108 code = swap_condition (code);
10111 /* We now enter a loop during which we will try to simplify the comparison.
10112 For the most part, we only are concerned with comparisons with zero,
10113 but some things may really be comparisons with zero but not start
10114 out looking that way. */
10116 while (GET_CODE (op1) == CONST_INT)
10118 enum machine_mode mode = GET_MODE (op0);
10119 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10120 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10121 int equality_comparison_p;
10122 int sign_bit_comparison_p;
10123 int unsigned_comparison_p;
10124 HOST_WIDE_INT const_op;
10126 /* We only want to handle integral modes. This catches VOIDmode,
10127 CCmode, and the floating-point modes. An exception is that we
10128 can handle VOIDmode if OP0 is a COMPARE or a comparison
10129 operation. */
10131 if (GET_MODE_CLASS (mode) != MODE_INT
10132 && ! (mode == VOIDmode
10133 && (GET_CODE (op0) == COMPARE
10134 || GET_RTX_CLASS (GET_CODE (op0)) == '<')))
10135 break;
10137 /* Get the constant we are comparing against and turn off all bits
10138 not on in our mode. */
10139 const_op = trunc_int_for_mode (INTVAL (op1), mode);
10140 op1 = GEN_INT (const_op);
10142 /* If we are comparing against a constant power of two and the value
10143 being compared can only have that single bit nonzero (e.g., it was
10144 `and'ed with that bit), we can replace this with a comparison
10145 with zero. */
10146 if (const_op
10147 && (code == EQ || code == NE || code == GE || code == GEU
10148 || code == LT || code == LTU)
10149 && mode_width <= HOST_BITS_PER_WIDE_INT
10150 && exact_log2 (const_op) >= 0
10151 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10153 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10154 op1 = const0_rtx, const_op = 0;
10157 /* Similarly, if we are comparing a value known to be either -1 or
10158 0 with -1, change it to the opposite comparison against zero. */
10160 if (const_op == -1
10161 && (code == EQ || code == NE || code == GT || code == LE
10162 || code == GEU || code == LTU)
10163 && num_sign_bit_copies (op0, mode) == mode_width)
10165 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10166 op1 = const0_rtx, const_op = 0;
10169 /* Do some canonicalizations based on the comparison code. We prefer
10170 comparisons against zero and then prefer equality comparisons.
10171 If we can reduce the size of a constant, we will do that too. */
10173 switch (code)
10175 case LT:
10176 /* < C is equivalent to <= (C - 1) */
10177 if (const_op > 0)
10179 const_op -= 1;
10180 op1 = GEN_INT (const_op);
10181 code = LE;
10182 /* ... fall through to LE case below. */
10184 else
10185 break;
10187 case LE:
10188 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10189 if (const_op < 0)
10191 const_op += 1;
10192 op1 = GEN_INT (const_op);
10193 code = LT;
10196 /* If we are doing a <= 0 comparison on a value known to have
10197 a zero sign bit, we can replace this with == 0. */
10198 else if (const_op == 0
10199 && mode_width <= HOST_BITS_PER_WIDE_INT
10200 && (nonzero_bits (op0, mode)
10201 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10202 code = EQ;
10203 break;
10205 case GE:
10206 /* >= C is equivalent to > (C - 1). */
10207 if (const_op > 0)
10209 const_op -= 1;
10210 op1 = GEN_INT (const_op);
10211 code = GT;
10212 /* ... fall through to GT below. */
10214 else
10215 break;
10217 case GT:
10218 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10219 if (const_op < 0)
10221 const_op += 1;
10222 op1 = GEN_INT (const_op);
10223 code = GE;
10226 /* If we are doing a > 0 comparison on a value known to have
10227 a zero sign bit, we can replace this with != 0. */
10228 else if (const_op == 0
10229 && mode_width <= HOST_BITS_PER_WIDE_INT
10230 && (nonzero_bits (op0, mode)
10231 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10232 code = NE;
10233 break;
10235 case LTU:
10236 /* < C is equivalent to <= (C - 1). */
10237 if (const_op > 0)
10239 const_op -= 1;
10240 op1 = GEN_INT (const_op);
10241 code = LEU;
10242 /* ... fall through ... */
10245 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10246 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10247 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10249 const_op = 0, op1 = const0_rtx;
10250 code = GE;
10251 break;
10253 else
10254 break;
10256 case LEU:
10257 /* unsigned <= 0 is equivalent to == 0 */
10258 if (const_op == 0)
10259 code = EQ;
10261 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10262 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10263 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10265 const_op = 0, op1 = const0_rtx;
10266 code = GE;
10268 break;
10270 case GEU:
10271 /* >= C is equivalent to < (C - 1). */
10272 if (const_op > 1)
10274 const_op -= 1;
10275 op1 = GEN_INT (const_op);
10276 code = GTU;
10277 /* ... fall through ... */
10280 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10281 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10282 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10284 const_op = 0, op1 = const0_rtx;
10285 code = LT;
10286 break;
10288 else
10289 break;
10291 case GTU:
10292 /* unsigned > 0 is equivalent to != 0 */
10293 if (const_op == 0)
10294 code = NE;
10296 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10297 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10298 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10300 const_op = 0, op1 = const0_rtx;
10301 code = LT;
10303 break;
10305 default:
10306 break;
10309 /* Compute some predicates to simplify code below. */
10311 equality_comparison_p = (code == EQ || code == NE);
10312 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10313 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10314 || code == GEU);
10316 /* If this is a sign bit comparison and we can do arithmetic in
10317 MODE, say that we will only be needing the sign bit of OP0. */
10318 if (sign_bit_comparison_p
10319 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10320 op0 = force_to_mode (op0, mode,
10321 ((HOST_WIDE_INT) 1
10322 << (GET_MODE_BITSIZE (mode) - 1)),
10323 NULL_RTX, 0);
10325 /* Now try cases based on the opcode of OP0. If none of the cases
10326 does a "continue", we exit this loop immediately after the
10327 switch. */
10329 switch (GET_CODE (op0))
10331 case ZERO_EXTRACT:
10332 /* If we are extracting a single bit from a variable position in
10333 a constant that has only a single bit set and are comparing it
10334 with zero, we can convert this into an equality comparison
10335 between the position and the location of the single bit. */
10337 if (GET_CODE (XEXP (op0, 0)) == CONST_INT
10338 && XEXP (op0, 1) == const1_rtx
10339 && equality_comparison_p && const_op == 0
10340 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10342 if (BITS_BIG_ENDIAN)
10344 enum machine_mode new_mode
10345 = mode_for_extraction (EP_extzv, 1);
10346 if (new_mode == MAX_MACHINE_MODE)
10347 i = BITS_PER_WORD - 1 - i;
10348 else
10350 mode = new_mode;
10351 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10355 op0 = XEXP (op0, 2);
10356 op1 = GEN_INT (i);
10357 const_op = i;
10359 /* Result is nonzero iff shift count is equal to I. */
10360 code = reverse_condition (code);
10361 continue;
10364 /* ... fall through ... */
10366 case SIGN_EXTRACT:
10367 tem = expand_compound_operation (op0);
10368 if (tem != op0)
10370 op0 = tem;
10371 continue;
10373 break;
10375 case NOT:
10376 /* If testing for equality, we can take the NOT of the constant. */
10377 if (equality_comparison_p
10378 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10380 op0 = XEXP (op0, 0);
10381 op1 = tem;
10382 continue;
10385 /* If just looking at the sign bit, reverse the sense of the
10386 comparison. */
10387 if (sign_bit_comparison_p)
10389 op0 = XEXP (op0, 0);
10390 code = (code == GE ? LT : GE);
10391 continue;
10393 break;
10395 case NEG:
10396 /* If testing for equality, we can take the NEG of the constant. */
10397 if (equality_comparison_p
10398 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10400 op0 = XEXP (op0, 0);
10401 op1 = tem;
10402 continue;
10405 /* The remaining cases only apply to comparisons with zero. */
10406 if (const_op != 0)
10407 break;
10409 /* When X is ABS or is known positive,
10410 (neg X) is < 0 if and only if X != 0. */
10412 if (sign_bit_comparison_p
10413 && (GET_CODE (XEXP (op0, 0)) == ABS
10414 || (mode_width <= HOST_BITS_PER_WIDE_INT
10415 && (nonzero_bits (XEXP (op0, 0), mode)
10416 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10418 op0 = XEXP (op0, 0);
10419 code = (code == LT ? NE : EQ);
10420 continue;
10423 /* If we have NEG of something whose two high-order bits are the
10424 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10425 if (num_sign_bit_copies (op0, mode) >= 2)
10427 op0 = XEXP (op0, 0);
10428 code = swap_condition (code);
10429 continue;
10431 break;
10433 case ROTATE:
10434 /* If we are testing equality and our count is a constant, we
10435 can perform the inverse operation on our RHS. */
10436 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10437 && (tem = simplify_binary_operation (ROTATERT, mode,
10438 op1, XEXP (op0, 1))) != 0)
10440 op0 = XEXP (op0, 0);
10441 op1 = tem;
10442 continue;
10445 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10446 a particular bit. Convert it to an AND of a constant of that
10447 bit. This will be converted into a ZERO_EXTRACT. */
10448 if (const_op == 0 && sign_bit_comparison_p
10449 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10450 && mode_width <= HOST_BITS_PER_WIDE_INT)
10452 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10453 ((HOST_WIDE_INT) 1
10454 << (mode_width - 1
10455 - INTVAL (XEXP (op0, 1)))));
10456 code = (code == LT ? NE : EQ);
10457 continue;
10460 /* Fall through. */
10462 case ABS:
10463 /* ABS is ignorable inside an equality comparison with zero. */
10464 if (const_op == 0 && equality_comparison_p)
10466 op0 = XEXP (op0, 0);
10467 continue;
10469 break;
10471 case SIGN_EXTEND:
10472 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10473 to (compare FOO CONST) if CONST fits in FOO's mode and we
10474 are either testing inequality or have an unsigned comparison
10475 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10476 if (! unsigned_comparison_p
10477 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10478 <= HOST_BITS_PER_WIDE_INT)
10479 && ((unsigned HOST_WIDE_INT) const_op
10480 < (((unsigned HOST_WIDE_INT) 1
10481 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10483 op0 = XEXP (op0, 0);
10484 continue;
10486 break;
10488 case SUBREG:
10489 /* Check for the case where we are comparing A - C1 with C2,
10490 both constants are smaller than 1/2 the maximum positive
10491 value in MODE, and the comparison is equality or unsigned.
10492 In that case, if A is either zero-extended to MODE or has
10493 sufficient sign bits so that the high-order bit in MODE
10494 is a copy of the sign in the inner mode, we can prove that it is
10495 safe to do the operation in the wider mode. This simplifies
10496 many range checks. */
10498 if (mode_width <= HOST_BITS_PER_WIDE_INT
10499 && subreg_lowpart_p (op0)
10500 && GET_CODE (SUBREG_REG (op0)) == PLUS
10501 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10502 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10503 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10504 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10505 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10506 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10507 GET_MODE (SUBREG_REG (op0)))
10508 & ~GET_MODE_MASK (mode))
10509 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10510 GET_MODE (SUBREG_REG (op0)))
10511 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10512 - GET_MODE_BITSIZE (mode)))))
10514 op0 = SUBREG_REG (op0);
10515 continue;
10518 /* If the inner mode is narrower and we are extracting the low part,
10519 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10520 if (subreg_lowpart_p (op0)
10521 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10522 /* Fall through */ ;
10523 else
10524 break;
10526 /* ... fall through ... */
10528 case ZERO_EXTEND:
10529 if ((unsigned_comparison_p || equality_comparison_p)
10530 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10531 <= HOST_BITS_PER_WIDE_INT)
10532 && ((unsigned HOST_WIDE_INT) const_op
10533 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10535 op0 = XEXP (op0, 0);
10536 continue;
10538 break;
10540 case PLUS:
10541 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10542 this for equality comparisons due to pathological cases involving
10543 overflows. */
10544 if (equality_comparison_p
10545 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10546 op1, XEXP (op0, 1))))
10548 op0 = XEXP (op0, 0);
10549 op1 = tem;
10550 continue;
10553 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10554 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10555 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10557 op0 = XEXP (XEXP (op0, 0), 0);
10558 code = (code == LT ? EQ : NE);
10559 continue;
10561 break;
10563 case MINUS:
10564 /* We used to optimize signed comparisons against zero, but that
10565 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10566 arrive here as equality comparisons, or (GEU, LTU) are
10567 optimized away. No need to special-case them. */
10569 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10570 (eq B (minus A C)), whichever simplifies. We can only do
10571 this for equality comparisons due to pathological cases involving
10572 overflows. */
10573 if (equality_comparison_p
10574 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10575 XEXP (op0, 1), op1)))
10577 op0 = XEXP (op0, 0);
10578 op1 = tem;
10579 continue;
10582 if (equality_comparison_p
10583 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10584 XEXP (op0, 0), op1)))
10586 op0 = XEXP (op0, 1);
10587 op1 = tem;
10588 continue;
10591 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10592 of bits in X minus 1, is one iff X > 0. */
10593 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10594 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10595 && INTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
10596 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10598 op0 = XEXP (op0, 1);
10599 code = (code == GE ? LE : GT);
10600 continue;
10602 break;
10604 case XOR:
10605 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10606 if C is zero or B is a constant. */
10607 if (equality_comparison_p
10608 && 0 != (tem = simplify_binary_operation (XOR, mode,
10609 XEXP (op0, 1), op1)))
10611 op0 = XEXP (op0, 0);
10612 op1 = tem;
10613 continue;
10615 break;
10617 case EQ: case NE:
10618 case UNEQ: case LTGT:
10619 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10620 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10621 case UNORDERED: case ORDERED:
10622 /* We can't do anything if OP0 is a condition code value, rather
10623 than an actual data value. */
10624 if (const_op != 0
10625 #ifdef HAVE_cc0
10626 || XEXP (op0, 0) == cc0_rtx
10627 #endif
10628 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10629 break;
10631 /* Get the two operands being compared. */
10632 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10633 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10634 else
10635 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10637 /* Check for the cases where we simply want the result of the
10638 earlier test or the opposite of that result. */
10639 if (code == NE || code == EQ
10640 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10641 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10642 && (STORE_FLAG_VALUE
10643 & (((HOST_WIDE_INT) 1
10644 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10645 && (code == LT || code == GE)))
10647 enum rtx_code new_code;
10648 if (code == LT || code == NE)
10649 new_code = GET_CODE (op0);
10650 else
10651 new_code = combine_reversed_comparison_code (op0);
10653 if (new_code != UNKNOWN)
10655 code = new_code;
10656 op0 = tem;
10657 op1 = tem1;
10658 continue;
10661 break;
10663 case IOR:
10664 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10665 iff X <= 0. */
10666 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10667 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10668 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10670 op0 = XEXP (op0, 1);
10671 code = (code == GE ? GT : LE);
10672 continue;
10674 break;
10676 case AND:
10677 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10678 will be converted to a ZERO_EXTRACT later. */
10679 if (const_op == 0 && equality_comparison_p
10680 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10681 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10683 op0 = simplify_and_const_int
10684 (op0, mode, gen_rtx_LSHIFTRT (mode,
10685 XEXP (op0, 1),
10686 XEXP (XEXP (op0, 0), 1)),
10687 (HOST_WIDE_INT) 1);
10688 continue;
10691 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10692 zero and X is a comparison and C1 and C2 describe only bits set
10693 in STORE_FLAG_VALUE, we can compare with X. */
10694 if (const_op == 0 && equality_comparison_p
10695 && mode_width <= HOST_BITS_PER_WIDE_INT
10696 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10697 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10698 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10699 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10700 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10702 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10703 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10704 if ((~STORE_FLAG_VALUE & mask) == 0
10705 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0, 0), 0))) == '<'
10706 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10707 && GET_RTX_CLASS (GET_CODE (tem)) == '<')))
10709 op0 = XEXP (XEXP (op0, 0), 0);
10710 continue;
10714 /* If we are doing an equality comparison of an AND of a bit equal
10715 to the sign bit, replace this with a LT or GE comparison of
10716 the underlying value. */
10717 if (equality_comparison_p
10718 && const_op == 0
10719 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10720 && mode_width <= HOST_BITS_PER_WIDE_INT
10721 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10722 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10724 op0 = XEXP (op0, 0);
10725 code = (code == EQ ? GE : LT);
10726 continue;
10729 /* If this AND operation is really a ZERO_EXTEND from a narrower
10730 mode, the constant fits within that mode, and this is either an
10731 equality or unsigned comparison, try to do this comparison in
10732 the narrower mode. */
10733 if ((equality_comparison_p || unsigned_comparison_p)
10734 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10735 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10736 & GET_MODE_MASK (mode))
10737 + 1)) >= 0
10738 && const_op >> i == 0
10739 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10741 op0 = gen_lowpart_for_combine (tmode, XEXP (op0, 0));
10742 continue;
10745 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10746 in both M1 and M2 and the SUBREG is either paradoxical or
10747 represents the low part, permute the SUBREG and the AND and
10748 try again. */
10749 if (GET_CODE (XEXP (op0, 0)) == SUBREG
10750 && (0
10751 #ifdef WORD_REGISTER_OPERATIONS
10752 || ((mode_width
10753 > (GET_MODE_BITSIZE
10754 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10755 && mode_width <= BITS_PER_WORD)
10756 #endif
10757 || ((mode_width
10758 <= (GET_MODE_BITSIZE
10759 (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10760 && subreg_lowpart_p (XEXP (op0, 0))))
10761 #ifndef WORD_REGISTER_OPERATIONS
10762 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10763 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10764 As originally written the upper bits have a defined value
10765 due to the AND operation. However, if we commute the AND
10766 inside the SUBREG then they no longer have defined values
10767 and the meaning of the code has been changed. */
10768 && (GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)))
10769 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0)))))
10770 #endif
10771 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10772 && mode_width <= HOST_BITS_PER_WIDE_INT
10773 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10774 <= HOST_BITS_PER_WIDE_INT)
10775 && (INTVAL (XEXP (op0, 1)) & ~mask) == 0
10776 && 0 == (~GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))
10777 & INTVAL (XEXP (op0, 1)))
10778 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1)) != mask
10779 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10780 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0, 0))))))
10784 = gen_lowpart_for_combine
10785 (mode,
10786 gen_binary (AND, GET_MODE (SUBREG_REG (XEXP (op0, 0))),
10787 SUBREG_REG (XEXP (op0, 0)), XEXP (op0, 1)));
10788 continue;
10791 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10792 (eq (and (lshiftrt X) 1) 0). */
10793 if (const_op == 0 && equality_comparison_p
10794 && XEXP (op0, 1) == const1_rtx
10795 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10796 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == NOT)
10798 op0 = simplify_and_const_int
10799 (op0, mode,
10800 gen_rtx_LSHIFTRT (mode, XEXP (XEXP (XEXP (op0, 0), 0), 0),
10801 XEXP (XEXP (op0, 0), 1)),
10802 (HOST_WIDE_INT) 1);
10803 code = (code == NE ? EQ : NE);
10804 continue;
10806 break;
10808 case ASHIFT:
10809 /* If we have (compare (ashift FOO N) (const_int C)) and
10810 the high order N bits of FOO (N+1 if an inequality comparison)
10811 are known to be zero, we can do this by comparing FOO with C
10812 shifted right N bits so long as the low-order N bits of C are
10813 zero. */
10814 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10815 && INTVAL (XEXP (op0, 1)) >= 0
10816 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10817 < HOST_BITS_PER_WIDE_INT)
10818 && ((const_op
10819 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10820 && mode_width <= HOST_BITS_PER_WIDE_INT
10821 && (nonzero_bits (XEXP (op0, 0), mode)
10822 & ~(mask >> (INTVAL (XEXP (op0, 1))
10823 + ! equality_comparison_p))) == 0)
10825 /* We must perform a logical shift, not an arithmetic one,
10826 as we want the top N bits of C to be zero. */
10827 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10829 temp >>= INTVAL (XEXP (op0, 1));
10830 op1 = gen_int_mode (temp, mode);
10831 op0 = XEXP (op0, 0);
10832 continue;
10835 /* If we are doing a sign bit comparison, it means we are testing
10836 a particular bit. Convert it to the appropriate AND. */
10837 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10838 && mode_width <= HOST_BITS_PER_WIDE_INT)
10840 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10841 ((HOST_WIDE_INT) 1
10842 << (mode_width - 1
10843 - INTVAL (XEXP (op0, 1)))));
10844 code = (code == LT ? NE : EQ);
10845 continue;
10848 /* If this an equality comparison with zero and we are shifting
10849 the low bit to the sign bit, we can convert this to an AND of the
10850 low-order bit. */
10851 if (const_op == 0 && equality_comparison_p
10852 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10853 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10855 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10856 (HOST_WIDE_INT) 1);
10857 continue;
10859 break;
10861 case ASHIFTRT:
10862 /* If this is an equality comparison with zero, we can do this
10863 as a logical shift, which might be much simpler. */
10864 if (equality_comparison_p && const_op == 0
10865 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10867 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10868 XEXP (op0, 0),
10869 INTVAL (XEXP (op0, 1)));
10870 continue;
10873 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10874 do the comparison in a narrower mode. */
10875 if (! unsigned_comparison_p
10876 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10877 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10878 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10879 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10880 MODE_INT, 1)) != BLKmode
10881 && (((unsigned HOST_WIDE_INT) const_op
10882 + (GET_MODE_MASK (tmode) >> 1) + 1)
10883 <= GET_MODE_MASK (tmode)))
10885 op0 = gen_lowpart_for_combine (tmode, XEXP (XEXP (op0, 0), 0));
10886 continue;
10889 /* Likewise if OP0 is a PLUS of a sign extension with a
10890 constant, which is usually represented with the PLUS
10891 between the shifts. */
10892 if (! unsigned_comparison_p
10893 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10894 && GET_CODE (XEXP (op0, 0)) == PLUS
10895 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10896 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10897 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10898 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10899 MODE_INT, 1)) != BLKmode
10900 && (((unsigned HOST_WIDE_INT) const_op
10901 + (GET_MODE_MASK (tmode) >> 1) + 1)
10902 <= GET_MODE_MASK (tmode)))
10904 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10905 rtx add_const = XEXP (XEXP (op0, 0), 1);
10906 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10907 XEXP (op0, 1));
10909 op0 = gen_binary (PLUS, tmode,
10910 gen_lowpart_for_combine (tmode, inner),
10911 new_const);
10912 continue;
10915 /* ... fall through ... */
10916 case LSHIFTRT:
10917 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10918 the low order N bits of FOO are known to be zero, we can do this
10919 by comparing FOO with C shifted left N bits so long as no
10920 overflow occurs. */
10921 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10922 && INTVAL (XEXP (op0, 1)) >= 0
10923 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10924 && mode_width <= HOST_BITS_PER_WIDE_INT
10925 && (nonzero_bits (XEXP (op0, 0), mode)
10926 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10927 && (((unsigned HOST_WIDE_INT) const_op
10928 + (GET_CODE (op0) != LSHIFTRT
10929 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10930 + 1)
10931 : 0))
10932 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10934 /* If the shift was logical, then we must make the condition
10935 unsigned. */
10936 if (GET_CODE (op0) == LSHIFTRT)
10937 code = unsigned_condition (code);
10939 const_op <<= INTVAL (XEXP (op0, 1));
10940 op1 = GEN_INT (const_op);
10941 op0 = XEXP (op0, 0);
10942 continue;
10945 /* If we are using this shift to extract just the sign bit, we
10946 can replace this with an LT or GE comparison. */
10947 if (const_op == 0
10948 && (equality_comparison_p || sign_bit_comparison_p)
10949 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10950 && INTVAL (XEXP (op0, 1)) == mode_width - 1)
10952 op0 = XEXP (op0, 0);
10953 code = (code == NE || code == GT ? LT : GE);
10954 continue;
10956 break;
10958 default:
10959 break;
10962 break;
10965 /* Now make any compound operations involved in this comparison. Then,
10966 check for an outmost SUBREG on OP0 that is not doing anything or is
10967 paradoxical. The latter transformation must only be performed when
10968 it is known that the "extra" bits will be the same in op0 and op1 or
10969 that they don't matter. There are three cases to consider:
10971 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10972 care bits and we can assume they have any convenient value. So
10973 making the transformation is safe.
10975 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10976 In this case the upper bits of op0 are undefined. We should not make
10977 the simplification in that case as we do not know the contents of
10978 those bits.
10980 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10981 NIL. In that case we know those bits are zeros or ones. We must
10982 also be sure that they are the same as the upper bits of op1.
10984 We can never remove a SUBREG for a non-equality comparison because
10985 the sign bit is in a different place in the underlying object. */
10987 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10988 op1 = make_compound_operation (op1, SET);
10990 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10991 /* Case 3 above, to sometimes allow (subreg (mem x)), isn't
10992 implemented. */
10993 && GET_CODE (SUBREG_REG (op0)) == REG
10994 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10995 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10996 && (code == NE || code == EQ))
10998 if (GET_MODE_SIZE (GET_MODE (op0))
10999 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11001 op0 = SUBREG_REG (op0);
11002 op1 = gen_lowpart_for_combine (GET_MODE (op0), op1);
11004 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11005 <= HOST_BITS_PER_WIDE_INT)
11006 && (nonzero_bits (SUBREG_REG (op0),
11007 GET_MODE (SUBREG_REG (op0)))
11008 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11010 tem = gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0)), op1);
11012 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11013 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11014 op0 = SUBREG_REG (op0), op1 = tem;
11018 /* We now do the opposite procedure: Some machines don't have compare
11019 insns in all modes. If OP0's mode is an integer mode smaller than a
11020 word and we can't do a compare in that mode, see if there is a larger
11021 mode for which we can do the compare. There are a number of cases in
11022 which we can use the wider mode. */
11024 mode = GET_MODE (op0);
11025 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11026 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11027 && ! have_insn_for (COMPARE, mode))
11028 for (tmode = GET_MODE_WIDER_MODE (mode);
11029 (tmode != VOIDmode
11030 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11031 tmode = GET_MODE_WIDER_MODE (tmode))
11032 if (have_insn_for (COMPARE, tmode))
11034 int zero_extended;
11036 /* If the only nonzero bits in OP0 and OP1 are those in the
11037 narrower mode and this is an equality or unsigned comparison,
11038 we can use the wider mode. Similarly for sign-extended
11039 values, in which case it is true for all comparisons. */
11040 zero_extended = ((code == EQ || code == NE
11041 || code == GEU || code == GTU
11042 || code == LEU || code == LTU)
11043 && (nonzero_bits (op0, tmode)
11044 & ~GET_MODE_MASK (mode)) == 0
11045 && ((GET_CODE (op1) == CONST_INT
11046 || (nonzero_bits (op1, tmode)
11047 & ~GET_MODE_MASK (mode)) == 0)));
11049 if (zero_extended
11050 || ((num_sign_bit_copies (op0, tmode)
11051 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))
11052 && (num_sign_bit_copies (op1, tmode)
11053 > GET_MODE_BITSIZE (tmode) - GET_MODE_BITSIZE (mode))))
11055 /* If OP0 is an AND and we don't have an AND in MODE either,
11056 make a new AND in the proper mode. */
11057 if (GET_CODE (op0) == AND
11058 && !have_insn_for (AND, mode))
11059 op0 = gen_binary (AND, tmode,
11060 gen_lowpart_for_combine (tmode,
11061 XEXP (op0, 0)),
11062 gen_lowpart_for_combine (tmode,
11063 XEXP (op0, 1)));
11065 op0 = gen_lowpart_for_combine (tmode, op0);
11066 if (zero_extended && GET_CODE (op1) == CONST_INT)
11067 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11068 op1 = gen_lowpart_for_combine (tmode, op1);
11069 break;
11072 /* If this is a test for negative, we can make an explicit
11073 test of the sign bit. */
11075 if (op1 == const0_rtx && (code == LT || code == GE)
11076 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11078 op0 = gen_binary (AND, tmode,
11079 gen_lowpart_for_combine (tmode, op0),
11080 GEN_INT ((HOST_WIDE_INT) 1
11081 << (GET_MODE_BITSIZE (mode) - 1)));
11082 code = (code == LT) ? NE : EQ;
11083 break;
11087 #ifdef CANONICALIZE_COMPARISON
11088 /* If this machine only supports a subset of valid comparisons, see if we
11089 can convert an unsupported one into a supported one. */
11090 CANONICALIZE_COMPARISON (code, op0, op1);
11091 #endif
11093 *pop0 = op0;
11094 *pop1 = op1;
11096 return code;
11099 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
11100 searching backward. */
11101 static enum rtx_code
11102 combine_reversed_comparison_code (exp)
11103 rtx exp;
11105 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
11106 rtx x;
11108 if (code1 != UNKNOWN
11109 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
11110 return code1;
11111 /* Otherwise try and find where the condition codes were last set and
11112 use that. */
11113 x = get_last_value (XEXP (exp, 0));
11114 if (!x || GET_CODE (x) != COMPARE)
11115 return UNKNOWN;
11116 return reversed_comparison_code_parts (GET_CODE (exp),
11117 XEXP (x, 0), XEXP (x, 1), NULL);
11119 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
11120 Return NULL_RTX in case we fail to do the reversal. */
11121 static rtx
11122 reversed_comparison (exp, mode, op0, op1)
11123 rtx exp, op0, op1;
11124 enum machine_mode mode;
11126 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
11127 if (reversed_code == UNKNOWN)
11128 return NULL_RTX;
11129 else
11130 return gen_binary (reversed_code, mode, op0, op1);
11133 /* Utility function for following routine. Called when X is part of a value
11134 being stored into reg_last_set_value. Sets reg_last_set_table_tick
11135 for each register mentioned. Similar to mention_regs in cse.c */
11137 static void
11138 update_table_tick (x)
11139 rtx x;
11141 enum rtx_code code = GET_CODE (x);
11142 const char *fmt = GET_RTX_FORMAT (code);
11143 int i;
11145 if (code == REG)
11147 unsigned int regno = REGNO (x);
11148 unsigned int endregno
11149 = regno + (regno < FIRST_PSEUDO_REGISTER
11150 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11151 unsigned int r;
11153 for (r = regno; r < endregno; r++)
11154 reg_last_set_table_tick[r] = label_tick;
11156 return;
11159 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11160 /* Note that we can't have an "E" in values stored; see
11161 get_last_value_validate. */
11162 if (fmt[i] == 'e')
11163 update_table_tick (XEXP (x, i));
11166 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11167 are saying that the register is clobbered and we no longer know its
11168 value. If INSN is zero, don't update reg_last_set; this is only permitted
11169 with VALUE also zero and is used to invalidate the register. */
11171 static void
11172 record_value_for_reg (reg, insn, value)
11173 rtx reg;
11174 rtx insn;
11175 rtx value;
11177 unsigned int regno = REGNO (reg);
11178 unsigned int endregno
11179 = regno + (regno < FIRST_PSEUDO_REGISTER
11180 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1);
11181 unsigned int i;
11183 /* If VALUE contains REG and we have a previous value for REG, substitute
11184 the previous value. */
11185 if (value && insn && reg_overlap_mentioned_p (reg, value))
11187 rtx tem;
11189 /* Set things up so get_last_value is allowed to see anything set up to
11190 our insn. */
11191 subst_low_cuid = INSN_CUID (insn);
11192 tem = get_last_value (reg);
11194 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11195 it isn't going to be useful and will take a lot of time to process,
11196 so just use the CLOBBER. */
11198 if (tem)
11200 if ((GET_RTX_CLASS (GET_CODE (tem)) == '2'
11201 || GET_RTX_CLASS (GET_CODE (tem)) == 'c')
11202 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11203 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11204 tem = XEXP (tem, 0);
11206 value = replace_rtx (copy_rtx (value), reg, tem);
11210 /* For each register modified, show we don't know its value, that
11211 we don't know about its bitwise content, that its value has been
11212 updated, and that we don't know the location of the death of the
11213 register. */
11214 for (i = regno; i < endregno; i++)
11216 if (insn)
11217 reg_last_set[i] = insn;
11219 reg_last_set_value[i] = 0;
11220 reg_last_set_mode[i] = 0;
11221 reg_last_set_nonzero_bits[i] = 0;
11222 reg_last_set_sign_bit_copies[i] = 0;
11223 reg_last_death[i] = 0;
11226 /* Mark registers that are being referenced in this value. */
11227 if (value)
11228 update_table_tick (value);
11230 /* Now update the status of each register being set.
11231 If someone is using this register in this block, set this register
11232 to invalid since we will get confused between the two lives in this
11233 basic block. This makes using this register always invalid. In cse, we
11234 scan the table to invalidate all entries using this register, but this
11235 is too much work for us. */
11237 for (i = regno; i < endregno; i++)
11239 reg_last_set_label[i] = label_tick;
11240 if (value && reg_last_set_table_tick[i] == label_tick)
11241 reg_last_set_invalid[i] = 1;
11242 else
11243 reg_last_set_invalid[i] = 0;
11246 /* The value being assigned might refer to X (like in "x++;"). In that
11247 case, we must replace it with (clobber (const_int 0)) to prevent
11248 infinite loops. */
11249 if (value && ! get_last_value_validate (&value, insn,
11250 reg_last_set_label[regno], 0))
11252 value = copy_rtx (value);
11253 if (! get_last_value_validate (&value, insn,
11254 reg_last_set_label[regno], 1))
11255 value = 0;
11258 /* For the main register being modified, update the value, the mode, the
11259 nonzero bits, and the number of sign bit copies. */
11261 reg_last_set_value[regno] = value;
11263 if (value)
11265 enum machine_mode mode = GET_MODE (reg);
11266 subst_low_cuid = INSN_CUID (insn);
11267 reg_last_set_mode[regno] = mode;
11268 if (GET_MODE_CLASS (mode) == MODE_INT
11269 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11270 mode = nonzero_bits_mode;
11271 reg_last_set_nonzero_bits[regno] = nonzero_bits (value, mode);
11272 reg_last_set_sign_bit_copies[regno]
11273 = num_sign_bit_copies (value, GET_MODE (reg));
11277 /* Called via note_stores from record_dead_and_set_regs to handle one
11278 SET or CLOBBER in an insn. DATA is the instruction in which the
11279 set is occurring. */
11281 static void
11282 record_dead_and_set_regs_1 (dest, setter, data)
11283 rtx dest, setter;
11284 void *data;
11286 rtx record_dead_insn = (rtx) data;
11288 if (GET_CODE (dest) == SUBREG)
11289 dest = SUBREG_REG (dest);
11291 if (GET_CODE (dest) == REG)
11293 /* If we are setting the whole register, we know its value. Otherwise
11294 show that we don't know the value. We can handle SUBREG in
11295 some cases. */
11296 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11297 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11298 else if (GET_CODE (setter) == SET
11299 && GET_CODE (SET_DEST (setter)) == SUBREG
11300 && SUBREG_REG (SET_DEST (setter)) == dest
11301 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11302 && subreg_lowpart_p (SET_DEST (setter)))
11303 record_value_for_reg (dest, record_dead_insn,
11304 gen_lowpart_for_combine (GET_MODE (dest),
11305 SET_SRC (setter)));
11306 else
11307 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11309 else if (GET_CODE (dest) == MEM
11310 /* Ignore pushes, they clobber nothing. */
11311 && ! push_operand (dest, GET_MODE (dest)))
11312 mem_last_set = INSN_CUID (record_dead_insn);
11315 /* Update the records of when each REG was most recently set or killed
11316 for the things done by INSN. This is the last thing done in processing
11317 INSN in the combiner loop.
11319 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11320 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11321 and also the similar information mem_last_set (which insn most recently
11322 modified memory) and last_call_cuid (which insn was the most recent
11323 subroutine call). */
11325 static void
11326 record_dead_and_set_regs (insn)
11327 rtx insn;
11329 rtx link;
11330 unsigned int i;
11332 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11334 if (REG_NOTE_KIND (link) == REG_DEAD
11335 && GET_CODE (XEXP (link, 0)) == REG)
11337 unsigned int regno = REGNO (XEXP (link, 0));
11338 unsigned int endregno
11339 = regno + (regno < FIRST_PSEUDO_REGISTER
11340 ? HARD_REGNO_NREGS (regno, GET_MODE (XEXP (link, 0)))
11341 : 1);
11343 for (i = regno; i < endregno; i++)
11344 reg_last_death[i] = insn;
11346 else if (REG_NOTE_KIND (link) == REG_INC)
11347 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11350 if (GET_CODE (insn) == CALL_INSN)
11352 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11353 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11355 reg_last_set_value[i] = 0;
11356 reg_last_set_mode[i] = 0;
11357 reg_last_set_nonzero_bits[i] = 0;
11358 reg_last_set_sign_bit_copies[i] = 0;
11359 reg_last_death[i] = 0;
11362 last_call_cuid = mem_last_set = INSN_CUID (insn);
11364 /* Don't bother recording what this insn does. It might set the
11365 return value register, but we can't combine into a call
11366 pattern anyway, so there's no point trying (and it may cause
11367 a crash, if e.g. we wind up asking for last_set_value of a
11368 SUBREG of the return value register). */
11369 return;
11372 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11375 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11376 register present in the SUBREG, so for each such SUBREG go back and
11377 adjust nonzero and sign bit information of the registers that are
11378 known to have some zero/sign bits set.
11380 This is needed because when combine blows the SUBREGs away, the
11381 information on zero/sign bits is lost and further combines can be
11382 missed because of that. */
11384 static void
11385 record_promoted_value (insn, subreg)
11386 rtx insn;
11387 rtx subreg;
11389 rtx links, set;
11390 unsigned int regno = REGNO (SUBREG_REG (subreg));
11391 enum machine_mode mode = GET_MODE (subreg);
11393 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11394 return;
11396 for (links = LOG_LINKS (insn); links;)
11398 insn = XEXP (links, 0);
11399 set = single_set (insn);
11401 if (! set || GET_CODE (SET_DEST (set)) != REG
11402 || REGNO (SET_DEST (set)) != regno
11403 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11405 links = XEXP (links, 1);
11406 continue;
11409 if (reg_last_set[regno] == insn)
11411 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11412 reg_last_set_nonzero_bits[regno] &= GET_MODE_MASK (mode);
11415 if (GET_CODE (SET_SRC (set)) == REG)
11417 regno = REGNO (SET_SRC (set));
11418 links = LOG_LINKS (insn);
11420 else
11421 break;
11425 /* Scan X for promoted SUBREGs. For each one found,
11426 note what it implies to the registers used in it. */
11428 static void
11429 check_promoted_subreg (insn, x)
11430 rtx insn;
11431 rtx x;
11433 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11434 && GET_CODE (SUBREG_REG (x)) == REG)
11435 record_promoted_value (insn, x);
11436 else
11438 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11439 int i, j;
11441 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11442 switch (format[i])
11444 case 'e':
11445 check_promoted_subreg (insn, XEXP (x, i));
11446 break;
11447 case 'V':
11448 case 'E':
11449 if (XVEC (x, i) != 0)
11450 for (j = 0; j < XVECLEN (x, i); j++)
11451 check_promoted_subreg (insn, XVECEXP (x, i, j));
11452 break;
11457 /* Utility routine for the following function. Verify that all the registers
11458 mentioned in *LOC are valid when *LOC was part of a value set when
11459 label_tick == TICK. Return 0 if some are not.
11461 If REPLACE is non-zero, replace the invalid reference with
11462 (clobber (const_int 0)) and return 1. This replacement is useful because
11463 we often can get useful information about the form of a value (e.g., if
11464 it was produced by a shift that always produces -1 or 0) even though
11465 we don't know exactly what registers it was produced from. */
11467 static int
11468 get_last_value_validate (loc, insn, tick, replace)
11469 rtx *loc;
11470 rtx insn;
11471 int tick;
11472 int replace;
11474 rtx x = *loc;
11475 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11476 int len = GET_RTX_LENGTH (GET_CODE (x));
11477 int i;
11479 if (GET_CODE (x) == REG)
11481 unsigned int regno = REGNO (x);
11482 unsigned int endregno
11483 = regno + (regno < FIRST_PSEUDO_REGISTER
11484 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11485 unsigned int j;
11487 for (j = regno; j < endregno; j++)
11488 if (reg_last_set_invalid[j]
11489 /* If this is a pseudo-register that was only set once and not
11490 live at the beginning of the function, it is always valid. */
11491 || (! (regno >= FIRST_PSEUDO_REGISTER
11492 && REG_N_SETS (regno) == 1
11493 && (! REGNO_REG_SET_P
11494 (BASIC_BLOCK (0)->global_live_at_start, regno)))
11495 && reg_last_set_label[j] > tick))
11497 if (replace)
11498 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11499 return replace;
11502 return 1;
11504 /* If this is a memory reference, make sure that there were
11505 no stores after it that might have clobbered the value. We don't
11506 have alias info, so we assume any store invalidates it. */
11507 else if (GET_CODE (x) == MEM && ! RTX_UNCHANGING_P (x)
11508 && INSN_CUID (insn) <= mem_last_set)
11510 if (replace)
11511 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11512 return replace;
11515 for (i = 0; i < len; i++)
11516 if ((fmt[i] == 'e'
11517 && get_last_value_validate (&XEXP (x, i), insn, tick, replace) == 0)
11518 /* Don't bother with these. They shouldn't occur anyway. */
11519 || fmt[i] == 'E')
11520 return 0;
11522 /* If we haven't found a reason for it to be invalid, it is valid. */
11523 return 1;
11526 /* Get the last value assigned to X, if known. Some registers
11527 in the value may be replaced with (clobber (const_int 0)) if their value
11528 is known longer known reliably. */
11530 static rtx
11531 get_last_value (x)
11532 rtx x;
11534 unsigned int regno;
11535 rtx value;
11537 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11538 then convert it to the desired mode. If this is a paradoxical SUBREG,
11539 we cannot predict what values the "extra" bits might have. */
11540 if (GET_CODE (x) == SUBREG
11541 && subreg_lowpart_p (x)
11542 && (GET_MODE_SIZE (GET_MODE (x))
11543 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11544 && (value = get_last_value (SUBREG_REG (x))) != 0)
11545 return gen_lowpart_for_combine (GET_MODE (x), value);
11547 if (GET_CODE (x) != REG)
11548 return 0;
11550 regno = REGNO (x);
11551 value = reg_last_set_value[regno];
11553 /* If we don't have a value, or if it isn't for this basic block and
11554 it's either a hard register, set more than once, or it's a live
11555 at the beginning of the function, return 0.
11557 Because if it's not live at the beginning of the function then the reg
11558 is always set before being used (is never used without being set).
11559 And, if it's set only once, and it's always set before use, then all
11560 uses must have the same last value, even if it's not from this basic
11561 block. */
11563 if (value == 0
11564 || (reg_last_set_label[regno] != label_tick
11565 && (regno < FIRST_PSEUDO_REGISTER
11566 || REG_N_SETS (regno) != 1
11567 || (REGNO_REG_SET_P
11568 (BASIC_BLOCK (0)->global_live_at_start, regno)))))
11569 return 0;
11571 /* If the value was set in a later insn than the ones we are processing,
11572 we can't use it even if the register was only set once. */
11573 if (INSN_CUID (reg_last_set[regno]) >= subst_low_cuid)
11574 return 0;
11576 /* If the value has all its registers valid, return it. */
11577 if (get_last_value_validate (&value, reg_last_set[regno],
11578 reg_last_set_label[regno], 0))
11579 return value;
11581 /* Otherwise, make a copy and replace any invalid register with
11582 (clobber (const_int 0)). If that fails for some reason, return 0. */
11584 value = copy_rtx (value);
11585 if (get_last_value_validate (&value, reg_last_set[regno],
11586 reg_last_set_label[regno], 1))
11587 return value;
11589 return 0;
11592 /* Return nonzero if expression X refers to a REG or to memory
11593 that is set in an instruction more recent than FROM_CUID. */
11595 static int
11596 use_crosses_set_p (x, from_cuid)
11597 rtx x;
11598 int from_cuid;
11600 const char *fmt;
11601 int i;
11602 enum rtx_code code = GET_CODE (x);
11604 if (code == REG)
11606 unsigned int regno = REGNO (x);
11607 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11608 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
11610 #ifdef PUSH_ROUNDING
11611 /* Don't allow uses of the stack pointer to be moved,
11612 because we don't know whether the move crosses a push insn. */
11613 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11614 return 1;
11615 #endif
11616 for (; regno < endreg; regno++)
11617 if (reg_last_set[regno]
11618 && INSN_CUID (reg_last_set[regno]) > from_cuid)
11619 return 1;
11620 return 0;
11623 if (code == MEM && mem_last_set > from_cuid)
11624 return 1;
11626 fmt = GET_RTX_FORMAT (code);
11628 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11630 if (fmt[i] == 'E')
11632 int j;
11633 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11634 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11635 return 1;
11637 else if (fmt[i] == 'e'
11638 && use_crosses_set_p (XEXP (x, i), from_cuid))
11639 return 1;
11641 return 0;
11644 /* Define three variables used for communication between the following
11645 routines. */
11647 static unsigned int reg_dead_regno, reg_dead_endregno;
11648 static int reg_dead_flag;
11650 /* Function called via note_stores from reg_dead_at_p.
11652 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11653 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11655 static void
11656 reg_dead_at_p_1 (dest, x, data)
11657 rtx dest;
11658 rtx x;
11659 void *data ATTRIBUTE_UNUSED;
11661 unsigned int regno, endregno;
11663 if (GET_CODE (dest) != REG)
11664 return;
11666 regno = REGNO (dest);
11667 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11668 ? HARD_REGNO_NREGS (regno, GET_MODE (dest)) : 1);
11670 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11671 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11674 /* Return non-zero if REG is known to be dead at INSN.
11676 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11677 referencing REG, it is dead. If we hit a SET referencing REG, it is
11678 live. Otherwise, see if it is live or dead at the start of the basic
11679 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11680 must be assumed to be always live. */
11682 static int
11683 reg_dead_at_p (reg, insn)
11684 rtx reg;
11685 rtx insn;
11687 int block;
11688 unsigned int i;
11690 /* Set variables for reg_dead_at_p_1. */
11691 reg_dead_regno = REGNO (reg);
11692 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11693 ? HARD_REGNO_NREGS (reg_dead_regno,
11694 GET_MODE (reg))
11695 : 1);
11697 reg_dead_flag = 0;
11699 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11700 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11702 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11703 if (TEST_HARD_REG_BIT (newpat_used_regs, i))
11704 return 0;
11707 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11708 beginning of function. */
11709 for (; insn && GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != BARRIER;
11710 insn = prev_nonnote_insn (insn))
11712 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11713 if (reg_dead_flag)
11714 return reg_dead_flag == 1 ? 1 : 0;
11716 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11717 return 1;
11720 /* Get the basic block number that we were in. */
11721 if (insn == 0)
11722 block = 0;
11723 else
11725 for (block = 0; block < n_basic_blocks; block++)
11726 if (insn == BLOCK_HEAD (block))
11727 break;
11729 if (block == n_basic_blocks)
11730 return 0;
11733 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11734 if (REGNO_REG_SET_P (BASIC_BLOCK (block)->global_live_at_start, i))
11735 return 0;
11737 return 1;
11740 /* Note hard registers in X that are used. This code is similar to
11741 that in flow.c, but much simpler since we don't care about pseudos. */
11743 static void
11744 mark_used_regs_combine (x)
11745 rtx x;
11747 RTX_CODE code = GET_CODE (x);
11748 unsigned int regno;
11749 int i;
11751 switch (code)
11753 case LABEL_REF:
11754 case SYMBOL_REF:
11755 case CONST_INT:
11756 case CONST:
11757 case CONST_DOUBLE:
11758 case CONST_VECTOR:
11759 case PC:
11760 case ADDR_VEC:
11761 case ADDR_DIFF_VEC:
11762 case ASM_INPUT:
11763 #ifdef HAVE_cc0
11764 /* CC0 must die in the insn after it is set, so we don't need to take
11765 special note of it here. */
11766 case CC0:
11767 #endif
11768 return;
11770 case CLOBBER:
11771 /* If we are clobbering a MEM, mark any hard registers inside the
11772 address as used. */
11773 if (GET_CODE (XEXP (x, 0)) == MEM)
11774 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11775 return;
11777 case REG:
11778 regno = REGNO (x);
11779 /* A hard reg in a wide mode may really be multiple registers.
11780 If so, mark all of them just like the first. */
11781 if (regno < FIRST_PSEUDO_REGISTER)
11783 unsigned int endregno, r;
11785 /* None of this applies to the stack, frame or arg pointers */
11786 if (regno == STACK_POINTER_REGNUM
11787 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11788 || regno == HARD_FRAME_POINTER_REGNUM
11789 #endif
11790 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11791 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11792 #endif
11793 || regno == FRAME_POINTER_REGNUM)
11794 return;
11796 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11797 for (r = regno; r < endregno; r++)
11798 SET_HARD_REG_BIT (newpat_used_regs, r);
11800 return;
11802 case SET:
11804 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11805 the address. */
11806 rtx testreg = SET_DEST (x);
11808 while (GET_CODE (testreg) == SUBREG
11809 || GET_CODE (testreg) == ZERO_EXTRACT
11810 || GET_CODE (testreg) == SIGN_EXTRACT
11811 || GET_CODE (testreg) == STRICT_LOW_PART)
11812 testreg = XEXP (testreg, 0);
11814 if (GET_CODE (testreg) == MEM)
11815 mark_used_regs_combine (XEXP (testreg, 0));
11817 mark_used_regs_combine (SET_SRC (x));
11819 return;
11821 default:
11822 break;
11825 /* Recursively scan the operands of this expression. */
11828 const char *fmt = GET_RTX_FORMAT (code);
11830 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11832 if (fmt[i] == 'e')
11833 mark_used_regs_combine (XEXP (x, i));
11834 else if (fmt[i] == 'E')
11836 int j;
11838 for (j = 0; j < XVECLEN (x, i); j++)
11839 mark_used_regs_combine (XVECEXP (x, i, j));
11845 /* Remove register number REGNO from the dead registers list of INSN.
11847 Return the note used to record the death, if there was one. */
11850 remove_death (regno, insn)
11851 unsigned int regno;
11852 rtx insn;
11854 rtx note = find_regno_note (insn, REG_DEAD, regno);
11856 if (note)
11858 REG_N_DEATHS (regno)--;
11859 remove_note (insn, note);
11862 return note;
11865 /* For each register (hardware or pseudo) used within expression X, if its
11866 death is in an instruction with cuid between FROM_CUID (inclusive) and
11867 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11868 list headed by PNOTES.
11870 That said, don't move registers killed by maybe_kill_insn.
11872 This is done when X is being merged by combination into TO_INSN. These
11873 notes will then be distributed as needed. */
11875 static void
11876 move_deaths (x, maybe_kill_insn, from_cuid, to_insn, pnotes)
11877 rtx x;
11878 rtx maybe_kill_insn;
11879 int from_cuid;
11880 rtx to_insn;
11881 rtx *pnotes;
11883 const char *fmt;
11884 int len, i;
11885 enum rtx_code code = GET_CODE (x);
11887 if (code == REG)
11889 unsigned int regno = REGNO (x);
11890 rtx where_dead = reg_last_death[regno];
11891 rtx before_dead, after_dead;
11893 /* Don't move the register if it gets killed in between from and to */
11894 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11895 && ! reg_referenced_p (x, maybe_kill_insn))
11896 return;
11898 /* WHERE_DEAD could be a USE insn made by combine, so first we
11899 make sure that we have insns with valid INSN_CUID values. */
11900 before_dead = where_dead;
11901 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11902 before_dead = PREV_INSN (before_dead);
11904 after_dead = where_dead;
11905 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11906 after_dead = NEXT_INSN (after_dead);
11908 if (before_dead && after_dead
11909 && INSN_CUID (before_dead) >= from_cuid
11910 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11911 || (where_dead != after_dead
11912 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11914 rtx note = remove_death (regno, where_dead);
11916 /* It is possible for the call above to return 0. This can occur
11917 when reg_last_death points to I2 or I1 that we combined with.
11918 In that case make a new note.
11920 We must also check for the case where X is a hard register
11921 and NOTE is a death note for a range of hard registers
11922 including X. In that case, we must put REG_DEAD notes for
11923 the remaining registers in place of NOTE. */
11925 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11926 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11927 > GET_MODE_SIZE (GET_MODE (x))))
11929 unsigned int deadregno = REGNO (XEXP (note, 0));
11930 unsigned int deadend
11931 = (deadregno + HARD_REGNO_NREGS (deadregno,
11932 GET_MODE (XEXP (note, 0))));
11933 unsigned int ourend
11934 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11935 unsigned int i;
11937 for (i = deadregno; i < deadend; i++)
11938 if (i < regno || i >= ourend)
11939 REG_NOTES (where_dead)
11940 = gen_rtx_EXPR_LIST (REG_DEAD,
11941 gen_rtx_REG (reg_raw_mode[i], i),
11942 REG_NOTES (where_dead));
11945 /* If we didn't find any note, or if we found a REG_DEAD note that
11946 covers only part of the given reg, and we have a multi-reg hard
11947 register, then to be safe we must check for REG_DEAD notes
11948 for each register other than the first. They could have
11949 their own REG_DEAD notes lying around. */
11950 else if ((note == 0
11951 || (note != 0
11952 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11953 < GET_MODE_SIZE (GET_MODE (x)))))
11954 && regno < FIRST_PSEUDO_REGISTER
11955 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
11957 unsigned int ourend
11958 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
11959 unsigned int i, offset;
11960 rtx oldnotes = 0;
11962 if (note)
11963 offset = HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0)));
11964 else
11965 offset = 1;
11967 for (i = regno + offset; i < ourend; i++)
11968 move_deaths (gen_rtx_REG (reg_raw_mode[i], i),
11969 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11972 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11974 XEXP (note, 1) = *pnotes;
11975 *pnotes = note;
11977 else
11978 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11980 REG_N_DEATHS (regno)++;
11983 return;
11986 else if (GET_CODE (x) == SET)
11988 rtx dest = SET_DEST (x);
11990 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11992 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11993 that accesses one word of a multi-word item, some
11994 piece of everything register in the expression is used by
11995 this insn, so remove any old death. */
11996 /* ??? So why do we test for equality of the sizes? */
11998 if (GET_CODE (dest) == ZERO_EXTRACT
11999 || GET_CODE (dest) == STRICT_LOW_PART
12000 || (GET_CODE (dest) == SUBREG
12001 && (((GET_MODE_SIZE (GET_MODE (dest))
12002 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12003 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12004 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12006 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
12007 return;
12010 /* If this is some other SUBREG, we know it replaces the entire
12011 value, so use that as the destination. */
12012 if (GET_CODE (dest) == SUBREG)
12013 dest = SUBREG_REG (dest);
12015 /* If this is a MEM, adjust deaths of anything used in the address.
12016 For a REG (the only other possibility), the entire value is
12017 being replaced so the old value is not used in this insn. */
12019 if (GET_CODE (dest) == MEM)
12020 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12021 to_insn, pnotes);
12022 return;
12025 else if (GET_CODE (x) == CLOBBER)
12026 return;
12028 len = GET_RTX_LENGTH (code);
12029 fmt = GET_RTX_FORMAT (code);
12031 for (i = 0; i < len; i++)
12033 if (fmt[i] == 'E')
12035 int j;
12036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12037 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12038 to_insn, pnotes);
12040 else if (fmt[i] == 'e')
12041 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12045 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12046 pattern of an insn. X must be a REG. */
12048 static int
12049 reg_bitfield_target_p (x, body)
12050 rtx x;
12051 rtx body;
12053 int i;
12055 if (GET_CODE (body) == SET)
12057 rtx dest = SET_DEST (body);
12058 rtx target;
12059 unsigned int regno, tregno, endregno, endtregno;
12061 if (GET_CODE (dest) == ZERO_EXTRACT)
12062 target = XEXP (dest, 0);
12063 else if (GET_CODE (dest) == STRICT_LOW_PART)
12064 target = SUBREG_REG (XEXP (dest, 0));
12065 else
12066 return 0;
12068 if (GET_CODE (target) == SUBREG)
12069 target = SUBREG_REG (target);
12071 if (GET_CODE (target) != REG)
12072 return 0;
12074 tregno = REGNO (target), regno = REGNO (x);
12075 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12076 return target == x;
12078 endtregno = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (target));
12079 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
12081 return endregno > tregno && regno < endtregno;
12084 else if (GET_CODE (body) == PARALLEL)
12085 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12086 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12087 return 1;
12089 return 0;
12092 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12093 as appropriate. I3 and I2 are the insns resulting from the combination
12094 insns including FROM (I2 may be zero).
12096 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12097 not need REG_DEAD notes because they are being substituted for. This
12098 saves searching in the most common cases.
12100 Each note in the list is either ignored or placed on some insns, depending
12101 on the type of note. */
12103 static void
12104 distribute_notes (notes, from_insn, i3, i2, elim_i2, elim_i1)
12105 rtx notes;
12106 rtx from_insn;
12107 rtx i3, i2;
12108 rtx elim_i2, elim_i1;
12110 rtx note, next_note;
12111 rtx tem;
12113 for (note = notes; note; note = next_note)
12115 rtx place = 0, place2 = 0;
12117 /* If this NOTE references a pseudo register, ensure it references
12118 the latest copy of that register. */
12119 if (XEXP (note, 0) && GET_CODE (XEXP (note, 0)) == REG
12120 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12121 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12123 next_note = XEXP (note, 1);
12124 switch (REG_NOTE_KIND (note))
12126 case REG_BR_PROB:
12127 case REG_BR_PRED:
12128 case REG_EXEC_COUNT:
12129 /* Doesn't matter much where we put this, as long as it's somewhere.
12130 It is preferable to keep these notes on branches, which is most
12131 likely to be i3. */
12132 place = i3;
12133 break;
12135 case REG_VTABLE_REF:
12136 /* ??? Should remain with *a particular* memory load. Given the
12137 nature of vtable data, the last insn seems relatively safe. */
12138 place = i3;
12139 break;
12141 case REG_NON_LOCAL_GOTO:
12142 if (GET_CODE (i3) == JUMP_INSN)
12143 place = i3;
12144 else if (i2 && GET_CODE (i2) == JUMP_INSN)
12145 place = i2;
12146 else
12147 abort ();
12148 break;
12150 case REG_EH_REGION:
12151 /* These notes must remain with the call or trapping instruction. */
12152 if (GET_CODE (i3) == CALL_INSN)
12153 place = i3;
12154 else if (i2 && GET_CODE (i2) == CALL_INSN)
12155 place = i2;
12156 else if (flag_non_call_exceptions)
12158 if (may_trap_p (i3))
12159 place = i3;
12160 else if (i2 && may_trap_p (i2))
12161 place = i2;
12162 /* ??? Otherwise assume we've combined things such that we
12163 can now prove that the instructions can't trap. Drop the
12164 note in this case. */
12166 else
12167 abort ();
12168 break;
12170 case REG_NORETURN:
12171 case REG_SETJMP:
12172 /* These notes must remain with the call. It should not be
12173 possible for both I2 and I3 to be a call. */
12174 if (GET_CODE (i3) == CALL_INSN)
12175 place = i3;
12176 else if (i2 && GET_CODE (i2) == CALL_INSN)
12177 place = i2;
12178 else
12179 abort ();
12180 break;
12182 case REG_UNUSED:
12183 /* Any clobbers for i3 may still exist, and so we must process
12184 REG_UNUSED notes from that insn.
12186 Any clobbers from i2 or i1 can only exist if they were added by
12187 recog_for_combine. In that case, recog_for_combine created the
12188 necessary REG_UNUSED notes. Trying to keep any original
12189 REG_UNUSED notes from these insns can cause incorrect output
12190 if it is for the same register as the original i3 dest.
12191 In that case, we will notice that the register is set in i3,
12192 and then add a REG_UNUSED note for the destination of i3, which
12193 is wrong. However, it is possible to have REG_UNUSED notes from
12194 i2 or i1 for register which were both used and clobbered, so
12195 we keep notes from i2 or i1 if they will turn into REG_DEAD
12196 notes. */
12198 /* If this register is set or clobbered in I3, put the note there
12199 unless there is one already. */
12200 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12202 if (from_insn != i3)
12203 break;
12205 if (! (GET_CODE (XEXP (note, 0)) == REG
12206 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12207 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12208 place = i3;
12210 /* Otherwise, if this register is used by I3, then this register
12211 now dies here, so we must put a REG_DEAD note here unless there
12212 is one already. */
12213 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12214 && ! (GET_CODE (XEXP (note, 0)) == REG
12215 ? find_regno_note (i3, REG_DEAD,
12216 REGNO (XEXP (note, 0)))
12217 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12219 PUT_REG_NOTE_KIND (note, REG_DEAD);
12220 place = i3;
12222 break;
12224 case REG_EQUAL:
12225 case REG_EQUIV:
12226 case REG_NOALIAS:
12227 /* These notes say something about results of an insn. We can
12228 only support them if they used to be on I3 in which case they
12229 remain on I3. Otherwise they are ignored.
12231 If the note refers to an expression that is not a constant, we
12232 must also ignore the note since we cannot tell whether the
12233 equivalence is still true. It might be possible to do
12234 slightly better than this (we only have a problem if I2DEST
12235 or I1DEST is present in the expression), but it doesn't
12236 seem worth the trouble. */
12238 if (from_insn == i3
12239 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12240 place = i3;
12241 break;
12243 case REG_INC:
12244 case REG_NO_CONFLICT:
12245 /* These notes say something about how a register is used. They must
12246 be present on any use of the register in I2 or I3. */
12247 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12248 place = i3;
12250 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12252 if (place)
12253 place2 = i2;
12254 else
12255 place = i2;
12257 break;
12259 case REG_LABEL:
12260 /* This can show up in several ways -- either directly in the
12261 pattern, or hidden off in the constant pool with (or without?)
12262 a REG_EQUAL note. */
12263 /* ??? Ignore the without-reg_equal-note problem for now. */
12264 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12265 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12266 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12267 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12268 place = i3;
12270 if (i2
12271 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12272 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12273 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12274 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12276 if (place)
12277 place2 = i2;
12278 else
12279 place = i2;
12282 /* Don't attach REG_LABEL note to a JUMP_INSN which has
12283 JUMP_LABEL already. Instead, decrement LABEL_NUSES. */
12284 if (place && GET_CODE (place) == JUMP_INSN && JUMP_LABEL (place))
12286 if (JUMP_LABEL (place) != XEXP (note, 0))
12287 abort ();
12288 if (GET_CODE (JUMP_LABEL (place)) == CODE_LABEL)
12289 LABEL_NUSES (JUMP_LABEL (place))--;
12290 place = 0;
12292 if (place2 && GET_CODE (place2) == JUMP_INSN && JUMP_LABEL (place2))
12294 if (JUMP_LABEL (place2) != XEXP (note, 0))
12295 abort ();
12296 if (GET_CODE (JUMP_LABEL (place2)) == CODE_LABEL)
12297 LABEL_NUSES (JUMP_LABEL (place2))--;
12298 place2 = 0;
12300 break;
12302 case REG_NONNEG:
12303 case REG_WAS_0:
12304 /* These notes say something about the value of a register prior
12305 to the execution of an insn. It is too much trouble to see
12306 if the note is still correct in all situations. It is better
12307 to simply delete it. */
12308 break;
12310 case REG_RETVAL:
12311 /* If the insn previously containing this note still exists,
12312 put it back where it was. Otherwise move it to the previous
12313 insn. Adjust the corresponding REG_LIBCALL note. */
12314 if (GET_CODE (from_insn) != NOTE)
12315 place = from_insn;
12316 else
12318 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12319 place = prev_real_insn (from_insn);
12320 if (tem && place)
12321 XEXP (tem, 0) = place;
12322 /* If we're deleting the last remaining instruction of a
12323 libcall sequence, don't add the notes. */
12324 else if (XEXP (note, 0) == from_insn)
12325 tem = place = 0;
12327 break;
12329 case REG_LIBCALL:
12330 /* This is handled similarly to REG_RETVAL. */
12331 if (GET_CODE (from_insn) != NOTE)
12332 place = from_insn;
12333 else
12335 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12336 place = next_real_insn (from_insn);
12337 if (tem && place)
12338 XEXP (tem, 0) = place;
12339 /* If we're deleting the last remaining instruction of a
12340 libcall sequence, don't add the notes. */
12341 else if (XEXP (note, 0) == from_insn)
12342 tem = place = 0;
12344 break;
12346 case REG_DEAD:
12347 /* If the register is used as an input in I3, it dies there.
12348 Similarly for I2, if it is non-zero and adjacent to I3.
12350 If the register is not used as an input in either I3 or I2
12351 and it is not one of the registers we were supposed to eliminate,
12352 there are two possibilities. We might have a non-adjacent I2
12353 or we might have somehow eliminated an additional register
12354 from a computation. For example, we might have had A & B where
12355 we discover that B will always be zero. In this case we will
12356 eliminate the reference to A.
12358 In both cases, we must search to see if we can find a previous
12359 use of A and put the death note there. */
12361 if (from_insn
12362 && GET_CODE (from_insn) == CALL_INSN
12363 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12364 place = from_insn;
12365 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12366 place = i3;
12367 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12368 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12369 place = i2;
12371 if (rtx_equal_p (XEXP (note, 0), elim_i2)
12372 || rtx_equal_p (XEXP (note, 0), elim_i1))
12373 break;
12375 if (place == 0)
12377 basic_block bb = BASIC_BLOCK (this_basic_block);
12379 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12381 if (! INSN_P (tem))
12383 if (tem == bb->head)
12384 break;
12385 continue;
12388 /* If the register is being set at TEM, see if that is all
12389 TEM is doing. If so, delete TEM. Otherwise, make this
12390 into a REG_UNUSED note instead. */
12391 if (reg_set_p (XEXP (note, 0), PATTERN (tem)))
12393 rtx set = single_set (tem);
12394 rtx inner_dest = 0;
12395 #ifdef HAVE_cc0
12396 rtx cc0_setter = NULL_RTX;
12397 #endif
12399 if (set != 0)
12400 for (inner_dest = SET_DEST (set);
12401 (GET_CODE (inner_dest) == STRICT_LOW_PART
12402 || GET_CODE (inner_dest) == SUBREG
12403 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12404 inner_dest = XEXP (inner_dest, 0))
12407 /* Verify that it was the set, and not a clobber that
12408 modified the register.
12410 CC0 targets must be careful to maintain setter/user
12411 pairs. If we cannot delete the setter due to side
12412 effects, mark the user with an UNUSED note instead
12413 of deleting it. */
12415 if (set != 0 && ! side_effects_p (SET_SRC (set))
12416 && rtx_equal_p (XEXP (note, 0), inner_dest)
12417 #ifdef HAVE_cc0
12418 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12419 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12420 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12421 #endif
12424 /* Move the notes and links of TEM elsewhere.
12425 This might delete other dead insns recursively.
12426 First set the pattern to something that won't use
12427 any register. */
12429 PATTERN (tem) = pc_rtx;
12431 distribute_notes (REG_NOTES (tem), tem, tem,
12432 NULL_RTX, NULL_RTX, NULL_RTX);
12433 distribute_links (LOG_LINKS (tem));
12435 PUT_CODE (tem, NOTE);
12436 NOTE_LINE_NUMBER (tem) = NOTE_INSN_DELETED;
12437 NOTE_SOURCE_FILE (tem) = 0;
12439 #ifdef HAVE_cc0
12440 /* Delete the setter too. */
12441 if (cc0_setter)
12443 PATTERN (cc0_setter) = pc_rtx;
12445 distribute_notes (REG_NOTES (cc0_setter),
12446 cc0_setter, cc0_setter,
12447 NULL_RTX, NULL_RTX, NULL_RTX);
12448 distribute_links (LOG_LINKS (cc0_setter));
12450 PUT_CODE (cc0_setter, NOTE);
12451 NOTE_LINE_NUMBER (cc0_setter)
12452 = NOTE_INSN_DELETED;
12453 NOTE_SOURCE_FILE (cc0_setter) = 0;
12455 #endif
12457 /* If the register is both set and used here, put the
12458 REG_DEAD note here, but place a REG_UNUSED note
12459 here too unless there already is one. */
12460 else if (reg_referenced_p (XEXP (note, 0),
12461 PATTERN (tem)))
12463 place = tem;
12465 if (! find_regno_note (tem, REG_UNUSED,
12466 REGNO (XEXP (note, 0))))
12467 REG_NOTES (tem)
12468 = gen_rtx_EXPR_LIST (REG_UNUSED, XEXP (note, 0),
12469 REG_NOTES (tem));
12471 else
12473 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12475 /* If there isn't already a REG_UNUSED note, put one
12476 here. */
12477 if (! find_regno_note (tem, REG_UNUSED,
12478 REGNO (XEXP (note, 0))))
12479 place = tem;
12480 break;
12483 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12484 || (GET_CODE (tem) == CALL_INSN
12485 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12487 place = tem;
12489 /* If we are doing a 3->2 combination, and we have a
12490 register which formerly died in i3 and was not used
12491 by i2, which now no longer dies in i3 and is used in
12492 i2 but does not die in i2, and place is between i2
12493 and i3, then we may need to move a link from place to
12494 i2. */
12495 if (i2 && INSN_UID (place) <= max_uid_cuid
12496 && INSN_CUID (place) > INSN_CUID (i2)
12497 && from_insn
12498 && INSN_CUID (from_insn) > INSN_CUID (i2)
12499 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12501 rtx links = LOG_LINKS (place);
12502 LOG_LINKS (place) = 0;
12503 distribute_links (links);
12505 break;
12508 if (tem == bb->head)
12509 break;
12512 /* We haven't found an insn for the death note and it
12513 is still a REG_DEAD note, but we have hit the beginning
12514 of the block. If the existing life info says the reg
12515 was dead, there's nothing left to do. Otherwise, we'll
12516 need to do a global life update after combine. */
12517 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12518 && REGNO_REG_SET_P (bb->global_live_at_start,
12519 REGNO (XEXP (note, 0))))
12521 SET_BIT (refresh_blocks, this_basic_block);
12522 need_refresh = 1;
12526 /* If the register is set or already dead at PLACE, we needn't do
12527 anything with this note if it is still a REG_DEAD note.
12528 We can here if it is set at all, not if is it totally replace,
12529 which is what `dead_or_set_p' checks, so also check for it being
12530 set partially. */
12532 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12534 unsigned int regno = REGNO (XEXP (note, 0));
12536 /* Similarly, if the instruction on which we want to place
12537 the note is a noop, we'll need do a global live update
12538 after we remove them in delete_noop_moves. */
12539 if (noop_move_p (place))
12541 SET_BIT (refresh_blocks, this_basic_block);
12542 need_refresh = 1;
12545 if (dead_or_set_p (place, XEXP (note, 0))
12546 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12548 /* Unless the register previously died in PLACE, clear
12549 reg_last_death. [I no longer understand why this is
12550 being done.] */
12551 if (reg_last_death[regno] != place)
12552 reg_last_death[regno] = 0;
12553 place = 0;
12555 else
12556 reg_last_death[regno] = place;
12558 /* If this is a death note for a hard reg that is occupying
12559 multiple registers, ensure that we are still using all
12560 parts of the object. If we find a piece of the object
12561 that is unused, we must arrange for an appropriate REG_DEAD
12562 note to be added for it. However, we can't just emit a USE
12563 and tag the note to it, since the register might actually
12564 be dead; so we recourse, and the recursive call then finds
12565 the previous insn that used this register. */
12567 if (place && regno < FIRST_PSEUDO_REGISTER
12568 && HARD_REGNO_NREGS (regno, GET_MODE (XEXP (note, 0))) > 1)
12570 unsigned int endregno
12571 = regno + HARD_REGNO_NREGS (regno,
12572 GET_MODE (XEXP (note, 0)));
12573 int all_used = 1;
12574 unsigned int i;
12576 for (i = regno; i < endregno; i++)
12577 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12578 && ! find_regno_fusage (place, USE, i))
12579 || dead_or_set_regno_p (place, i))
12580 all_used = 0;
12582 if (! all_used)
12584 /* Put only REG_DEAD notes for pieces that are
12585 not already dead or set. */
12587 for (i = regno; i < endregno;
12588 i += HARD_REGNO_NREGS (i, reg_raw_mode[i]))
12590 rtx piece = gen_rtx_REG (reg_raw_mode[i], i);
12591 basic_block bb = BASIC_BLOCK (this_basic_block);
12593 if (! dead_or_set_p (place, piece)
12594 && ! reg_bitfield_target_p (piece,
12595 PATTERN (place)))
12597 rtx new_note
12598 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12600 distribute_notes (new_note, place, place,
12601 NULL_RTX, NULL_RTX, NULL_RTX);
12603 else if (! refers_to_regno_p (i, i + 1,
12604 PATTERN (place), 0)
12605 && ! find_regno_fusage (place, USE, i))
12606 for (tem = PREV_INSN (place); ;
12607 tem = PREV_INSN (tem))
12609 if (! INSN_P (tem))
12611 if (tem == bb->head)
12613 SET_BIT (refresh_blocks,
12614 this_basic_block);
12615 need_refresh = 1;
12616 break;
12618 continue;
12620 if (dead_or_set_p (tem, piece)
12621 || reg_bitfield_target_p (piece,
12622 PATTERN (tem)))
12624 REG_NOTES (tem)
12625 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12626 REG_NOTES (tem));
12627 break;
12633 place = 0;
12637 break;
12639 default:
12640 /* Any other notes should not be present at this point in the
12641 compilation. */
12642 abort ();
12645 if (place)
12647 XEXP (note, 1) = REG_NOTES (place);
12648 REG_NOTES (place) = note;
12650 else if ((REG_NOTE_KIND (note) == REG_DEAD
12651 || REG_NOTE_KIND (note) == REG_UNUSED)
12652 && GET_CODE (XEXP (note, 0)) == REG)
12653 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12655 if (place2)
12657 if ((REG_NOTE_KIND (note) == REG_DEAD
12658 || REG_NOTE_KIND (note) == REG_UNUSED)
12659 && GET_CODE (XEXP (note, 0)) == REG)
12660 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12662 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12663 REG_NOTE_KIND (note),
12664 XEXP (note, 0),
12665 REG_NOTES (place2));
12670 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12671 I3, I2, and I1 to new locations. This is also called in one case to
12672 add a link pointing at I3 when I3's destination is changed. */
12674 static void
12675 distribute_links (links)
12676 rtx links;
12678 rtx link, next_link;
12680 for (link = links; link; link = next_link)
12682 rtx place = 0;
12683 rtx insn;
12684 rtx set, reg;
12686 next_link = XEXP (link, 1);
12688 /* If the insn that this link points to is a NOTE or isn't a single
12689 set, ignore it. In the latter case, it isn't clear what we
12690 can do other than ignore the link, since we can't tell which
12691 register it was for. Such links wouldn't be used by combine
12692 anyway.
12694 It is not possible for the destination of the target of the link to
12695 have been changed by combine. The only potential of this is if we
12696 replace I3, I2, and I1 by I3 and I2. But in that case the
12697 destination of I2 also remains unchanged. */
12699 if (GET_CODE (XEXP (link, 0)) == NOTE
12700 || (set = single_set (XEXP (link, 0))) == 0)
12701 continue;
12703 reg = SET_DEST (set);
12704 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12705 || GET_CODE (reg) == SIGN_EXTRACT
12706 || GET_CODE (reg) == STRICT_LOW_PART)
12707 reg = XEXP (reg, 0);
12709 /* A LOG_LINK is defined as being placed on the first insn that uses
12710 a register and points to the insn that sets the register. Start
12711 searching at the next insn after the target of the link and stop
12712 when we reach a set of the register or the end of the basic block.
12714 Note that this correctly handles the link that used to point from
12715 I3 to I2. Also note that not much searching is typically done here
12716 since most links don't point very far away. */
12718 for (insn = NEXT_INSN (XEXP (link, 0));
12719 (insn && (this_basic_block == n_basic_blocks - 1
12720 || BLOCK_HEAD (this_basic_block + 1) != insn));
12721 insn = NEXT_INSN (insn))
12722 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12724 if (reg_referenced_p (reg, PATTERN (insn)))
12725 place = insn;
12726 break;
12728 else if (GET_CODE (insn) == CALL_INSN
12729 && find_reg_fusage (insn, USE, reg))
12731 place = insn;
12732 break;
12735 /* If we found a place to put the link, place it there unless there
12736 is already a link to the same insn as LINK at that point. */
12738 if (place)
12740 rtx link2;
12742 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12743 if (XEXP (link2, 0) == XEXP (link, 0))
12744 break;
12746 if (link2 == 0)
12748 XEXP (link, 1) = LOG_LINKS (place);
12749 LOG_LINKS (place) = link;
12751 /* Set added_links_insn to the earliest insn we added a
12752 link to. */
12753 if (added_links_insn == 0
12754 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12755 added_links_insn = place;
12761 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12763 static int
12764 insn_cuid (insn)
12765 rtx insn;
12767 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12768 && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE)
12769 insn = NEXT_INSN (insn);
12771 if (INSN_UID (insn) > max_uid_cuid)
12772 abort ();
12774 return INSN_CUID (insn);
12777 void
12778 dump_combine_stats (file)
12779 FILE *file;
12781 fnotice
12782 (file,
12783 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12784 combine_attempts, combine_merges, combine_extras, combine_successes);
12787 void
12788 dump_combine_total_stats (file)
12789 FILE *file;
12791 fnotice
12792 (file,
12793 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12794 total_attempts, total_merges, total_extras, total_successes);