1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
36 #include "splay-tree.h"
38 #include "langhooks.h"
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
45 struct S {int i; double d; };
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate descendents, however, since we propagate all
64 grandchildren up one level.
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
70 typedef struct alias_set_entry
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set
;
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all descendents. So, if we have:
78 struct T { struct S s; float f; }
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
89 static int rtx_equal_for_memref_p
PARAMS ((rtx
, rtx
));
90 static rtx find_symbolic_term
PARAMS ((rtx
));
91 rtx get_addr
PARAMS ((rtx
));
92 static int memrefs_conflict_p
PARAMS ((int, rtx
, int, rtx
,
94 static void record_set
PARAMS ((rtx
, rtx
, void *));
95 static rtx find_base_term
PARAMS ((rtx
));
96 static int base_alias_check
PARAMS ((rtx
, rtx
, enum machine_mode
,
98 static rtx find_base_value
PARAMS ((rtx
));
99 static int mems_in_disjoint_alias_sets_p
PARAMS ((rtx
, rtx
));
100 static int insert_subset_children
PARAMS ((splay_tree_node
, void*));
101 static tree find_base_decl
PARAMS ((tree
));
102 static alias_set_entry get_alias_set_entry
PARAMS ((HOST_WIDE_INT
));
103 static rtx fixed_scalar_and_varying_struct_p
PARAMS ((rtx
, rtx
, rtx
, rtx
,
104 int (*) (rtx
, int)));
105 static int aliases_everything_p
PARAMS ((rtx
));
106 static bool nonoverlapping_component_refs_p
PARAMS ((tree
, tree
));
107 static tree decl_for_component_ref
PARAMS ((tree
));
108 static rtx adjust_offset_for_component_ref
PARAMS ((tree
, rtx
));
109 static int nonoverlapping_memrefs_p
PARAMS ((rtx
, rtx
));
110 static int write_dependence_p
PARAMS ((rtx
, rtx
, int));
112 static int nonlocal_mentioned_p_1
PARAMS ((rtx
*, void *));
113 static int nonlocal_mentioned_p
PARAMS ((rtx
));
114 static int nonlocal_referenced_p_1
PARAMS ((rtx
*, void *));
115 static int nonlocal_referenced_p
PARAMS ((rtx
));
116 static int nonlocal_set_p_1
PARAMS ((rtx
*, void *));
117 static int nonlocal_set_p
PARAMS ((rtx
));
119 /* Set up all info needed to perform alias analysis on memory references. */
121 /* Returns the size in bytes of the mode of X. */
122 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
124 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
125 different alias sets. We ignore alias sets in functions making use
126 of variable arguments because the va_arg macros on some systems are
128 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
129 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
131 /* Cap the number of passes we make over the insns propagating alias
132 information through set chains. 10 is a completely arbitrary choice. */
133 #define MAX_ALIAS_LOOP_PASSES 10
135 /* reg_base_value[N] gives an address to which register N is related.
136 If all sets after the first add or subtract to the current value
137 or otherwise modify it so it does not point to a different top level
138 object, reg_base_value[N] is equal to the address part of the source
141 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
142 expressions represent certain special values: function arguments and
143 the stack, frame, and argument pointers.
145 The contents of an ADDRESS is not normally used, the mode of the
146 ADDRESS determines whether the ADDRESS is a function argument or some
147 other special value. Pointer equality, not rtx_equal_p, determines whether
148 two ADDRESS expressions refer to the same base address.
150 The only use of the contents of an ADDRESS is for determining if the
151 current function performs nonlocal memory memory references for the
152 purposes of marking the function as a constant function. */
154 static rtx
*reg_base_value
;
155 static rtx
*new_reg_base_value
;
156 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
158 #define REG_BASE_VALUE(X) \
159 (REGNO (X) < reg_base_value_size \
160 ? reg_base_value[REGNO (X)] : 0)
162 /* Vector of known invariant relationships between registers. Set in
163 loop unrolling. Indexed by register number, if nonzero the value
164 is an expression describing this register in terms of another.
166 The length of this array is REG_BASE_VALUE_SIZE.
168 Because this array contains only pseudo registers it has no effect
170 static rtx
*alias_invariant
;
172 /* Vector indexed by N giving the initial (unchanging) value known for
173 pseudo-register N. This array is initialized in
174 init_alias_analysis, and does not change until end_alias_analysis
176 rtx
*reg_known_value
;
178 /* Indicates number of valid entries in reg_known_value. */
179 static unsigned int reg_known_value_size
;
181 /* Vector recording for each reg_known_value whether it is due to a
182 REG_EQUIV note. Future passes (viz., reload) may replace the
183 pseudo with the equivalent expression and so we account for the
184 dependences that would be introduced if that happens.
186 The REG_EQUIV notes created in assign_parms may mention the arg
187 pointer, and there are explicit insns in the RTL that modify the
188 arg pointer. Thus we must ensure that such insns don't get
189 scheduled across each other because that would invalidate the
190 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
191 wrong, but solving the problem in the scheduler will likely give
192 better code, so we do it here. */
193 char *reg_known_equiv_p
;
195 /* True when scanning insns from the start of the rtl to the
196 NOTE_INSN_FUNCTION_BEG note. */
197 static int copying_arguments
;
199 /* The splay-tree used to store the various alias set entries. */
200 static splay_tree alias_sets
;
202 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
203 such an entry, or NULL otherwise. */
205 static alias_set_entry
206 get_alias_set_entry (alias_set
)
207 HOST_WIDE_INT alias_set
;
210 = splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
212 return sn
!= 0 ? ((alias_set_entry
) sn
->value
) : 0;
215 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
216 the two MEMs cannot alias each other. */
219 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
223 #ifdef ENABLE_CHECKING
224 /* Perform a basic sanity check. Namely, that there are no alias sets
225 if we're not using strict aliasing. This helps to catch bugs
226 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
227 where a MEM is allocated in some way other than by the use of
228 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
229 use alias sets to indicate that spilled registers cannot alias each
230 other, we might need to remove this check. */
231 if (! flag_strict_aliasing
232 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
236 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
239 /* Insert the NODE into the splay tree given by DATA. Used by
240 record_alias_subset via splay_tree_foreach. */
243 insert_subset_children (node
, data
)
244 splay_tree_node node
;
247 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
252 /* Return 1 if the two specified alias sets may conflict. */
255 alias_sets_conflict_p (set1
, set2
)
256 HOST_WIDE_INT set1
, set2
;
260 /* If have no alias set information for one of the operands, we have
261 to assume it can alias anything. */
262 if (set1
== 0 || set2
== 0
263 /* If the two alias sets are the same, they may alias. */
267 /* See if the first alias set is a subset of the second. */
268 ase
= get_alias_set_entry (set1
);
270 && (ase
->has_zero_child
271 || splay_tree_lookup (ase
->children
,
272 (splay_tree_key
) set2
)))
275 /* Now do the same, but with the alias sets reversed. */
276 ase
= get_alias_set_entry (set2
);
278 && (ase
->has_zero_child
279 || splay_tree_lookup (ase
->children
,
280 (splay_tree_key
) set1
)))
283 /* The two alias sets are distinct and neither one is the
284 child of the other. Therefore, they cannot alias. */
288 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
289 has any readonly fields. If any of the fields have types that
290 contain readonly fields, return true as well. */
293 readonly_fields_p (type
)
298 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
299 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
302 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
303 if (TREE_CODE (field
) == FIELD_DECL
304 && (TREE_READONLY (field
)
305 || readonly_fields_p (TREE_TYPE (field
))))
311 /* Return 1 if any MEM object of type T1 will always conflict (using the
312 dependency routines in this file) with any MEM object of type T2.
313 This is used when allocating temporary storage. If T1 and/or T2 are
314 NULL_TREE, it means we know nothing about the storage. */
317 objects_must_conflict_p (t1
, t2
)
320 /* If neither has a type specified, we don't know if they'll conflict
321 because we may be using them to store objects of various types, for
322 example the argument and local variables areas of inlined functions. */
323 if (t1
== 0 && t2
== 0)
326 /* If one or the other has readonly fields or is readonly,
327 then they may not conflict. */
328 if ((t1
!= 0 && readonly_fields_p (t1
))
329 || (t2
!= 0 && readonly_fields_p (t2
))
330 || (t1
!= 0 && TYPE_READONLY (t1
))
331 || (t2
!= 0 && TYPE_READONLY (t2
)))
334 /* If they are the same type, they must conflict. */
336 /* Likewise if both are volatile. */
337 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
340 /* If one is aggregate and the other is scalar then they may not
342 if ((t1
!= 0 && AGGREGATE_TYPE_P (t1
))
343 != (t2
!= 0 && AGGREGATE_TYPE_P (t2
)))
346 /* Otherwise they conflict only if the alias sets conflict. */
347 return alias_sets_conflict_p (t1
? get_alias_set (t1
) : 0,
348 t2
? get_alias_set (t2
) : 0);
351 /* T is an expression with pointer type. Find the DECL on which this
352 expression is based. (For example, in `a[i]' this would be `a'.)
353 If there is no such DECL, or a unique decl cannot be determined,
354 NULL_TREE is returned. */
362 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
365 /* If this is a declaration, return it. */
366 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
369 /* Handle general expressions. It would be nice to deal with
370 COMPONENT_REFs here. If we could tell that `a' and `b' were the
371 same, then `a->f' and `b->f' are also the same. */
372 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
375 return find_base_decl (TREE_OPERAND (t
, 0));
378 /* Return 0 if found in neither or both are the same. */
379 d0
= find_base_decl (TREE_OPERAND (t
, 0));
380 d1
= find_base_decl (TREE_OPERAND (t
, 1));
391 d0
= find_base_decl (TREE_OPERAND (t
, 0));
392 d1
= find_base_decl (TREE_OPERAND (t
, 1));
393 d2
= find_base_decl (TREE_OPERAND (t
, 2));
395 /* Set any nonzero values from the last, then from the first. */
396 if (d1
== 0) d1
= d2
;
397 if (d0
== 0) d0
= d1
;
398 if (d1
== 0) d1
= d0
;
399 if (d2
== 0) d2
= d1
;
401 /* At this point all are nonzero or all are zero. If all three are the
402 same, return it. Otherwise, return zero. */
403 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
410 /* Return 1 if all the nested component references handled by
411 get_inner_reference in T are such that we can address the object in T. */
417 /* If we're at the end, it is vacuously addressable. */
418 if (! handled_component_p (t
))
421 /* Bitfields are never addressable. */
422 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
425 /* Fields are addressable unless they are marked as nonaddressable or
426 the containing type has alias set 0. */
427 else if (TREE_CODE (t
) == COMPONENT_REF
428 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
429 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
430 && can_address_p (TREE_OPERAND (t
, 0)))
433 /* Likewise for arrays. */
434 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
435 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
436 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
437 && can_address_p (TREE_OPERAND (t
, 0)))
443 /* Return the alias set for T, which may be either a type or an
444 expression. Call language-specific routine for help, if needed. */
452 /* If we're not doing any alias analysis, just assume everything
453 aliases everything else. Also return 0 if this or its type is
455 if (! flag_strict_aliasing
|| t
== error_mark_node
457 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
460 /* We can be passed either an expression or a type. This and the
461 language-specific routine may make mutually-recursive calls to each other
462 to figure out what to do. At each juncture, we see if this is a tree
463 that the language may need to handle specially. First handle things that
468 tree placeholder_ptr
= 0;
470 /* Remove any nops, then give the language a chance to do
471 something with this tree before we look at it. */
473 set
= (*lang_hooks
.get_alias_set
) (t
);
477 /* First see if the actual object referenced is an INDIRECT_REF from a
478 restrict-qualified pointer or a "void *". Replace
479 PLACEHOLDER_EXPRs. */
480 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
481 || handled_component_p (inner
))
483 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
484 inner
= find_placeholder (inner
, &placeholder_ptr
);
486 inner
= TREE_OPERAND (inner
, 0);
491 /* Check for accesses through restrict-qualified pointers. */
492 if (TREE_CODE (inner
) == INDIRECT_REF
)
494 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
496 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
498 /* If we haven't computed the actual alias set, do it now. */
499 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
501 /* No two restricted pointers can point at the same thing.
502 However, a restricted pointer can point at the same thing
503 as an unrestricted pointer, if that unrestricted pointer
504 is based on the restricted pointer. So, we make the
505 alias set for the restricted pointer a subset of the
506 alias set for the type pointed to by the type of the
508 HOST_WIDE_INT pointed_to_alias_set
509 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
511 if (pointed_to_alias_set
== 0)
512 /* It's not legal to make a subset of alias set zero. */
516 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
517 record_alias_subset (pointed_to_alias_set
,
518 DECL_POINTER_ALIAS_SET (decl
));
522 /* We use the alias set indicated in the declaration. */
523 return DECL_POINTER_ALIAS_SET (decl
);
526 /* If we have an INDIRECT_REF via a void pointer, we don't
527 know anything about what that might alias. */
528 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
532 /* Otherwise, pick up the outermost object that we could have a pointer
533 to, processing conversion and PLACEHOLDER_EXPR as above. */
535 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
536 || (handled_component_p (t
) && ! can_address_p (t
)))
538 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
539 t
= find_placeholder (t
, &placeholder_ptr
);
541 t
= TREE_OPERAND (t
, 0);
546 /* If we've already determined the alias set for a decl, just return
547 it. This is necessary for C++ anonymous unions, whose component
548 variables don't look like union members (boo!). */
549 if (TREE_CODE (t
) == VAR_DECL
550 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
551 return MEM_ALIAS_SET (DECL_RTL (t
));
553 /* Now all we care about is the type. */
557 /* Variant qualifiers don't affect the alias set, so get the main
558 variant. If this is a type with a known alias set, return it. */
559 t
= TYPE_MAIN_VARIANT (t
);
560 if (TYPE_ALIAS_SET_KNOWN_P (t
))
561 return TYPE_ALIAS_SET (t
);
563 /* See if the language has special handling for this type. */
564 set
= (*lang_hooks
.get_alias_set
) (t
);
568 /* There are no objects of FUNCTION_TYPE, so there's no point in
569 using up an alias set for them. (There are, of course, pointers
570 and references to functions, but that's different.) */
571 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
574 /* Otherwise make a new alias set for this type. */
575 set
= new_alias_set ();
577 TYPE_ALIAS_SET (t
) = set
;
579 /* If this is an aggregate type, we must record any component aliasing
581 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
582 record_component_aliases (t
);
587 /* Return a brand-new alias set. */
592 static HOST_WIDE_INT last_alias_set
;
594 if (flag_strict_aliasing
)
595 return ++last_alias_set
;
600 /* Indicate that things in SUBSET can alias things in SUPERSET, but
601 not vice versa. For example, in C, a store to an `int' can alias a
602 structure containing an `int', but not vice versa. Here, the
603 structure would be the SUPERSET and `int' the SUBSET. This
604 function should be called only once per SUPERSET/SUBSET pair.
606 It is illegal for SUPERSET to be zero; everything is implicitly a
607 subset of alias set zero. */
610 record_alias_subset (superset
, subset
)
611 HOST_WIDE_INT superset
;
612 HOST_WIDE_INT subset
;
614 alias_set_entry superset_entry
;
615 alias_set_entry subset_entry
;
617 /* It is possible in complex type situations for both sets to be the same,
618 in which case we can ignore this operation. */
619 if (superset
== subset
)
625 superset_entry
= get_alias_set_entry (superset
);
626 if (superset_entry
== 0)
628 /* Create an entry for the SUPERSET, so that we have a place to
629 attach the SUBSET. */
631 = (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
632 superset_entry
->alias_set
= superset
;
633 superset_entry
->children
634 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
635 superset_entry
->has_zero_child
= 0;
636 splay_tree_insert (alias_sets
, (splay_tree_key
) superset
,
637 (splay_tree_value
) superset_entry
);
641 superset_entry
->has_zero_child
= 1;
644 subset_entry
= get_alias_set_entry (subset
);
645 /* If there is an entry for the subset, enter all of its children
646 (if they are not already present) as children of the SUPERSET. */
649 if (subset_entry
->has_zero_child
)
650 superset_entry
->has_zero_child
= 1;
652 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
653 superset_entry
->children
);
656 /* Enter the SUBSET itself as a child of the SUPERSET. */
657 splay_tree_insert (superset_entry
->children
,
658 (splay_tree_key
) subset
, 0);
662 /* Record that component types of TYPE, if any, are part of that type for
663 aliasing purposes. For record types, we only record component types
664 for fields that are marked addressable. For array types, we always
665 record the component types, so the front end should not call this
666 function if the individual component aren't addressable. */
669 record_component_aliases (type
)
672 HOST_WIDE_INT superset
= get_alias_set (type
);
678 switch (TREE_CODE (type
))
681 if (! TYPE_NONALIASED_COMPONENT (type
))
682 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
687 case QUAL_UNION_TYPE
:
688 /* Recursively record aliases for the base classes, if there are any */
689 if (TYPE_BINFO (type
) != NULL
&& TYPE_BINFO_BASETYPES (type
) != NULL
)
692 for (i
= 0; i
< TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type
)); i
++)
694 tree binfo
= TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type
), i
);
695 record_alias_subset (superset
,
696 get_alias_set (BINFO_TYPE (binfo
)));
699 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
700 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
701 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
705 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
713 /* Allocate an alias set for use in storing and reading from the varargs
717 get_varargs_alias_set ()
719 static HOST_WIDE_INT set
= -1;
722 set
= new_alias_set ();
727 /* Likewise, but used for the fixed portions of the frame, e.g., register
731 get_frame_alias_set ()
733 static HOST_WIDE_INT set
= -1;
736 set
= new_alias_set ();
741 /* Inside SRC, the source of a SET, find a base address. */
744 find_base_value (src
)
749 switch (GET_CODE (src
))
757 /* At the start of a function, argument registers have known base
758 values which may be lost later. Returning an ADDRESS
759 expression here allows optimization based on argument values
760 even when the argument registers are used for other purposes. */
761 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
762 return new_reg_base_value
[regno
];
764 /* If a pseudo has a known base value, return it. Do not do this
765 for non-fixed hard regs since it can result in a circular
766 dependency chain for registers which have values at function entry.
768 The test above is not sufficient because the scheduler may move
769 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
770 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
771 && regno
< reg_base_value_size
772 && reg_base_value
[regno
])
773 return reg_base_value
[regno
];
778 /* Check for an argument passed in memory. Only record in the
779 copying-arguments block; it is too hard to track changes
781 if (copying_arguments
782 && (XEXP (src
, 0) == arg_pointer_rtx
783 || (GET_CODE (XEXP (src
, 0)) == PLUS
784 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
785 return gen_rtx_ADDRESS (VOIDmode
, src
);
790 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
793 /* ... fall through ... */
798 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
800 /* If either operand is a REG that is a known pointer, then it
802 if (REG_P (src_0
) && REG_POINTER (src_0
))
803 return find_base_value (src_0
);
804 if (REG_P (src_1
) && REG_POINTER (src_1
))
805 return find_base_value (src_1
);
807 /* If either operand is a REG, then see if we already have
808 a known value for it. */
811 temp
= find_base_value (src_0
);
818 temp
= find_base_value (src_1
);
823 /* If either base is named object or a special address
824 (like an argument or stack reference), then use it for the
827 && (GET_CODE (src_0
) == SYMBOL_REF
828 || GET_CODE (src_0
) == LABEL_REF
829 || (GET_CODE (src_0
) == ADDRESS
830 && GET_MODE (src_0
) != VOIDmode
)))
834 && (GET_CODE (src_1
) == SYMBOL_REF
835 || GET_CODE (src_1
) == LABEL_REF
836 || (GET_CODE (src_1
) == ADDRESS
837 && GET_MODE (src_1
) != VOIDmode
)))
840 /* Guess which operand is the base address:
841 If either operand is a symbol, then it is the base. If
842 either operand is a CONST_INT, then the other is the base. */
843 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
844 return find_base_value (src_0
);
845 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
846 return find_base_value (src_1
);
852 /* The standard form is (lo_sum reg sym) so look only at the
854 return find_base_value (XEXP (src
, 1));
857 /* If the second operand is constant set the base
858 address to the first operand. */
859 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
860 return find_base_value (XEXP (src
, 0));
864 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
874 return find_base_value (XEXP (src
, 0));
877 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
879 rtx temp
= find_base_value (XEXP (src
, 0));
881 #ifdef POINTERS_EXTEND_UNSIGNED
882 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
883 temp
= convert_memory_address (Pmode
, temp
);
896 /* Called from init_alias_analysis indirectly through note_stores. */
898 /* While scanning insns to find base values, reg_seen[N] is nonzero if
899 register N has been set in this function. */
900 static char *reg_seen
;
902 /* Addresses which are known not to alias anything else are identified
903 by a unique integer. */
904 static int unique_id
;
907 record_set (dest
, set
, data
)
909 void *data ATTRIBUTE_UNUSED
;
914 if (GET_CODE (dest
) != REG
)
917 regno
= REGNO (dest
);
919 if (regno
>= reg_base_value_size
)
924 /* A CLOBBER wipes out any old value but does not prevent a previously
925 unset register from acquiring a base address (i.e. reg_seen is not
927 if (GET_CODE (set
) == CLOBBER
)
929 new_reg_base_value
[regno
] = 0;
938 new_reg_base_value
[regno
] = 0;
942 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
943 GEN_INT (unique_id
++));
947 /* This is not the first set. If the new value is not related to the
948 old value, forget the base value. Note that the following code is
950 extern int x, y; int *p = &x; p += (&y-&x);
951 ANSI C does not allow computing the difference of addresses
952 of distinct top level objects. */
953 if (new_reg_base_value
[regno
])
954 switch (GET_CODE (src
))
958 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
959 new_reg_base_value
[regno
] = 0;
962 /* If the value we add in the PLUS is also a valid base value,
963 this might be the actual base value, and the original value
966 rtx other
= NULL_RTX
;
968 if (XEXP (src
, 0) == dest
)
969 other
= XEXP (src
, 1);
970 else if (XEXP (src
, 1) == dest
)
971 other
= XEXP (src
, 0);
973 if (! other
|| find_base_value (other
))
974 new_reg_base_value
[regno
] = 0;
978 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
979 new_reg_base_value
[regno
] = 0;
982 new_reg_base_value
[regno
] = 0;
985 /* If this is the first set of a register, record the value. */
986 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
987 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
988 new_reg_base_value
[regno
] = find_base_value (src
);
993 /* Called from loop optimization when a new pseudo-register is
994 created. It indicates that REGNO is being set to VAL. f INVARIANT
995 is true then this value also describes an invariant relationship
996 which can be used to deduce that two registers with unknown values
1000 record_base_value (regno
, val
, invariant
)
1005 if (regno
>= reg_base_value_size
)
1008 if (invariant
&& alias_invariant
)
1009 alias_invariant
[regno
] = val
;
1011 if (GET_CODE (val
) == REG
)
1013 if (REGNO (val
) < reg_base_value_size
)
1014 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
1019 reg_base_value
[regno
] = find_base_value (val
);
1022 /* Clear alias info for a register. This is used if an RTL transformation
1023 changes the value of a register. This is used in flow by AUTO_INC_DEC
1024 optimizations. We don't need to clear reg_base_value, since flow only
1025 changes the offset. */
1028 clear_reg_alias_info (reg
)
1031 unsigned int regno
= REGNO (reg
);
1033 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
1034 reg_known_value
[regno
] = reg
;
1037 /* Returns a canonical version of X, from the point of view alias
1038 analysis. (For example, if X is a MEM whose address is a register,
1039 and the register has a known value (say a SYMBOL_REF), then a MEM
1040 whose address is the SYMBOL_REF is returned.) */
1046 /* Recursively look for equivalences. */
1047 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
1048 && REGNO (x
) < reg_known_value_size
)
1049 return reg_known_value
[REGNO (x
)] == x
1050 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1051 else if (GET_CODE (x
) == PLUS
)
1053 rtx x0
= canon_rtx (XEXP (x
, 0));
1054 rtx x1
= canon_rtx (XEXP (x
, 1));
1056 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1058 if (GET_CODE (x0
) == CONST_INT
)
1059 return plus_constant (x1
, INTVAL (x0
));
1060 else if (GET_CODE (x1
) == CONST_INT
)
1061 return plus_constant (x0
, INTVAL (x1
));
1062 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1066 /* This gives us much better alias analysis when called from
1067 the loop optimizer. Note we want to leave the original
1068 MEM alone, but need to return the canonicalized MEM with
1069 all the flags with their original values. */
1070 else if (GET_CODE (x
) == MEM
)
1071 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1076 /* Return 1 if X and Y are identical-looking rtx's.
1078 We use the data in reg_known_value above to see if two registers with
1079 different numbers are, in fact, equivalent. */
1082 rtx_equal_for_memref_p (x
, y
)
1090 if (x
== 0 && y
== 0)
1092 if (x
== 0 || y
== 0)
1101 code
= GET_CODE (x
);
1102 /* Rtx's of different codes cannot be equal. */
1103 if (code
!= GET_CODE (y
))
1106 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1107 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1109 if (GET_MODE (x
) != GET_MODE (y
))
1112 /* Some RTL can be compared without a recursive examination. */
1116 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1119 return REGNO (x
) == REGNO (y
);
1122 return XEXP (x
, 0) == XEXP (y
, 0);
1125 return XSTR (x
, 0) == XSTR (y
, 0);
1129 /* There's no need to compare the contents of CONST_DOUBLEs or
1130 CONST_INTs because pointer equality is a good enough
1131 comparison for these nodes. */
1135 return (XINT (x
, 1) == XINT (y
, 1)
1136 && rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0)));
1142 /* For commutative operations, the RTX match if the operand match in any
1143 order. Also handle the simple binary and unary cases without a loop. */
1144 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1145 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1146 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1147 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1148 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1149 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1150 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1151 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
1152 else if (GET_RTX_CLASS (code
) == '1')
1153 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
1155 /* Compare the elements. If any pair of corresponding elements
1156 fail to match, return 0 for the whole things.
1158 Limit cases to types which actually appear in addresses. */
1160 fmt
= GET_RTX_FORMAT (code
);
1161 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1166 if (XINT (x
, i
) != XINT (y
, i
))
1171 /* Two vectors must have the same length. */
1172 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1175 /* And the corresponding elements must match. */
1176 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1177 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
),
1178 XVECEXP (y
, i
, j
)) == 0)
1183 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
1187 /* This can happen for asm operands. */
1189 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1193 /* This can happen for an asm which clobbers memory. */
1197 /* It is believed that rtx's at this level will never
1198 contain anything but integers and other rtx's,
1199 except for within LABEL_REFs and SYMBOL_REFs. */
1207 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1208 X and return it, or return 0 if none found. */
1211 find_symbolic_term (x
)
1218 code
= GET_CODE (x
);
1219 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1221 if (GET_RTX_CLASS (code
) == 'o')
1224 fmt
= GET_RTX_FORMAT (code
);
1225 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1231 t
= find_symbolic_term (XEXP (x
, i
));
1235 else if (fmt
[i
] == 'E')
1246 struct elt_loc_list
*l
;
1248 #if defined (FIND_BASE_TERM)
1249 /* Try machine-dependent ways to find the base term. */
1250 x
= FIND_BASE_TERM (x
);
1253 switch (GET_CODE (x
))
1256 return REG_BASE_VALUE (x
);
1259 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1269 return find_base_term (XEXP (x
, 0));
1272 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1274 rtx temp
= find_base_term (XEXP (x
, 0));
1276 #ifdef POINTERS_EXTEND_UNSIGNED
1277 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
1278 temp
= convert_memory_address (Pmode
, temp
);
1285 val
= CSELIB_VAL_PTR (x
);
1286 for (l
= val
->locs
; l
; l
= l
->next
)
1287 if ((x
= find_base_term (l
->loc
)) != 0)
1293 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1300 rtx tmp1
= XEXP (x
, 0);
1301 rtx tmp2
= XEXP (x
, 1);
1303 /* This is a little bit tricky since we have to determine which of
1304 the two operands represents the real base address. Otherwise this
1305 routine may return the index register instead of the base register.
1307 That may cause us to believe no aliasing was possible, when in
1308 fact aliasing is possible.
1310 We use a few simple tests to guess the base register. Additional
1311 tests can certainly be added. For example, if one of the operands
1312 is a shift or multiply, then it must be the index register and the
1313 other operand is the base register. */
1315 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1316 return find_base_term (tmp2
);
1318 /* If either operand is known to be a pointer, then use it
1319 to determine the base term. */
1320 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1321 return find_base_term (tmp1
);
1323 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1324 return find_base_term (tmp2
);
1326 /* Neither operand was known to be a pointer. Go ahead and find the
1327 base term for both operands. */
1328 tmp1
= find_base_term (tmp1
);
1329 tmp2
= find_base_term (tmp2
);
1331 /* If either base term is named object or a special address
1332 (like an argument or stack reference), then use it for the
1335 && (GET_CODE (tmp1
) == SYMBOL_REF
1336 || GET_CODE (tmp1
) == LABEL_REF
1337 || (GET_CODE (tmp1
) == ADDRESS
1338 && GET_MODE (tmp1
) != VOIDmode
)))
1342 && (GET_CODE (tmp2
) == SYMBOL_REF
1343 || GET_CODE (tmp2
) == LABEL_REF
1344 || (GET_CODE (tmp2
) == ADDRESS
1345 && GET_MODE (tmp2
) != VOIDmode
)))
1348 /* We could not determine which of the two operands was the
1349 base register and which was the index. So we can determine
1350 nothing from the base alias check. */
1355 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1356 return find_base_term (XEXP (x
, 0));
1364 return REG_BASE_VALUE (frame_pointer_rtx
);
1371 /* Return 0 if the addresses X and Y are known to point to different
1372 objects, 1 if they might be pointers to the same object. */
1375 base_alias_check (x
, y
, x_mode
, y_mode
)
1377 enum machine_mode x_mode
, y_mode
;
1379 rtx x_base
= find_base_term (x
);
1380 rtx y_base
= find_base_term (y
);
1382 /* If the address itself has no known base see if a known equivalent
1383 value has one. If either address still has no known base, nothing
1384 is known about aliasing. */
1389 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1392 x_base
= find_base_term (x_c
);
1400 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1403 y_base
= find_base_term (y_c
);
1408 /* If the base addresses are equal nothing is known about aliasing. */
1409 if (rtx_equal_p (x_base
, y_base
))
1412 /* The base addresses of the read and write are different expressions.
1413 If they are both symbols and they are not accessed via AND, there is
1414 no conflict. We can bring knowledge of object alignment into play
1415 here. For example, on alpha, "char a, b;" can alias one another,
1416 though "char a; long b;" cannot. */
1417 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1419 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1421 if (GET_CODE (x
) == AND
1422 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1423 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1425 if (GET_CODE (y
) == AND
1426 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1427 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1429 /* Differing symbols never alias. */
1433 /* If one address is a stack reference there can be no alias:
1434 stack references using different base registers do not alias,
1435 a stack reference can not alias a parameter, and a stack reference
1436 can not alias a global. */
1437 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1438 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1441 if (! flag_argument_noalias
)
1444 if (flag_argument_noalias
> 1)
1447 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1448 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1451 /* Convert the address X into something we can use. This is done by returning
1452 it unchanged unless it is a value; in the latter case we call cselib to get
1453 a more useful rtx. */
1460 struct elt_loc_list
*l
;
1462 if (GET_CODE (x
) != VALUE
)
1464 v
= CSELIB_VAL_PTR (x
);
1465 for (l
= v
->locs
; l
; l
= l
->next
)
1466 if (CONSTANT_P (l
->loc
))
1468 for (l
= v
->locs
; l
; l
= l
->next
)
1469 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1472 return v
->locs
->loc
;
1476 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1477 where SIZE is the size in bytes of the memory reference. If ADDR
1478 is not modified by the memory reference then ADDR is returned. */
1481 addr_side_effect_eval (addr
, size
, n_refs
)
1488 switch (GET_CODE (addr
))
1491 offset
= (n_refs
+ 1) * size
;
1494 offset
= -(n_refs
+ 1) * size
;
1497 offset
= n_refs
* size
;
1500 offset
= -n_refs
* size
;
1508 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
1510 addr
= XEXP (addr
, 0);
1515 /* Return nonzero if X and Y (memory addresses) could reference the
1516 same location in memory. C is an offset accumulator. When
1517 C is nonzero, we are testing aliases between X and Y + C.
1518 XSIZE is the size in bytes of the X reference,
1519 similarly YSIZE is the size in bytes for Y.
1521 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1522 referenced (the reference was BLKmode), so make the most pessimistic
1525 If XSIZE or YSIZE is negative, we may access memory outside the object
1526 being referenced as a side effect. This can happen when using AND to
1527 align memory references, as is done on the Alpha.
1529 Nice to notice that varying addresses cannot conflict with fp if no
1530 local variables had their addresses taken, but that's too hard now. */
1533 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
1538 if (GET_CODE (x
) == VALUE
)
1540 if (GET_CODE (y
) == VALUE
)
1542 if (GET_CODE (x
) == HIGH
)
1544 else if (GET_CODE (x
) == LO_SUM
)
1547 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
1548 if (GET_CODE (y
) == HIGH
)
1550 else if (GET_CODE (y
) == LO_SUM
)
1553 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
1555 if (rtx_equal_for_memref_p (x
, y
))
1557 if (xsize
<= 0 || ysize
<= 0)
1559 if (c
>= 0 && xsize
> c
)
1561 if (c
< 0 && ysize
+c
> 0)
1566 /* This code used to check for conflicts involving stack references and
1567 globals but the base address alias code now handles these cases. */
1569 if (GET_CODE (x
) == PLUS
)
1571 /* The fact that X is canonicalized means that this
1572 PLUS rtx is canonicalized. */
1573 rtx x0
= XEXP (x
, 0);
1574 rtx x1
= XEXP (x
, 1);
1576 if (GET_CODE (y
) == PLUS
)
1578 /* The fact that Y is canonicalized means that this
1579 PLUS rtx is canonicalized. */
1580 rtx y0
= XEXP (y
, 0);
1581 rtx y1
= XEXP (y
, 1);
1583 if (rtx_equal_for_memref_p (x1
, y1
))
1584 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1585 if (rtx_equal_for_memref_p (x0
, y0
))
1586 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1587 if (GET_CODE (x1
) == CONST_INT
)
1589 if (GET_CODE (y1
) == CONST_INT
)
1590 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1591 c
- INTVAL (x1
) + INTVAL (y1
));
1593 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1596 else if (GET_CODE (y1
) == CONST_INT
)
1597 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1601 else if (GET_CODE (x1
) == CONST_INT
)
1602 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1604 else if (GET_CODE (y
) == PLUS
)
1606 /* The fact that Y is canonicalized means that this
1607 PLUS rtx is canonicalized. */
1608 rtx y0
= XEXP (y
, 0);
1609 rtx y1
= XEXP (y
, 1);
1611 if (GET_CODE (y1
) == CONST_INT
)
1612 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1617 if (GET_CODE (x
) == GET_CODE (y
))
1618 switch (GET_CODE (x
))
1622 /* Handle cases where we expect the second operands to be the
1623 same, and check only whether the first operand would conflict
1626 rtx x1
= canon_rtx (XEXP (x
, 1));
1627 rtx y1
= canon_rtx (XEXP (y
, 1));
1628 if (! rtx_equal_for_memref_p (x1
, y1
))
1630 x0
= canon_rtx (XEXP (x
, 0));
1631 y0
= canon_rtx (XEXP (y
, 0));
1632 if (rtx_equal_for_memref_p (x0
, y0
))
1633 return (xsize
== 0 || ysize
== 0
1634 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1636 /* Can't properly adjust our sizes. */
1637 if (GET_CODE (x1
) != CONST_INT
)
1639 xsize
/= INTVAL (x1
);
1640 ysize
/= INTVAL (x1
);
1642 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1646 /* Are these registers known not to be equal? */
1647 if (alias_invariant
)
1649 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1650 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1652 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1653 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1655 if (i_x
== 0 && i_y
== 0)
1658 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1659 ysize
, i_y
? i_y
: y
, c
))
1668 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1669 as an access with indeterminate size. Assume that references
1670 besides AND are aligned, so if the size of the other reference is
1671 at least as large as the alignment, assume no other overlap. */
1672 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1674 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1676 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1678 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1680 /* ??? If we are indexing far enough into the array/structure, we
1681 may yet be able to determine that we can not overlap. But we
1682 also need to that we are far enough from the end not to overlap
1683 a following reference, so we do nothing with that for now. */
1684 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1686 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1689 if (GET_CODE (x
) == ADDRESSOF
)
1691 if (y
== frame_pointer_rtx
1692 || GET_CODE (y
) == ADDRESSOF
)
1693 return xsize
<= 0 || ysize
<= 0;
1695 if (GET_CODE (y
) == ADDRESSOF
)
1697 if (x
== frame_pointer_rtx
)
1698 return xsize
<= 0 || ysize
<= 0;
1703 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1705 c
+= (INTVAL (y
) - INTVAL (x
));
1706 return (xsize
<= 0 || ysize
<= 0
1707 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1710 if (GET_CODE (x
) == CONST
)
1712 if (GET_CODE (y
) == CONST
)
1713 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1714 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1716 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1719 if (GET_CODE (y
) == CONST
)
1720 return memrefs_conflict_p (xsize
, x
, ysize
,
1721 canon_rtx (XEXP (y
, 0)), c
);
1724 return (xsize
<= 0 || ysize
<= 0
1725 || (rtx_equal_for_memref_p (x
, y
)
1726 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1733 /* Functions to compute memory dependencies.
1735 Since we process the insns in execution order, we can build tables
1736 to keep track of what registers are fixed (and not aliased), what registers
1737 are varying in known ways, and what registers are varying in unknown
1740 If both memory references are volatile, then there must always be a
1741 dependence between the two references, since their order can not be
1742 changed. A volatile and non-volatile reference can be interchanged
1745 A MEM_IN_STRUCT reference at a non-AND varying address can never
1746 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1747 also must allow AND addresses, because they may generate accesses
1748 outside the object being referenced. This is used to generate
1749 aligned addresses from unaligned addresses, for instance, the alpha
1750 storeqi_unaligned pattern. */
1752 /* Read dependence: X is read after read in MEM takes place. There can
1753 only be a dependence here if both reads are volatile. */
1756 read_dependence (mem
, x
)
1760 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1763 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1764 MEM2 is a reference to a structure at a varying address, or returns
1765 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1766 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1767 to decide whether or not an address may vary; it should return
1768 nonzero whenever variation is possible.
1769 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1772 fixed_scalar_and_varying_struct_p (mem1
, mem2
, mem1_addr
, mem2_addr
, varies_p
)
1774 rtx mem1_addr
, mem2_addr
;
1775 int (*varies_p
) PARAMS ((rtx
, int));
1777 if (! flag_strict_aliasing
)
1780 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1781 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1782 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1786 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1787 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1788 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1795 /* Returns nonzero if something about the mode or address format MEM1
1796 indicates that it might well alias *anything*. */
1799 aliases_everything_p (mem
)
1802 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1803 /* If the address is an AND, its very hard to know at what it is
1804 actually pointing. */
1810 /* Return true if we can determine that the fields referenced cannot
1811 overlap for any pair of objects. */
1814 nonoverlapping_component_refs_p (x
, y
)
1817 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1821 /* The comparison has to be done at a common type, since we don't
1822 know how the inheritance hierarchy works. */
1826 fieldx
= TREE_OPERAND (x
, 1);
1827 typex
= DECL_FIELD_CONTEXT (fieldx
);
1832 fieldy
= TREE_OPERAND (y
, 1);
1833 typey
= DECL_FIELD_CONTEXT (fieldy
);
1838 y
= TREE_OPERAND (y
, 0);
1840 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1842 x
= TREE_OPERAND (x
, 0);
1844 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1846 /* Never found a common type. */
1850 /* If we're left with accessing different fields of a structure,
1852 if (TREE_CODE (typex
) == RECORD_TYPE
1853 && fieldx
!= fieldy
)
1856 /* The comparison on the current field failed. If we're accessing
1857 a very nested structure, look at the next outer level. */
1858 x
= TREE_OPERAND (x
, 0);
1859 y
= TREE_OPERAND (y
, 0);
1862 && TREE_CODE (x
) == COMPONENT_REF
1863 && TREE_CODE (y
) == COMPONENT_REF
);
1868 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1871 decl_for_component_ref (x
)
1876 x
= TREE_OPERAND (x
, 0);
1878 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1880 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1883 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1884 offset of the field reference. */
1887 adjust_offset_for_component_ref (x
, offset
)
1891 HOST_WIDE_INT ioffset
;
1896 ioffset
= INTVAL (offset
);
1899 tree field
= TREE_OPERAND (x
, 1);
1901 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1903 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1904 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1907 x
= TREE_OPERAND (x
, 0);
1909 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1911 return GEN_INT (ioffset
);
1914 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1915 X and Y and they do not overlap. */
1918 nonoverlapping_memrefs_p (x
, y
)
1921 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1924 rtx moffsetx
, moffsety
;
1925 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1927 /* Unless both have exprs, we can't tell anything. */
1928 if (exprx
== 0 || expry
== 0)
1931 /* If both are field references, we may be able to determine something. */
1932 if (TREE_CODE (exprx
) == COMPONENT_REF
1933 && TREE_CODE (expry
) == COMPONENT_REF
1934 && nonoverlapping_component_refs_p (exprx
, expry
))
1937 /* If the field reference test failed, look at the DECLs involved. */
1938 moffsetx
= MEM_OFFSET (x
);
1939 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1941 tree t
= decl_for_component_ref (exprx
);
1944 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1947 moffsety
= MEM_OFFSET (y
);
1948 if (TREE_CODE (expry
) == COMPONENT_REF
)
1950 tree t
= decl_for_component_ref (expry
);
1953 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
1957 if (! DECL_P (exprx
) || ! DECL_P (expry
))
1960 rtlx
= DECL_RTL (exprx
);
1961 rtly
= DECL_RTL (expry
);
1963 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1964 can't overlap unless they are the same because we never reuse that part
1965 of the stack frame used for locals for spilled pseudos. */
1966 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
1967 && ! rtx_equal_p (rtlx
, rtly
))
1970 /* Get the base and offsets of both decls. If either is a register, we
1971 know both are and are the same, so use that as the base. The only
1972 we can avoid overlap is if we can deduce that they are nonoverlapping
1973 pieces of that decl, which is very rare. */
1974 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
1975 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
1976 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
1978 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
1979 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
1980 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
1982 /* If the bases are different, we know they do not overlap if both
1983 are constants or if one is a constant and the other a pointer into the
1984 stack frame. Otherwise a different base means we can't tell if they
1986 if (! rtx_equal_p (basex
, basey
))
1987 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
1988 || (CONSTANT_P (basex
) && REG_P (basey
)
1989 && REGNO_PTR_FRAME_P (REGNO (basey
)))
1990 || (CONSTANT_P (basey
) && REG_P (basex
)
1991 && REGNO_PTR_FRAME_P (REGNO (basex
))));
1993 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
1994 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
1996 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
1997 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2000 /* If we have an offset for either memref, it can update the values computed
2003 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2005 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2007 /* If a memref has both a size and an offset, we can use the smaller size.
2008 We can't do this if the offset isn't known because we must view this
2009 memref as being anywhere inside the DECL's MEM. */
2010 if (MEM_SIZE (x
) && moffsetx
)
2011 sizex
= INTVAL (MEM_SIZE (x
));
2012 if (MEM_SIZE (y
) && moffsety
)
2013 sizey
= INTVAL (MEM_SIZE (y
));
2015 /* Put the values of the memref with the lower offset in X's values. */
2016 if (offsetx
> offsety
)
2018 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2019 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2022 /* If we don't know the size of the lower-offset value, we can't tell
2023 if they conflict. Otherwise, we do the test. */
2024 return sizex
>= 0 && offsety
> offsetx
+ sizex
;
2027 /* True dependence: X is read after store in MEM takes place. */
2030 true_dependence (mem
, mem_mode
, x
, varies
)
2032 enum machine_mode mem_mode
;
2034 int (*varies
) PARAMS ((rtx
, int));
2036 rtx x_addr
, mem_addr
;
2039 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2042 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2043 This is used in epilogue deallocation functions. */
2044 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2046 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2049 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2052 /* Unchanging memory can't conflict with non-unchanging memory.
2053 A non-unchanging read can conflict with a non-unchanging write.
2054 An unchanging read can conflict with an unchanging write since
2055 there may be a single store to this address to initialize it.
2056 Note that an unchanging store can conflict with a non-unchanging read
2057 since we have to make conservative assumptions when we have a
2058 record with readonly fields and we are copying the whole thing.
2059 Just fall through to the code below to resolve potential conflicts.
2060 This won't handle all cases optimally, but the possible performance
2061 loss should be negligible. */
2062 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2065 if (nonoverlapping_memrefs_p (mem
, x
))
2068 if (mem_mode
== VOIDmode
)
2069 mem_mode
= GET_MODE (mem
);
2071 x_addr
= get_addr (XEXP (x
, 0));
2072 mem_addr
= get_addr (XEXP (mem
, 0));
2074 base
= find_base_term (x_addr
);
2075 if (base
&& (GET_CODE (base
) == LABEL_REF
2076 || (GET_CODE (base
) == SYMBOL_REF
2077 && CONSTANT_POOL_ADDRESS_P (base
))))
2080 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2083 x_addr
= canon_rtx (x_addr
);
2084 mem_addr
= canon_rtx (mem_addr
);
2086 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2087 SIZE_FOR_MODE (x
), x_addr
, 0))
2090 if (aliases_everything_p (x
))
2093 /* We cannot use aliases_everything_p to test MEM, since we must look
2094 at MEM_MODE, rather than GET_MODE (MEM). */
2095 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2098 /* In true_dependence we also allow BLKmode to alias anything. Why
2099 don't we do this in anti_dependence and output_dependence? */
2100 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2103 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2107 /* Canonical true dependence: X is read after store in MEM takes place.
2108 Variant of true_dependence which assumes MEM has already been
2109 canonicalized (hence we no longer do that here).
2110 The mem_addr argument has been added, since true_dependence computed
2111 this value prior to canonicalizing. */
2114 canon_true_dependence (mem
, mem_mode
, mem_addr
, x
, varies
)
2115 rtx mem
, mem_addr
, x
;
2116 enum machine_mode mem_mode
;
2117 int (*varies
) PARAMS ((rtx
, int));
2121 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2124 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2125 This is used in epilogue deallocation functions. */
2126 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2128 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2131 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2134 /* If X is an unchanging read, then it can't possibly conflict with any
2135 non-unchanging store. It may conflict with an unchanging write though,
2136 because there may be a single store to this address to initialize it.
2137 Just fall through to the code below to resolve the case where we have
2138 both an unchanging read and an unchanging write. This won't handle all
2139 cases optimally, but the possible performance loss should be
2141 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2144 if (nonoverlapping_memrefs_p (x
, mem
))
2147 x_addr
= get_addr (XEXP (x
, 0));
2149 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2152 x_addr
= canon_rtx (x_addr
);
2153 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2154 SIZE_FOR_MODE (x
), x_addr
, 0))
2157 if (aliases_everything_p (x
))
2160 /* We cannot use aliases_everything_p to test MEM, since we must look
2161 at MEM_MODE, rather than GET_MODE (MEM). */
2162 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2165 /* In true_dependence we also allow BLKmode to alias anything. Why
2166 don't we do this in anti_dependence and output_dependence? */
2167 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2170 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2174 /* Returns non-zero if a write to X might alias a previous read from
2175 (or, if WRITEP is non-zero, a write to) MEM. */
2178 write_dependence_p (mem
, x
, writep
)
2183 rtx x_addr
, mem_addr
;
2187 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2190 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2191 This is used in epilogue deallocation functions. */
2192 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2194 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2197 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2200 /* Unchanging memory can't conflict with non-unchanging memory. */
2201 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2204 /* If MEM is an unchanging read, then it can't possibly conflict with
2205 the store to X, because there is at most one store to MEM, and it must
2206 have occurred somewhere before MEM. */
2207 if (! writep
&& RTX_UNCHANGING_P (mem
))
2210 if (nonoverlapping_memrefs_p (x
, mem
))
2213 x_addr
= get_addr (XEXP (x
, 0));
2214 mem_addr
= get_addr (XEXP (mem
, 0));
2218 base
= find_base_term (mem_addr
);
2219 if (base
&& (GET_CODE (base
) == LABEL_REF
2220 || (GET_CODE (base
) == SYMBOL_REF
2221 && CONSTANT_POOL_ADDRESS_P (base
))))
2225 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2229 x_addr
= canon_rtx (x_addr
);
2230 mem_addr
= canon_rtx (mem_addr
);
2232 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2233 SIZE_FOR_MODE (x
), x_addr
, 0))
2237 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2240 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2241 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2244 /* Anti dependence: X is written after read in MEM takes place. */
2247 anti_dependence (mem
, x
)
2251 return write_dependence_p (mem
, x
, /*writep=*/0);
2254 /* Output dependence: X is written after store in MEM takes place. */
2257 output_dependence (mem
, x
)
2261 return write_dependence_p (mem
, x
, /*writep=*/1);
2264 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2265 something which is not local to the function and is not constant. */
2268 nonlocal_mentioned_p_1 (loc
, data
)
2270 void *data ATTRIBUTE_UNUSED
;
2279 switch (GET_CODE (x
))
2282 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2284 /* Global registers are not local. */
2285 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2286 && global_regs
[subreg_regno (x
)])
2294 /* Global registers are not local. */
2295 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2310 /* Constants in the function's constants pool are constant. */
2311 if (CONSTANT_POOL_ADDRESS_P (x
))
2316 /* Non-constant calls and recursion are not local. */
2320 /* Be overly conservative and consider any volatile memory
2321 reference as not local. */
2322 if (MEM_VOLATILE_P (x
))
2324 base
= find_base_term (XEXP (x
, 0));
2327 /* A Pmode ADDRESS could be a reference via the structure value
2328 address or static chain. Such memory references are nonlocal.
2330 Thus, we have to examine the contents of the ADDRESS to find
2331 out if this is a local reference or not. */
2332 if (GET_CODE (base
) == ADDRESS
2333 && GET_MODE (base
) == Pmode
2334 && (XEXP (base
, 0) == stack_pointer_rtx
2335 || XEXP (base
, 0) == arg_pointer_rtx
2336 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2337 || XEXP (base
, 0) == hard_frame_pointer_rtx
2339 || XEXP (base
, 0) == frame_pointer_rtx
))
2341 /* Constants in the function's constant pool are constant. */
2342 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2347 case UNSPEC_VOLATILE
:
2352 if (MEM_VOLATILE_P (x
))
2364 /* Returns non-zero if X might mention something which is not
2365 local to the function and is not constant. */
2368 nonlocal_mentioned_p (x
)
2374 if (GET_CODE (x
) == CALL_INSN
)
2376 if (! CONST_OR_PURE_CALL_P (x
))
2378 x
= CALL_INSN_FUNCTION_USAGE (x
);
2386 return for_each_rtx (&x
, nonlocal_mentioned_p_1
, NULL
);
2389 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2390 something which is not local to the function and is not constant. */
2393 nonlocal_referenced_p_1 (loc
, data
)
2395 void *data ATTRIBUTE_UNUSED
;
2402 switch (GET_CODE (x
))
2408 return nonlocal_mentioned_p (x
);
2411 /* Non-constant calls and recursion are not local. */
2415 if (nonlocal_mentioned_p (SET_SRC (x
)))
2418 if (GET_CODE (SET_DEST (x
)) == MEM
)
2419 return nonlocal_mentioned_p (XEXP (SET_DEST (x
), 0));
2421 /* If the destination is anything other than a CC0, PC,
2422 MEM, REG, or a SUBREG of a REG that occupies all of
2423 the REG, then X references nonlocal memory if it is
2424 mentioned in the destination. */
2425 if (GET_CODE (SET_DEST (x
)) != CC0
2426 && GET_CODE (SET_DEST (x
)) != PC
2427 && GET_CODE (SET_DEST (x
)) != REG
2428 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
2429 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
2430 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
2431 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
2432 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
2433 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
2434 return nonlocal_mentioned_p (SET_DEST (x
));
2438 if (GET_CODE (XEXP (x
, 0)) == MEM
)
2439 return nonlocal_mentioned_p (XEXP (XEXP (x
, 0), 0));
2443 return nonlocal_mentioned_p (XEXP (x
, 0));
2446 case UNSPEC_VOLATILE
:
2450 if (MEM_VOLATILE_P (x
))
2462 /* Returns non-zero if X might reference something which is not
2463 local to the function and is not constant. */
2466 nonlocal_referenced_p (x
)
2472 if (GET_CODE (x
) == CALL_INSN
)
2474 if (! CONST_OR_PURE_CALL_P (x
))
2476 x
= CALL_INSN_FUNCTION_USAGE (x
);
2484 return for_each_rtx (&x
, nonlocal_referenced_p_1
, NULL
);
2487 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2488 something which is not local to the function and is not constant. */
2491 nonlocal_set_p_1 (loc
, data
)
2493 void *data ATTRIBUTE_UNUSED
;
2500 switch (GET_CODE (x
))
2503 /* Non-constant calls and recursion are not local. */
2512 return nonlocal_mentioned_p (XEXP (x
, 0));
2515 if (nonlocal_mentioned_p (SET_DEST (x
)))
2517 return nonlocal_set_p (SET_SRC (x
));
2520 return nonlocal_mentioned_p (XEXP (x
, 0));
2526 case UNSPEC_VOLATILE
:
2530 if (MEM_VOLATILE_P (x
))
2542 /* Returns non-zero if X might set something which is not
2543 local to the function and is not constant. */
2552 if (GET_CODE (x
) == CALL_INSN
)
2554 if (! CONST_OR_PURE_CALL_P (x
))
2556 x
= CALL_INSN_FUNCTION_USAGE (x
);
2564 return for_each_rtx (&x
, nonlocal_set_p_1
, NULL
);
2567 /* Mark the function if it is constant. */
2570 mark_constant_function ()
2573 int nonlocal_memory_referenced
;
2575 if (TREE_PUBLIC (current_function_decl
)
2576 || TREE_READONLY (current_function_decl
)
2577 || DECL_IS_PURE (current_function_decl
)
2578 || TREE_THIS_VOLATILE (current_function_decl
)
2579 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
2580 || current_function_has_nonlocal_goto
)
2583 /* A loop might not return which counts as a side effect. */
2584 if (mark_dfs_back_edges ())
2587 nonlocal_memory_referenced
= 0;
2589 init_alias_analysis ();
2591 /* Determine if this is a constant or pure function. */
2593 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2595 if (! INSN_P (insn
))
2598 if (nonlocal_set_p (insn
) || global_reg_mentioned_p (insn
)
2599 || volatile_refs_p (PATTERN (insn
)))
2602 if (! nonlocal_memory_referenced
)
2603 nonlocal_memory_referenced
= nonlocal_referenced_p (insn
);
2606 end_alias_analysis ();
2608 /* Mark the function. */
2612 else if (nonlocal_memory_referenced
)
2613 DECL_IS_PURE (current_function_decl
) = 1;
2615 TREE_READONLY (current_function_decl
) = 1;
2619 static HARD_REG_SET argument_registers
;
2626 #ifndef OUTGOING_REGNO
2627 #define OUTGOING_REGNO(N) N
2629 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2630 /* Check whether this register can hold an incoming pointer
2631 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2632 numbers, so translate if necessary due to register windows. */
2633 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2634 && HARD_REGNO_MODE_OK (i
, Pmode
))
2635 SET_HARD_REG_BIT (argument_registers
, i
);
2637 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
2640 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2644 init_alias_analysis ()
2646 int maxreg
= max_reg_num ();
2652 reg_known_value_size
= maxreg
;
2655 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2656 - FIRST_PSEUDO_REGISTER
;
2658 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2659 - FIRST_PSEUDO_REGISTER
;
2661 /* Overallocate reg_base_value to allow some growth during loop
2662 optimization. Loop unrolling can create a large number of
2664 reg_base_value_size
= maxreg
* 2;
2665 reg_base_value
= (rtx
*) xcalloc (reg_base_value_size
, sizeof (rtx
));
2666 ggc_add_rtx_root (reg_base_value
, reg_base_value_size
);
2668 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
2669 reg_seen
= (char *) xmalloc (reg_base_value_size
);
2670 if (! reload_completed
&& flag_unroll_loops
)
2672 /* ??? Why are we realloc'ing if we're just going to zero it? */
2673 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
2674 reg_base_value_size
* sizeof (rtx
));
2675 memset ((char *)alias_invariant
, 0, reg_base_value_size
* sizeof (rtx
));
2678 /* The basic idea is that each pass through this loop will use the
2679 "constant" information from the previous pass to propagate alias
2680 information through another level of assignments.
2682 This could get expensive if the assignment chains are long. Maybe
2683 we should throttle the number of iterations, possibly based on
2684 the optimization level or flag_expensive_optimizations.
2686 We could propagate more information in the first pass by making use
2687 of REG_N_SETS to determine immediately that the alias information
2688 for a pseudo is "constant".
2690 A program with an uninitialized variable can cause an infinite loop
2691 here. Instead of doing a full dataflow analysis to detect such problems
2692 we just cap the number of iterations for the loop.
2694 The state of the arrays for the set chain in question does not matter
2695 since the program has undefined behavior. */
2700 /* Assume nothing will change this iteration of the loop. */
2703 /* We want to assign the same IDs each iteration of this loop, so
2704 start counting from zero each iteration of the loop. */
2707 /* We're at the start of the function each iteration through the
2708 loop, so we're copying arguments. */
2709 copying_arguments
= 1;
2711 /* Wipe the potential alias information clean for this pass. */
2712 memset ((char *) new_reg_base_value
, 0, reg_base_value_size
* sizeof (rtx
));
2714 /* Wipe the reg_seen array clean. */
2715 memset ((char *) reg_seen
, 0, reg_base_value_size
);
2717 /* Mark all hard registers which may contain an address.
2718 The stack, frame and argument pointers may contain an address.
2719 An argument register which can hold a Pmode value may contain
2720 an address even if it is not in BASE_REGS.
2722 The address expression is VOIDmode for an argument and
2723 Pmode for other registers. */
2725 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2726 if (TEST_HARD_REG_BIT (argument_registers
, i
))
2727 new_reg_base_value
[i
] = gen_rtx_ADDRESS (VOIDmode
,
2728 gen_rtx_REG (Pmode
, i
));
2730 new_reg_base_value
[STACK_POINTER_REGNUM
]
2731 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2732 new_reg_base_value
[ARG_POINTER_REGNUM
]
2733 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2734 new_reg_base_value
[FRAME_POINTER_REGNUM
]
2735 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2736 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2737 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2738 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2741 /* Walk the insns adding values to the new_reg_base_value array. */
2742 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2748 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2749 /* The prologue/epilogue insns are not threaded onto the
2750 insn chain until after reload has completed. Thus,
2751 there is no sense wasting time checking if INSN is in
2752 the prologue/epilogue until after reload has completed. */
2753 if (reload_completed
2754 && prologue_epilogue_contains (insn
))
2758 /* If this insn has a noalias note, process it, Otherwise,
2759 scan for sets. A simple set will have no side effects
2760 which could change the base value of any other register. */
2762 if (GET_CODE (PATTERN (insn
)) == SET
2763 && REG_NOTES (insn
) != 0
2764 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2765 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2767 note_stores (PATTERN (insn
), record_set
, NULL
);
2769 set
= single_set (insn
);
2772 && GET_CODE (SET_DEST (set
)) == REG
2773 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2775 unsigned int regno
= REGNO (SET_DEST (set
));
2776 rtx src
= SET_SRC (set
);
2778 if (REG_NOTES (insn
) != 0
2779 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2780 && REG_N_SETS (regno
) == 1)
2781 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2782 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2783 && ! rtx_varies_p (XEXP (note
, 0), 1)
2784 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2786 reg_known_value
[regno
] = XEXP (note
, 0);
2787 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2789 else if (REG_N_SETS (regno
) == 1
2790 && GET_CODE (src
) == PLUS
2791 && GET_CODE (XEXP (src
, 0)) == REG
2792 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2793 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2794 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2796 rtx op0
= XEXP (src
, 0);
2797 op0
= reg_known_value
[REGNO (op0
)];
2798 reg_known_value
[regno
]
2799 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2800 reg_known_equiv_p
[regno
] = 0;
2802 else if (REG_N_SETS (regno
) == 1
2803 && ! rtx_varies_p (src
, 1))
2805 reg_known_value
[regno
] = src
;
2806 reg_known_equiv_p
[regno
] = 0;
2810 else if (GET_CODE (insn
) == NOTE
2811 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2812 copying_arguments
= 0;
2815 /* Now propagate values from new_reg_base_value to reg_base_value. */
2816 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2818 if (new_reg_base_value
[ui
]
2819 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
2820 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
2822 reg_base_value
[ui
] = new_reg_base_value
[ui
];
2827 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2829 /* Fill in the remaining entries. */
2830 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
2831 if (reg_known_value
[i
] == 0)
2832 reg_known_value
[i
] = regno_reg_rtx
[i
];
2834 /* Simplify the reg_base_value array so that no register refers to
2835 another register, except to special registers indirectly through
2836 ADDRESS expressions.
2838 In theory this loop can take as long as O(registers^2), but unless
2839 there are very long dependency chains it will run in close to linear
2842 This loop may not be needed any longer now that the main loop does
2843 a better job at propagating alias information. */
2849 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2851 rtx base
= reg_base_value
[ui
];
2852 if (base
&& GET_CODE (base
) == REG
)
2854 unsigned int base_regno
= REGNO (base
);
2855 if (base_regno
== ui
) /* register set from itself */
2856 reg_base_value
[ui
] = 0;
2858 reg_base_value
[ui
] = reg_base_value
[base_regno
];
2863 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2866 free (new_reg_base_value
);
2867 new_reg_base_value
= 0;
2873 end_alias_analysis ()
2875 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2876 reg_known_value
= 0;
2877 reg_known_value_size
= 0;
2878 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2879 reg_known_equiv_p
= 0;
2882 ggc_del_root (reg_base_value
);
2883 free (reg_base_value
);
2886 reg_base_value_size
= 0;
2887 if (alias_invariant
)
2889 free (alias_invariant
);
2890 alias_invariant
= 0;