1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 #include "coretypes.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
40 #include "splay-tree.h"
42 #include "langhooks.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
50 /* The aliasing API provided here solves related but different problems:
52 Say there exists (in c)
66 Consider the four questions:
68 Can a store to x1 interfere with px2->y1?
69 Can a store to x1 interfere with px2->z2?
71 Can a store to x1 change the value pointed to by with py?
72 Can a store to x1 change the value pointed to by with pz?
74 The answer to these questions can be yes, yes, yes, and maybe.
76 The first two questions can be answered with a simple examination
77 of the type system. If structure X contains a field of type Y then
78 a store thru a pointer to an X can overwrite any field that is
79 contained (recursively) in an X (unless we know that px1 != px2).
81 The last two of the questions can be solved in the same way as the
82 first two questions but this is too conservative. The observation
83 is that in some cases analysis we can know if which (if any) fields
84 are addressed and if those addresses are used in bad ways. This
85 analysis may be language specific. In C, arbitrary operations may
86 be applied to pointers. However, there is some indication that
87 this may be too conservative for some C++ types.
89 The pass ipa-type-escape does this analysis for the types whose
90 instances do not escape across the compilation boundary.
92 Historically in GCC, these two problems were combined and a single
93 data structure was used to represent the solution to these
94 problems. We now have two similar but different data structures,
95 The data structure to solve the last two question is similar to the
96 first, but does not contain have the fields in it whose address are
97 never taken. For types that do escape the compilation unit, the
98 data structures will have identical information.
101 /* The alias sets assigned to MEMs assist the back-end in determining
102 which MEMs can alias which other MEMs. In general, two MEMs in
103 different alias sets cannot alias each other, with one important
104 exception. Consider something like:
106 struct S { int i; double d; };
108 a store to an `S' can alias something of either type `int' or type
109 `double'. (However, a store to an `int' cannot alias a `double'
110 and vice versa.) We indicate this via a tree structure that looks
118 (The arrows are directed and point downwards.)
119 In this situation we say the alias set for `struct S' is the
120 `superset' and that those for `int' and `double' are `subsets'.
122 To see whether two alias sets can point to the same memory, we must
123 see if either alias set is a subset of the other. We need not trace
124 past immediate descendants, however, since we propagate all
125 grandchildren up one level.
127 Alias set zero is implicitly a superset of all other alias sets.
128 However, this is no actual entry for alias set zero. It is an
129 error to attempt to explicitly construct a subset of zero. */
131 struct alias_set_entry
GTY(())
133 /* The alias set number, as stored in MEM_ALIAS_SET. */
134 HOST_WIDE_INT alias_set
;
136 /* The children of the alias set. These are not just the immediate
137 children, but, in fact, all descendants. So, if we have:
139 struct T { struct S s; float f; }
141 continuing our example above, the children here will be all of
142 `int', `double', `float', and `struct S'. */
143 splay_tree
GTY((param1_is (int), param2_is (int))) children
;
145 /* Nonzero if would have a child of zero: this effectively makes this
146 alias set the same as alias set zero. */
149 typedef struct alias_set_entry
*alias_set_entry
;
151 static int rtx_equal_for_memref_p (rtx
, rtx
);
152 static rtx
find_symbolic_term (rtx
);
153 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
154 static void record_set (rtx
, rtx
, void *);
155 static int base_alias_check (rtx
, rtx
, enum machine_mode
,
157 static rtx
find_base_value (rtx
);
158 static int mems_in_disjoint_alias_sets_p (rtx
, rtx
);
159 static int insert_subset_children (splay_tree_node
, void*);
160 static tree
find_base_decl (tree
);
161 static alias_set_entry
get_alias_set_entry (HOST_WIDE_INT
);
162 static rtx
fixed_scalar_and_varying_struct_p (rtx
, rtx
, rtx
, rtx
,
164 static int aliases_everything_p (rtx
);
165 static bool nonoverlapping_component_refs_p (tree
, tree
);
166 static tree
decl_for_component_ref (tree
);
167 static rtx
adjust_offset_for_component_ref (tree
, rtx
);
168 static int nonoverlapping_memrefs_p (rtx
, rtx
);
169 static int write_dependence_p (rtx
, rtx
, int);
171 static void memory_modified_1 (rtx
, rtx
, void *);
172 static void record_alias_subset (HOST_WIDE_INT
, HOST_WIDE_INT
);
174 /* Set up all info needed to perform alias analysis on memory references. */
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
209 static GTY(()) varray_type reg_base_value
;
210 static rtx
*new_reg_base_value
;
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
215 static GTY((deletable
)) varray_type old_reg_base_value
;
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value
[FIRST_PSEUDO_REGISTER
];
221 #define REG_BASE_VALUE(X) \
222 (reg_base_value && REGNO (X) < VARRAY_SIZE (reg_base_value) \
223 ? VARRAY_RTX (reg_base_value, REGNO (X)) : 0)
225 /* Vector of known invariant relationships between registers. Set in
226 loop unrolling. Indexed by register number, if nonzero the value
227 is an expression describing this register in terms of another.
229 The length of this array is REG_BASE_VALUE_SIZE.
231 Because this array contains only pseudo registers it has no effect
233 static GTY((length("alias_invariant_size"))) rtx
*alias_invariant
;
234 static GTY(()) unsigned int alias_invariant_size
;
236 /* Vector indexed by N giving the initial (unchanging) value known for
237 pseudo-register N. This array is initialized in init_alias_analysis,
238 and does not change until end_alias_analysis is called. */
239 static GTY((length("reg_known_value_size"))) rtx
*reg_known_value
;
241 /* Indicates number of valid entries in reg_known_value. */
242 static GTY(()) unsigned int reg_known_value_size
;
244 /* Vector recording for each reg_known_value whether it is due to a
245 REG_EQUIV note. Future passes (viz., reload) may replace the
246 pseudo with the equivalent expression and so we account for the
247 dependences that would be introduced if that happens.
249 The REG_EQUIV notes created in assign_parms may mention the arg
250 pointer, and there are explicit insns in the RTL that modify the
251 arg pointer. Thus we must ensure that such insns don't get
252 scheduled across each other because that would invalidate the
253 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
254 wrong, but solving the problem in the scheduler will likely give
255 better code, so we do it here. */
256 static bool *reg_known_equiv_p
;
258 /* True when scanning insns from the start of the rtl to the
259 NOTE_INSN_FUNCTION_BEG note. */
260 static bool copying_arguments
;
262 /* The splay-tree used to store the various alias set entries. */
263 static GTY ((param_is (struct alias_set_entry
))) varray_type alias_sets
;
265 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
266 such an entry, or NULL otherwise. */
268 static inline alias_set_entry
269 get_alias_set_entry (HOST_WIDE_INT alias_set
)
271 return (alias_set_entry
)VARRAY_GENERIC_PTR (alias_sets
, alias_set
);
274 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
275 the two MEMs cannot alias each other. */
278 mems_in_disjoint_alias_sets_p (rtx mem1
, rtx mem2
)
280 /* Perform a basic sanity check. Namely, that there are no alias sets
281 if we're not using strict aliasing. This helps to catch bugs
282 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
283 where a MEM is allocated in some way other than by the use of
284 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
285 use alias sets to indicate that spilled registers cannot alias each
286 other, we might need to remove this check. */
287 gcc_assert (flag_strict_aliasing
288 || (!MEM_ALIAS_SET (mem1
) && !MEM_ALIAS_SET (mem2
)));
290 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
293 /* Insert the NODE into the splay tree given by DATA. Used by
294 record_alias_subset via splay_tree_foreach. */
297 insert_subset_children (splay_tree_node node
, void *data
)
299 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
304 /* Return 1 if the two specified alias sets may conflict. */
307 alias_sets_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
311 /* If have no alias set information for one of the operands, we have
312 to assume it can alias anything. */
313 if (set1
== 0 || set2
== 0
314 /* If the two alias sets are the same, they may alias. */
318 /* See if the first alias set is a subset of the second. */
319 ase
= get_alias_set_entry (set1
);
321 && (ase
->has_zero_child
322 || splay_tree_lookup (ase
->children
,
323 (splay_tree_key
) set2
)))
326 /* Now do the same, but with the alias sets reversed. */
327 ase
= get_alias_set_entry (set2
);
329 && (ase
->has_zero_child
330 || splay_tree_lookup (ase
->children
,
331 (splay_tree_key
) set1
)))
334 /* The two alias sets are distinct and neither one is the
335 child of the other. Therefore, they cannot alias. */
339 /* Return 1 if the two specified alias sets might conflict, or if any subtype
340 of these alias sets might conflict. */
343 alias_sets_might_conflict_p (HOST_WIDE_INT set1
, HOST_WIDE_INT set2
)
345 if (set1
== 0 || set2
== 0 || set1
== set2
)
352 /* Return 1 if any MEM object of type T1 will always conflict (using the
353 dependency routines in this file) with any MEM object of type T2.
354 This is used when allocating temporary storage. If T1 and/or T2 are
355 NULL_TREE, it means we know nothing about the storage. */
358 objects_must_conflict_p (tree t1
, tree t2
)
360 HOST_WIDE_INT set1
, set2
;
362 /* If neither has a type specified, we don't know if they'll conflict
363 because we may be using them to store objects of various types, for
364 example the argument and local variables areas of inlined functions. */
365 if (t1
== 0 && t2
== 0)
368 /* If they are the same type, they must conflict. */
370 /* Likewise if both are volatile. */
371 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
374 set1
= t1
? get_alias_set (t1
) : 0;
375 set2
= t2
? get_alias_set (t2
) : 0;
377 /* Otherwise they conflict if they have no alias set or the same. We
378 can't simply use alias_sets_conflict_p here, because we must make
379 sure that every subtype of t1 will conflict with every subtype of
380 t2 for which a pair of subobjects of these respective subtypes
381 overlaps on the stack. */
382 return set1
== 0 || set2
== 0 || set1
== set2
;
385 /* T is an expression with pointer type. Find the DECL on which this
386 expression is based. (For example, in `a[i]' this would be `a'.)
387 If there is no such DECL, or a unique decl cannot be determined,
388 NULL_TREE is returned. */
391 find_base_decl (tree t
)
395 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
398 /* If this is a declaration, return it. */
402 /* Handle general expressions. It would be nice to deal with
403 COMPONENT_REFs here. If we could tell that `a' and `b' were the
404 same, then `a->f' and `b->f' are also the same. */
405 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
408 return find_base_decl (TREE_OPERAND (t
, 0));
411 /* Return 0 if found in neither or both are the same. */
412 d0
= find_base_decl (TREE_OPERAND (t
, 0));
413 d1
= find_base_decl (TREE_OPERAND (t
, 1));
428 /* Return true if all nested component references handled by
429 get_inner_reference in T are such that we should use the alias set
430 provided by the object at the heart of T.
432 This is true for non-addressable components (which don't have their
433 own alias set), as well as components of objects in alias set zero.
434 This later point is a special case wherein we wish to override the
435 alias set used by the component, but we don't have per-FIELD_DECL
436 assignable alias sets. */
439 component_uses_parent_alias_set (tree t
)
443 /* If we're at the end, it vacuously uses its own alias set. */
444 if (!handled_component_p (t
))
447 switch (TREE_CODE (t
))
450 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
455 case ARRAY_RANGE_REF
:
456 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
465 /* Bitfields and casts are never addressable. */
469 t
= TREE_OPERAND (t
, 0);
470 if (get_alias_set (TREE_TYPE (t
)) == 0)
475 /* Return the alias set for T, which may be either a type or an
476 expression. Call language-specific routine for help, if needed. */
479 get_alias_set (tree t
)
483 /* If we're not doing any alias analysis, just assume everything
484 aliases everything else. Also return 0 if this or its type is
486 if (! flag_strict_aliasing
|| t
== error_mark_node
488 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
491 /* We can be passed either an expression or a type. This and the
492 language-specific routine may make mutually-recursive calls to each other
493 to figure out what to do. At each juncture, we see if this is a tree
494 that the language may need to handle specially. First handle things that
500 /* Remove any nops, then give the language a chance to do
501 something with this tree before we look at it. */
503 set
= lang_hooks
.get_alias_set (t
);
507 /* First see if the actual object referenced is an INDIRECT_REF from a
508 restrict-qualified pointer or a "void *". */
509 while (handled_component_p (inner
))
511 inner
= TREE_OPERAND (inner
, 0);
515 /* Check for accesses through restrict-qualified pointers. */
516 if (INDIRECT_REF_P (inner
))
518 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
520 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
522 /* If we haven't computed the actual alias set, do it now. */
523 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
525 tree pointed_to_type
= TREE_TYPE (TREE_TYPE (decl
));
527 /* No two restricted pointers can point at the same thing.
528 However, a restricted pointer can point at the same thing
529 as an unrestricted pointer, if that unrestricted pointer
530 is based on the restricted pointer. So, we make the
531 alias set for the restricted pointer a subset of the
532 alias set for the type pointed to by the type of the
534 HOST_WIDE_INT pointed_to_alias_set
535 = get_alias_set (pointed_to_type
);
537 if (pointed_to_alias_set
== 0)
538 /* It's not legal to make a subset of alias set zero. */
539 DECL_POINTER_ALIAS_SET (decl
) = 0;
540 else if (AGGREGATE_TYPE_P (pointed_to_type
))
541 /* For an aggregate, we must treat the restricted
542 pointer the same as an ordinary pointer. If we
543 were to make the type pointed to by the
544 restricted pointer a subset of the pointed-to
545 type, then we would believe that other subsets
546 of the pointed-to type (such as fields of that
547 type) do not conflict with the type pointed to
548 by the restricted pointer. */
549 DECL_POINTER_ALIAS_SET (decl
)
550 = pointed_to_alias_set
;
553 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
554 record_alias_subset (pointed_to_alias_set
,
555 DECL_POINTER_ALIAS_SET (decl
));
559 /* We use the alias set indicated in the declaration. */
560 return DECL_POINTER_ALIAS_SET (decl
);
563 /* If we have an INDIRECT_REF via a void pointer, we don't
564 know anything about what that might alias. Likewise if the
565 pointer is marked that way. */
566 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
567 || (TYPE_REF_CAN_ALIAS_ALL
568 (TREE_TYPE (TREE_OPERAND (inner
, 0)))))
572 /* Otherwise, pick up the outermost object that we could have a pointer
573 to, processing conversions as above. */
574 while (component_uses_parent_alias_set (t
))
576 t
= TREE_OPERAND (t
, 0);
580 /* If we've already determined the alias set for a decl, just return
581 it. This is necessary for C++ anonymous unions, whose component
582 variables don't look like union members (boo!). */
583 if (TREE_CODE (t
) == VAR_DECL
584 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
585 return MEM_ALIAS_SET (DECL_RTL (t
));
587 /* Now all we care about is the type. */
591 /* Variant qualifiers don't affect the alias set, so get the main
592 variant. If this is a type with a known alias set, return it. */
593 t
= TYPE_MAIN_VARIANT (t
);
594 if (TYPE_ALIAS_SET_KNOWN_P (t
))
595 return TYPE_ALIAS_SET (t
);
597 /* See if the language has special handling for this type. */
598 set
= lang_hooks
.get_alias_set (t
);
602 /* There are no objects of FUNCTION_TYPE, so there's no point in
603 using up an alias set for them. (There are, of course, pointers
604 and references to functions, but that's different.) */
605 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
608 /* Unless the language specifies otherwise, let vector types alias
609 their components. This avoids some nasty type punning issues in
610 normal usage. And indeed lets vectors be treated more like an
612 else if (TREE_CODE (t
) == VECTOR_TYPE
)
613 set
= get_alias_set (TREE_TYPE (t
));
616 /* Otherwise make a new alias set for this type. */
617 set
= new_alias_set ();
619 TYPE_ALIAS_SET (t
) = set
;
621 /* If this is an aggregate type, we must record any component aliasing
623 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
624 record_component_aliases (t
);
629 /* Return a brand-new alias set. */
631 static GTY(()) HOST_WIDE_INT last_alias_set
;
636 if (flag_strict_aliasing
)
639 VARRAY_GENERIC_PTR_INIT (alias_sets
, 10, "alias sets");
641 VARRAY_GROW (alias_sets
, last_alias_set
+ 2);
642 return ++last_alias_set
;
648 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
649 not everything that aliases SUPERSET also aliases SUBSET. For example,
650 in C, a store to an `int' can alias a load of a structure containing an
651 `int', and vice versa. But it can't alias a load of a 'double' member
652 of the same structure. Here, the structure would be the SUPERSET and
653 `int' the SUBSET. This relationship is also described in the comment at
654 the beginning of this file.
656 This function should be called only once per SUPERSET/SUBSET pair.
658 It is illegal for SUPERSET to be zero; everything is implicitly a
659 subset of alias set zero. */
662 record_alias_subset (HOST_WIDE_INT superset
, HOST_WIDE_INT subset
)
664 alias_set_entry superset_entry
;
665 alias_set_entry subset_entry
;
667 /* It is possible in complex type situations for both sets to be the same,
668 in which case we can ignore this operation. */
669 if (superset
== subset
)
672 gcc_assert (superset
);
674 superset_entry
= get_alias_set_entry (superset
);
675 if (superset_entry
== 0)
677 /* Create an entry for the SUPERSET, so that we have a place to
678 attach the SUBSET. */
679 superset_entry
= ggc_alloc (sizeof (struct alias_set_entry
));
680 superset_entry
->alias_set
= superset
;
681 superset_entry
->children
682 = splay_tree_new_ggc (splay_tree_compare_ints
);
683 superset_entry
->has_zero_child
= 0;
684 VARRAY_GENERIC_PTR (alias_sets
, superset
) = superset_entry
;
688 superset_entry
->has_zero_child
= 1;
691 subset_entry
= get_alias_set_entry (subset
);
692 /* If there is an entry for the subset, enter all of its children
693 (if they are not already present) as children of the SUPERSET. */
696 if (subset_entry
->has_zero_child
)
697 superset_entry
->has_zero_child
= 1;
699 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
700 superset_entry
->children
);
703 /* Enter the SUBSET itself as a child of the SUPERSET. */
704 splay_tree_insert (superset_entry
->children
,
705 (splay_tree_key
) subset
, 0);
709 /* Record that component types of TYPE, if any, are part of that type for
710 aliasing purposes. For record types, we only record component types
711 for fields that are marked addressable. For array types, we always
712 record the component types, so the front end should not call this
713 function if the individual component aren't addressable. */
716 record_component_aliases (tree type
)
718 HOST_WIDE_INT superset
= get_alias_set (type
);
724 switch (TREE_CODE (type
))
727 if (! TYPE_NONALIASED_COMPONENT (type
))
728 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
733 case QUAL_UNION_TYPE
:
734 /* Recursively record aliases for the base classes, if there are any. */
735 if (TYPE_BINFO (type
))
738 tree binfo
, base_binfo
;
740 for (binfo
= TYPE_BINFO (type
), i
= 0;
741 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
742 record_alias_subset (superset
,
743 get_alias_set (BINFO_TYPE (base_binfo
)));
745 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
746 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
747 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
751 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
759 /* Allocate an alias set for use in storing and reading from the varargs
762 static GTY(()) HOST_WIDE_INT varargs_set
= -1;
765 get_varargs_alias_set (void)
768 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
769 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
770 consistently use the varargs alias set for loads from the varargs
771 area. So don't use it anywhere. */
774 if (varargs_set
== -1)
775 varargs_set
= new_alias_set ();
781 /* Likewise, but used for the fixed portions of the frame, e.g., register
784 static GTY(()) HOST_WIDE_INT frame_set
= -1;
787 get_frame_alias_set (void)
790 frame_set
= new_alias_set ();
795 /* Inside SRC, the source of a SET, find a base address. */
798 find_base_value (rtx src
)
802 switch (GET_CODE (src
))
810 /* At the start of a function, argument registers have known base
811 values which may be lost later. Returning an ADDRESS
812 expression here allows optimization based on argument values
813 even when the argument registers are used for other purposes. */
814 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
815 return new_reg_base_value
[regno
];
817 /* If a pseudo has a known base value, return it. Do not do this
818 for non-fixed hard regs since it can result in a circular
819 dependency chain for registers which have values at function entry.
821 The test above is not sufficient because the scheduler may move
822 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
823 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
824 && regno
< VARRAY_SIZE (reg_base_value
))
826 /* If we're inside init_alias_analysis, use new_reg_base_value
827 to reduce the number of relaxation iterations. */
828 if (new_reg_base_value
&& new_reg_base_value
[regno
]
829 && REG_N_SETS (regno
) == 1)
830 return new_reg_base_value
[regno
];
832 if (VARRAY_RTX (reg_base_value
, regno
))
833 return VARRAY_RTX (reg_base_value
, regno
);
839 /* Check for an argument passed in memory. Only record in the
840 copying-arguments block; it is too hard to track changes
842 if (copying_arguments
843 && (XEXP (src
, 0) == arg_pointer_rtx
844 || (GET_CODE (XEXP (src
, 0)) == PLUS
845 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
846 return gen_rtx_ADDRESS (VOIDmode
, src
);
851 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
854 /* ... fall through ... */
859 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
861 /* If either operand is a REG that is a known pointer, then it
863 if (REG_P (src_0
) && REG_POINTER (src_0
))
864 return find_base_value (src_0
);
865 if (REG_P (src_1
) && REG_POINTER (src_1
))
866 return find_base_value (src_1
);
868 /* If either operand is a REG, then see if we already have
869 a known value for it. */
872 temp
= find_base_value (src_0
);
879 temp
= find_base_value (src_1
);
884 /* If either base is named object or a special address
885 (like an argument or stack reference), then use it for the
888 && (GET_CODE (src_0
) == SYMBOL_REF
889 || GET_CODE (src_0
) == LABEL_REF
890 || (GET_CODE (src_0
) == ADDRESS
891 && GET_MODE (src_0
) != VOIDmode
)))
895 && (GET_CODE (src_1
) == SYMBOL_REF
896 || GET_CODE (src_1
) == LABEL_REF
897 || (GET_CODE (src_1
) == ADDRESS
898 && GET_MODE (src_1
) != VOIDmode
)))
901 /* Guess which operand is the base address:
902 If either operand is a symbol, then it is the base. If
903 either operand is a CONST_INT, then the other is the base. */
904 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
905 return find_base_value (src_0
);
906 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
907 return find_base_value (src_1
);
913 /* The standard form is (lo_sum reg sym) so look only at the
915 return find_base_value (XEXP (src
, 1));
918 /* If the second operand is constant set the base
919 address to the first operand. */
920 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
921 return find_base_value (XEXP (src
, 0));
925 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
935 return find_base_value (XEXP (src
, 0));
938 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
940 rtx temp
= find_base_value (XEXP (src
, 0));
942 if (temp
!= 0 && CONSTANT_P (temp
))
943 temp
= convert_memory_address (Pmode
, temp
);
955 /* Called from init_alias_analysis indirectly through note_stores. */
957 /* While scanning insns to find base values, reg_seen[N] is nonzero if
958 register N has been set in this function. */
959 static char *reg_seen
;
961 /* Addresses which are known not to alias anything else are identified
962 by a unique integer. */
963 static int unique_id
;
966 record_set (rtx dest
, rtx set
, void *data ATTRIBUTE_UNUSED
)
975 regno
= REGNO (dest
);
977 gcc_assert (regno
< VARRAY_SIZE (reg_base_value
));
979 /* If this spans multiple hard registers, then we must indicate that every
980 register has an unusable value. */
981 if (regno
< FIRST_PSEUDO_REGISTER
)
982 n
= hard_regno_nregs
[regno
][GET_MODE (dest
)];
989 reg_seen
[regno
+ n
] = 1;
990 new_reg_base_value
[regno
+ n
] = 0;
997 /* A CLOBBER wipes out any old value but does not prevent a previously
998 unset register from acquiring a base address (i.e. reg_seen is not
1000 if (GET_CODE (set
) == CLOBBER
)
1002 new_reg_base_value
[regno
] = 0;
1005 src
= SET_SRC (set
);
1009 if (reg_seen
[regno
])
1011 new_reg_base_value
[regno
] = 0;
1014 reg_seen
[regno
] = 1;
1015 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
1016 GEN_INT (unique_id
++));
1020 /* If this is not the first set of REGNO, see whether the new value
1021 is related to the old one. There are two cases of interest:
1023 (1) The register might be assigned an entirely new value
1024 that has the same base term as the original set.
1026 (2) The set might be a simple self-modification that
1027 cannot change REGNO's base value.
1029 If neither case holds, reject the original base value as invalid.
1030 Note that the following situation is not detected:
1032 extern int x, y; int *p = &x; p += (&y-&x);
1034 ANSI C does not allow computing the difference of addresses
1035 of distinct top level objects. */
1036 if (new_reg_base_value
[regno
] != 0
1037 && find_base_value (src
) != new_reg_base_value
[regno
])
1038 switch (GET_CODE (src
))
1042 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1043 new_reg_base_value
[regno
] = 0;
1046 /* If the value we add in the PLUS is also a valid base value,
1047 this might be the actual base value, and the original value
1050 rtx other
= NULL_RTX
;
1052 if (XEXP (src
, 0) == dest
)
1053 other
= XEXP (src
, 1);
1054 else if (XEXP (src
, 1) == dest
)
1055 other
= XEXP (src
, 0);
1057 if (! other
|| find_base_value (other
))
1058 new_reg_base_value
[regno
] = 0;
1062 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
1063 new_reg_base_value
[regno
] = 0;
1066 new_reg_base_value
[regno
] = 0;
1069 /* If this is the first set of a register, record the value. */
1070 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1071 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
1072 new_reg_base_value
[regno
] = find_base_value (src
);
1074 reg_seen
[regno
] = 1;
1077 /* Called from loop optimization when a new pseudo-register is
1078 created. It indicates that REGNO is being set to VAL. f INVARIANT
1079 is true then this value also describes an invariant relationship
1080 which can be used to deduce that two registers with unknown values
1084 record_base_value (unsigned int regno
, rtx val
, int invariant
)
1086 if (invariant
&& alias_invariant
&& regno
< alias_invariant_size
)
1087 alias_invariant
[regno
] = val
;
1089 if (regno
>= VARRAY_SIZE (reg_base_value
))
1090 VARRAY_GROW (reg_base_value
, max_reg_num ());
1094 VARRAY_RTX (reg_base_value
, regno
)
1095 = REG_BASE_VALUE (val
);
1098 VARRAY_RTX (reg_base_value
, regno
)
1099 = find_base_value (val
);
1102 /* Clear alias info for a register. This is used if an RTL transformation
1103 changes the value of a register. This is used in flow by AUTO_INC_DEC
1104 optimizations. We don't need to clear reg_base_value, since flow only
1105 changes the offset. */
1108 clear_reg_alias_info (rtx reg
)
1110 unsigned int regno
= REGNO (reg
);
1112 if (regno
>= FIRST_PSEUDO_REGISTER
)
1114 regno
-= FIRST_PSEUDO_REGISTER
;
1115 if (regno
< reg_known_value_size
)
1117 reg_known_value
[regno
] = reg
;
1118 reg_known_equiv_p
[regno
] = false;
1123 /* If a value is known for REGNO, return it. */
1126 get_reg_known_value (unsigned int regno
)
1128 if (regno
>= FIRST_PSEUDO_REGISTER
)
1130 regno
-= FIRST_PSEUDO_REGISTER
;
1131 if (regno
< reg_known_value_size
)
1132 return reg_known_value
[regno
];
1140 set_reg_known_value (unsigned int regno
, rtx val
)
1142 if (regno
>= FIRST_PSEUDO_REGISTER
)
1144 regno
-= FIRST_PSEUDO_REGISTER
;
1145 if (regno
< reg_known_value_size
)
1146 reg_known_value
[regno
] = val
;
1150 /* Similarly for reg_known_equiv_p. */
1153 get_reg_known_equiv_p (unsigned int regno
)
1155 if (regno
>= FIRST_PSEUDO_REGISTER
)
1157 regno
-= FIRST_PSEUDO_REGISTER
;
1158 if (regno
< reg_known_value_size
)
1159 return reg_known_equiv_p
[regno
];
1165 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1167 if (regno
>= FIRST_PSEUDO_REGISTER
)
1169 regno
-= FIRST_PSEUDO_REGISTER
;
1170 if (regno
< reg_known_value_size
)
1171 reg_known_equiv_p
[regno
] = val
;
1176 /* Returns a canonical version of X, from the point of view alias
1177 analysis. (For example, if X is a MEM whose address is a register,
1178 and the register has a known value (say a SYMBOL_REF), then a MEM
1179 whose address is the SYMBOL_REF is returned.) */
1184 /* Recursively look for equivalences. */
1185 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1187 rtx t
= get_reg_known_value (REGNO (x
));
1191 return canon_rtx (t
);
1194 if (GET_CODE (x
) == PLUS
)
1196 rtx x0
= canon_rtx (XEXP (x
, 0));
1197 rtx x1
= canon_rtx (XEXP (x
, 1));
1199 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1201 if (GET_CODE (x0
) == CONST_INT
)
1202 return plus_constant (x1
, INTVAL (x0
));
1203 else if (GET_CODE (x1
) == CONST_INT
)
1204 return plus_constant (x0
, INTVAL (x1
));
1205 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1209 /* This gives us much better alias analysis when called from
1210 the loop optimizer. Note we want to leave the original
1211 MEM alone, but need to return the canonicalized MEM with
1212 all the flags with their original values. */
1214 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1219 /* Return 1 if X and Y are identical-looking rtx's.
1220 Expect that X and Y has been already canonicalized.
1222 We use the data in reg_known_value above to see if two registers with
1223 different numbers are, in fact, equivalent. */
1226 rtx_equal_for_memref_p (rtx x
, rtx y
)
1233 if (x
== 0 && y
== 0)
1235 if (x
== 0 || y
== 0)
1241 code
= GET_CODE (x
);
1242 /* Rtx's of different codes cannot be equal. */
1243 if (code
!= GET_CODE (y
))
1246 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1247 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1249 if (GET_MODE (x
) != GET_MODE (y
))
1252 /* Some RTL can be compared without a recursive examination. */
1256 return REGNO (x
) == REGNO (y
);
1259 return XEXP (x
, 0) == XEXP (y
, 0);
1262 return XSTR (x
, 0) == XSTR (y
, 0);
1267 /* There's no need to compare the contents of CONST_DOUBLEs or
1268 CONST_INTs because pointer equality is a good enough
1269 comparison for these nodes. */
1276 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1278 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1279 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1280 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1281 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1282 /* For commutative operations, the RTX match if the operand match in any
1283 order. Also handle the simple binary and unary cases without a loop. */
1284 if (COMMUTATIVE_P (x
))
1286 rtx xop0
= canon_rtx (XEXP (x
, 0));
1287 rtx yop0
= canon_rtx (XEXP (y
, 0));
1288 rtx yop1
= canon_rtx (XEXP (y
, 1));
1290 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1291 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1292 || (rtx_equal_for_memref_p (xop0
, yop1
)
1293 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1295 else if (NON_COMMUTATIVE_P (x
))
1297 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1298 canon_rtx (XEXP (y
, 0)))
1299 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1300 canon_rtx (XEXP (y
, 1))));
1302 else if (UNARY_P (x
))
1303 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1304 canon_rtx (XEXP (y
, 0)));
1306 /* Compare the elements. If any pair of corresponding elements
1307 fail to match, return 0 for the whole things.
1309 Limit cases to types which actually appear in addresses. */
1311 fmt
= GET_RTX_FORMAT (code
);
1312 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1317 if (XINT (x
, i
) != XINT (y
, i
))
1322 /* Two vectors must have the same length. */
1323 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1326 /* And the corresponding elements must match. */
1327 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1328 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1329 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1334 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1335 canon_rtx (XEXP (y
, i
))) == 0)
1339 /* This can happen for asm operands. */
1341 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1345 /* This can happen for an asm which clobbers memory. */
1349 /* It is believed that rtx's at this level will never
1350 contain anything but integers and other rtx's,
1351 except for within LABEL_REFs and SYMBOL_REFs. */
1359 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1360 X and return it, or return 0 if none found. */
1363 find_symbolic_term (rtx x
)
1369 code
= GET_CODE (x
);
1370 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1375 fmt
= GET_RTX_FORMAT (code
);
1376 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1382 t
= find_symbolic_term (XEXP (x
, i
));
1386 else if (fmt
[i
] == 'E')
1393 find_base_term (rtx x
)
1396 struct elt_loc_list
*l
;
1398 #if defined (FIND_BASE_TERM)
1399 /* Try machine-dependent ways to find the base term. */
1400 x
= FIND_BASE_TERM (x
);
1403 switch (GET_CODE (x
))
1406 return REG_BASE_VALUE (x
);
1409 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1419 return find_base_term (XEXP (x
, 0));
1422 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1424 rtx temp
= find_base_term (XEXP (x
, 0));
1426 if (temp
!= 0 && CONSTANT_P (temp
))
1427 temp
= convert_memory_address (Pmode
, temp
);
1433 val
= CSELIB_VAL_PTR (x
);
1436 for (l
= val
->locs
; l
; l
= l
->next
)
1437 if ((x
= find_base_term (l
->loc
)) != 0)
1443 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1450 rtx tmp1
= XEXP (x
, 0);
1451 rtx tmp2
= XEXP (x
, 1);
1453 /* This is a little bit tricky since we have to determine which of
1454 the two operands represents the real base address. Otherwise this
1455 routine may return the index register instead of the base register.
1457 That may cause us to believe no aliasing was possible, when in
1458 fact aliasing is possible.
1460 We use a few simple tests to guess the base register. Additional
1461 tests can certainly be added. For example, if one of the operands
1462 is a shift or multiply, then it must be the index register and the
1463 other operand is the base register. */
1465 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1466 return find_base_term (tmp2
);
1468 /* If either operand is known to be a pointer, then use it
1469 to determine the base term. */
1470 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1471 return find_base_term (tmp1
);
1473 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1474 return find_base_term (tmp2
);
1476 /* Neither operand was known to be a pointer. Go ahead and find the
1477 base term for both operands. */
1478 tmp1
= find_base_term (tmp1
);
1479 tmp2
= find_base_term (tmp2
);
1481 /* If either base term is named object or a special address
1482 (like an argument or stack reference), then use it for the
1485 && (GET_CODE (tmp1
) == SYMBOL_REF
1486 || GET_CODE (tmp1
) == LABEL_REF
1487 || (GET_CODE (tmp1
) == ADDRESS
1488 && GET_MODE (tmp1
) != VOIDmode
)))
1492 && (GET_CODE (tmp2
) == SYMBOL_REF
1493 || GET_CODE (tmp2
) == LABEL_REF
1494 || (GET_CODE (tmp2
) == ADDRESS
1495 && GET_MODE (tmp2
) != VOIDmode
)))
1498 /* We could not determine which of the two operands was the
1499 base register and which was the index. So we can determine
1500 nothing from the base alias check. */
1505 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1506 return find_base_term (XEXP (x
, 0));
1518 /* Return 0 if the addresses X and Y are known to point to different
1519 objects, 1 if they might be pointers to the same object. */
1522 base_alias_check (rtx x
, rtx y
, enum machine_mode x_mode
,
1523 enum machine_mode y_mode
)
1525 rtx x_base
= find_base_term (x
);
1526 rtx y_base
= find_base_term (y
);
1528 /* If the address itself has no known base see if a known equivalent
1529 value has one. If either address still has no known base, nothing
1530 is known about aliasing. */
1535 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1538 x_base
= find_base_term (x_c
);
1546 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1549 y_base
= find_base_term (y_c
);
1554 /* If the base addresses are equal nothing is known about aliasing. */
1555 if (rtx_equal_p (x_base
, y_base
))
1558 /* The base addresses of the read and write are different expressions.
1559 If they are both symbols and they are not accessed via AND, there is
1560 no conflict. We can bring knowledge of object alignment into play
1561 here. For example, on alpha, "char a, b;" can alias one another,
1562 though "char a; long b;" cannot. */
1563 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1565 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1567 if (GET_CODE (x
) == AND
1568 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1569 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1571 if (GET_CODE (y
) == AND
1572 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1573 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1575 /* Differing symbols never alias. */
1579 /* If one address is a stack reference there can be no alias:
1580 stack references using different base registers do not alias,
1581 a stack reference can not alias a parameter, and a stack reference
1582 can not alias a global. */
1583 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1584 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1587 if (! flag_argument_noalias
)
1590 if (flag_argument_noalias
> 1)
1593 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1594 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1597 /* Convert the address X into something we can use. This is done by returning
1598 it unchanged unless it is a value; in the latter case we call cselib to get
1599 a more useful rtx. */
1605 struct elt_loc_list
*l
;
1607 if (GET_CODE (x
) != VALUE
)
1609 v
= CSELIB_VAL_PTR (x
);
1612 for (l
= v
->locs
; l
; l
= l
->next
)
1613 if (CONSTANT_P (l
->loc
))
1615 for (l
= v
->locs
; l
; l
= l
->next
)
1616 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
))
1619 return v
->locs
->loc
;
1624 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1625 where SIZE is the size in bytes of the memory reference. If ADDR
1626 is not modified by the memory reference then ADDR is returned. */
1629 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
1633 switch (GET_CODE (addr
))
1636 offset
= (n_refs
+ 1) * size
;
1639 offset
= -(n_refs
+ 1) * size
;
1642 offset
= n_refs
* size
;
1645 offset
= -n_refs
* size
;
1653 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
1656 addr
= XEXP (addr
, 0);
1657 addr
= canon_rtx (addr
);
1662 /* Return nonzero if X and Y (memory addresses) could reference the
1663 same location in memory. C is an offset accumulator. When
1664 C is nonzero, we are testing aliases between X and Y + C.
1665 XSIZE is the size in bytes of the X reference,
1666 similarly YSIZE is the size in bytes for Y.
1667 Expect that canon_rtx has been already called for X and Y.
1669 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1670 referenced (the reference was BLKmode), so make the most pessimistic
1673 If XSIZE or YSIZE is negative, we may access memory outside the object
1674 being referenced as a side effect. This can happen when using AND to
1675 align memory references, as is done on the Alpha.
1677 Nice to notice that varying addresses cannot conflict with fp if no
1678 local variables had their addresses taken, but that's too hard now. */
1681 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
1683 if (GET_CODE (x
) == VALUE
)
1685 if (GET_CODE (y
) == VALUE
)
1687 if (GET_CODE (x
) == HIGH
)
1689 else if (GET_CODE (x
) == LO_SUM
)
1692 x
= addr_side_effect_eval (x
, xsize
, 0);
1693 if (GET_CODE (y
) == HIGH
)
1695 else if (GET_CODE (y
) == LO_SUM
)
1698 y
= addr_side_effect_eval (y
, ysize
, 0);
1700 if (rtx_equal_for_memref_p (x
, y
))
1702 if (xsize
<= 0 || ysize
<= 0)
1704 if (c
>= 0 && xsize
> c
)
1706 if (c
< 0 && ysize
+c
> 0)
1711 /* This code used to check for conflicts involving stack references and
1712 globals but the base address alias code now handles these cases. */
1714 if (GET_CODE (x
) == PLUS
)
1716 /* The fact that X is canonicalized means that this
1717 PLUS rtx is canonicalized. */
1718 rtx x0
= XEXP (x
, 0);
1719 rtx x1
= XEXP (x
, 1);
1721 if (GET_CODE (y
) == PLUS
)
1723 /* The fact that Y is canonicalized means that this
1724 PLUS rtx is canonicalized. */
1725 rtx y0
= XEXP (y
, 0);
1726 rtx y1
= XEXP (y
, 1);
1728 if (rtx_equal_for_memref_p (x1
, y1
))
1729 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1730 if (rtx_equal_for_memref_p (x0
, y0
))
1731 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1732 if (GET_CODE (x1
) == CONST_INT
)
1734 if (GET_CODE (y1
) == CONST_INT
)
1735 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1736 c
- INTVAL (x1
) + INTVAL (y1
));
1738 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1741 else if (GET_CODE (y1
) == CONST_INT
)
1742 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1746 else if (GET_CODE (x1
) == CONST_INT
)
1747 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1749 else if (GET_CODE (y
) == PLUS
)
1751 /* The fact that Y is canonicalized means that this
1752 PLUS rtx is canonicalized. */
1753 rtx y0
= XEXP (y
, 0);
1754 rtx y1
= XEXP (y
, 1);
1756 if (GET_CODE (y1
) == CONST_INT
)
1757 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1762 if (GET_CODE (x
) == GET_CODE (y
))
1763 switch (GET_CODE (x
))
1767 /* Handle cases where we expect the second operands to be the
1768 same, and check only whether the first operand would conflict
1771 rtx x1
= canon_rtx (XEXP (x
, 1));
1772 rtx y1
= canon_rtx (XEXP (y
, 1));
1773 if (! rtx_equal_for_memref_p (x1
, y1
))
1775 x0
= canon_rtx (XEXP (x
, 0));
1776 y0
= canon_rtx (XEXP (y
, 0));
1777 if (rtx_equal_for_memref_p (x0
, y0
))
1778 return (xsize
== 0 || ysize
== 0
1779 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1781 /* Can't properly adjust our sizes. */
1782 if (GET_CODE (x1
) != CONST_INT
)
1784 xsize
/= INTVAL (x1
);
1785 ysize
/= INTVAL (x1
);
1787 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1791 /* Are these registers known not to be equal? */
1792 if (alias_invariant
)
1794 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1795 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1797 i_x
= r_x
>= alias_invariant_size
? 0 : alias_invariant
[r_x
];
1798 i_y
= r_y
>= alias_invariant_size
? 0 : alias_invariant
[r_y
];
1800 if (i_x
== 0 && i_y
== 0)
1803 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1804 ysize
, i_y
? i_y
: y
, c
))
1813 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1814 as an access with indeterminate size. Assume that references
1815 besides AND are aligned, so if the size of the other reference is
1816 at least as large as the alignment, assume no other overlap. */
1817 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1819 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1821 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)), ysize
, y
, c
);
1823 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1825 /* ??? If we are indexing far enough into the array/structure, we
1826 may yet be able to determine that we can not overlap. But we
1827 also need to that we are far enough from the end not to overlap
1828 a following reference, so we do nothing with that for now. */
1829 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1831 return memrefs_conflict_p (xsize
, x
, ysize
, canon_rtx (XEXP (y
, 0)), c
);
1836 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1838 c
+= (INTVAL (y
) - INTVAL (x
));
1839 return (xsize
<= 0 || ysize
<= 0
1840 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1843 if (GET_CODE (x
) == CONST
)
1845 if (GET_CODE (y
) == CONST
)
1846 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1847 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1849 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1852 if (GET_CODE (y
) == CONST
)
1853 return memrefs_conflict_p (xsize
, x
, ysize
,
1854 canon_rtx (XEXP (y
, 0)), c
);
1857 return (xsize
<= 0 || ysize
<= 0
1858 || (rtx_equal_for_memref_p (x
, y
)
1859 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1866 /* Functions to compute memory dependencies.
1868 Since we process the insns in execution order, we can build tables
1869 to keep track of what registers are fixed (and not aliased), what registers
1870 are varying in known ways, and what registers are varying in unknown
1873 If both memory references are volatile, then there must always be a
1874 dependence between the two references, since their order can not be
1875 changed. A volatile and non-volatile reference can be interchanged
1878 A MEM_IN_STRUCT reference at a non-AND varying address can never
1879 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1880 also must allow AND addresses, because they may generate accesses
1881 outside the object being referenced. This is used to generate
1882 aligned addresses from unaligned addresses, for instance, the alpha
1883 storeqi_unaligned pattern. */
1885 /* Read dependence: X is read after read in MEM takes place. There can
1886 only be a dependence here if both reads are volatile. */
1889 read_dependence (rtx mem
, rtx x
)
1891 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1894 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1895 MEM2 is a reference to a structure at a varying address, or returns
1896 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1897 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1898 to decide whether or not an address may vary; it should return
1899 nonzero whenever variation is possible.
1900 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1903 fixed_scalar_and_varying_struct_p (rtx mem1
, rtx mem2
, rtx mem1_addr
,
1905 int (*varies_p
) (rtx
, int))
1907 if (! flag_strict_aliasing
)
1910 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1911 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1912 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1916 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1917 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1918 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1925 /* Returns nonzero if something about the mode or address format MEM1
1926 indicates that it might well alias *anything*. */
1929 aliases_everything_p (rtx mem
)
1931 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1932 /* If the address is an AND, it's very hard to know at what it is
1933 actually pointing. */
1939 /* Return true if we can determine that the fields referenced cannot
1940 overlap for any pair of objects. */
1943 nonoverlapping_component_refs_p (tree x
, tree y
)
1945 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1949 /* The comparison has to be done at a common type, since we don't
1950 know how the inheritance hierarchy works. */
1954 fieldx
= TREE_OPERAND (x
, 1);
1955 typex
= TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx
));
1960 fieldy
= TREE_OPERAND (y
, 1);
1961 typey
= TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy
));
1966 y
= TREE_OPERAND (y
, 0);
1968 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1970 x
= TREE_OPERAND (x
, 0);
1972 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1973 /* Never found a common type. */
1977 /* If we're left with accessing different fields of a structure,
1979 if (TREE_CODE (typex
) == RECORD_TYPE
1980 && fieldx
!= fieldy
)
1983 /* The comparison on the current field failed. If we're accessing
1984 a very nested structure, look at the next outer level. */
1985 x
= TREE_OPERAND (x
, 0);
1986 y
= TREE_OPERAND (y
, 0);
1989 && TREE_CODE (x
) == COMPONENT_REF
1990 && TREE_CODE (y
) == COMPONENT_REF
);
1995 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1998 decl_for_component_ref (tree x
)
2002 x
= TREE_OPERAND (x
, 0);
2004 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2006 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2009 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
2010 offset of the field reference. */
2013 adjust_offset_for_component_ref (tree x
, rtx offset
)
2015 HOST_WIDE_INT ioffset
;
2020 ioffset
= INTVAL (offset
);
2023 tree offset
= component_ref_field_offset (x
);
2024 tree field
= TREE_OPERAND (x
, 1);
2026 if (! host_integerp (offset
, 1))
2028 ioffset
+= (tree_low_cst (offset
, 1)
2029 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2032 x
= TREE_OPERAND (x
, 0);
2034 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2036 return GEN_INT (ioffset
);
2039 /* Return nonzero if we can determine the exprs corresponding to memrefs
2040 X and Y and they do not overlap. */
2043 nonoverlapping_memrefs_p (rtx x
, rtx y
)
2045 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2048 rtx moffsetx
, moffsety
;
2049 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2051 /* Unless both have exprs, we can't tell anything. */
2052 if (exprx
== 0 || expry
== 0)
2055 /* If both are field references, we may be able to determine something. */
2056 if (TREE_CODE (exprx
) == COMPONENT_REF
2057 && TREE_CODE (expry
) == COMPONENT_REF
2058 && nonoverlapping_component_refs_p (exprx
, expry
))
2062 /* If the field reference test failed, look at the DECLs involved. */
2063 moffsetx
= MEM_OFFSET (x
);
2064 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2066 if (TREE_CODE (expry
) == VAR_DECL
2067 && POINTER_TYPE_P (TREE_TYPE (expry
)))
2069 tree field
= TREE_OPERAND (exprx
, 1);
2070 tree fieldcontext
= DECL_FIELD_CONTEXT (field
);
2071 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext
,
2076 tree t
= decl_for_component_ref (exprx
);
2079 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
2083 else if (INDIRECT_REF_P (exprx
))
2085 exprx
= TREE_OPERAND (exprx
, 0);
2086 if (flag_argument_noalias
< 2
2087 || TREE_CODE (exprx
) != PARM_DECL
)
2091 moffsety
= MEM_OFFSET (y
);
2092 if (TREE_CODE (expry
) == COMPONENT_REF
)
2094 if (TREE_CODE (exprx
) == VAR_DECL
2095 && POINTER_TYPE_P (TREE_TYPE (exprx
)))
2097 tree field
= TREE_OPERAND (expry
, 1);
2098 tree fieldcontext
= DECL_FIELD_CONTEXT (field
);
2099 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext
,
2104 tree t
= decl_for_component_ref (expry
);
2107 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
2111 else if (INDIRECT_REF_P (expry
))
2113 expry
= TREE_OPERAND (expry
, 0);
2114 if (flag_argument_noalias
< 2
2115 || TREE_CODE (expry
) != PARM_DECL
)
2119 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2122 rtlx
= DECL_RTL (exprx
);
2123 rtly
= DECL_RTL (expry
);
2125 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2126 can't overlap unless they are the same because we never reuse that part
2127 of the stack frame used for locals for spilled pseudos. */
2128 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2129 && ! rtx_equal_p (rtlx
, rtly
))
2132 /* Get the base and offsets of both decls. If either is a register, we
2133 know both are and are the same, so use that as the base. The only
2134 we can avoid overlap is if we can deduce that they are nonoverlapping
2135 pieces of that decl, which is very rare. */
2136 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2137 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
2138 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2140 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2141 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
2142 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2144 /* If the bases are different, we know they do not overlap if both
2145 are constants or if one is a constant and the other a pointer into the
2146 stack frame. Otherwise a different base means we can't tell if they
2148 if (! rtx_equal_p (basex
, basey
))
2149 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2150 || (CONSTANT_P (basex
) && REG_P (basey
)
2151 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2152 || (CONSTANT_P (basey
) && REG_P (basex
)
2153 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2155 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2156 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
2158 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2159 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
2162 /* If we have an offset for either memref, it can update the values computed
2165 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
2167 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
2169 /* If a memref has both a size and an offset, we can use the smaller size.
2170 We can't do this if the offset isn't known because we must view this
2171 memref as being anywhere inside the DECL's MEM. */
2172 if (MEM_SIZE (x
) && moffsetx
)
2173 sizex
= INTVAL (MEM_SIZE (x
));
2174 if (MEM_SIZE (y
) && moffsety
)
2175 sizey
= INTVAL (MEM_SIZE (y
));
2177 /* Put the values of the memref with the lower offset in X's values. */
2178 if (offsetx
> offsety
)
2180 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2181 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2184 /* If we don't know the size of the lower-offset value, we can't tell
2185 if they conflict. Otherwise, we do the test. */
2186 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2189 /* True dependence: X is read after store in MEM takes place. */
2192 true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx x
,
2193 int (*varies
) (rtx
, int))
2195 rtx x_addr
, mem_addr
;
2198 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2201 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2202 This is used in epilogue deallocation functions. */
2203 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2205 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2208 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2211 /* Read-only memory is by definition never modified, and therefore can't
2212 conflict with anything. We don't expect to find read-only set on MEM,
2213 but stupid user tricks can produce them, so don't die. */
2214 if (MEM_READONLY_P (x
))
2217 if (nonoverlapping_memrefs_p (mem
, x
))
2220 if (mem_mode
== VOIDmode
)
2221 mem_mode
= GET_MODE (mem
);
2223 x_addr
= get_addr (XEXP (x
, 0));
2224 mem_addr
= get_addr (XEXP (mem
, 0));
2226 base
= find_base_term (x_addr
);
2227 if (base
&& (GET_CODE (base
) == LABEL_REF
2228 || (GET_CODE (base
) == SYMBOL_REF
2229 && CONSTANT_POOL_ADDRESS_P (base
))))
2232 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2235 x_addr
= canon_rtx (x_addr
);
2236 mem_addr
= canon_rtx (mem_addr
);
2238 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2239 SIZE_FOR_MODE (x
), x_addr
, 0))
2242 if (aliases_everything_p (x
))
2245 /* We cannot use aliases_everything_p to test MEM, since we must look
2246 at MEM_MODE, rather than GET_MODE (MEM). */
2247 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2250 /* In true_dependence we also allow BLKmode to alias anything. Why
2251 don't we do this in anti_dependence and output_dependence? */
2252 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2255 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2259 /* Canonical true dependence: X is read after store in MEM takes place.
2260 Variant of true_dependence which assumes MEM has already been
2261 canonicalized (hence we no longer do that here).
2262 The mem_addr argument has been added, since true_dependence computed
2263 this value prior to canonicalizing. */
2266 canon_true_dependence (rtx mem
, enum machine_mode mem_mode
, rtx mem_addr
,
2267 rtx x
, int (*varies
) (rtx
, int))
2271 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2274 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2275 This is used in epilogue deallocation functions. */
2276 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2278 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2281 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2284 /* Read-only memory is by definition never modified, and therefore can't
2285 conflict with anything. We don't expect to find read-only set on MEM,
2286 but stupid user tricks can produce them, so don't die. */
2287 if (MEM_READONLY_P (x
))
2290 if (nonoverlapping_memrefs_p (x
, mem
))
2293 x_addr
= get_addr (XEXP (x
, 0));
2295 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2298 x_addr
= canon_rtx (x_addr
);
2299 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2300 SIZE_FOR_MODE (x
), x_addr
, 0))
2303 if (aliases_everything_p (x
))
2306 /* We cannot use aliases_everything_p to test MEM, since we must look
2307 at MEM_MODE, rather than GET_MODE (MEM). */
2308 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2311 /* In true_dependence we also allow BLKmode to alias anything. Why
2312 don't we do this in anti_dependence and output_dependence? */
2313 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2316 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2320 /* Returns nonzero if a write to X might alias a previous read from
2321 (or, if WRITEP is nonzero, a write to) MEM. */
2324 write_dependence_p (rtx mem
, rtx x
, int writep
)
2326 rtx x_addr
, mem_addr
;
2330 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2333 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2334 This is used in epilogue deallocation functions. */
2335 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2337 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2340 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2343 /* A read from read-only memory can't conflict with read-write memory. */
2344 if (!writep
&& MEM_READONLY_P (mem
))
2347 if (nonoverlapping_memrefs_p (x
, mem
))
2350 x_addr
= get_addr (XEXP (x
, 0));
2351 mem_addr
= get_addr (XEXP (mem
, 0));
2355 base
= find_base_term (mem_addr
);
2356 if (base
&& (GET_CODE (base
) == LABEL_REF
2357 || (GET_CODE (base
) == SYMBOL_REF
2358 && CONSTANT_POOL_ADDRESS_P (base
))))
2362 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2366 x_addr
= canon_rtx (x_addr
);
2367 mem_addr
= canon_rtx (mem_addr
);
2369 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2370 SIZE_FOR_MODE (x
), x_addr
, 0))
2374 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2377 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2378 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2381 /* Anti dependence: X is written after read in MEM takes place. */
2384 anti_dependence (rtx mem
, rtx x
)
2386 return write_dependence_p (mem
, x
, /*writep=*/0);
2389 /* Output dependence: X is written after store in MEM takes place. */
2392 output_dependence (rtx mem
, rtx x
)
2394 return write_dependence_p (mem
, x
, /*writep=*/1);
2399 init_alias_once (void)
2403 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2404 /* Check whether this register can hold an incoming pointer
2405 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2406 numbers, so translate if necessary due to register windows. */
2407 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2408 && HARD_REGNO_MODE_OK (i
, Pmode
))
2409 static_reg_base_value
[i
]
2410 = gen_rtx_ADDRESS (VOIDmode
, gen_rtx_REG (Pmode
, i
));
2412 static_reg_base_value
[STACK_POINTER_REGNUM
]
2413 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2414 static_reg_base_value
[ARG_POINTER_REGNUM
]
2415 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2416 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2417 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2418 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2419 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2420 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2424 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2425 to be memory reference. */
2426 static bool memory_modified
;
2428 memory_modified_1 (rtx x
, rtx pat ATTRIBUTE_UNUSED
, void *data
)
2432 if (anti_dependence (x
, (rtx
)data
) || output_dependence (x
, (rtx
)data
))
2433 memory_modified
= true;
2438 /* Return true when INSN possibly modify memory contents of MEM
2439 (i.e. address can be modified). */
2441 memory_modified_in_insn_p (rtx mem
, rtx insn
)
2445 memory_modified
= false;
2446 note_stores (PATTERN (insn
), memory_modified_1
, mem
);
2447 return memory_modified
;
2450 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2454 init_alias_analysis (void)
2456 unsigned int maxreg
= max_reg_num ();
2462 timevar_push (TV_ALIAS_ANALYSIS
);
2464 reg_known_value_size
= maxreg
- FIRST_PSEUDO_REGISTER
;
2465 reg_known_value
= ggc_calloc (reg_known_value_size
, sizeof (rtx
));
2466 reg_known_equiv_p
= xcalloc (reg_known_value_size
, sizeof (bool));
2468 /* Overallocate reg_base_value to allow some growth during loop
2469 optimization. Loop unrolling can create a large number of
2471 if (old_reg_base_value
)
2473 reg_base_value
= old_reg_base_value
;
2474 /* If varray gets large zeroing cost may get important. */
2475 if (VARRAY_SIZE (reg_base_value
) > 256
2476 && VARRAY_SIZE (reg_base_value
) > 4 * maxreg
)
2477 VARRAY_GROW (reg_base_value
, maxreg
);
2478 VARRAY_CLEAR (reg_base_value
);
2479 if (VARRAY_SIZE (reg_base_value
) < maxreg
)
2480 VARRAY_GROW (reg_base_value
, maxreg
);
2484 VARRAY_RTX_INIT (reg_base_value
, maxreg
, "reg_base_value");
2487 new_reg_base_value
= xmalloc (maxreg
* sizeof (rtx
));
2488 reg_seen
= xmalloc (maxreg
);
2490 /* The basic idea is that each pass through this loop will use the
2491 "constant" information from the previous pass to propagate alias
2492 information through another level of assignments.
2494 This could get expensive if the assignment chains are long. Maybe
2495 we should throttle the number of iterations, possibly based on
2496 the optimization level or flag_expensive_optimizations.
2498 We could propagate more information in the first pass by making use
2499 of REG_N_SETS to determine immediately that the alias information
2500 for a pseudo is "constant".
2502 A program with an uninitialized variable can cause an infinite loop
2503 here. Instead of doing a full dataflow analysis to detect such problems
2504 we just cap the number of iterations for the loop.
2506 The state of the arrays for the set chain in question does not matter
2507 since the program has undefined behavior. */
2512 /* Assume nothing will change this iteration of the loop. */
2515 /* We want to assign the same IDs each iteration of this loop, so
2516 start counting from zero each iteration of the loop. */
2519 /* We're at the start of the function each iteration through the
2520 loop, so we're copying arguments. */
2521 copying_arguments
= true;
2523 /* Wipe the potential alias information clean for this pass. */
2524 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
2526 /* Wipe the reg_seen array clean. */
2527 memset (reg_seen
, 0, maxreg
);
2529 /* Mark all hard registers which may contain an address.
2530 The stack, frame and argument pointers may contain an address.
2531 An argument register which can hold a Pmode value may contain
2532 an address even if it is not in BASE_REGS.
2534 The address expression is VOIDmode for an argument and
2535 Pmode for other registers. */
2537 memcpy (new_reg_base_value
, static_reg_base_value
,
2538 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
2540 /* Walk the insns adding values to the new_reg_base_value array. */
2541 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2547 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2548 /* The prologue/epilogue insns are not threaded onto the
2549 insn chain until after reload has completed. Thus,
2550 there is no sense wasting time checking if INSN is in
2551 the prologue/epilogue until after reload has completed. */
2552 if (reload_completed
2553 && prologue_epilogue_contains (insn
))
2557 /* If this insn has a noalias note, process it, Otherwise,
2558 scan for sets. A simple set will have no side effects
2559 which could change the base value of any other register. */
2561 if (GET_CODE (PATTERN (insn
)) == SET
2562 && REG_NOTES (insn
) != 0
2563 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2564 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2566 note_stores (PATTERN (insn
), record_set
, NULL
);
2568 set
= single_set (insn
);
2571 && REG_P (SET_DEST (set
))
2572 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2574 unsigned int regno
= REGNO (SET_DEST (set
));
2575 rtx src
= SET_SRC (set
);
2578 if (REG_NOTES (insn
) != 0
2579 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2580 && REG_N_SETS (regno
) == 1)
2581 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2582 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2583 && ! rtx_varies_p (XEXP (note
, 0), 1)
2584 && ! reg_overlap_mentioned_p (SET_DEST (set
),
2587 set_reg_known_value (regno
, XEXP (note
, 0));
2588 set_reg_known_equiv_p (regno
,
2589 REG_NOTE_KIND (note
) == REG_EQUIV
);
2591 else if (REG_N_SETS (regno
) == 1
2592 && GET_CODE (src
) == PLUS
2593 && REG_P (XEXP (src
, 0))
2594 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
2595 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2597 t
= plus_constant (t
, INTVAL (XEXP (src
, 1)));
2598 set_reg_known_value (regno
, t
);
2599 set_reg_known_equiv_p (regno
, 0);
2601 else if (REG_N_SETS (regno
) == 1
2602 && ! rtx_varies_p (src
, 1))
2604 set_reg_known_value (regno
, src
);
2605 set_reg_known_equiv_p (regno
, 0);
2609 else if (NOTE_P (insn
)
2610 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2611 copying_arguments
= false;
2614 /* Now propagate values from new_reg_base_value to reg_base_value. */
2615 gcc_assert (maxreg
== (unsigned int) max_reg_num());
2617 for (ui
= 0; ui
< maxreg
; ui
++)
2619 if (new_reg_base_value
[ui
]
2620 && new_reg_base_value
[ui
] != VARRAY_RTX (reg_base_value
, ui
)
2621 && ! rtx_equal_p (new_reg_base_value
[ui
],
2622 VARRAY_RTX (reg_base_value
, ui
)))
2624 VARRAY_RTX (reg_base_value
, ui
) = new_reg_base_value
[ui
];
2629 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2631 /* Fill in the remaining entries. */
2632 for (i
= 0; i
< (int)reg_known_value_size
; i
++)
2633 if (reg_known_value
[i
] == 0)
2634 reg_known_value
[i
] = regno_reg_rtx
[i
+ FIRST_PSEUDO_REGISTER
];
2636 /* Simplify the reg_base_value array so that no register refers to
2637 another register, except to special registers indirectly through
2638 ADDRESS expressions.
2640 In theory this loop can take as long as O(registers^2), but unless
2641 there are very long dependency chains it will run in close to linear
2644 This loop may not be needed any longer now that the main loop does
2645 a better job at propagating alias information. */
2651 for (ui
= 0; ui
< maxreg
; ui
++)
2653 rtx base
= VARRAY_RTX (reg_base_value
, ui
);
2654 if (base
&& REG_P (base
))
2656 unsigned int base_regno
= REGNO (base
);
2657 if (base_regno
== ui
) /* register set from itself */
2658 VARRAY_RTX (reg_base_value
, ui
) = 0;
2660 VARRAY_RTX (reg_base_value
, ui
)
2661 = VARRAY_RTX (reg_base_value
, base_regno
);
2666 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2669 free (new_reg_base_value
);
2670 new_reg_base_value
= 0;
2673 timevar_pop (TV_ALIAS_ANALYSIS
);
2677 end_alias_analysis (void)
2679 old_reg_base_value
= reg_base_value
;
2680 ggc_free (reg_known_value
);
2681 reg_known_value
= 0;
2682 reg_known_value_size
= 0;
2683 free (reg_known_equiv_p
);
2684 reg_known_equiv_p
= 0;
2685 if (alias_invariant
)
2687 ggc_free (alias_invariant
);
2688 alias_invariant
= 0;
2689 alias_invariant_size
= 0;
2693 /* Do control and data flow analysis; write some of the results to the
2696 rest_of_handle_cfg (void)
2699 dump_flow_info (dump_file
);
2701 cleanup_cfg (CLEANUP_EXPENSIVE
2702 | (flag_thread_jumps
? CLEANUP_THREADING
: 0));
2705 struct tree_opt_pass pass_cfg
=
2709 rest_of_handle_cfg
, /* execute */
2712 0, /* static_pass_number */
2713 TV_FLOW
, /* tv_id */
2714 0, /* properties_required */
2715 0, /* properties_provided */
2716 0, /* properties_destroyed */
2717 0, /* todo_flags_start */
2718 TODO_dump_func
, /* todo_flags_finish */
2723 #include "gt-alias.h"