PR c++/86342 - -Wdeprecated-copy and system headers.
[official-gcc.git] / gcc / sched-deps.c
blob120b5f0ddc17ec6c1cc9bb305cbe622a22c9bb8c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "params.h"
40 #include "cselib.h"
42 #ifdef INSN_SCHEDULING
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
64 gcc_assert (ds & DEP_ANTI);
66 return REG_DEP_ANTI;
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
73 switch (dk)
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
90 /* Functions to operate with dependence information container - dep_t. */
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
112 ds_t ds;
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
119 init_dep_1 (dep, pro, con, kind, ds);
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
126 memcpy (to, from, sizeof (*to));
129 static void dump_ds (FILE *, ds_t);
131 /* Define flags for dump_dep (). */
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
160 fprintf (dump, "<");
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
168 if (flags & DUMP_DEP_TYPE)
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
173 switch (type)
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
191 default:
192 gcc_unreachable ();
193 break;
196 fprintf (dump, "%c; ", t);
199 if (flags & DUMP_DEP_STATUS)
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
205 fprintf (dump, ">");
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
237 dep_link_t next = *prev_nextp;
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
246 /* Fix next node. */
247 if (next != NULL)
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
254 /* Fix prev node. */
255 *prev_nextp = l;
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
276 *prev_nextp = next;
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
289 detach_dep_link (link);
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
333 ++dn_pool_diff;
335 return n;
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
347 --dn_pool_diff;
349 dn_pool->remove (n);
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
358 /* Functions to operate with dependences lists - deps_list_t. */
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
364 return DEPS_LIST_N_LINKS (l) == 0;
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
371 deps_list_t l = dl_pool->allocate ();
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
376 ++dl_pool_diff;
377 return l;
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
384 gcc_assert (deps_list_empty_p (l));
386 --dl_pool_diff;
388 dl_pool->remove (l);
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
406 dep_link_t link = DEPS_LIST_FIRST (l);
408 if (link == NULL)
409 break;
411 remove_from_deps_list (link, l);
413 while (1);
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
421 if (current_sched_info->flags & DO_SPECULATION)
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
426 if (current_sched_info->flags & DO_PREDICATION)
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap_head *true_dependency_cache = NULL;
465 static bitmap_head *output_dependency_cache = NULL;
466 static bitmap_head *anti_dependency_cache = NULL;
467 static bitmap_head *control_dependency_cache = NULL;
468 static bitmap_head *spec_dependency_cache = NULL;
469 static int cache_size;
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (struct deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
484 static void flush_pending_lists (struct deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (struct deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (struct deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (struct deps_desc *, rtx, rtx_insn *);
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
496 static void check_dep (dep_t, bool);
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
501 static int
502 deps_may_trap_p (const_rtx mem)
504 const_rtx addr = XEXP (mem, 0);
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
512 return rtx_addr_can_trap_p (addr);
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
522 rtx pat = PATTERN (insn);
523 rtx src;
525 if (rev)
526 *rev = false;
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
534 src = SET_SRC (pc_set (insn));
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
543 if (revcode == UNKNOWN)
544 return 0;
546 if (rev)
547 *rev = true;
548 return cond;
551 return 0;
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
572 return cond;
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
581 bool tmp;
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
614 return !! sched_get_condition_with_rev (insn, NULL);
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
659 return false;
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
670 if (!NONJUMP_INSN_P (insn))
671 return false;
673 if (SCHED_GROUP_P (insn))
674 return false;
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
679 if (side_effects_p (PATTERN (insn)))
680 return false;
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
700 return true;
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
712 sd_list_types_def types = *types_ptr;
714 if (types & SD_LIST_HARD_BACK)
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
720 else if (types & SD_LIST_SPEC_BACK)
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
726 else if (types & SD_LIST_FORW)
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
732 else if (types & SD_LIST_RES_BACK)
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
738 else if (types & SD_LIST_RES_FORW)
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
744 else
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
756 int size = 0;
758 while (list_types != SD_LIST_NONE)
760 deps_list_t list;
761 bool resolved_p;
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
768 return size;
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
776 while (list_types != SD_LIST_NONE)
778 deps_list_t list;
779 bool resolved_p;
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
786 return true;
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
799 /* ??? It would be nice to allocate dependency caches here. */
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
806 /* ??? It would be nice to deallocate dependency caches here. */
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
839 if (resolved_p)
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
844 else
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
858 found_p = true;
859 break;
862 else
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
868 found_p = true;
869 break;
873 if (found_p)
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
878 return dep;
881 return NULL;
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
933 return DEP_NODEP;
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
959 enum reg_note present_dep_type;
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
977 else
979 ds_t present_dep_types = 0;
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1002 else
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1016 return DEP_CHANGED;
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1028 switch (DEP_TYPE (dep))
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1046 default:
1047 gcc_unreachable ();
1050 else
1052 ds_t ds = DEP_STATUS (dep);
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1063 if (ds & SPECULATIVE)
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1083 switch (old_type)
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1097 default:
1098 gcc_unreachable ();
1102 set_dependency_caches (dep);
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1158 if (new_status & SPECULATIVE)
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1171 dw_t dw;
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1177 new_status = ds_merge (dep_status, ds);
1181 ds = new_status;
1183 if (dep_status != ds)
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1198 return res;
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1221 if (true_dependency_cache != NULL)
1223 switch (ask_dependency_caches (new_dep))
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1245 default:
1246 gcc_unreachable ();
1247 break;
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1276 if (mem1 != NULL_RTX)
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1283 sd_add_dep (new_dep, resolved_p);
1285 return DEP_CREATED;
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1296 rtx_insn *con = DEP_CON (dep);
1298 if (!resolved_p)
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1307 else
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1331 copy_dep (DEP_NODE_DEP (n), dep);
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1337 if (flag_checking)
1338 check_dep (dep, false);
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1412 dep_def _new_dep, *new_dep = &_new_dep;
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1432 if (true_dependency_cache != NULL)
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1452 delete_dep_node (n);
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1476 all = (flags & 1);
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1481 fprintf (dump, "[");
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1486 if (flags & DUMP_LISTS_DEPS)
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1543 if (dep_type == REG_DEP_CONTROL)
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1553 add_dependence_1 (con, pro, dep_type);
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1569 mark_as_hard = false;
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1576 static void
1577 add_dependence_list_and_free (struct deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1589 free_INSN_LIST_list (listp);
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1598 int removed = 0;
1600 while (*listp)
1602 if ((*listp)->insn () == insn)
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1612 return removed;
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1621 int removed = 0;
1623 while (*listp)
1625 if (XEXP (*listp, 0) == insn)
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1637 return removed;
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1676 i = prev_nonnote_insn (i);
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1687 delete_all_dependences (insn);
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1710 static void
1711 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1727 else
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1737 if (sched_deps_info->use_cselib)
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1755 if (for_write)
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1778 if (DEBUG_INSN_P (insn))
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1787 if (!deps->readonly)
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1795 mark_as_hard = false;
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1801 /* Implement hooks for haifa scheduler. */
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1806 gcc_assert (insn && !cur_insn);
1808 cur_insn = insn;
1811 static void
1812 haifa_finish_insn (void)
1814 cur_insn = NULL;
1817 void
1818 haifa_note_reg_set (int regno)
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1823 void
1824 haifa_note_reg_clobber (int regno)
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1829 void
1830 haifa_note_reg_use (int regno)
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1838 if (!(ds & SPECULATIVE))
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1847 dep_def _dep, *dep = &_dep;
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1869 static void
1870 note_reg_use (int r)
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1876 static void
1877 note_reg_set (int r)
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1883 static void
1884 note_reg_clobber (int r)
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1931 struct reg_use_data *use;
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1945 struct reg_set_data *set;
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx_insn *insn)
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1997 struct reg_use_data *use;
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 int incr, new_incr;
2012 enum reg_class cl;
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2024 else if (unused_p)
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 else
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2050 while (regno < last)
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2058 if (clobber_p)
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2063 else if (unused_p)
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 else
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2079 regno++;
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 int regno;
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2095 if (! REG_P (reg))
2096 return;
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2111 int incr;
2112 enum reg_class cl;
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2128 enum reg_class cl;
2129 int last = regno + nregs;
2131 while (regno < last)
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2140 regno++;
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2149 int regno;
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2154 if (! REG_P (reg))
2155 return;
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2194 if (! INSN_P (insn))
2195 return;
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2206 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2208 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (struct deps_desc *deps, int regno)
2250 int max_regno = regno + 1;
2252 gcc_assert (!reload_completed);
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2258 deps->max_reg = max_regno;
2259 return;
2262 if (max_regno > deps->max_reg)
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2280 size_t new_reg_info_p_size = max_regno + 128;
2282 gcc_assert (!reload_completed && sel_sched_p ());
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2296 static void
2297 sched_analyze_reg (struct deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2305 maybe_extend_reg_info_p ();
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2317 else if (ref == USE)
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2322 else
2324 while (--i >= 0)
2325 note_reg_clobber (regno + i);
2329 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2330 it does not reload. Ignore these as they have served their
2331 purpose already. */
2332 else if (regno >= deps->max_reg)
2334 enum rtx_code code = GET_CODE (PATTERN (insn));
2335 gcc_assert (code == USE || code == CLOBBER);
2338 else
2340 if (ref == SET)
2341 note_reg_set (regno);
2342 else if (ref == USE)
2343 note_reg_use (regno);
2344 else
2345 note_reg_clobber (regno);
2347 /* Pseudos that are REG_EQUIV to something may be replaced
2348 by that during reloading. We need only add dependencies for
2349 the address in the REG_EQUIV note. */
2350 if (!reload_completed && get_reg_known_equiv_p (regno))
2352 rtx t = get_reg_known_value (regno);
2353 if (MEM_P (t))
2354 sched_analyze_2 (deps, XEXP (t, 0), insn);
2357 /* Don't let it cross a call after scheduling if it doesn't
2358 already cross one. */
2359 if (REG_N_CALLS_CROSSED (regno) == 0)
2361 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2362 deps->sched_before_next_call
2363 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2364 else
2365 add_dependence_list (insn, deps->last_function_call, 1,
2366 REG_DEP_ANTI, false);
2371 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2372 rtx, X, creating all dependencies generated by the write to the
2373 destination of X, and reads of everything mentioned. */
2375 static void
2376 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2378 rtx dest = XEXP (x, 0);
2379 enum rtx_code code = GET_CODE (x);
2380 bool cslr_p = can_start_lhs_rhs_p;
2382 can_start_lhs_rhs_p = false;
2384 gcc_assert (dest);
2385 if (dest == 0)
2386 return;
2388 if (cslr_p && sched_deps_info->start_lhs)
2389 sched_deps_info->start_lhs (dest);
2391 if (GET_CODE (dest) == PARALLEL)
2393 int i;
2395 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2396 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2397 sched_analyze_1 (deps,
2398 gen_rtx_CLOBBER (VOIDmode,
2399 XEXP (XVECEXP (dest, 0, i), 0)),
2400 insn);
2402 if (cslr_p && sched_deps_info->finish_lhs)
2403 sched_deps_info->finish_lhs ();
2405 if (code == SET)
2407 can_start_lhs_rhs_p = cslr_p;
2409 sched_analyze_2 (deps, SET_SRC (x), insn);
2411 can_start_lhs_rhs_p = false;
2414 return;
2417 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2418 || GET_CODE (dest) == ZERO_EXTRACT)
2420 if (GET_CODE (dest) == STRICT_LOW_PART
2421 || GET_CODE (dest) == ZERO_EXTRACT
2422 || read_modify_subreg_p (dest))
2424 /* These both read and modify the result. We must handle
2425 them as writes to get proper dependencies for following
2426 instructions. We must handle them as reads to get proper
2427 dependencies from this to previous instructions.
2428 Thus we need to call sched_analyze_2. */
2430 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2432 if (GET_CODE (dest) == ZERO_EXTRACT)
2434 /* The second and third arguments are values read by this insn. */
2435 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2436 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2438 dest = XEXP (dest, 0);
2441 if (REG_P (dest))
2443 int regno = REGNO (dest);
2444 machine_mode mode = GET_MODE (dest);
2446 sched_analyze_reg (deps, regno, mode, code, insn);
2448 #ifdef STACK_REGS
2449 /* Treat all writes to a stack register as modifying the TOS. */
2450 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2452 /* Avoid analyzing the same register twice. */
2453 if (regno != FIRST_STACK_REG)
2454 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2456 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2457 FIRST_STACK_REG);
2459 #endif
2461 else if (MEM_P (dest))
2463 /* Writing memory. */
2464 rtx t = dest;
2466 if (sched_deps_info->use_cselib)
2468 machine_mode address_mode = get_address_mode (dest);
2470 t = shallow_copy_rtx (dest);
2471 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2472 GET_MODE (t), insn);
2473 XEXP (t, 0)
2474 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2475 insn);
2477 t = canon_rtx (t);
2479 /* Pending lists can't get larger with a readonly context. */
2480 if (!deps->readonly
2481 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2482 >= MAX_PENDING_LIST_LENGTH))
2484 /* Flush all pending reads and writes to prevent the pending lists
2485 from getting any larger. Insn scheduling runs too slowly when
2486 these lists get long. When compiling GCC with itself,
2487 this flush occurs 8 times for sparc, and 10 times for m88k using
2488 the default value of 32. */
2489 flush_pending_lists (deps, insn, false, true);
2491 else
2493 rtx_insn_list *pending;
2494 rtx_expr_list *pending_mem;
2496 pending = deps->pending_read_insns;
2497 pending_mem = deps->pending_read_mems;
2498 while (pending)
2500 if (anti_dependence (pending_mem->element (), t)
2501 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2502 note_mem_dep (t, pending_mem->element (), pending->insn (),
2503 DEP_ANTI);
2505 pending = pending->next ();
2506 pending_mem = pending_mem->next ();
2509 pending = deps->pending_write_insns;
2510 pending_mem = deps->pending_write_mems;
2511 while (pending)
2513 if (output_dependence (pending_mem->element (), t)
2514 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2515 note_mem_dep (t, pending_mem->element (),
2516 pending->insn (),
2517 DEP_OUTPUT);
2519 pending = pending->next ();
2520 pending_mem = pending_mem-> next ();
2523 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2524 REG_DEP_ANTI, true);
2525 add_dependence_list (insn, deps->pending_jump_insns, 1,
2526 REG_DEP_CONTROL, true);
2528 if (!deps->readonly)
2529 add_insn_mem_dependence (deps, false, insn, dest);
2531 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2534 if (cslr_p && sched_deps_info->finish_lhs)
2535 sched_deps_info->finish_lhs ();
2537 /* Analyze reads. */
2538 if (GET_CODE (x) == SET)
2540 can_start_lhs_rhs_p = cslr_p;
2542 sched_analyze_2 (deps, SET_SRC (x), insn);
2544 can_start_lhs_rhs_p = false;
2548 /* Analyze the uses of memory and registers in rtx X in INSN. */
2549 static void
2550 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx_insn *insn)
2552 int i;
2553 int j;
2554 enum rtx_code code;
2555 const char *fmt;
2556 bool cslr_p = can_start_lhs_rhs_p;
2558 can_start_lhs_rhs_p = false;
2560 gcc_assert (x);
2561 if (x == 0)
2562 return;
2564 if (cslr_p && sched_deps_info->start_rhs)
2565 sched_deps_info->start_rhs (x);
2567 code = GET_CODE (x);
2569 switch (code)
2571 CASE_CONST_ANY:
2572 case SYMBOL_REF:
2573 case CONST:
2574 case LABEL_REF:
2575 /* Ignore constants. */
2576 if (cslr_p && sched_deps_info->finish_rhs)
2577 sched_deps_info->finish_rhs ();
2579 return;
2581 case CC0:
2582 if (!HAVE_cc0)
2583 gcc_unreachable ();
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2594 return;
2596 case REG:
2598 int regno = REGNO (x);
2599 machine_mode mode = GET_MODE (x);
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 #endif
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2617 return;
2620 case MEM:
2622 /* Reading memory. */
2623 rtx_insn_list *u;
2624 rtx_insn_list *pending;
2625 rtx_expr_list *pending_mem;
2626 rtx t = x;
2628 if (sched_deps_info->use_cselib)
2630 machine_mode address_mode = get_address_mode (t);
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2640 if (!DEBUG_INSN_P (insn))
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2647 if (read_dependence (pending_mem->element (), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 pending->insn ()))
2650 note_mem_dep (t, pending_mem->element (),
2651 pending->insn (),
2652 DEP_ANTI);
2654 pending = pending->next ();
2655 pending_mem = pending_mem->next ();
2658 pending = deps->pending_write_insns;
2659 pending_mem = deps->pending_write_mems;
2660 while (pending)
2662 if (true_dependence (pending_mem->element (), VOIDmode, t)
2663 && ! sched_insns_conditions_mutex_p (insn,
2664 pending->insn ()))
2665 note_mem_dep (t, pending_mem->element (),
2666 pending->insn (),
2667 sched_deps_info->generate_spec_deps
2668 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2670 pending = pending->next ();
2671 pending_mem = pending_mem->next ();
2674 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2675 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2677 for (u = deps->pending_jump_insns; u; u = u->next ())
2678 if (deps_may_trap_p (x))
2680 if ((sched_deps_info->generate_spec_deps)
2681 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2683 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2684 MAX_DEP_WEAK);
2686 note_dep (u->insn (), ds);
2688 else
2689 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2693 /* Always add these dependencies to pending_reads, since
2694 this insn may be followed by a write. */
2695 if (!deps->readonly)
2697 if ((deps->pending_read_list_length
2698 + deps->pending_write_list_length)
2699 >= MAX_PENDING_LIST_LENGTH
2700 && !DEBUG_INSN_P (insn))
2701 flush_pending_lists (deps, insn, true, true);
2702 add_insn_mem_dependence (deps, true, insn, x);
2705 sched_analyze_2 (deps, XEXP (x, 0), insn);
2707 if (cslr_p && sched_deps_info->finish_rhs)
2708 sched_deps_info->finish_rhs ();
2710 return;
2713 /* Force pending stores to memory in case a trap handler needs them.
2714 Also force pending loads from memory; loads and stores can segfault
2715 and the signal handler won't be triggered if the trap insn was moved
2716 above load or store insn. */
2717 case TRAP_IF:
2718 flush_pending_lists (deps, insn, true, true);
2719 break;
2721 case PREFETCH:
2722 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2723 reg_pending_barrier = TRUE_BARRIER;
2724 /* Prefetch insn contains addresses only. So if the prefetch
2725 address has no registers, there will be no dependencies on
2726 the prefetch insn. This is wrong with result code
2727 correctness point of view as such prefetch can be moved below
2728 a jump insn which usually generates MOVE_BARRIER preventing
2729 to move insns containing registers or memories through the
2730 barrier. It is also wrong with generated code performance
2731 point of view as prefetch withouth dependecies will have a
2732 tendency to be issued later instead of earlier. It is hard
2733 to generate accurate dependencies for prefetch insns as
2734 prefetch has only the start address but it is better to have
2735 something than nothing. */
2736 if (!deps->readonly)
2738 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2739 if (sched_deps_info->use_cselib)
2740 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2741 add_insn_mem_dependence (deps, true, insn, x);
2743 break;
2745 case UNSPEC_VOLATILE:
2746 flush_pending_lists (deps, insn, true, true);
2747 /* FALLTHRU */
2749 case ASM_OPERANDS:
2750 case ASM_INPUT:
2752 /* Traditional and volatile asm instructions must be considered to use
2753 and clobber all hard registers, all pseudo-registers and all of
2754 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2756 Consider for instance a volatile asm that changes the fpu rounding
2757 mode. An insn should not be moved across this even if it only uses
2758 pseudo-regs because it might give an incorrectly rounded result. */
2759 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2760 && !DEBUG_INSN_P (insn))
2761 reg_pending_barrier = TRUE_BARRIER;
2763 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2764 We can not just fall through here since then we would be confused
2765 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2766 traditional asms unlike their normal usage. */
2768 if (code == ASM_OPERANDS)
2770 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2771 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2776 return;
2778 break;
2781 case PRE_DEC:
2782 case POST_DEC:
2783 case PRE_INC:
2784 case POST_INC:
2785 /* These both read and modify the result. We must handle them as writes
2786 to get proper dependencies for following instructions. We must handle
2787 them as reads to get proper dependencies from this to previous
2788 instructions. Thus we need to pass them to both sched_analyze_1
2789 and sched_analyze_2. We must call sched_analyze_2 first in order
2790 to get the proper antecedent for the read. */
2791 sched_analyze_2 (deps, XEXP (x, 0), insn);
2792 sched_analyze_1 (deps, x, insn);
2794 if (cslr_p && sched_deps_info->finish_rhs)
2795 sched_deps_info->finish_rhs ();
2797 return;
2799 case POST_MODIFY:
2800 case PRE_MODIFY:
2801 /* op0 = op0 + op1 */
2802 sched_analyze_2 (deps, XEXP (x, 0), insn);
2803 sched_analyze_2 (deps, XEXP (x, 1), insn);
2804 sched_analyze_1 (deps, x, insn);
2806 if (cslr_p && sched_deps_info->finish_rhs)
2807 sched_deps_info->finish_rhs ();
2809 return;
2811 default:
2812 break;
2815 /* Other cases: walk the insn. */
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2819 if (fmt[i] == 'e')
2820 sched_analyze_2 (deps, XEXP (x, i), insn);
2821 else if (fmt[i] == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2826 if (cslr_p && sched_deps_info->finish_rhs)
2827 sched_deps_info->finish_rhs ();
2830 /* Try to group two fusible insns together to prevent scheduler
2831 from scheduling them apart. */
2833 static void
2834 sched_macro_fuse_insns (rtx_insn *insn)
2836 rtx_insn *prev;
2837 /* No target hook would return true for debug insn as any of the
2838 hook operand, and with very large sequences of only debug insns
2839 where on each we call sched_macro_fuse_insns it has quadratic
2840 compile time complexity. */
2841 if (DEBUG_INSN_P (insn))
2842 return;
2843 prev = prev_nonnote_nondebug_insn (insn);
2844 if (!prev)
2845 return;
2847 if (any_condjump_p (insn))
2849 unsigned int condreg1, condreg2;
2850 rtx cc_reg_1;
2851 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2852 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2853 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2854 && modified_in_p (cc_reg_1, prev))
2856 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2857 SCHED_GROUP_P (insn) = 1;
2858 return;
2862 if (single_set (insn) && single_set (prev))
2864 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2865 SCHED_GROUP_P (insn) = 1;
2869 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2870 void
2871 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2873 extract_insn (insn);
2874 preprocess_constraints (insn);
2875 alternative_mask preferred = get_preferred_alternatives (insn);
2876 ira_implicitly_set_insn_hard_regs (temp, preferred);
2877 AND_COMPL_HARD_REG_SET (*temp, ira_no_alloc_regs);
2880 /* Analyze an INSN with pattern X to find all dependencies. */
2881 static void
2882 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx_insn *insn)
2884 RTX_CODE code = GET_CODE (x);
2885 rtx link;
2886 unsigned i;
2887 reg_set_iterator rsi;
2889 if (! reload_completed)
2891 HARD_REG_SET temp;
2892 get_implicit_reg_pending_clobbers (&temp, insn);
2893 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2896 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2897 && code == SET);
2899 /* Group compare and branch insns for macro-fusion. */
2900 if (!deps->readonly
2901 && targetm.sched.macro_fusion_p
2902 && targetm.sched.macro_fusion_p ())
2903 sched_macro_fuse_insns (insn);
2905 if (may_trap_p (x))
2906 /* Avoid moving trapping instructions across function calls that might
2907 not always return. */
2908 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2909 1, REG_DEP_ANTI, true);
2911 /* We must avoid creating a situation in which two successors of the
2912 current block have different unwind info after scheduling. If at any
2913 point the two paths re-join this leads to incorrect unwind info. */
2914 /* ??? There are certain situations involving a forced frame pointer in
2915 which, with extra effort, we could fix up the unwind info at a later
2916 CFG join. However, it seems better to notice these cases earlier
2917 during prologue generation and avoid marking the frame pointer setup
2918 as frame-related at all. */
2919 if (RTX_FRAME_RELATED_P (insn))
2921 /* Make sure prologue insn is scheduled before next jump. */
2922 deps->sched_before_next_jump
2923 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2925 /* Make sure epilogue insn is scheduled after preceding jumps. */
2926 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2927 REG_DEP_ANTI, true);
2928 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2929 true);
2932 if (code == COND_EXEC)
2934 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2936 /* ??? Should be recording conditions so we reduce the number of
2937 false dependencies. */
2938 x = COND_EXEC_CODE (x);
2939 code = GET_CODE (x);
2941 if (code == SET || code == CLOBBER)
2943 sched_analyze_1 (deps, x, insn);
2945 /* Bare clobber insns are used for letting life analysis, reg-stack
2946 and others know that a value is dead. Depend on the last call
2947 instruction so that reg-stack won't get confused. */
2948 if (code == CLOBBER)
2949 add_dependence_list (insn, deps->last_function_call, 1,
2950 REG_DEP_OUTPUT, true);
2952 else if (code == PARALLEL)
2954 for (i = XVECLEN (x, 0); i--;)
2956 rtx sub = XVECEXP (x, 0, i);
2957 code = GET_CODE (sub);
2959 if (code == COND_EXEC)
2961 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2962 sub = COND_EXEC_CODE (sub);
2963 code = GET_CODE (sub);
2965 if (code == SET || code == CLOBBER)
2966 sched_analyze_1 (deps, sub, insn);
2967 else
2968 sched_analyze_2 (deps, sub, insn);
2971 else
2972 sched_analyze_2 (deps, x, insn);
2974 /* Mark registers CLOBBERED or used by called function. */
2975 if (CALL_P (insn))
2977 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2979 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2980 sched_analyze_1 (deps, XEXP (link, 0), insn);
2981 else if (GET_CODE (XEXP (link, 0)) != SET)
2982 sched_analyze_2 (deps, XEXP (link, 0), insn);
2984 /* Don't schedule anything after a tail call, tail call needs
2985 to use at least all call-saved registers. */
2986 if (SIBLING_CALL_P (insn))
2987 reg_pending_barrier = TRUE_BARRIER;
2988 else if (find_reg_note (insn, REG_SETJMP, NULL))
2989 reg_pending_barrier = MOVE_BARRIER;
2992 if (JUMP_P (insn))
2994 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2995 if (next && BARRIER_P (next))
2996 reg_pending_barrier = MOVE_BARRIER;
2997 else
2999 rtx_insn_list *pending;
3000 rtx_expr_list *pending_mem;
3002 if (sched_deps_info->compute_jump_reg_dependencies)
3004 (*sched_deps_info->compute_jump_reg_dependencies)
3005 (insn, reg_pending_control_uses);
3007 /* Make latency of jump equal to 0 by using anti-dependence. */
3008 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3010 struct deps_reg *reg_last = &deps->reg_last[i];
3011 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3012 false);
3013 add_dependence_list (insn, reg_last->implicit_sets,
3014 0, REG_DEP_ANTI, false);
3015 add_dependence_list (insn, reg_last->clobbers, 0,
3016 REG_DEP_ANTI, false);
3020 /* All memory writes and volatile reads must happen before the
3021 jump. Non-volatile reads must happen before the jump iff
3022 the result is needed by the above register used mask. */
3024 pending = deps->pending_write_insns;
3025 pending_mem = deps->pending_write_mems;
3026 while (pending)
3028 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3029 add_dependence (insn, pending->insn (),
3030 REG_DEP_OUTPUT);
3031 pending = pending->next ();
3032 pending_mem = pending_mem->next ();
3035 pending = deps->pending_read_insns;
3036 pending_mem = deps->pending_read_mems;
3037 while (pending)
3039 if (MEM_VOLATILE_P (pending_mem->element ())
3040 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3041 add_dependence (insn, pending->insn (),
3042 REG_DEP_OUTPUT);
3043 pending = pending->next ();
3044 pending_mem = pending_mem->next ();
3047 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3048 REG_DEP_ANTI, true);
3049 add_dependence_list (insn, deps->pending_jump_insns, 1,
3050 REG_DEP_ANTI, true);
3054 /* If this instruction can throw an exception, then moving it changes
3055 where block boundaries fall. This is mighty confusing elsewhere.
3056 Therefore, prevent such an instruction from being moved. Same for
3057 non-jump instructions that define block boundaries.
3058 ??? Unclear whether this is still necessary in EBB mode. If not,
3059 add_branch_dependences should be adjusted for RGN mode instead. */
3060 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3061 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3062 reg_pending_barrier = MOVE_BARRIER;
3064 if (sched_pressure != SCHED_PRESSURE_NONE)
3066 setup_insn_reg_uses (deps, insn);
3067 init_insn_reg_pressure_info (insn);
3070 /* Add register dependencies for insn. */
3071 if (DEBUG_INSN_P (insn))
3073 rtx_insn *prev = deps->last_debug_insn;
3074 rtx_insn_list *u;
3076 if (!deps->readonly)
3077 deps->last_debug_insn = insn;
3079 if (prev)
3080 add_dependence (insn, prev, REG_DEP_ANTI);
3082 add_dependence_list (insn, deps->last_function_call, 1,
3083 REG_DEP_ANTI, false);
3085 if (!sel_sched_p ())
3086 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3087 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3089 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3091 struct deps_reg *reg_last = &deps->reg_last[i];
3092 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3093 /* There's no point in making REG_DEP_CONTROL dependencies for
3094 debug insns. */
3095 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3096 false);
3098 if (!deps->readonly)
3099 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3101 CLEAR_REG_SET (reg_pending_uses);
3103 /* Quite often, a debug insn will refer to stuff in the
3104 previous instruction, but the reason we want this
3105 dependency here is to make sure the scheduler doesn't
3106 gratuitously move a debug insn ahead. This could dirty
3107 DF flags and cause additional analysis that wouldn't have
3108 occurred in compilation without debug insns, and such
3109 additional analysis can modify the generated code. */
3110 prev = PREV_INSN (insn);
3112 if (prev && NONDEBUG_INSN_P (prev))
3113 add_dependence (insn, prev, REG_DEP_ANTI);
3115 else
3117 regset_head set_or_clobbered;
3119 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3121 struct deps_reg *reg_last = &deps->reg_last[i];
3122 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3123 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3124 false);
3125 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3126 false);
3128 if (!deps->readonly)
3130 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3131 reg_last->uses_length++;
3135 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3136 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3138 struct deps_reg *reg_last = &deps->reg_last[i];
3139 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3140 add_dependence_list (insn, reg_last->implicit_sets, 0,
3141 REG_DEP_ANTI, false);
3142 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3143 false);
3145 if (!deps->readonly)
3147 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3148 reg_last->uses_length++;
3152 if (targetm.sched.exposed_pipeline)
3154 INIT_REG_SET (&set_or_clobbered);
3155 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3156 reg_pending_sets);
3157 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3159 struct deps_reg *reg_last = &deps->reg_last[i];
3160 rtx list;
3161 for (list = reg_last->uses; list; list = XEXP (list, 1))
3163 rtx other = XEXP (list, 0);
3164 if (INSN_CACHED_COND (other) != const_true_rtx
3165 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3166 INSN_CACHED_COND (other) = const_true_rtx;
3171 /* If the current insn is conditional, we can't free any
3172 of the lists. */
3173 if (sched_has_condition_p (insn))
3175 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3177 struct deps_reg *reg_last = &deps->reg_last[i];
3178 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3179 false);
3180 add_dependence_list (insn, reg_last->implicit_sets, 0,
3181 REG_DEP_ANTI, false);
3182 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3183 false);
3184 add_dependence_list (insn, reg_last->control_uses, 0,
3185 REG_DEP_CONTROL, false);
3187 if (!deps->readonly)
3189 reg_last->clobbers
3190 = alloc_INSN_LIST (insn, reg_last->clobbers);
3191 reg_last->clobbers_length++;
3194 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3196 struct deps_reg *reg_last = &deps->reg_last[i];
3197 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3198 false);
3199 add_dependence_list (insn, reg_last->implicit_sets, 0,
3200 REG_DEP_ANTI, false);
3201 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3202 false);
3203 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3204 false);
3205 add_dependence_list (insn, reg_last->control_uses, 0,
3206 REG_DEP_CONTROL, false);
3208 if (!deps->readonly)
3209 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3212 else
3214 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3216 struct deps_reg *reg_last = &deps->reg_last[i];
3217 if (reg_last->uses_length >= MAX_PENDING_LIST_LENGTH
3218 || reg_last->clobbers_length >= MAX_PENDING_LIST_LENGTH)
3220 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3221 REG_DEP_OUTPUT, false);
3222 add_dependence_list_and_free (deps, insn,
3223 &reg_last->implicit_sets, 0,
3224 REG_DEP_ANTI, false);
3225 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3226 REG_DEP_ANTI, false);
3227 add_dependence_list_and_free (deps, insn,
3228 &reg_last->control_uses, 0,
3229 REG_DEP_ANTI, false);
3230 add_dependence_list_and_free (deps, insn,
3231 &reg_last->clobbers, 0,
3232 REG_DEP_OUTPUT, false);
3234 if (!deps->readonly)
3236 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3237 reg_last->clobbers_length = 0;
3238 reg_last->uses_length = 0;
3241 else
3243 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3244 false);
3245 add_dependence_list (insn, reg_last->implicit_sets, 0,
3246 REG_DEP_ANTI, false);
3247 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3248 false);
3249 add_dependence_list (insn, reg_last->control_uses, 0,
3250 REG_DEP_CONTROL, false);
3253 if (!deps->readonly)
3255 reg_last->clobbers_length++;
3256 reg_last->clobbers
3257 = alloc_INSN_LIST (insn, reg_last->clobbers);
3260 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3262 struct deps_reg *reg_last = &deps->reg_last[i];
3264 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3265 REG_DEP_OUTPUT, false);
3266 add_dependence_list_and_free (deps, insn,
3267 &reg_last->implicit_sets,
3268 0, REG_DEP_ANTI, false);
3269 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3270 REG_DEP_OUTPUT, false);
3271 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3272 REG_DEP_ANTI, false);
3273 add_dependence_list (insn, reg_last->control_uses, 0,
3274 REG_DEP_CONTROL, false);
3276 if (!deps->readonly)
3278 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3279 reg_last->uses_length = 0;
3280 reg_last->clobbers_length = 0;
3284 if (!deps->readonly)
3286 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3288 struct deps_reg *reg_last = &deps->reg_last[i];
3289 reg_last->control_uses
3290 = alloc_INSN_LIST (insn, reg_last->control_uses);
3295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3296 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3298 struct deps_reg *reg_last = &deps->reg_last[i];
3299 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3300 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3301 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3302 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3303 false);
3305 if (!deps->readonly)
3306 reg_last->implicit_sets
3307 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3310 if (!deps->readonly)
3312 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3313 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3314 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3315 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3316 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3317 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3318 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3320 /* Set up the pending barrier found. */
3321 deps->last_reg_pending_barrier = reg_pending_barrier;
3324 CLEAR_REG_SET (reg_pending_uses);
3325 CLEAR_REG_SET (reg_pending_clobbers);
3326 CLEAR_REG_SET (reg_pending_sets);
3327 CLEAR_REG_SET (reg_pending_control_uses);
3328 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3329 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3331 /* Add dependencies if a scheduling barrier was found. */
3332 if (reg_pending_barrier)
3334 /* In the case of barrier the most added dependencies are not
3335 real, so we use anti-dependence here. */
3336 if (sched_has_condition_p (insn))
3338 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3340 struct deps_reg *reg_last = &deps->reg_last[i];
3341 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3342 true);
3343 add_dependence_list (insn, reg_last->sets, 0,
3344 reg_pending_barrier == TRUE_BARRIER
3345 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3346 add_dependence_list (insn, reg_last->implicit_sets, 0,
3347 REG_DEP_ANTI, true);
3348 add_dependence_list (insn, reg_last->clobbers, 0,
3349 reg_pending_barrier == TRUE_BARRIER
3350 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3353 else
3355 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3357 struct deps_reg *reg_last = &deps->reg_last[i];
3358 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3359 REG_DEP_ANTI, true);
3360 add_dependence_list_and_free (deps, insn,
3361 &reg_last->control_uses, 0,
3362 REG_DEP_CONTROL, true);
3363 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3364 reg_pending_barrier == TRUE_BARRIER
3365 ? REG_DEP_TRUE : REG_DEP_ANTI,
3366 true);
3367 add_dependence_list_and_free (deps, insn,
3368 &reg_last->implicit_sets, 0,
3369 REG_DEP_ANTI, true);
3370 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3371 reg_pending_barrier == TRUE_BARRIER
3372 ? REG_DEP_TRUE : REG_DEP_ANTI,
3373 true);
3375 if (!deps->readonly)
3377 reg_last->uses_length = 0;
3378 reg_last->clobbers_length = 0;
3383 if (!deps->readonly)
3384 for (i = 0; i < (unsigned)deps->max_reg; i++)
3386 struct deps_reg *reg_last = &deps->reg_last[i];
3387 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3388 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3391 /* Don't flush pending lists on speculative checks for
3392 selective scheduling. */
3393 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3394 flush_pending_lists (deps, insn, true, true);
3396 reg_pending_barrier = NOT_A_BARRIER;
3399 /* If a post-call group is still open, see if it should remain so.
3400 This insn must be a simple move of a hard reg to a pseudo or
3401 vice-versa.
3403 We must avoid moving these insns for correctness on targets
3404 with small register classes, and for special registers like
3405 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3406 hard regs for all targets. */
3408 if (deps->in_post_call_group_p)
3410 rtx tmp, set = single_set (insn);
3411 int src_regno, dest_regno;
3413 if (set == NULL)
3415 if (DEBUG_INSN_P (insn))
3416 /* We don't want to mark debug insns as part of the same
3417 sched group. We know they really aren't, but if we use
3418 debug insns to tell that a call group is over, we'll
3419 get different code if debug insns are not there and
3420 instructions that follow seem like they should be part
3421 of the call group.
3423 Also, if we did, chain_to_prev_insn would move the
3424 deps of the debug insn to the call insn, modifying
3425 non-debug post-dependency counts of the debug insn
3426 dependencies and otherwise messing with the scheduling
3427 order.
3429 Instead, let such debug insns be scheduled freely, but
3430 keep the call group open in case there are insns that
3431 should be part of it afterwards. Since we grant debug
3432 insns higher priority than even sched group insns, it
3433 will all turn out all right. */
3434 goto debug_dont_end_call_group;
3435 else
3436 goto end_call_group;
3439 tmp = SET_DEST (set);
3440 if (GET_CODE (tmp) == SUBREG)
3441 tmp = SUBREG_REG (tmp);
3442 if (REG_P (tmp))
3443 dest_regno = REGNO (tmp);
3444 else
3445 goto end_call_group;
3447 tmp = SET_SRC (set);
3448 if (GET_CODE (tmp) == SUBREG)
3449 tmp = SUBREG_REG (tmp);
3450 if ((GET_CODE (tmp) == PLUS
3451 || GET_CODE (tmp) == MINUS)
3452 && REG_P (XEXP (tmp, 0))
3453 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3454 && dest_regno == STACK_POINTER_REGNUM)
3455 src_regno = STACK_POINTER_REGNUM;
3456 else if (REG_P (tmp))
3457 src_regno = REGNO (tmp);
3458 else
3459 goto end_call_group;
3461 if (src_regno < FIRST_PSEUDO_REGISTER
3462 || dest_regno < FIRST_PSEUDO_REGISTER)
3464 if (!deps->readonly
3465 && deps->in_post_call_group_p == post_call_initial)
3466 deps->in_post_call_group_p = post_call;
3468 if (!sel_sched_p () || sched_emulate_haifa_p)
3470 SCHED_GROUP_P (insn) = 1;
3471 CANT_MOVE (insn) = 1;
3474 else
3476 end_call_group:
3477 if (!deps->readonly)
3478 deps->in_post_call_group_p = not_post_call;
3482 debug_dont_end_call_group:
3483 if ((current_sched_info->flags & DO_SPECULATION)
3484 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3485 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3486 be speculated. */
3488 if (sel_sched_p ())
3489 sel_mark_hard_insn (insn);
3490 else
3492 sd_iterator_def sd_it;
3493 dep_t dep;
3495 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3496 sd_iterator_cond (&sd_it, &dep);)
3497 change_spec_dep_to_hard (sd_it);
3501 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3502 honor their original ordering. */
3503 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3505 if (deps->last_args_size)
3506 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3507 if (!deps->readonly)
3508 deps->last_args_size = insn;
3511 /* We must not mix prologue and epilogue insns. See PR78029. */
3512 if (prologue_contains (insn))
3514 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3515 if (!deps->readonly)
3517 if (deps->last_logue_was_epilogue)
3518 free_INSN_LIST_list (&deps->last_prologue);
3519 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3520 deps->last_logue_was_epilogue = false;
3524 if (epilogue_contains (insn))
3526 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3527 if (!deps->readonly)
3529 if (!deps->last_logue_was_epilogue)
3530 free_INSN_LIST_list (&deps->last_epilogue);
3531 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3532 deps->last_logue_was_epilogue = true;
3537 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3538 longjmp, loop forever, ...). */
3539 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3540 test for ECF_NORETURN? */
3541 static bool
3542 call_may_noreturn_p (rtx_insn *insn)
3544 rtx call;
3546 /* const or pure calls that aren't looping will always return. */
3547 if (RTL_CONST_OR_PURE_CALL_P (insn)
3548 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3549 return false;
3551 call = get_call_rtx_from (insn);
3552 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3554 rtx symbol = XEXP (XEXP (call, 0), 0);
3555 if (SYMBOL_REF_DECL (symbol)
3556 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3558 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3559 == BUILT_IN_NORMAL)
3560 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3562 case BUILT_IN_BCMP:
3563 case BUILT_IN_BCOPY:
3564 case BUILT_IN_BZERO:
3565 case BUILT_IN_INDEX:
3566 case BUILT_IN_MEMCHR:
3567 case BUILT_IN_MEMCMP:
3568 case BUILT_IN_MEMCPY:
3569 case BUILT_IN_MEMMOVE:
3570 case BUILT_IN_MEMPCPY:
3571 case BUILT_IN_MEMSET:
3572 case BUILT_IN_RINDEX:
3573 case BUILT_IN_STPCPY:
3574 case BUILT_IN_STPNCPY:
3575 case BUILT_IN_STRCAT:
3576 case BUILT_IN_STRCHR:
3577 case BUILT_IN_STRCMP:
3578 case BUILT_IN_STRCPY:
3579 case BUILT_IN_STRCSPN:
3580 case BUILT_IN_STRLEN:
3581 case BUILT_IN_STRNCAT:
3582 case BUILT_IN_STRNCMP:
3583 case BUILT_IN_STRNCPY:
3584 case BUILT_IN_STRPBRK:
3585 case BUILT_IN_STRRCHR:
3586 case BUILT_IN_STRSPN:
3587 case BUILT_IN_STRSTR:
3588 /* Assume certain string/memory builtins always return. */
3589 return false;
3590 default:
3591 break;
3596 /* For all other calls assume that they might not always return. */
3597 return true;
3600 /* Return true if INSN should be made dependent on the previous instruction
3601 group, and if all INSN's dependencies should be moved to the first
3602 instruction of that group. */
3604 static bool
3605 chain_to_prev_insn_p (rtx_insn *insn)
3607 /* INSN forms a group with the previous instruction. */
3608 if (SCHED_GROUP_P (insn))
3609 return true;
3611 /* If the previous instruction clobbers a register R and this one sets
3612 part of R, the clobber was added specifically to help us track the
3613 liveness of R. There's no point scheduling the clobber and leaving
3614 INSN behind, especially if we move the clobber to another block. */
3615 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3616 if (prev
3617 && INSN_P (prev)
3618 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3619 && GET_CODE (PATTERN (prev)) == CLOBBER)
3621 rtx x = XEXP (PATTERN (prev), 0);
3622 if (set_of (x, insn))
3623 return true;
3626 return false;
3629 /* Analyze INSN with DEPS as a context. */
3630 void
3631 deps_analyze_insn (struct deps_desc *deps, rtx_insn *insn)
3633 if (sched_deps_info->start_insn)
3634 sched_deps_info->start_insn (insn);
3636 /* Record the condition for this insn. */
3637 if (NONDEBUG_INSN_P (insn))
3639 rtx t;
3640 sched_get_condition_with_rev (insn, NULL);
3641 t = INSN_CACHED_COND (insn);
3642 INSN_COND_DEPS (insn) = NULL;
3643 if (reload_completed
3644 && (current_sched_info->flags & DO_PREDICATION)
3645 && COMPARISON_P (t)
3646 && REG_P (XEXP (t, 0))
3647 && CONSTANT_P (XEXP (t, 1)))
3649 unsigned int regno;
3650 int nregs;
3651 rtx_insn_list *cond_deps = NULL;
3652 t = XEXP (t, 0);
3653 regno = REGNO (t);
3654 nregs = REG_NREGS (t);
3655 while (nregs-- > 0)
3657 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3658 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3659 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3660 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3662 INSN_COND_DEPS (insn) = cond_deps;
3666 if (JUMP_P (insn))
3668 /* Make each JUMP_INSN (but not a speculative check)
3669 a scheduling barrier for memory references. */
3670 if (!deps->readonly
3671 && !(sel_sched_p ()
3672 && sel_insn_is_speculation_check (insn)))
3674 /* Keep the list a reasonable size. */
3675 if (deps->pending_flush_length++ >= MAX_PENDING_LIST_LENGTH)
3676 flush_pending_lists (deps, insn, true, true);
3677 else
3678 deps->pending_jump_insns
3679 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3682 /* For each insn which shouldn't cross a jump, add a dependence. */
3683 add_dependence_list_and_free (deps, insn,
3684 &deps->sched_before_next_jump, 1,
3685 REG_DEP_ANTI, true);
3687 sched_analyze_insn (deps, PATTERN (insn), insn);
3689 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3691 sched_analyze_insn (deps, PATTERN (insn), insn);
3693 else if (CALL_P (insn))
3695 int i;
3697 CANT_MOVE (insn) = 1;
3699 if (find_reg_note (insn, REG_SETJMP, NULL))
3701 /* This is setjmp. Assume that all registers, not just
3702 hard registers, may be clobbered by this call. */
3703 reg_pending_barrier = MOVE_BARRIER;
3705 else
3707 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3708 /* A call may read and modify global register variables. */
3709 if (global_regs[i])
3711 SET_REGNO_REG_SET (reg_pending_sets, i);
3712 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3714 /* Other call-clobbered hard regs may be clobbered.
3715 Since we only have a choice between 'might be clobbered'
3716 and 'definitely not clobbered', we must include all
3717 partly call-clobbered registers here. */
3718 else if (targetm.hard_regno_call_part_clobbered (i,
3719 reg_raw_mode[i])
3720 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3721 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3722 /* We don't know what set of fixed registers might be used
3723 by the function, but it is certain that the stack pointer
3724 is among them, but be conservative. */
3725 else if (fixed_regs[i])
3726 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3727 /* The frame pointer is normally not used by the function
3728 itself, but by the debugger. */
3729 /* ??? MIPS o32 is an exception. It uses the frame pointer
3730 in the macro expansion of jal but does not represent this
3731 fact in the call_insn rtl. */
3732 else if (i == FRAME_POINTER_REGNUM
3733 || (i == HARD_FRAME_POINTER_REGNUM
3734 && (! reload_completed || frame_pointer_needed)))
3735 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3738 /* For each insn which shouldn't cross a call, add a dependence
3739 between that insn and this call insn. */
3740 add_dependence_list_and_free (deps, insn,
3741 &deps->sched_before_next_call, 1,
3742 REG_DEP_ANTI, true);
3744 sched_analyze_insn (deps, PATTERN (insn), insn);
3746 /* If CALL would be in a sched group, then this will violate
3747 convention that sched group insns have dependencies only on the
3748 previous instruction.
3750 Of course one can say: "Hey! What about head of the sched group?"
3751 And I will answer: "Basic principles (one dep per insn) are always
3752 the same." */
3753 gcc_assert (!SCHED_GROUP_P (insn));
3755 /* In the absence of interprocedural alias analysis, we must flush
3756 all pending reads and writes, and start new dependencies starting
3757 from here. But only flush writes for constant calls (which may
3758 be passed a pointer to something we haven't written yet). */
3759 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3761 if (!deps->readonly)
3763 /* Remember the last function call for limiting lifetimes. */
3764 free_INSN_LIST_list (&deps->last_function_call);
3765 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3767 if (call_may_noreturn_p (insn))
3769 /* Remember the last function call that might not always return
3770 normally for limiting moves of trapping insns. */
3771 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3772 deps->last_function_call_may_noreturn
3773 = alloc_INSN_LIST (insn, NULL_RTX);
3776 /* Before reload, begin a post-call group, so as to keep the
3777 lifetimes of hard registers correct. */
3778 if (! reload_completed)
3779 deps->in_post_call_group_p = post_call;
3783 if (sched_deps_info->use_cselib)
3784 cselib_process_insn (insn);
3786 if (sched_deps_info->finish_insn)
3787 sched_deps_info->finish_insn ();
3789 /* Fixup the dependencies in the sched group. */
3790 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3791 && chain_to_prev_insn_p (insn)
3792 && !sel_sched_p ())
3793 chain_to_prev_insn (insn);
3796 /* Initialize DEPS for the new block beginning with HEAD. */
3797 void
3798 deps_start_bb (struct deps_desc *deps, rtx_insn *head)
3800 gcc_assert (!deps->readonly);
3802 /* Before reload, if the previous block ended in a call, show that
3803 we are inside a post-call group, so as to keep the lifetimes of
3804 hard registers correct. */
3805 if (! reload_completed && !LABEL_P (head))
3807 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3809 if (insn && CALL_P (insn))
3810 deps->in_post_call_group_p = post_call_initial;
3814 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3815 dependencies for each insn. */
3816 void
3817 sched_analyze (struct deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3819 rtx_insn *insn;
3821 if (sched_deps_info->use_cselib)
3822 cselib_init (CSELIB_RECORD_MEMORY);
3824 deps_start_bb (deps, head);
3826 for (insn = head;; insn = NEXT_INSN (insn))
3829 if (INSN_P (insn))
3831 /* And initialize deps_lists. */
3832 sd_init_insn (insn);
3833 /* Clean up SCHED_GROUP_P which may be set by last
3834 scheduler pass. */
3835 if (SCHED_GROUP_P (insn))
3836 SCHED_GROUP_P (insn) = 0;
3839 deps_analyze_insn (deps, insn);
3841 if (insn == tail)
3843 if (sched_deps_info->use_cselib)
3844 cselib_finish ();
3845 return;
3848 gcc_unreachable ();
3851 /* Helper for sched_free_deps ().
3852 Delete INSN's (RESOLVED_P) backward dependencies. */
3853 static void
3854 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3856 sd_iterator_def sd_it;
3857 dep_t dep;
3858 sd_list_types_def types;
3860 if (resolved_p)
3861 types = SD_LIST_RES_BACK;
3862 else
3863 types = SD_LIST_BACK;
3865 for (sd_it = sd_iterator_start (insn, types);
3866 sd_iterator_cond (&sd_it, &dep);)
3868 dep_link_t link = *sd_it.linkp;
3869 dep_node_t node = DEP_LINK_NODE (link);
3870 deps_list_t back_list;
3871 deps_list_t forw_list;
3873 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3874 remove_from_deps_list (link, back_list);
3875 delete_dep_node (node);
3879 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3880 deps_lists. */
3881 void
3882 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3884 rtx_insn *insn;
3885 rtx_insn *next_tail = NEXT_INSN (tail);
3887 /* We make two passes since some insns may be scheduled before their
3888 dependencies are resolved. */
3889 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3890 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3892 /* Clear forward deps and leave the dep_nodes to the
3893 corresponding back_deps list. */
3894 if (resolved_p)
3895 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3896 else
3897 clear_deps_list (INSN_FORW_DEPS (insn));
3899 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3900 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3902 /* Clear resolved back deps together with its dep_nodes. */
3903 delete_dep_nodes_in_back_deps (insn, resolved_p);
3905 sd_finish_insn (insn);
3909 /* Initialize variables for region data dependence analysis.
3910 When LAZY_REG_LAST is true, do not allocate reg_last array
3911 of struct deps_desc immediately. */
3913 void
3914 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3916 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3918 deps->max_reg = max_reg;
3919 if (lazy_reg_last)
3920 deps->reg_last = NULL;
3921 else
3922 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3923 INIT_REG_SET (&deps->reg_last_in_use);
3925 deps->pending_read_insns = 0;
3926 deps->pending_read_mems = 0;
3927 deps->pending_write_insns = 0;
3928 deps->pending_write_mems = 0;
3929 deps->pending_jump_insns = 0;
3930 deps->pending_read_list_length = 0;
3931 deps->pending_write_list_length = 0;
3932 deps->pending_flush_length = 0;
3933 deps->last_pending_memory_flush = 0;
3934 deps->last_function_call = 0;
3935 deps->last_function_call_may_noreturn = 0;
3936 deps->sched_before_next_call = 0;
3937 deps->sched_before_next_jump = 0;
3938 deps->in_post_call_group_p = not_post_call;
3939 deps->last_debug_insn = 0;
3940 deps->last_args_size = 0;
3941 deps->last_prologue = 0;
3942 deps->last_epilogue = 0;
3943 deps->last_logue_was_epilogue = false;
3944 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3945 deps->readonly = 0;
3948 /* Init only reg_last field of DEPS, which was not allocated before as
3949 we inited DEPS lazily. */
3950 void
3951 init_deps_reg_last (struct deps_desc *deps)
3953 gcc_assert (deps && deps->max_reg > 0);
3954 gcc_assert (deps->reg_last == NULL);
3956 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3960 /* Free insn lists found in DEPS. */
3962 void
3963 free_deps (struct deps_desc *deps)
3965 unsigned i;
3966 reg_set_iterator rsi;
3968 /* We set max_reg to 0 when this context was already freed. */
3969 if (deps->max_reg == 0)
3971 gcc_assert (deps->reg_last == NULL);
3972 return;
3974 deps->max_reg = 0;
3976 free_INSN_LIST_list (&deps->pending_read_insns);
3977 free_EXPR_LIST_list (&deps->pending_read_mems);
3978 free_INSN_LIST_list (&deps->pending_write_insns);
3979 free_EXPR_LIST_list (&deps->pending_write_mems);
3980 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3982 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3983 times. For a testcase with 42000 regs and 8000 small basic blocks,
3984 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3985 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3987 struct deps_reg *reg_last = &deps->reg_last[i];
3988 if (reg_last->uses)
3989 free_INSN_LIST_list (&reg_last->uses);
3990 if (reg_last->sets)
3991 free_INSN_LIST_list (&reg_last->sets);
3992 if (reg_last->implicit_sets)
3993 free_INSN_LIST_list (&reg_last->implicit_sets);
3994 if (reg_last->control_uses)
3995 free_INSN_LIST_list (&reg_last->control_uses);
3996 if (reg_last->clobbers)
3997 free_INSN_LIST_list (&reg_last->clobbers);
3999 CLEAR_REG_SET (&deps->reg_last_in_use);
4001 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4002 it at all. */
4003 free (deps->reg_last);
4004 deps->reg_last = NULL;
4006 deps = NULL;
4009 /* Remove INSN from dependence contexts DEPS. */
4010 void
4011 remove_from_deps (struct deps_desc *deps, rtx_insn *insn)
4013 int removed;
4014 unsigned i;
4015 reg_set_iterator rsi;
4017 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4018 &deps->pending_read_mems);
4019 if (!DEBUG_INSN_P (insn))
4020 deps->pending_read_list_length -= removed;
4021 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4022 &deps->pending_write_mems);
4023 deps->pending_write_list_length -= removed;
4025 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4026 deps->pending_flush_length -= removed;
4027 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4028 deps->pending_flush_length -= removed;
4030 unsigned to_clear = -1U;
4031 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4033 if (to_clear != -1U)
4035 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4036 to_clear = -1U;
4038 struct deps_reg *reg_last = &deps->reg_last[i];
4039 if (reg_last->uses)
4040 remove_from_dependence_list (insn, &reg_last->uses);
4041 if (reg_last->sets)
4042 remove_from_dependence_list (insn, &reg_last->sets);
4043 if (reg_last->implicit_sets)
4044 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4045 if (reg_last->clobbers)
4046 remove_from_dependence_list (insn, &reg_last->clobbers);
4047 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4048 && !reg_last->clobbers)
4049 to_clear = i;
4051 if (to_clear != -1U)
4052 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4054 if (CALL_P (insn))
4056 remove_from_dependence_list (insn, &deps->last_function_call);
4057 remove_from_dependence_list (insn,
4058 &deps->last_function_call_may_noreturn);
4060 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4063 /* Init deps data vector. */
4064 static void
4065 init_deps_data_vector (void)
4067 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4068 if (reserve > 0 && ! h_d_i_d.space (reserve))
4069 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4072 /* If it is profitable to use them, initialize or extend (depending on
4073 GLOBAL_P) dependency data. */
4074 void
4075 sched_deps_init (bool global_p)
4077 /* Average number of insns in the basic block.
4078 '+ 1' is used to make it nonzero. */
4079 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4081 init_deps_data_vector ();
4083 /* We use another caching mechanism for selective scheduling, so
4084 we don't use this one. */
4085 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4087 /* ?!? We could save some memory by computing a per-region luid mapping
4088 which could reduce both the number of vectors in the cache and the
4089 size of each vector. Instead we just avoid the cache entirely unless
4090 the average number of instructions in a basic block is very high. See
4091 the comment before the declaration of true_dependency_cache for
4092 what we consider "very high". */
4093 cache_size = 0;
4094 extend_dependency_caches (sched_max_luid, true);
4097 if (global_p)
4099 dl_pool = new object_allocator<_deps_list> ("deps_list");
4100 /* Allocate lists for one block at a time. */
4101 dn_pool = new object_allocator<_dep_node> ("dep_node");
4102 /* Allocate nodes for one block at a time. */
4107 /* Create or extend (depending on CREATE_P) dependency caches to
4108 size N. */
4109 void
4110 extend_dependency_caches (int n, bool create_p)
4112 if (create_p || true_dependency_cache)
4114 int i, luid = cache_size + n;
4116 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4117 luid);
4118 output_dependency_cache = XRESIZEVEC (bitmap_head,
4119 output_dependency_cache, luid);
4120 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4121 luid);
4122 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4123 luid);
4125 if (current_sched_info->flags & DO_SPECULATION)
4126 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4127 luid);
4129 for (i = cache_size; i < luid; i++)
4131 bitmap_initialize (&true_dependency_cache[i], 0);
4132 bitmap_initialize (&output_dependency_cache[i], 0);
4133 bitmap_initialize (&anti_dependency_cache[i], 0);
4134 bitmap_initialize (&control_dependency_cache[i], 0);
4136 if (current_sched_info->flags & DO_SPECULATION)
4137 bitmap_initialize (&spec_dependency_cache[i], 0);
4139 cache_size = luid;
4143 /* Finalize dependency information for the whole function. */
4144 void
4145 sched_deps_finish (void)
4147 gcc_assert (deps_pools_are_empty_p ());
4148 delete dn_pool;
4149 delete dl_pool;
4150 dn_pool = NULL;
4151 dl_pool = NULL;
4153 h_d_i_d.release ();
4154 cache_size = 0;
4156 if (true_dependency_cache)
4158 int i;
4160 for (i = 0; i < cache_size; i++)
4162 bitmap_clear (&true_dependency_cache[i]);
4163 bitmap_clear (&output_dependency_cache[i]);
4164 bitmap_clear (&anti_dependency_cache[i]);
4165 bitmap_clear (&control_dependency_cache[i]);
4167 if (sched_deps_info->generate_spec_deps)
4168 bitmap_clear (&spec_dependency_cache[i]);
4170 free (true_dependency_cache);
4171 true_dependency_cache = NULL;
4172 free (output_dependency_cache);
4173 output_dependency_cache = NULL;
4174 free (anti_dependency_cache);
4175 anti_dependency_cache = NULL;
4176 free (control_dependency_cache);
4177 control_dependency_cache = NULL;
4179 if (sched_deps_info->generate_spec_deps)
4181 free (spec_dependency_cache);
4182 spec_dependency_cache = NULL;
4188 /* Initialize some global variables needed by the dependency analysis
4189 code. */
4191 void
4192 init_deps_global (void)
4194 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4195 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4196 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4197 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4198 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4199 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4200 reg_pending_barrier = NOT_A_BARRIER;
4202 if (!sel_sched_p () || sched_emulate_haifa_p)
4204 sched_deps_info->start_insn = haifa_start_insn;
4205 sched_deps_info->finish_insn = haifa_finish_insn;
4207 sched_deps_info->note_reg_set = haifa_note_reg_set;
4208 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4209 sched_deps_info->note_reg_use = haifa_note_reg_use;
4211 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4212 sched_deps_info->note_dep = haifa_note_dep;
4216 /* Free everything used by the dependency analysis code. */
4218 void
4219 finish_deps_global (void)
4221 FREE_REG_SET (reg_pending_sets);
4222 FREE_REG_SET (reg_pending_clobbers);
4223 FREE_REG_SET (reg_pending_uses);
4224 FREE_REG_SET (reg_pending_control_uses);
4227 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4228 dw_t
4229 estimate_dep_weak (rtx mem1, rtx mem2)
4231 if (mem1 == mem2)
4232 /* MEMs are the same - don't speculate. */
4233 return MIN_DEP_WEAK;
4235 rtx r1 = XEXP (mem1, 0);
4236 rtx r2 = XEXP (mem2, 0);
4238 if (sched_deps_info->use_cselib)
4240 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4241 dangling at this point, since we never preserve them. Instead we
4242 canonicalize manually to get stable VALUEs out of hashing. */
4243 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4244 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4245 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4246 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4249 if (r1 == r2
4250 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4251 /* Again, MEMs are the same. */
4252 return MIN_DEP_WEAK;
4253 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4254 /* Different addressing modes - reason to be more speculative,
4255 than usual. */
4256 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4257 else
4258 /* We can't say anything about the dependence. */
4259 return UNCERTAIN_DEP_WEAK;
4262 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4263 This function can handle same INSN and ELEM (INSN == ELEM).
4264 It is a convenience wrapper. */
4265 static void
4266 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4268 ds_t ds;
4269 bool internal;
4271 if (dep_type == REG_DEP_TRUE)
4272 ds = DEP_TRUE;
4273 else if (dep_type == REG_DEP_OUTPUT)
4274 ds = DEP_OUTPUT;
4275 else if (dep_type == REG_DEP_CONTROL)
4276 ds = DEP_CONTROL;
4277 else
4279 gcc_assert (dep_type == REG_DEP_ANTI);
4280 ds = DEP_ANTI;
4283 /* When add_dependence is called from inside sched-deps.c, we expect
4284 cur_insn to be non-null. */
4285 internal = cur_insn != NULL;
4286 if (internal)
4287 gcc_assert (insn == cur_insn);
4288 else
4289 cur_insn = insn;
4291 note_dep (elem, ds);
4292 if (!internal)
4293 cur_insn = NULL;
4296 /* Return weakness of speculative type TYPE in the dep_status DS,
4297 without checking to prevent ICEs on malformed input. */
4298 static dw_t
4299 get_dep_weak_1 (ds_t ds, ds_t type)
4301 ds = ds & type;
4303 switch (type)
4305 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4306 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4307 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4308 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4309 default: gcc_unreachable ();
4312 return (dw_t) ds;
4315 /* Return weakness of speculative type TYPE in the dep_status DS. */
4316 dw_t
4317 get_dep_weak (ds_t ds, ds_t type)
4319 dw_t dw = get_dep_weak_1 (ds, type);
4321 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4322 return dw;
4325 /* Return the dep_status, which has the same parameters as DS, except for
4326 speculative type TYPE, that will have weakness DW. */
4327 ds_t
4328 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4330 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4332 ds &= ~type;
4333 switch (type)
4335 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4336 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4337 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4338 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4339 default: gcc_unreachable ();
4341 return ds;
4344 /* Return the join of two dep_statuses DS1 and DS2.
4345 If MAX_P is true then choose the greater probability,
4346 otherwise multiply probabilities.
4347 This function assumes that both DS1 and DS2 contain speculative bits. */
4348 static ds_t
4349 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4351 ds_t ds, t;
4353 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4355 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4357 t = FIRST_SPEC_TYPE;
4360 if ((ds1 & t) && !(ds2 & t))
4361 ds |= ds1 & t;
4362 else if (!(ds1 & t) && (ds2 & t))
4363 ds |= ds2 & t;
4364 else if ((ds1 & t) && (ds2 & t))
4366 dw_t dw1 = get_dep_weak (ds1, t);
4367 dw_t dw2 = get_dep_weak (ds2, t);
4368 ds_t dw;
4370 if (!max_p)
4372 dw = ((ds_t) dw1) * ((ds_t) dw2);
4373 dw /= MAX_DEP_WEAK;
4374 if (dw < MIN_DEP_WEAK)
4375 dw = MIN_DEP_WEAK;
4377 else
4379 if (dw1 >= dw2)
4380 dw = dw1;
4381 else
4382 dw = dw2;
4385 ds = set_dep_weak (ds, t, (dw_t) dw);
4388 if (t == LAST_SPEC_TYPE)
4389 break;
4390 t <<= SPEC_TYPE_SHIFT;
4392 while (1);
4394 return ds;
4397 /* Return the join of two dep_statuses DS1 and DS2.
4398 This function assumes that both DS1 and DS2 contain speculative bits. */
4399 ds_t
4400 ds_merge (ds_t ds1, ds_t ds2)
4402 return ds_merge_1 (ds1, ds2, false);
4405 /* Return the join of two dep_statuses DS1 and DS2. */
4406 ds_t
4407 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4409 ds_t new_status = ds | ds2;
4411 if (new_status & SPECULATIVE)
4413 if ((ds && !(ds & SPECULATIVE))
4414 || (ds2 && !(ds2 & SPECULATIVE)))
4415 /* Then this dep can't be speculative. */
4416 new_status &= ~SPECULATIVE;
4417 else
4419 /* Both are speculative. Merging probabilities. */
4420 if (mem1)
4422 dw_t dw;
4424 dw = estimate_dep_weak (mem1, mem2);
4425 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4428 if (!ds)
4429 new_status = ds2;
4430 else if (!ds2)
4431 new_status = ds;
4432 else
4433 new_status = ds_merge (ds2, ds);
4437 return new_status;
4440 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4441 probabilities. */
4442 ds_t
4443 ds_max_merge (ds_t ds1, ds_t ds2)
4445 if (ds1 == 0 && ds2 == 0)
4446 return 0;
4448 if (ds1 == 0 && ds2 != 0)
4449 return ds2;
4451 if (ds1 != 0 && ds2 == 0)
4452 return ds1;
4454 return ds_merge_1 (ds1, ds2, true);
4457 /* Return the probability of speculation success for the speculation
4458 status DS. */
4459 dw_t
4460 ds_weak (ds_t ds)
4462 ds_t res = 1, dt;
4463 int n = 0;
4465 dt = FIRST_SPEC_TYPE;
4468 if (ds & dt)
4470 res *= (ds_t) get_dep_weak (ds, dt);
4471 n++;
4474 if (dt == LAST_SPEC_TYPE)
4475 break;
4476 dt <<= SPEC_TYPE_SHIFT;
4478 while (1);
4480 gcc_assert (n);
4481 while (--n)
4482 res /= MAX_DEP_WEAK;
4484 if (res < MIN_DEP_WEAK)
4485 res = MIN_DEP_WEAK;
4487 gcc_assert (res <= MAX_DEP_WEAK);
4489 return (dw_t) res;
4492 /* Return a dep status that contains all speculation types of DS. */
4493 ds_t
4494 ds_get_speculation_types (ds_t ds)
4496 if (ds & BEGIN_DATA)
4497 ds |= BEGIN_DATA;
4498 if (ds & BE_IN_DATA)
4499 ds |= BE_IN_DATA;
4500 if (ds & BEGIN_CONTROL)
4501 ds |= BEGIN_CONTROL;
4502 if (ds & BE_IN_CONTROL)
4503 ds |= BE_IN_CONTROL;
4505 return ds & SPECULATIVE;
4508 /* Return a dep status that contains maximal weakness for each speculation
4509 type present in DS. */
4510 ds_t
4511 ds_get_max_dep_weak (ds_t ds)
4513 if (ds & BEGIN_DATA)
4514 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4515 if (ds & BE_IN_DATA)
4516 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4517 if (ds & BEGIN_CONTROL)
4518 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4519 if (ds & BE_IN_CONTROL)
4520 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4522 return ds;
4525 /* Dump information about the dependence status S. */
4526 static void
4527 dump_ds (FILE *f, ds_t s)
4529 fprintf (f, "{");
4531 if (s & BEGIN_DATA)
4532 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4533 if (s & BE_IN_DATA)
4534 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4535 if (s & BEGIN_CONTROL)
4536 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4537 if (s & BE_IN_CONTROL)
4538 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4540 if (s & HARD_DEP)
4541 fprintf (f, "HARD_DEP; ");
4543 if (s & DEP_TRUE)
4544 fprintf (f, "DEP_TRUE; ");
4545 if (s & DEP_OUTPUT)
4546 fprintf (f, "DEP_OUTPUT; ");
4547 if (s & DEP_ANTI)
4548 fprintf (f, "DEP_ANTI; ");
4549 if (s & DEP_CONTROL)
4550 fprintf (f, "DEP_CONTROL; ");
4552 fprintf (f, "}");
4555 DEBUG_FUNCTION void
4556 debug_ds (ds_t s)
4558 dump_ds (stderr, s);
4559 fprintf (stderr, "\n");
4562 /* Verify that dependence type and status are consistent.
4563 If RELAXED_P is true, then skip dep_weakness checks. */
4564 static void
4565 check_dep (dep_t dep, bool relaxed_p)
4567 enum reg_note dt = DEP_TYPE (dep);
4568 ds_t ds = DEP_STATUS (dep);
4570 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4572 if (!(current_sched_info->flags & USE_DEPS_LIST))
4574 gcc_assert (ds == 0);
4575 return;
4578 /* Check that dependence type contains the same bits as the status. */
4579 if (dt == REG_DEP_TRUE)
4580 gcc_assert (ds & DEP_TRUE);
4581 else if (dt == REG_DEP_OUTPUT)
4582 gcc_assert ((ds & DEP_OUTPUT)
4583 && !(ds & DEP_TRUE));
4584 else if (dt == REG_DEP_ANTI)
4585 gcc_assert ((ds & DEP_ANTI)
4586 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4587 else
4588 gcc_assert (dt == REG_DEP_CONTROL
4589 && (ds & DEP_CONTROL)
4590 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4592 /* HARD_DEP can not appear in dep_status of a link. */
4593 gcc_assert (!(ds & HARD_DEP));
4595 /* Check that dependence status is set correctly when speculation is not
4596 supported. */
4597 if (!sched_deps_info->generate_spec_deps)
4598 gcc_assert (!(ds & SPECULATIVE));
4599 else if (ds & SPECULATIVE)
4601 if (!relaxed_p)
4603 ds_t type = FIRST_SPEC_TYPE;
4605 /* Check that dependence weakness is in proper range. */
4608 if (ds & type)
4609 get_dep_weak (ds, type);
4611 if (type == LAST_SPEC_TYPE)
4612 break;
4613 type <<= SPEC_TYPE_SHIFT;
4615 while (1);
4618 if (ds & BEGIN_SPEC)
4620 /* Only true dependence can be data speculative. */
4621 if (ds & BEGIN_DATA)
4622 gcc_assert (ds & DEP_TRUE);
4624 /* Control dependencies in the insn scheduler are represented by
4625 anti-dependencies, therefore only anti dependence can be
4626 control speculative. */
4627 if (ds & BEGIN_CONTROL)
4628 gcc_assert (ds & DEP_ANTI);
4630 else
4632 /* Subsequent speculations should resolve true dependencies. */
4633 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4636 /* Check that true and anti dependencies can't have other speculative
4637 statuses. */
4638 if (ds & DEP_TRUE)
4639 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4640 /* An output dependence can't be speculative at all. */
4641 gcc_assert (!(ds & DEP_OUTPUT));
4642 if (ds & DEP_ANTI)
4643 gcc_assert (ds & BEGIN_CONTROL);
4647 /* The following code discovers opportunities to switch a memory reference
4648 and an increment by modifying the address. We ensure that this is done
4649 only for dependencies that are only used to show a single register
4650 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4651 instruction involved is subject to only one dep that can cause a pattern
4652 change.
4654 When we discover a suitable dependency, we fill in the dep_replacement
4655 structure to show how to modify the memory reference. */
4657 /* Holds information about a pair of memory reference and register increment
4658 insns which depend on each other, but could possibly be interchanged. */
4659 struct mem_inc_info
4661 rtx_insn *inc_insn;
4662 rtx_insn *mem_insn;
4664 rtx *mem_loc;
4665 /* A register occurring in the memory address for which we wish to break
4666 the dependence. This must be identical to the destination register of
4667 the increment. */
4668 rtx mem_reg0;
4669 /* Any kind of index that is added to that register. */
4670 rtx mem_index;
4671 /* The constant offset used in the memory address. */
4672 HOST_WIDE_INT mem_constant;
4673 /* The constant added in the increment insn. Negated if the increment is
4674 after the memory address. */
4675 HOST_WIDE_INT inc_constant;
4676 /* The source register used in the increment. May be different from mem_reg0
4677 if the increment occurs before the memory address. */
4678 rtx inc_input;
4681 /* Verify that the memory location described in MII can be replaced with
4682 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4683 insn remains unchanged by this function. */
4685 static rtx
4686 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4688 rtx mem = *mii->mem_loc;
4689 rtx new_mem;
4691 /* Jump through a lot of hoops to keep the attributes up to date. We
4692 do not want to call one of the change address variants that take
4693 an offset even though we know the offset in many cases. These
4694 assume you are changing where the address is pointing by the
4695 offset. */
4696 new_mem = replace_equiv_address_nv (mem, new_addr);
4697 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4699 if (sched_verbose >= 5)
4700 fprintf (sched_dump, "validation failure\n");
4701 return NULL_RTX;
4704 /* Put back the old one. */
4705 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4707 return new_mem;
4710 /* Return true if INSN is of a form "a = b op c" where a and b are
4711 regs. op is + if c is a reg and +|- if c is a const. Fill in
4712 informantion in MII about what is found.
4713 BEFORE_MEM indicates whether the increment is found before or after
4714 a corresponding memory reference. */
4716 static bool
4717 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4719 rtx pat = single_set (insn);
4720 rtx src, cst;
4721 bool regs_equal;
4723 if (RTX_FRAME_RELATED_P (insn) || !pat)
4724 return false;
4726 /* Do not allow breaking data dependencies for insns that are marked
4727 with REG_STACK_CHECK. */
4728 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4729 return false;
4731 /* Result must be single reg. */
4732 if (!REG_P (SET_DEST (pat)))
4733 return false;
4735 if (GET_CODE (SET_SRC (pat)) != PLUS)
4736 return false;
4738 mii->inc_insn = insn;
4739 src = SET_SRC (pat);
4740 mii->inc_input = XEXP (src, 0);
4742 if (!REG_P (XEXP (src, 0)))
4743 return false;
4745 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4746 return false;
4748 cst = XEXP (src, 1);
4749 if (!CONST_INT_P (cst))
4750 return false;
4751 mii->inc_constant = INTVAL (cst);
4753 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4755 if (!before_mem)
4757 mii->inc_constant = -mii->inc_constant;
4758 if (!regs_equal)
4759 return false;
4762 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4764 /* Note that the sign has already been reversed for !before_mem. */
4765 if (STACK_GROWS_DOWNWARD)
4766 return mii->inc_constant > 0;
4767 else
4768 return mii->inc_constant < 0;
4770 return true;
4773 /* Once a suitable mem reference has been found and the corresponding data
4774 in MII has been filled in, this function is called to find a suitable
4775 add or inc insn involving the register we found in the memory
4776 reference. */
4778 static bool
4779 find_inc (struct mem_inc_info *mii, bool backwards)
4781 sd_iterator_def sd_it;
4782 dep_t dep;
4784 sd_it = sd_iterator_start (mii->mem_insn,
4785 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4786 while (sd_iterator_cond (&sd_it, &dep))
4788 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4789 rtx_insn *pro = DEP_PRO (dep);
4790 rtx_insn *con = DEP_CON (dep);
4791 rtx_insn *inc_cand = backwards ? pro : con;
4792 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4793 goto next;
4794 if (parse_add_or_inc (mii, inc_cand, backwards))
4796 struct dep_replacement *desc;
4797 df_ref def;
4798 rtx newaddr, newmem;
4800 if (sched_verbose >= 5)
4801 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4802 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4804 /* Need to assure that none of the operands of the inc
4805 instruction are assigned to by the mem insn. */
4806 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4807 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4808 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4810 if (sched_verbose >= 5)
4811 fprintf (sched_dump,
4812 "inc conflicts with store failure.\n");
4813 goto next;
4816 newaddr = mii->inc_input;
4817 if (mii->mem_index != NULL_RTX)
4818 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4819 mii->mem_index);
4820 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4821 mii->mem_constant + mii->inc_constant);
4822 newmem = attempt_change (mii, newaddr);
4823 if (newmem == NULL_RTX)
4824 goto next;
4825 if (sched_verbose >= 5)
4826 fprintf (sched_dump, "successful address replacement\n");
4827 desc = XCNEW (struct dep_replacement);
4828 DEP_REPLACE (dep) = desc;
4829 desc->loc = mii->mem_loc;
4830 desc->newval = newmem;
4831 desc->orig = *desc->loc;
4832 desc->insn = mii->mem_insn;
4833 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4834 INSN_SPEC_BACK_DEPS (con));
4835 if (backwards)
4837 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4838 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4839 REG_DEP_TRUE);
4841 else
4843 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4844 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4845 REG_DEP_ANTI);
4847 return true;
4849 next:
4850 sd_iterator_next (&sd_it);
4852 return false;
4855 /* A recursive function that walks ADDRESS_OF_X to find memory references
4856 which could be modified during scheduling. We call find_inc for each
4857 one we find that has a recognizable form. MII holds information about
4858 the pair of memory/increment instructions.
4859 We ensure that every instruction with a memory reference (which will be
4860 the location of the replacement) is assigned at most one breakable
4861 dependency. */
4863 static bool
4864 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4866 rtx x = *address_of_x;
4867 enum rtx_code code = GET_CODE (x);
4868 const char *const fmt = GET_RTX_FORMAT (code);
4869 int i;
4871 if (code == MEM)
4873 rtx reg0 = XEXP (x, 0);
4875 mii->mem_loc = address_of_x;
4876 mii->mem_index = NULL_RTX;
4877 mii->mem_constant = 0;
4878 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4880 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4881 reg0 = XEXP (reg0, 0);
4883 if (GET_CODE (reg0) == PLUS)
4885 mii->mem_index = XEXP (reg0, 1);
4886 reg0 = XEXP (reg0, 0);
4888 if (REG_P (reg0))
4890 df_ref use;
4891 int occurrences = 0;
4893 /* Make sure this reg appears only once in this insn. Can't use
4894 count_occurrences since that only works for pseudos. */
4895 FOR_EACH_INSN_USE (use, mii->mem_insn)
4896 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4897 if (++occurrences > 1)
4899 if (sched_verbose >= 5)
4900 fprintf (sched_dump, "mem count failure\n");
4901 return false;
4904 mii->mem_reg0 = reg0;
4905 return find_inc (mii, true) || find_inc (mii, false);
4907 return false;
4910 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4912 /* If REG occurs inside a MEM used in a bit-field reference,
4913 that is unacceptable. */
4914 return false;
4917 /* Time for some deep diving. */
4918 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4920 if (fmt[i] == 'e')
4922 if (find_mem (mii, &XEXP (x, i)))
4923 return true;
4925 else if (fmt[i] == 'E')
4927 int j;
4928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4929 if (find_mem (mii, &XVECEXP (x, i, j)))
4930 return true;
4933 return false;
4937 /* Examine the instructions between HEAD and TAIL and try to find
4938 dependencies that can be broken by modifying one of the patterns. */
4940 void
4941 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4943 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4944 int success_in_block = 0;
4946 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4948 struct mem_inc_info mii;
4950 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4951 continue;
4953 mii.mem_insn = insn;
4954 if (find_mem (&mii, &PATTERN (insn)))
4955 success_in_block++;
4957 if (success_in_block && sched_verbose >= 5)
4958 fprintf (sched_dump, "%d candidates for address modification found.\n",
4959 success_in_block);
4962 #endif /* INSN_SCHEDULING */