PR c++/86342 - -Wdeprecated-copy and system headers.
[official-gcc.git] / gcc / rtl.h
blob565ce3abbe4e199609a6915de648736b43aa838d
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
150 mem_attrs ();
152 /* The expression that the MEM accesses, or null if not known.
153 This expression might be larger than the memory reference itself.
154 (In other words, the MEM might access only part of the object.) */
155 tree expr;
157 /* The offset of the memory reference from the start of EXPR.
158 Only valid if OFFSET_KNOWN_P. */
159 poly_int64 offset;
161 /* The size of the memory reference in bytes. Only valid if
162 SIZE_KNOWN_P. */
163 poly_int64 size;
165 /* The alias set of the memory reference. */
166 alias_set_type alias;
168 /* The alignment of the reference in bits. Always a multiple of
169 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
170 than the memory reference itself. */
171 unsigned int align;
173 /* The address space that the memory reference uses. */
174 unsigned char addrspace;
176 /* True if OFFSET is known. */
177 bool offset_known_p;
179 /* True if SIZE is known. */
180 bool size_known_p;
183 /* Structure used to describe the attributes of a REG in similar way as
184 mem_attrs does for MEM above. Note that the OFFSET field is calculated
185 in the same way as for mem_attrs, rather than in the same way as a
186 SUBREG_BYTE. For example, if a big-endian target stores a byte
187 object in the low part of a 4-byte register, the OFFSET field
188 will be -3 rather than 0. */
190 struct GTY((for_user)) reg_attrs {
191 tree decl; /* decl corresponding to REG. */
192 poly_int64 offset; /* Offset from start of DECL. */
195 /* Common union for an element of an rtx. */
197 union rtunion
199 int rt_int;
200 unsigned int rt_uint;
201 poly_uint16_pod rt_subreg;
202 const char *rt_str;
203 rtx rt_rtx;
204 rtvec rt_rtvec;
205 machine_mode rt_type;
206 addr_diff_vec_flags rt_addr_diff_vec_flags;
207 struct cselib_val *rt_cselib;
208 tree rt_tree;
209 basic_block rt_bb;
210 mem_attrs *rt_mem;
211 struct constant_descriptor_rtx *rt_constant;
212 struct dw_cfi_node *rt_cfi;
215 /* Describes the properties of a REG. */
216 struct GTY(()) reg_info {
217 /* The value of REGNO. */
218 unsigned int regno;
220 /* The value of REG_NREGS. */
221 unsigned int nregs : 8;
222 unsigned int unused : 24;
224 /* The value of REG_ATTRS. */
225 reg_attrs *attrs;
228 /* This structure remembers the position of a SYMBOL_REF within an
229 object_block structure. A SYMBOL_REF only provides this information
230 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
231 struct GTY(()) block_symbol {
232 /* The usual SYMBOL_REF fields. */
233 rtunion GTY ((skip)) fld[2];
235 /* The block that contains this object. */
236 struct object_block *block;
238 /* The offset of this object from the start of its block. It is negative
239 if the symbol has not yet been assigned an offset. */
240 HOST_WIDE_INT offset;
243 /* Describes a group of objects that are to be placed together in such
244 a way that their relative positions are known. */
245 struct GTY((for_user)) object_block {
246 /* The section in which these objects should be placed. */
247 section *sect;
249 /* The alignment of the first object, measured in bits. */
250 unsigned int alignment;
252 /* The total size of the objects, measured in bytes. */
253 HOST_WIDE_INT size;
255 /* The SYMBOL_REFs for each object. The vector is sorted in
256 order of increasing offset and the following conditions will
257 hold for each element X:
259 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
260 !SYMBOL_REF_ANCHOR_P (X)
261 SYMBOL_REF_BLOCK (X) == [address of this structure]
262 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
263 vec<rtx, va_gc> *objects;
265 /* All the anchor SYMBOL_REFs used to address these objects, sorted
266 in order of increasing offset, and then increasing TLS model.
267 The following conditions will hold for each element X in this vector:
269 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
270 SYMBOL_REF_ANCHOR_P (X)
271 SYMBOL_REF_BLOCK (X) == [address of this structure]
272 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
273 vec<rtx, va_gc> *anchors;
276 struct GTY((variable_size)) hwivec_def {
277 HOST_WIDE_INT elem[1];
280 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
281 #define CWI_GET_NUM_ELEM(RTX) \
282 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
283 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
284 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286 struct GTY((variable_size)) const_poly_int_def {
287 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
290 /* RTL expression ("rtx"). */
292 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
293 field for gengtype to recognize that inheritance is occurring,
294 so that all subclasses are redirected to the traversal hook for the
295 base class.
296 However, all of the fields are in the base class, and special-casing
297 is at work. Hence we use desc and tag of 0, generating a switch
298 statement of the form:
299 switch (0)
301 case 0: // all the work happens here
303 in order to work with the existing special-casing in gengtype. */
305 struct GTY((desc("0"), tag("0"),
306 chain_next ("RTX_NEXT (&%h)"),
307 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
308 /* The kind of expression this is. */
309 ENUM_BITFIELD(rtx_code) code: 16;
311 /* The kind of value the expression has. */
312 ENUM_BITFIELD(machine_mode) mode : 8;
314 /* 1 in a MEM if we should keep the alias set for this mem unchanged
315 when we access a component.
316 1 in a JUMP_INSN if it is a crossing jump.
317 1 in a CALL_INSN if it is a sibling call.
318 1 in a SET that is for a return.
319 In a CODE_LABEL, part of the two-bit alternate entry field.
320 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
321 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
322 1 in a SUBREG generated by LRA for reload insns.
323 1 in a REG if this is a static chain register.
324 Dumped as "/j" in RTL dumps. */
325 unsigned int jump : 1;
326 /* In a CODE_LABEL, part of the two-bit alternate entry field.
327 1 in a MEM if it cannot trap.
328 1 in a CALL_INSN logically equivalent to
329 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
330 Dumped as "/c" in RTL dumps. */
331 unsigned int call : 1;
332 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
333 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
334 1 in a SYMBOL_REF if it addresses something in the per-function
335 constants pool.
336 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
337 1 in a NOTE, or EXPR_LIST for a const call.
338 1 in a JUMP_INSN of an annulling branch.
339 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
340 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
341 1 in a clobber temporarily created for LRA.
342 Dumped as "/u" in RTL dumps. */
343 unsigned int unchanging : 1;
344 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
345 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
346 if it has been deleted.
347 1 in a REG expression if corresponds to a variable declared by the user,
348 0 for an internally generated temporary.
349 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
350 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
351 non-local label.
352 In a SYMBOL_REF, this flag is used for machine-specific purposes.
353 In a PREFETCH, this flag indicates that it should be considered a
354 scheduling barrier.
355 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
356 Dumped as "/v" in RTL dumps. */
357 unsigned int volatil : 1;
358 /* 1 in a REG if the register is used only in exit code a loop.
359 1 in a SUBREG expression if was generated from a variable with a
360 promoted mode.
361 1 in a CODE_LABEL if the label is used for nonlocal gotos
362 and must not be deleted even if its count is zero.
363 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
364 together with the preceding insn. Valid only within sched.
365 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
366 from the target of a branch. Valid from reorg until end of compilation;
367 cleared before used.
369 The name of the field is historical. It used to be used in MEMs
370 to record whether the MEM accessed part of a structure.
371 Dumped as "/s" in RTL dumps. */
372 unsigned int in_struct : 1;
373 /* At the end of RTL generation, 1 if this rtx is used. This is used for
374 copying shared structure. See `unshare_all_rtl'.
375 In a REG, this is not needed for that purpose, and used instead
376 in `leaf_renumber_regs_insn'.
377 1 in a SYMBOL_REF, means that emit_library_call
378 has used it as the function.
379 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
380 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
381 unsigned int used : 1;
382 /* 1 in an INSN or a SET if this rtx is related to the call frame,
383 either changing how we compute the frame address or saving and
384 restoring registers in the prologue and epilogue.
385 1 in a REG or MEM if it is a pointer.
386 1 in a SYMBOL_REF if it addresses something in the per-function
387 constant string pool.
388 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
389 Dumped as "/f" in RTL dumps. */
390 unsigned frame_related : 1;
391 /* 1 in a REG or PARALLEL that is the current function's return value.
392 1 in a SYMBOL_REF for a weak symbol.
393 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
394 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
395 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
396 Dumped as "/i" in RTL dumps. */
397 unsigned return_val : 1;
399 union {
400 /* The final union field is aligned to 64 bits on LP64 hosts,
401 giving a 32-bit gap after the fields above. We optimize the
402 layout for that case and use the gap for extra code-specific
403 information. */
405 /* The ORIGINAL_REGNO of a REG. */
406 unsigned int original_regno;
408 /* The INSN_UID of an RTX_INSN-class code. */
409 int insn_uid;
411 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
412 unsigned int symbol_ref_flags;
414 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
415 enum var_init_status var_location_status;
417 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
418 HOST_WIDE_INTs in the hwivec_def. */
419 unsigned int num_elem;
421 /* Information about a CONST_VECTOR. */
422 struct
424 /* The value of CONST_VECTOR_NPATTERNS. */
425 unsigned int npatterns : 16;
427 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
428 unsigned int nelts_per_pattern : 8;
430 /* For future expansion. */
431 unsigned int unused : 8;
432 } const_vector;
433 } GTY ((skip)) u2;
435 /* The first element of the operands of this rtx.
436 The number of operands and their types are controlled
437 by the `code' field, according to rtl.def. */
438 union u {
439 rtunion fld[1];
440 HOST_WIDE_INT hwint[1];
441 struct reg_info reg;
442 struct block_symbol block_sym;
443 struct real_value rv;
444 struct fixed_value fv;
445 struct hwivec_def hwiv;
446 struct const_poly_int_def cpi;
447 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
450 /* A node for constructing singly-linked lists of rtx. */
452 class GTY(()) rtx_expr_list : public rtx_def
454 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
456 public:
457 /* Get next in list. */
458 rtx_expr_list *next () const;
460 /* Get at the underlying rtx. */
461 rtx element () const;
464 template <>
465 template <>
466 inline bool
467 is_a_helper <rtx_expr_list *>::test (rtx rt)
469 return rt->code == EXPR_LIST;
472 class GTY(()) rtx_insn_list : public rtx_def
474 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
476 This is an instance of:
478 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
480 i.e. a node for constructing singly-linked lists of rtx_insn *, where
481 the list is "external" to the insn (as opposed to the doubly-linked
482 list embedded within rtx_insn itself). */
484 public:
485 /* Get next in list. */
486 rtx_insn_list *next () const;
488 /* Get at the underlying instruction. */
489 rtx_insn *insn () const;
493 template <>
494 template <>
495 inline bool
496 is_a_helper <rtx_insn_list *>::test (rtx rt)
498 return rt->code == INSN_LIST;
501 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
502 typically (but not always) of rtx_insn *, used in the late passes. */
504 class GTY(()) rtx_sequence : public rtx_def
506 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
508 public:
509 /* Get number of elements in sequence. */
510 int len () const;
512 /* Get i-th element of the sequence. */
513 rtx element (int index) const;
515 /* Get i-th element of the sequence, with a checked cast to
516 rtx_insn *. */
517 rtx_insn *insn (int index) const;
520 template <>
521 template <>
522 inline bool
523 is_a_helper <rtx_sequence *>::test (rtx rt)
525 return rt->code == SEQUENCE;
528 template <>
529 template <>
530 inline bool
531 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
533 return rt->code == SEQUENCE;
536 class GTY(()) rtx_insn : public rtx_def
538 public:
539 /* No extra fields, but adds the invariant:
541 (INSN_P (X)
542 || NOTE_P (X)
543 || JUMP_TABLE_DATA_P (X)
544 || BARRIER_P (X)
545 || LABEL_P (X))
547 i.e. that we must be able to use the following:
548 INSN_UID ()
549 NEXT_INSN ()
550 PREV_INSN ()
551 i.e. we have an rtx that has an INSN_UID field and can be part of
552 a linked list of insns.
555 /* Returns true if this insn has been deleted. */
557 bool deleted () const { return volatil; }
559 /* Mark this insn as deleted. */
561 void set_deleted () { volatil = true; }
563 /* Mark this insn as not deleted. */
565 void set_undeleted () { volatil = false; }
568 /* Subclasses of rtx_insn. */
570 class GTY(()) rtx_debug_insn : public rtx_insn
572 /* No extra fields, but adds the invariant:
573 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
574 i.e. an annotation for tracking variable assignments.
576 This is an instance of:
577 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
578 from rtl.def. */
581 class GTY(()) rtx_nonjump_insn : public rtx_insn
583 /* No extra fields, but adds the invariant:
584 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
585 i.e an instruction that cannot jump.
587 This is an instance of:
588 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
589 from rtl.def. */
592 class GTY(()) rtx_jump_insn : public rtx_insn
594 public:
595 /* No extra fields, but adds the invariant:
596 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
597 i.e. an instruction that can possibly jump.
599 This is an instance of:
600 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
601 from rtl.def. */
603 /* Returns jump target of this instruction. The returned value is not
604 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
605 expression. Also, when the code label is marked "deleted", it is
606 replaced by a NOTE. In some cases the value is NULL_RTX. */
608 inline rtx jump_label () const;
610 /* Returns jump target cast to rtx_code_label *. */
612 inline rtx_code_label *jump_target () const;
614 /* Set jump target. */
616 inline void set_jump_target (rtx_code_label *);
619 class GTY(()) rtx_call_insn : public rtx_insn
621 /* No extra fields, but adds the invariant:
622 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
623 i.e. an instruction that can possibly call a subroutine
624 but which will not change which instruction comes next
625 in the current function.
627 This is an instance of:
628 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
629 from rtl.def. */
632 class GTY(()) rtx_jump_table_data : public rtx_insn
634 /* No extra fields, but adds the invariant:
635 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
636 i.e. a data for a jump table, considered an instruction for
637 historical reasons.
639 This is an instance of:
640 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
641 from rtl.def. */
643 public:
645 /* This can be either:
647 (a) a table of absolute jumps, in which case PATTERN (this) is an
648 ADDR_VEC with arg 0 a vector of labels, or
650 (b) a table of relative jumps (e.g. for -fPIC), in which case
651 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
652 arg 1 the vector of labels.
654 This method gets the underlying vec. */
656 inline rtvec get_labels () const;
657 inline scalar_int_mode get_data_mode () const;
660 class GTY(()) rtx_barrier : public rtx_insn
662 /* No extra fields, but adds the invariant:
663 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
664 i.e. a marker that indicates that control will not flow through.
666 This is an instance of:
667 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
668 from rtl.def. */
671 class GTY(()) rtx_code_label : public rtx_insn
673 /* No extra fields, but adds the invariant:
674 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
675 i.e. a label in the assembler.
677 This is an instance of:
678 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
679 from rtl.def. */
682 class GTY(()) rtx_note : public rtx_insn
684 /* No extra fields, but adds the invariant:
685 NOTE_P(X) aka (GET_CODE (X) == NOTE)
686 i.e. a note about the corresponding source code.
688 This is an instance of:
689 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
690 from rtl.def. */
693 /* The size in bytes of an rtx header (code, mode and flags). */
694 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
696 /* The size in bytes of an rtx with code CODE. */
697 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
699 #define NULL_RTX (rtx) 0
701 /* The "next" and "previous" RTX, relative to this one. */
703 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
704 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
706 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
708 #define RTX_PREV(X) ((INSN_P (X) \
709 || NOTE_P (X) \
710 || JUMP_TABLE_DATA_P (X) \
711 || BARRIER_P (X) \
712 || LABEL_P (X)) \
713 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
714 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
715 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
717 /* Define macros to access the `code' field of the rtx. */
719 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
720 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
722 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
723 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
725 /* RTL vector. These appear inside RTX's when there is a need
726 for a variable number of things. The principle use is inside
727 PARALLEL expressions. */
729 struct GTY(()) rtvec_def {
730 int num_elem; /* number of elements */
731 rtx GTY ((length ("%h.num_elem"))) elem[1];
734 #define NULL_RTVEC (rtvec) 0
736 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
737 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
739 /* Predicate yielding nonzero iff X is an rtx for a register. */
740 #define REG_P(X) (GET_CODE (X) == REG)
742 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
743 #define MEM_P(X) (GET_CODE (X) == MEM)
745 #if TARGET_SUPPORTS_WIDE_INT
747 /* Match CONST_*s that can represent compile-time constant integers. */
748 #define CASE_CONST_SCALAR_INT \
749 case CONST_INT: \
750 case CONST_WIDE_INT
752 /* Match CONST_*s for which pointer equality corresponds to value
753 equality. */
754 #define CASE_CONST_UNIQUE \
755 case CONST_INT: \
756 case CONST_WIDE_INT: \
757 case CONST_POLY_INT: \
758 case CONST_DOUBLE: \
759 case CONST_FIXED
761 /* Match all CONST_* rtxes. */
762 #define CASE_CONST_ANY \
763 case CONST_INT: \
764 case CONST_WIDE_INT: \
765 case CONST_POLY_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED: \
768 case CONST_VECTOR
770 #else
772 /* Match CONST_*s that can represent compile-time constant integers. */
773 #define CASE_CONST_SCALAR_INT \
774 case CONST_INT: \
775 case CONST_DOUBLE
777 /* Match CONST_*s for which pointer equality corresponds to value
778 equality. */
779 #define CASE_CONST_UNIQUE \
780 case CONST_INT: \
781 case CONST_DOUBLE: \
782 case CONST_FIXED
784 /* Match all CONST_* rtxes. */
785 #define CASE_CONST_ANY \
786 case CONST_INT: \
787 case CONST_DOUBLE: \
788 case CONST_FIXED: \
789 case CONST_VECTOR
790 #endif
792 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
793 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
795 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
796 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
798 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
799 integer. */
800 #define CONST_POLY_INT_P(X) \
801 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
803 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
804 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
806 /* Predicate yielding true iff X is an rtx for a double-int
807 or floating point constant. */
808 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
810 /* Predicate yielding true iff X is an rtx for a double-int. */
811 #define CONST_DOUBLE_AS_INT_P(X) \
812 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
814 /* Predicate yielding true iff X is an rtx for a integer const. */
815 #if TARGET_SUPPORTS_WIDE_INT
816 #define CONST_SCALAR_INT_P(X) \
817 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
818 #else
819 #define CONST_SCALAR_INT_P(X) \
820 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
821 #endif
823 /* Predicate yielding true iff X is an rtx for a double-int. */
824 #define CONST_DOUBLE_AS_FLOAT_P(X) \
825 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
827 /* Predicate yielding nonzero iff X is a label insn. */
828 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
830 /* Predicate yielding nonzero iff X is a jump insn. */
831 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
833 /* Predicate yielding nonzero iff X is a call insn. */
834 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
836 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
837 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
839 /* Predicate yielding nonzero iff X is a debug note/insn. */
840 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
842 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
843 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
845 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
846 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
847 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
848 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
849 /* Nonzero if DEBUG_INSN_P may possibly hold. */
850 #define MAY_HAVE_DEBUG_INSNS \
851 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
853 /* Predicate yielding nonzero iff X is a real insn. */
854 #define INSN_P(X) \
855 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
857 /* Predicate yielding nonzero iff X is a note insn. */
858 #define NOTE_P(X) (GET_CODE (X) == NOTE)
860 /* Predicate yielding nonzero iff X is a barrier insn. */
861 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
863 /* Predicate yielding nonzero iff X is a data for a jump table. */
864 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
866 /* Predicate yielding nonzero iff RTX is a subreg. */
867 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
869 /* Predicate yielding true iff RTX is a symbol ref. */
870 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_insn *>::test (rtx rt)
877 return (INSN_P (rt)
878 || NOTE_P (rt)
879 || JUMP_TABLE_DATA_P (rt)
880 || BARRIER_P (rt)
881 || LABEL_P (rt));
884 template <>
885 template <>
886 inline bool
887 is_a_helper <const rtx_insn *>::test (const_rtx rt)
889 return (INSN_P (rt)
890 || NOTE_P (rt)
891 || JUMP_TABLE_DATA_P (rt)
892 || BARRIER_P (rt)
893 || LABEL_P (rt));
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_debug_insn *>::test (rtx rt)
901 return DEBUG_INSN_P (rt);
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
909 return NONJUMP_INSN_P (rt);
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_jump_insn *>::test (rtx rt)
917 return JUMP_P (rt);
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
925 return JUMP_P (insn);
928 template <>
929 template <>
930 inline bool
931 is_a_helper <rtx_call_insn *>::test (rtx rt)
933 return CALL_P (rt);
936 template <>
937 template <>
938 inline bool
939 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
941 return CALL_P (insn);
944 template <>
945 template <>
946 inline bool
947 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
949 return JUMP_TABLE_DATA_P (rt);
952 template <>
953 template <>
954 inline bool
955 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
957 return JUMP_TABLE_DATA_P (insn);
960 template <>
961 template <>
962 inline bool
963 is_a_helper <rtx_barrier *>::test (rtx rt)
965 return BARRIER_P (rt);
968 template <>
969 template <>
970 inline bool
971 is_a_helper <rtx_code_label *>::test (rtx rt)
973 return LABEL_P (rt);
976 template <>
977 template <>
978 inline bool
979 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
981 return LABEL_P (insn);
984 template <>
985 template <>
986 inline bool
987 is_a_helper <rtx_note *>::test (rtx rt)
989 return NOTE_P (rt);
992 template <>
993 template <>
994 inline bool
995 is_a_helper <rtx_note *>::test (rtx_insn *insn)
997 return NOTE_P (insn);
1000 /* Predicate yielding nonzero iff X is a return or simple_return. */
1001 #define ANY_RETURN_P(X) \
1002 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1004 /* 1 if X is a unary operator. */
1006 #define UNARY_P(X) \
1007 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1009 /* 1 if X is a binary operator. */
1011 #define BINARY_P(X) \
1012 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1014 /* 1 if X is an arithmetic operator. */
1016 #define ARITHMETIC_P(X) \
1017 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1018 == RTX_ARITHMETIC_RESULT)
1020 /* 1 if X is an arithmetic operator. */
1022 #define COMMUTATIVE_ARITH_P(X) \
1023 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1025 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1026 These two are sometimes selected together because it is possible to
1027 swap the two operands. */
1029 #define SWAPPABLE_OPERANDS_P(X) \
1030 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1031 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1032 | (1 << RTX_COMPARE)))
1034 /* 1 if X is a non-commutative operator. */
1036 #define NON_COMMUTATIVE_P(X) \
1037 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1038 == RTX_NON_COMMUTATIVE_RESULT)
1040 /* 1 if X is a commutative operator on integers. */
1042 #define COMMUTATIVE_P(X) \
1043 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1044 == RTX_COMMUTATIVE_RESULT)
1046 /* 1 if X is a relational operator. */
1048 #define COMPARISON_P(X) \
1049 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1051 /* 1 if X is a constant value that is an integer. */
1053 #define CONSTANT_P(X) \
1054 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1056 /* 1 if X can be used to represent an object. */
1057 #define OBJECT_P(X) \
1058 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1060 /* General accessor macros for accessing the fields of an rtx. */
1062 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1063 /* The bit with a star outside the statement expr and an & inside is
1064 so that N can be evaluated only once. */
1065 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1066 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1067 const enum rtx_code _code = GET_CODE (_rtx); \
1068 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1069 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1070 __FUNCTION__); \
1071 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1072 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1073 __FUNCTION__); \
1074 &_rtx->u.fld[_n]; }))
1076 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1077 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1078 const enum rtx_code _code = GET_CODE (_rtx); \
1079 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1080 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1081 __FUNCTION__); \
1082 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1083 && GET_RTX_FORMAT (_code)[_n] != C2) \
1084 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1085 __FUNCTION__); \
1086 &_rtx->u.fld[_n]; }))
1088 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1089 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1090 if (GET_CODE (_rtx) != (C)) \
1091 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 &_rtx->u.fld[_n]; }))
1095 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1096 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1097 const enum rtx_code _code = GET_CODE (_rtx); \
1098 if (_code != (C1) && _code != (C2)) \
1099 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 &_rtx->u.fld[_n]; }))
1103 #define RTVEC_ELT(RTVEC, I) __extension__ \
1104 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1105 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1106 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1107 __FUNCTION__); \
1108 &_rtvec->elem[_i]; }))
1110 #define XWINT(RTX, N) __extension__ \
1111 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1112 const enum rtx_code _code = GET_CODE (_rtx); \
1113 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1114 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1115 __FUNCTION__); \
1116 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1117 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1118 __FUNCTION__); \
1119 &_rtx->u.hwint[_n]; }))
1121 #define CWI_ELT(RTX, I) __extension__ \
1122 (*({ __typeof (RTX) const _cwi = (RTX); \
1123 int _max = CWI_GET_NUM_ELEM (_cwi); \
1124 const int _i = (I); \
1125 if (_i < 0 || _i >= _max) \
1126 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1127 __FUNCTION__); \
1128 &_cwi->u.hwiv.elem[_i]; }))
1130 #define XCWINT(RTX, N, C) __extension__ \
1131 (*({ __typeof (RTX) const _rtx = (RTX); \
1132 if (GET_CODE (_rtx) != (C)) \
1133 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1134 __FUNCTION__); \
1135 &_rtx->u.hwint[N]; }))
1137 #define XCMWINT(RTX, N, C, M) __extension__ \
1138 (*({ __typeof (RTX) const _rtx = (RTX); \
1139 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1140 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1141 __LINE__, __FUNCTION__); \
1142 &_rtx->u.hwint[N]; }))
1144 #define XCNMPRV(RTX, C, M) __extension__ \
1145 ({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1147 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1148 __LINE__, __FUNCTION__); \
1149 &_rtx->u.rv; })
1151 #define XCNMPFV(RTX, C, M) __extension__ \
1152 ({ __typeof (RTX) const _rtx = (RTX); \
1153 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1154 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1155 __LINE__, __FUNCTION__); \
1156 &_rtx->u.fv; })
1158 #define REG_CHECK(RTX) __extension__ \
1159 ({ __typeof (RTX) const _rtx = (RTX); \
1160 if (GET_CODE (_rtx) != REG) \
1161 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1162 __FUNCTION__); \
1163 &_rtx->u.reg; })
1165 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1166 ({ __typeof (RTX) const _symbol = (RTX); \
1167 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1168 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1169 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1170 __FUNCTION__); \
1171 &_symbol->u.block_sym; })
1173 #define HWIVEC_CHECK(RTX,C) __extension__ \
1174 ({ __typeof (RTX) const _symbol = (RTX); \
1175 RTL_CHECKC1 (_symbol, 0, C); \
1176 &_symbol->u.hwiv; })
1178 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1179 const char *)
1180 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1181 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1182 const char *)
1183 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1184 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1185 int, const char *)
1186 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1187 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1188 int, const char *)
1189 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1190 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1191 const char *, int, const char *)
1192 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1193 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1194 bool, const char *, int, const char *)
1195 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1196 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1197 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1198 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1199 const char *)
1200 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1201 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1202 const char *)
1203 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1205 #else /* not ENABLE_RTL_CHECKING */
1207 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1208 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1209 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1210 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1211 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1212 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1213 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1214 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1215 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1216 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1217 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1218 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1219 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1220 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1221 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1223 #endif
1225 /* General accessor macros for accessing the flags of an rtx. */
1227 /* Access an individual rtx flag, with no checking of any kind. */
1228 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1230 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1231 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1232 ({ __typeof (RTX) const _rtx = (RTX); \
1233 if (GET_CODE (_rtx) != C1) \
1234 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1235 __FUNCTION__); \
1236 _rtx; })
1238 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1239 ({ __typeof (RTX) const _rtx = (RTX); \
1240 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1241 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1242 __FUNCTION__); \
1243 _rtx; })
1245 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1246 ({ __typeof (RTX) const _rtx = (RTX); \
1247 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1248 && GET_CODE (_rtx) != C3) \
1249 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1250 __FUNCTION__); \
1251 _rtx; })
1253 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1254 ({ __typeof (RTX) const _rtx = (RTX); \
1255 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1256 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1257 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1258 __FUNCTION__); \
1259 _rtx; })
1261 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1262 ({ __typeof (RTX) const _rtx = (RTX); \
1263 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1264 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1265 && GET_CODE (_rtx) != C5) \
1266 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1267 __FUNCTION__); \
1268 _rtx; })
1270 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1271 __extension__ \
1272 ({ __typeof (RTX) const _rtx = (RTX); \
1273 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1274 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1275 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1276 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1277 __FUNCTION__); \
1278 _rtx; })
1280 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1281 __extension__ \
1282 ({ __typeof (RTX) const _rtx = (RTX); \
1283 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1284 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1285 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1286 && GET_CODE (_rtx) != C7) \
1287 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1288 __FUNCTION__); \
1289 _rtx; })
1291 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1292 __extension__ \
1293 ({ __typeof (RTX) const _rtx = (RTX); \
1294 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1295 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1296 __FUNCTION__); \
1297 _rtx; })
1299 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1300 int, const char *)
1301 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1304 #else /* not ENABLE_RTL_FLAG_CHECKING */
1306 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1307 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1308 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1309 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1310 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1311 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1312 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1313 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1314 #endif
1316 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1317 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1318 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1319 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1320 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1321 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1322 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1323 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1324 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1325 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1327 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1328 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1330 /* These are like XINT, etc. except that they expect a '0' field instead
1331 of the normal type code. */
1333 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1334 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1335 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1336 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1337 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1338 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1339 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1340 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1341 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1342 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1343 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1344 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1346 /* Access a '0' field with any type. */
1347 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1349 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1350 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1351 #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1352 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1353 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1354 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1355 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1356 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1357 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1358 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1359 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1361 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1362 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1364 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1367 /* Methods of rtx_expr_list. */
1369 inline rtx_expr_list *rtx_expr_list::next () const
1371 rtx tmp = XEXP (this, 1);
1372 return safe_as_a <rtx_expr_list *> (tmp);
1375 inline rtx rtx_expr_list::element () const
1377 return XEXP (this, 0);
1380 /* Methods of rtx_insn_list. */
1382 inline rtx_insn_list *rtx_insn_list::next () const
1384 rtx tmp = XEXP (this, 1);
1385 return safe_as_a <rtx_insn_list *> (tmp);
1388 inline rtx_insn *rtx_insn_list::insn () const
1390 rtx tmp = XEXP (this, 0);
1391 return safe_as_a <rtx_insn *> (tmp);
1394 /* Methods of rtx_sequence. */
1396 inline int rtx_sequence::len () const
1398 return XVECLEN (this, 0);
1401 inline rtx rtx_sequence::element (int index) const
1403 return XVECEXP (this, 0, index);
1406 inline rtx_insn *rtx_sequence::insn (int index) const
1408 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1411 /* ACCESS MACROS for particular fields of insns. */
1413 /* Holds a unique number for each insn.
1414 These are not necessarily sequentially increasing. */
1415 inline int INSN_UID (const_rtx insn)
1417 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1418 (insn))->u2.insn_uid;
1420 inline int& INSN_UID (rtx insn)
1422 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1423 (insn))->u2.insn_uid;
1426 /* Chain insns together in sequence. */
1428 /* For now these are split in two: an rvalue form:
1429 PREV_INSN/NEXT_INSN
1430 and an lvalue form:
1431 SET_NEXT_INSN/SET_PREV_INSN. */
1433 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1435 rtx prev = XEXP (insn, 0);
1436 return safe_as_a <rtx_insn *> (prev);
1439 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1441 return XEXP (insn, 0);
1444 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1446 rtx next = XEXP (insn, 1);
1447 return safe_as_a <rtx_insn *> (next);
1450 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1452 return XEXP (insn, 1);
1455 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1457 return XBBDEF (insn, 2);
1460 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1462 return XBBDEF (insn, 2);
1465 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1467 BLOCK_FOR_INSN (insn) = bb;
1470 /* The body of an insn. */
1471 inline rtx PATTERN (const_rtx insn)
1473 return XEXP (insn, 3);
1476 inline rtx& PATTERN (rtx insn)
1478 return XEXP (insn, 3);
1481 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1483 return XUINT (insn, 4);
1486 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1488 return XUINT (insn, 4);
1491 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1493 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1496 /* LOCATION of an RTX if relevant. */
1497 #define RTL_LOCATION(X) (INSN_P (X) ? \
1498 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1499 : UNKNOWN_LOCATION)
1501 /* Code number of instruction, from when it was recognized.
1502 -1 means this instruction has not been recognized yet. */
1503 #define INSN_CODE(INSN) XINT (INSN, 5)
1505 inline rtvec rtx_jump_table_data::get_labels () const
1507 rtx pat = PATTERN (this);
1508 if (GET_CODE (pat) == ADDR_VEC)
1509 return XVEC (pat, 0);
1510 else
1511 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1514 /* Return the mode of the data in the table, which is always a scalar
1515 integer. */
1517 inline scalar_int_mode
1518 rtx_jump_table_data::get_data_mode () const
1520 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1523 /* If LABEL is followed by a jump table, return the table, otherwise
1524 return null. */
1526 inline rtx_jump_table_data *
1527 jump_table_for_label (const rtx_code_label *label)
1529 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1532 #define RTX_FRAME_RELATED_P(RTX) \
1533 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1534 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1536 /* 1 if JUMP RTX is a crossing jump. */
1537 #define CROSSING_JUMP_P(RTX) \
1538 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1540 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1541 TREE_READONLY. */
1542 #define RTL_CONST_CALL_P(RTX) \
1543 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1545 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1546 DECL_PURE_P. */
1547 #define RTL_PURE_CALL_P(RTX) \
1548 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1550 /* 1 if RTX is a call to a const or pure function. */
1551 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1552 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1554 /* 1 if RTX is a call to a looping const or pure function. Built from
1555 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1556 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1557 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1559 /* 1 if RTX is a call_insn for a sibling call. */
1560 #define SIBLING_CALL_P(RTX) \
1561 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1563 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1564 #define INSN_ANNULLED_BRANCH_P(RTX) \
1565 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1567 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1568 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1569 executed if the branch is taken. For annulled branches with this bit
1570 clear, the insn should be executed only if the branch is not taken. */
1571 #define INSN_FROM_TARGET_P(RTX) \
1572 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1573 CALL_INSN)->in_struct)
1575 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1576 See the comments for ADDR_DIFF_VEC in rtl.def. */
1577 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1579 /* In a VALUE, the value cselib has assigned to RTX.
1580 This is a "struct cselib_val", see cselib.h. */
1581 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1583 /* Holds a list of notes on what this insn does to various REGs.
1584 It is a chain of EXPR_LIST rtx's, where the second operand is the
1585 chain pointer and the first operand is the REG being described.
1586 The mode field of the EXPR_LIST contains not a real machine mode
1587 but a value from enum reg_note. */
1588 #define REG_NOTES(INSN) XEXP(INSN, 6)
1590 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1591 question. */
1592 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1594 enum reg_note
1596 #define DEF_REG_NOTE(NAME) NAME,
1597 #include "reg-notes.def"
1598 #undef DEF_REG_NOTE
1599 REG_NOTE_MAX
1602 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1603 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1604 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1605 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1607 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1609 extern const char * const reg_note_name[];
1610 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1612 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1613 USE and CLOBBER expressions.
1614 USE expressions list the registers filled with arguments that
1615 are passed to the function.
1616 CLOBBER expressions document the registers explicitly clobbered
1617 by this CALL_INSN.
1618 Pseudo registers can not be mentioned in this list. */
1619 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1621 /* The label-number of a code-label. The assembler label
1622 is made from `L' and the label-number printed in decimal.
1623 Label numbers are unique in a compilation. */
1624 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1626 /* In a NOTE that is a line number, this is a string for the file name that the
1627 line is in. We use the same field to record block numbers temporarily in
1628 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1629 between ints and pointers if we use a different macro for the block number.)
1632 /* Opaque data. */
1633 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1634 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1635 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1636 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1637 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1638 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1639 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1640 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1641 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1642 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1644 /* In a NOTE that is a line number, this is the line number.
1645 Other kinds of NOTEs are identified by negative numbers here. */
1646 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1648 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1649 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1650 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1652 /* Nonzero if INSN is a debug nonbind marker note,
1653 for which NOTE_MARKER_LOCATION can be used. */
1654 #define NOTE_MARKER_P(INSN) \
1655 (NOTE_P (INSN) && \
1656 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1657 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1659 /* Variable declaration and the location of a variable. */
1660 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1661 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1663 /* Initialization status of the variable in the location. Status
1664 can be unknown, uninitialized or initialized. See enumeration
1665 type below. */
1666 #define PAT_VAR_LOCATION_STATUS(PAT) \
1667 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1668 ->u2.var_location_status)
1670 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1671 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1672 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1673 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1674 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1675 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1676 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1678 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1679 location/value tracking annotation. */
1680 #define DEBUG_BIND_INSN_P(INSN) \
1681 (DEBUG_INSN_P (INSN) \
1682 && (GET_CODE (PATTERN (INSN)) \
1683 == VAR_LOCATION))
1684 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1685 source location marker. */
1686 #define DEBUG_MARKER_INSN_P(INSN) \
1687 (DEBUG_INSN_P (INSN) \
1688 && (GET_CODE (PATTERN (INSN)) \
1689 != VAR_LOCATION))
1690 /* Evaluate to the marker kind. */
1691 #define INSN_DEBUG_MARKER_KIND(INSN) \
1692 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1693 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1694 ? NOTE_INSN_BEGIN_STMT \
1695 : GET_MODE (PATTERN (INSN)) == BLKmode \
1696 ? NOTE_INSN_INLINE_ENTRY \
1697 : (enum insn_note)-1) \
1698 : (enum insn_note)-1)
1699 /* Create patterns for debug markers. These and the above abstract
1700 the representation, so that it's easier to get rid of the abuse of
1701 the mode to hold the marker kind. Other marker types are
1702 envisioned, so a single bit flag won't do; maybe separate RTL codes
1703 wouldn't be a problem. */
1704 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1705 gen_rtx_DEBUG_MARKER (VOIDmode)
1706 #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1707 gen_rtx_DEBUG_MARKER (BLKmode)
1709 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1710 #define INSN_VAR_LOCATION(INSN) \
1711 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1712 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1713 #define INSN_VAR_LOCATION_PTR(INSN) \
1714 (&PATTERN (INSN))
1716 /* Accessors for a tree-expanded var location debug insn. */
1717 #define INSN_VAR_LOCATION_DECL(INSN) \
1718 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1719 #define INSN_VAR_LOCATION_LOC(INSN) \
1720 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1721 #define INSN_VAR_LOCATION_STATUS(INSN) \
1722 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1724 /* Expand to the RTL that denotes an unknown variable location in a
1725 DEBUG_INSN. */
1726 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1728 /* Determine whether X is such an unknown location. */
1729 #define VAR_LOC_UNKNOWN_P(X) \
1730 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1732 /* 1 if RTX is emitted after a call, but it should take effect before
1733 the call returns. */
1734 #define NOTE_DURING_CALL_P(RTX) \
1735 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1737 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1738 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1740 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1741 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1743 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1744 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1746 /* Codes that appear in the NOTE_KIND field for kinds of notes
1747 that are not line numbers. These codes are all negative.
1749 Notice that we do not try to use zero here for any of
1750 the special note codes because sometimes the source line
1751 actually can be zero! This happens (for example) when we
1752 are generating code for the per-translation-unit constructor
1753 and destructor routines for some C++ translation unit. */
1755 enum insn_note
1757 #define DEF_INSN_NOTE(NAME) NAME,
1758 #include "insn-notes.def"
1759 #undef DEF_INSN_NOTE
1761 NOTE_INSN_MAX
1764 /* Names for NOTE insn's other than line numbers. */
1766 extern const char * const note_insn_name[NOTE_INSN_MAX];
1767 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1768 (note_insn_name[(NOTE_CODE)])
1770 /* The name of a label, in case it corresponds to an explicit label
1771 in the input source code. */
1772 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1774 /* In jump.c, each label contains a count of the number
1775 of LABEL_REFs that point at it, so unused labels can be deleted. */
1776 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1778 /* Labels carry a two-bit field composed of the ->jump and ->call
1779 bits. This field indicates whether the label is an alternate
1780 entry point, and if so, what kind. */
1781 enum label_kind
1783 LABEL_NORMAL = 0, /* ordinary label */
1784 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1785 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1786 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1789 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1791 /* Retrieve the kind of LABEL. */
1792 #define LABEL_KIND(LABEL) __extension__ \
1793 ({ __typeof (LABEL) const _label = (LABEL); \
1794 if (! LABEL_P (_label)) \
1795 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1796 __FUNCTION__); \
1797 (enum label_kind) ((_label->jump << 1) | _label->call); })
1799 /* Set the kind of LABEL. */
1800 #define SET_LABEL_KIND(LABEL, KIND) do { \
1801 __typeof (LABEL) const _label = (LABEL); \
1802 const unsigned int _kind = (KIND); \
1803 if (! LABEL_P (_label)) \
1804 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1805 __FUNCTION__); \
1806 _label->jump = ((_kind >> 1) & 1); \
1807 _label->call = (_kind & 1); \
1808 } while (0)
1810 #else
1812 /* Retrieve the kind of LABEL. */
1813 #define LABEL_KIND(LABEL) \
1814 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1816 /* Set the kind of LABEL. */
1817 #define SET_LABEL_KIND(LABEL, KIND) do { \
1818 rtx const _label = (LABEL); \
1819 const unsigned int _kind = (KIND); \
1820 _label->jump = ((_kind >> 1) & 1); \
1821 _label->call = (_kind & 1); \
1822 } while (0)
1824 #endif /* rtl flag checking */
1826 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1828 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1829 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1830 be decremented and possibly the label can be deleted. */
1831 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1833 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1835 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1838 /* Methods of rtx_jump_insn. */
1840 inline rtx rtx_jump_insn::jump_label () const
1842 return JUMP_LABEL (this);
1845 inline rtx_code_label *rtx_jump_insn::jump_target () const
1847 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1850 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1852 JUMP_LABEL (this) = target;
1855 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1856 goes through all the LABEL_REFs that jump to that label. The chain
1857 eventually winds up at the CODE_LABEL: it is circular. */
1858 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1860 /* Get the label that a LABEL_REF references. */
1861 static inline rtx_insn *
1862 label_ref_label (const_rtx ref)
1864 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1867 /* Set the label that LABEL_REF ref refers to. */
1869 static inline void
1870 set_label_ref_label (rtx ref, rtx_insn *label)
1872 XCEXP (ref, 0, LABEL_REF) = label;
1875 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1876 be used on RHS. Use SET_REGNO to change the value. */
1877 #define REGNO(RTX) (rhs_regno(RTX))
1878 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1880 /* Return the number of consecutive registers in a REG. This is always
1881 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1882 hard registers. */
1883 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1885 /* ORIGINAL_REGNO holds the number the register originally had; for a
1886 pseudo register turned into a hard reg this will hold the old pseudo
1887 register number. */
1888 #define ORIGINAL_REGNO(RTX) \
1889 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1891 /* Force the REGNO macro to only be used on the lhs. */
1892 static inline unsigned int
1893 rhs_regno (const_rtx x)
1895 return REG_CHECK (x)->regno;
1898 /* Return the final register in REG X plus one. */
1899 static inline unsigned int
1900 END_REGNO (const_rtx x)
1902 return REGNO (x) + REG_NREGS (x);
1905 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1906 bypassing the df machinery. */
1907 static inline void
1908 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1910 reg_info *reg = REG_CHECK (x);
1911 reg->regno = regno;
1912 reg->nregs = nregs;
1915 /* 1 if RTX is a reg or parallel that is the current function's return
1916 value. */
1917 #define REG_FUNCTION_VALUE_P(RTX) \
1918 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1920 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1921 #define REG_USERVAR_P(RTX) \
1922 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1924 /* 1 if RTX is a reg that holds a pointer value. */
1925 #define REG_POINTER(RTX) \
1926 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1928 /* 1 if RTX is a mem that holds a pointer value. */
1929 #define MEM_POINTER(RTX) \
1930 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1932 /* 1 if the given register REG corresponds to a hard register. */
1933 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1935 /* 1 if the given register number REG_NO corresponds to a hard register. */
1936 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1938 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1939 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1940 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1942 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1943 elements actually needed to represent the constant.
1944 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1945 significant HOST_WIDE_INT. */
1946 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1947 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1948 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1950 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1951 individual coefficients, in the form of a trailing_wide_ints structure. */
1952 #define CONST_POLY_INT_COEFFS(RTX) \
1953 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1954 CONST_POLY_INT)->u.cpi.coeffs)
1956 /* For a CONST_DOUBLE:
1957 #if TARGET_SUPPORTS_WIDE_INT == 0
1958 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1959 low-order word and ..._HIGH the high-order.
1960 #endif
1961 For a float, there is a REAL_VALUE_TYPE structure, and
1962 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1963 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1964 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1965 #define CONST_DOUBLE_REAL_VALUE(r) \
1966 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1968 #define CONST_FIXED_VALUE(r) \
1969 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1970 #define CONST_FIXED_VALUE_HIGH(r) \
1971 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1972 #define CONST_FIXED_VALUE_LOW(r) \
1973 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1975 /* For a CONST_VECTOR, return element #n. */
1976 #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
1978 /* See rtl.texi for a description of these macros. */
1979 #define CONST_VECTOR_NPATTERNS(RTX) \
1980 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
1981 ->u2.const_vector.npatterns)
1983 #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
1984 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
1985 ->u2.const_vector.nelts_per_pattern)
1987 #define CONST_VECTOR_DUPLICATE_P(RTX) \
1988 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
1990 #define CONST_VECTOR_STEPPED_P(RTX) \
1991 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
1993 #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1995 /* Return the number of elements encoded directly in a CONST_VECTOR. */
1997 inline unsigned int
1998 const_vector_encoded_nelts (const_rtx x)
2000 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2003 /* For a CONST_VECTOR, return the number of elements in a vector. */
2004 #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2006 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2007 SUBREG_BYTE extracts the byte-number. */
2009 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2010 #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2012 /* in rtlanal.c */
2013 /* Return the right cost to give to an operation
2014 to make the cost of the corresponding register-to-register instruction
2015 N times that of a fast register-to-register instruction. */
2016 #define COSTS_N_INSNS(N) ((N) * 4)
2018 /* Maximum cost of an rtl expression. This value has the special meaning
2019 not to use an rtx with this cost under any circumstances. */
2020 #define MAX_COST INT_MAX
2022 /* Return true if CODE always has VOIDmode. */
2024 static inline bool
2025 always_void_p (enum rtx_code code)
2027 return code == SET;
2030 /* A structure to hold all available cost information about an rtl
2031 expression. */
2032 struct full_rtx_costs
2034 int speed;
2035 int size;
2038 /* Initialize a full_rtx_costs structure C to the maximum cost. */
2039 static inline void
2040 init_costs_to_max (struct full_rtx_costs *c)
2042 c->speed = MAX_COST;
2043 c->size = MAX_COST;
2046 /* Initialize a full_rtx_costs structure C to zero cost. */
2047 static inline void
2048 init_costs_to_zero (struct full_rtx_costs *c)
2050 c->speed = 0;
2051 c->size = 0;
2054 /* Compare two full_rtx_costs structures A and B, returning true
2055 if A < B when optimizing for speed. */
2056 static inline bool
2057 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2058 bool speed)
2060 if (speed)
2061 return (a->speed < b->speed
2062 || (a->speed == b->speed && a->size < b->size));
2063 else
2064 return (a->size < b->size
2065 || (a->size == b->size && a->speed < b->speed));
2068 /* Increase both members of the full_rtx_costs structure C by the
2069 cost of N insns. */
2070 static inline void
2071 costs_add_n_insns (struct full_rtx_costs *c, int n)
2073 c->speed += COSTS_N_INSNS (n);
2074 c->size += COSTS_N_INSNS (n);
2077 /* Describes the shape of a subreg:
2079 inner_mode == the mode of the SUBREG_REG
2080 offset == the SUBREG_BYTE
2081 outer_mode == the mode of the SUBREG itself. */
2082 struct subreg_shape {
2083 subreg_shape (machine_mode, poly_uint16, machine_mode);
2084 bool operator == (const subreg_shape &) const;
2085 bool operator != (const subreg_shape &) const;
2086 unsigned HOST_WIDE_INT unique_id () const;
2088 machine_mode inner_mode;
2089 poly_uint16 offset;
2090 machine_mode outer_mode;
2093 inline
2094 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2095 poly_uint16 offset_in,
2096 machine_mode outer_mode_in)
2097 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2100 inline bool
2101 subreg_shape::operator == (const subreg_shape &other) const
2103 return (inner_mode == other.inner_mode
2104 && known_eq (offset, other.offset)
2105 && outer_mode == other.outer_mode);
2108 inline bool
2109 subreg_shape::operator != (const subreg_shape &other) const
2111 return !operator == (other);
2114 /* Return an integer that uniquely identifies this shape. Structures
2115 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2116 current mode is anywhere near being 65536 bytes in size, so the
2117 id comfortably fits in an int. */
2119 inline unsigned HOST_WIDE_INT
2120 subreg_shape::unique_id () const
2122 { STATIC_ASSERT (MAX_MACHINE_MODE <= 256); }
2123 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2124 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2125 int res = (int) inner_mode + ((int) outer_mode << 8);
2126 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2127 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2128 return res;
2131 /* Return the shape of a SUBREG rtx. */
2133 static inline subreg_shape
2134 shape_of_subreg (const_rtx x)
2136 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2137 SUBREG_BYTE (x), GET_MODE (x));
2140 /* Information about an address. This structure is supposed to be able
2141 to represent all supported target addresses. Please extend it if it
2142 is not yet general enough. */
2143 struct address_info {
2144 /* The mode of the value being addressed, or VOIDmode if this is
2145 a load-address operation with no known address mode. */
2146 machine_mode mode;
2148 /* The address space. */
2149 addr_space_t as;
2151 /* True if this is an RTX_AUTOINC address. */
2152 bool autoinc_p;
2154 /* A pointer to the top-level address. */
2155 rtx *outer;
2157 /* A pointer to the inner address, after all address mutations
2158 have been stripped from the top-level address. It can be one
2159 of the following:
2161 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2163 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2164 points to the step value, depending on whether the step is variable
2165 or constant respectively. SEGMENT is null.
2167 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2168 with null fields evaluating to 0. */
2169 rtx *inner;
2171 /* Components that make up *INNER. Each one may be null or nonnull.
2172 When nonnull, their meanings are as follows:
2174 - *SEGMENT is the "segment" of memory to which the address refers.
2175 This value is entirely target-specific and is only called a "segment"
2176 because that's its most typical use. It contains exactly one UNSPEC,
2177 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2178 reloading.
2180 - *BASE is a variable expression representing a base address.
2181 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2183 - *INDEX is a variable expression representing an index value.
2184 It may be a scaled expression, such as a MULT. It has exactly
2185 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2187 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2188 unmutated RTX_CONST_OBJ. */
2189 rtx *segment;
2190 rtx *base;
2191 rtx *index;
2192 rtx *disp;
2194 rtx *segment_term;
2195 rtx *base_term;
2196 rtx *index_term;
2197 rtx *disp_term;
2199 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2200 of BASE_TERM, otherwise it is null. */
2201 rtx *base_term2;
2203 /* ADDRESS if this structure describes an address operand, MEM if
2204 it describes a MEM address. */
2205 enum rtx_code addr_outer_code;
2207 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2208 enum rtx_code base_outer_code;
2211 /* This is used to bundle an rtx and a mode together so that the pair
2212 can be used with the wi:: routines. If we ever put modes into rtx
2213 integer constants, this should go away and then just pass an rtx in. */
2214 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2216 namespace wi
2218 template <>
2219 struct int_traits <rtx_mode_t>
2221 static const enum precision_type precision_type = VAR_PRECISION;
2222 static const bool host_dependent_precision = false;
2223 /* This ought to be true, except for the special case that BImode
2224 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2225 static const bool is_sign_extended = false;
2226 static unsigned int get_precision (const rtx_mode_t &);
2227 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2228 const rtx_mode_t &);
2232 inline unsigned int
2233 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2235 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2238 inline wi::storage_ref
2239 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2240 unsigned int precision,
2241 const rtx_mode_t &x)
2243 gcc_checking_assert (precision == get_precision (x));
2244 switch (GET_CODE (x.first))
2246 case CONST_INT:
2247 if (precision < HOST_BITS_PER_WIDE_INT)
2248 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2249 targets is 1 rather than -1. */
2250 gcc_checking_assert (INTVAL (x.first)
2251 == sext_hwi (INTVAL (x.first), precision)
2252 || (x.second == BImode && INTVAL (x.first) == 1));
2254 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2256 case CONST_WIDE_INT:
2257 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2258 CONST_WIDE_INT_NUNITS (x.first), precision);
2260 #if TARGET_SUPPORTS_WIDE_INT == 0
2261 case CONST_DOUBLE:
2262 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2263 #endif
2265 default:
2266 gcc_unreachable ();
2270 namespace wi
2272 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2273 wide_int min_value (machine_mode, signop);
2274 wide_int max_value (machine_mode, signop);
2277 inline wi::hwi_with_prec
2278 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2280 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2283 /* Produce the smallest number that is represented in MODE. The precision
2284 is taken from MODE and the sign from SGN. */
2285 inline wide_int
2286 wi::min_value (machine_mode mode, signop sgn)
2288 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2291 /* Produce the largest number that is represented in MODE. The precision
2292 is taken from MODE and the sign from SGN. */
2293 inline wide_int
2294 wi::max_value (machine_mode mode, signop sgn)
2296 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2299 namespace wi
2301 typedef poly_int<NUM_POLY_INT_COEFFS,
2302 generic_wide_int <wide_int_ref_storage <false, false> > >
2303 rtx_to_poly_wide_ref;
2304 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2307 /* Return the value of a CONST_POLY_INT in its native precision. */
2309 inline wi::rtx_to_poly_wide_ref
2310 const_poly_int_value (const_rtx x)
2312 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2313 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2314 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2315 return res;
2318 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2319 can then be extracted using wi::to_poly_wide. */
2321 inline bool
2322 poly_int_rtx_p (const_rtx x)
2324 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2327 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2328 MODE is the mode of X. */
2330 inline wi::rtx_to_poly_wide_ref
2331 wi::to_poly_wide (const_rtx x, machine_mode mode)
2333 if (CONST_POLY_INT_P (x))
2334 return const_poly_int_value (x);
2335 return rtx_mode_t (const_cast<rtx> (x), mode);
2338 /* Return the value of X as a poly_int64. */
2340 inline poly_int64
2341 rtx_to_poly_int64 (const_rtx x)
2343 if (CONST_POLY_INT_P (x))
2345 poly_int64 res;
2346 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2347 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2348 return res;
2350 return INTVAL (x);
2353 /* Return true if arbitrary value X is an integer constant that can
2354 be represented as a poly_int64. Store the value in *RES if so,
2355 otherwise leave it unmodified. */
2357 inline bool
2358 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2360 if (CONST_INT_P (x))
2362 *res = INTVAL (x);
2363 return true;
2365 if (CONST_POLY_INT_P (x))
2367 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2368 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2369 return false;
2370 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2371 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2372 return true;
2374 return false;
2377 extern void init_rtlanal (void);
2378 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2379 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2380 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2381 struct full_rtx_costs *);
2382 extern poly_uint64 subreg_lsb (const_rtx);
2383 extern poly_uint64 subreg_lsb_1 (machine_mode, machine_mode, poly_uint64);
2384 extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2385 poly_uint64);
2386 extern bool read_modify_subreg_p (const_rtx);
2388 /* Return the subreg byte offset for a subreg whose outer mode is
2389 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2390 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2391 the inner value. This is the inverse of subreg_lsb_1 (which converts
2392 byte offsets to bit shifts). */
2394 inline poly_uint64
2395 subreg_offset_from_lsb (machine_mode outer_mode,
2396 machine_mode inner_mode,
2397 poly_uint64 lsb_shift)
2399 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2400 GET_MODE_SIZE (inner_mode), lsb_shift);
2403 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2404 poly_uint64, machine_mode);
2405 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2406 poly_uint64, machine_mode);
2407 extern unsigned int subreg_regno (const_rtx);
2408 extern int simplify_subreg_regno (unsigned int, machine_mode,
2409 poly_uint64, machine_mode);
2410 extern unsigned int subreg_nregs (const_rtx);
2411 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2412 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2413 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2414 extern bool constant_pool_constant_p (rtx);
2415 extern bool truncated_to_mode (machine_mode, const_rtx);
2416 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2417 extern void split_double (rtx, rtx *, rtx *);
2418 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2419 extern void decompose_address (struct address_info *, rtx *,
2420 machine_mode, addr_space_t, enum rtx_code);
2421 extern void decompose_lea_address (struct address_info *, rtx *);
2422 extern void decompose_mem_address (struct address_info *, rtx);
2423 extern void update_address (struct address_info *);
2424 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2425 extern enum rtx_code get_index_code (const struct address_info *);
2427 /* 1 if RTX is a subreg containing a reg that is already known to be
2428 sign- or zero-extended from the mode of the subreg to the mode of
2429 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2430 extension.
2432 When used as a LHS, is means that this extension must be done
2433 when assigning to SUBREG_REG. */
2435 #define SUBREG_PROMOTED_VAR_P(RTX) \
2436 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2438 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2439 this gives the necessary extensions:
2440 0 - signed (SPR_SIGNED)
2441 1 - normal unsigned (SPR_UNSIGNED)
2442 2 - value is both sign and unsign extended for mode
2443 (SPR_SIGNED_AND_UNSIGNED).
2444 -1 - pointer unsigned, which most often can be handled like unsigned
2445 extension, except for generating instructions where we need to
2446 emit special code (ptr_extend insns) on some architectures
2447 (SPR_POINTER). */
2449 const int SRP_POINTER = -1;
2450 const int SRP_SIGNED = 0;
2451 const int SRP_UNSIGNED = 1;
2452 const int SRP_SIGNED_AND_UNSIGNED = 2;
2454 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2455 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2456 do { \
2457 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2458 (RTX), SUBREG); \
2459 switch (VAL) \
2461 case SRP_POINTER: \
2462 _rtx->volatil = 0; \
2463 _rtx->unchanging = 0; \
2464 break; \
2465 case SRP_SIGNED: \
2466 _rtx->volatil = 0; \
2467 _rtx->unchanging = 1; \
2468 break; \
2469 case SRP_UNSIGNED: \
2470 _rtx->volatil = 1; \
2471 _rtx->unchanging = 0; \
2472 break; \
2473 case SRP_SIGNED_AND_UNSIGNED: \
2474 _rtx->volatil = 1; \
2475 _rtx->unchanging = 1; \
2476 break; \
2478 } while (0)
2480 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2481 including SRP_SIGNED_AND_UNSIGNED if promoted for
2482 both signed and unsigned. */
2483 #define SUBREG_PROMOTED_GET(RTX) \
2484 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2485 + (RTX)->unchanging - 1)
2487 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2488 #define SUBREG_PROMOTED_SIGN(RTX) \
2489 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2490 : (RTX)->unchanging - 1)
2492 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2493 for SIGNED type. */
2494 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2495 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2497 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2498 for UNSIGNED type. */
2499 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2500 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2502 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2503 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2504 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2505 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2506 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2508 /* True if the REG is the static chain register for some CALL_INSN. */
2509 #define STATIC_CHAIN_REG_P(RTX) \
2510 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2512 /* True if the subreg was generated by LRA for reload insns. Such
2513 subregs are valid only during LRA. */
2514 #define LRA_SUBREG_P(RTX) \
2515 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2517 /* Access various components of an ASM_OPERANDS rtx. */
2519 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2520 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2521 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2522 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2523 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2524 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2525 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2526 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2527 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2528 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2529 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2530 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2531 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2532 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2533 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2534 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2535 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2536 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2538 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2539 #define MEM_READONLY_P(RTX) \
2540 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2542 /* 1 if RTX is a mem and we should keep the alias set for this mem
2543 unchanged when we access a component. Set to 1, or example, when we
2544 are already in a non-addressable component of an aggregate. */
2545 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2546 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2548 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2549 #define MEM_VOLATILE_P(RTX) \
2550 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2551 ASM_INPUT)->volatil)
2553 /* 1 if RTX is a mem that cannot trap. */
2554 #define MEM_NOTRAP_P(RTX) \
2555 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2557 /* The memory attribute block. We provide access macros for each value
2558 in the block and provide defaults if none specified. */
2559 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2561 /* The register attribute block. We provide access macros for each value
2562 in the block and provide defaults if none specified. */
2563 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2565 #ifndef GENERATOR_FILE
2566 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2567 set, and may alias anything. Otherwise, the MEM can only alias
2568 MEMs in a conflicting alias set. This value is set in a
2569 language-dependent manner in the front-end, and should not be
2570 altered in the back-end. These set numbers are tested with
2571 alias_sets_conflict_p. */
2572 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2574 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2575 refer to part of a DECL. It may also be a COMPONENT_REF. */
2576 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2578 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2579 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2581 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2582 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2584 /* For a MEM rtx, the address space. */
2585 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2587 /* For a MEM rtx, true if its MEM_SIZE is known. */
2588 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2590 /* For a MEM rtx, the size in bytes of the MEM. */
2591 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2593 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2594 mode as a default when STRICT_ALIGNMENT, but not if not. */
2595 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2596 #else
2597 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2598 #endif
2600 /* For a REG rtx, the decl it is known to refer to, if it is known to
2601 refer to part of a DECL. */
2602 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2604 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2605 HOST_WIDE_INT. */
2606 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2608 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2609 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2610 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2611 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2612 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2613 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2614 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2615 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2617 /* 1 if RTX is a label_ref for a nonlocal label. */
2618 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2619 REG_LABEL_TARGET note. */
2620 #define LABEL_REF_NONLOCAL_P(RTX) \
2621 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2623 /* 1 if RTX is a code_label that should always be considered to be needed. */
2624 #define LABEL_PRESERVE_P(RTX) \
2625 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2627 /* During sched, 1 if RTX is an insn that must be scheduled together
2628 with the preceding insn. */
2629 #define SCHED_GROUP_P(RTX) \
2630 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2631 JUMP_INSN, CALL_INSN)->in_struct)
2633 /* For a SET rtx, SET_DEST is the place that is set
2634 and SET_SRC is the value it is set to. */
2635 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2636 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2637 #define SET_IS_RETURN_P(RTX) \
2638 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2640 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2641 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2642 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2644 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2645 conditionally executing the code on, COND_EXEC_CODE is the code
2646 to execute if the condition is true. */
2647 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2648 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2650 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2651 constants pool. */
2652 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2653 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2655 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2656 tree constant pool. This information is private to varasm.c. */
2657 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2658 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2659 (RTX), SYMBOL_REF)->frame_related)
2661 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2662 #define SYMBOL_REF_FLAG(RTX) \
2663 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2665 /* 1 if RTX is a symbol_ref that has been the library function in
2666 emit_library_call. */
2667 #define SYMBOL_REF_USED(RTX) \
2668 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2670 /* 1 if RTX is a symbol_ref for a weak symbol. */
2671 #define SYMBOL_REF_WEAK(RTX) \
2672 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2674 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2675 SYMBOL_REF_CONSTANT. */
2676 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2678 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2679 pool symbol. */
2680 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2681 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2683 /* The tree (decl or constant) associated with the symbol, or null. */
2684 #define SYMBOL_REF_DECL(RTX) \
2685 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2687 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2688 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2689 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2691 /* The rtx constant pool entry for a symbol, or null. */
2692 #define SYMBOL_REF_CONSTANT(RTX) \
2693 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2695 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2696 information derivable from the tree decl associated with this symbol.
2697 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2698 decl. In some cases this is a bug. But beyond that, it's nice to cache
2699 this information to avoid recomputing it. Finally, this allows space for
2700 the target to store more than one bit of information, as with
2701 SYMBOL_REF_FLAG. */
2702 #define SYMBOL_REF_FLAGS(RTX) \
2703 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2704 ->u2.symbol_ref_flags)
2706 /* These flags are common enough to be defined for all targets. They
2707 are computed by the default version of targetm.encode_section_info. */
2709 /* Set if this symbol is a function. */
2710 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2711 #define SYMBOL_REF_FUNCTION_P(RTX) \
2712 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2713 /* Set if targetm.binds_local_p is true. */
2714 #define SYMBOL_FLAG_LOCAL (1 << 1)
2715 #define SYMBOL_REF_LOCAL_P(RTX) \
2716 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2717 /* Set if targetm.in_small_data_p is true. */
2718 #define SYMBOL_FLAG_SMALL (1 << 2)
2719 #define SYMBOL_REF_SMALL_P(RTX) \
2720 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2721 /* The three-bit field at [5:3] is true for TLS variables; use
2722 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2723 #define SYMBOL_FLAG_TLS_SHIFT 3
2724 #define SYMBOL_REF_TLS_MODEL(RTX) \
2725 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2726 /* Set if this symbol is not defined in this translation unit. */
2727 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2728 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2729 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2730 /* Set if this symbol has a block_symbol structure associated with it. */
2731 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2732 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2733 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2734 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2735 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2736 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2737 #define SYMBOL_REF_ANCHOR_P(RTX) \
2738 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2740 /* Subsequent bits are available for the target to use. */
2741 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2742 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2744 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2745 structure to which the symbol belongs, or NULL if it has not been
2746 assigned a block. */
2747 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2749 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2750 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2751 RTX has not yet been assigned to a block, or it has not been given an
2752 offset within that block. */
2753 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2755 /* True if RTX is flagged to be a scheduling barrier. */
2756 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2757 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2759 /* Indicate whether the machine has any sort of auto increment addressing.
2760 If not, we can avoid checking for REG_INC notes. */
2762 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2763 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2764 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2765 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2766 #define AUTO_INC_DEC 1
2767 #else
2768 #define AUTO_INC_DEC 0
2769 #endif
2771 /* Define a macro to look for REG_INC notes,
2772 but save time on machines where they never exist. */
2774 #if AUTO_INC_DEC
2775 #define FIND_REG_INC_NOTE(INSN, REG) \
2776 ((REG) != NULL_RTX && REG_P ((REG)) \
2777 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2778 : find_reg_note ((INSN), REG_INC, (REG)))
2779 #else
2780 #define FIND_REG_INC_NOTE(INSN, REG) 0
2781 #endif
2783 #ifndef HAVE_PRE_INCREMENT
2784 #define HAVE_PRE_INCREMENT 0
2785 #endif
2787 #ifndef HAVE_PRE_DECREMENT
2788 #define HAVE_PRE_DECREMENT 0
2789 #endif
2791 #ifndef HAVE_POST_INCREMENT
2792 #define HAVE_POST_INCREMENT 0
2793 #endif
2795 #ifndef HAVE_POST_DECREMENT
2796 #define HAVE_POST_DECREMENT 0
2797 #endif
2799 #ifndef HAVE_POST_MODIFY_DISP
2800 #define HAVE_POST_MODIFY_DISP 0
2801 #endif
2803 #ifndef HAVE_POST_MODIFY_REG
2804 #define HAVE_POST_MODIFY_REG 0
2805 #endif
2807 #ifndef HAVE_PRE_MODIFY_DISP
2808 #define HAVE_PRE_MODIFY_DISP 0
2809 #endif
2811 #ifndef HAVE_PRE_MODIFY_REG
2812 #define HAVE_PRE_MODIFY_REG 0
2813 #endif
2816 /* Some architectures do not have complete pre/post increment/decrement
2817 instruction sets, or only move some modes efficiently. These macros
2818 allow us to tune autoincrement generation. */
2820 #ifndef USE_LOAD_POST_INCREMENT
2821 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2822 #endif
2824 #ifndef USE_LOAD_POST_DECREMENT
2825 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2826 #endif
2828 #ifndef USE_LOAD_PRE_INCREMENT
2829 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2830 #endif
2832 #ifndef USE_LOAD_PRE_DECREMENT
2833 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2834 #endif
2836 #ifndef USE_STORE_POST_INCREMENT
2837 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2838 #endif
2840 #ifndef USE_STORE_POST_DECREMENT
2841 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2842 #endif
2844 #ifndef USE_STORE_PRE_INCREMENT
2845 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2846 #endif
2848 #ifndef USE_STORE_PRE_DECREMENT
2849 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2850 #endif
2852 /* Nonzero when we are generating CONCATs. */
2853 extern int generating_concat_p;
2855 /* Nonzero when we are expanding trees to RTL. */
2856 extern int currently_expanding_to_rtl;
2858 /* Generally useful functions. */
2860 #ifndef GENERATOR_FILE
2861 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2862 rather than size. */
2864 static inline int
2865 set_rtx_cost (rtx x, bool speed_p)
2867 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2870 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2872 static inline void
2873 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2875 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2878 /* Return the cost of moving X into a register, relative to the cost
2879 of a register move. SPEED_P is true if optimizing for speed rather
2880 than size. */
2882 static inline int
2883 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2885 return rtx_cost (x, mode, SET, 1, speed_p);
2888 /* Like set_src_cost, but return both the speed and size costs in C. */
2890 static inline void
2891 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2893 get_full_rtx_cost (x, mode, SET, 1, c);
2895 #endif
2897 /* A convenience macro to validate the arguments of a zero_extract
2898 expression. It determines whether SIZE lies inclusively within
2899 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2900 and the sum lies inclusively within [1, RANGE]. RANGE must be
2901 >= 1, but SIZE and POS may be negative. */
2902 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2903 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2904 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2905 - (unsigned HOST_WIDE_INT)(POS)))
2907 /* In explow.c */
2908 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2909 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2910 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2911 extern HOST_WIDE_INT get_stack_check_protect (void);
2913 /* In rtl.c */
2914 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2915 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2916 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2917 #define const_wide_int_alloc(NWORDS) \
2918 rtx_alloc_v (CONST_WIDE_INT, \
2919 (sizeof (struct hwivec_def) \
2920 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2922 extern rtvec rtvec_alloc (int);
2923 extern rtvec shallow_copy_rtvec (rtvec);
2924 extern bool shared_const_p (const_rtx);
2925 extern rtx copy_rtx (rtx);
2926 extern enum rtx_code classify_insn (rtx);
2927 extern void dump_rtx_statistics (void);
2929 /* In emit-rtl.c */
2930 extern rtx copy_rtx_if_shared (rtx);
2932 /* In rtl.c */
2933 extern unsigned int rtx_size (const_rtx);
2934 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2935 extern int rtx_equal_p (const_rtx, const_rtx);
2936 extern bool rtvec_all_equal_p (const_rtvec);
2938 /* Return true if X is a vector constant with a duplicated element value. */
2940 inline bool
2941 const_vec_duplicate_p (const_rtx x)
2943 return (GET_CODE (x) == CONST_VECTOR
2944 && CONST_VECTOR_NPATTERNS (x) == 1
2945 && CONST_VECTOR_DUPLICATE_P (x));
2948 /* Return true if X is a vector constant with a duplicated element value.
2949 Store the duplicated element in *ELT if so. */
2951 template <typename T>
2952 inline bool
2953 const_vec_duplicate_p (T x, T *elt)
2955 if (const_vec_duplicate_p (x))
2957 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
2958 return true;
2960 return false;
2963 /* Return true if X is a vector with a duplicated element value, either
2964 constant or nonconstant. Store the duplicated element in *ELT if so. */
2966 template <typename T>
2967 inline bool
2968 vec_duplicate_p (T x, T *elt)
2970 if (GET_CODE (x) == VEC_DUPLICATE
2971 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
2973 *elt = XEXP (x, 0);
2974 return true;
2976 return const_vec_duplicate_p (x, elt);
2979 /* If X is a vector constant with a duplicated element value, return that
2980 element value, otherwise return X. */
2982 template <typename T>
2983 inline T
2984 unwrap_const_vec_duplicate (T x)
2986 if (const_vec_duplicate_p (x))
2987 x = CONST_VECTOR_ELT (x, 0);
2988 return x;
2991 /* In emit-rtl.c. */
2992 extern wide_int const_vector_int_elt (const_rtx, unsigned int);
2993 extern rtx const_vector_elt (const_rtx, unsigned int);
2994 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
2996 /* Return true if X is an integer constant vector that contains a linear
2997 series of the form:
2999 { B, B + S, B + 2 * S, B + 3 * S, ... }
3001 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3003 inline bool
3004 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3006 if (GET_CODE (x) == CONST_VECTOR
3007 && CONST_VECTOR_NPATTERNS (x) == 1
3008 && !CONST_VECTOR_DUPLICATE_P (x))
3009 return const_vec_series_p_1 (x, base_out, step_out);
3010 return false;
3013 /* Return true if X is a vector that contains a linear series of the
3014 form:
3016 { B, B + S, B + 2 * S, B + 3 * S, ... }
3018 where B and S are constant or nonconstant. Store B and S in
3019 *BASE_OUT and *STEP_OUT on sucess. */
3021 inline bool
3022 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3024 if (GET_CODE (x) == VEC_SERIES)
3026 *base_out = XEXP (x, 0);
3027 *step_out = XEXP (x, 1);
3028 return true;
3030 return const_vec_series_p (x, base_out, step_out);
3033 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3035 inline scalar_int_mode
3036 subreg_unpromoted_mode (rtx x)
3038 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3039 return as_a <scalar_int_mode> (GET_MODE (x));
3042 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3044 inline scalar_int_mode
3045 subreg_promoted_mode (rtx x)
3047 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3048 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3051 /* In emit-rtl.c */
3052 extern rtvec gen_rtvec_v (int, rtx *);
3053 extern rtvec gen_rtvec_v (int, rtx_insn **);
3054 extern rtx gen_reg_rtx (machine_mode);
3055 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3056 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3057 extern rtx gen_reg_rtx_and_attrs (rtx);
3058 extern rtx_code_label *gen_label_rtx (void);
3059 extern rtx gen_lowpart_common (machine_mode, rtx);
3061 /* In cse.c */
3062 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3064 /* In emit-rtl.c */
3065 extern rtx gen_highpart (machine_mode, rtx);
3066 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3067 extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3069 /* In emit-rtl.c */
3070 extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3071 extern int subreg_lowpart_p (const_rtx);
3072 extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3074 /* Return true if a subreg of mode OUTERMODE would only access part of
3075 an inner register with mode INNERMODE. The other bits of the inner
3076 register would then be "don't care" on read. The behavior for writes
3077 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3078 chunk would be clobbered but other bits would be preserved. */
3080 inline bool
3081 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3083 /* Modes involved in a subreg must be ordered. In particular, we must
3084 always know at compile time whether the subreg is paradoxical. */
3085 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3086 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3087 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3088 return maybe_lt (outer_prec, inner_prec);
3091 /* Likewise return true if X is a subreg that is smaller than the inner
3092 register. Use read_modify_subreg_p to test whether writing to such
3093 a subreg preserves any part of the inner register. */
3095 inline bool
3096 partial_subreg_p (const_rtx x)
3098 if (GET_CODE (x) != SUBREG)
3099 return false;
3100 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3103 /* Return true if a subreg with the given outer and inner modes is
3104 paradoxical. */
3106 inline bool
3107 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3109 /* Modes involved in a subreg must be ordered. In particular, we must
3110 always know at compile time whether the subreg is paradoxical. */
3111 poly_int64 outer_prec = GET_MODE_PRECISION (outermode);
3112 poly_int64 inner_prec = GET_MODE_PRECISION (innermode);
3113 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3114 return maybe_gt (outer_prec, inner_prec);
3117 /* Return true if X is a paradoxical subreg, false otherwise. */
3119 inline bool
3120 paradoxical_subreg_p (const_rtx x)
3122 if (GET_CODE (x) != SUBREG)
3123 return false;
3124 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3127 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3129 inline poly_uint64
3130 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3132 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3133 GET_MODE_SIZE (innermode));
3136 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3137 return the smaller of the two modes if they are different sizes,
3138 otherwise return the outer mode. */
3140 inline machine_mode
3141 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3143 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3146 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3147 return the mode that is big enough to hold both the outer and inner
3148 values. Prefer the outer mode in the event of a tie. */
3150 inline machine_mode
3151 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3153 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3156 /* Likewise for subreg X. */
3158 inline machine_mode
3159 wider_subreg_mode (const_rtx x)
3161 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3164 extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3166 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3168 inline poly_uint64
3169 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3171 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3172 GET_MODE_SIZE (innermode));
3175 extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3176 extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3177 poly_uint64);
3178 extern poly_int64 subreg_memory_offset (const_rtx);
3179 extern rtx make_safe_from (rtx, rtx);
3180 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3181 addr_space_t, bool, bool);
3182 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3183 addr_space_t);
3184 #define convert_memory_address(to_mode,x) \
3185 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3186 extern const char *get_insn_name (int);
3187 extern rtx_insn *get_last_insn_anywhere (void);
3188 extern rtx_insn *get_first_nonnote_insn (void);
3189 extern rtx_insn *get_last_nonnote_insn (void);
3190 extern void start_sequence (void);
3191 extern void push_to_sequence (rtx_insn *);
3192 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3193 extern void end_sequence (void);
3194 #if TARGET_SUPPORTS_WIDE_INT == 0
3195 extern double_int rtx_to_double_int (const_rtx);
3196 #endif
3197 extern void cwi_output_hex (FILE *, const_rtx);
3198 #if TARGET_SUPPORTS_WIDE_INT == 0
3199 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3200 machine_mode);
3201 #endif
3202 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3204 /* In varasm.c */
3205 extern rtx force_const_mem (machine_mode, rtx);
3207 /* In varasm.c */
3209 struct function;
3210 extern rtx get_pool_constant (const_rtx);
3211 extern rtx get_pool_constant_mark (rtx, bool *);
3212 extern fixed_size_mode get_pool_mode (const_rtx);
3213 extern rtx simplify_subtraction (rtx);
3214 extern void decide_function_section (tree);
3216 /* In emit-rtl.c */
3217 extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3218 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3219 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3220 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3221 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3222 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3223 location_t);
3224 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3225 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3226 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3227 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3228 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3229 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3230 extern rtx_barrier *emit_barrier_before (rtx_insn *);
3231 extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3232 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3233 extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3234 extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3235 extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3236 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3237 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3238 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3239 extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3240 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3241 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3242 extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3243 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3244 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3245 extern rtx_barrier *emit_barrier_after (rtx_insn *);
3246 extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3247 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3248 extern rtx_insn *emit_insn (rtx);
3249 extern rtx_insn *emit_debug_insn (rtx);
3250 extern rtx_insn *emit_jump_insn (rtx);
3251 extern rtx_insn *emit_call_insn (rtx);
3252 extern rtx_code_label *emit_label (rtx);
3253 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3254 extern rtx_barrier *emit_barrier (void);
3255 extern rtx_note *emit_note (enum insn_note);
3256 extern rtx_note *emit_note_copy (rtx_note *);
3257 extern rtx_insn *gen_clobber (rtx);
3258 extern rtx_insn *emit_clobber (rtx);
3259 extern rtx_insn *gen_use (rtx);
3260 extern rtx_insn *emit_use (rtx);
3261 extern rtx_insn *make_insn_raw (rtx);
3262 extern void add_function_usage_to (rtx, rtx);
3263 extern rtx_call_insn *last_call_insn (void);
3264 extern rtx_insn *previous_insn (rtx_insn *);
3265 extern rtx_insn *next_insn (rtx_insn *);
3266 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3267 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3268 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3269 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3270 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3271 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3272 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3273 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3274 extern rtx_insn *prev_real_insn (rtx_insn *);
3275 extern rtx_insn *next_real_insn (rtx_insn *);
3276 extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3277 extern rtx_insn *next_real_nondebug_insn (rtx);
3278 extern rtx_insn *prev_active_insn (rtx_insn *);
3279 extern rtx_insn *next_active_insn (rtx_insn *);
3280 extern int active_insn_p (const rtx_insn *);
3281 extern rtx_insn *next_cc0_user (rtx_insn *);
3282 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3284 /* In emit-rtl.c */
3285 extern int insn_line (const rtx_insn *);
3286 extern const char * insn_file (const rtx_insn *);
3287 extern tree insn_scope (const rtx_insn *);
3288 extern expanded_location insn_location (const rtx_insn *);
3289 extern location_t prologue_location, epilogue_location;
3291 /* In jump.c */
3292 extern enum rtx_code reverse_condition (enum rtx_code);
3293 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3294 extern enum rtx_code swap_condition (enum rtx_code);
3295 extern enum rtx_code unsigned_condition (enum rtx_code);
3296 extern enum rtx_code signed_condition (enum rtx_code);
3297 extern void mark_jump_label (rtx, rtx_insn *, int);
3299 /* In jump.c */
3300 extern rtx_insn *delete_related_insns (rtx);
3302 /* In recog.c */
3303 extern rtx *find_constant_term_loc (rtx *);
3305 /* In emit-rtl.c */
3306 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3308 /* In insn-recog.c (generated by genrecog). */
3309 extern rtx_insn *split_insns (rtx, rtx_insn *);
3311 /* In simplify-rtx.c */
3312 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3313 rtx, machine_mode);
3314 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3315 machine_mode);
3316 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3317 rtx, rtx);
3318 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3319 rtx);
3320 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3321 machine_mode, rtx, rtx, rtx);
3322 extern rtx simplify_const_relational_operation (enum rtx_code,
3323 machine_mode, rtx, rtx);
3324 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3325 machine_mode, rtx, rtx);
3326 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3327 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3328 machine_mode);
3329 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3330 machine_mode, rtx, rtx, rtx);
3331 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3332 machine_mode, rtx, rtx);
3333 extern rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3334 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3335 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3336 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3337 rtx (*fn) (rtx, const_rtx, void *), void *);
3338 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3339 extern rtx simplify_rtx (const_rtx);
3340 extern rtx avoid_constant_pool_reference (rtx);
3341 extern rtx delegitimize_mem_from_attrs (rtx);
3342 extern bool mode_signbit_p (machine_mode, const_rtx);
3343 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3344 extern bool val_signbit_known_set_p (machine_mode,
3345 unsigned HOST_WIDE_INT);
3346 extern bool val_signbit_known_clear_p (machine_mode,
3347 unsigned HOST_WIDE_INT);
3349 /* In reginfo.c */
3350 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3351 bool);
3352 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3354 /* In emit-rtl.c */
3355 extern rtx set_for_reg_notes (rtx);
3356 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3357 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3358 extern void set_insn_deleted (rtx_insn *);
3360 /* Functions in rtlanal.c */
3362 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3363 extern bool contains_symbol_ref_p (const_rtx);
3364 extern bool contains_symbolic_reference_p (const_rtx);
3366 /* Handle the cheap and common cases inline for performance. */
3368 inline rtx single_set (const rtx_insn *insn)
3370 if (!INSN_P (insn))
3371 return NULL_RTX;
3373 if (GET_CODE (PATTERN (insn)) == SET)
3374 return PATTERN (insn);
3376 /* Defer to the more expensive case. */
3377 return single_set_2 (insn, PATTERN (insn));
3380 extern scalar_int_mode get_address_mode (rtx mem);
3381 extern int rtx_addr_can_trap_p (const_rtx);
3382 extern bool nonzero_address_p (const_rtx);
3383 extern int rtx_unstable_p (const_rtx);
3384 extern bool rtx_varies_p (const_rtx, bool);
3385 extern bool rtx_addr_varies_p (const_rtx, bool);
3386 extern rtx get_call_rtx_from (rtx);
3387 extern HOST_WIDE_INT get_integer_term (const_rtx);
3388 extern rtx get_related_value (const_rtx);
3389 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3390 extern void split_const (rtx, rtx *, rtx *);
3391 extern rtx strip_offset (rtx, poly_int64_pod *);
3392 extern poly_int64 get_args_size (const_rtx);
3393 extern bool unsigned_reg_p (rtx);
3394 extern int reg_mentioned_p (const_rtx, const_rtx);
3395 extern int count_occurrences (const_rtx, const_rtx, int);
3396 extern int reg_referenced_p (const_rtx, const_rtx);
3397 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3398 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3399 extern int commutative_operand_precedence (rtx);
3400 extern bool swap_commutative_operands_p (rtx, rtx);
3401 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3402 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3403 extern int modified_in_p (const_rtx, const_rtx);
3404 extern int reg_set_p (const_rtx, const_rtx);
3405 extern int multiple_sets (const_rtx);
3406 extern int set_noop_p (const_rtx);
3407 extern int noop_move_p (const rtx_insn *);
3408 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3409 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3410 extern const_rtx set_of (const_rtx, const_rtx);
3411 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3412 extern void record_hard_reg_uses (rtx *, void *);
3413 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3414 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3415 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3416 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3417 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3418 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3419 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3420 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3421 extern rtx find_reg_equal_equiv_note (const_rtx);
3422 extern rtx find_constant_src (const rtx_insn *);
3423 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3424 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3425 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3426 extern void add_reg_note (rtx, enum reg_note, rtx);
3427 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3428 extern void add_args_size_note (rtx_insn *, poly_int64);
3429 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3430 extern rtx duplicate_reg_note (rtx);
3431 extern void remove_note (rtx_insn *, const_rtx);
3432 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3433 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3434 extern int side_effects_p (const_rtx);
3435 extern int volatile_refs_p (const_rtx);
3436 extern int volatile_insn_p (const_rtx);
3437 extern int may_trap_p_1 (const_rtx, unsigned);
3438 extern int may_trap_p (const_rtx);
3439 extern int may_trap_or_fault_p (const_rtx);
3440 extern bool can_throw_internal (const_rtx);
3441 extern bool can_throw_external (const_rtx);
3442 extern bool insn_could_throw_p (const_rtx);
3443 extern bool insn_nothrow_p (const_rtx);
3444 extern bool can_nonlocal_goto (const rtx_insn *);
3445 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3446 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3447 extern int inequality_comparisons_p (const_rtx);
3448 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3449 extern void replace_label (rtx *, rtx, rtx, bool);
3450 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3451 extern bool rtx_referenced_p (const_rtx, const_rtx);
3452 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3453 extern int computed_jump_p (const rtx_insn *);
3454 extern bool tls_referenced_p (const_rtx);
3455 extern bool contains_mem_rtx_p (rtx x);
3457 /* Overload for refers_to_regno_p for checking a single register. */
3458 inline bool
3459 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3461 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3464 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3465 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3466 NULL. The callback is passed the same opaque ARG passed to
3467 for_each_inc_dec. Return zero to continue looking for other
3468 autoinc operations or any other value to interrupt the traversal and
3469 return that value to the caller of for_each_inc_dec. */
3470 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3471 rtx srcoff, void *arg);
3472 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3474 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3475 rtx *, rtx *);
3476 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3477 rtx_equal_p_callback_function);
3479 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3480 machine_mode *);
3481 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3482 bool, hash_rtx_callback_function);
3484 extern rtx regno_use_in (unsigned int, rtx);
3485 extern int auto_inc_p (const_rtx);
3486 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3487 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3488 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3489 extern int loc_mentioned_in_p (rtx *, const_rtx);
3490 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3491 extern bool keep_with_call_p (const rtx_insn *);
3492 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3493 extern int pattern_cost (rtx, bool);
3494 extern int insn_cost (rtx_insn *, bool);
3495 extern unsigned seq_cost (const rtx_insn *, bool);
3497 /* Given an insn and condition, return a canonical description of
3498 the test being made. */
3499 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3500 int, int);
3502 /* Given a JUMP_INSN, return a canonical description of the test
3503 being made. */
3504 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3506 /* Information about a subreg of a hard register. */
3507 struct subreg_info
3509 /* Offset of first hard register involved in the subreg. */
3510 int offset;
3511 /* Number of hard registers involved in the subreg. In the case of
3512 a paradoxical subreg, this is the number of registers that would
3513 be modified by writing to the subreg; some of them may be don't-care
3514 when reading from the subreg. */
3515 int nregs;
3516 /* Whether this subreg can be represented as a hard reg with the new
3517 mode (by adding OFFSET to the original hard register). */
3518 bool representable_p;
3521 extern void subreg_get_info (unsigned int, machine_mode,
3522 poly_uint64, machine_mode,
3523 struct subreg_info *);
3525 /* lists.c */
3527 extern void free_EXPR_LIST_list (rtx_expr_list **);
3528 extern void free_INSN_LIST_list (rtx_insn_list **);
3529 extern void free_EXPR_LIST_node (rtx);
3530 extern void free_INSN_LIST_node (rtx);
3531 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3532 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3533 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3534 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3535 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3536 extern rtx remove_list_elem (rtx, rtx *);
3537 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3538 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3541 /* reginfo.c */
3543 /* Resize reg info. */
3544 extern bool resize_reg_info (void);
3545 /* Free up register info memory. */
3546 extern void free_reg_info (void);
3547 extern void init_subregs_of_mode (void);
3548 extern void finish_subregs_of_mode (void);
3550 /* recog.c */
3551 extern rtx extract_asm_operands (rtx);
3552 extern int asm_noperands (const_rtx);
3553 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3554 machine_mode *, location_t *);
3555 extern void get_referenced_operands (const char *, bool *, unsigned int);
3557 extern enum reg_class reg_preferred_class (int);
3558 extern enum reg_class reg_alternate_class (int);
3559 extern enum reg_class reg_allocno_class (int);
3560 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3561 enum reg_class);
3563 extern void split_all_insns (void);
3564 extern unsigned int split_all_insns_noflow (void);
3566 #define MAX_SAVED_CONST_INT 64
3567 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3569 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3570 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3571 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3572 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3573 extern GTY(()) rtx const_true_rtx;
3575 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3577 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3578 same as VOIDmode. */
3580 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3582 /* Likewise, for the constants 1 and 2 and -1. */
3584 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3585 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3586 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3588 extern GTY(()) rtx pc_rtx;
3589 extern GTY(()) rtx cc0_rtx;
3590 extern GTY(()) rtx ret_rtx;
3591 extern GTY(()) rtx simple_return_rtx;
3592 extern GTY(()) rtx_insn *invalid_insn_rtx;
3594 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3595 is used to represent the frame pointer. This is because the
3596 hard frame pointer and the automatic variables are separated by an amount
3597 that cannot be determined until after register allocation. We can assume
3598 that in this case ELIMINABLE_REGS will be defined, one action of which
3599 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3600 #ifndef HARD_FRAME_POINTER_REGNUM
3601 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3602 #endif
3604 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3605 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3606 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3607 #endif
3609 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3610 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3611 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3612 #endif
3614 /* Index labels for global_rtl. */
3615 enum global_rtl_index
3617 GR_STACK_POINTER,
3618 GR_FRAME_POINTER,
3619 /* For register elimination to work properly these hard_frame_pointer_rtx,
3620 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3621 the same register. */
3622 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3623 GR_ARG_POINTER = GR_FRAME_POINTER,
3624 #endif
3625 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3626 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3627 #else
3628 GR_HARD_FRAME_POINTER,
3629 #endif
3630 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3631 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3632 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3633 #else
3634 GR_ARG_POINTER,
3635 #endif
3636 #endif
3637 GR_VIRTUAL_INCOMING_ARGS,
3638 GR_VIRTUAL_STACK_ARGS,
3639 GR_VIRTUAL_STACK_DYNAMIC,
3640 GR_VIRTUAL_OUTGOING_ARGS,
3641 GR_VIRTUAL_CFA,
3642 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3644 GR_MAX
3647 /* Target-dependent globals. */
3648 struct GTY(()) target_rtl {
3649 /* All references to the hard registers in global_rtl_index go through
3650 these unique rtl objects. On machines where the frame-pointer and
3651 arg-pointer are the same register, they use the same unique object.
3653 After register allocation, other rtl objects which used to be pseudo-regs
3654 may be clobbered to refer to the frame-pointer register.
3655 But references that were originally to the frame-pointer can be
3656 distinguished from the others because they contain frame_pointer_rtx.
3658 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3659 tricky: until register elimination has taken place hard_frame_pointer_rtx
3660 should be used if it is being set, and frame_pointer_rtx otherwise. After
3661 register elimination hard_frame_pointer_rtx should always be used.
3662 On machines where the two registers are same (most) then these are the
3663 same. */
3664 rtx x_global_rtl[GR_MAX];
3666 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3667 rtx x_pic_offset_table_rtx;
3669 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3670 This is used to implement __builtin_return_address for some machines;
3671 see for instance the MIPS port. */
3672 rtx x_return_address_pointer_rtx;
3674 /* Commonly used RTL for hard registers. These objects are not
3675 necessarily unique, so we allocate them separately from global_rtl.
3676 They are initialized once per compilation unit, then copied into
3677 regno_reg_rtx at the beginning of each function. */
3678 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3680 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3681 rtx x_top_of_stack[MAX_MACHINE_MODE];
3683 /* Static hunks of RTL used by the aliasing code; these are treated
3684 as persistent to avoid unnecessary RTL allocations. */
3685 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3687 /* The default memory attributes for each mode. */
3688 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3690 /* Track if RTL has been initialized. */
3691 bool target_specific_initialized;
3694 extern GTY(()) struct target_rtl default_target_rtl;
3695 #if SWITCHABLE_TARGET
3696 extern struct target_rtl *this_target_rtl;
3697 #else
3698 #define this_target_rtl (&default_target_rtl)
3699 #endif
3701 #define global_rtl \
3702 (this_target_rtl->x_global_rtl)
3703 #define pic_offset_table_rtx \
3704 (this_target_rtl->x_pic_offset_table_rtx)
3705 #define return_address_pointer_rtx \
3706 (this_target_rtl->x_return_address_pointer_rtx)
3707 #define top_of_stack \
3708 (this_target_rtl->x_top_of_stack)
3709 #define mode_mem_attrs \
3710 (this_target_rtl->x_mode_mem_attrs)
3712 /* All references to certain hard regs, except those created
3713 by allocating pseudo regs into them (when that's possible),
3714 go through these unique rtx objects. */
3715 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3716 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3717 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3718 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3720 #ifndef GENERATOR_FILE
3721 /* Return the attributes of a MEM rtx. */
3722 static inline const struct mem_attrs *
3723 get_mem_attrs (const_rtx x)
3725 struct mem_attrs *attrs;
3727 attrs = MEM_ATTRS (x);
3728 if (!attrs)
3729 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3730 return attrs;
3732 #endif
3734 /* Include the RTL generation functions. */
3736 #ifndef GENERATOR_FILE
3737 #include "genrtl.h"
3738 #undef gen_rtx_ASM_INPUT
3739 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3740 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3741 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3742 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3743 #endif
3745 /* There are some RTL codes that require special attention; the
3746 generation functions included above do the raw handling. If you
3747 add to this list, modify special_rtx in gengenrtl.c as well. */
3749 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3750 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3751 extern rtx_insn *
3752 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3753 basic_block bb, rtx pattern, int location, int code,
3754 rtx reg_notes);
3755 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3756 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3757 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3758 extern rtx gen_raw_REG (machine_mode, unsigned int);
3759 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3760 extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
3761 extern rtx gen_rtx_MEM (machine_mode, rtx);
3762 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3763 enum var_init_status);
3765 #ifdef GENERATOR_FILE
3766 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3767 #else
3768 static inline void
3769 PUT_MODE (rtx x, machine_mode mode)
3771 if (REG_P (x))
3772 set_mode_and_regno (x, mode, REGNO (x));
3773 else
3774 PUT_MODE_RAW (x, mode);
3776 #endif
3778 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3780 /* Virtual registers are used during RTL generation to refer to locations into
3781 the stack frame when the actual location isn't known until RTL generation
3782 is complete. The routine instantiate_virtual_regs replaces these with
3783 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3784 a constant. */
3786 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3788 /* This points to the first word of the incoming arguments passed on the stack,
3789 either by the caller or by the callee when pretending it was passed by the
3790 caller. */
3792 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3794 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3796 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3797 variable on the stack. Otherwise, it points to the first variable on
3798 the stack. */
3800 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3802 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3804 /* This points to the location of dynamically-allocated memory on the stack
3805 immediately after the stack pointer has been adjusted by the amount
3806 desired. */
3808 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3810 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3812 /* This points to the location in the stack at which outgoing arguments should
3813 be written when the stack is pre-pushed (arguments pushed using push
3814 insns always use sp). */
3816 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3818 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3820 /* This points to the Canonical Frame Address of the function. This
3821 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3822 but is calculated relative to the arg pointer for simplicity; the
3823 frame pointer nor stack pointer are necessarily fixed relative to
3824 the CFA until after reload. */
3826 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3828 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3830 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3832 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3833 when finalized. */
3835 #define virtual_preferred_stack_boundary_rtx \
3836 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3838 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3839 ((FIRST_VIRTUAL_REGISTER) + 5)
3841 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3843 /* Nonzero if REGNUM is a pointer into the stack frame. */
3844 #define REGNO_PTR_FRAME_P(REGNUM) \
3845 ((REGNUM) == STACK_POINTER_REGNUM \
3846 || (REGNUM) == FRAME_POINTER_REGNUM \
3847 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3848 || (REGNUM) == ARG_POINTER_REGNUM \
3849 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3850 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3852 /* REGNUM never really appearing in the INSN stream. */
3853 #define INVALID_REGNUM (~(unsigned int) 0)
3855 /* REGNUM for which no debug information can be generated. */
3856 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3858 extern rtx output_constant_def (tree, int);
3859 extern rtx lookup_constant_def (tree);
3861 /* Nonzero after end of reload pass.
3862 Set to 1 or 0 by reload1.c. */
3864 extern int reload_completed;
3866 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3867 extern int epilogue_completed;
3869 /* Set to 1 while reload_as_needed is operating.
3870 Required by some machines to handle any generated moves differently. */
3872 extern int reload_in_progress;
3874 /* Set to 1 while in lra. */
3875 extern int lra_in_progress;
3877 /* This macro indicates whether you may create a new
3878 pseudo-register. */
3880 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3882 #ifdef STACK_REGS
3883 /* Nonzero after end of regstack pass.
3884 Set to 1 or 0 by reg-stack.c. */
3885 extern int regstack_completed;
3886 #endif
3888 /* If this is nonzero, we do not bother generating VOLATILE
3889 around volatile memory references, and we are willing to
3890 output indirect addresses. If cse is to follow, we reject
3891 indirect addresses so a useful potential cse is generated;
3892 if it is used only once, instruction combination will produce
3893 the same indirect address eventually. */
3894 extern int cse_not_expected;
3896 /* Translates rtx code to tree code, for those codes needed by
3897 real_arithmetic. The function returns an int because the caller may not
3898 know what `enum tree_code' means. */
3900 extern int rtx_to_tree_code (enum rtx_code);
3902 /* In cse.c */
3903 extern int delete_trivially_dead_insns (rtx_insn *, int);
3904 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3905 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3907 /* In dse.c */
3908 extern bool check_for_inc_dec (rtx_insn *insn);
3910 /* In jump.c */
3911 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3912 extern bool jump_to_label_p (const rtx_insn *);
3913 extern int condjump_p (const rtx_insn *);
3914 extern int any_condjump_p (const rtx_insn *);
3915 extern int any_uncondjump_p (const rtx_insn *);
3916 extern rtx pc_set (const rtx_insn *);
3917 extern rtx condjump_label (const rtx_insn *);
3918 extern int simplejump_p (const rtx_insn *);
3919 extern int returnjump_p (const rtx_insn *);
3920 extern int eh_returnjump_p (rtx_insn *);
3921 extern int onlyjump_p (const rtx_insn *);
3922 extern int only_sets_cc0_p (const_rtx);
3923 extern int sets_cc0_p (const_rtx);
3924 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3925 extern int invert_jump (rtx_jump_insn *, rtx, int);
3926 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3927 extern int true_regnum (const_rtx);
3928 extern unsigned int reg_or_subregno (const_rtx);
3929 extern int redirect_jump_1 (rtx_insn *, rtx);
3930 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3931 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3932 extern void rebuild_jump_labels (rtx_insn *);
3933 extern void rebuild_jump_labels_chain (rtx_insn *);
3934 extern rtx reversed_comparison (const_rtx, machine_mode);
3935 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3936 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3937 const_rtx, const rtx_insn *);
3938 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3939 extern int condjump_in_parallel_p (const rtx_insn *);
3941 /* In emit-rtl.c. */
3942 extern int max_reg_num (void);
3943 extern int max_label_num (void);
3944 extern int get_first_label_num (void);
3945 extern void maybe_set_first_label_num (rtx_code_label *);
3946 extern void delete_insns_since (rtx_insn *);
3947 extern void mark_reg_pointer (rtx, int);
3948 extern void mark_user_reg (rtx);
3949 extern void reset_used_flags (rtx);
3950 extern void set_used_flags (rtx);
3951 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3952 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3953 extern int get_max_insn_count (void);
3954 extern int in_sequence_p (void);
3955 extern void init_emit (void);
3956 extern void init_emit_regs (void);
3957 extern void init_derived_machine_modes (void);
3958 extern void init_emit_once (void);
3959 extern void push_topmost_sequence (void);
3960 extern void pop_topmost_sequence (void);
3961 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3962 extern unsigned int unshare_all_rtl (void);
3963 extern void unshare_all_rtl_again (rtx_insn *);
3964 extern void unshare_all_rtl_in_chain (rtx_insn *);
3965 extern void verify_rtl_sharing (void);
3966 extern void add_insn (rtx_insn *);
3967 extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
3968 extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
3969 extern void remove_insn (rtx_insn *);
3970 extern rtx_insn *emit (rtx, bool = true);
3971 extern void emit_insn_at_entry (rtx);
3972 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3973 extern rtx gen_const_mem (machine_mode, rtx);
3974 extern rtx gen_frame_mem (machine_mode, rtx);
3975 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3976 extern bool validate_subreg (machine_mode, machine_mode,
3977 const_rtx, poly_uint64);
3979 /* In combine.c */
3980 extern unsigned int extended_count (const_rtx, machine_mode, int);
3981 extern rtx remove_death (unsigned int, rtx_insn *);
3982 extern void dump_combine_stats (FILE *);
3983 extern void dump_combine_total_stats (FILE *);
3984 extern rtx make_compound_operation (rtx, enum rtx_code);
3986 /* In sched-rgn.c. */
3987 extern void schedule_insns (void);
3989 /* In sched-ebb.c. */
3990 extern void schedule_ebbs (void);
3992 /* In sel-sched-dump.c. */
3993 extern void sel_sched_fix_param (const char *param, const char *val);
3995 /* In print-rtl.c */
3996 extern const char *print_rtx_head;
3997 extern void debug (const rtx_def &ref);
3998 extern void debug (const rtx_def *ptr);
3999 extern void debug_rtx (const_rtx);
4000 extern void debug_rtx_list (const rtx_insn *, int);
4001 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4002 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4003 extern void print_mem_expr (FILE *, const_tree);
4004 extern void print_rtl (FILE *, const_rtx);
4005 extern void print_simple_rtl (FILE *, const_rtx);
4006 extern int print_rtl_single (FILE *, const_rtx);
4007 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
4008 extern void print_inline_rtx (FILE *, const_rtx, int);
4010 /* In stmt.c */
4011 extern void expand_null_return (void);
4012 extern void expand_naked_return (void);
4013 extern void emit_jump (rtx);
4015 /* In expr.c */
4016 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4017 unsigned int, int);
4018 extern poly_int64 find_args_size_adjust (rtx_insn *);
4019 extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4021 /* In expmed.c */
4022 extern void init_expmed (void);
4023 extern void expand_inc (rtx, rtx);
4024 extern void expand_dec (rtx, rtx);
4026 /* In lower-subreg.c */
4027 extern void init_lower_subreg (void);
4029 /* In gcse.c */
4030 extern bool can_copy_p (machine_mode);
4031 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4032 extern rtx fis_get_condition (rtx_insn *);
4034 /* In ira.c */
4035 extern HARD_REG_SET eliminable_regset;
4036 extern void mark_elimination (int, int);
4038 /* In reginfo.c */
4039 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
4040 extern int reg_class_subset_p (reg_class_t, reg_class_t);
4041 extern void globalize_reg (tree, int);
4042 extern void init_reg_modes_target (void);
4043 extern void init_regs (void);
4044 extern void reinit_regs (void);
4045 extern void init_fake_stack_mems (void);
4046 extern void save_register_info (void);
4047 extern void init_reg_sets (void);
4048 extern void regclass (rtx, int);
4049 extern void reg_scan (rtx_insn *, unsigned int);
4050 extern void fix_register (const char *, int, int);
4051 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4053 /* In reload1.c */
4054 extern int function_invariant_p (const_rtx);
4056 /* In calls.c */
4057 enum libcall_type
4059 LCT_NORMAL = 0,
4060 LCT_CONST = 1,
4061 LCT_PURE = 2,
4062 LCT_NORETURN = 3,
4063 LCT_THROW = 4,
4064 LCT_RETURNS_TWICE = 5
4067 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4068 machine_mode, int, rtx_mode_t *);
4070 /* Output a library call and discard the returned value. FUN is the
4071 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4072 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4073 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4074 another LCT_ value for other types of library calls.
4076 There are different overloads of this function for different numbers
4077 of arguments. In each case the argument value is followed by its mode. */
4079 inline void
4080 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4082 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4085 inline void
4086 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4087 rtx arg1, machine_mode arg1_mode)
4089 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4090 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4093 inline void
4094 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4095 rtx arg1, machine_mode arg1_mode,
4096 rtx arg2, machine_mode arg2_mode)
4098 rtx_mode_t args[] = {
4099 rtx_mode_t (arg1, arg1_mode),
4100 rtx_mode_t (arg2, arg2_mode)
4102 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4105 inline void
4106 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4107 rtx arg1, machine_mode arg1_mode,
4108 rtx arg2, machine_mode arg2_mode,
4109 rtx arg3, machine_mode arg3_mode)
4111 rtx_mode_t args[] = {
4112 rtx_mode_t (arg1, arg1_mode),
4113 rtx_mode_t (arg2, arg2_mode),
4114 rtx_mode_t (arg3, arg3_mode)
4116 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4119 inline void
4120 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4121 rtx arg1, machine_mode arg1_mode,
4122 rtx arg2, machine_mode arg2_mode,
4123 rtx arg3, machine_mode arg3_mode,
4124 rtx arg4, machine_mode arg4_mode)
4126 rtx_mode_t args[] = {
4127 rtx_mode_t (arg1, arg1_mode),
4128 rtx_mode_t (arg2, arg2_mode),
4129 rtx_mode_t (arg3, arg3_mode),
4130 rtx_mode_t (arg4, arg4_mode)
4132 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4135 /* Like emit_library_call, but return the value produced by the call.
4136 Use VALUE to store the result if it is nonnull, otherwise pick a
4137 convenient location. */
4139 inline rtx
4140 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4141 machine_mode outmode)
4143 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4146 inline rtx
4147 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4148 machine_mode outmode,
4149 rtx arg1, machine_mode arg1_mode)
4151 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4152 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4155 inline rtx
4156 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4157 machine_mode outmode,
4158 rtx arg1, machine_mode arg1_mode,
4159 rtx arg2, machine_mode arg2_mode)
4161 rtx_mode_t args[] = {
4162 rtx_mode_t (arg1, arg1_mode),
4163 rtx_mode_t (arg2, arg2_mode)
4165 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4168 inline rtx
4169 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4170 machine_mode outmode,
4171 rtx arg1, machine_mode arg1_mode,
4172 rtx arg2, machine_mode arg2_mode,
4173 rtx arg3, machine_mode arg3_mode)
4175 rtx_mode_t args[] = {
4176 rtx_mode_t (arg1, arg1_mode),
4177 rtx_mode_t (arg2, arg2_mode),
4178 rtx_mode_t (arg3, arg3_mode)
4180 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4183 inline rtx
4184 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4185 machine_mode outmode,
4186 rtx arg1, machine_mode arg1_mode,
4187 rtx arg2, machine_mode arg2_mode,
4188 rtx arg3, machine_mode arg3_mode,
4189 rtx arg4, machine_mode arg4_mode)
4191 rtx_mode_t args[] = {
4192 rtx_mode_t (arg1, arg1_mode),
4193 rtx_mode_t (arg2, arg2_mode),
4194 rtx_mode_t (arg3, arg3_mode),
4195 rtx_mode_t (arg4, arg4_mode)
4197 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4200 /* In varasm.c */
4201 extern void init_varasm_once (void);
4203 extern rtx make_debug_expr_from_rtl (const_rtx);
4205 /* In read-rtl.c */
4206 #ifdef GENERATOR_FILE
4207 extern bool read_rtx (const char *, vec<rtx> *);
4208 #endif
4210 /* In alias.c */
4211 extern rtx canon_rtx (rtx);
4212 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4213 extern rtx get_addr (rtx);
4214 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4215 const_rtx, rtx);
4216 extern int read_dependence (const_rtx, const_rtx);
4217 extern int anti_dependence (const_rtx, const_rtx);
4218 extern int canon_anti_dependence (const_rtx, bool,
4219 const_rtx, machine_mode, rtx);
4220 extern int output_dependence (const_rtx, const_rtx);
4221 extern int canon_output_dependence (const_rtx, bool,
4222 const_rtx, machine_mode, rtx);
4223 extern int may_alias_p (const_rtx, const_rtx);
4224 extern void init_alias_target (void);
4225 extern void init_alias_analysis (void);
4226 extern void end_alias_analysis (void);
4227 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4228 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4229 extern bool may_be_sp_based_p (rtx);
4230 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4231 extern rtx get_reg_known_value (unsigned int);
4232 extern bool get_reg_known_equiv_p (unsigned int);
4233 extern rtx get_reg_base_value (unsigned int);
4235 #ifdef STACK_REGS
4236 extern int stack_regs_mentioned (const_rtx insn);
4237 #endif
4239 /* In toplev.c */
4240 extern GTY(()) rtx stack_limit_rtx;
4242 /* In var-tracking.c */
4243 extern unsigned int variable_tracking_main (void);
4244 extern void delete_vta_debug_insns (bool);
4246 /* In stor-layout.c. */
4247 extern void get_mode_bounds (scalar_int_mode, int,
4248 scalar_int_mode, rtx *, rtx *);
4250 /* In loop-iv.c */
4251 extern rtx canon_condition (rtx);
4252 extern void simplify_using_condition (rtx, rtx *, bitmap);
4254 /* In final.c */
4255 extern unsigned int compute_alignments (void);
4256 extern void update_alignments (vec<rtx> &);
4257 extern int asm_str_count (const char *templ);
4259 struct rtl_hooks
4261 rtx (*gen_lowpart) (machine_mode, rtx);
4262 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4263 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4264 unsigned HOST_WIDE_INT *);
4265 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4266 unsigned int *);
4267 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4269 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4272 /* Each pass can provide its own. */
4273 extern struct rtl_hooks rtl_hooks;
4275 /* ... but then it has to restore these. */
4276 extern const struct rtl_hooks general_rtl_hooks;
4278 /* Keep this for the nonce. */
4279 #define gen_lowpart rtl_hooks.gen_lowpart
4281 extern void insn_locations_init (void);
4282 extern void insn_locations_finalize (void);
4283 extern void set_curr_insn_location (location_t);
4284 extern location_t curr_insn_location (void);
4286 /* rtl-error.c */
4287 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4288 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4289 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4290 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4292 #define fatal_insn(msgid, insn) \
4293 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4294 #define fatal_insn_not_found(insn) \
4295 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4297 /* reginfo.c */
4298 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4300 /* Information about the function that is propagated by the RTL backend.
4301 Available only for functions that has been already assembled. */
4303 struct GTY(()) cgraph_rtl_info {
4304 unsigned int preferred_incoming_stack_boundary;
4306 /* Call unsaved hard registers really used by the corresponding
4307 function (including ones used by functions called by the
4308 function). */
4309 HARD_REG_SET function_used_regs;
4310 /* Set if function_used_regs is valid. */
4311 unsigned function_used_regs_valid: 1;
4314 /* If loads from memories of mode MODE always sign or zero extend,
4315 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4316 otherwise. */
4318 inline rtx_code
4319 load_extend_op (machine_mode mode)
4321 scalar_int_mode int_mode;
4322 if (is_a <scalar_int_mode> (mode, &int_mode)
4323 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4324 return LOAD_EXTEND_OP (int_mode);
4325 return UNKNOWN;
4328 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4329 and return the base. Return X otherwise. */
4331 inline rtx
4332 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4334 if (GET_CODE (x) == PLUS)
4336 poly_int64 suboffset;
4337 x = strip_offset (x, &suboffset);
4338 *offset = poly_uint64 (*offset) + suboffset;
4340 return x;
4343 /* gtype-desc.c. */
4344 extern void gt_ggc_mx (rtx &);
4345 extern void gt_pch_nx (rtx &);
4346 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4348 #endif /* ! GCC_RTL_H */