PR c++/86342 - -Wdeprecated-copy and system headers.
[official-gcc.git] / gcc / fortran / simplify.c
blob41997367cf91dcecc073958ee32c6ca7a4e25808
1 /* Simplify intrinsic functions at compile-time.
2 Copyright (C) 2000-2018 Free Software Foundation, Inc.
3 Contributed by Andy Vaught & Katherine Holcomb
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h" /* For BITS_PER_UNIT. */
25 #include "gfortran.h"
26 #include "arith.h"
27 #include "intrinsic.h"
28 #include "match.h"
29 #include "target-memory.h"
30 #include "constructor.h"
31 #include "version.h" /* For version_string. */
33 /* Prototypes. */
35 static int min_max_choose (gfc_expr *, gfc_expr *, int, bool back_val = false);
37 gfc_expr gfc_bad_expr;
39 static gfc_expr *simplify_size (gfc_expr *, gfc_expr *, int);
42 /* Note that 'simplification' is not just transforming expressions.
43 For functions that are not simplified at compile time, range
44 checking is done if possible.
46 The return convention is that each simplification function returns:
48 A new expression node corresponding to the simplified arguments.
49 The original arguments are destroyed by the caller, and must not
50 be a part of the new expression.
52 NULL pointer indicating that no simplification was possible and
53 the original expression should remain intact.
55 An expression pointer to gfc_bad_expr (a static placeholder)
56 indicating that some error has prevented simplification. The
57 error is generated within the function and should be propagated
58 upwards
60 By the time a simplification function gets control, it has been
61 decided that the function call is really supposed to be the
62 intrinsic. No type checking is strictly necessary, since only
63 valid types will be passed on. On the other hand, a simplification
64 subroutine may have to look at the type of an argument as part of
65 its processing.
67 Array arguments are only passed to these subroutines that implement
68 the simplification of transformational intrinsics.
70 The functions in this file don't have much comment with them, but
71 everything is reasonably straight-forward. The Standard, chapter 13
72 is the best comment you'll find for this file anyway. */
74 /* Range checks an expression node. If all goes well, returns the
75 node, otherwise returns &gfc_bad_expr and frees the node. */
77 static gfc_expr *
78 range_check (gfc_expr *result, const char *name)
80 if (result == NULL)
81 return &gfc_bad_expr;
83 if (result->expr_type != EXPR_CONSTANT)
84 return result;
86 switch (gfc_range_check (result))
88 case ARITH_OK:
89 return result;
91 case ARITH_OVERFLOW:
92 gfc_error ("Result of %s overflows its kind at %L", name,
93 &result->where);
94 break;
96 case ARITH_UNDERFLOW:
97 gfc_error ("Result of %s underflows its kind at %L", name,
98 &result->where);
99 break;
101 case ARITH_NAN:
102 gfc_error ("Result of %s is NaN at %L", name, &result->where);
103 break;
105 default:
106 gfc_error ("Result of %s gives range error for its kind at %L", name,
107 &result->where);
108 break;
111 gfc_free_expr (result);
112 return &gfc_bad_expr;
116 /* A helper function that gets an optional and possibly missing
117 kind parameter. Returns the kind, -1 if something went wrong. */
119 static int
120 get_kind (bt type, gfc_expr *k, const char *name, int default_kind)
122 int kind;
124 if (k == NULL)
125 return default_kind;
127 if (k->expr_type != EXPR_CONSTANT)
129 gfc_error ("KIND parameter of %s at %L must be an initialization "
130 "expression", name, &k->where);
131 return -1;
134 if (gfc_extract_int (k, &kind)
135 || gfc_validate_kind (type, kind, true) < 0)
137 gfc_error ("Invalid KIND parameter of %s at %L", name, &k->where);
138 return -1;
141 return kind;
145 /* Converts an mpz_t signed variable into an unsigned one, assuming
146 two's complement representations and a binary width of bitsize.
147 The conversion is a no-op unless x is negative; otherwise, it can
148 be accomplished by masking out the high bits. */
150 static void
151 convert_mpz_to_unsigned (mpz_t x, int bitsize)
153 mpz_t mask;
155 if (mpz_sgn (x) < 0)
157 /* Confirm that no bits above the signed range are unset if we
158 are doing range checking. */
159 if (flag_range_check != 0)
160 gcc_assert (mpz_scan0 (x, bitsize-1) == ULONG_MAX);
162 mpz_init_set_ui (mask, 1);
163 mpz_mul_2exp (mask, mask, bitsize);
164 mpz_sub_ui (mask, mask, 1);
166 mpz_and (x, x, mask);
168 mpz_clear (mask);
170 else
172 /* Confirm that no bits above the signed range are set. */
173 gcc_assert (mpz_scan1 (x, bitsize-1) == ULONG_MAX);
178 /* Converts an mpz_t unsigned variable into a signed one, assuming
179 two's complement representations and a binary width of bitsize.
180 If the bitsize-1 bit is set, this is taken as a sign bit and
181 the number is converted to the corresponding negative number. */
183 void
184 gfc_convert_mpz_to_signed (mpz_t x, int bitsize)
186 mpz_t mask;
188 /* Confirm that no bits above the unsigned range are set if we are
189 doing range checking. */
190 if (flag_range_check != 0)
191 gcc_assert (mpz_scan1 (x, bitsize) == ULONG_MAX);
193 if (mpz_tstbit (x, bitsize - 1) == 1)
195 mpz_init_set_ui (mask, 1);
196 mpz_mul_2exp (mask, mask, bitsize);
197 mpz_sub_ui (mask, mask, 1);
199 /* We negate the number by hand, zeroing the high bits, that is
200 make it the corresponding positive number, and then have it
201 negated by GMP, giving the correct representation of the
202 negative number. */
203 mpz_com (x, x);
204 mpz_add_ui (x, x, 1);
205 mpz_and (x, x, mask);
207 mpz_neg (x, x);
209 mpz_clear (mask);
214 /* In-place convert BOZ to REAL of the specified kind. */
216 static gfc_expr *
217 convert_boz (gfc_expr *x, int kind)
219 if (x && x->ts.type == BT_INTEGER && x->is_boz)
221 gfc_typespec ts;
222 gfc_clear_ts (&ts);
223 ts.type = BT_REAL;
224 ts.kind = kind;
226 if (!gfc_convert_boz (x, &ts))
227 return &gfc_bad_expr;
230 return x;
234 /* Test that the expression is a constant array, simplifying if
235 we are dealing with a parameter array. */
237 static bool
238 is_constant_array_expr (gfc_expr *e)
240 gfc_constructor *c;
242 if (e == NULL)
243 return true;
245 if (e->expr_type == EXPR_VARIABLE && e->rank > 0
246 && e->symtree->n.sym->attr.flavor == FL_PARAMETER)
247 gfc_simplify_expr (e, 1);
249 if (e->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (e))
250 return false;
252 for (c = gfc_constructor_first (e->value.constructor);
253 c; c = gfc_constructor_next (c))
254 if (c->expr->expr_type != EXPR_CONSTANT
255 && c->expr->expr_type != EXPR_STRUCTURE)
256 return false;
258 return true;
261 /* Test for a size zero array. */
262 bool
263 gfc_is_size_zero_array (gfc_expr *array)
266 if (array->rank == 0)
267 return false;
269 if (array->expr_type == EXPR_VARIABLE && array->rank > 0
270 && array->symtree->n.sym->attr.flavor == FL_PARAMETER
271 && array->shape != NULL)
273 for (int i = 0; i < array->rank; i++)
274 if (mpz_cmp_si (array->shape[i], 0) <= 0)
275 return true;
277 return false;
280 if (array->expr_type == EXPR_ARRAY)
281 return array->value.constructor == NULL;
283 return false;
287 /* Initialize a transformational result expression with a given value. */
289 static void
290 init_result_expr (gfc_expr *e, int init, gfc_expr *array)
292 if (e && e->expr_type == EXPR_ARRAY)
294 gfc_constructor *ctor = gfc_constructor_first (e->value.constructor);
295 while (ctor)
297 init_result_expr (ctor->expr, init, array);
298 ctor = gfc_constructor_next (ctor);
301 else if (e && e->expr_type == EXPR_CONSTANT)
303 int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
304 HOST_WIDE_INT length;
305 gfc_char_t *string;
307 switch (e->ts.type)
309 case BT_LOGICAL:
310 e->value.logical = (init ? 1 : 0);
311 break;
313 case BT_INTEGER:
314 if (init == INT_MIN)
315 mpz_set (e->value.integer, gfc_integer_kinds[i].min_int);
316 else if (init == INT_MAX)
317 mpz_set (e->value.integer, gfc_integer_kinds[i].huge);
318 else
319 mpz_set_si (e->value.integer, init);
320 break;
322 case BT_REAL:
323 if (init == INT_MIN)
325 mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
326 mpfr_neg (e->value.real, e->value.real, GFC_RND_MODE);
328 else if (init == INT_MAX)
329 mpfr_set (e->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
330 else
331 mpfr_set_si (e->value.real, init, GFC_RND_MODE);
332 break;
334 case BT_COMPLEX:
335 mpc_set_si (e->value.complex, init, GFC_MPC_RND_MODE);
336 break;
338 case BT_CHARACTER:
339 if (init == INT_MIN)
341 gfc_expr *len = gfc_simplify_len (array, NULL);
342 gfc_extract_hwi (len, &length);
343 string = gfc_get_wide_string (length + 1);
344 gfc_wide_memset (string, 0, length);
346 else if (init == INT_MAX)
348 gfc_expr *len = gfc_simplify_len (array, NULL);
349 gfc_extract_hwi (len, &length);
350 string = gfc_get_wide_string (length + 1);
351 gfc_wide_memset (string, 255, length);
353 else
355 length = 0;
356 string = gfc_get_wide_string (1);
359 string[length] = '\0';
360 e->value.character.length = length;
361 e->value.character.string = string;
362 break;
364 default:
365 gcc_unreachable();
368 else
369 gcc_unreachable();
373 /* Helper function for gfc_simplify_dot_product() and gfc_simplify_matmul;
374 if conj_a is true, the matrix_a is complex conjugated. */
376 static gfc_expr *
377 compute_dot_product (gfc_expr *matrix_a, int stride_a, int offset_a,
378 gfc_expr *matrix_b, int stride_b, int offset_b,
379 bool conj_a)
381 gfc_expr *result, *a, *b, *c;
383 /* Set result to an INTEGER(1) 0 for numeric types and .false. for
384 LOGICAL. Mixed-mode math in the loop will promote result to the
385 correct type and kind. */
386 if (matrix_a->ts.type == BT_LOGICAL)
387 result = gfc_get_logical_expr (gfc_default_logical_kind, NULL, false);
388 else
389 result = gfc_get_int_expr (1, NULL, 0);
390 result->where = matrix_a->where;
392 a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a);
393 b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b);
394 while (a && b)
396 /* Copying of expressions is required as operands are free'd
397 by the gfc_arith routines. */
398 switch (result->ts.type)
400 case BT_LOGICAL:
401 result = gfc_or (result,
402 gfc_and (gfc_copy_expr (a),
403 gfc_copy_expr (b)));
404 break;
406 case BT_INTEGER:
407 case BT_REAL:
408 case BT_COMPLEX:
409 if (conj_a && a->ts.type == BT_COMPLEX)
410 c = gfc_simplify_conjg (a);
411 else
412 c = gfc_copy_expr (a);
413 result = gfc_add (result, gfc_multiply (c, gfc_copy_expr (b)));
414 break;
416 default:
417 gcc_unreachable();
420 offset_a += stride_a;
421 a = gfc_constructor_lookup_expr (matrix_a->value.constructor, offset_a);
423 offset_b += stride_b;
424 b = gfc_constructor_lookup_expr (matrix_b->value.constructor, offset_b);
427 return result;
431 /* Build a result expression for transformational intrinsics,
432 depending on DIM. */
434 static gfc_expr *
435 transformational_result (gfc_expr *array, gfc_expr *dim, bt type,
436 int kind, locus* where)
438 gfc_expr *result;
439 int i, nelem;
441 if (!dim || array->rank == 1)
442 return gfc_get_constant_expr (type, kind, where);
444 result = gfc_get_array_expr (type, kind, where);
445 result->shape = gfc_copy_shape_excluding (array->shape, array->rank, dim);
446 result->rank = array->rank - 1;
448 /* gfc_array_size() would count the number of elements in the constructor,
449 we have not built those yet. */
450 nelem = 1;
451 for (i = 0; i < result->rank; ++i)
452 nelem *= mpz_get_ui (result->shape[i]);
454 for (i = 0; i < nelem; ++i)
456 gfc_constructor_append_expr (&result->value.constructor,
457 gfc_get_constant_expr (type, kind, where),
458 NULL);
461 return result;
465 typedef gfc_expr* (*transformational_op)(gfc_expr*, gfc_expr*);
467 /* Wrapper function, implements 'op1 += 1'. Only called if MASK
468 of COUNT intrinsic is .TRUE..
470 Interface and implementation mimics arith functions as
471 gfc_add, gfc_multiply, etc. */
473 static gfc_expr *
474 gfc_count (gfc_expr *op1, gfc_expr *op2)
476 gfc_expr *result;
478 gcc_assert (op1->ts.type == BT_INTEGER);
479 gcc_assert (op2->ts.type == BT_LOGICAL);
480 gcc_assert (op2->value.logical);
482 result = gfc_copy_expr (op1);
483 mpz_add_ui (result->value.integer, result->value.integer, 1);
485 gfc_free_expr (op1);
486 gfc_free_expr (op2);
487 return result;
491 /* Transforms an ARRAY with operation OP, according to MASK, to a
492 scalar RESULT. E.g. called if
494 REAL, PARAMETER :: array(n, m) = ...
495 REAL, PARAMETER :: s = SUM(array)
497 where OP == gfc_add(). */
499 static gfc_expr *
500 simplify_transformation_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask,
501 transformational_op op)
503 gfc_expr *a, *m;
504 gfc_constructor *array_ctor, *mask_ctor;
506 /* Shortcut for constant .FALSE. MASK. */
507 if (mask
508 && mask->expr_type == EXPR_CONSTANT
509 && !mask->value.logical)
510 return result;
512 array_ctor = gfc_constructor_first (array->value.constructor);
513 mask_ctor = NULL;
514 if (mask && mask->expr_type == EXPR_ARRAY)
515 mask_ctor = gfc_constructor_first (mask->value.constructor);
517 while (array_ctor)
519 a = array_ctor->expr;
520 array_ctor = gfc_constructor_next (array_ctor);
522 /* A constant MASK equals .TRUE. here and can be ignored. */
523 if (mask_ctor)
525 m = mask_ctor->expr;
526 mask_ctor = gfc_constructor_next (mask_ctor);
527 if (!m->value.logical)
528 continue;
531 result = op (result, gfc_copy_expr (a));
532 if (!result)
533 return result;
536 return result;
539 /* Transforms an ARRAY with operation OP, according to MASK, to an
540 array RESULT. E.g. called if
542 REAL, PARAMETER :: array(n, m) = ...
543 REAL, PARAMETER :: s(n) = PROD(array, DIM=1)
545 where OP == gfc_multiply().
546 The result might be post processed using post_op. */
548 static gfc_expr *
549 simplify_transformation_to_array (gfc_expr *result, gfc_expr *array, gfc_expr *dim,
550 gfc_expr *mask, transformational_op op,
551 transformational_op post_op)
553 mpz_t size;
554 int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride;
555 gfc_expr **arrayvec, **resultvec, **base, **src, **dest;
556 gfc_constructor *array_ctor, *mask_ctor, *result_ctor;
558 int count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
559 sstride[GFC_MAX_DIMENSIONS], dstride[GFC_MAX_DIMENSIONS],
560 tmpstride[GFC_MAX_DIMENSIONS];
562 /* Shortcut for constant .FALSE. MASK. */
563 if (mask
564 && mask->expr_type == EXPR_CONSTANT
565 && !mask->value.logical)
566 return result;
568 /* Build an indexed table for array element expressions to minimize
569 linked-list traversal. Masked elements are set to NULL. */
570 gfc_array_size (array, &size);
571 arraysize = mpz_get_ui (size);
572 mpz_clear (size);
574 arrayvec = XCNEWVEC (gfc_expr*, arraysize);
576 array_ctor = gfc_constructor_first (array->value.constructor);
577 mask_ctor = NULL;
578 if (mask && mask->expr_type == EXPR_ARRAY)
579 mask_ctor = gfc_constructor_first (mask->value.constructor);
581 for (i = 0; i < arraysize; ++i)
583 arrayvec[i] = array_ctor->expr;
584 array_ctor = gfc_constructor_next (array_ctor);
586 if (mask_ctor)
588 if (!mask_ctor->expr->value.logical)
589 arrayvec[i] = NULL;
591 mask_ctor = gfc_constructor_next (mask_ctor);
595 /* Same for the result expression. */
596 gfc_array_size (result, &size);
597 resultsize = mpz_get_ui (size);
598 mpz_clear (size);
600 resultvec = XCNEWVEC (gfc_expr*, resultsize);
601 result_ctor = gfc_constructor_first (result->value.constructor);
602 for (i = 0; i < resultsize; ++i)
604 resultvec[i] = result_ctor->expr;
605 result_ctor = gfc_constructor_next (result_ctor);
608 gfc_extract_int (dim, &dim_index);
609 dim_index -= 1; /* zero-base index */
610 dim_extent = 0;
611 dim_stride = 0;
613 for (i = 0, n = 0; i < array->rank; ++i)
615 count[i] = 0;
616 tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si (array->shape[i-1]);
617 if (i == dim_index)
619 dim_extent = mpz_get_si (array->shape[i]);
620 dim_stride = tmpstride[i];
621 continue;
624 extent[n] = mpz_get_si (array->shape[i]);
625 sstride[n] = tmpstride[i];
626 dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1];
627 n += 1;
630 done = resultsize <= 0;
631 base = arrayvec;
632 dest = resultvec;
633 while (!done)
635 for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n)
636 if (*src)
637 *dest = op (*dest, gfc_copy_expr (*src));
639 count[0]++;
640 base += sstride[0];
641 dest += dstride[0];
643 n = 0;
644 while (!done && count[n] == extent[n])
646 count[n] = 0;
647 base -= sstride[n] * extent[n];
648 dest -= dstride[n] * extent[n];
650 n++;
651 if (n < result->rank)
653 /* If the nested loop is unrolled GFC_MAX_DIMENSIONS
654 times, we'd warn for the last iteration, because the
655 array index will have already been incremented to the
656 array sizes, and we can't tell that this must make
657 the test against result->rank false, because ranks
658 must not exceed GFC_MAX_DIMENSIONS. */
659 GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds)
660 count[n]++;
661 base += sstride[n];
662 dest += dstride[n];
663 GCC_DIAGNOSTIC_POP
665 else
666 done = true;
670 /* Place updated expression in result constructor. */
671 result_ctor = gfc_constructor_first (result->value.constructor);
672 for (i = 0; i < resultsize; ++i)
674 if (post_op)
675 result_ctor->expr = post_op (result_ctor->expr, resultvec[i]);
676 else
677 result_ctor->expr = resultvec[i];
678 result_ctor = gfc_constructor_next (result_ctor);
681 free (arrayvec);
682 free (resultvec);
683 return result;
687 static gfc_expr *
688 simplify_transformation (gfc_expr *array, gfc_expr *dim, gfc_expr *mask,
689 int init_val, transformational_op op)
691 gfc_expr *result;
692 bool size_zero;
694 size_zero = gfc_is_size_zero_array (array);
696 if (!(is_constant_array_expr (array) || size_zero)
697 || !gfc_is_constant_expr (dim))
698 return NULL;
700 if (mask
701 && !is_constant_array_expr (mask)
702 && mask->expr_type != EXPR_CONSTANT)
703 return NULL;
705 result = transformational_result (array, dim, array->ts.type,
706 array->ts.kind, &array->where);
707 init_result_expr (result, init_val, array);
709 if (size_zero)
710 return result;
712 return !dim || array->rank == 1 ?
713 simplify_transformation_to_scalar (result, array, mask, op) :
714 simplify_transformation_to_array (result, array, dim, mask, op, NULL);
718 /********************** Simplification functions *****************************/
720 gfc_expr *
721 gfc_simplify_abs (gfc_expr *e)
723 gfc_expr *result;
725 if (e->expr_type != EXPR_CONSTANT)
726 return NULL;
728 switch (e->ts.type)
730 case BT_INTEGER:
731 result = gfc_get_constant_expr (BT_INTEGER, e->ts.kind, &e->where);
732 mpz_abs (result->value.integer, e->value.integer);
733 return range_check (result, "IABS");
735 case BT_REAL:
736 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
737 mpfr_abs (result->value.real, e->value.real, GFC_RND_MODE);
738 return range_check (result, "ABS");
740 case BT_COMPLEX:
741 gfc_set_model_kind (e->ts.kind);
742 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
743 mpc_abs (result->value.real, e->value.complex, GFC_RND_MODE);
744 return range_check (result, "CABS");
746 default:
747 gfc_internal_error ("gfc_simplify_abs(): Bad type");
752 static gfc_expr *
753 simplify_achar_char (gfc_expr *e, gfc_expr *k, const char *name, bool ascii)
755 gfc_expr *result;
756 int kind;
757 bool too_large = false;
759 if (e->expr_type != EXPR_CONSTANT)
760 return NULL;
762 kind = get_kind (BT_CHARACTER, k, name, gfc_default_character_kind);
763 if (kind == -1)
764 return &gfc_bad_expr;
766 if (mpz_cmp_si (e->value.integer, 0) < 0)
768 gfc_error ("Argument of %s function at %L is negative", name,
769 &e->where);
770 return &gfc_bad_expr;
773 if (ascii && warn_surprising && mpz_cmp_si (e->value.integer, 127) > 0)
774 gfc_warning (OPT_Wsurprising,
775 "Argument of %s function at %L outside of range [0,127]",
776 name, &e->where);
778 if (kind == 1 && mpz_cmp_si (e->value.integer, 255) > 0)
779 too_large = true;
780 else if (kind == 4)
782 mpz_t t;
783 mpz_init_set_ui (t, 2);
784 mpz_pow_ui (t, t, 32);
785 mpz_sub_ui (t, t, 1);
786 if (mpz_cmp (e->value.integer, t) > 0)
787 too_large = true;
788 mpz_clear (t);
791 if (too_large)
793 gfc_error ("Argument of %s function at %L is too large for the "
794 "collating sequence of kind %d", name, &e->where, kind);
795 return &gfc_bad_expr;
798 result = gfc_get_character_expr (kind, &e->where, NULL, 1);
799 result->value.character.string[0] = mpz_get_ui (e->value.integer);
801 return result;
806 /* We use the processor's collating sequence, because all
807 systems that gfortran currently works on are ASCII. */
809 gfc_expr *
810 gfc_simplify_achar (gfc_expr *e, gfc_expr *k)
812 return simplify_achar_char (e, k, "ACHAR", true);
816 gfc_expr *
817 gfc_simplify_acos (gfc_expr *x)
819 gfc_expr *result;
821 if (x->expr_type != EXPR_CONSTANT)
822 return NULL;
824 switch (x->ts.type)
826 case BT_REAL:
827 if (mpfr_cmp_si (x->value.real, 1) > 0
828 || mpfr_cmp_si (x->value.real, -1) < 0)
830 gfc_error ("Argument of ACOS at %L must be between -1 and 1",
831 &x->where);
832 return &gfc_bad_expr;
834 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
835 mpfr_acos (result->value.real, x->value.real, GFC_RND_MODE);
836 break;
838 case BT_COMPLEX:
839 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
840 mpc_acos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
841 break;
843 default:
844 gfc_internal_error ("in gfc_simplify_acos(): Bad type");
847 return range_check (result, "ACOS");
850 gfc_expr *
851 gfc_simplify_acosh (gfc_expr *x)
853 gfc_expr *result;
855 if (x->expr_type != EXPR_CONSTANT)
856 return NULL;
858 switch (x->ts.type)
860 case BT_REAL:
861 if (mpfr_cmp_si (x->value.real, 1) < 0)
863 gfc_error ("Argument of ACOSH at %L must not be less than 1",
864 &x->where);
865 return &gfc_bad_expr;
868 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
869 mpfr_acosh (result->value.real, x->value.real, GFC_RND_MODE);
870 break;
872 case BT_COMPLEX:
873 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
874 mpc_acosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
875 break;
877 default:
878 gfc_internal_error ("in gfc_simplify_acosh(): Bad type");
881 return range_check (result, "ACOSH");
884 gfc_expr *
885 gfc_simplify_adjustl (gfc_expr *e)
887 gfc_expr *result;
888 int count, i, len;
889 gfc_char_t ch;
891 if (e->expr_type != EXPR_CONSTANT)
892 return NULL;
894 len = e->value.character.length;
896 for (count = 0, i = 0; i < len; ++i)
898 ch = e->value.character.string[i];
899 if (ch != ' ')
900 break;
901 ++count;
904 result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, len);
905 for (i = 0; i < len - count; ++i)
906 result->value.character.string[i] = e->value.character.string[count + i];
908 return result;
912 gfc_expr *
913 gfc_simplify_adjustr (gfc_expr *e)
915 gfc_expr *result;
916 int count, i, len;
917 gfc_char_t ch;
919 if (e->expr_type != EXPR_CONSTANT)
920 return NULL;
922 len = e->value.character.length;
924 for (count = 0, i = len - 1; i >= 0; --i)
926 ch = e->value.character.string[i];
927 if (ch != ' ')
928 break;
929 ++count;
932 result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, len);
933 for (i = 0; i < count; ++i)
934 result->value.character.string[i] = ' ';
936 for (i = count; i < len; ++i)
937 result->value.character.string[i] = e->value.character.string[i - count];
939 return result;
943 gfc_expr *
944 gfc_simplify_aimag (gfc_expr *e)
946 gfc_expr *result;
948 if (e->expr_type != EXPR_CONSTANT)
949 return NULL;
951 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
952 mpfr_set (result->value.real, mpc_imagref (e->value.complex), GFC_RND_MODE);
954 return range_check (result, "AIMAG");
958 gfc_expr *
959 gfc_simplify_aint (gfc_expr *e, gfc_expr *k)
961 gfc_expr *rtrunc, *result;
962 int kind;
964 kind = get_kind (BT_REAL, k, "AINT", e->ts.kind);
965 if (kind == -1)
966 return &gfc_bad_expr;
968 if (e->expr_type != EXPR_CONSTANT)
969 return NULL;
971 rtrunc = gfc_copy_expr (e);
972 mpfr_trunc (rtrunc->value.real, e->value.real);
974 result = gfc_real2real (rtrunc, kind);
976 gfc_free_expr (rtrunc);
978 return range_check (result, "AINT");
982 gfc_expr *
983 gfc_simplify_all (gfc_expr *mask, gfc_expr *dim)
985 return simplify_transformation (mask, dim, NULL, true, gfc_and);
989 gfc_expr *
990 gfc_simplify_dint (gfc_expr *e)
992 gfc_expr *rtrunc, *result;
994 if (e->expr_type != EXPR_CONSTANT)
995 return NULL;
997 rtrunc = gfc_copy_expr (e);
998 mpfr_trunc (rtrunc->value.real, e->value.real);
1000 result = gfc_real2real (rtrunc, gfc_default_double_kind);
1002 gfc_free_expr (rtrunc);
1004 return range_check (result, "DINT");
1008 gfc_expr *
1009 gfc_simplify_dreal (gfc_expr *e)
1011 gfc_expr *result = NULL;
1013 if (e->expr_type != EXPR_CONSTANT)
1014 return NULL;
1016 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
1017 mpc_real (result->value.real, e->value.complex, GFC_RND_MODE);
1019 return range_check (result, "DREAL");
1023 gfc_expr *
1024 gfc_simplify_anint (gfc_expr *e, gfc_expr *k)
1026 gfc_expr *result;
1027 int kind;
1029 kind = get_kind (BT_REAL, k, "ANINT", e->ts.kind);
1030 if (kind == -1)
1031 return &gfc_bad_expr;
1033 if (e->expr_type != EXPR_CONSTANT)
1034 return NULL;
1036 result = gfc_get_constant_expr (e->ts.type, kind, &e->where);
1037 mpfr_round (result->value.real, e->value.real);
1039 return range_check (result, "ANINT");
1043 gfc_expr *
1044 gfc_simplify_and (gfc_expr *x, gfc_expr *y)
1046 gfc_expr *result;
1047 int kind;
1049 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
1050 return NULL;
1052 kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
1054 switch (x->ts.type)
1056 case BT_INTEGER:
1057 result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
1058 mpz_and (result->value.integer, x->value.integer, y->value.integer);
1059 return range_check (result, "AND");
1061 case BT_LOGICAL:
1062 return gfc_get_logical_expr (kind, &x->where,
1063 x->value.logical && y->value.logical);
1065 default:
1066 gcc_unreachable ();
1071 gfc_expr *
1072 gfc_simplify_any (gfc_expr *mask, gfc_expr *dim)
1074 return simplify_transformation (mask, dim, NULL, false, gfc_or);
1078 gfc_expr *
1079 gfc_simplify_dnint (gfc_expr *e)
1081 gfc_expr *result;
1083 if (e->expr_type != EXPR_CONSTANT)
1084 return NULL;
1086 result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &e->where);
1087 mpfr_round (result->value.real, e->value.real);
1089 return range_check (result, "DNINT");
1093 gfc_expr *
1094 gfc_simplify_asin (gfc_expr *x)
1096 gfc_expr *result;
1098 if (x->expr_type != EXPR_CONSTANT)
1099 return NULL;
1101 switch (x->ts.type)
1103 case BT_REAL:
1104 if (mpfr_cmp_si (x->value.real, 1) > 0
1105 || mpfr_cmp_si (x->value.real, -1) < 0)
1107 gfc_error ("Argument of ASIN at %L must be between -1 and 1",
1108 &x->where);
1109 return &gfc_bad_expr;
1111 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1112 mpfr_asin (result->value.real, x->value.real, GFC_RND_MODE);
1113 break;
1115 case BT_COMPLEX:
1116 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1117 mpc_asin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1118 break;
1120 default:
1121 gfc_internal_error ("in gfc_simplify_asin(): Bad type");
1124 return range_check (result, "ASIN");
1128 gfc_expr *
1129 gfc_simplify_asinh (gfc_expr *x)
1131 gfc_expr *result;
1133 if (x->expr_type != EXPR_CONSTANT)
1134 return NULL;
1136 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1138 switch (x->ts.type)
1140 case BT_REAL:
1141 mpfr_asinh (result->value.real, x->value.real, GFC_RND_MODE);
1142 break;
1144 case BT_COMPLEX:
1145 mpc_asinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1146 break;
1148 default:
1149 gfc_internal_error ("in gfc_simplify_asinh(): Bad type");
1152 return range_check (result, "ASINH");
1156 gfc_expr *
1157 gfc_simplify_atan (gfc_expr *x)
1159 gfc_expr *result;
1161 if (x->expr_type != EXPR_CONSTANT)
1162 return NULL;
1164 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1166 switch (x->ts.type)
1168 case BT_REAL:
1169 mpfr_atan (result->value.real, x->value.real, GFC_RND_MODE);
1170 break;
1172 case BT_COMPLEX:
1173 mpc_atan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1174 break;
1176 default:
1177 gfc_internal_error ("in gfc_simplify_atan(): Bad type");
1180 return range_check (result, "ATAN");
1184 gfc_expr *
1185 gfc_simplify_atanh (gfc_expr *x)
1187 gfc_expr *result;
1189 if (x->expr_type != EXPR_CONSTANT)
1190 return NULL;
1192 switch (x->ts.type)
1194 case BT_REAL:
1195 if (mpfr_cmp_si (x->value.real, 1) >= 0
1196 || mpfr_cmp_si (x->value.real, -1) <= 0)
1198 gfc_error ("Argument of ATANH at %L must be inside the range -1 "
1199 "to 1", &x->where);
1200 return &gfc_bad_expr;
1202 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1203 mpfr_atanh (result->value.real, x->value.real, GFC_RND_MODE);
1204 break;
1206 case BT_COMPLEX:
1207 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1208 mpc_atanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1209 break;
1211 default:
1212 gfc_internal_error ("in gfc_simplify_atanh(): Bad type");
1215 return range_check (result, "ATANH");
1219 gfc_expr *
1220 gfc_simplify_atan2 (gfc_expr *y, gfc_expr *x)
1222 gfc_expr *result;
1224 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
1225 return NULL;
1227 if (mpfr_zero_p (y->value.real) && mpfr_zero_p (x->value.real))
1229 gfc_error ("If first argument of ATAN2 %L is zero, then the "
1230 "second argument must not be zero", &x->where);
1231 return &gfc_bad_expr;
1234 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1235 mpfr_atan2 (result->value.real, y->value.real, x->value.real, GFC_RND_MODE);
1237 return range_check (result, "ATAN2");
1241 gfc_expr *
1242 gfc_simplify_bessel_j0 (gfc_expr *x)
1244 gfc_expr *result;
1246 if (x->expr_type != EXPR_CONSTANT)
1247 return NULL;
1249 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1250 mpfr_j0 (result->value.real, x->value.real, GFC_RND_MODE);
1252 return range_check (result, "BESSEL_J0");
1256 gfc_expr *
1257 gfc_simplify_bessel_j1 (gfc_expr *x)
1259 gfc_expr *result;
1261 if (x->expr_type != EXPR_CONSTANT)
1262 return NULL;
1264 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1265 mpfr_j1 (result->value.real, x->value.real, GFC_RND_MODE);
1267 return range_check (result, "BESSEL_J1");
1271 gfc_expr *
1272 gfc_simplify_bessel_jn (gfc_expr *order, gfc_expr *x)
1274 gfc_expr *result;
1275 long n;
1277 if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT)
1278 return NULL;
1280 n = mpz_get_si (order->value.integer);
1281 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1282 mpfr_jn (result->value.real, n, x->value.real, GFC_RND_MODE);
1284 return range_check (result, "BESSEL_JN");
1288 /* Simplify transformational form of JN and YN. */
1290 static gfc_expr *
1291 gfc_simplify_bessel_n2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x,
1292 bool jn)
1294 gfc_expr *result;
1295 gfc_expr *e;
1296 long n1, n2;
1297 int i;
1298 mpfr_t x2rev, last1, last2;
1300 if (x->expr_type != EXPR_CONSTANT || order1->expr_type != EXPR_CONSTANT
1301 || order2->expr_type != EXPR_CONSTANT)
1302 return NULL;
1304 n1 = mpz_get_si (order1->value.integer);
1305 n2 = mpz_get_si (order2->value.integer);
1306 result = gfc_get_array_expr (x->ts.type, x->ts.kind, &x->where);
1307 result->rank = 1;
1308 result->shape = gfc_get_shape (1);
1309 mpz_init_set_ui (result->shape[0], MAX (n2-n1+1, 0));
1311 if (n2 < n1)
1312 return result;
1314 /* Special case: x == 0; it is J0(0.0) == 1, JN(N > 0, 0.0) == 0; and
1315 YN(N, 0.0) = -Inf. */
1317 if (mpfr_cmp_ui (x->value.real, 0.0) == 0)
1319 if (!jn && flag_range_check)
1321 gfc_error ("Result of BESSEL_YN is -INF at %L", &result->where);
1322 gfc_free_expr (result);
1323 return &gfc_bad_expr;
1326 if (jn && n1 == 0)
1328 e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1329 mpfr_set_ui (e->value.real, 1, GFC_RND_MODE);
1330 gfc_constructor_append_expr (&result->value.constructor, e,
1331 &x->where);
1332 n1++;
1335 for (i = n1; i <= n2; i++)
1337 e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1338 if (jn)
1339 mpfr_set_ui (e->value.real, 0, GFC_RND_MODE);
1340 else
1341 mpfr_set_inf (e->value.real, -1);
1342 gfc_constructor_append_expr (&result->value.constructor, e,
1343 &x->where);
1346 return result;
1349 /* Use the faster but more verbose recurrence algorithm. Bessel functions
1350 are stable for downward recursion and Neumann functions are stable
1351 for upward recursion. It is
1352 x2rev = 2.0/x,
1353 J(N-1, x) = x2rev * N * J(N, x) - J(N+1, x),
1354 Y(N+1, x) = x2rev * N * Y(N, x) - Y(N-1, x).
1355 Cf. http://dlmf.nist.gov/10.74#iv and http://dlmf.nist.gov/10.6#E1 */
1357 gfc_set_model_kind (x->ts.kind);
1359 /* Get first recursion anchor. */
1361 mpfr_init (last1);
1362 if (jn)
1363 mpfr_jn (last1, n2, x->value.real, GFC_RND_MODE);
1364 else
1365 mpfr_yn (last1, n1, x->value.real, GFC_RND_MODE);
1367 e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1368 mpfr_set (e->value.real, last1, GFC_RND_MODE);
1369 if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
1371 mpfr_clear (last1);
1372 gfc_free_expr (e);
1373 gfc_free_expr (result);
1374 return &gfc_bad_expr;
1376 gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
1378 if (n1 == n2)
1380 mpfr_clear (last1);
1381 return result;
1384 /* Get second recursion anchor. */
1386 mpfr_init (last2);
1387 if (jn)
1388 mpfr_jn (last2, n2-1, x->value.real, GFC_RND_MODE);
1389 else
1390 mpfr_yn (last2, n1+1, x->value.real, GFC_RND_MODE);
1392 e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1393 mpfr_set (e->value.real, last2, GFC_RND_MODE);
1394 if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
1396 mpfr_clear (last1);
1397 mpfr_clear (last2);
1398 gfc_free_expr (e);
1399 gfc_free_expr (result);
1400 return &gfc_bad_expr;
1402 if (jn)
1403 gfc_constructor_insert_expr (&result->value.constructor, e, &x->where, -2);
1404 else
1405 gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
1407 if (n1 + 1 == n2)
1409 mpfr_clear (last1);
1410 mpfr_clear (last2);
1411 return result;
1414 /* Start actual recursion. */
1416 mpfr_init (x2rev);
1417 mpfr_ui_div (x2rev, 2, x->value.real, GFC_RND_MODE);
1419 for (i = 2; i <= n2-n1; i++)
1421 e = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1423 /* Special case: For YN, if the previous N gave -INF, set
1424 also N+1 to -INF. */
1425 if (!jn && !flag_range_check && mpfr_inf_p (last2))
1427 mpfr_set_inf (e->value.real, -1);
1428 gfc_constructor_append_expr (&result->value.constructor, e,
1429 &x->where);
1430 continue;
1433 mpfr_mul_si (e->value.real, x2rev, jn ? (n2-i+1) : (n1+i-1),
1434 GFC_RND_MODE);
1435 mpfr_mul (e->value.real, e->value.real, last2, GFC_RND_MODE);
1436 mpfr_sub (e->value.real, e->value.real, last1, GFC_RND_MODE);
1438 if (range_check (e, jn ? "BESSEL_JN" : "BESSEL_YN") == &gfc_bad_expr)
1440 /* Range_check frees "e" in that case. */
1441 e = NULL;
1442 goto error;
1445 if (jn)
1446 gfc_constructor_insert_expr (&result->value.constructor, e, &x->where,
1447 -i-1);
1448 else
1449 gfc_constructor_append_expr (&result->value.constructor, e, &x->where);
1451 mpfr_set (last1, last2, GFC_RND_MODE);
1452 mpfr_set (last2, e->value.real, GFC_RND_MODE);
1455 mpfr_clear (last1);
1456 mpfr_clear (last2);
1457 mpfr_clear (x2rev);
1458 return result;
1460 error:
1461 mpfr_clear (last1);
1462 mpfr_clear (last2);
1463 mpfr_clear (x2rev);
1464 gfc_free_expr (e);
1465 gfc_free_expr (result);
1466 return &gfc_bad_expr;
1470 gfc_expr *
1471 gfc_simplify_bessel_jn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x)
1473 return gfc_simplify_bessel_n2 (order1, order2, x, true);
1477 gfc_expr *
1478 gfc_simplify_bessel_y0 (gfc_expr *x)
1480 gfc_expr *result;
1482 if (x->expr_type != EXPR_CONSTANT)
1483 return NULL;
1485 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1486 mpfr_y0 (result->value.real, x->value.real, GFC_RND_MODE);
1488 return range_check (result, "BESSEL_Y0");
1492 gfc_expr *
1493 gfc_simplify_bessel_y1 (gfc_expr *x)
1495 gfc_expr *result;
1497 if (x->expr_type != EXPR_CONSTANT)
1498 return NULL;
1500 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1501 mpfr_y1 (result->value.real, x->value.real, GFC_RND_MODE);
1503 return range_check (result, "BESSEL_Y1");
1507 gfc_expr *
1508 gfc_simplify_bessel_yn (gfc_expr *order, gfc_expr *x)
1510 gfc_expr *result;
1511 long n;
1513 if (x->expr_type != EXPR_CONSTANT || order->expr_type != EXPR_CONSTANT)
1514 return NULL;
1516 n = mpz_get_si (order->value.integer);
1517 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1518 mpfr_yn (result->value.real, n, x->value.real, GFC_RND_MODE);
1520 return range_check (result, "BESSEL_YN");
1524 gfc_expr *
1525 gfc_simplify_bessel_yn2 (gfc_expr *order1, gfc_expr *order2, gfc_expr *x)
1527 return gfc_simplify_bessel_n2 (order1, order2, x, false);
1531 gfc_expr *
1532 gfc_simplify_bit_size (gfc_expr *e)
1534 int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
1535 return gfc_get_int_expr (e->ts.kind, &e->where,
1536 gfc_integer_kinds[i].bit_size);
1540 gfc_expr *
1541 gfc_simplify_btest (gfc_expr *e, gfc_expr *bit)
1543 int b;
1545 if (e->expr_type != EXPR_CONSTANT || bit->expr_type != EXPR_CONSTANT)
1546 return NULL;
1548 if (gfc_extract_int (bit, &b) || b < 0)
1549 return gfc_get_logical_expr (gfc_default_logical_kind, &e->where, false);
1551 return gfc_get_logical_expr (gfc_default_logical_kind, &e->where,
1552 mpz_tstbit (e->value.integer, b));
1556 static int
1557 compare_bitwise (gfc_expr *i, gfc_expr *j)
1559 mpz_t x, y;
1560 int k, res;
1562 gcc_assert (i->ts.type == BT_INTEGER);
1563 gcc_assert (j->ts.type == BT_INTEGER);
1565 mpz_init_set (x, i->value.integer);
1566 k = gfc_validate_kind (i->ts.type, i->ts.kind, false);
1567 convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size);
1569 mpz_init_set (y, j->value.integer);
1570 k = gfc_validate_kind (j->ts.type, j->ts.kind, false);
1571 convert_mpz_to_unsigned (y, gfc_integer_kinds[k].bit_size);
1573 res = mpz_cmp (x, y);
1574 mpz_clear (x);
1575 mpz_clear (y);
1576 return res;
1580 gfc_expr *
1581 gfc_simplify_bge (gfc_expr *i, gfc_expr *j)
1583 if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
1584 return NULL;
1586 return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
1587 compare_bitwise (i, j) >= 0);
1591 gfc_expr *
1592 gfc_simplify_bgt (gfc_expr *i, gfc_expr *j)
1594 if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
1595 return NULL;
1597 return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
1598 compare_bitwise (i, j) > 0);
1602 gfc_expr *
1603 gfc_simplify_ble (gfc_expr *i, gfc_expr *j)
1605 if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
1606 return NULL;
1608 return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
1609 compare_bitwise (i, j) <= 0);
1613 gfc_expr *
1614 gfc_simplify_blt (gfc_expr *i, gfc_expr *j)
1616 if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT)
1617 return NULL;
1619 return gfc_get_logical_expr (gfc_default_logical_kind, &i->where,
1620 compare_bitwise (i, j) < 0);
1624 gfc_expr *
1625 gfc_simplify_ceiling (gfc_expr *e, gfc_expr *k)
1627 gfc_expr *ceil, *result;
1628 int kind;
1630 kind = get_kind (BT_INTEGER, k, "CEILING", gfc_default_integer_kind);
1631 if (kind == -1)
1632 return &gfc_bad_expr;
1634 if (e->expr_type != EXPR_CONSTANT)
1635 return NULL;
1637 ceil = gfc_copy_expr (e);
1638 mpfr_ceil (ceil->value.real, e->value.real);
1640 result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
1641 gfc_mpfr_to_mpz (result->value.integer, ceil->value.real, &e->where);
1643 gfc_free_expr (ceil);
1645 return range_check (result, "CEILING");
1649 gfc_expr *
1650 gfc_simplify_char (gfc_expr *e, gfc_expr *k)
1652 return simplify_achar_char (e, k, "CHAR", false);
1656 /* Common subroutine for simplifying CMPLX, COMPLEX and DCMPLX. */
1658 static gfc_expr *
1659 simplify_cmplx (const char *name, gfc_expr *x, gfc_expr *y, int kind)
1661 gfc_expr *result;
1663 if (convert_boz (x, kind) == &gfc_bad_expr)
1664 return &gfc_bad_expr;
1666 if (convert_boz (y, kind) == &gfc_bad_expr)
1667 return &gfc_bad_expr;
1669 if (x->expr_type != EXPR_CONSTANT
1670 || (y != NULL && y->expr_type != EXPR_CONSTANT))
1671 return NULL;
1673 result = gfc_get_constant_expr (BT_COMPLEX, kind, &x->where);
1675 switch (x->ts.type)
1677 case BT_INTEGER:
1678 mpc_set_z (result->value.complex, x->value.integer, GFC_MPC_RND_MODE);
1679 break;
1681 case BT_REAL:
1682 mpc_set_fr (result->value.complex, x->value.real, GFC_RND_MODE);
1683 break;
1685 case BT_COMPLEX:
1686 mpc_set (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1687 break;
1689 default:
1690 gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (x)");
1693 if (!y)
1694 return range_check (result, name);
1696 switch (y->ts.type)
1698 case BT_INTEGER:
1699 mpfr_set_z (mpc_imagref (result->value.complex),
1700 y->value.integer, GFC_RND_MODE);
1701 break;
1703 case BT_REAL:
1704 mpfr_set (mpc_imagref (result->value.complex),
1705 y->value.real, GFC_RND_MODE);
1706 break;
1708 default:
1709 gfc_internal_error ("gfc_simplify_dcmplx(): Bad type (y)");
1712 return range_check (result, name);
1716 gfc_expr *
1717 gfc_simplify_cmplx (gfc_expr *x, gfc_expr *y, gfc_expr *k)
1719 int kind;
1721 kind = get_kind (BT_REAL, k, "CMPLX", gfc_default_complex_kind);
1722 if (kind == -1)
1723 return &gfc_bad_expr;
1725 return simplify_cmplx ("CMPLX", x, y, kind);
1729 gfc_expr *
1730 gfc_simplify_complex (gfc_expr *x, gfc_expr *y)
1732 int kind;
1734 if (x->ts.type == BT_INTEGER && y->ts.type == BT_INTEGER)
1735 kind = gfc_default_complex_kind;
1736 else if (x->ts.type == BT_REAL || y->ts.type == BT_INTEGER)
1737 kind = x->ts.kind;
1738 else if (x->ts.type == BT_INTEGER || y->ts.type == BT_REAL)
1739 kind = y->ts.kind;
1740 else if (x->ts.type == BT_REAL && y->ts.type == BT_REAL)
1741 kind = (x->ts.kind > y->ts.kind) ? x->ts.kind : y->ts.kind;
1742 else
1743 gcc_unreachable ();
1745 return simplify_cmplx ("COMPLEX", x, y, kind);
1749 gfc_expr *
1750 gfc_simplify_conjg (gfc_expr *e)
1752 gfc_expr *result;
1754 if (e->expr_type != EXPR_CONSTANT)
1755 return NULL;
1757 result = gfc_copy_expr (e);
1758 mpc_conj (result->value.complex, result->value.complex, GFC_MPC_RND_MODE);
1760 return range_check (result, "CONJG");
1763 /* Return the simplification of the constant expression in icall, or NULL
1764 if the expression is not constant. */
1766 static gfc_expr *
1767 simplify_trig_call (gfc_expr *icall)
1769 gfc_isym_id func = icall->value.function.isym->id;
1770 gfc_expr *x = icall->value.function.actual->expr;
1772 /* The actual simplifiers will return NULL for non-constant x. */
1773 switch (func)
1775 case GFC_ISYM_ACOS:
1776 return gfc_simplify_acos (x);
1777 case GFC_ISYM_ASIN:
1778 return gfc_simplify_asin (x);
1779 case GFC_ISYM_ATAN:
1780 return gfc_simplify_atan (x);
1781 case GFC_ISYM_COS:
1782 return gfc_simplify_cos (x);
1783 case GFC_ISYM_COTAN:
1784 return gfc_simplify_cotan (x);
1785 case GFC_ISYM_SIN:
1786 return gfc_simplify_sin (x);
1787 case GFC_ISYM_TAN:
1788 return gfc_simplify_tan (x);
1789 default:
1790 gfc_internal_error ("in simplify_trig_call(): Bad intrinsic");
1794 /* Convert a floating-point number from radians to degrees. */
1796 static void
1797 degrees_f (mpfr_t x, mp_rnd_t rnd_mode)
1799 mpfr_t tmp;
1800 mpfr_init (tmp);
1802 /* Set x = x % 2pi to avoid offsets with large angles. */
1803 mpfr_const_pi (tmp, rnd_mode);
1804 mpfr_mul_ui (tmp, tmp, 2, rnd_mode);
1805 mpfr_fmod (tmp, x, tmp, rnd_mode);
1807 /* Set x = x * 180. */
1808 mpfr_mul_ui (x, x, 180, rnd_mode);
1810 /* Set x = x / pi. */
1811 mpfr_const_pi (tmp, rnd_mode);
1812 mpfr_div (x, x, tmp, rnd_mode);
1814 mpfr_clear (tmp);
1817 /* Convert a floating-point number from degrees to radians. */
1819 static void
1820 radians_f (mpfr_t x, mp_rnd_t rnd_mode)
1822 mpfr_t tmp;
1823 mpfr_init (tmp);
1825 /* Set x = x % 360 to avoid offsets with large angles. */
1826 mpfr_set_ui (tmp, 360, rnd_mode);
1827 mpfr_fmod (tmp, x, tmp, rnd_mode);
1829 /* Set x = x * pi. */
1830 mpfr_const_pi (tmp, rnd_mode);
1831 mpfr_mul (x, x, tmp, rnd_mode);
1833 /* Set x = x / 180. */
1834 mpfr_div_ui (x, x, 180, rnd_mode);
1836 mpfr_clear (tmp);
1840 /* Convert argument to radians before calling a trig function. */
1842 gfc_expr *
1843 gfc_simplify_trigd (gfc_expr *icall)
1845 gfc_expr *arg;
1847 arg = icall->value.function.actual->expr;
1849 if (arg->ts.type != BT_REAL)
1850 gfc_internal_error ("in gfc_simplify_trigd(): Bad type");
1852 if (arg->expr_type == EXPR_CONSTANT)
1853 /* Convert constant to radians before passing off to simplifier. */
1854 radians_f (arg->value.real, GFC_RND_MODE);
1856 /* Let the usual simplifier take over - we just simplified the arg. */
1857 return simplify_trig_call (icall);
1860 /* Convert result of an inverse trig function to degrees. */
1862 gfc_expr *
1863 gfc_simplify_atrigd (gfc_expr *icall)
1865 gfc_expr *result;
1867 if (icall->value.function.actual->expr->ts.type != BT_REAL)
1868 gfc_internal_error ("in gfc_simplify_atrigd(): Bad type");
1870 /* See if another simplifier has work to do first. */
1871 result = simplify_trig_call (icall);
1873 if (result && result->expr_type == EXPR_CONSTANT)
1875 /* Convert constant to degrees after passing off to actual simplifier. */
1876 degrees_f (result->value.real, GFC_RND_MODE);
1877 return result;
1880 /* Let gfc_resolve_atrigd take care of the non-constant case. */
1881 return NULL;
1884 /* Convert the result of atan2 to degrees. */
1886 gfc_expr *
1887 gfc_simplify_atan2d (gfc_expr *y, gfc_expr *x)
1889 gfc_expr *result;
1891 if (x->ts.type != BT_REAL || y->ts.type != BT_REAL)
1892 gfc_internal_error ("in gfc_simplify_atan2d(): Bad type");
1894 if (x->expr_type == EXPR_CONSTANT && y->expr_type == EXPR_CONSTANT)
1896 result = gfc_simplify_atan2 (y, x);
1897 if (result != NULL)
1899 degrees_f (result->value.real, GFC_RND_MODE);
1900 return result;
1904 /* Let gfc_resolve_atan2d take care of the non-constant case. */
1905 return NULL;
1908 gfc_expr *
1909 gfc_simplify_cos (gfc_expr *x)
1911 gfc_expr *result;
1913 if (x->expr_type != EXPR_CONSTANT)
1914 return NULL;
1916 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1918 switch (x->ts.type)
1920 case BT_REAL:
1921 mpfr_cos (result->value.real, x->value.real, GFC_RND_MODE);
1922 break;
1924 case BT_COMPLEX:
1925 gfc_set_model_kind (x->ts.kind);
1926 mpc_cos (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1927 break;
1929 default:
1930 gfc_internal_error ("in gfc_simplify_cos(): Bad type");
1933 return range_check (result, "COS");
1937 gfc_expr *
1938 gfc_simplify_cosh (gfc_expr *x)
1940 gfc_expr *result;
1942 if (x->expr_type != EXPR_CONSTANT)
1943 return NULL;
1945 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
1947 switch (x->ts.type)
1949 case BT_REAL:
1950 mpfr_cosh (result->value.real, x->value.real, GFC_RND_MODE);
1951 break;
1953 case BT_COMPLEX:
1954 mpc_cosh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
1955 break;
1957 default:
1958 gcc_unreachable ();
1961 return range_check (result, "COSH");
1965 gfc_expr *
1966 gfc_simplify_count (gfc_expr *mask, gfc_expr *dim, gfc_expr *kind)
1968 gfc_expr *result;
1969 bool size_zero;
1971 size_zero = gfc_is_size_zero_array (mask);
1973 if (!(is_constant_array_expr (mask) || size_zero)
1974 || !gfc_is_constant_expr (dim)
1975 || !gfc_is_constant_expr (kind))
1976 return NULL;
1978 result = transformational_result (mask, dim,
1979 BT_INTEGER,
1980 get_kind (BT_INTEGER, kind, "COUNT",
1981 gfc_default_integer_kind),
1982 &mask->where);
1984 init_result_expr (result, 0, NULL);
1986 if (size_zero)
1987 return result;
1989 /* Passing MASK twice, once as data array, once as mask.
1990 Whenever gfc_count is called, '1' is added to the result. */
1991 return !dim || mask->rank == 1 ?
1992 simplify_transformation_to_scalar (result, mask, mask, gfc_count) :
1993 simplify_transformation_to_array (result, mask, dim, mask, gfc_count, NULL);
1996 /* Simplification routine for cshift. This works by copying the array
1997 expressions into a one-dimensional array, shuffling the values into another
1998 one-dimensional array and creating the new array expression from this. The
1999 shuffling part is basically taken from the library routine. */
2001 gfc_expr *
2002 gfc_simplify_cshift (gfc_expr *array, gfc_expr *shift, gfc_expr *dim)
2004 gfc_expr *result;
2005 int which;
2006 gfc_expr **arrayvec, **resultvec;
2007 gfc_expr **rptr, **sptr;
2008 mpz_t size;
2009 size_t arraysize, shiftsize, i;
2010 gfc_constructor *array_ctor, *shift_ctor;
2011 ssize_t *shiftvec, *hptr;
2012 ssize_t shift_val, len;
2013 ssize_t count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
2014 hs_ex[GFC_MAX_DIMENSIONS],
2015 hstride[GFC_MAX_DIMENSIONS], sstride[GFC_MAX_DIMENSIONS],
2016 a_extent[GFC_MAX_DIMENSIONS], a_stride[GFC_MAX_DIMENSIONS],
2017 h_extent[GFC_MAX_DIMENSIONS],
2018 ss_ex[GFC_MAX_DIMENSIONS];
2019 ssize_t rsoffset;
2020 int d, n;
2021 bool continue_loop;
2022 gfc_expr **src, **dest;
2024 if (!is_constant_array_expr (array))
2025 return NULL;
2027 if (shift->rank > 0)
2028 gfc_simplify_expr (shift, 1);
2030 if (!gfc_is_constant_expr (shift))
2031 return NULL;
2033 /* Make dim zero-based. */
2034 if (dim)
2036 if (!gfc_is_constant_expr (dim))
2037 return NULL;
2038 which = mpz_get_si (dim->value.integer) - 1;
2040 else
2041 which = 0;
2043 gfc_array_size (array, &size);
2044 arraysize = mpz_get_ui (size);
2045 mpz_clear (size);
2047 result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where);
2048 result->shape = gfc_copy_shape (array->shape, array->rank);
2049 result->rank = array->rank;
2050 result->ts.u.derived = array->ts.u.derived;
2052 if (arraysize == 0)
2053 return result;
2055 arrayvec = XCNEWVEC (gfc_expr *, arraysize);
2056 array_ctor = gfc_constructor_first (array->value.constructor);
2057 for (i = 0; i < arraysize; i++)
2059 arrayvec[i] = array_ctor->expr;
2060 array_ctor = gfc_constructor_next (array_ctor);
2063 resultvec = XCNEWVEC (gfc_expr *, arraysize);
2065 extent[0] = 1;
2066 count[0] = 0;
2068 for (d=0; d < array->rank; d++)
2070 a_extent[d] = mpz_get_si (array->shape[d]);
2071 a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1];
2074 if (shift->rank > 0)
2076 gfc_array_size (shift, &size);
2077 shiftsize = mpz_get_ui (size);
2078 mpz_clear (size);
2079 shiftvec = XCNEWVEC (ssize_t, shiftsize);
2080 shift_ctor = gfc_constructor_first (shift->value.constructor);
2081 for (d = 0; d < shift->rank; d++)
2083 h_extent[d] = mpz_get_si (shift->shape[d]);
2084 hstride[d] = d == 0 ? 1 : hstride[d-1] * h_extent[d-1];
2087 else
2088 shiftvec = NULL;
2090 /* Shut up compiler */
2091 len = 1;
2092 rsoffset = 1;
2094 n = 0;
2095 for (d=0; d < array->rank; d++)
2097 if (d == which)
2099 rsoffset = a_stride[d];
2100 len = a_extent[d];
2102 else
2104 count[n] = 0;
2105 extent[n] = a_extent[d];
2106 sstride[n] = a_stride[d];
2107 ss_ex[n] = sstride[n] * extent[n];
2108 if (shiftvec)
2109 hs_ex[n] = hstride[n] * extent[n];
2110 n++;
2114 if (shiftvec)
2116 for (i = 0; i < shiftsize; i++)
2118 ssize_t val;
2119 val = mpz_get_si (shift_ctor->expr->value.integer);
2120 val = val % len;
2121 if (val < 0)
2122 val += len;
2123 shiftvec[i] = val;
2124 shift_ctor = gfc_constructor_next (shift_ctor);
2126 shift_val = 0;
2128 else
2130 shift_val = mpz_get_si (shift->value.integer);
2131 shift_val = shift_val % len;
2132 if (shift_val < 0)
2133 shift_val += len;
2136 continue_loop = true;
2137 d = array->rank;
2138 rptr = resultvec;
2139 sptr = arrayvec;
2140 hptr = shiftvec;
2142 while (continue_loop)
2144 ssize_t sh;
2145 if (shiftvec)
2146 sh = *hptr;
2147 else
2148 sh = shift_val;
2150 src = &sptr[sh * rsoffset];
2151 dest = rptr;
2152 for (n = 0; n < len - sh; n++)
2154 *dest = *src;
2155 dest += rsoffset;
2156 src += rsoffset;
2158 src = sptr;
2159 for ( n = 0; n < sh; n++)
2161 *dest = *src;
2162 dest += rsoffset;
2163 src += rsoffset;
2165 rptr += sstride[0];
2166 sptr += sstride[0];
2167 if (shiftvec)
2168 hptr += hstride[0];
2169 count[0]++;
2170 n = 0;
2171 while (count[n] == extent[n])
2173 count[n] = 0;
2174 rptr -= ss_ex[n];
2175 sptr -= ss_ex[n];
2176 if (shiftvec)
2177 hptr -= hs_ex[n];
2178 n++;
2179 if (n >= d - 1)
2181 continue_loop = false;
2182 break;
2184 else
2186 count[n]++;
2187 rptr += sstride[n];
2188 sptr += sstride[n];
2189 if (shiftvec)
2190 hptr += hstride[n];
2195 for (i = 0; i < arraysize; i++)
2197 gfc_constructor_append_expr (&result->value.constructor,
2198 gfc_copy_expr (resultvec[i]),
2199 NULL);
2201 return result;
2205 gfc_expr *
2206 gfc_simplify_dcmplx (gfc_expr *x, gfc_expr *y)
2208 return simplify_cmplx ("DCMPLX", x, y, gfc_default_double_kind);
2212 gfc_expr *
2213 gfc_simplify_dble (gfc_expr *e)
2215 gfc_expr *result = NULL;
2217 if (e->expr_type != EXPR_CONSTANT)
2218 return NULL;
2220 if (convert_boz (e, gfc_default_double_kind) == &gfc_bad_expr)
2221 return &gfc_bad_expr;
2223 result = gfc_convert_constant (e, BT_REAL, gfc_default_double_kind);
2224 if (result == &gfc_bad_expr)
2225 return &gfc_bad_expr;
2227 return range_check (result, "DBLE");
2231 gfc_expr *
2232 gfc_simplify_digits (gfc_expr *x)
2234 int i, digits;
2236 i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
2238 switch (x->ts.type)
2240 case BT_INTEGER:
2241 digits = gfc_integer_kinds[i].digits;
2242 break;
2244 case BT_REAL:
2245 case BT_COMPLEX:
2246 digits = gfc_real_kinds[i].digits;
2247 break;
2249 default:
2250 gcc_unreachable ();
2253 return gfc_get_int_expr (gfc_default_integer_kind, NULL, digits);
2257 gfc_expr *
2258 gfc_simplify_dim (gfc_expr *x, gfc_expr *y)
2260 gfc_expr *result;
2261 int kind;
2263 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
2264 return NULL;
2266 kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
2267 result = gfc_get_constant_expr (x->ts.type, kind, &x->where);
2269 switch (x->ts.type)
2271 case BT_INTEGER:
2272 if (mpz_cmp (x->value.integer, y->value.integer) > 0)
2273 mpz_sub (result->value.integer, x->value.integer, y->value.integer);
2274 else
2275 mpz_set_ui (result->value.integer, 0);
2277 break;
2279 case BT_REAL:
2280 if (mpfr_cmp (x->value.real, y->value.real) > 0)
2281 mpfr_sub (result->value.real, x->value.real, y->value.real,
2282 GFC_RND_MODE);
2283 else
2284 mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
2286 break;
2288 default:
2289 gfc_internal_error ("gfc_simplify_dim(): Bad type");
2292 return range_check (result, "DIM");
2296 gfc_expr*
2297 gfc_simplify_dot_product (gfc_expr *vector_a, gfc_expr *vector_b)
2299 /* If vector_a is a zero-sized array, the result is 0 for INTEGER,
2300 REAL, and COMPLEX types and .false. for LOGICAL. */
2301 if (vector_a->shape && mpz_get_si (vector_a->shape[0]) == 0)
2303 if (vector_a->ts.type == BT_LOGICAL)
2304 return gfc_get_logical_expr (gfc_default_logical_kind, NULL, false);
2305 else
2306 return gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2309 if (!is_constant_array_expr (vector_a)
2310 || !is_constant_array_expr (vector_b))
2311 return NULL;
2313 return compute_dot_product (vector_a, 1, 0, vector_b, 1, 0, true);
2317 gfc_expr *
2318 gfc_simplify_dprod (gfc_expr *x, gfc_expr *y)
2320 gfc_expr *a1, *a2, *result;
2322 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
2323 return NULL;
2325 a1 = gfc_real2real (x, gfc_default_double_kind);
2326 a2 = gfc_real2real (y, gfc_default_double_kind);
2328 result = gfc_get_constant_expr (BT_REAL, gfc_default_double_kind, &x->where);
2329 mpfr_mul (result->value.real, a1->value.real, a2->value.real, GFC_RND_MODE);
2331 gfc_free_expr (a2);
2332 gfc_free_expr (a1);
2334 return range_check (result, "DPROD");
2338 static gfc_expr *
2339 simplify_dshift (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg,
2340 bool right)
2342 gfc_expr *result;
2343 int i, k, size, shift;
2345 if (arg1->expr_type != EXPR_CONSTANT || arg2->expr_type != EXPR_CONSTANT
2346 || shiftarg->expr_type != EXPR_CONSTANT)
2347 return NULL;
2349 k = gfc_validate_kind (BT_INTEGER, arg1->ts.kind, false);
2350 size = gfc_integer_kinds[k].bit_size;
2352 gfc_extract_int (shiftarg, &shift);
2354 /* DSHIFTR(I,J,SHIFT) = DSHIFTL(I,J,SIZE-SHIFT). */
2355 if (right)
2356 shift = size - shift;
2358 result = gfc_get_constant_expr (BT_INTEGER, arg1->ts.kind, &arg1->where);
2359 mpz_set_ui (result->value.integer, 0);
2361 for (i = 0; i < shift; i++)
2362 if (mpz_tstbit (arg2->value.integer, size - shift + i))
2363 mpz_setbit (result->value.integer, i);
2365 for (i = 0; i < size - shift; i++)
2366 if (mpz_tstbit (arg1->value.integer, i))
2367 mpz_setbit (result->value.integer, shift + i);
2369 /* Convert to a signed value. */
2370 gfc_convert_mpz_to_signed (result->value.integer, size);
2372 return result;
2376 gfc_expr *
2377 gfc_simplify_dshiftr (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg)
2379 return simplify_dshift (arg1, arg2, shiftarg, true);
2383 gfc_expr *
2384 gfc_simplify_dshiftl (gfc_expr *arg1, gfc_expr *arg2, gfc_expr *shiftarg)
2386 return simplify_dshift (arg1, arg2, shiftarg, false);
2390 gfc_expr *
2391 gfc_simplify_eoshift (gfc_expr *array, gfc_expr *shift, gfc_expr *boundary,
2392 gfc_expr *dim)
2394 bool temp_boundary;
2395 gfc_expr *bnd;
2396 gfc_expr *result;
2397 int which;
2398 gfc_expr **arrayvec, **resultvec;
2399 gfc_expr **rptr, **sptr;
2400 mpz_t size;
2401 size_t arraysize, i;
2402 gfc_constructor *array_ctor, *shift_ctor, *bnd_ctor;
2403 ssize_t shift_val, len;
2404 ssize_t count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
2405 sstride[GFC_MAX_DIMENSIONS], a_extent[GFC_MAX_DIMENSIONS],
2406 a_stride[GFC_MAX_DIMENSIONS], ss_ex[GFC_MAX_DIMENSIONS];
2407 ssize_t rsoffset;
2408 int d, n;
2409 bool continue_loop;
2410 gfc_expr **src, **dest;
2411 size_t s_len;
2413 if (!is_constant_array_expr (array))
2414 return NULL;
2416 if (shift->rank > 0)
2417 gfc_simplify_expr (shift, 1);
2419 if (!gfc_is_constant_expr (shift))
2420 return NULL;
2422 if (boundary)
2424 if (boundary->rank > 0)
2425 gfc_simplify_expr (boundary, 1);
2427 if (!gfc_is_constant_expr (boundary))
2428 return NULL;
2431 if (dim)
2433 if (!gfc_is_constant_expr (dim))
2434 return NULL;
2435 which = mpz_get_si (dim->value.integer) - 1;
2437 else
2438 which = 0;
2440 s_len = 0;
2441 if (boundary == NULL)
2443 temp_boundary = true;
2444 switch (array->ts.type)
2447 case BT_INTEGER:
2448 bnd = gfc_get_int_expr (array->ts.kind, NULL, 0);
2449 break;
2451 case BT_LOGICAL:
2452 bnd = gfc_get_logical_expr (array->ts.kind, NULL, 0);
2453 break;
2455 case BT_REAL:
2456 bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus);
2457 mpfr_set_ui (bnd->value.real, 0, GFC_RND_MODE);
2458 break;
2460 case BT_COMPLEX:
2461 bnd = gfc_get_constant_expr (array->ts.type, array->ts.kind, &gfc_current_locus);
2462 mpc_set_ui (bnd->value.complex, 0, GFC_RND_MODE);
2463 break;
2465 case BT_CHARACTER:
2466 s_len = mpz_get_ui (array->ts.u.cl->length->value.integer);
2467 bnd = gfc_get_character_expr (array->ts.kind, &gfc_current_locus, NULL, s_len);
2468 break;
2470 default:
2471 gcc_unreachable();
2475 else
2477 temp_boundary = false;
2478 bnd = boundary;
2481 gfc_array_size (array, &size);
2482 arraysize = mpz_get_ui (size);
2483 mpz_clear (size);
2485 result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where);
2486 result->shape = gfc_copy_shape (array->shape, array->rank);
2487 result->rank = array->rank;
2488 result->ts = array->ts;
2490 if (arraysize == 0)
2491 goto final;
2493 arrayvec = XCNEWVEC (gfc_expr *, arraysize);
2494 array_ctor = gfc_constructor_first (array->value.constructor);
2495 for (i = 0; i < arraysize; i++)
2497 arrayvec[i] = array_ctor->expr;
2498 array_ctor = gfc_constructor_next (array_ctor);
2501 resultvec = XCNEWVEC (gfc_expr *, arraysize);
2503 extent[0] = 1;
2504 count[0] = 0;
2506 for (d=0; d < array->rank; d++)
2508 a_extent[d] = mpz_get_si (array->shape[d]);
2509 a_stride[d] = d == 0 ? 1 : a_stride[d-1] * a_extent[d-1];
2512 if (shift->rank > 0)
2514 shift_ctor = gfc_constructor_first (shift->value.constructor);
2515 shift_val = 0;
2517 else
2519 shift_ctor = NULL;
2520 shift_val = mpz_get_si (shift->value.integer);
2523 if (bnd->rank > 0)
2524 bnd_ctor = gfc_constructor_first (bnd->value.constructor);
2525 else
2526 bnd_ctor = NULL;
2528 /* Shut up compiler */
2529 len = 1;
2530 rsoffset = 1;
2532 n = 0;
2533 for (d=0; d < array->rank; d++)
2535 if (d == which)
2537 rsoffset = a_stride[d];
2538 len = a_extent[d];
2540 else
2542 count[n] = 0;
2543 extent[n] = a_extent[d];
2544 sstride[n] = a_stride[d];
2545 ss_ex[n] = sstride[n] * extent[n];
2546 n++;
2550 continue_loop = true;
2551 d = array->rank;
2552 rptr = resultvec;
2553 sptr = arrayvec;
2555 while (continue_loop)
2557 ssize_t sh, delta;
2559 if (shift_ctor)
2560 sh = mpz_get_si (shift_ctor->expr->value.integer);
2561 else
2562 sh = shift_val;
2564 if (( sh >= 0 ? sh : -sh ) > len)
2566 delta = len;
2567 sh = len;
2569 else
2570 delta = (sh >= 0) ? sh: -sh;
2572 if (sh > 0)
2574 src = &sptr[delta * rsoffset];
2575 dest = rptr;
2577 else
2579 src = sptr;
2580 dest = &rptr[delta * rsoffset];
2583 for (n = 0; n < len - delta; n++)
2585 *dest = *src;
2586 dest += rsoffset;
2587 src += rsoffset;
2590 if (sh < 0)
2591 dest = rptr;
2593 n = delta;
2595 if (bnd_ctor)
2597 while (n--)
2599 *dest = gfc_copy_expr (bnd_ctor->expr);
2600 dest += rsoffset;
2603 else
2605 while (n--)
2607 *dest = gfc_copy_expr (bnd);
2608 dest += rsoffset;
2611 rptr += sstride[0];
2612 sptr += sstride[0];
2613 if (shift_ctor)
2614 shift_ctor = gfc_constructor_next (shift_ctor);
2616 if (bnd_ctor)
2617 bnd_ctor = gfc_constructor_next (bnd_ctor);
2619 count[0]++;
2620 n = 0;
2621 while (count[n] == extent[n])
2623 count[n] = 0;
2624 rptr -= ss_ex[n];
2625 sptr -= ss_ex[n];
2626 n++;
2627 if (n >= d - 1)
2629 continue_loop = false;
2630 break;
2632 else
2634 count[n]++;
2635 rptr += sstride[n];
2636 sptr += sstride[n];
2641 for (i = 0; i < arraysize; i++)
2643 gfc_constructor_append_expr (&result->value.constructor,
2644 gfc_copy_expr (resultvec[i]),
2645 NULL);
2648 final:
2649 if (temp_boundary)
2650 gfc_free_expr (bnd);
2652 return result;
2655 gfc_expr *
2656 gfc_simplify_erf (gfc_expr *x)
2658 gfc_expr *result;
2660 if (x->expr_type != EXPR_CONSTANT)
2661 return NULL;
2663 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
2664 mpfr_erf (result->value.real, x->value.real, GFC_RND_MODE);
2666 return range_check (result, "ERF");
2670 gfc_expr *
2671 gfc_simplify_erfc (gfc_expr *x)
2673 gfc_expr *result;
2675 if (x->expr_type != EXPR_CONSTANT)
2676 return NULL;
2678 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
2679 mpfr_erfc (result->value.real, x->value.real, GFC_RND_MODE);
2681 return range_check (result, "ERFC");
2685 /* Helper functions to simplify ERFC_SCALED(x) = ERFC(x) * EXP(X**2). */
2687 #define MAX_ITER 200
2688 #define ARG_LIMIT 12
2690 /* Calculate ERFC_SCALED directly by its definition:
2692 ERFC_SCALED(x) = ERFC(x) * EXP(X**2)
2694 using a large precision for intermediate results. This is used for all
2695 but large values of the argument. */
2696 static void
2697 fullprec_erfc_scaled (mpfr_t res, mpfr_t arg)
2699 mp_prec_t prec;
2700 mpfr_t a, b;
2702 prec = mpfr_get_default_prec ();
2703 mpfr_set_default_prec (10 * prec);
2705 mpfr_init (a);
2706 mpfr_init (b);
2708 mpfr_set (a, arg, GFC_RND_MODE);
2709 mpfr_sqr (b, a, GFC_RND_MODE);
2710 mpfr_exp (b, b, GFC_RND_MODE);
2711 mpfr_erfc (a, a, GFC_RND_MODE);
2712 mpfr_mul (a, a, b, GFC_RND_MODE);
2714 mpfr_set (res, a, GFC_RND_MODE);
2715 mpfr_set_default_prec (prec);
2717 mpfr_clear (a);
2718 mpfr_clear (b);
2721 /* Calculate ERFC_SCALED using a power series expansion in 1/arg:
2723 ERFC_SCALED(x) = 1 / (x * sqrt(pi))
2724 * (1 + Sum_n (-1)**n * (1 * 3 * 5 * ... * (2n-1))
2725 / (2 * x**2)**n)
2727 This is used for large values of the argument. Intermediate calculations
2728 are performed with twice the precision. We don't do a fixed number of
2729 iterations of the sum, but stop when it has converged to the required
2730 precision. */
2731 static void
2732 asympt_erfc_scaled (mpfr_t res, mpfr_t arg)
2734 mpfr_t sum, x, u, v, w, oldsum, sumtrunc;
2735 mpz_t num;
2736 mp_prec_t prec;
2737 unsigned i;
2739 prec = mpfr_get_default_prec ();
2740 mpfr_set_default_prec (2 * prec);
2742 mpfr_init (sum);
2743 mpfr_init (x);
2744 mpfr_init (u);
2745 mpfr_init (v);
2746 mpfr_init (w);
2747 mpz_init (num);
2749 mpfr_init (oldsum);
2750 mpfr_init (sumtrunc);
2751 mpfr_set_prec (oldsum, prec);
2752 mpfr_set_prec (sumtrunc, prec);
2754 mpfr_set (x, arg, GFC_RND_MODE);
2755 mpfr_set_ui (sum, 1, GFC_RND_MODE);
2756 mpz_set_ui (num, 1);
2758 mpfr_set (u, x, GFC_RND_MODE);
2759 mpfr_sqr (u, u, GFC_RND_MODE);
2760 mpfr_mul_ui (u, u, 2, GFC_RND_MODE);
2761 mpfr_pow_si (u, u, -1, GFC_RND_MODE);
2763 for (i = 1; i < MAX_ITER; i++)
2765 mpfr_set (oldsum, sum, GFC_RND_MODE);
2767 mpz_mul_ui (num, num, 2 * i - 1);
2768 mpz_neg (num, num);
2770 mpfr_set (w, u, GFC_RND_MODE);
2771 mpfr_pow_ui (w, w, i, GFC_RND_MODE);
2773 mpfr_set_z (v, num, GFC_RND_MODE);
2774 mpfr_mul (v, v, w, GFC_RND_MODE);
2776 mpfr_add (sum, sum, v, GFC_RND_MODE);
2778 mpfr_set (sumtrunc, sum, GFC_RND_MODE);
2779 if (mpfr_cmp (sumtrunc, oldsum) == 0)
2780 break;
2783 /* We should have converged by now; otherwise, ARG_LIMIT is probably
2784 set too low. */
2785 gcc_assert (i < MAX_ITER);
2787 /* Divide by x * sqrt(Pi). */
2788 mpfr_const_pi (u, GFC_RND_MODE);
2789 mpfr_sqrt (u, u, GFC_RND_MODE);
2790 mpfr_mul (u, u, x, GFC_RND_MODE);
2791 mpfr_div (sum, sum, u, GFC_RND_MODE);
2793 mpfr_set (res, sum, GFC_RND_MODE);
2794 mpfr_set_default_prec (prec);
2796 mpfr_clears (sum, x, u, v, w, oldsum, sumtrunc, NULL);
2797 mpz_clear (num);
2801 gfc_expr *
2802 gfc_simplify_erfc_scaled (gfc_expr *x)
2804 gfc_expr *result;
2806 if (x->expr_type != EXPR_CONSTANT)
2807 return NULL;
2809 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
2810 if (mpfr_cmp_d (x->value.real, ARG_LIMIT) >= 0)
2811 asympt_erfc_scaled (result->value.real, x->value.real);
2812 else
2813 fullprec_erfc_scaled (result->value.real, x->value.real);
2815 return range_check (result, "ERFC_SCALED");
2818 #undef MAX_ITER
2819 #undef ARG_LIMIT
2822 gfc_expr *
2823 gfc_simplify_epsilon (gfc_expr *e)
2825 gfc_expr *result;
2826 int i;
2828 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
2830 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
2831 mpfr_set (result->value.real, gfc_real_kinds[i].epsilon, GFC_RND_MODE);
2833 return range_check (result, "EPSILON");
2837 gfc_expr *
2838 gfc_simplify_exp (gfc_expr *x)
2840 gfc_expr *result;
2842 if (x->expr_type != EXPR_CONSTANT)
2843 return NULL;
2845 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
2847 switch (x->ts.type)
2849 case BT_REAL:
2850 mpfr_exp (result->value.real, x->value.real, GFC_RND_MODE);
2851 break;
2853 case BT_COMPLEX:
2854 gfc_set_model_kind (x->ts.kind);
2855 mpc_exp (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
2856 break;
2858 default:
2859 gfc_internal_error ("in gfc_simplify_exp(): Bad type");
2862 return range_check (result, "EXP");
2866 gfc_expr *
2867 gfc_simplify_exponent (gfc_expr *x)
2869 long int val;
2870 gfc_expr *result;
2872 if (x->expr_type != EXPR_CONSTANT)
2873 return NULL;
2875 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
2876 &x->where);
2878 /* EXPONENT(inf) = EXPONENT(nan) = HUGE(0) */
2879 if (mpfr_inf_p (x->value.real) || mpfr_nan_p (x->value.real))
2881 int i = gfc_validate_kind (BT_INTEGER, gfc_default_integer_kind, false);
2882 mpz_set (result->value.integer, gfc_integer_kinds[i].huge);
2883 return result;
2886 /* EXPONENT(+/- 0.0) = 0 */
2887 if (mpfr_zero_p (x->value.real))
2889 mpz_set_ui (result->value.integer, 0);
2890 return result;
2893 gfc_set_model (x->value.real);
2895 val = (long int) mpfr_get_exp (x->value.real);
2896 mpz_set_si (result->value.integer, val);
2898 return range_check (result, "EXPONENT");
2902 gfc_expr *
2903 gfc_simplify_failed_or_stopped_images (gfc_expr *team ATTRIBUTE_UNUSED,
2904 gfc_expr *kind)
2906 if (flag_coarray == GFC_FCOARRAY_NONE)
2908 gfc_current_locus = *gfc_current_intrinsic_where;
2909 gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable");
2910 return &gfc_bad_expr;
2913 if (flag_coarray == GFC_FCOARRAY_SINGLE)
2915 gfc_expr *result;
2916 int actual_kind;
2917 if (kind)
2918 gfc_extract_int (kind, &actual_kind);
2919 else
2920 actual_kind = gfc_default_integer_kind;
2922 result = gfc_get_array_expr (BT_INTEGER, actual_kind, &gfc_current_locus);
2923 result->rank = 1;
2924 return result;
2927 /* For fcoarray = lib no simplification is possible, because it is not known
2928 what images failed or are stopped at compile time. */
2929 return NULL;
2933 gfc_expr *
2934 gfc_simplify_get_team (gfc_expr *level ATTRIBUTE_UNUSED)
2936 if (flag_coarray == GFC_FCOARRAY_NONE)
2938 gfc_current_locus = *gfc_current_intrinsic_where;
2939 gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable");
2940 return &gfc_bad_expr;
2943 if (flag_coarray == GFC_FCOARRAY_SINGLE)
2945 gfc_expr *result;
2946 result = gfc_get_array_expr (BT_INTEGER, gfc_default_integer_kind, &gfc_current_locus);
2947 result->rank = 0;
2948 return result;
2951 /* For fcoarray = lib no simplification is possible, because it is not known
2952 what images failed or are stopped at compile time. */
2953 return NULL;
2957 gfc_expr *
2958 gfc_simplify_float (gfc_expr *a)
2960 gfc_expr *result;
2962 if (a->expr_type != EXPR_CONSTANT)
2963 return NULL;
2965 if (a->is_boz)
2967 if (convert_boz (a, gfc_default_real_kind) == &gfc_bad_expr)
2968 return &gfc_bad_expr;
2970 result = gfc_copy_expr (a);
2972 else
2973 result = gfc_int2real (a, gfc_default_real_kind);
2975 return range_check (result, "FLOAT");
2979 static bool
2980 is_last_ref_vtab (gfc_expr *e)
2982 gfc_ref *ref;
2983 gfc_component *comp = NULL;
2985 if (e->expr_type != EXPR_VARIABLE)
2986 return false;
2988 for (ref = e->ref; ref; ref = ref->next)
2989 if (ref->type == REF_COMPONENT)
2990 comp = ref->u.c.component;
2992 if (!e->ref || !comp)
2993 return e->symtree->n.sym->attr.vtab;
2995 if (comp->name[0] == '_' && strcmp (comp->name, "_vptr") == 0)
2996 return true;
2998 return false;
3002 gfc_expr *
3003 gfc_simplify_extends_type_of (gfc_expr *a, gfc_expr *mold)
3005 /* Avoid simplification of resolved symbols. */
3006 if (is_last_ref_vtab (a) || is_last_ref_vtab (mold))
3007 return NULL;
3009 if (a->ts.type == BT_DERIVED && mold->ts.type == BT_DERIVED)
3010 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
3011 gfc_type_is_extension_of (mold->ts.u.derived,
3012 a->ts.u.derived));
3014 if (UNLIMITED_POLY (a) || UNLIMITED_POLY (mold))
3015 return NULL;
3017 /* Return .false. if the dynamic type can never be an extension. */
3018 if ((a->ts.type == BT_CLASS && mold->ts.type == BT_CLASS
3019 && !gfc_type_is_extension_of
3020 (mold->ts.u.derived->components->ts.u.derived,
3021 a->ts.u.derived->components->ts.u.derived)
3022 && !gfc_type_is_extension_of
3023 (a->ts.u.derived->components->ts.u.derived,
3024 mold->ts.u.derived->components->ts.u.derived))
3025 || (a->ts.type == BT_DERIVED && mold->ts.type == BT_CLASS
3026 && !gfc_type_is_extension_of
3027 (mold->ts.u.derived->components->ts.u.derived,
3028 a->ts.u.derived))
3029 || (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED
3030 && !gfc_type_is_extension_of
3031 (mold->ts.u.derived,
3032 a->ts.u.derived->components->ts.u.derived)
3033 && !gfc_type_is_extension_of
3034 (a->ts.u.derived->components->ts.u.derived,
3035 mold->ts.u.derived)))
3036 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false);
3038 /* Return .true. if the dynamic type is guaranteed to be an extension. */
3039 if (a->ts.type == BT_CLASS && mold->ts.type == BT_DERIVED
3040 && gfc_type_is_extension_of (mold->ts.u.derived,
3041 a->ts.u.derived->components->ts.u.derived))
3042 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, true);
3044 return NULL;
3048 gfc_expr *
3049 gfc_simplify_same_type_as (gfc_expr *a, gfc_expr *b)
3051 /* Avoid simplification of resolved symbols. */
3052 if (is_last_ref_vtab (a) || is_last_ref_vtab (b))
3053 return NULL;
3055 /* Return .false. if the dynamic type can never be the
3056 same. */
3057 if (((a->ts.type == BT_CLASS && gfc_expr_attr (a).class_ok)
3058 || (b->ts.type == BT_CLASS && gfc_expr_attr (b).class_ok))
3059 && !gfc_type_compatible (&a->ts, &b->ts)
3060 && !gfc_type_compatible (&b->ts, &a->ts))
3061 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where, false);
3063 if (a->ts.type != BT_DERIVED || b->ts.type != BT_DERIVED)
3064 return NULL;
3066 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
3067 gfc_compare_derived_types (a->ts.u.derived,
3068 b->ts.u.derived));
3072 gfc_expr *
3073 gfc_simplify_floor (gfc_expr *e, gfc_expr *k)
3075 gfc_expr *result;
3076 mpfr_t floor;
3077 int kind;
3079 kind = get_kind (BT_INTEGER, k, "FLOOR", gfc_default_integer_kind);
3080 if (kind == -1)
3081 gfc_internal_error ("gfc_simplify_floor(): Bad kind");
3083 if (e->expr_type != EXPR_CONSTANT)
3084 return NULL;
3086 mpfr_init2 (floor, mpfr_get_prec (e->value.real));
3087 mpfr_floor (floor, e->value.real);
3089 result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
3090 gfc_mpfr_to_mpz (result->value.integer, floor, &e->where);
3092 mpfr_clear (floor);
3094 return range_check (result, "FLOOR");
3098 gfc_expr *
3099 gfc_simplify_fraction (gfc_expr *x)
3101 gfc_expr *result;
3103 #if MPFR_VERSION < MPFR_VERSION_NUM(3,1,0)
3104 mpfr_t absv, exp, pow2;
3105 #else
3106 mpfr_exp_t e;
3107 #endif
3109 if (x->expr_type != EXPR_CONSTANT)
3110 return NULL;
3112 result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
3114 /* FRACTION(inf) = NaN. */
3115 if (mpfr_inf_p (x->value.real))
3117 mpfr_set_nan (result->value.real);
3118 return result;
3121 #if MPFR_VERSION < MPFR_VERSION_NUM(3,1,0)
3123 /* MPFR versions before 3.1.0 do not include mpfr_frexp.
3124 TODO: remove the kludge when MPFR 3.1.0 or newer will be required */
3126 if (mpfr_sgn (x->value.real) == 0)
3128 mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
3129 return result;
3132 gfc_set_model_kind (x->ts.kind);
3133 mpfr_init (exp);
3134 mpfr_init (absv);
3135 mpfr_init (pow2);
3137 mpfr_abs (absv, x->value.real, GFC_RND_MODE);
3138 mpfr_log2 (exp, absv, GFC_RND_MODE);
3140 mpfr_trunc (exp, exp);
3141 mpfr_add_ui (exp, exp, 1, GFC_RND_MODE);
3143 mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);
3145 mpfr_div (result->value.real, x->value.real, pow2, GFC_RND_MODE);
3147 mpfr_clears (exp, absv, pow2, NULL);
3149 #else
3151 /* mpfr_frexp() correctly handles zeros and NaNs. */
3152 mpfr_frexp (&e, result->value.real, x->value.real, GFC_RND_MODE);
3154 #endif
3156 return range_check (result, "FRACTION");
3160 gfc_expr *
3161 gfc_simplify_gamma (gfc_expr *x)
3163 gfc_expr *result;
3165 if (x->expr_type != EXPR_CONSTANT)
3166 return NULL;
3168 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
3169 mpfr_gamma (result->value.real, x->value.real, GFC_RND_MODE);
3171 return range_check (result, "GAMMA");
3175 gfc_expr *
3176 gfc_simplify_huge (gfc_expr *e)
3178 gfc_expr *result;
3179 int i;
3181 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
3182 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
3184 switch (e->ts.type)
3186 case BT_INTEGER:
3187 mpz_set (result->value.integer, gfc_integer_kinds[i].huge);
3188 break;
3190 case BT_REAL:
3191 mpfr_set (result->value.real, gfc_real_kinds[i].huge, GFC_RND_MODE);
3192 break;
3194 default:
3195 gcc_unreachable ();
3198 return result;
3202 gfc_expr *
3203 gfc_simplify_hypot (gfc_expr *x, gfc_expr *y)
3205 gfc_expr *result;
3207 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3208 return NULL;
3210 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
3211 mpfr_hypot (result->value.real, x->value.real, y->value.real, GFC_RND_MODE);
3212 return range_check (result, "HYPOT");
3216 /* We use the processor's collating sequence, because all
3217 systems that gfortran currently works on are ASCII. */
3219 gfc_expr *
3220 gfc_simplify_iachar (gfc_expr *e, gfc_expr *kind)
3222 gfc_expr *result;
3223 gfc_char_t index;
3224 int k;
3226 if (e->expr_type != EXPR_CONSTANT)
3227 return NULL;
3229 if (e->value.character.length != 1)
3231 gfc_error ("Argument of IACHAR at %L must be of length one", &e->where);
3232 return &gfc_bad_expr;
3235 index = e->value.character.string[0];
3237 if (warn_surprising && index > 127)
3238 gfc_warning (OPT_Wsurprising,
3239 "Argument of IACHAR function at %L outside of range 0..127",
3240 &e->where);
3242 k = get_kind (BT_INTEGER, kind, "IACHAR", gfc_default_integer_kind);
3243 if (k == -1)
3244 return &gfc_bad_expr;
3246 result = gfc_get_int_expr (k, &e->where, index);
3248 return range_check (result, "IACHAR");
3252 static gfc_expr *
3253 do_bit_and (gfc_expr *result, gfc_expr *e)
3255 gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
3256 gcc_assert (result->ts.type == BT_INTEGER
3257 && result->expr_type == EXPR_CONSTANT);
3259 mpz_and (result->value.integer, result->value.integer, e->value.integer);
3260 return result;
3264 gfc_expr *
3265 gfc_simplify_iall (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
3267 return simplify_transformation (array, dim, mask, -1, do_bit_and);
3271 static gfc_expr *
3272 do_bit_ior (gfc_expr *result, gfc_expr *e)
3274 gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
3275 gcc_assert (result->ts.type == BT_INTEGER
3276 && result->expr_type == EXPR_CONSTANT);
3278 mpz_ior (result->value.integer, result->value.integer, e->value.integer);
3279 return result;
3283 gfc_expr *
3284 gfc_simplify_iany (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
3286 return simplify_transformation (array, dim, mask, 0, do_bit_ior);
3290 gfc_expr *
3291 gfc_simplify_iand (gfc_expr *x, gfc_expr *y)
3293 gfc_expr *result;
3295 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3296 return NULL;
3298 result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
3299 mpz_and (result->value.integer, x->value.integer, y->value.integer);
3301 return range_check (result, "IAND");
3305 gfc_expr *
3306 gfc_simplify_ibclr (gfc_expr *x, gfc_expr *y)
3308 gfc_expr *result;
3309 int k, pos;
3311 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3312 return NULL;
3314 gfc_extract_int (y, &pos);
3316 k = gfc_validate_kind (x->ts.type, x->ts.kind, false);
3318 result = gfc_copy_expr (x);
3320 convert_mpz_to_unsigned (result->value.integer,
3321 gfc_integer_kinds[k].bit_size);
3323 mpz_clrbit (result->value.integer, pos);
3325 gfc_convert_mpz_to_signed (result->value.integer,
3326 gfc_integer_kinds[k].bit_size);
3328 return result;
3332 gfc_expr *
3333 gfc_simplify_ibits (gfc_expr *x, gfc_expr *y, gfc_expr *z)
3335 gfc_expr *result;
3336 int pos, len;
3337 int i, k, bitsize;
3338 int *bits;
3340 if (x->expr_type != EXPR_CONSTANT
3341 || y->expr_type != EXPR_CONSTANT
3342 || z->expr_type != EXPR_CONSTANT)
3343 return NULL;
3345 gfc_extract_int (y, &pos);
3346 gfc_extract_int (z, &len);
3348 k = gfc_validate_kind (BT_INTEGER, x->ts.kind, false);
3350 bitsize = gfc_integer_kinds[k].bit_size;
3352 if (pos + len > bitsize)
3354 gfc_error ("Sum of second and third arguments of IBITS exceeds "
3355 "bit size at %L", &y->where);
3356 return &gfc_bad_expr;
3359 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
3360 convert_mpz_to_unsigned (result->value.integer,
3361 gfc_integer_kinds[k].bit_size);
3363 bits = XCNEWVEC (int, bitsize);
3365 for (i = 0; i < bitsize; i++)
3366 bits[i] = 0;
3368 for (i = 0; i < len; i++)
3369 bits[i] = mpz_tstbit (x->value.integer, i + pos);
3371 for (i = 0; i < bitsize; i++)
3373 if (bits[i] == 0)
3374 mpz_clrbit (result->value.integer, i);
3375 else if (bits[i] == 1)
3376 mpz_setbit (result->value.integer, i);
3377 else
3378 gfc_internal_error ("IBITS: Bad bit");
3381 free (bits);
3383 gfc_convert_mpz_to_signed (result->value.integer,
3384 gfc_integer_kinds[k].bit_size);
3386 return result;
3390 gfc_expr *
3391 gfc_simplify_ibset (gfc_expr *x, gfc_expr *y)
3393 gfc_expr *result;
3394 int k, pos;
3396 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3397 return NULL;
3399 gfc_extract_int (y, &pos);
3401 k = gfc_validate_kind (x->ts.type, x->ts.kind, false);
3403 result = gfc_copy_expr (x);
3405 convert_mpz_to_unsigned (result->value.integer,
3406 gfc_integer_kinds[k].bit_size);
3408 mpz_setbit (result->value.integer, pos);
3410 gfc_convert_mpz_to_signed (result->value.integer,
3411 gfc_integer_kinds[k].bit_size);
3413 return result;
3417 gfc_expr *
3418 gfc_simplify_ichar (gfc_expr *e, gfc_expr *kind)
3420 gfc_expr *result;
3421 gfc_char_t index;
3422 int k;
3424 if (e->expr_type != EXPR_CONSTANT)
3425 return NULL;
3427 if (e->value.character.length != 1)
3429 gfc_error ("Argument of ICHAR at %L must be of length one", &e->where);
3430 return &gfc_bad_expr;
3433 index = e->value.character.string[0];
3435 k = get_kind (BT_INTEGER, kind, "ICHAR", gfc_default_integer_kind);
3436 if (k == -1)
3437 return &gfc_bad_expr;
3439 result = gfc_get_int_expr (k, &e->where, index);
3441 return range_check (result, "ICHAR");
3445 gfc_expr *
3446 gfc_simplify_ieor (gfc_expr *x, gfc_expr *y)
3448 gfc_expr *result;
3450 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3451 return NULL;
3453 result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
3454 mpz_xor (result->value.integer, x->value.integer, y->value.integer);
3456 return range_check (result, "IEOR");
3460 gfc_expr *
3461 gfc_simplify_index (gfc_expr *x, gfc_expr *y, gfc_expr *b, gfc_expr *kind)
3463 gfc_expr *result;
3464 int back, len, lensub;
3465 int i, j, k, count, index = 0, start;
3467 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT
3468 || ( b != NULL && b->expr_type != EXPR_CONSTANT))
3469 return NULL;
3471 if (b != NULL && b->value.logical != 0)
3472 back = 1;
3473 else
3474 back = 0;
3476 k = get_kind (BT_INTEGER, kind, "INDEX", gfc_default_integer_kind);
3477 if (k == -1)
3478 return &gfc_bad_expr;
3480 result = gfc_get_constant_expr (BT_INTEGER, k, &x->where);
3482 len = x->value.character.length;
3483 lensub = y->value.character.length;
3485 if (len < lensub)
3487 mpz_set_si (result->value.integer, 0);
3488 return result;
3491 if (back == 0)
3493 if (lensub == 0)
3495 mpz_set_si (result->value.integer, 1);
3496 return result;
3498 else if (lensub == 1)
3500 for (i = 0; i < len; i++)
3502 for (j = 0; j < lensub; j++)
3504 if (y->value.character.string[j]
3505 == x->value.character.string[i])
3507 index = i + 1;
3508 goto done;
3513 else
3515 for (i = 0; i < len; i++)
3517 for (j = 0; j < lensub; j++)
3519 if (y->value.character.string[j]
3520 == x->value.character.string[i])
3522 start = i;
3523 count = 0;
3525 for (k = 0; k < lensub; k++)
3527 if (y->value.character.string[k]
3528 == x->value.character.string[k + start])
3529 count++;
3532 if (count == lensub)
3534 index = start + 1;
3535 goto done;
3543 else
3545 if (lensub == 0)
3547 mpz_set_si (result->value.integer, len + 1);
3548 return result;
3550 else if (lensub == 1)
3552 for (i = 0; i < len; i++)
3554 for (j = 0; j < lensub; j++)
3556 if (y->value.character.string[j]
3557 == x->value.character.string[len - i])
3559 index = len - i + 1;
3560 goto done;
3565 else
3567 for (i = 0; i < len; i++)
3569 for (j = 0; j < lensub; j++)
3571 if (y->value.character.string[j]
3572 == x->value.character.string[len - i])
3574 start = len - i;
3575 if (start <= len - lensub)
3577 count = 0;
3578 for (k = 0; k < lensub; k++)
3579 if (y->value.character.string[k]
3580 == x->value.character.string[k + start])
3581 count++;
3583 if (count == lensub)
3585 index = start + 1;
3586 goto done;
3589 else
3591 continue;
3599 done:
3600 mpz_set_si (result->value.integer, index);
3601 return range_check (result, "INDEX");
3605 static gfc_expr *
3606 simplify_intconv (gfc_expr *e, int kind, const char *name)
3608 gfc_expr *result = NULL;
3610 if (e->expr_type != EXPR_CONSTANT)
3611 return NULL;
3613 result = gfc_convert_constant (e, BT_INTEGER, kind);
3614 if (result == &gfc_bad_expr)
3615 return &gfc_bad_expr;
3617 return range_check (result, name);
3621 gfc_expr *
3622 gfc_simplify_int (gfc_expr *e, gfc_expr *k)
3624 int kind;
3626 kind = get_kind (BT_INTEGER, k, "INT", gfc_default_integer_kind);
3627 if (kind == -1)
3628 return &gfc_bad_expr;
3630 return simplify_intconv (e, kind, "INT");
3633 gfc_expr *
3634 gfc_simplify_int2 (gfc_expr *e)
3636 return simplify_intconv (e, 2, "INT2");
3640 gfc_expr *
3641 gfc_simplify_int8 (gfc_expr *e)
3643 return simplify_intconv (e, 8, "INT8");
3647 gfc_expr *
3648 gfc_simplify_long (gfc_expr *e)
3650 return simplify_intconv (e, 4, "LONG");
3654 gfc_expr *
3655 gfc_simplify_ifix (gfc_expr *e)
3657 gfc_expr *rtrunc, *result;
3659 if (e->expr_type != EXPR_CONSTANT)
3660 return NULL;
3662 rtrunc = gfc_copy_expr (e);
3663 mpfr_trunc (rtrunc->value.real, e->value.real);
3665 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
3666 &e->where);
3667 gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where);
3669 gfc_free_expr (rtrunc);
3671 return range_check (result, "IFIX");
3675 gfc_expr *
3676 gfc_simplify_idint (gfc_expr *e)
3678 gfc_expr *rtrunc, *result;
3680 if (e->expr_type != EXPR_CONSTANT)
3681 return NULL;
3683 rtrunc = gfc_copy_expr (e);
3684 mpfr_trunc (rtrunc->value.real, e->value.real);
3686 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
3687 &e->where);
3688 gfc_mpfr_to_mpz (result->value.integer, rtrunc->value.real, &e->where);
3690 gfc_free_expr (rtrunc);
3692 return range_check (result, "IDINT");
3696 gfc_expr *
3697 gfc_simplify_ior (gfc_expr *x, gfc_expr *y)
3699 gfc_expr *result;
3701 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
3702 return NULL;
3704 result = gfc_get_constant_expr (BT_INTEGER, x->ts.kind, &x->where);
3705 mpz_ior (result->value.integer, x->value.integer, y->value.integer);
3707 return range_check (result, "IOR");
3711 static gfc_expr *
3712 do_bit_xor (gfc_expr *result, gfc_expr *e)
3714 gcc_assert (e->ts.type == BT_INTEGER && e->expr_type == EXPR_CONSTANT);
3715 gcc_assert (result->ts.type == BT_INTEGER
3716 && result->expr_type == EXPR_CONSTANT);
3718 mpz_xor (result->value.integer, result->value.integer, e->value.integer);
3719 return result;
3723 gfc_expr *
3724 gfc_simplify_iparity (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
3726 return simplify_transformation (array, dim, mask, 0, do_bit_xor);
3730 gfc_expr *
3731 gfc_simplify_is_iostat_end (gfc_expr *x)
3733 if (x->expr_type != EXPR_CONSTANT)
3734 return NULL;
3736 return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
3737 mpz_cmp_si (x->value.integer,
3738 LIBERROR_END) == 0);
3742 gfc_expr *
3743 gfc_simplify_is_iostat_eor (gfc_expr *x)
3745 if (x->expr_type != EXPR_CONSTANT)
3746 return NULL;
3748 return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
3749 mpz_cmp_si (x->value.integer,
3750 LIBERROR_EOR) == 0);
3754 gfc_expr *
3755 gfc_simplify_isnan (gfc_expr *x)
3757 if (x->expr_type != EXPR_CONSTANT)
3758 return NULL;
3760 return gfc_get_logical_expr (gfc_default_logical_kind, &x->where,
3761 mpfr_nan_p (x->value.real));
3765 /* Performs a shift on its first argument. Depending on the last
3766 argument, the shift can be arithmetic, i.e. with filling from the
3767 left like in the SHIFTA intrinsic. */
3768 static gfc_expr *
3769 simplify_shift (gfc_expr *e, gfc_expr *s, const char *name,
3770 bool arithmetic, int direction)
3772 gfc_expr *result;
3773 int ashift, *bits, i, k, bitsize, shift;
3775 if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
3776 return NULL;
3778 gfc_extract_int (s, &shift);
3780 k = gfc_validate_kind (BT_INTEGER, e->ts.kind, false);
3781 bitsize = gfc_integer_kinds[k].bit_size;
3783 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
3785 if (shift == 0)
3787 mpz_set (result->value.integer, e->value.integer);
3788 return result;
3791 if (direction > 0 && shift < 0)
3793 /* Left shift, as in SHIFTL. */
3794 gfc_error ("Second argument of %s is negative at %L", name, &e->where);
3795 return &gfc_bad_expr;
3797 else if (direction < 0)
3799 /* Right shift, as in SHIFTR or SHIFTA. */
3800 if (shift < 0)
3802 gfc_error ("Second argument of %s is negative at %L",
3803 name, &e->where);
3804 return &gfc_bad_expr;
3807 shift = -shift;
3810 ashift = (shift >= 0 ? shift : -shift);
3812 if (ashift > bitsize)
3814 gfc_error ("Magnitude of second argument of %s exceeds bit size "
3815 "at %L", name, &e->where);
3816 return &gfc_bad_expr;
3819 bits = XCNEWVEC (int, bitsize);
3821 for (i = 0; i < bitsize; i++)
3822 bits[i] = mpz_tstbit (e->value.integer, i);
3824 if (shift > 0)
3826 /* Left shift. */
3827 for (i = 0; i < shift; i++)
3828 mpz_clrbit (result->value.integer, i);
3830 for (i = 0; i < bitsize - shift; i++)
3832 if (bits[i] == 0)
3833 mpz_clrbit (result->value.integer, i + shift);
3834 else
3835 mpz_setbit (result->value.integer, i + shift);
3838 else
3840 /* Right shift. */
3841 if (arithmetic && bits[bitsize - 1])
3842 for (i = bitsize - 1; i >= bitsize - ashift; i--)
3843 mpz_setbit (result->value.integer, i);
3844 else
3845 for (i = bitsize - 1; i >= bitsize - ashift; i--)
3846 mpz_clrbit (result->value.integer, i);
3848 for (i = bitsize - 1; i >= ashift; i--)
3850 if (bits[i] == 0)
3851 mpz_clrbit (result->value.integer, i - ashift);
3852 else
3853 mpz_setbit (result->value.integer, i - ashift);
3857 gfc_convert_mpz_to_signed (result->value.integer, bitsize);
3858 free (bits);
3860 return result;
3864 gfc_expr *
3865 gfc_simplify_ishft (gfc_expr *e, gfc_expr *s)
3867 return simplify_shift (e, s, "ISHFT", false, 0);
3871 gfc_expr *
3872 gfc_simplify_lshift (gfc_expr *e, gfc_expr *s)
3874 return simplify_shift (e, s, "LSHIFT", false, 1);
3878 gfc_expr *
3879 gfc_simplify_rshift (gfc_expr *e, gfc_expr *s)
3881 return simplify_shift (e, s, "RSHIFT", true, -1);
3885 gfc_expr *
3886 gfc_simplify_shifta (gfc_expr *e, gfc_expr *s)
3888 return simplify_shift (e, s, "SHIFTA", true, -1);
3892 gfc_expr *
3893 gfc_simplify_shiftl (gfc_expr *e, gfc_expr *s)
3895 return simplify_shift (e, s, "SHIFTL", false, 1);
3899 gfc_expr *
3900 gfc_simplify_shiftr (gfc_expr *e, gfc_expr *s)
3902 return simplify_shift (e, s, "SHIFTR", false, -1);
3906 gfc_expr *
3907 gfc_simplify_ishftc (gfc_expr *e, gfc_expr *s, gfc_expr *sz)
3909 gfc_expr *result;
3910 int shift, ashift, isize, ssize, delta, k;
3911 int i, *bits;
3913 if (e->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
3914 return NULL;
3916 gfc_extract_int (s, &shift);
3918 k = gfc_validate_kind (e->ts.type, e->ts.kind, false);
3919 isize = gfc_integer_kinds[k].bit_size;
3921 if (sz != NULL)
3923 if (sz->expr_type != EXPR_CONSTANT)
3924 return NULL;
3926 gfc_extract_int (sz, &ssize);
3928 else
3929 ssize = isize;
3931 if (shift >= 0)
3932 ashift = shift;
3933 else
3934 ashift = -shift;
3936 if (ashift > ssize)
3938 if (sz == NULL)
3939 gfc_error ("Magnitude of second argument of ISHFTC exceeds "
3940 "BIT_SIZE of first argument at %C");
3941 else
3942 gfc_error ("Absolute value of SHIFT shall be less than or equal "
3943 "to SIZE at %C");
3944 return &gfc_bad_expr;
3947 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
3949 mpz_set (result->value.integer, e->value.integer);
3951 if (shift == 0)
3952 return result;
3954 convert_mpz_to_unsigned (result->value.integer, isize);
3956 bits = XCNEWVEC (int, ssize);
3958 for (i = 0; i < ssize; i++)
3959 bits[i] = mpz_tstbit (e->value.integer, i);
3961 delta = ssize - ashift;
3963 if (shift > 0)
3965 for (i = 0; i < delta; i++)
3967 if (bits[i] == 0)
3968 mpz_clrbit (result->value.integer, i + shift);
3969 else
3970 mpz_setbit (result->value.integer, i + shift);
3973 for (i = delta; i < ssize; i++)
3975 if (bits[i] == 0)
3976 mpz_clrbit (result->value.integer, i - delta);
3977 else
3978 mpz_setbit (result->value.integer, i - delta);
3981 else
3983 for (i = 0; i < ashift; i++)
3985 if (bits[i] == 0)
3986 mpz_clrbit (result->value.integer, i + delta);
3987 else
3988 mpz_setbit (result->value.integer, i + delta);
3991 for (i = ashift; i < ssize; i++)
3993 if (bits[i] == 0)
3994 mpz_clrbit (result->value.integer, i + shift);
3995 else
3996 mpz_setbit (result->value.integer, i + shift);
4000 gfc_convert_mpz_to_signed (result->value.integer, isize);
4002 free (bits);
4003 return result;
4007 gfc_expr *
4008 gfc_simplify_kind (gfc_expr *e)
4010 return gfc_get_int_expr (gfc_default_integer_kind, NULL, e->ts.kind);
4014 static gfc_expr *
4015 simplify_bound_dim (gfc_expr *array, gfc_expr *kind, int d, int upper,
4016 gfc_array_spec *as, gfc_ref *ref, bool coarray)
4018 gfc_expr *l, *u, *result;
4019 int k;
4021 k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND",
4022 gfc_default_integer_kind);
4023 if (k == -1)
4024 return &gfc_bad_expr;
4026 result = gfc_get_constant_expr (BT_INTEGER, k, &array->where);
4028 /* For non-variables, LBOUND(expr, DIM=n) = 1 and
4029 UBOUND(expr, DIM=n) = SIZE(expr, DIM=n). */
4030 if (!coarray && array->expr_type != EXPR_VARIABLE)
4032 if (upper)
4034 gfc_expr* dim = result;
4035 mpz_set_si (dim->value.integer, d);
4037 result = simplify_size (array, dim, k);
4038 gfc_free_expr (dim);
4039 if (!result)
4040 goto returnNull;
4042 else
4043 mpz_set_si (result->value.integer, 1);
4045 goto done;
4048 /* Otherwise, we have a variable expression. */
4049 gcc_assert (array->expr_type == EXPR_VARIABLE);
4050 gcc_assert (as);
4052 if (!gfc_resolve_array_spec (as, 0))
4053 return NULL;
4055 /* The last dimension of an assumed-size array is special. */
4056 if ((!coarray && d == as->rank && as->type == AS_ASSUMED_SIZE && !upper)
4057 || (coarray && d == as->rank + as->corank
4058 && (!upper || flag_coarray == GFC_FCOARRAY_SINGLE)))
4060 if (as->lower[d-1]->expr_type == EXPR_CONSTANT)
4062 gfc_free_expr (result);
4063 return gfc_copy_expr (as->lower[d-1]);
4066 goto returnNull;
4069 result = gfc_get_constant_expr (BT_INTEGER, k, &array->where);
4071 /* Then, we need to know the extent of the given dimension. */
4072 if (coarray || (ref->u.ar.type == AR_FULL && !ref->next))
4074 gfc_expr *declared_bound;
4075 int empty_bound;
4076 bool constant_lbound, constant_ubound;
4078 l = as->lower[d-1];
4079 u = as->upper[d-1];
4081 gcc_assert (l != NULL);
4083 constant_lbound = l->expr_type == EXPR_CONSTANT;
4084 constant_ubound = u && u->expr_type == EXPR_CONSTANT;
4086 empty_bound = upper ? 0 : 1;
4087 declared_bound = upper ? u : l;
4089 if ((!upper && !constant_lbound)
4090 || (upper && !constant_ubound))
4091 goto returnNull;
4093 if (!coarray)
4095 /* For {L,U}BOUND, the value depends on whether the array
4096 is empty. We can nevertheless simplify if the declared bound
4097 has the same value as that of an empty array, in which case
4098 the result isn't dependent on the array emptyness. */
4099 if (mpz_cmp_si (declared_bound->value.integer, empty_bound) == 0)
4100 mpz_set_si (result->value.integer, empty_bound);
4101 else if (!constant_lbound || !constant_ubound)
4102 /* Array emptyness can't be determined, we can't simplify. */
4103 goto returnNull;
4104 else if (mpz_cmp (l->value.integer, u->value.integer) > 0)
4105 mpz_set_si (result->value.integer, empty_bound);
4106 else
4107 mpz_set (result->value.integer, declared_bound->value.integer);
4109 else
4110 mpz_set (result->value.integer, declared_bound->value.integer);
4112 else
4114 if (upper)
4116 if (!gfc_ref_dimen_size (&ref->u.ar, d - 1, &result->value.integer, NULL))
4117 goto returnNull;
4119 else
4120 mpz_set_si (result->value.integer, (long int) 1);
4123 done:
4124 return range_check (result, upper ? "UBOUND" : "LBOUND");
4126 returnNull:
4127 gfc_free_expr (result);
4128 return NULL;
4132 static gfc_expr *
4133 simplify_bound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper)
4135 gfc_ref *ref;
4136 gfc_array_spec *as;
4137 int d;
4139 if (array->ts.type == BT_CLASS)
4140 return NULL;
4142 if (array->expr_type != EXPR_VARIABLE)
4144 as = NULL;
4145 ref = NULL;
4146 goto done;
4149 /* Follow any component references. */
4150 as = array->symtree->n.sym->as;
4151 for (ref = array->ref; ref; ref = ref->next)
4153 switch (ref->type)
4155 case REF_ARRAY:
4156 switch (ref->u.ar.type)
4158 case AR_ELEMENT:
4159 as = NULL;
4160 continue;
4162 case AR_FULL:
4163 /* We're done because 'as' has already been set in the
4164 previous iteration. */
4165 goto done;
4167 case AR_UNKNOWN:
4168 return NULL;
4170 case AR_SECTION:
4171 as = ref->u.ar.as;
4172 goto done;
4175 gcc_unreachable ();
4177 case REF_COMPONENT:
4178 as = ref->u.c.component->as;
4179 continue;
4181 case REF_SUBSTRING:
4182 continue;
4186 gcc_unreachable ();
4188 done:
4190 if (as && (as->type == AS_DEFERRED || as->type == AS_ASSUMED_RANK
4191 || (as->type == AS_ASSUMED_SHAPE && upper)))
4192 return NULL;
4194 gcc_assert (!as
4195 || (as->type != AS_DEFERRED
4196 && array->expr_type == EXPR_VARIABLE
4197 && !gfc_expr_attr (array).allocatable
4198 && !gfc_expr_attr (array).pointer));
4200 if (dim == NULL)
4202 /* Multi-dimensional bounds. */
4203 gfc_expr *bounds[GFC_MAX_DIMENSIONS];
4204 gfc_expr *e;
4205 int k;
4207 /* UBOUND(ARRAY) is not valid for an assumed-size array. */
4208 if (upper && as && as->type == AS_ASSUMED_SIZE)
4210 /* An error message will be emitted in
4211 check_assumed_size_reference (resolve.c). */
4212 return &gfc_bad_expr;
4215 /* Simplify the bounds for each dimension. */
4216 for (d = 0; d < array->rank; d++)
4218 bounds[d] = simplify_bound_dim (array, kind, d + 1, upper, as, ref,
4219 false);
4220 if (bounds[d] == NULL || bounds[d] == &gfc_bad_expr)
4222 int j;
4224 for (j = 0; j < d; j++)
4225 gfc_free_expr (bounds[j]);
4226 return bounds[d];
4230 /* Allocate the result expression. */
4231 k = get_kind (BT_INTEGER, kind, upper ? "UBOUND" : "LBOUND",
4232 gfc_default_integer_kind);
4233 if (k == -1)
4234 return &gfc_bad_expr;
4236 e = gfc_get_array_expr (BT_INTEGER, k, &array->where);
4238 /* The result is a rank 1 array; its size is the rank of the first
4239 argument to {L,U}BOUND. */
4240 e->rank = 1;
4241 e->shape = gfc_get_shape (1);
4242 mpz_init_set_ui (e->shape[0], array->rank);
4244 /* Create the constructor for this array. */
4245 for (d = 0; d < array->rank; d++)
4246 gfc_constructor_append_expr (&e->value.constructor,
4247 bounds[d], &e->where);
4249 return e;
4251 else
4253 /* A DIM argument is specified. */
4254 if (dim->expr_type != EXPR_CONSTANT)
4255 return NULL;
4257 d = mpz_get_si (dim->value.integer);
4259 if ((d < 1 || d > array->rank)
4260 || (d == array->rank && as && as->type == AS_ASSUMED_SIZE && upper))
4262 gfc_error ("DIM argument at %L is out of bounds", &dim->where);
4263 return &gfc_bad_expr;
4266 if (as && as->type == AS_ASSUMED_RANK)
4267 return NULL;
4269 return simplify_bound_dim (array, kind, d, upper, as, ref, false);
4274 static gfc_expr *
4275 simplify_cobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind, int upper)
4277 gfc_ref *ref;
4278 gfc_array_spec *as;
4279 int d;
4281 if (array->expr_type != EXPR_VARIABLE)
4282 return NULL;
4284 /* Follow any component references. */
4285 as = (array->ts.type == BT_CLASS && array->ts.u.derived->components)
4286 ? array->ts.u.derived->components->as
4287 : array->symtree->n.sym->as;
4288 for (ref = array->ref; ref; ref = ref->next)
4290 switch (ref->type)
4292 case REF_ARRAY:
4293 switch (ref->u.ar.type)
4295 case AR_ELEMENT:
4296 if (ref->u.ar.as->corank > 0)
4298 gcc_assert (as == ref->u.ar.as);
4299 goto done;
4301 as = NULL;
4302 continue;
4304 case AR_FULL:
4305 /* We're done because 'as' has already been set in the
4306 previous iteration. */
4307 goto done;
4309 case AR_UNKNOWN:
4310 return NULL;
4312 case AR_SECTION:
4313 as = ref->u.ar.as;
4314 goto done;
4317 gcc_unreachable ();
4319 case REF_COMPONENT:
4320 as = ref->u.c.component->as;
4321 continue;
4323 case REF_SUBSTRING:
4324 continue;
4328 if (!as)
4329 gcc_unreachable ();
4331 done:
4333 if (as->cotype == AS_DEFERRED || as->cotype == AS_ASSUMED_SHAPE)
4334 return NULL;
4336 if (dim == NULL)
4338 /* Multi-dimensional cobounds. */
4339 gfc_expr *bounds[GFC_MAX_DIMENSIONS];
4340 gfc_expr *e;
4341 int k;
4343 /* Simplify the cobounds for each dimension. */
4344 for (d = 0; d < as->corank; d++)
4346 bounds[d] = simplify_bound_dim (array, kind, d + 1 + as->rank,
4347 upper, as, ref, true);
4348 if (bounds[d] == NULL || bounds[d] == &gfc_bad_expr)
4350 int j;
4352 for (j = 0; j < d; j++)
4353 gfc_free_expr (bounds[j]);
4354 return bounds[d];
4358 /* Allocate the result expression. */
4359 e = gfc_get_expr ();
4360 e->where = array->where;
4361 e->expr_type = EXPR_ARRAY;
4362 e->ts.type = BT_INTEGER;
4363 k = get_kind (BT_INTEGER, kind, upper ? "UCOBOUND" : "LCOBOUND",
4364 gfc_default_integer_kind);
4365 if (k == -1)
4367 gfc_free_expr (e);
4368 return &gfc_bad_expr;
4370 e->ts.kind = k;
4372 /* The result is a rank 1 array; its size is the rank of the first
4373 argument to {L,U}COBOUND. */
4374 e->rank = 1;
4375 e->shape = gfc_get_shape (1);
4376 mpz_init_set_ui (e->shape[0], as->corank);
4378 /* Create the constructor for this array. */
4379 for (d = 0; d < as->corank; d++)
4380 gfc_constructor_append_expr (&e->value.constructor,
4381 bounds[d], &e->where);
4382 return e;
4384 else
4386 /* A DIM argument is specified. */
4387 if (dim->expr_type != EXPR_CONSTANT)
4388 return NULL;
4390 d = mpz_get_si (dim->value.integer);
4392 if (d < 1 || d > as->corank)
4394 gfc_error ("DIM argument at %L is out of bounds", &dim->where);
4395 return &gfc_bad_expr;
4398 return simplify_bound_dim (array, kind, d+as->rank, upper, as, ref, true);
4403 gfc_expr *
4404 gfc_simplify_lbound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
4406 return simplify_bound (array, dim, kind, 0);
4410 gfc_expr *
4411 gfc_simplify_lcobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
4413 return simplify_cobound (array, dim, kind, 0);
4416 gfc_expr *
4417 gfc_simplify_leadz (gfc_expr *e)
4419 unsigned long lz, bs;
4420 int i;
4422 if (e->expr_type != EXPR_CONSTANT)
4423 return NULL;
4425 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
4426 bs = gfc_integer_kinds[i].bit_size;
4427 if (mpz_cmp_si (e->value.integer, 0) == 0)
4428 lz = bs;
4429 else if (mpz_cmp_si (e->value.integer, 0) < 0)
4430 lz = 0;
4431 else
4432 lz = bs - mpz_sizeinbase (e->value.integer, 2);
4434 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, lz);
4438 gfc_expr *
4439 gfc_simplify_len (gfc_expr *e, gfc_expr *kind)
4441 gfc_expr *result;
4442 int k = get_kind (BT_INTEGER, kind, "LEN", gfc_default_integer_kind);
4444 if (k == -1)
4445 return &gfc_bad_expr;
4447 if (e->expr_type == EXPR_CONSTANT)
4449 result = gfc_get_constant_expr (BT_INTEGER, k, &e->where);
4450 mpz_set_si (result->value.integer, e->value.character.length);
4451 return range_check (result, "LEN");
4453 else if (e->ts.u.cl != NULL && e->ts.u.cl->length != NULL
4454 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT
4455 && e->ts.u.cl->length->ts.type == BT_INTEGER)
4457 result = gfc_get_constant_expr (BT_INTEGER, k, &e->where);
4458 mpz_set (result->value.integer, e->ts.u.cl->length->value.integer);
4459 return range_check (result, "LEN");
4461 else if (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER
4462 && e->symtree->n.sym
4463 && e->symtree->n.sym->ts.type != BT_DERIVED
4464 && e->symtree->n.sym->assoc && e->symtree->n.sym->assoc->target
4465 && e->symtree->n.sym->assoc->target->ts.type == BT_DERIVED
4466 && e->symtree->n.sym->assoc->target->symtree->n.sym
4467 && UNLIMITED_POLY (e->symtree->n.sym->assoc->target->symtree->n.sym))
4469 /* The expression in assoc->target points to a ref to the _data component
4470 of the unlimited polymorphic entity. To get the _len component the last
4471 _data ref needs to be stripped and a ref to the _len component added. */
4472 return gfc_get_len_component (e->symtree->n.sym->assoc->target);
4473 else
4474 return NULL;
4478 gfc_expr *
4479 gfc_simplify_len_trim (gfc_expr *e, gfc_expr *kind)
4481 gfc_expr *result;
4482 size_t count, len, i;
4483 int k = get_kind (BT_INTEGER, kind, "LEN_TRIM", gfc_default_integer_kind);
4485 if (k == -1)
4486 return &gfc_bad_expr;
4488 if (e->expr_type != EXPR_CONSTANT)
4489 return NULL;
4491 len = e->value.character.length;
4492 for (count = 0, i = 1; i <= len; i++)
4493 if (e->value.character.string[len - i] == ' ')
4494 count++;
4495 else
4496 break;
4498 result = gfc_get_int_expr (k, &e->where, len - count);
4499 return range_check (result, "LEN_TRIM");
4502 gfc_expr *
4503 gfc_simplify_lgamma (gfc_expr *x)
4505 gfc_expr *result;
4506 int sg;
4508 if (x->expr_type != EXPR_CONSTANT)
4509 return NULL;
4511 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
4512 mpfr_lgamma (result->value.real, &sg, x->value.real, GFC_RND_MODE);
4514 return range_check (result, "LGAMMA");
4518 gfc_expr *
4519 gfc_simplify_lge (gfc_expr *a, gfc_expr *b)
4521 if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
4522 return NULL;
4524 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
4525 gfc_compare_string (a, b) >= 0);
4529 gfc_expr *
4530 gfc_simplify_lgt (gfc_expr *a, gfc_expr *b)
4532 if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
4533 return NULL;
4535 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
4536 gfc_compare_string (a, b) > 0);
4540 gfc_expr *
4541 gfc_simplify_lle (gfc_expr *a, gfc_expr *b)
4543 if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
4544 return NULL;
4546 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
4547 gfc_compare_string (a, b) <= 0);
4551 gfc_expr *
4552 gfc_simplify_llt (gfc_expr *a, gfc_expr *b)
4554 if (a->expr_type != EXPR_CONSTANT || b->expr_type != EXPR_CONSTANT)
4555 return NULL;
4557 return gfc_get_logical_expr (gfc_default_logical_kind, &a->where,
4558 gfc_compare_string (a, b) < 0);
4562 gfc_expr *
4563 gfc_simplify_log (gfc_expr *x)
4565 gfc_expr *result;
4567 if (x->expr_type != EXPR_CONSTANT)
4568 return NULL;
4570 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
4572 switch (x->ts.type)
4574 case BT_REAL:
4575 if (mpfr_sgn (x->value.real) <= 0)
4577 gfc_error ("Argument of LOG at %L cannot be less than or equal "
4578 "to zero", &x->where);
4579 gfc_free_expr (result);
4580 return &gfc_bad_expr;
4583 mpfr_log (result->value.real, x->value.real, GFC_RND_MODE);
4584 break;
4586 case BT_COMPLEX:
4587 if (mpfr_zero_p (mpc_realref (x->value.complex))
4588 && mpfr_zero_p (mpc_imagref (x->value.complex)))
4590 gfc_error ("Complex argument of LOG at %L cannot be zero",
4591 &x->where);
4592 gfc_free_expr (result);
4593 return &gfc_bad_expr;
4596 gfc_set_model_kind (x->ts.kind);
4597 mpc_log (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
4598 break;
4600 default:
4601 gfc_internal_error ("gfc_simplify_log: bad type");
4604 return range_check (result, "LOG");
4608 gfc_expr *
4609 gfc_simplify_log10 (gfc_expr *x)
4611 gfc_expr *result;
4613 if (x->expr_type != EXPR_CONSTANT)
4614 return NULL;
4616 if (mpfr_sgn (x->value.real) <= 0)
4618 gfc_error ("Argument of LOG10 at %L cannot be less than or equal "
4619 "to zero", &x->where);
4620 return &gfc_bad_expr;
4623 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
4624 mpfr_log10 (result->value.real, x->value.real, GFC_RND_MODE);
4626 return range_check (result, "LOG10");
4630 gfc_expr *
4631 gfc_simplify_logical (gfc_expr *e, gfc_expr *k)
4633 int kind;
4635 kind = get_kind (BT_LOGICAL, k, "LOGICAL", gfc_default_logical_kind);
4636 if (kind < 0)
4637 return &gfc_bad_expr;
4639 if (e->expr_type != EXPR_CONSTANT)
4640 return NULL;
4642 return gfc_get_logical_expr (kind, &e->where, e->value.logical);
4646 gfc_expr*
4647 gfc_simplify_matmul (gfc_expr *matrix_a, gfc_expr *matrix_b)
4649 gfc_expr *result;
4650 int row, result_rows, col, result_columns;
4651 int stride_a, offset_a, stride_b, offset_b;
4653 if (!is_constant_array_expr (matrix_a)
4654 || !is_constant_array_expr (matrix_b))
4655 return NULL;
4657 /* MATMUL should do mixed-mode arithmetic. Set the result type. */
4658 if (matrix_a->ts.type != matrix_b->ts.type)
4660 gfc_expr e;
4661 e.expr_type = EXPR_OP;
4662 gfc_clear_ts (&e.ts);
4663 e.value.op.op = INTRINSIC_NONE;
4664 e.value.op.op1 = matrix_a;
4665 e.value.op.op2 = matrix_b;
4666 gfc_type_convert_binary (&e, 1);
4667 result = gfc_get_array_expr (e.ts.type, e.ts.kind, &matrix_a->where);
4669 else
4671 result = gfc_get_array_expr (matrix_a->ts.type, matrix_a->ts.kind,
4672 &matrix_a->where);
4675 if (matrix_a->rank == 1 && matrix_b->rank == 2)
4677 result_rows = 1;
4678 result_columns = mpz_get_si (matrix_b->shape[1]);
4679 stride_a = 1;
4680 stride_b = mpz_get_si (matrix_b->shape[0]);
4682 result->rank = 1;
4683 result->shape = gfc_get_shape (result->rank);
4684 mpz_init_set_si (result->shape[0], result_columns);
4686 else if (matrix_a->rank == 2 && matrix_b->rank == 1)
4688 result_rows = mpz_get_si (matrix_a->shape[0]);
4689 result_columns = 1;
4690 stride_a = mpz_get_si (matrix_a->shape[0]);
4691 stride_b = 1;
4693 result->rank = 1;
4694 result->shape = gfc_get_shape (result->rank);
4695 mpz_init_set_si (result->shape[0], result_rows);
4697 else if (matrix_a->rank == 2 && matrix_b->rank == 2)
4699 result_rows = mpz_get_si (matrix_a->shape[0]);
4700 result_columns = mpz_get_si (matrix_b->shape[1]);
4701 stride_a = mpz_get_si (matrix_a->shape[0]);
4702 stride_b = mpz_get_si (matrix_b->shape[0]);
4704 result->rank = 2;
4705 result->shape = gfc_get_shape (result->rank);
4706 mpz_init_set_si (result->shape[0], result_rows);
4707 mpz_init_set_si (result->shape[1], result_columns);
4709 else
4710 gcc_unreachable();
4712 offset_a = offset_b = 0;
4713 for (col = 0; col < result_columns; ++col)
4715 offset_a = 0;
4717 for (row = 0; row < result_rows; ++row)
4719 gfc_expr *e = compute_dot_product (matrix_a, stride_a, offset_a,
4720 matrix_b, 1, offset_b, false);
4721 gfc_constructor_append_expr (&result->value.constructor,
4722 e, NULL);
4724 offset_a += 1;
4727 offset_b += stride_b;
4730 return result;
4734 gfc_expr *
4735 gfc_simplify_maskr (gfc_expr *i, gfc_expr *kind_arg)
4737 gfc_expr *result;
4738 int kind, arg, k;
4740 if (i->expr_type != EXPR_CONSTANT)
4741 return NULL;
4743 kind = get_kind (BT_INTEGER, kind_arg, "MASKR", gfc_default_integer_kind);
4744 if (kind == -1)
4745 return &gfc_bad_expr;
4746 k = gfc_validate_kind (BT_INTEGER, kind, false);
4748 bool fail = gfc_extract_int (i, &arg);
4749 gcc_assert (!fail);
4751 result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where);
4753 /* MASKR(n) = 2^n - 1 */
4754 mpz_set_ui (result->value.integer, 1);
4755 mpz_mul_2exp (result->value.integer, result->value.integer, arg);
4756 mpz_sub_ui (result->value.integer, result->value.integer, 1);
4758 gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size);
4760 return result;
4764 gfc_expr *
4765 gfc_simplify_maskl (gfc_expr *i, gfc_expr *kind_arg)
4767 gfc_expr *result;
4768 int kind, arg, k;
4769 mpz_t z;
4771 if (i->expr_type != EXPR_CONSTANT)
4772 return NULL;
4774 kind = get_kind (BT_INTEGER, kind_arg, "MASKL", gfc_default_integer_kind);
4775 if (kind == -1)
4776 return &gfc_bad_expr;
4777 k = gfc_validate_kind (BT_INTEGER, kind, false);
4779 bool fail = gfc_extract_int (i, &arg);
4780 gcc_assert (!fail);
4782 result = gfc_get_constant_expr (BT_INTEGER, kind, &i->where);
4784 /* MASKL(n) = 2^bit_size - 2^(bit_size - n) */
4785 mpz_init_set_ui (z, 1);
4786 mpz_mul_2exp (z, z, gfc_integer_kinds[k].bit_size);
4787 mpz_set_ui (result->value.integer, 1);
4788 mpz_mul_2exp (result->value.integer, result->value.integer,
4789 gfc_integer_kinds[k].bit_size - arg);
4790 mpz_sub (result->value.integer, z, result->value.integer);
4791 mpz_clear (z);
4793 gfc_convert_mpz_to_signed (result->value.integer, gfc_integer_kinds[k].bit_size);
4795 return result;
4799 gfc_expr *
4800 gfc_simplify_merge (gfc_expr *tsource, gfc_expr *fsource, gfc_expr *mask)
4802 gfc_expr * result;
4803 gfc_constructor *tsource_ctor, *fsource_ctor, *mask_ctor;
4805 if (mask->expr_type == EXPR_CONSTANT)
4806 return gfc_get_parentheses (gfc_copy_expr (mask->value.logical
4807 ? tsource : fsource));
4809 if (!mask->rank || !is_constant_array_expr (mask)
4810 || !is_constant_array_expr (tsource) || !is_constant_array_expr (fsource))
4811 return NULL;
4813 result = gfc_get_array_expr (tsource->ts.type, tsource->ts.kind,
4814 &tsource->where);
4815 if (tsource->ts.type == BT_DERIVED)
4816 result->ts.u.derived = tsource->ts.u.derived;
4817 else if (tsource->ts.type == BT_CHARACTER)
4818 result->ts.u.cl = tsource->ts.u.cl;
4820 tsource_ctor = gfc_constructor_first (tsource->value.constructor);
4821 fsource_ctor = gfc_constructor_first (fsource->value.constructor);
4822 mask_ctor = gfc_constructor_first (mask->value.constructor);
4824 while (mask_ctor)
4826 if (mask_ctor->expr->value.logical)
4827 gfc_constructor_append_expr (&result->value.constructor,
4828 gfc_copy_expr (tsource_ctor->expr),
4829 NULL);
4830 else
4831 gfc_constructor_append_expr (&result->value.constructor,
4832 gfc_copy_expr (fsource_ctor->expr),
4833 NULL);
4834 tsource_ctor = gfc_constructor_next (tsource_ctor);
4835 fsource_ctor = gfc_constructor_next (fsource_ctor);
4836 mask_ctor = gfc_constructor_next (mask_ctor);
4839 result->shape = gfc_get_shape (1);
4840 gfc_array_size (result, &result->shape[0]);
4842 return result;
4846 gfc_expr *
4847 gfc_simplify_merge_bits (gfc_expr *i, gfc_expr *j, gfc_expr *mask_expr)
4849 mpz_t arg1, arg2, mask;
4850 gfc_expr *result;
4852 if (i->expr_type != EXPR_CONSTANT || j->expr_type != EXPR_CONSTANT
4853 || mask_expr->expr_type != EXPR_CONSTANT)
4854 return NULL;
4856 result = gfc_get_constant_expr (BT_INTEGER, i->ts.kind, &i->where);
4858 /* Convert all argument to unsigned. */
4859 mpz_init_set (arg1, i->value.integer);
4860 mpz_init_set (arg2, j->value.integer);
4861 mpz_init_set (mask, mask_expr->value.integer);
4863 /* MERGE_BITS(I,J,MASK) = IOR (IAND (I, MASK), IAND (J, NOT (MASK))). */
4864 mpz_and (arg1, arg1, mask);
4865 mpz_com (mask, mask);
4866 mpz_and (arg2, arg2, mask);
4867 mpz_ior (result->value.integer, arg1, arg2);
4869 mpz_clear (arg1);
4870 mpz_clear (arg2);
4871 mpz_clear (mask);
4873 return result;
4877 /* Selects between current value and extremum for simplify_min_max
4878 and simplify_minval_maxval. */
4879 static int
4880 min_max_choose (gfc_expr *arg, gfc_expr *extremum, int sign, bool back_val)
4882 int ret;
4884 switch (arg->ts.type)
4886 case BT_INTEGER:
4887 ret = mpz_cmp (arg->value.integer,
4888 extremum->value.integer) * sign;
4889 if (ret > 0)
4890 mpz_set (extremum->value.integer, arg->value.integer);
4891 break;
4893 case BT_REAL:
4894 if (mpfr_nan_p (extremum->value.real))
4896 ret = 1;
4897 mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE);
4899 else if (mpfr_nan_p (arg->value.real))
4900 ret = -1;
4901 else
4903 ret = mpfr_cmp (arg->value.real, extremum->value.real) * sign;
4904 if (ret > 0)
4905 mpfr_set (extremum->value.real, arg->value.real, GFC_RND_MODE);
4907 break;
4909 case BT_CHARACTER:
4910 #define LENGTH(x) ((x)->value.character.length)
4911 #define STRING(x) ((x)->value.character.string)
4912 if (LENGTH (extremum) < LENGTH(arg))
4914 gfc_char_t *tmp = STRING(extremum);
4916 STRING(extremum) = gfc_get_wide_string (LENGTH(arg) + 1);
4917 memcpy (STRING(extremum), tmp,
4918 LENGTH(extremum) * sizeof (gfc_char_t));
4919 gfc_wide_memset (&STRING(extremum)[LENGTH(extremum)], ' ',
4920 LENGTH(arg) - LENGTH(extremum));
4921 STRING(extremum)[LENGTH(arg)] = '\0'; /* For debugger */
4922 LENGTH(extremum) = LENGTH(arg);
4923 free (tmp);
4925 ret = gfc_compare_string (arg, extremum) * sign;
4926 if (ret > 0)
4928 free (STRING(extremum));
4929 STRING(extremum) = gfc_get_wide_string (LENGTH(extremum) + 1);
4930 memcpy (STRING(extremum), STRING(arg),
4931 LENGTH(arg) * sizeof (gfc_char_t));
4932 gfc_wide_memset (&STRING(extremum)[LENGTH(arg)], ' ',
4933 LENGTH(extremum) - LENGTH(arg));
4934 STRING(extremum)[LENGTH(extremum)] = '\0'; /* For debugger */
4936 #undef LENGTH
4937 #undef STRING
4938 break;
4940 default:
4941 gfc_internal_error ("simplify_min_max(): Bad type in arglist");
4943 if (back_val && ret == 0)
4944 ret = 1;
4946 return ret;
4950 /* This function is special since MAX() can take any number of
4951 arguments. The simplified expression is a rewritten version of the
4952 argument list containing at most one constant element. Other
4953 constant elements are deleted. Because the argument list has
4954 already been checked, this function always succeeds. sign is 1 for
4955 MAX(), -1 for MIN(). */
4957 static gfc_expr *
4958 simplify_min_max (gfc_expr *expr, int sign)
4960 gfc_actual_arglist *arg, *last, *extremum;
4961 gfc_intrinsic_sym * specific;
4963 last = NULL;
4964 extremum = NULL;
4965 specific = expr->value.function.isym;
4967 arg = expr->value.function.actual;
4969 for (; arg; last = arg, arg = arg->next)
4971 if (arg->expr->expr_type != EXPR_CONSTANT)
4972 continue;
4974 if (extremum == NULL)
4976 extremum = arg;
4977 continue;
4980 min_max_choose (arg->expr, extremum->expr, sign);
4982 /* Delete the extra constant argument. */
4983 last->next = arg->next;
4985 arg->next = NULL;
4986 gfc_free_actual_arglist (arg);
4987 arg = last;
4990 /* If there is one value left, replace the function call with the
4991 expression. */
4992 if (expr->value.function.actual->next != NULL)
4993 return NULL;
4995 /* Convert to the correct type and kind. */
4996 if (expr->ts.type != BT_UNKNOWN)
4997 return gfc_convert_constant (expr->value.function.actual->expr,
4998 expr->ts.type, expr->ts.kind);
5000 if (specific->ts.type != BT_UNKNOWN)
5001 return gfc_convert_constant (expr->value.function.actual->expr,
5002 specific->ts.type, specific->ts.kind);
5004 return gfc_copy_expr (expr->value.function.actual->expr);
5008 gfc_expr *
5009 gfc_simplify_min (gfc_expr *e)
5011 return simplify_min_max (e, -1);
5015 gfc_expr *
5016 gfc_simplify_max (gfc_expr *e)
5018 return simplify_min_max (e, 1);
5021 /* Helper function for gfc_simplify_minval. */
5023 static gfc_expr *
5024 gfc_min (gfc_expr *op1, gfc_expr *op2)
5026 min_max_choose (op1, op2, -1);
5027 gfc_free_expr (op1);
5028 return op2;
5031 /* Simplify minval for constant arrays. */
5033 gfc_expr *
5034 gfc_simplify_minval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask)
5036 return simplify_transformation (array, dim, mask, INT_MAX, gfc_min);
5039 /* Helper function for gfc_simplify_maxval. */
5041 static gfc_expr *
5042 gfc_max (gfc_expr *op1, gfc_expr *op2)
5044 min_max_choose (op1, op2, 1);
5045 gfc_free_expr (op1);
5046 return op2;
5050 /* Simplify maxval for constant arrays. */
5052 gfc_expr *
5053 gfc_simplify_maxval (gfc_expr *array, gfc_expr* dim, gfc_expr *mask)
5055 return simplify_transformation (array, dim, mask, INT_MIN, gfc_max);
5059 /* Transform minloc or maxloc of an array, according to MASK,
5060 to the scalar result. This code is mostly identical to
5061 simplify_transformation_to_scalar. */
5063 static gfc_expr *
5064 simplify_minmaxloc_to_scalar (gfc_expr *result, gfc_expr *array, gfc_expr *mask,
5065 gfc_expr *extremum, int sign, bool back_val)
5067 gfc_expr *a, *m;
5068 gfc_constructor *array_ctor, *mask_ctor;
5069 mpz_t count;
5071 mpz_set_si (result->value.integer, 0);
5074 /* Shortcut for constant .FALSE. MASK. */
5075 if (mask
5076 && mask->expr_type == EXPR_CONSTANT
5077 && !mask->value.logical)
5078 return result;
5080 array_ctor = gfc_constructor_first (array->value.constructor);
5081 if (mask && mask->expr_type == EXPR_ARRAY)
5082 mask_ctor = gfc_constructor_first (mask->value.constructor);
5083 else
5084 mask_ctor = NULL;
5086 mpz_init_set_si (count, 0);
5087 while (array_ctor)
5089 mpz_add_ui (count, count, 1);
5090 a = array_ctor->expr;
5091 array_ctor = gfc_constructor_next (array_ctor);
5092 /* A constant MASK equals .TRUE. here and can be ignored. */
5093 if (mask_ctor)
5095 m = mask_ctor->expr;
5096 mask_ctor = gfc_constructor_next (mask_ctor);
5097 if (!m->value.logical)
5098 continue;
5100 if (min_max_choose (a, extremum, sign, back_val) > 0)
5101 mpz_set (result->value.integer, count);
5103 mpz_clear (count);
5104 gfc_free_expr (extremum);
5105 return result;
5108 /* Simplify minloc / maxloc in the absence of a dim argument. */
5110 static gfc_expr *
5111 simplify_minmaxloc_nodim (gfc_expr *result, gfc_expr *extremum,
5112 gfc_expr *array, gfc_expr *mask, int sign,
5113 bool back_val)
5115 ssize_t res[GFC_MAX_DIMENSIONS];
5116 int i, n;
5117 gfc_constructor *result_ctor, *array_ctor, *mask_ctor;
5118 ssize_t count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
5119 sstride[GFC_MAX_DIMENSIONS];
5120 gfc_expr *a, *m;
5121 bool continue_loop;
5122 bool ma;
5124 for (i = 0; i<array->rank; i++)
5125 res[i] = -1;
5127 /* Shortcut for constant .FALSE. MASK. */
5128 if (mask
5129 && mask->expr_type == EXPR_CONSTANT
5130 && !mask->value.logical)
5131 goto finish;
5133 for (i = 0; i < array->rank; i++)
5135 count[i] = 0;
5136 sstride[i] = (i == 0) ? 1 : sstride[i-1] * mpz_get_si (array->shape[i-1]);
5137 extent[i] = mpz_get_si (array->shape[i]);
5138 if (extent[i] <= 0)
5139 goto finish;
5142 continue_loop = true;
5143 array_ctor = gfc_constructor_first (array->value.constructor);
5144 if (mask && mask->rank > 0)
5145 mask_ctor = gfc_constructor_first (mask->value.constructor);
5146 else
5147 mask_ctor = NULL;
5149 /* Loop over the array elements (and mask), keeping track of
5150 the indices to return. */
5151 while (continue_loop)
5155 a = array_ctor->expr;
5156 if (mask_ctor)
5158 m = mask_ctor->expr;
5159 ma = m->value.logical;
5160 mask_ctor = gfc_constructor_next (mask_ctor);
5162 else
5163 ma = true;
5165 if (ma && min_max_choose (a, extremum, sign, back_val) > 0)
5167 for (i = 0; i<array->rank; i++)
5168 res[i] = count[i];
5170 array_ctor = gfc_constructor_next (array_ctor);
5171 count[0] ++;
5172 } while (count[0] != extent[0]);
5173 n = 0;
5176 /* When we get to the end of a dimension, reset it and increment
5177 the next dimension. */
5178 count[n] = 0;
5179 n++;
5180 if (n >= array->rank)
5182 continue_loop = false;
5183 break;
5185 else
5186 count[n] ++;
5187 } while (count[n] == extent[n]);
5190 finish:
5191 gfc_free_expr (extremum);
5192 result_ctor = gfc_constructor_first (result->value.constructor);
5193 for (i = 0; i<array->rank; i++)
5195 gfc_expr *r_expr;
5196 r_expr = result_ctor->expr;
5197 mpz_set_si (r_expr->value.integer, res[i] + 1);
5198 result_ctor = gfc_constructor_next (result_ctor);
5200 return result;
5203 /* Helper function for gfc_simplify_minmaxloc - build an array
5204 expression with n elements. */
5206 static gfc_expr *
5207 new_array (bt type, int kind, int n, locus *where)
5209 gfc_expr *result;
5210 int i;
5212 result = gfc_get_array_expr (type, kind, where);
5213 result->rank = 1;
5214 result->shape = gfc_get_shape(1);
5215 mpz_init_set_si (result->shape[0], n);
5216 for (i = 0; i < n; i++)
5218 gfc_constructor_append_expr (&result->value.constructor,
5219 gfc_get_constant_expr (type, kind, where),
5220 NULL);
5223 return result;
5226 /* Simplify minloc and maxloc. This code is mostly identical to
5227 simplify_transformation_to_array. */
5229 static gfc_expr *
5230 simplify_minmaxloc_to_array (gfc_expr *result, gfc_expr *array,
5231 gfc_expr *dim, gfc_expr *mask,
5232 gfc_expr *extremum, int sign, bool back_val)
5234 mpz_t size;
5235 int done, i, n, arraysize, resultsize, dim_index, dim_extent, dim_stride;
5236 gfc_expr **arrayvec, **resultvec, **base, **src, **dest;
5237 gfc_constructor *array_ctor, *mask_ctor, *result_ctor;
5239 int count[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS],
5240 sstride[GFC_MAX_DIMENSIONS], dstride[GFC_MAX_DIMENSIONS],
5241 tmpstride[GFC_MAX_DIMENSIONS];
5243 /* Shortcut for constant .FALSE. MASK. */
5244 if (mask
5245 && mask->expr_type == EXPR_CONSTANT
5246 && !mask->value.logical)
5247 return result;
5249 /* Build an indexed table for array element expressions to minimize
5250 linked-list traversal. Masked elements are set to NULL. */
5251 gfc_array_size (array, &size);
5252 arraysize = mpz_get_ui (size);
5253 mpz_clear (size);
5255 arrayvec = XCNEWVEC (gfc_expr*, arraysize);
5257 array_ctor = gfc_constructor_first (array->value.constructor);
5258 mask_ctor = NULL;
5259 if (mask && mask->expr_type == EXPR_ARRAY)
5260 mask_ctor = gfc_constructor_first (mask->value.constructor);
5262 for (i = 0; i < arraysize; ++i)
5264 arrayvec[i] = array_ctor->expr;
5265 array_ctor = gfc_constructor_next (array_ctor);
5267 if (mask_ctor)
5269 if (!mask_ctor->expr->value.logical)
5270 arrayvec[i] = NULL;
5272 mask_ctor = gfc_constructor_next (mask_ctor);
5276 /* Same for the result expression. */
5277 gfc_array_size (result, &size);
5278 resultsize = mpz_get_ui (size);
5279 mpz_clear (size);
5281 resultvec = XCNEWVEC (gfc_expr*, resultsize);
5282 result_ctor = gfc_constructor_first (result->value.constructor);
5283 for (i = 0; i < resultsize; ++i)
5285 resultvec[i] = result_ctor->expr;
5286 result_ctor = gfc_constructor_next (result_ctor);
5289 gfc_extract_int (dim, &dim_index);
5290 dim_index -= 1; /* zero-base index */
5291 dim_extent = 0;
5292 dim_stride = 0;
5294 for (i = 0, n = 0; i < array->rank; ++i)
5296 count[i] = 0;
5297 tmpstride[i] = (i == 0) ? 1 : tmpstride[i-1] * mpz_get_si (array->shape[i-1]);
5298 if (i == dim_index)
5300 dim_extent = mpz_get_si (array->shape[i]);
5301 dim_stride = tmpstride[i];
5302 continue;
5305 extent[n] = mpz_get_si (array->shape[i]);
5306 sstride[n] = tmpstride[i];
5307 dstride[n] = (n == 0) ? 1 : dstride[n-1] * extent[n-1];
5308 n += 1;
5311 done = resultsize <= 0;
5312 base = arrayvec;
5313 dest = resultvec;
5314 while (!done)
5316 gfc_expr *ex;
5317 ex = gfc_copy_expr (extremum);
5318 for (src = base, n = 0; n < dim_extent; src += dim_stride, ++n)
5320 if (*src && min_max_choose (*src, ex, sign, back_val) > 0)
5321 mpz_set_si ((*dest)->value.integer, n + 1);
5324 count[0]++;
5325 base += sstride[0];
5326 dest += dstride[0];
5327 gfc_free_expr (ex);
5329 n = 0;
5330 while (!done && count[n] == extent[n])
5332 count[n] = 0;
5333 base -= sstride[n] * extent[n];
5334 dest -= dstride[n] * extent[n];
5336 n++;
5337 if (n < result->rank)
5339 /* If the nested loop is unrolled GFC_MAX_DIMENSIONS
5340 times, we'd warn for the last iteration, because the
5341 array index will have already been incremented to the
5342 array sizes, and we can't tell that this must make
5343 the test against result->rank false, because ranks
5344 must not exceed GFC_MAX_DIMENSIONS. */
5345 GCC_DIAGNOSTIC_PUSH_IGNORED (-Warray-bounds)
5346 count[n]++;
5347 base += sstride[n];
5348 dest += dstride[n];
5349 GCC_DIAGNOSTIC_POP
5351 else
5352 done = true;
5356 /* Place updated expression in result constructor. */
5357 result_ctor = gfc_constructor_first (result->value.constructor);
5358 for (i = 0; i < resultsize; ++i)
5360 result_ctor->expr = resultvec[i];
5361 result_ctor = gfc_constructor_next (result_ctor);
5364 free (arrayvec);
5365 free (resultvec);
5366 free (extremum);
5367 return result;
5370 /* Simplify minloc and maxloc for constant arrays. */
5372 gfc_expr *
5373 gfc_simplify_minmaxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask,
5374 gfc_expr *kind, gfc_expr *back, int sign)
5376 gfc_expr *result;
5377 gfc_expr *extremum;
5378 int ikind;
5379 int init_val;
5380 bool back_val = false;
5382 if (!is_constant_array_expr (array)
5383 || !gfc_is_constant_expr (dim))
5384 return NULL;
5386 if (mask
5387 && !is_constant_array_expr (mask)
5388 && mask->expr_type != EXPR_CONSTANT)
5389 return NULL;
5391 if (kind)
5393 if (gfc_extract_int (kind, &ikind, -1))
5394 return NULL;
5396 else
5397 ikind = gfc_default_integer_kind;
5399 if (back)
5401 if (back->expr_type != EXPR_CONSTANT)
5402 return NULL;
5404 back_val = back->value.logical;
5407 if (sign < 0)
5408 init_val = INT_MAX;
5409 else if (sign > 0)
5410 init_val = INT_MIN;
5411 else
5412 gcc_unreachable();
5414 extremum = gfc_get_constant_expr (array->ts.type, array->ts.kind, &array->where);
5415 init_result_expr (extremum, init_val, array);
5417 if (dim)
5419 result = transformational_result (array, dim, BT_INTEGER,
5420 ikind, &array->where);
5421 init_result_expr (result, 0, array);
5423 if (array->rank == 1)
5424 return simplify_minmaxloc_to_scalar (result, array, mask, extremum,
5425 sign, back_val);
5426 else
5427 return simplify_minmaxloc_to_array (result, array, dim, mask, extremum,
5428 sign, back_val);
5430 else
5432 result = new_array (BT_INTEGER, ikind, array->rank, &array->where);
5433 return simplify_minmaxloc_nodim (result, extremum, array, mask,
5434 sign, back_val);
5438 gfc_expr *
5439 gfc_simplify_minloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind,
5440 gfc_expr *back)
5442 return gfc_simplify_minmaxloc (array, dim, mask, kind, back, -1);
5445 gfc_expr *
5446 gfc_simplify_maxloc (gfc_expr *array, gfc_expr *dim, gfc_expr *mask, gfc_expr *kind,
5447 gfc_expr *back)
5449 return gfc_simplify_minmaxloc (array, dim, mask, kind, back, 1);
5452 gfc_expr *
5453 gfc_simplify_maxexponent (gfc_expr *x)
5455 int i = gfc_validate_kind (BT_REAL, x->ts.kind, false);
5456 return gfc_get_int_expr (gfc_default_integer_kind, &x->where,
5457 gfc_real_kinds[i].max_exponent);
5461 gfc_expr *
5462 gfc_simplify_minexponent (gfc_expr *x)
5464 int i = gfc_validate_kind (BT_REAL, x->ts.kind, false);
5465 return gfc_get_int_expr (gfc_default_integer_kind, &x->where,
5466 gfc_real_kinds[i].min_exponent);
5470 gfc_expr *
5471 gfc_simplify_mod (gfc_expr *a, gfc_expr *p)
5473 gfc_expr *result;
5474 int kind;
5476 /* First check p. */
5477 if (p->expr_type != EXPR_CONSTANT)
5478 return NULL;
5480 /* p shall not be 0. */
5481 switch (p->ts.type)
5483 case BT_INTEGER:
5484 if (mpz_cmp_ui (p->value.integer, 0) == 0)
5486 gfc_error ("Argument %qs of MOD at %L shall not be zero",
5487 "P", &p->where);
5488 return &gfc_bad_expr;
5490 break;
5491 case BT_REAL:
5492 if (mpfr_cmp_ui (p->value.real, 0) == 0)
5494 gfc_error ("Argument %qs of MOD at %L shall not be zero",
5495 "P", &p->where);
5496 return &gfc_bad_expr;
5498 break;
5499 default:
5500 gfc_internal_error ("gfc_simplify_mod(): Bad arguments");
5503 if (a->expr_type != EXPR_CONSTANT)
5504 return NULL;
5506 kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind;
5507 result = gfc_get_constant_expr (a->ts.type, kind, &a->where);
5509 if (a->ts.type == BT_INTEGER)
5510 mpz_tdiv_r (result->value.integer, a->value.integer, p->value.integer);
5511 else
5513 gfc_set_model_kind (kind);
5514 mpfr_fmod (result->value.real, a->value.real, p->value.real,
5515 GFC_RND_MODE);
5518 return range_check (result, "MOD");
5522 gfc_expr *
5523 gfc_simplify_modulo (gfc_expr *a, gfc_expr *p)
5525 gfc_expr *result;
5526 int kind;
5528 if (a->expr_type != EXPR_CONSTANT || p->expr_type != EXPR_CONSTANT)
5529 return NULL;
5531 kind = a->ts.kind > p->ts.kind ? a->ts.kind : p->ts.kind;
5532 result = gfc_get_constant_expr (a->ts.type, kind, &a->where);
5534 switch (a->ts.type)
5536 case BT_INTEGER:
5537 if (mpz_cmp_ui (p->value.integer, 0) == 0)
5539 /* Result is processor-dependent. This processor just opts
5540 to not handle it at all. */
5541 gfc_error ("Second argument of MODULO at %L is zero", &a->where);
5542 gfc_free_expr (result);
5543 return &gfc_bad_expr;
5545 mpz_fdiv_r (result->value.integer, a->value.integer, p->value.integer);
5547 break;
5549 case BT_REAL:
5550 if (mpfr_cmp_ui (p->value.real, 0) == 0)
5552 /* Result is processor-dependent. */
5553 gfc_error ("Second argument of MODULO at %L is zero", &p->where);
5554 gfc_free_expr (result);
5555 return &gfc_bad_expr;
5558 gfc_set_model_kind (kind);
5559 mpfr_fmod (result->value.real, a->value.real, p->value.real,
5560 GFC_RND_MODE);
5561 if (mpfr_cmp_ui (result->value.real, 0) != 0)
5563 if (mpfr_signbit (a->value.real) != mpfr_signbit (p->value.real))
5564 mpfr_add (result->value.real, result->value.real, p->value.real,
5565 GFC_RND_MODE);
5567 else
5568 mpfr_copysign (result->value.real, result->value.real,
5569 p->value.real, GFC_RND_MODE);
5570 break;
5572 default:
5573 gfc_internal_error ("gfc_simplify_modulo(): Bad arguments");
5576 return range_check (result, "MODULO");
5580 gfc_expr *
5581 gfc_simplify_nearest (gfc_expr *x, gfc_expr *s)
5583 gfc_expr *result;
5584 mp_exp_t emin, emax;
5585 int kind;
5587 if (x->expr_type != EXPR_CONSTANT || s->expr_type != EXPR_CONSTANT)
5588 return NULL;
5590 result = gfc_copy_expr (x);
5592 /* Save current values of emin and emax. */
5593 emin = mpfr_get_emin ();
5594 emax = mpfr_get_emax ();
5596 /* Set emin and emax for the current model number. */
5597 kind = gfc_validate_kind (BT_REAL, x->ts.kind, 0);
5598 mpfr_set_emin ((mp_exp_t) gfc_real_kinds[kind].min_exponent -
5599 mpfr_get_prec(result->value.real) + 1);
5600 mpfr_set_emax ((mp_exp_t) gfc_real_kinds[kind].max_exponent - 1);
5601 mpfr_check_range (result->value.real, 0, GMP_RNDU);
5603 if (mpfr_sgn (s->value.real) > 0)
5605 mpfr_nextabove (result->value.real);
5606 mpfr_subnormalize (result->value.real, 0, GMP_RNDU);
5608 else
5610 mpfr_nextbelow (result->value.real);
5611 mpfr_subnormalize (result->value.real, 0, GMP_RNDD);
5614 mpfr_set_emin (emin);
5615 mpfr_set_emax (emax);
5617 /* Only NaN can occur. Do not use range check as it gives an
5618 error for denormal numbers. */
5619 if (mpfr_nan_p (result->value.real) && flag_range_check)
5621 gfc_error ("Result of NEAREST is NaN at %L", &result->where);
5622 gfc_free_expr (result);
5623 return &gfc_bad_expr;
5626 return result;
5630 static gfc_expr *
5631 simplify_nint (const char *name, gfc_expr *e, gfc_expr *k)
5633 gfc_expr *itrunc, *result;
5634 int kind;
5636 kind = get_kind (BT_INTEGER, k, name, gfc_default_integer_kind);
5637 if (kind == -1)
5638 return &gfc_bad_expr;
5640 if (e->expr_type != EXPR_CONSTANT)
5641 return NULL;
5643 itrunc = gfc_copy_expr (e);
5644 mpfr_round (itrunc->value.real, e->value.real);
5646 result = gfc_get_constant_expr (BT_INTEGER, kind, &e->where);
5647 gfc_mpfr_to_mpz (result->value.integer, itrunc->value.real, &e->where);
5649 gfc_free_expr (itrunc);
5651 return range_check (result, name);
5655 gfc_expr *
5656 gfc_simplify_new_line (gfc_expr *e)
5658 gfc_expr *result;
5660 result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, 1);
5661 result->value.character.string[0] = '\n';
5663 return result;
5667 gfc_expr *
5668 gfc_simplify_nint (gfc_expr *e, gfc_expr *k)
5670 return simplify_nint ("NINT", e, k);
5674 gfc_expr *
5675 gfc_simplify_idnint (gfc_expr *e)
5677 return simplify_nint ("IDNINT", e, NULL);
5681 static gfc_expr *
5682 add_squared (gfc_expr *result, gfc_expr *e)
5684 mpfr_t tmp;
5686 gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT);
5687 gcc_assert (result->ts.type == BT_REAL
5688 && result->expr_type == EXPR_CONSTANT);
5690 gfc_set_model_kind (result->ts.kind);
5691 mpfr_init (tmp);
5692 mpfr_pow_ui (tmp, e->value.real, 2, GFC_RND_MODE);
5693 mpfr_add (result->value.real, result->value.real, tmp,
5694 GFC_RND_MODE);
5695 mpfr_clear (tmp);
5697 return result;
5701 static gfc_expr *
5702 do_sqrt (gfc_expr *result, gfc_expr *e)
5704 gcc_assert (e->ts.type == BT_REAL && e->expr_type == EXPR_CONSTANT);
5705 gcc_assert (result->ts.type == BT_REAL
5706 && result->expr_type == EXPR_CONSTANT);
5708 mpfr_set (result->value.real, e->value.real, GFC_RND_MODE);
5709 mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODE);
5710 return result;
5714 gfc_expr *
5715 gfc_simplify_norm2 (gfc_expr *e, gfc_expr *dim)
5717 gfc_expr *result;
5718 bool size_zero;
5720 size_zero = gfc_is_size_zero_array (e);
5722 if (!(is_constant_array_expr (e) || size_zero)
5723 || (dim != NULL && !gfc_is_constant_expr (dim)))
5724 return NULL;
5726 result = transformational_result (e, dim, e->ts.type, e->ts.kind, &e->where);
5727 init_result_expr (result, 0, NULL);
5729 if (size_zero)
5730 return result;
5732 if (!dim || e->rank == 1)
5734 result = simplify_transformation_to_scalar (result, e, NULL,
5735 add_squared);
5736 mpfr_sqrt (result->value.real, result->value.real, GFC_RND_MODE);
5738 else
5739 result = simplify_transformation_to_array (result, e, dim, NULL,
5740 add_squared, &do_sqrt);
5742 return result;
5746 gfc_expr *
5747 gfc_simplify_not (gfc_expr *e)
5749 gfc_expr *result;
5751 if (e->expr_type != EXPR_CONSTANT)
5752 return NULL;
5754 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
5755 mpz_com (result->value.integer, e->value.integer);
5757 return range_check (result, "NOT");
5761 gfc_expr *
5762 gfc_simplify_null (gfc_expr *mold)
5764 gfc_expr *result;
5766 if (mold)
5768 result = gfc_copy_expr (mold);
5769 result->expr_type = EXPR_NULL;
5771 else
5772 result = gfc_get_null_expr (NULL);
5774 return result;
5778 gfc_expr *
5779 gfc_simplify_num_images (gfc_expr *distance ATTRIBUTE_UNUSED, gfc_expr *failed)
5781 gfc_expr *result;
5783 if (flag_coarray == GFC_FCOARRAY_NONE)
5785 gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable");
5786 return &gfc_bad_expr;
5789 if (flag_coarray != GFC_FCOARRAY_SINGLE)
5790 return NULL;
5792 if (failed && failed->expr_type != EXPR_CONSTANT)
5793 return NULL;
5795 /* FIXME: gfc_current_locus is wrong. */
5796 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
5797 &gfc_current_locus);
5799 if (failed && failed->value.logical != 0)
5800 mpz_set_si (result->value.integer, 0);
5801 else
5802 mpz_set_si (result->value.integer, 1);
5804 return result;
5808 gfc_expr *
5809 gfc_simplify_or (gfc_expr *x, gfc_expr *y)
5811 gfc_expr *result;
5812 int kind;
5814 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
5815 return NULL;
5817 kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
5819 switch (x->ts.type)
5821 case BT_INTEGER:
5822 result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
5823 mpz_ior (result->value.integer, x->value.integer, y->value.integer);
5824 return range_check (result, "OR");
5826 case BT_LOGICAL:
5827 return gfc_get_logical_expr (kind, &x->where,
5828 x->value.logical || y->value.logical);
5829 default:
5830 gcc_unreachable();
5835 gfc_expr *
5836 gfc_simplify_pack (gfc_expr *array, gfc_expr *mask, gfc_expr *vector)
5838 gfc_expr *result;
5839 gfc_constructor *array_ctor, *mask_ctor, *vector_ctor;
5841 if (!is_constant_array_expr (array)
5842 || !is_constant_array_expr (vector)
5843 || (!gfc_is_constant_expr (mask)
5844 && !is_constant_array_expr (mask)))
5845 return NULL;
5847 result = gfc_get_array_expr (array->ts.type, array->ts.kind, &array->where);
5848 if (array->ts.type == BT_DERIVED)
5849 result->ts.u.derived = array->ts.u.derived;
5851 array_ctor = gfc_constructor_first (array->value.constructor);
5852 vector_ctor = vector
5853 ? gfc_constructor_first (vector->value.constructor)
5854 : NULL;
5856 if (mask->expr_type == EXPR_CONSTANT
5857 && mask->value.logical)
5859 /* Copy all elements of ARRAY to RESULT. */
5860 while (array_ctor)
5862 gfc_constructor_append_expr (&result->value.constructor,
5863 gfc_copy_expr (array_ctor->expr),
5864 NULL);
5866 array_ctor = gfc_constructor_next (array_ctor);
5867 vector_ctor = gfc_constructor_next (vector_ctor);
5870 else if (mask->expr_type == EXPR_ARRAY)
5872 /* Copy only those elements of ARRAY to RESULT whose
5873 MASK equals .TRUE.. */
5874 mask_ctor = gfc_constructor_first (mask->value.constructor);
5875 while (mask_ctor)
5877 if (mask_ctor->expr->value.logical)
5879 gfc_constructor_append_expr (&result->value.constructor,
5880 gfc_copy_expr (array_ctor->expr),
5881 NULL);
5882 vector_ctor = gfc_constructor_next (vector_ctor);
5885 array_ctor = gfc_constructor_next (array_ctor);
5886 mask_ctor = gfc_constructor_next (mask_ctor);
5890 /* Append any left-over elements from VECTOR to RESULT. */
5891 while (vector_ctor)
5893 gfc_constructor_append_expr (&result->value.constructor,
5894 gfc_copy_expr (vector_ctor->expr),
5895 NULL);
5896 vector_ctor = gfc_constructor_next (vector_ctor);
5899 result->shape = gfc_get_shape (1);
5900 gfc_array_size (result, &result->shape[0]);
5902 if (array->ts.type == BT_CHARACTER)
5903 result->ts.u.cl = array->ts.u.cl;
5905 return result;
5909 static gfc_expr *
5910 do_xor (gfc_expr *result, gfc_expr *e)
5912 gcc_assert (e->ts.type == BT_LOGICAL && e->expr_type == EXPR_CONSTANT);
5913 gcc_assert (result->ts.type == BT_LOGICAL
5914 && result->expr_type == EXPR_CONSTANT);
5916 result->value.logical = result->value.logical != e->value.logical;
5917 return result;
5922 gfc_expr *
5923 gfc_simplify_parity (gfc_expr *e, gfc_expr *dim)
5925 return simplify_transformation (e, dim, NULL, 0, do_xor);
5929 gfc_expr *
5930 gfc_simplify_popcnt (gfc_expr *e)
5932 int res, k;
5933 mpz_t x;
5935 if (e->expr_type != EXPR_CONSTANT)
5936 return NULL;
5938 k = gfc_validate_kind (e->ts.type, e->ts.kind, false);
5940 /* Convert argument to unsigned, then count the '1' bits. */
5941 mpz_init_set (x, e->value.integer);
5942 convert_mpz_to_unsigned (x, gfc_integer_kinds[k].bit_size);
5943 res = mpz_popcount (x);
5944 mpz_clear (x);
5946 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, res);
5950 gfc_expr *
5951 gfc_simplify_poppar (gfc_expr *e)
5953 gfc_expr *popcnt;
5954 int i;
5956 if (e->expr_type != EXPR_CONSTANT)
5957 return NULL;
5959 popcnt = gfc_simplify_popcnt (e);
5960 gcc_assert (popcnt);
5962 bool fail = gfc_extract_int (popcnt, &i);
5963 gcc_assert (!fail);
5965 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i % 2);
5969 gfc_expr *
5970 gfc_simplify_precision (gfc_expr *e)
5972 int i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
5973 return gfc_get_int_expr (gfc_default_integer_kind, &e->where,
5974 gfc_real_kinds[i].precision);
5978 gfc_expr *
5979 gfc_simplify_product (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
5981 return simplify_transformation (array, dim, mask, 1, gfc_multiply);
5985 gfc_expr *
5986 gfc_simplify_radix (gfc_expr *e)
5988 int i;
5989 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
5991 switch (e->ts.type)
5993 case BT_INTEGER:
5994 i = gfc_integer_kinds[i].radix;
5995 break;
5997 case BT_REAL:
5998 i = gfc_real_kinds[i].radix;
5999 break;
6001 default:
6002 gcc_unreachable ();
6005 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i);
6009 gfc_expr *
6010 gfc_simplify_range (gfc_expr *e)
6012 int i;
6013 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
6015 switch (e->ts.type)
6017 case BT_INTEGER:
6018 i = gfc_integer_kinds[i].range;
6019 break;
6021 case BT_REAL:
6022 case BT_COMPLEX:
6023 i = gfc_real_kinds[i].range;
6024 break;
6026 default:
6027 gcc_unreachable ();
6030 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, i);
6034 gfc_expr *
6035 gfc_simplify_rank (gfc_expr *e)
6037 /* Assumed rank. */
6038 if (e->rank == -1)
6039 return NULL;
6041 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, e->rank);
6045 gfc_expr *
6046 gfc_simplify_real (gfc_expr *e, gfc_expr *k)
6048 gfc_expr *result = NULL;
6049 int kind;
6051 if (e->ts.type == BT_COMPLEX)
6052 kind = get_kind (BT_REAL, k, "REAL", e->ts.kind);
6053 else
6054 kind = get_kind (BT_REAL, k, "REAL", gfc_default_real_kind);
6056 if (kind == -1)
6057 return &gfc_bad_expr;
6059 if (e->expr_type != EXPR_CONSTANT)
6060 return NULL;
6062 if (convert_boz (e, kind) == &gfc_bad_expr)
6063 return &gfc_bad_expr;
6065 result = gfc_convert_constant (e, BT_REAL, kind);
6066 if (result == &gfc_bad_expr)
6067 return &gfc_bad_expr;
6069 return range_check (result, "REAL");
6073 gfc_expr *
6074 gfc_simplify_realpart (gfc_expr *e)
6076 gfc_expr *result;
6078 if (e->expr_type != EXPR_CONSTANT)
6079 return NULL;
6081 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
6082 mpc_real (result->value.real, e->value.complex, GFC_RND_MODE);
6084 return range_check (result, "REALPART");
6087 gfc_expr *
6088 gfc_simplify_repeat (gfc_expr *e, gfc_expr *n)
6090 gfc_expr *result;
6091 gfc_charlen_t len;
6092 mpz_t ncopies;
6093 bool have_length = false;
6095 /* If NCOPIES isn't a constant, there's nothing we can do. */
6096 if (n->expr_type != EXPR_CONSTANT)
6097 return NULL;
6099 /* If NCOPIES is negative, it's an error. */
6100 if (mpz_sgn (n->value.integer) < 0)
6102 gfc_error ("Argument NCOPIES of REPEAT intrinsic is negative at %L",
6103 &n->where);
6104 return &gfc_bad_expr;
6107 /* If we don't know the character length, we can do no more. */
6108 if (e->ts.u.cl && e->ts.u.cl->length
6109 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
6111 len = gfc_mpz_get_hwi (e->ts.u.cl->length->value.integer);
6112 have_length = true;
6114 else if (e->expr_type == EXPR_CONSTANT
6115 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
6117 len = e->value.character.length;
6119 else
6120 return NULL;
6122 /* If the source length is 0, any value of NCOPIES is valid
6123 and everything behaves as if NCOPIES == 0. */
6124 mpz_init (ncopies);
6125 if (len == 0)
6126 mpz_set_ui (ncopies, 0);
6127 else
6128 mpz_set (ncopies, n->value.integer);
6130 /* Check that NCOPIES isn't too large. */
6131 if (len)
6133 mpz_t max, mlen;
6134 int i;
6136 /* Compute the maximum value allowed for NCOPIES: huge(cl) / len. */
6137 mpz_init (max);
6138 i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
6140 if (have_length)
6142 mpz_tdiv_q (max, gfc_integer_kinds[i].huge,
6143 e->ts.u.cl->length->value.integer);
6145 else
6147 mpz_init (mlen);
6148 gfc_mpz_set_hwi (mlen, len);
6149 mpz_tdiv_q (max, gfc_integer_kinds[i].huge, mlen);
6150 mpz_clear (mlen);
6153 /* The check itself. */
6154 if (mpz_cmp (ncopies, max) > 0)
6156 mpz_clear (max);
6157 mpz_clear (ncopies);
6158 gfc_error ("Argument NCOPIES of REPEAT intrinsic is too large at %L",
6159 &n->where);
6160 return &gfc_bad_expr;
6163 mpz_clear (max);
6165 mpz_clear (ncopies);
6167 /* For further simplification, we need the character string to be
6168 constant. */
6169 if (e->expr_type != EXPR_CONSTANT)
6170 return NULL;
6172 HOST_WIDE_INT ncop;
6173 if (len ||
6174 (e->ts.u.cl->length &&
6175 mpz_sgn (e->ts.u.cl->length->value.integer) != 0))
6177 bool fail = gfc_extract_hwi (n, &ncop);
6178 gcc_assert (!fail);
6180 else
6181 ncop = 0;
6183 if (ncop == 0)
6184 return gfc_get_character_expr (e->ts.kind, &e->where, NULL, 0);
6186 len = e->value.character.length;
6187 gfc_charlen_t nlen = ncop * len;
6189 /* Here's a semi-arbitrary limit. If the string is longer than 1 GB
6190 (2**28 elements * 4 bytes (wide chars) per element) defer to
6191 runtime instead of consuming (unbounded) memory and CPU at
6192 compile time. */
6193 if (nlen > 268435456)
6195 gfc_warning_now (0, "Evaluation of string longer than 2**28 at %L"
6196 " deferred to runtime, expect bugs", &e->where);
6197 return NULL;
6200 result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, nlen);
6201 for (size_t i = 0; i < (size_t) ncop; i++)
6202 for (size_t j = 0; j < (size_t) len; j++)
6203 result->value.character.string[j+i*len]= e->value.character.string[j];
6205 result->value.character.string[nlen] = '\0'; /* For debugger */
6206 return result;
6210 /* This one is a bear, but mainly has to do with shuffling elements. */
6212 gfc_expr *
6213 gfc_simplify_reshape (gfc_expr *source, gfc_expr *shape_exp,
6214 gfc_expr *pad, gfc_expr *order_exp)
6216 int order[GFC_MAX_DIMENSIONS], shape[GFC_MAX_DIMENSIONS];
6217 int i, rank, npad, x[GFC_MAX_DIMENSIONS];
6218 mpz_t index, size;
6219 unsigned long j;
6220 size_t nsource;
6221 gfc_expr *e, *result;
6223 /* Check that argument expression types are OK. */
6224 if (!is_constant_array_expr (source)
6225 || !is_constant_array_expr (shape_exp)
6226 || !is_constant_array_expr (pad)
6227 || !is_constant_array_expr (order_exp))
6228 return NULL;
6230 if (source->shape == NULL)
6231 return NULL;
6233 /* Proceed with simplification, unpacking the array. */
6235 mpz_init (index);
6236 rank = 0;
6238 for (;;)
6240 e = gfc_constructor_lookup_expr (shape_exp->value.constructor, rank);
6241 if (e == NULL)
6242 break;
6244 gfc_extract_int (e, &shape[rank]);
6246 gcc_assert (rank >= 0 && rank < GFC_MAX_DIMENSIONS);
6247 gcc_assert (shape[rank] >= 0);
6249 rank++;
6252 gcc_assert (rank > 0);
6254 /* Now unpack the order array if present. */
6255 if (order_exp == NULL)
6257 for (i = 0; i < rank; i++)
6258 order[i] = i;
6260 else
6262 for (i = 0; i < rank; i++)
6263 x[i] = 0;
6265 for (i = 0; i < rank; i++)
6267 e = gfc_constructor_lookup_expr (order_exp->value.constructor, i);
6268 gcc_assert (e);
6270 gfc_extract_int (e, &order[i]);
6272 gcc_assert (order[i] >= 1 && order[i] <= rank);
6273 order[i]--;
6274 gcc_assert (x[order[i]] == 0);
6275 x[order[i]] = 1;
6279 /* Count the elements in the source and padding arrays. */
6281 npad = 0;
6282 if (pad != NULL)
6284 gfc_array_size (pad, &size);
6285 npad = mpz_get_ui (size);
6286 mpz_clear (size);
6289 gfc_array_size (source, &size);
6290 nsource = mpz_get_ui (size);
6291 mpz_clear (size);
6293 /* If it weren't for that pesky permutation we could just loop
6294 through the source and round out any shortage with pad elements.
6295 But no, someone just had to have the compiler do something the
6296 user should be doing. */
6298 for (i = 0; i < rank; i++)
6299 x[i] = 0;
6301 result = gfc_get_array_expr (source->ts.type, source->ts.kind,
6302 &source->where);
6303 if (source->ts.type == BT_DERIVED)
6304 result->ts.u.derived = source->ts.u.derived;
6305 result->rank = rank;
6306 result->shape = gfc_get_shape (rank);
6307 for (i = 0; i < rank; i++)
6308 mpz_init_set_ui (result->shape[i], shape[i]);
6310 while (nsource > 0 || npad > 0)
6312 /* Figure out which element to extract. */
6313 mpz_set_ui (index, 0);
6315 for (i = rank - 1; i >= 0; i--)
6317 mpz_add_ui (index, index, x[order[i]]);
6318 if (i != 0)
6319 mpz_mul_ui (index, index, shape[order[i - 1]]);
6322 if (mpz_cmp_ui (index, INT_MAX) > 0)
6323 gfc_internal_error ("Reshaped array too large at %C");
6325 j = mpz_get_ui (index);
6327 if (j < nsource)
6328 e = gfc_constructor_lookup_expr (source->value.constructor, j);
6329 else
6331 if (npad <= 0)
6333 mpz_clear (index);
6334 return NULL;
6336 j = j - nsource;
6337 j = j % npad;
6338 e = gfc_constructor_lookup_expr (pad->value.constructor, j);
6340 gcc_assert (e);
6342 gfc_constructor_append_expr (&result->value.constructor,
6343 gfc_copy_expr (e), &e->where);
6345 /* Calculate the next element. */
6346 i = 0;
6348 inc:
6349 if (++x[i] < shape[i])
6350 continue;
6351 x[i++] = 0;
6352 if (i < rank)
6353 goto inc;
6355 break;
6358 mpz_clear (index);
6360 return result;
6364 gfc_expr *
6365 gfc_simplify_rrspacing (gfc_expr *x)
6367 gfc_expr *result;
6368 int i;
6369 long int e, p;
6371 if (x->expr_type != EXPR_CONSTANT)
6372 return NULL;
6374 i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
6376 result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
6378 /* RRSPACING(+/- 0.0) = 0.0 */
6379 if (mpfr_zero_p (x->value.real))
6381 mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
6382 return result;
6385 /* RRSPACING(inf) = NaN */
6386 if (mpfr_inf_p (x->value.real))
6388 mpfr_set_nan (result->value.real);
6389 return result;
6392 /* RRSPACING(NaN) = same NaN */
6393 if (mpfr_nan_p (x->value.real))
6395 mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
6396 return result;
6399 /* | x * 2**(-e) | * 2**p. */
6400 mpfr_abs (result->value.real, x->value.real, GFC_RND_MODE);
6401 e = - (long int) mpfr_get_exp (x->value.real);
6402 mpfr_mul_2si (result->value.real, result->value.real, e, GFC_RND_MODE);
6404 p = (long int) gfc_real_kinds[i].digits;
6405 mpfr_mul_2si (result->value.real, result->value.real, p, GFC_RND_MODE);
6407 return range_check (result, "RRSPACING");
6411 gfc_expr *
6412 gfc_simplify_scale (gfc_expr *x, gfc_expr *i)
6414 int k, neg_flag, power, exp_range;
6415 mpfr_t scale, radix;
6416 gfc_expr *result;
6418 if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
6419 return NULL;
6421 result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
6423 if (mpfr_zero_p (x->value.real))
6425 mpfr_set_ui (result->value.real, 0, GFC_RND_MODE);
6426 return result;
6429 k = gfc_validate_kind (BT_REAL, x->ts.kind, false);
6431 exp_range = gfc_real_kinds[k].max_exponent - gfc_real_kinds[k].min_exponent;
6433 /* This check filters out values of i that would overflow an int. */
6434 if (mpz_cmp_si (i->value.integer, exp_range + 2) > 0
6435 || mpz_cmp_si (i->value.integer, -exp_range - 2) < 0)
6437 gfc_error ("Result of SCALE overflows its kind at %L", &result->where);
6438 gfc_free_expr (result);
6439 return &gfc_bad_expr;
6442 /* Compute scale = radix ** power. */
6443 power = mpz_get_si (i->value.integer);
6445 if (power >= 0)
6446 neg_flag = 0;
6447 else
6449 neg_flag = 1;
6450 power = -power;
6453 gfc_set_model_kind (x->ts.kind);
6454 mpfr_init (scale);
6455 mpfr_init (radix);
6456 mpfr_set_ui (radix, gfc_real_kinds[k].radix, GFC_RND_MODE);
6457 mpfr_pow_ui (scale, radix, power, GFC_RND_MODE);
6459 if (neg_flag)
6460 mpfr_div (result->value.real, x->value.real, scale, GFC_RND_MODE);
6461 else
6462 mpfr_mul (result->value.real, x->value.real, scale, GFC_RND_MODE);
6464 mpfr_clears (scale, radix, NULL);
6466 return range_check (result, "SCALE");
6470 /* Variants of strspn and strcspn that operate on wide characters. */
6472 static size_t
6473 wide_strspn (const gfc_char_t *s1, const gfc_char_t *s2)
6475 size_t i = 0;
6476 const gfc_char_t *c;
6478 while (s1[i])
6480 for (c = s2; *c; c++)
6482 if (s1[i] == *c)
6483 break;
6485 if (*c == '\0')
6486 break;
6487 i++;
6490 return i;
6493 static size_t
6494 wide_strcspn (const gfc_char_t *s1, const gfc_char_t *s2)
6496 size_t i = 0;
6497 const gfc_char_t *c;
6499 while (s1[i])
6501 for (c = s2; *c; c++)
6503 if (s1[i] == *c)
6504 break;
6506 if (*c)
6507 break;
6508 i++;
6511 return i;
6515 gfc_expr *
6516 gfc_simplify_scan (gfc_expr *e, gfc_expr *c, gfc_expr *b, gfc_expr *kind)
6518 gfc_expr *result;
6519 int back;
6520 size_t i;
6521 size_t indx, len, lenc;
6522 int k = get_kind (BT_INTEGER, kind, "SCAN", gfc_default_integer_kind);
6524 if (k == -1)
6525 return &gfc_bad_expr;
6527 if (e->expr_type != EXPR_CONSTANT || c->expr_type != EXPR_CONSTANT
6528 || ( b != NULL && b->expr_type != EXPR_CONSTANT))
6529 return NULL;
6531 if (b != NULL && b->value.logical != 0)
6532 back = 1;
6533 else
6534 back = 0;
6536 len = e->value.character.length;
6537 lenc = c->value.character.length;
6539 if (len == 0 || lenc == 0)
6541 indx = 0;
6543 else
6545 if (back == 0)
6547 indx = wide_strcspn (e->value.character.string,
6548 c->value.character.string) + 1;
6549 if (indx > len)
6550 indx = 0;
6552 else
6554 i = 0;
6555 for (indx = len; indx > 0; indx--)
6557 for (i = 0; i < lenc; i++)
6559 if (c->value.character.string[i]
6560 == e->value.character.string[indx - 1])
6561 break;
6563 if (i < lenc)
6564 break;
6569 result = gfc_get_int_expr (k, &e->where, indx);
6570 return range_check (result, "SCAN");
6574 gfc_expr *
6575 gfc_simplify_selected_char_kind (gfc_expr *e)
6577 int kind;
6579 if (e->expr_type != EXPR_CONSTANT)
6580 return NULL;
6582 if (gfc_compare_with_Cstring (e, "ascii", false) == 0
6583 || gfc_compare_with_Cstring (e, "default", false) == 0)
6584 kind = 1;
6585 else if (gfc_compare_with_Cstring (e, "iso_10646", false) == 0)
6586 kind = 4;
6587 else
6588 kind = -1;
6590 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, kind);
6594 gfc_expr *
6595 gfc_simplify_selected_int_kind (gfc_expr *e)
6597 int i, kind, range;
6599 if (e->expr_type != EXPR_CONSTANT || gfc_extract_int (e, &range))
6600 return NULL;
6602 kind = INT_MAX;
6604 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
6605 if (gfc_integer_kinds[i].range >= range
6606 && gfc_integer_kinds[i].kind < kind)
6607 kind = gfc_integer_kinds[i].kind;
6609 if (kind == INT_MAX)
6610 kind = -1;
6612 return gfc_get_int_expr (gfc_default_integer_kind, &e->where, kind);
6616 gfc_expr *
6617 gfc_simplify_selected_real_kind (gfc_expr *p, gfc_expr *q, gfc_expr *rdx)
6619 int range, precision, radix, i, kind, found_precision, found_range,
6620 found_radix;
6621 locus *loc = &gfc_current_locus;
6623 if (p == NULL)
6624 precision = 0;
6625 else
6627 if (p->expr_type != EXPR_CONSTANT
6628 || gfc_extract_int (p, &precision))
6629 return NULL;
6630 loc = &p->where;
6633 if (q == NULL)
6634 range = 0;
6635 else
6637 if (q->expr_type != EXPR_CONSTANT
6638 || gfc_extract_int (q, &range))
6639 return NULL;
6641 if (!loc)
6642 loc = &q->where;
6645 if (rdx == NULL)
6646 radix = 0;
6647 else
6649 if (rdx->expr_type != EXPR_CONSTANT
6650 || gfc_extract_int (rdx, &radix))
6651 return NULL;
6653 if (!loc)
6654 loc = &rdx->where;
6657 kind = INT_MAX;
6658 found_precision = 0;
6659 found_range = 0;
6660 found_radix = 0;
6662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
6664 if (gfc_real_kinds[i].precision >= precision)
6665 found_precision = 1;
6667 if (gfc_real_kinds[i].range >= range)
6668 found_range = 1;
6670 if (radix == 0 || gfc_real_kinds[i].radix == radix)
6671 found_radix = 1;
6673 if (gfc_real_kinds[i].precision >= precision
6674 && gfc_real_kinds[i].range >= range
6675 && (radix == 0 || gfc_real_kinds[i].radix == radix)
6676 && gfc_real_kinds[i].kind < kind)
6677 kind = gfc_real_kinds[i].kind;
6680 if (kind == INT_MAX)
6682 if (found_radix && found_range && !found_precision)
6683 kind = -1;
6684 else if (found_radix && found_precision && !found_range)
6685 kind = -2;
6686 else if (found_radix && !found_precision && !found_range)
6687 kind = -3;
6688 else if (found_radix)
6689 kind = -4;
6690 else
6691 kind = -5;
6694 return gfc_get_int_expr (gfc_default_integer_kind, loc, kind);
6698 gfc_expr *
6699 gfc_simplify_set_exponent (gfc_expr *x, gfc_expr *i)
6701 gfc_expr *result;
6702 mpfr_t exp, absv, log2, pow2, frac;
6703 unsigned long exp2;
6705 if (x->expr_type != EXPR_CONSTANT || i->expr_type != EXPR_CONSTANT)
6706 return NULL;
6708 result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
6710 /* SET_EXPONENT (+/-0.0, I) = +/- 0.0
6711 SET_EXPONENT (NaN) = same NaN */
6712 if (mpfr_zero_p (x->value.real) || mpfr_nan_p (x->value.real))
6714 mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
6715 return result;
6718 /* SET_EXPONENT (inf) = NaN */
6719 if (mpfr_inf_p (x->value.real))
6721 mpfr_set_nan (result->value.real);
6722 return result;
6725 gfc_set_model_kind (x->ts.kind);
6726 mpfr_init (absv);
6727 mpfr_init (log2);
6728 mpfr_init (exp);
6729 mpfr_init (pow2);
6730 mpfr_init (frac);
6732 mpfr_abs (absv, x->value.real, GFC_RND_MODE);
6733 mpfr_log2 (log2, absv, GFC_RND_MODE);
6735 mpfr_trunc (log2, log2);
6736 mpfr_add_ui (exp, log2, 1, GFC_RND_MODE);
6738 /* Old exponent value, and fraction. */
6739 mpfr_ui_pow (pow2, 2, exp, GFC_RND_MODE);
6741 mpfr_div (frac, absv, pow2, GFC_RND_MODE);
6743 /* New exponent. */
6744 exp2 = (unsigned long) mpz_get_d (i->value.integer);
6745 mpfr_mul_2exp (result->value.real, frac, exp2, GFC_RND_MODE);
6747 mpfr_clears (absv, log2, pow2, frac, NULL);
6749 return range_check (result, "SET_EXPONENT");
6753 gfc_expr *
6754 gfc_simplify_shape (gfc_expr *source, gfc_expr *kind)
6756 mpz_t shape[GFC_MAX_DIMENSIONS];
6757 gfc_expr *result, *e, *f;
6758 gfc_array_ref *ar;
6759 int n;
6760 bool t;
6761 int k = get_kind (BT_INTEGER, kind, "SHAPE", gfc_default_integer_kind);
6763 if (source->rank == -1)
6764 return NULL;
6766 result = gfc_get_array_expr (BT_INTEGER, k, &source->where);
6768 if (source->rank == 0)
6769 return result;
6771 if (source->expr_type == EXPR_VARIABLE)
6773 ar = gfc_find_array_ref (source);
6774 t = gfc_array_ref_shape (ar, shape);
6776 else if (source->shape)
6778 t = true;
6779 for (n = 0; n < source->rank; n++)
6781 mpz_init (shape[n]);
6782 mpz_set (shape[n], source->shape[n]);
6785 else
6786 t = false;
6788 for (n = 0; n < source->rank; n++)
6790 e = gfc_get_constant_expr (BT_INTEGER, k, &source->where);
6792 if (t)
6793 mpz_set (e->value.integer, shape[n]);
6794 else
6796 mpz_set_ui (e->value.integer, n + 1);
6798 f = simplify_size (source, e, k);
6799 gfc_free_expr (e);
6800 if (f == NULL)
6802 gfc_free_expr (result);
6803 return NULL;
6805 else
6806 e = f;
6809 if (e == &gfc_bad_expr || range_check (e, "SHAPE") == &gfc_bad_expr)
6811 gfc_free_expr (result);
6812 if (t)
6813 gfc_clear_shape (shape, source->rank);
6814 return &gfc_bad_expr;
6817 gfc_constructor_append_expr (&result->value.constructor, e, NULL);
6820 if (t)
6821 gfc_clear_shape (shape, source->rank);
6823 return result;
6827 static gfc_expr *
6828 simplify_size (gfc_expr *array, gfc_expr *dim, int k)
6830 mpz_t size;
6831 gfc_expr *return_value;
6832 int d;
6834 /* For unary operations, the size of the result is given by the size
6835 of the operand. For binary ones, it's the size of the first operand
6836 unless it is scalar, then it is the size of the second. */
6837 if (array->expr_type == EXPR_OP && !array->value.op.uop)
6839 gfc_expr* replacement;
6840 gfc_expr* simplified;
6842 switch (array->value.op.op)
6844 /* Unary operations. */
6845 case INTRINSIC_NOT:
6846 case INTRINSIC_UPLUS:
6847 case INTRINSIC_UMINUS:
6848 case INTRINSIC_PARENTHESES:
6849 replacement = array->value.op.op1;
6850 break;
6852 /* Binary operations. If any one of the operands is scalar, take
6853 the other one's size. If both of them are arrays, it does not
6854 matter -- try to find one with known shape, if possible. */
6855 default:
6856 if (array->value.op.op1->rank == 0)
6857 replacement = array->value.op.op2;
6858 else if (array->value.op.op2->rank == 0)
6859 replacement = array->value.op.op1;
6860 else
6862 simplified = simplify_size (array->value.op.op1, dim, k);
6863 if (simplified)
6864 return simplified;
6866 replacement = array->value.op.op2;
6868 break;
6871 /* Try to reduce it directly if possible. */
6872 simplified = simplify_size (replacement, dim, k);
6874 /* Otherwise, we build a new SIZE call. This is hopefully at least
6875 simpler than the original one. */
6876 if (!simplified)
6878 gfc_expr *kind = gfc_get_int_expr (gfc_default_integer_kind, NULL, k);
6879 simplified = gfc_build_intrinsic_call (gfc_current_ns,
6880 GFC_ISYM_SIZE, "size",
6881 array->where, 3,
6882 gfc_copy_expr (replacement),
6883 gfc_copy_expr (dim),
6884 kind);
6886 return simplified;
6889 if (dim == NULL)
6891 if (!gfc_array_size (array, &size))
6892 return NULL;
6894 else
6896 if (dim->expr_type != EXPR_CONSTANT)
6897 return NULL;
6899 d = mpz_get_ui (dim->value.integer) - 1;
6900 if (!gfc_array_dimen_size (array, d, &size))
6901 return NULL;
6904 return_value = gfc_get_constant_expr (BT_INTEGER, k, &array->where);
6905 mpz_set (return_value->value.integer, size);
6906 mpz_clear (size);
6908 return return_value;
6912 gfc_expr *
6913 gfc_simplify_size (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
6915 gfc_expr *result;
6916 int k = get_kind (BT_INTEGER, kind, "SIZE", gfc_default_integer_kind);
6918 if (k == -1)
6919 return &gfc_bad_expr;
6921 result = simplify_size (array, dim, k);
6922 if (result == NULL || result == &gfc_bad_expr)
6923 return result;
6925 return range_check (result, "SIZE");
6929 /* SIZEOF and C_SIZEOF return the size in bytes of an array element
6930 multiplied by the array size. */
6932 gfc_expr *
6933 gfc_simplify_sizeof (gfc_expr *x)
6935 gfc_expr *result = NULL;
6936 mpz_t array_size;
6938 if (x->ts.type == BT_CLASS || x->ts.deferred)
6939 return NULL;
6941 if (x->ts.type == BT_CHARACTER
6942 && (!x->ts.u.cl || !x->ts.u.cl->length
6943 || x->ts.u.cl->length->expr_type != EXPR_CONSTANT))
6944 return NULL;
6946 if (x->rank && x->expr_type != EXPR_ARRAY
6947 && !gfc_array_size (x, &array_size))
6948 return NULL;
6950 result = gfc_get_constant_expr (BT_INTEGER, gfc_index_integer_kind,
6951 &x->where);
6952 mpz_set_si (result->value.integer, gfc_target_expr_size (x));
6954 return result;
6958 /* STORAGE_SIZE returns the size in bits of a single array element. */
6960 gfc_expr *
6961 gfc_simplify_storage_size (gfc_expr *x,
6962 gfc_expr *kind)
6964 gfc_expr *result = NULL;
6965 int k;
6967 if (x->ts.type == BT_CLASS || x->ts.deferred)
6968 return NULL;
6970 if (x->ts.type == BT_CHARACTER && x->expr_type != EXPR_CONSTANT
6971 && (!x->ts.u.cl || !x->ts.u.cl->length
6972 || x->ts.u.cl->length->expr_type != EXPR_CONSTANT))
6973 return NULL;
6975 k = get_kind (BT_INTEGER, kind, "STORAGE_SIZE", gfc_default_integer_kind);
6976 if (k == -1)
6977 return &gfc_bad_expr;
6979 result = gfc_get_constant_expr (BT_INTEGER, k, &x->where);
6981 mpz_set_si (result->value.integer, gfc_element_size (x));
6982 mpz_mul_ui (result->value.integer, result->value.integer, BITS_PER_UNIT);
6984 return range_check (result, "STORAGE_SIZE");
6988 gfc_expr *
6989 gfc_simplify_sign (gfc_expr *x, gfc_expr *y)
6991 gfc_expr *result;
6993 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
6994 return NULL;
6996 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
6998 switch (x->ts.type)
7000 case BT_INTEGER:
7001 mpz_abs (result->value.integer, x->value.integer);
7002 if (mpz_sgn (y->value.integer) < 0)
7003 mpz_neg (result->value.integer, result->value.integer);
7004 break;
7006 case BT_REAL:
7007 if (flag_sign_zero)
7008 mpfr_copysign (result->value.real, x->value.real, y->value.real,
7009 GFC_RND_MODE);
7010 else
7011 mpfr_setsign (result->value.real, x->value.real,
7012 mpfr_sgn (y->value.real) < 0 ? 1 : 0, GFC_RND_MODE);
7013 break;
7015 default:
7016 gfc_internal_error ("Bad type in gfc_simplify_sign");
7019 return result;
7023 gfc_expr *
7024 gfc_simplify_sin (gfc_expr *x)
7026 gfc_expr *result;
7028 if (x->expr_type != EXPR_CONSTANT)
7029 return NULL;
7031 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
7033 switch (x->ts.type)
7035 case BT_REAL:
7036 mpfr_sin (result->value.real, x->value.real, GFC_RND_MODE);
7037 break;
7039 case BT_COMPLEX:
7040 gfc_set_model (x->value.real);
7041 mpc_sin (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
7042 break;
7044 default:
7045 gfc_internal_error ("in gfc_simplify_sin(): Bad type");
7048 return range_check (result, "SIN");
7052 gfc_expr *
7053 gfc_simplify_sinh (gfc_expr *x)
7055 gfc_expr *result;
7057 if (x->expr_type != EXPR_CONSTANT)
7058 return NULL;
7060 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
7062 switch (x->ts.type)
7064 case BT_REAL:
7065 mpfr_sinh (result->value.real, x->value.real, GFC_RND_MODE);
7066 break;
7068 case BT_COMPLEX:
7069 mpc_sinh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
7070 break;
7072 default:
7073 gcc_unreachable ();
7076 return range_check (result, "SINH");
7080 /* The argument is always a double precision real that is converted to
7081 single precision. TODO: Rounding! */
7083 gfc_expr *
7084 gfc_simplify_sngl (gfc_expr *a)
7086 gfc_expr *result;
7088 if (a->expr_type != EXPR_CONSTANT)
7089 return NULL;
7091 result = gfc_real2real (a, gfc_default_real_kind);
7092 return range_check (result, "SNGL");
7096 gfc_expr *
7097 gfc_simplify_spacing (gfc_expr *x)
7099 gfc_expr *result;
7100 int i;
7101 long int en, ep;
7103 if (x->expr_type != EXPR_CONSTANT)
7104 return NULL;
7106 i = gfc_validate_kind (x->ts.type, x->ts.kind, false);
7107 result = gfc_get_constant_expr (BT_REAL, x->ts.kind, &x->where);
7109 /* SPACING(+/- 0.0) = SPACING(TINY(0.0)) = TINY(0.0) */
7110 if (mpfr_zero_p (x->value.real))
7112 mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
7113 return result;
7116 /* SPACING(inf) = NaN */
7117 if (mpfr_inf_p (x->value.real))
7119 mpfr_set_nan (result->value.real);
7120 return result;
7123 /* SPACING(NaN) = same NaN */
7124 if (mpfr_nan_p (x->value.real))
7126 mpfr_set (result->value.real, x->value.real, GFC_RND_MODE);
7127 return result;
7130 /* In the Fortran 95 standard, the result is b**(e - p) where b, e, and p
7131 are the radix, exponent of x, and precision. This excludes the
7132 possibility of subnormal numbers. Fortran 2003 states the result is
7133 b**max(e - p, emin - 1). */
7135 ep = (long int) mpfr_get_exp (x->value.real) - gfc_real_kinds[i].digits;
7136 en = (long int) gfc_real_kinds[i].min_exponent - 1;
7137 en = en > ep ? en : ep;
7139 mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
7140 mpfr_mul_2si (result->value.real, result->value.real, en, GFC_RND_MODE);
7142 return range_check (result, "SPACING");
7146 gfc_expr *
7147 gfc_simplify_spread (gfc_expr *source, gfc_expr *dim_expr, gfc_expr *ncopies_expr)
7149 gfc_expr *result = NULL;
7150 int nelem, i, j, dim, ncopies;
7151 mpz_t size;
7153 if ((!gfc_is_constant_expr (source)
7154 && !is_constant_array_expr (source))
7155 || !gfc_is_constant_expr (dim_expr)
7156 || !gfc_is_constant_expr (ncopies_expr))
7157 return NULL;
7159 gcc_assert (dim_expr->ts.type == BT_INTEGER);
7160 gfc_extract_int (dim_expr, &dim);
7161 dim -= 1; /* zero-base DIM */
7163 gcc_assert (ncopies_expr->ts.type == BT_INTEGER);
7164 gfc_extract_int (ncopies_expr, &ncopies);
7165 ncopies = MAX (ncopies, 0);
7167 /* Do not allow the array size to exceed the limit for an array
7168 constructor. */
7169 if (source->expr_type == EXPR_ARRAY)
7171 if (!gfc_array_size (source, &size))
7172 gfc_internal_error ("Failure getting length of a constant array.");
7174 else
7175 mpz_init_set_ui (size, 1);
7177 nelem = mpz_get_si (size) * ncopies;
7178 if (nelem > flag_max_array_constructor)
7180 if (gfc_current_ns->sym_root->n.sym->attr.flavor == FL_PARAMETER)
7182 gfc_error ("The number of elements (%d) in the array constructor "
7183 "at %L requires an increase of the allowed %d upper "
7184 "limit. See %<-fmax-array-constructor%> option.",
7185 nelem, &source->where, flag_max_array_constructor);
7186 return &gfc_bad_expr;
7188 else
7189 return NULL;
7192 if (source->expr_type == EXPR_CONSTANT)
7194 gcc_assert (dim == 0);
7196 result = gfc_get_array_expr (source->ts.type, source->ts.kind,
7197 &source->where);
7198 if (source->ts.type == BT_DERIVED)
7199 result->ts.u.derived = source->ts.u.derived;
7200 result->rank = 1;
7201 result->shape = gfc_get_shape (result->rank);
7202 mpz_init_set_si (result->shape[0], ncopies);
7204 for (i = 0; i < ncopies; ++i)
7205 gfc_constructor_append_expr (&result->value.constructor,
7206 gfc_copy_expr (source), NULL);
7208 else if (source->expr_type == EXPR_ARRAY)
7210 int offset, rstride[GFC_MAX_DIMENSIONS], extent[GFC_MAX_DIMENSIONS];
7211 gfc_constructor *source_ctor;
7213 gcc_assert (source->rank < GFC_MAX_DIMENSIONS);
7214 gcc_assert (dim >= 0 && dim <= source->rank);
7216 result = gfc_get_array_expr (source->ts.type, source->ts.kind,
7217 &source->where);
7218 if (source->ts.type == BT_DERIVED)
7219 result->ts.u.derived = source->ts.u.derived;
7220 result->rank = source->rank + 1;
7221 result->shape = gfc_get_shape (result->rank);
7223 for (i = 0, j = 0; i < result->rank; ++i)
7225 if (i != dim)
7226 mpz_init_set (result->shape[i], source->shape[j++]);
7227 else
7228 mpz_init_set_si (result->shape[i], ncopies);
7230 extent[i] = mpz_get_si (result->shape[i]);
7231 rstride[i] = (i == 0) ? 1 : rstride[i-1] * extent[i-1];
7234 offset = 0;
7235 for (source_ctor = gfc_constructor_first (source->value.constructor);
7236 source_ctor; source_ctor = gfc_constructor_next (source_ctor))
7238 for (i = 0; i < ncopies; ++i)
7239 gfc_constructor_insert_expr (&result->value.constructor,
7240 gfc_copy_expr (source_ctor->expr),
7241 NULL, offset + i * rstride[dim]);
7243 offset += (dim == 0 ? ncopies : 1);
7246 else
7248 gfc_error ("Simplification of SPREAD at %C not yet implemented");
7249 return &gfc_bad_expr;
7252 if (source->ts.type == BT_CHARACTER)
7253 result->ts.u.cl = source->ts.u.cl;
7255 return result;
7259 gfc_expr *
7260 gfc_simplify_sqrt (gfc_expr *e)
7262 gfc_expr *result = NULL;
7264 if (e->expr_type != EXPR_CONSTANT)
7265 return NULL;
7267 switch (e->ts.type)
7269 case BT_REAL:
7270 if (mpfr_cmp_si (e->value.real, 0) < 0)
7272 gfc_error ("Argument of SQRT at %L has a negative value",
7273 &e->where);
7274 return &gfc_bad_expr;
7276 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
7277 mpfr_sqrt (result->value.real, e->value.real, GFC_RND_MODE);
7278 break;
7280 case BT_COMPLEX:
7281 gfc_set_model (e->value.real);
7283 result = gfc_get_constant_expr (e->ts.type, e->ts.kind, &e->where);
7284 mpc_sqrt (result->value.complex, e->value.complex, GFC_MPC_RND_MODE);
7285 break;
7287 default:
7288 gfc_internal_error ("invalid argument of SQRT at %L", &e->where);
7291 return range_check (result, "SQRT");
7295 gfc_expr *
7296 gfc_simplify_sum (gfc_expr *array, gfc_expr *dim, gfc_expr *mask)
7298 return simplify_transformation (array, dim, mask, 0, gfc_add);
7302 gfc_expr *
7303 gfc_simplify_cotan (gfc_expr *x)
7305 gfc_expr *result;
7306 mpc_t swp, *val;
7308 if (x->expr_type != EXPR_CONSTANT)
7309 return NULL;
7311 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
7313 switch (x->ts.type)
7315 case BT_REAL:
7316 mpfr_cot (result->value.real, x->value.real, GFC_RND_MODE);
7317 break;
7319 case BT_COMPLEX:
7320 /* There is no builtin mpc_cot, so compute cot = cos / sin. */
7321 val = &result->value.complex;
7322 mpc_init2 (swp, mpfr_get_default_prec ());
7323 mpc_cos (swp, x->value.complex, GFC_MPC_RND_MODE);
7324 mpc_sin (*val, x->value.complex, GFC_MPC_RND_MODE);
7325 mpc_div (*val, swp, *val, GFC_MPC_RND_MODE);
7326 mpc_clear (swp);
7327 break;
7329 default:
7330 gcc_unreachable ();
7333 return range_check (result, "COTAN");
7337 gfc_expr *
7338 gfc_simplify_tan (gfc_expr *x)
7340 gfc_expr *result;
7342 if (x->expr_type != EXPR_CONSTANT)
7343 return NULL;
7345 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
7347 switch (x->ts.type)
7349 case BT_REAL:
7350 mpfr_tan (result->value.real, x->value.real, GFC_RND_MODE);
7351 break;
7353 case BT_COMPLEX:
7354 mpc_tan (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
7355 break;
7357 default:
7358 gcc_unreachable ();
7361 return range_check (result, "TAN");
7365 gfc_expr *
7366 gfc_simplify_tanh (gfc_expr *x)
7368 gfc_expr *result;
7370 if (x->expr_type != EXPR_CONSTANT)
7371 return NULL;
7373 result = gfc_get_constant_expr (x->ts.type, x->ts.kind, &x->where);
7375 switch (x->ts.type)
7377 case BT_REAL:
7378 mpfr_tanh (result->value.real, x->value.real, GFC_RND_MODE);
7379 break;
7381 case BT_COMPLEX:
7382 mpc_tanh (result->value.complex, x->value.complex, GFC_MPC_RND_MODE);
7383 break;
7385 default:
7386 gcc_unreachable ();
7389 return range_check (result, "TANH");
7393 gfc_expr *
7394 gfc_simplify_tiny (gfc_expr *e)
7396 gfc_expr *result;
7397 int i;
7399 i = gfc_validate_kind (BT_REAL, e->ts.kind, false);
7401 result = gfc_get_constant_expr (BT_REAL, e->ts.kind, &e->where);
7402 mpfr_set (result->value.real, gfc_real_kinds[i].tiny, GFC_RND_MODE);
7404 return result;
7408 gfc_expr *
7409 gfc_simplify_trailz (gfc_expr *e)
7411 unsigned long tz, bs;
7412 int i;
7414 if (e->expr_type != EXPR_CONSTANT)
7415 return NULL;
7417 i = gfc_validate_kind (e->ts.type, e->ts.kind, false);
7418 bs = gfc_integer_kinds[i].bit_size;
7419 tz = mpz_scan1 (e->value.integer, 0);
7421 return gfc_get_int_expr (gfc_default_integer_kind,
7422 &e->where, MIN (tz, bs));
7426 gfc_expr *
7427 gfc_simplify_transfer (gfc_expr *source, gfc_expr *mold, gfc_expr *size)
7429 gfc_expr *result;
7430 gfc_expr *mold_element;
7431 size_t source_size;
7432 size_t result_size;
7433 size_t buffer_size;
7434 mpz_t tmp;
7435 unsigned char *buffer;
7436 size_t result_length;
7438 if (!gfc_is_constant_expr (source) || !gfc_is_constant_expr (size))
7439 return NULL;
7441 if (!gfc_resolve_expr (mold))
7442 return NULL;
7443 if (gfc_init_expr_flag && !gfc_is_constant_expr (mold))
7444 return NULL;
7446 if (!gfc_calculate_transfer_sizes (source, mold, size, &source_size,
7447 &result_size, &result_length))
7448 return NULL;
7450 /* Calculate the size of the source. */
7451 if (source->expr_type == EXPR_ARRAY && !gfc_array_size (source, &tmp))
7452 gfc_internal_error ("Failure getting length of a constant array.");
7454 /* Create an empty new expression with the appropriate characteristics. */
7455 result = gfc_get_constant_expr (mold->ts.type, mold->ts.kind,
7456 &source->where);
7457 result->ts = mold->ts;
7459 mold_element = (mold->expr_type == EXPR_ARRAY && mold->value.constructor)
7460 ? gfc_constructor_first (mold->value.constructor)->expr
7461 : mold;
7463 /* Set result character length, if needed. Note that this needs to be
7464 set even for array expressions, in order to pass this information into
7465 gfc_target_interpret_expr. */
7466 if (result->ts.type == BT_CHARACTER && gfc_is_constant_expr (mold_element))
7467 result->value.character.length = mold_element->value.character.length;
7469 /* Set the number of elements in the result, and determine its size. */
7471 if (mold->expr_type == EXPR_ARRAY || mold->rank || size)
7473 result->expr_type = EXPR_ARRAY;
7474 result->rank = 1;
7475 result->shape = gfc_get_shape (1);
7476 mpz_init_set_ui (result->shape[0], result_length);
7478 else
7479 result->rank = 0;
7481 /* Allocate the buffer to store the binary version of the source. */
7482 buffer_size = MAX (source_size, result_size);
7483 buffer = (unsigned char*)alloca (buffer_size);
7484 memset (buffer, 0, buffer_size);
7486 /* Now write source to the buffer. */
7487 gfc_target_encode_expr (source, buffer, buffer_size);
7489 /* And read the buffer back into the new expression. */
7490 gfc_target_interpret_expr (buffer, buffer_size, result, false);
7492 return result;
7496 gfc_expr *
7497 gfc_simplify_transpose (gfc_expr *matrix)
7499 int row, matrix_rows, col, matrix_cols;
7500 gfc_expr *result;
7502 if (!is_constant_array_expr (matrix))
7503 return NULL;
7505 gcc_assert (matrix->rank == 2);
7507 result = gfc_get_array_expr (matrix->ts.type, matrix->ts.kind,
7508 &matrix->where);
7509 result->rank = 2;
7510 result->shape = gfc_get_shape (result->rank);
7511 mpz_set (result->shape[0], matrix->shape[1]);
7512 mpz_set (result->shape[1], matrix->shape[0]);
7514 if (matrix->ts.type == BT_CHARACTER)
7515 result->ts.u.cl = matrix->ts.u.cl;
7516 else if (matrix->ts.type == BT_DERIVED)
7517 result->ts.u.derived = matrix->ts.u.derived;
7519 matrix_rows = mpz_get_si (matrix->shape[0]);
7520 matrix_cols = mpz_get_si (matrix->shape[1]);
7521 for (row = 0; row < matrix_rows; ++row)
7522 for (col = 0; col < matrix_cols; ++col)
7524 gfc_expr *e = gfc_constructor_lookup_expr (matrix->value.constructor,
7525 col * matrix_rows + row);
7526 gfc_constructor_insert_expr (&result->value.constructor,
7527 gfc_copy_expr (e), &matrix->where,
7528 row * matrix_cols + col);
7531 return result;
7535 gfc_expr *
7536 gfc_simplify_trim (gfc_expr *e)
7538 gfc_expr *result;
7539 int count, i, len, lentrim;
7541 if (e->expr_type != EXPR_CONSTANT)
7542 return NULL;
7544 len = e->value.character.length;
7545 for (count = 0, i = 1; i <= len; ++i)
7547 if (e->value.character.string[len - i] == ' ')
7548 count++;
7549 else
7550 break;
7553 lentrim = len - count;
7555 result = gfc_get_character_expr (e->ts.kind, &e->where, NULL, lentrim);
7556 for (i = 0; i < lentrim; i++)
7557 result->value.character.string[i] = e->value.character.string[i];
7559 return result;
7563 gfc_expr *
7564 gfc_simplify_image_index (gfc_expr *coarray, gfc_expr *sub)
7566 gfc_expr *result;
7567 gfc_ref *ref;
7568 gfc_array_spec *as;
7569 gfc_constructor *sub_cons;
7570 bool first_image;
7571 int d;
7573 if (!is_constant_array_expr (sub))
7574 return NULL;
7576 /* Follow any component references. */
7577 as = coarray->symtree->n.sym->as;
7578 for (ref = coarray->ref; ref; ref = ref->next)
7579 if (ref->type == REF_COMPONENT)
7580 as = ref->u.ar.as;
7582 if (as->type == AS_DEFERRED)
7583 return NULL;
7585 /* "valid sequence of cosubscripts" are required; thus, return 0 unless
7586 the cosubscript addresses the first image. */
7588 sub_cons = gfc_constructor_first (sub->value.constructor);
7589 first_image = true;
7591 for (d = 1; d <= as->corank; d++)
7593 gfc_expr *ca_bound;
7594 int cmp;
7596 gcc_assert (sub_cons != NULL);
7598 ca_bound = simplify_bound_dim (coarray, NULL, d + as->rank, 0, as,
7599 NULL, true);
7600 if (ca_bound == NULL)
7601 return NULL;
7603 if (ca_bound == &gfc_bad_expr)
7604 return ca_bound;
7606 cmp = mpz_cmp (ca_bound->value.integer, sub_cons->expr->value.integer);
7608 if (cmp == 0)
7610 gfc_free_expr (ca_bound);
7611 sub_cons = gfc_constructor_next (sub_cons);
7612 continue;
7615 first_image = false;
7617 if (cmp > 0)
7619 gfc_error ("Out of bounds in IMAGE_INDEX at %L for dimension %d, "
7620 "SUB has %ld and COARRAY lower bound is %ld)",
7621 &coarray->where, d,
7622 mpz_get_si (sub_cons->expr->value.integer),
7623 mpz_get_si (ca_bound->value.integer));
7624 gfc_free_expr (ca_bound);
7625 return &gfc_bad_expr;
7628 gfc_free_expr (ca_bound);
7630 /* Check whether upperbound is valid for the multi-images case. */
7631 if (d < as->corank)
7633 ca_bound = simplify_bound_dim (coarray, NULL, d + as->rank, 1, as,
7634 NULL, true);
7635 if (ca_bound == &gfc_bad_expr)
7636 return ca_bound;
7638 if (ca_bound && ca_bound->expr_type == EXPR_CONSTANT
7639 && mpz_cmp (ca_bound->value.integer,
7640 sub_cons->expr->value.integer) < 0)
7642 gfc_error ("Out of bounds in IMAGE_INDEX at %L for dimension %d, "
7643 "SUB has %ld and COARRAY upper bound is %ld)",
7644 &coarray->where, d,
7645 mpz_get_si (sub_cons->expr->value.integer),
7646 mpz_get_si (ca_bound->value.integer));
7647 gfc_free_expr (ca_bound);
7648 return &gfc_bad_expr;
7651 if (ca_bound)
7652 gfc_free_expr (ca_bound);
7655 sub_cons = gfc_constructor_next (sub_cons);
7658 gcc_assert (sub_cons == NULL);
7660 if (flag_coarray != GFC_FCOARRAY_SINGLE && !first_image)
7661 return NULL;
7663 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
7664 &gfc_current_locus);
7665 if (first_image)
7666 mpz_set_si (result->value.integer, 1);
7667 else
7668 mpz_set_si (result->value.integer, 0);
7670 return result;
7673 gfc_expr *
7674 gfc_simplify_image_status (gfc_expr *image, gfc_expr *team ATTRIBUTE_UNUSED)
7676 if (flag_coarray == GFC_FCOARRAY_NONE)
7678 gfc_current_locus = *gfc_current_intrinsic_where;
7679 gfc_fatal_error ("Coarrays disabled at %C, use %<-fcoarray=%> to enable");
7680 return &gfc_bad_expr;
7683 /* Simplification is possible for fcoarray = single only. For all other modes
7684 the result depends on runtime conditions. */
7685 if (flag_coarray != GFC_FCOARRAY_SINGLE)
7686 return NULL;
7688 if (gfc_is_constant_expr (image))
7690 gfc_expr *result;
7691 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
7692 &image->where);
7693 if (mpz_get_si (image->value.integer) == 1)
7694 mpz_set_si (result->value.integer, 0);
7695 else
7696 mpz_set_si (result->value.integer, GFC_STAT_STOPPED_IMAGE);
7697 return result;
7699 else
7700 return NULL;
7704 gfc_expr *
7705 gfc_simplify_this_image (gfc_expr *coarray, gfc_expr *dim,
7706 gfc_expr *distance ATTRIBUTE_UNUSED)
7708 if (flag_coarray != GFC_FCOARRAY_SINGLE)
7709 return NULL;
7711 /* If no coarray argument has been passed or when the first argument
7712 is actually a distance argment. */
7713 if (coarray == NULL || !gfc_is_coarray (coarray))
7715 gfc_expr *result;
7716 /* FIXME: gfc_current_locus is wrong. */
7717 result = gfc_get_constant_expr (BT_INTEGER, gfc_default_integer_kind,
7718 &gfc_current_locus);
7719 mpz_set_si (result->value.integer, 1);
7720 return result;
7723 /* For -fcoarray=single, this_image(A) is the same as lcobound(A). */
7724 return simplify_cobound (coarray, dim, NULL, 0);
7728 gfc_expr *
7729 gfc_simplify_ubound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
7731 return simplify_bound (array, dim, kind, 1);
7734 gfc_expr *
7735 gfc_simplify_ucobound (gfc_expr *array, gfc_expr *dim, gfc_expr *kind)
7737 return simplify_cobound (array, dim, kind, 1);
7741 gfc_expr *
7742 gfc_simplify_unpack (gfc_expr *vector, gfc_expr *mask, gfc_expr *field)
7744 gfc_expr *result, *e;
7745 gfc_constructor *vector_ctor, *mask_ctor, *field_ctor;
7747 if (!is_constant_array_expr (vector)
7748 || !is_constant_array_expr (mask)
7749 || (!gfc_is_constant_expr (field)
7750 && !is_constant_array_expr (field)))
7751 return NULL;
7753 result = gfc_get_array_expr (vector->ts.type, vector->ts.kind,
7754 &vector->where);
7755 if (vector->ts.type == BT_DERIVED)
7756 result->ts.u.derived = vector->ts.u.derived;
7757 result->rank = mask->rank;
7758 result->shape = gfc_copy_shape (mask->shape, mask->rank);
7760 if (vector->ts.type == BT_CHARACTER)
7761 result->ts.u.cl = vector->ts.u.cl;
7763 vector_ctor = gfc_constructor_first (vector->value.constructor);
7764 mask_ctor = gfc_constructor_first (mask->value.constructor);
7765 field_ctor
7766 = field->expr_type == EXPR_ARRAY
7767 ? gfc_constructor_first (field->value.constructor)
7768 : NULL;
7770 while (mask_ctor)
7772 if (mask_ctor->expr->value.logical)
7774 gcc_assert (vector_ctor);
7775 e = gfc_copy_expr (vector_ctor->expr);
7776 vector_ctor = gfc_constructor_next (vector_ctor);
7778 else if (field->expr_type == EXPR_ARRAY)
7779 e = gfc_copy_expr (field_ctor->expr);
7780 else
7781 e = gfc_copy_expr (field);
7783 gfc_constructor_append_expr (&result->value.constructor, e, NULL);
7785 mask_ctor = gfc_constructor_next (mask_ctor);
7786 field_ctor = gfc_constructor_next (field_ctor);
7789 return result;
7793 gfc_expr *
7794 gfc_simplify_verify (gfc_expr *s, gfc_expr *set, gfc_expr *b, gfc_expr *kind)
7796 gfc_expr *result;
7797 int back;
7798 size_t index, len, lenset;
7799 size_t i;
7800 int k = get_kind (BT_INTEGER, kind, "VERIFY", gfc_default_integer_kind);
7802 if (k == -1)
7803 return &gfc_bad_expr;
7805 if (s->expr_type != EXPR_CONSTANT || set->expr_type != EXPR_CONSTANT
7806 || ( b != NULL && b->expr_type != EXPR_CONSTANT))
7807 return NULL;
7809 if (b != NULL && b->value.logical != 0)
7810 back = 1;
7811 else
7812 back = 0;
7814 result = gfc_get_constant_expr (BT_INTEGER, k, &s->where);
7816 len = s->value.character.length;
7817 lenset = set->value.character.length;
7819 if (len == 0)
7821 mpz_set_ui (result->value.integer, 0);
7822 return result;
7825 if (back == 0)
7827 if (lenset == 0)
7829 mpz_set_ui (result->value.integer, 1);
7830 return result;
7833 index = wide_strspn (s->value.character.string,
7834 set->value.character.string) + 1;
7835 if (index > len)
7836 index = 0;
7839 else
7841 if (lenset == 0)
7843 mpz_set_ui (result->value.integer, len);
7844 return result;
7846 for (index = len; index > 0; index --)
7848 for (i = 0; i < lenset; i++)
7850 if (s->value.character.string[index - 1]
7851 == set->value.character.string[i])
7852 break;
7854 if (i == lenset)
7855 break;
7859 mpz_set_ui (result->value.integer, index);
7860 return result;
7864 gfc_expr *
7865 gfc_simplify_xor (gfc_expr *x, gfc_expr *y)
7867 gfc_expr *result;
7868 int kind;
7870 if (x->expr_type != EXPR_CONSTANT || y->expr_type != EXPR_CONSTANT)
7871 return NULL;
7873 kind = x->ts.kind > y->ts.kind ? x->ts.kind : y->ts.kind;
7875 switch (x->ts.type)
7877 case BT_INTEGER:
7878 result = gfc_get_constant_expr (BT_INTEGER, kind, &x->where);
7879 mpz_xor (result->value.integer, x->value.integer, y->value.integer);
7880 return range_check (result, "XOR");
7882 case BT_LOGICAL:
7883 return gfc_get_logical_expr (kind, &x->where,
7884 (x->value.logical && !y->value.logical)
7885 || (!x->value.logical && y->value.logical));
7887 default:
7888 gcc_unreachable ();
7893 /****************** Constant simplification *****************/
7895 /* Master function to convert one constant to another. While this is
7896 used as a simplification function, it requires the destination type
7897 and kind information which is supplied by a special case in
7898 do_simplify(). */
7900 gfc_expr *
7901 gfc_convert_constant (gfc_expr *e, bt type, int kind)
7903 gfc_expr *result, *(*f) (gfc_expr *, int);
7904 gfc_constructor *c, *t;
7906 switch (e->ts.type)
7908 case BT_INTEGER:
7909 switch (type)
7911 case BT_INTEGER:
7912 f = gfc_int2int;
7913 break;
7914 case BT_REAL:
7915 f = gfc_int2real;
7916 break;
7917 case BT_COMPLEX:
7918 f = gfc_int2complex;
7919 break;
7920 case BT_LOGICAL:
7921 f = gfc_int2log;
7922 break;
7923 default:
7924 goto oops;
7926 break;
7928 case BT_REAL:
7929 switch (type)
7931 case BT_INTEGER:
7932 f = gfc_real2int;
7933 break;
7934 case BT_REAL:
7935 f = gfc_real2real;
7936 break;
7937 case BT_COMPLEX:
7938 f = gfc_real2complex;
7939 break;
7940 default:
7941 goto oops;
7943 break;
7945 case BT_COMPLEX:
7946 switch (type)
7948 case BT_INTEGER:
7949 f = gfc_complex2int;
7950 break;
7951 case BT_REAL:
7952 f = gfc_complex2real;
7953 break;
7954 case BT_COMPLEX:
7955 f = gfc_complex2complex;
7956 break;
7958 default:
7959 goto oops;
7961 break;
7963 case BT_LOGICAL:
7964 switch (type)
7966 case BT_INTEGER:
7967 f = gfc_log2int;
7968 break;
7969 case BT_LOGICAL:
7970 f = gfc_log2log;
7971 break;
7972 default:
7973 goto oops;
7975 break;
7977 case BT_HOLLERITH:
7978 switch (type)
7980 case BT_INTEGER:
7981 f = gfc_hollerith2int;
7982 break;
7984 case BT_REAL:
7985 f = gfc_hollerith2real;
7986 break;
7988 case BT_COMPLEX:
7989 f = gfc_hollerith2complex;
7990 break;
7992 case BT_CHARACTER:
7993 f = gfc_hollerith2character;
7994 break;
7996 case BT_LOGICAL:
7997 f = gfc_hollerith2logical;
7998 break;
8000 default:
8001 goto oops;
8003 break;
8005 case BT_CHARACTER:
8006 if (type == BT_CHARACTER)
8007 f = gfc_character2character;
8008 else
8009 goto oops;
8010 break;
8012 default:
8013 oops:
8014 gfc_internal_error ("gfc_convert_constant(): Unexpected type");
8017 result = NULL;
8019 switch (e->expr_type)
8021 case EXPR_CONSTANT:
8022 result = f (e, kind);
8023 if (result == NULL)
8024 return &gfc_bad_expr;
8025 break;
8027 case EXPR_ARRAY:
8028 if (!gfc_is_constant_expr (e))
8029 break;
8031 result = gfc_get_array_expr (type, kind, &e->where);
8032 result->shape = gfc_copy_shape (e->shape, e->rank);
8033 result->rank = e->rank;
8035 for (c = gfc_constructor_first (e->value.constructor);
8036 c; c = gfc_constructor_next (c))
8038 gfc_expr *tmp;
8039 if (c->iterator == NULL)
8041 if (c->expr->expr_type == EXPR_ARRAY)
8042 tmp = gfc_convert_constant (c->expr, type, kind);
8043 else
8044 tmp = f (c->expr, kind);
8046 else
8047 tmp = gfc_convert_constant (c->expr, type, kind);
8049 if (tmp == NULL || tmp == &gfc_bad_expr)
8051 gfc_free_expr (result);
8052 return NULL;
8055 t = gfc_constructor_append_expr (&result->value.constructor,
8056 tmp, &c->where);
8057 if (c->iterator)
8058 t->iterator = gfc_copy_iterator (c->iterator);
8061 break;
8063 default:
8064 break;
8067 return result;
8071 /* Function for converting character constants. */
8072 gfc_expr *
8073 gfc_convert_char_constant (gfc_expr *e, bt type ATTRIBUTE_UNUSED, int kind)
8075 gfc_expr *result;
8076 int i;
8078 if (!gfc_is_constant_expr (e))
8079 return NULL;
8081 if (e->expr_type == EXPR_CONSTANT)
8083 /* Simple case of a scalar. */
8084 result = gfc_get_constant_expr (BT_CHARACTER, kind, &e->where);
8085 if (result == NULL)
8086 return &gfc_bad_expr;
8088 result->value.character.length = e->value.character.length;
8089 result->value.character.string
8090 = gfc_get_wide_string (e->value.character.length + 1);
8091 memcpy (result->value.character.string, e->value.character.string,
8092 (e->value.character.length + 1) * sizeof (gfc_char_t));
8094 /* Check we only have values representable in the destination kind. */
8095 for (i = 0; i < result->value.character.length; i++)
8096 if (!gfc_check_character_range (result->value.character.string[i],
8097 kind))
8099 gfc_error ("Character %qs in string at %L cannot be converted "
8100 "into character kind %d",
8101 gfc_print_wide_char (result->value.character.string[i]),
8102 &e->where, kind);
8103 gfc_free_expr (result);
8104 return &gfc_bad_expr;
8107 return result;
8109 else if (e->expr_type == EXPR_ARRAY)
8111 /* For an array constructor, we convert each constructor element. */
8112 gfc_constructor *c;
8114 result = gfc_get_array_expr (type, kind, &e->where);
8115 result->shape = gfc_copy_shape (e->shape, e->rank);
8116 result->rank = e->rank;
8117 result->ts.u.cl = e->ts.u.cl;
8119 for (c = gfc_constructor_first (e->value.constructor);
8120 c; c = gfc_constructor_next (c))
8122 gfc_expr *tmp = gfc_convert_char_constant (c->expr, type, kind);
8123 if (tmp == &gfc_bad_expr)
8125 gfc_free_expr (result);
8126 return &gfc_bad_expr;
8129 if (tmp == NULL)
8131 gfc_free_expr (result);
8132 return NULL;
8135 gfc_constructor_append_expr (&result->value.constructor,
8136 tmp, &c->where);
8139 return result;
8141 else
8142 return NULL;
8146 gfc_expr *
8147 gfc_simplify_compiler_options (void)
8149 char *str;
8150 gfc_expr *result;
8152 str = gfc_get_option_string ();
8153 result = gfc_get_character_expr (gfc_default_character_kind,
8154 &gfc_current_locus, str, strlen (str));
8155 free (str);
8156 return result;
8160 gfc_expr *
8161 gfc_simplify_compiler_version (void)
8163 char *buffer;
8164 size_t len;
8166 len = strlen ("GCC version ") + strlen (version_string);
8167 buffer = XALLOCAVEC (char, len + 1);
8168 snprintf (buffer, len + 1, "GCC version %s", version_string);
8169 return gfc_get_character_expr (gfc_default_character_kind,
8170 &gfc_current_locus, buffer, len);
8173 /* Simplification routines for intrinsics of IEEE modules. */
8175 gfc_expr *
8176 simplify_ieee_selected_real_kind (gfc_expr *expr)
8178 gfc_actual_arglist *arg;
8179 gfc_expr *p = NULL, *q = NULL, *rdx = NULL;
8181 arg = expr->value.function.actual;
8182 p = arg->expr;
8183 if (arg->next)
8185 q = arg->next->expr;
8186 if (arg->next->next)
8187 rdx = arg->next->next->expr;
8190 /* Currently, if IEEE is supported and this module is built, it means
8191 all our floating-point types conform to IEEE. Hence, we simply handle
8192 IEEE_SELECTED_REAL_KIND like SELECTED_REAL_KIND. */
8193 return gfc_simplify_selected_real_kind (p, q, rdx);
8196 gfc_expr *
8197 simplify_ieee_support (gfc_expr *expr)
8199 /* We consider that if the IEEE modules are loaded, we have full support
8200 for flags, halting and rounding, which are the three functions
8201 (IEEE_SUPPORT_{FLAG,HALTING,ROUNDING}) allowed in constant
8202 expressions. One day, we will need libgfortran to detect support and
8203 communicate it back to us, allowing for partial support. */
8205 return gfc_get_logical_expr (gfc_default_logical_kind, &expr->where,
8206 true);
8209 bool
8210 matches_ieee_function_name (gfc_symbol *sym, const char *name)
8212 int n = strlen(name);
8214 if (!strncmp(sym->name, name, n))
8215 return true;
8217 /* If a generic was used and renamed, we need more work to find out.
8218 Compare the specific name. */
8219 if (sym->generic && !strncmp(sym->generic->sym->name, name, n))
8220 return true;
8222 return false;
8225 gfc_expr *
8226 gfc_simplify_ieee_functions (gfc_expr *expr)
8228 gfc_symbol* sym = expr->symtree->n.sym;
8230 if (matches_ieee_function_name(sym, "ieee_selected_real_kind"))
8231 return simplify_ieee_selected_real_kind (expr);
8232 else if (matches_ieee_function_name(sym, "ieee_support_flag")
8233 || matches_ieee_function_name(sym, "ieee_support_halting")
8234 || matches_ieee_function_name(sym, "ieee_support_rounding"))
8235 return simplify_ieee_support (expr);
8236 else
8237 return NULL;