* vi.po: Update.
[official-gcc.git] / gcc / emit-rtl.c
blobf763945590936069fdc4101f99fc5e3454a8988c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010, 2011
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "diagnostic-core.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "vecprim.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "hashtab.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "df.h"
60 #include "params.h"
61 #include "target.h"
63 struct target_rtl default_target_rtl;
64 #if SWITCHABLE_TARGET
65 struct target_rtl *this_target_rtl = &default_target_rtl;
66 #endif
68 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70 /* Commonly used modes. */
72 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
73 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
74 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
75 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
77 /* Datastructures maintained for currently processed function in RTL form. */
79 struct rtl_data x_rtl;
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
86 rtx * regno_reg_rtx;
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
91 static GTY(()) int label_num = 1;
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
100 rtx const_true_rtx;
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
125 /* A hash table storing CONST_INTs whose absolute value is greater
126 than MAX_SAVED_CONST_INT. */
128 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129 htab_t const_int_htab;
131 /* A hash table storing memory attribute structures. */
132 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
133 htab_t mem_attrs_htab;
135 /* A hash table storing register attribute structures. */
136 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
137 htab_t reg_attrs_htab;
139 /* A hash table storing all CONST_DOUBLEs. */
140 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_double_htab;
143 /* A hash table storing all CONST_FIXEDs. */
144 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
145 htab_t const_fixed_htab;
147 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
148 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
149 #define first_label_num (crtl->emit.x_first_label_num)
151 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
152 static void set_used_decls (tree);
153 static void mark_label_nuses (rtx);
154 static hashval_t const_int_htab_hash (const void *);
155 static int const_int_htab_eq (const void *, const void *);
156 static hashval_t const_double_htab_hash (const void *);
157 static int const_double_htab_eq (const void *, const void *);
158 static rtx lookup_const_double (rtx);
159 static hashval_t const_fixed_htab_hash (const void *);
160 static int const_fixed_htab_eq (const void *, const void *);
161 static rtx lookup_const_fixed (rtx);
162 static hashval_t mem_attrs_htab_hash (const void *);
163 static int mem_attrs_htab_eq (const void *, const void *);
164 static hashval_t reg_attrs_htab_hash (const void *);
165 static int reg_attrs_htab_eq (const void *, const void *);
166 static reg_attrs *get_reg_attrs (tree, int);
167 static rtx gen_const_vector (enum machine_mode, int);
168 static void copy_rtx_if_shared_1 (rtx *orig);
170 /* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172 int split_branch_probability = -1;
174 /* Returns a hash code for X (which is a really a CONST_INT). */
176 static hashval_t
177 const_int_htab_hash (const void *x)
179 return (hashval_t) INTVAL ((const_rtx) x);
182 /* Returns nonzero if the value represented by X (which is really a
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
186 static int
187 const_int_htab_eq (const void *x, const void *y)
189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
192 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
193 static hashval_t
194 const_double_htab_hash (const void *x)
196 const_rtx const value = (const_rtx) x;
197 hashval_t h;
199 if (GET_MODE (value) == VOIDmode)
200 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
201 else
203 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
204 /* MODE is used in the comparison, so it should be in the hash. */
205 h ^= GET_MODE (value);
207 return h;
210 /* Returns nonzero if the value represented by X (really a ...)
211 is the same as that represented by Y (really a ...) */
212 static int
213 const_double_htab_eq (const void *x, const void *y)
215 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
217 if (GET_MODE (a) != GET_MODE (b))
218 return 0;
219 if (GET_MODE (a) == VOIDmode)
220 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
221 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
222 else
223 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
224 CONST_DOUBLE_REAL_VALUE (b));
227 /* Returns a hash code for X (which is really a CONST_FIXED). */
229 static hashval_t
230 const_fixed_htab_hash (const void *x)
232 const_rtx const value = (const_rtx) x;
233 hashval_t h;
235 h = fixed_hash (CONST_FIXED_VALUE (value));
236 /* MODE is used in the comparison, so it should be in the hash. */
237 h ^= GET_MODE (value);
238 return h;
241 /* Returns nonzero if the value represented by X (really a ...)
242 is the same as that represented by Y (really a ...). */
244 static int
245 const_fixed_htab_eq (const void *x, const void *y)
247 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
249 if (GET_MODE (a) != GET_MODE (b))
250 return 0;
251 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
254 /* Returns a hash code for X (which is a really a mem_attrs *). */
256 static hashval_t
257 mem_attrs_htab_hash (const void *x)
259 const mem_attrs *const p = (const mem_attrs *) x;
261 return (p->alias ^ (p->align * 1000)
262 ^ (p->addrspace * 4000)
263 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
264 ^ ((p->size_known_p ? p->size : 0) * 2500000)
265 ^ (size_t) iterative_hash_expr (p->expr, 0));
268 /* Return true if the given memory attributes are equal. */
270 static bool
271 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
273 return (p->alias == q->alias
274 && p->offset_known_p == q->offset_known_p
275 && (!p->offset_known_p || p->offset == q->offset)
276 && p->size_known_p == q->size_known_p
277 && (!p->size_known_p || p->size == q->size)
278 && p->align == q->align
279 && p->addrspace == q->addrspace
280 && (p->expr == q->expr
281 || (p->expr != NULL_TREE && q->expr != NULL_TREE
282 && operand_equal_p (p->expr, q->expr, 0))));
285 /* Returns nonzero if the value represented by X (which is really a
286 mem_attrs *) is the same as that given by Y (which is also really a
287 mem_attrs *). */
289 static int
290 mem_attrs_htab_eq (const void *x, const void *y)
292 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
295 /* Set MEM's memory attributes so that they are the same as ATTRS. */
297 static void
298 set_mem_attrs (rtx mem, mem_attrs *attrs)
300 void **slot;
302 /* If everything is the default, we can just clear the attributes. */
303 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
305 MEM_ATTRS (mem) = 0;
306 return;
309 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
310 if (*slot == 0)
312 *slot = ggc_alloc_mem_attrs ();
313 memcpy (*slot, attrs, sizeof (mem_attrs));
316 MEM_ATTRS (mem) = (mem_attrs *) *slot;
319 /* Returns a hash code for X (which is a really a reg_attrs *). */
321 static hashval_t
322 reg_attrs_htab_hash (const void *x)
324 const reg_attrs *const p = (const reg_attrs *) x;
326 return ((p->offset * 1000) ^ (intptr_t) p->decl);
329 /* Returns nonzero if the value represented by X (which is really a
330 reg_attrs *) is the same as that given by Y (which is also really a
331 reg_attrs *). */
333 static int
334 reg_attrs_htab_eq (const void *x, const void *y)
336 const reg_attrs *const p = (const reg_attrs *) x;
337 const reg_attrs *const q = (const reg_attrs *) y;
339 return (p->decl == q->decl && p->offset == q->offset);
341 /* Allocate a new reg_attrs structure and insert it into the hash table if
342 one identical to it is not already in the table. We are doing this for
343 MEM of mode MODE. */
345 static reg_attrs *
346 get_reg_attrs (tree decl, int offset)
348 reg_attrs attrs;
349 void **slot;
351 /* If everything is the default, we can just return zero. */
352 if (decl == 0 && offset == 0)
353 return 0;
355 attrs.decl = decl;
356 attrs.offset = offset;
358 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
359 if (*slot == 0)
361 *slot = ggc_alloc_reg_attrs ();
362 memcpy (*slot, &attrs, sizeof (reg_attrs));
365 return (reg_attrs *) *slot;
369 #if !HAVE_blockage
370 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
371 across this insn. */
374 gen_blockage (void)
376 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
377 MEM_VOLATILE_P (x) = true;
378 return x;
380 #endif
383 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
384 don't attempt to share with the various global pieces of rtl (such as
385 frame_pointer_rtx). */
388 gen_raw_REG (enum machine_mode mode, int regno)
390 rtx x = gen_rtx_raw_REG (mode, regno);
391 ORIGINAL_REGNO (x) = regno;
392 return x;
395 /* There are some RTL codes that require special attention; the generation
396 functions do the raw handling. If you add to this list, modify
397 special_rtx in gengenrtl.c as well. */
400 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
402 void **slot;
404 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
405 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
407 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
408 if (const_true_rtx && arg == STORE_FLAG_VALUE)
409 return const_true_rtx;
410 #endif
412 /* Look up the CONST_INT in the hash table. */
413 slot = htab_find_slot_with_hash (const_int_htab, &arg,
414 (hashval_t) arg, INSERT);
415 if (*slot == 0)
416 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
418 return (rtx) *slot;
422 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
424 return GEN_INT (trunc_int_for_mode (c, mode));
427 /* CONST_DOUBLEs might be created from pairs of integers, or from
428 REAL_VALUE_TYPEs. Also, their length is known only at run time,
429 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
431 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
432 hash table. If so, return its counterpart; otherwise add it
433 to the hash table and return it. */
434 static rtx
435 lookup_const_double (rtx real)
437 void **slot = htab_find_slot (const_double_htab, real, INSERT);
438 if (*slot == 0)
439 *slot = real;
441 return (rtx) *slot;
444 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
445 VALUE in mode MODE. */
447 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
449 rtx real = rtx_alloc (CONST_DOUBLE);
450 PUT_MODE (real, mode);
452 real->u.rv = value;
454 return lookup_const_double (real);
457 /* Determine whether FIXED, a CONST_FIXED, already exists in the
458 hash table. If so, return its counterpart; otherwise add it
459 to the hash table and return it. */
461 static rtx
462 lookup_const_fixed (rtx fixed)
464 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
465 if (*slot == 0)
466 *slot = fixed;
468 return (rtx) *slot;
471 /* Return a CONST_FIXED rtx for a fixed-point value specified by
472 VALUE in mode MODE. */
475 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
477 rtx fixed = rtx_alloc (CONST_FIXED);
478 PUT_MODE (fixed, mode);
480 fixed->u.fv = value;
482 return lookup_const_fixed (fixed);
485 /* Constructs double_int from rtx CST. */
487 double_int
488 rtx_to_double_int (const_rtx cst)
490 double_int r;
492 if (CONST_INT_P (cst))
493 r = double_int::from_shwi (INTVAL (cst));
494 else if (CONST_DOUBLE_AS_INT_P (cst))
496 r.low = CONST_DOUBLE_LOW (cst);
497 r.high = CONST_DOUBLE_HIGH (cst);
499 else
500 gcc_unreachable ();
502 return r;
506 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
507 a double_int. */
510 immed_double_int_const (double_int i, enum machine_mode mode)
512 return immed_double_const (i.low, i.high, mode);
515 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
516 of ints: I0 is the low-order word and I1 is the high-order word.
517 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
518 implied upper bits are copies of the high bit of i1. The value
519 itself is neither signed nor unsigned. Do not use this routine for
520 non-integer modes; convert to REAL_VALUE_TYPE and use
521 CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
526 rtx value;
527 unsigned int i;
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) If the value of the integer fits into HOST_WIDE_INT anyway
535 (i.e., i1 consists only from copies of the sign bit, and sign
536 of i0 and i1 are the same), then we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
538 if (mode != VOIDmode)
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
550 /* If this integer fits in one word, return a CONST_INT. */
551 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
552 return GEN_INT (i0);
554 /* We use VOIDmode for integers. */
555 value = rtx_alloc (CONST_DOUBLE);
556 PUT_MODE (value, VOIDmode);
558 CONST_DOUBLE_LOW (value) = i0;
559 CONST_DOUBLE_HIGH (value) = i1;
561 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
562 XWINT (value, i) = 0;
564 return lookup_const_double (value);
568 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
570 /* In case the MD file explicitly references the frame pointer, have
571 all such references point to the same frame pointer. This is
572 used during frame pointer elimination to distinguish the explicit
573 references to these registers from pseudos that happened to be
574 assigned to them.
576 If we have eliminated the frame pointer or arg pointer, we will
577 be using it as a normal register, for example as a spill
578 register. In such cases, we might be accessing it in a mode that
579 is not Pmode and therefore cannot use the pre-allocated rtx.
581 Also don't do this when we are making new REGs in reload, since
582 we don't want to get confused with the real pointers. */
584 if (mode == Pmode && !reload_in_progress)
586 if (regno == FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
588 return frame_pointer_rtx;
589 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
590 if (regno == HARD_FRAME_POINTER_REGNUM
591 && (!reload_completed || frame_pointer_needed))
592 return hard_frame_pointer_rtx;
593 #endif
594 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
595 if (regno == ARG_POINTER_REGNUM)
596 return arg_pointer_rtx;
597 #endif
598 #ifdef RETURN_ADDRESS_POINTER_REGNUM
599 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
600 return return_address_pointer_rtx;
601 #endif
602 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
603 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
604 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
605 return pic_offset_table_rtx;
606 if (regno == STACK_POINTER_REGNUM)
607 return stack_pointer_rtx;
610 #if 0
611 /* If the per-function register table has been set up, try to re-use
612 an existing entry in that table to avoid useless generation of RTL.
614 This code is disabled for now until we can fix the various backends
615 which depend on having non-shared hard registers in some cases. Long
616 term we want to re-enable this code as it can significantly cut down
617 on the amount of useless RTL that gets generated.
619 We'll also need to fix some code that runs after reload that wants to
620 set ORIGINAL_REGNO. */
622 if (cfun
623 && cfun->emit
624 && regno_reg_rtx
625 && regno < FIRST_PSEUDO_REGISTER
626 && reg_raw_mode[regno] == mode)
627 return regno_reg_rtx[regno];
628 #endif
630 return gen_raw_REG (mode, regno);
634 gen_rtx_MEM (enum machine_mode mode, rtx addr)
636 rtx rt = gen_rtx_raw_MEM (mode, addr);
638 /* This field is not cleared by the mere allocation of the rtx, so
639 we clear it here. */
640 MEM_ATTRS (rt) = 0;
642 return rt;
645 /* Generate a memory referring to non-trapping constant memory. */
648 gen_const_mem (enum machine_mode mode, rtx addr)
650 rtx mem = gen_rtx_MEM (mode, addr);
651 MEM_READONLY_P (mem) = 1;
652 MEM_NOTRAP_P (mem) = 1;
653 return mem;
656 /* Generate a MEM referring to fixed portions of the frame, e.g., register
657 save areas. */
660 gen_frame_mem (enum machine_mode mode, rtx addr)
662 rtx mem = gen_rtx_MEM (mode, addr);
663 MEM_NOTRAP_P (mem) = 1;
664 set_mem_alias_set (mem, get_frame_alias_set ());
665 return mem;
668 /* Generate a MEM referring to a temporary use of the stack, not part
669 of the fixed stack frame. For example, something which is pushed
670 by a target splitter. */
672 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
674 rtx mem = gen_rtx_MEM (mode, addr);
675 MEM_NOTRAP_P (mem) = 1;
676 if (!cfun->calls_alloca)
677 set_mem_alias_set (mem, get_frame_alias_set ());
678 return mem;
681 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
682 this construct would be valid, and false otherwise. */
684 bool
685 validate_subreg (enum machine_mode omode, enum machine_mode imode,
686 const_rtx reg, unsigned int offset)
688 unsigned int isize = GET_MODE_SIZE (imode);
689 unsigned int osize = GET_MODE_SIZE (omode);
691 /* All subregs must be aligned. */
692 if (offset % osize != 0)
693 return false;
695 /* The subreg offset cannot be outside the inner object. */
696 if (offset >= isize)
697 return false;
699 /* ??? This should not be here. Temporarily continue to allow word_mode
700 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
701 Generally, backends are doing something sketchy but it'll take time to
702 fix them all. */
703 if (omode == word_mode)
705 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
706 is the culprit here, and not the backends. */
707 else if (osize >= UNITS_PER_WORD && isize >= osize)
709 /* Allow component subregs of complex and vector. Though given the below
710 extraction rules, it's not always clear what that means. */
711 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
712 && GET_MODE_INNER (imode) == omode)
714 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
715 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
716 represent this. It's questionable if this ought to be represented at
717 all -- why can't this all be hidden in post-reload splitters that make
718 arbitrarily mode changes to the registers themselves. */
719 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
721 /* Subregs involving floating point modes are not allowed to
722 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
723 (subreg:SI (reg:DF) 0) isn't. */
724 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
726 if (isize != osize)
727 return false;
730 /* Paradoxical subregs must have offset zero. */
731 if (osize > isize)
732 return offset == 0;
734 /* This is a normal subreg. Verify that the offset is representable. */
736 /* For hard registers, we already have most of these rules collected in
737 subreg_offset_representable_p. */
738 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
740 unsigned int regno = REGNO (reg);
742 #ifdef CANNOT_CHANGE_MODE_CLASS
743 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
744 && GET_MODE_INNER (imode) == omode)
746 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
747 return false;
748 #endif
750 return subreg_offset_representable_p (regno, imode, offset, omode);
753 /* For pseudo registers, we want most of the same checks. Namely:
754 If the register no larger than a word, the subreg must be lowpart.
755 If the register is larger than a word, the subreg must be the lowpart
756 of a subword. A subreg does *not* perform arbitrary bit extraction.
757 Given that we've already checked mode/offset alignment, we only have
758 to check subword subregs here. */
759 if (osize < UNITS_PER_WORD)
761 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
762 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
763 if (offset % UNITS_PER_WORD != low_off)
764 return false;
766 return true;
770 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
772 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
773 return gen_rtx_raw_SUBREG (mode, reg, offset);
776 /* Generate a SUBREG representing the least-significant part of REG if MODE
777 is smaller than mode of REG, otherwise paradoxical SUBREG. */
780 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
782 enum machine_mode inmode;
784 inmode = GET_MODE (reg);
785 if (inmode == VOIDmode)
786 inmode = mode;
787 return gen_rtx_SUBREG (mode, reg,
788 subreg_lowpart_offset (mode, inmode));
792 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
794 rtvec
795 gen_rtvec (int n, ...)
797 int i;
798 rtvec rt_val;
799 va_list p;
801 va_start (p, n);
803 /* Don't allocate an empty rtvec... */
804 if (n == 0)
806 va_end (p);
807 return NULL_RTVEC;
810 rt_val = rtvec_alloc (n);
812 for (i = 0; i < n; i++)
813 rt_val->elem[i] = va_arg (p, rtx);
815 va_end (p);
816 return rt_val;
819 rtvec
820 gen_rtvec_v (int n, rtx *argp)
822 int i;
823 rtvec rt_val;
825 /* Don't allocate an empty rtvec... */
826 if (n == 0)
827 return NULL_RTVEC;
829 rt_val = rtvec_alloc (n);
831 for (i = 0; i < n; i++)
832 rt_val->elem[i] = *argp++;
834 return rt_val;
837 /* Return the number of bytes between the start of an OUTER_MODE
838 in-memory value and the start of an INNER_MODE in-memory value,
839 given that the former is a lowpart of the latter. It may be a
840 paradoxical lowpart, in which case the offset will be negative
841 on big-endian targets. */
844 byte_lowpart_offset (enum machine_mode outer_mode,
845 enum machine_mode inner_mode)
847 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
848 return subreg_lowpart_offset (outer_mode, inner_mode);
849 else
850 return -subreg_lowpart_offset (inner_mode, outer_mode);
853 /* Generate a REG rtx for a new pseudo register of mode MODE.
854 This pseudo is assigned the next sequential register number. */
857 gen_reg_rtx (enum machine_mode mode)
859 rtx val;
860 unsigned int align = GET_MODE_ALIGNMENT (mode);
862 gcc_assert (can_create_pseudo_p ());
864 /* If a virtual register with bigger mode alignment is generated,
865 increase stack alignment estimation because it might be spilled
866 to stack later. */
867 if (SUPPORTS_STACK_ALIGNMENT
868 && crtl->stack_alignment_estimated < align
869 && !crtl->stack_realign_processed)
871 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
872 if (crtl->stack_alignment_estimated < min_align)
873 crtl->stack_alignment_estimated = min_align;
876 if (generating_concat_p
877 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
878 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
880 /* For complex modes, don't make a single pseudo.
881 Instead, make a CONCAT of two pseudos.
882 This allows noncontiguous allocation of the real and imaginary parts,
883 which makes much better code. Besides, allocating DCmode
884 pseudos overstrains reload on some machines like the 386. */
885 rtx realpart, imagpart;
886 enum machine_mode partmode = GET_MODE_INNER (mode);
888 realpart = gen_reg_rtx (partmode);
889 imagpart = gen_reg_rtx (partmode);
890 return gen_rtx_CONCAT (mode, realpart, imagpart);
893 /* Make sure regno_pointer_align, and regno_reg_rtx are large
894 enough to have an element for this pseudo reg number. */
896 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
898 int old_size = crtl->emit.regno_pointer_align_length;
899 char *tmp;
900 rtx *new1;
902 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
903 memset (tmp + old_size, 0, old_size);
904 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
906 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
907 memset (new1 + old_size, 0, old_size * sizeof (rtx));
908 regno_reg_rtx = new1;
910 crtl->emit.regno_pointer_align_length = old_size * 2;
913 val = gen_raw_REG (mode, reg_rtx_no);
914 regno_reg_rtx[reg_rtx_no++] = val;
915 return val;
918 /* Update NEW with the same attributes as REG, but with OFFSET added
919 to the REG_OFFSET. */
921 static void
922 update_reg_offset (rtx new_rtx, rtx reg, int offset)
924 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
925 REG_OFFSET (reg) + offset);
928 /* Generate a register with same attributes as REG, but with OFFSET
929 added to the REG_OFFSET. */
932 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
933 int offset)
935 rtx new_rtx = gen_rtx_REG (mode, regno);
937 update_reg_offset (new_rtx, reg, offset);
938 return new_rtx;
941 /* Generate a new pseudo-register with the same attributes as REG, but
942 with OFFSET added to the REG_OFFSET. */
945 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
947 rtx new_rtx = gen_reg_rtx (mode);
949 update_reg_offset (new_rtx, reg, offset);
950 return new_rtx;
953 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
954 new register is a (possibly paradoxical) lowpart of the old one. */
956 void
957 adjust_reg_mode (rtx reg, enum machine_mode mode)
959 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
960 PUT_MODE (reg, mode);
963 /* Copy REG's attributes from X, if X has any attributes. If REG and X
964 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966 void
967 set_reg_attrs_from_value (rtx reg, rtx x)
969 int offset;
970 bool can_be_reg_pointer = true;
972 /* Don't call mark_reg_pointer for incompatible pointer sign
973 extension. */
974 while (GET_CODE (x) == SIGN_EXTEND
975 || GET_CODE (x) == ZERO_EXTEND
976 || GET_CODE (x) == TRUNCATE
977 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
979 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
980 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
981 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
982 can_be_reg_pointer = false;
983 #endif
984 x = XEXP (x, 0);
987 /* Hard registers can be reused for multiple purposes within the same
988 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
989 on them is wrong. */
990 if (HARD_REGISTER_P (reg))
991 return;
993 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
994 if (MEM_P (x))
996 if (MEM_OFFSET_KNOWN_P (x))
997 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
998 MEM_OFFSET (x) + offset);
999 if (can_be_reg_pointer && MEM_POINTER (x))
1000 mark_reg_pointer (reg, 0);
1002 else if (REG_P (x))
1004 if (REG_ATTRS (x))
1005 update_reg_offset (reg, x, offset);
1006 if (can_be_reg_pointer && REG_POINTER (x))
1007 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1011 /* Generate a REG rtx for a new pseudo register, copying the mode
1012 and attributes from X. */
1015 gen_reg_rtx_and_attrs (rtx x)
1017 rtx reg = gen_reg_rtx (GET_MODE (x));
1018 set_reg_attrs_from_value (reg, x);
1019 return reg;
1022 /* Set the register attributes for registers contained in PARM_RTX.
1023 Use needed values from memory attributes of MEM. */
1025 void
1026 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1028 if (REG_P (parm_rtx))
1029 set_reg_attrs_from_value (parm_rtx, mem);
1030 else if (GET_CODE (parm_rtx) == PARALLEL)
1032 /* Check for a NULL entry in the first slot, used to indicate that the
1033 parameter goes both on the stack and in registers. */
1034 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1035 for (; i < XVECLEN (parm_rtx, 0); i++)
1037 rtx x = XVECEXP (parm_rtx, 0, i);
1038 if (REG_P (XEXP (x, 0)))
1039 REG_ATTRS (XEXP (x, 0))
1040 = get_reg_attrs (MEM_EXPR (mem),
1041 INTVAL (XEXP (x, 1)));
1046 /* Set the REG_ATTRS for registers in value X, given that X represents
1047 decl T. */
1049 void
1050 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1052 if (GET_CODE (x) == SUBREG)
1054 gcc_assert (subreg_lowpart_p (x));
1055 x = SUBREG_REG (x);
1057 if (REG_P (x))
1058 REG_ATTRS (x)
1059 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1060 DECL_MODE (t)));
1061 if (GET_CODE (x) == CONCAT)
1063 if (REG_P (XEXP (x, 0)))
1064 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1065 if (REG_P (XEXP (x, 1)))
1066 REG_ATTRS (XEXP (x, 1))
1067 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1069 if (GET_CODE (x) == PARALLEL)
1071 int i, start;
1073 /* Check for a NULL entry, used to indicate that the parameter goes
1074 both on the stack and in registers. */
1075 if (XEXP (XVECEXP (x, 0, 0), 0))
1076 start = 0;
1077 else
1078 start = 1;
1080 for (i = start; i < XVECLEN (x, 0); i++)
1082 rtx y = XVECEXP (x, 0, i);
1083 if (REG_P (XEXP (y, 0)))
1084 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1089 /* Assign the RTX X to declaration T. */
1091 void
1092 set_decl_rtl (tree t, rtx x)
1094 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1095 if (x)
1096 set_reg_attrs_for_decl_rtl (t, x);
1099 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1100 if the ABI requires the parameter to be passed by reference. */
1102 void
1103 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1105 DECL_INCOMING_RTL (t) = x;
1106 if (x && !by_reference_p)
1107 set_reg_attrs_for_decl_rtl (t, x);
1110 /* Identify REG (which may be a CONCAT) as a user register. */
1112 void
1113 mark_user_reg (rtx reg)
1115 if (GET_CODE (reg) == CONCAT)
1117 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1118 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1120 else
1122 gcc_assert (REG_P (reg));
1123 REG_USERVAR_P (reg) = 1;
1127 /* Identify REG as a probable pointer register and show its alignment
1128 as ALIGN, if nonzero. */
1130 void
1131 mark_reg_pointer (rtx reg, int align)
1133 if (! REG_POINTER (reg))
1135 REG_POINTER (reg) = 1;
1137 if (align)
1138 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1140 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1141 /* We can no-longer be sure just how aligned this pointer is. */
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1145 /* Return 1 plus largest pseudo reg number used in the current function. */
1148 max_reg_num (void)
1150 return reg_rtx_no;
1153 /* Return 1 + the largest label number used so far in the current function. */
1156 max_label_num (void)
1158 return label_num;
1161 /* Return first label number used in this function (if any were used). */
1164 get_first_label_num (void)
1166 return first_label_num;
1169 /* If the rtx for label was created during the expansion of a nested
1170 function, then first_label_num won't include this label number.
1171 Fix this now so that array indices work later. */
1173 void
1174 maybe_set_first_label_num (rtx x)
1176 if (CODE_LABEL_NUMBER (x) < first_label_num)
1177 first_label_num = CODE_LABEL_NUMBER (x);
1180 /* Return a value representing some low-order bits of X, where the number
1181 of low-order bits is given by MODE. Note that no conversion is done
1182 between floating-point and fixed-point values, rather, the bit
1183 representation is returned.
1185 This function handles the cases in common between gen_lowpart, below,
1186 and two variants in cse.c and combine.c. These are the cases that can
1187 be safely handled at all points in the compilation.
1189 If this is not a case we can handle, return 0. */
1192 gen_lowpart_common (enum machine_mode mode, rtx x)
1194 int msize = GET_MODE_SIZE (mode);
1195 int xsize;
1196 int offset = 0;
1197 enum machine_mode innermode;
1199 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1200 so we have to make one up. Yuk. */
1201 innermode = GET_MODE (x);
1202 if (CONST_INT_P (x)
1203 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1204 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1205 else if (innermode == VOIDmode)
1206 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
1208 xsize = GET_MODE_SIZE (innermode);
1210 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1212 if (innermode == mode)
1213 return x;
1215 /* MODE must occupy no more words than the mode of X. */
1216 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1217 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1218 return 0;
1220 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1221 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1222 return 0;
1224 offset = subreg_lowpart_offset (mode, innermode);
1226 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1227 && (GET_MODE_CLASS (mode) == MODE_INT
1228 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1230 /* If we are getting the low-order part of something that has been
1231 sign- or zero-extended, we can either just use the object being
1232 extended or make a narrower extension. If we want an even smaller
1233 piece than the size of the object being extended, call ourselves
1234 recursively.
1236 This case is used mostly by combine and cse. */
1238 if (GET_MODE (XEXP (x, 0)) == mode)
1239 return XEXP (x, 0);
1240 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1241 return gen_lowpart_common (mode, XEXP (x, 0));
1242 else if (msize < xsize)
1243 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1245 else if (GET_CODE (x) == SUBREG || REG_P (x)
1246 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1247 || CONST_DOUBLE_P (x) || CONST_INT_P (x))
1248 return simplify_gen_subreg (mode, x, innermode, offset);
1250 /* Otherwise, we can't do this. */
1251 return 0;
1255 gen_highpart (enum machine_mode mode, rtx x)
1257 unsigned int msize = GET_MODE_SIZE (mode);
1258 rtx result;
1260 /* This case loses if X is a subreg. To catch bugs early,
1261 complain if an invalid MODE is used even in other cases. */
1262 gcc_assert (msize <= UNITS_PER_WORD
1263 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1265 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1266 subreg_highpart_offset (mode, GET_MODE (x)));
1267 gcc_assert (result);
1269 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1270 the target if we have a MEM. gen_highpart must return a valid operand,
1271 emitting code if necessary to do so. */
1272 if (MEM_P (result))
1274 result = validize_mem (result);
1275 gcc_assert (result);
1278 return result;
1281 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1282 be VOIDmode constant. */
1284 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1286 if (GET_MODE (exp) != VOIDmode)
1288 gcc_assert (GET_MODE (exp) == innermode);
1289 return gen_highpart (outermode, exp);
1291 return simplify_gen_subreg (outermode, exp, innermode,
1292 subreg_highpart_offset (outermode, innermode));
1295 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1297 unsigned int
1298 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1300 unsigned int offset = 0;
1301 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1303 if (difference > 0)
1305 if (WORDS_BIG_ENDIAN)
1306 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1307 if (BYTES_BIG_ENDIAN)
1308 offset += difference % UNITS_PER_WORD;
1311 return offset;
1314 /* Return offset in bytes to get OUTERMODE high part
1315 of the value in mode INNERMODE stored in memory in target format. */
1316 unsigned int
1317 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1319 unsigned int offset = 0;
1320 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1322 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1324 if (difference > 0)
1326 if (! WORDS_BIG_ENDIAN)
1327 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1328 if (! BYTES_BIG_ENDIAN)
1329 offset += difference % UNITS_PER_WORD;
1332 return offset;
1335 /* Return 1 iff X, assumed to be a SUBREG,
1336 refers to the least significant part of its containing reg.
1337 If X is not a SUBREG, always return 1 (it is its own low part!). */
1340 subreg_lowpart_p (const_rtx x)
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
1351 /* Return true if X is a paradoxical subreg, false otherwise. */
1352 bool
1353 paradoxical_subreg_p (const_rtx x)
1355 if (GET_CODE (x) != SUBREG)
1356 return false;
1357 return (GET_MODE_PRECISION (GET_MODE (x))
1358 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1361 /* Return subword OFFSET of operand OP.
1362 The word number, OFFSET, is interpreted as the word number starting
1363 at the low-order address. OFFSET 0 is the low-order word if not
1364 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1366 If we cannot extract the required word, we return zero. Otherwise,
1367 an rtx corresponding to the requested word will be returned.
1369 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1370 reload has completed, a valid address will always be returned. After
1371 reload, if a valid address cannot be returned, we return zero.
1373 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1374 it is the responsibility of the caller.
1376 MODE is the mode of OP in case it is a CONST_INT.
1378 ??? This is still rather broken for some cases. The problem for the
1379 moment is that all callers of this thing provide no 'goal mode' to
1380 tell us to work with. This exists because all callers were written
1381 in a word based SUBREG world.
1382 Now use of this function can be deprecated by simplify_subreg in most
1383 cases.
1387 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1389 if (mode == VOIDmode)
1390 mode = GET_MODE (op);
1392 gcc_assert (mode != VOIDmode);
1394 /* If OP is narrower than a word, fail. */
1395 if (mode != BLKmode
1396 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1397 return 0;
1399 /* If we want a word outside OP, return zero. */
1400 if (mode != BLKmode
1401 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1402 return const0_rtx;
1404 /* Form a new MEM at the requested address. */
1405 if (MEM_P (op))
1407 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1409 if (! validate_address)
1410 return new_rtx;
1412 else if (reload_completed)
1414 if (! strict_memory_address_addr_space_p (word_mode,
1415 XEXP (new_rtx, 0),
1416 MEM_ADDR_SPACE (op)))
1417 return 0;
1419 else
1420 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1423 /* Rest can be handled by simplify_subreg. */
1424 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1427 /* Similar to `operand_subword', but never return 0. If we can't
1428 extract the required subword, put OP into a register and try again.
1429 The second attempt must succeed. We always validate the address in
1430 this case.
1432 MODE is the mode of OP, in case it is CONST_INT. */
1435 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1437 rtx result = operand_subword (op, offset, 1, mode);
1439 if (result)
1440 return result;
1442 if (mode != BLKmode && mode != VOIDmode)
1444 /* If this is a register which can not be accessed by words, copy it
1445 to a pseudo register. */
1446 if (REG_P (op))
1447 op = copy_to_reg (op);
1448 else
1449 op = force_reg (mode, op);
1452 result = operand_subword (op, offset, 1, mode);
1453 gcc_assert (result);
1455 return result;
1458 /* Returns 1 if both MEM_EXPR can be considered equal
1459 and 0 otherwise. */
1462 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1464 if (expr1 == expr2)
1465 return 1;
1467 if (! expr1 || ! expr2)
1468 return 0;
1470 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1471 return 0;
1473 return operand_equal_p (expr1, expr2, 0);
1476 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1477 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1478 -1 if not known. */
1481 get_mem_align_offset (rtx mem, unsigned int align)
1483 tree expr;
1484 unsigned HOST_WIDE_INT offset;
1486 /* This function can't use
1487 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1488 || (MAX (MEM_ALIGN (mem),
1489 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1490 < align))
1491 return -1;
1492 else
1493 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1494 for two reasons:
1495 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1496 for <variable>. get_inner_reference doesn't handle it and
1497 even if it did, the alignment in that case needs to be determined
1498 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1499 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1500 isn't sufficiently aligned, the object it is in might be. */
1501 gcc_assert (MEM_P (mem));
1502 expr = MEM_EXPR (mem);
1503 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1504 return -1;
1506 offset = MEM_OFFSET (mem);
1507 if (DECL_P (expr))
1509 if (DECL_ALIGN (expr) < align)
1510 return -1;
1512 else if (INDIRECT_REF_P (expr))
1514 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1515 return -1;
1517 else if (TREE_CODE (expr) == COMPONENT_REF)
1519 while (1)
1521 tree inner = TREE_OPERAND (expr, 0);
1522 tree field = TREE_OPERAND (expr, 1);
1523 tree byte_offset = component_ref_field_offset (expr);
1524 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1526 if (!byte_offset
1527 || !host_integerp (byte_offset, 1)
1528 || !host_integerp (bit_offset, 1))
1529 return -1;
1531 offset += tree_low_cst (byte_offset, 1);
1532 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1534 if (inner == NULL_TREE)
1536 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1537 < (unsigned int) align)
1538 return -1;
1539 break;
1541 else if (DECL_P (inner))
1543 if (DECL_ALIGN (inner) < align)
1544 return -1;
1545 break;
1547 else if (TREE_CODE (inner) != COMPONENT_REF)
1548 return -1;
1549 expr = inner;
1552 else
1553 return -1;
1555 return offset & ((align / BITS_PER_UNIT) - 1);
1558 /* Given REF (a MEM) and T, either the type of X or the expression
1559 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1560 if we are making a new object of this type. BITPOS is nonzero if
1561 there is an offset outstanding on T that will be applied later. */
1563 void
1564 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1565 HOST_WIDE_INT bitpos)
1567 HOST_WIDE_INT apply_bitpos = 0;
1568 tree type;
1569 struct mem_attrs attrs, *defattrs, *refattrs;
1570 addr_space_t as;
1572 /* It can happen that type_for_mode was given a mode for which there
1573 is no language-level type. In which case it returns NULL, which
1574 we can see here. */
1575 if (t == NULL_TREE)
1576 return;
1578 type = TYPE_P (t) ? t : TREE_TYPE (t);
1579 if (type == error_mark_node)
1580 return;
1582 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1583 wrong answer, as it assumes that DECL_RTL already has the right alias
1584 info. Callers should not set DECL_RTL until after the call to
1585 set_mem_attributes. */
1586 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1588 memset (&attrs, 0, sizeof (attrs));
1590 /* Get the alias set from the expression or type (perhaps using a
1591 front-end routine) and use it. */
1592 attrs.alias = get_alias_set (t);
1594 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1595 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1597 /* Default values from pre-existing memory attributes if present. */
1598 refattrs = MEM_ATTRS (ref);
1599 if (refattrs)
1601 /* ??? Can this ever happen? Calling this routine on a MEM that
1602 already carries memory attributes should probably be invalid. */
1603 attrs.expr = refattrs->expr;
1604 attrs.offset_known_p = refattrs->offset_known_p;
1605 attrs.offset = refattrs->offset;
1606 attrs.size_known_p = refattrs->size_known_p;
1607 attrs.size = refattrs->size;
1608 attrs.align = refattrs->align;
1611 /* Otherwise, default values from the mode of the MEM reference. */
1612 else
1614 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1615 gcc_assert (!defattrs->expr);
1616 gcc_assert (!defattrs->offset_known_p);
1618 /* Respect mode size. */
1619 attrs.size_known_p = defattrs->size_known_p;
1620 attrs.size = defattrs->size;
1621 /* ??? Is this really necessary? We probably should always get
1622 the size from the type below. */
1624 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1625 if T is an object, always compute the object alignment below. */
1626 if (TYPE_P (t))
1627 attrs.align = defattrs->align;
1628 else
1629 attrs.align = BITS_PER_UNIT;
1630 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1631 e.g. if the type carries an alignment attribute. Should we be
1632 able to simply always use TYPE_ALIGN? */
1635 /* We can set the alignment from the type if we are making an object,
1636 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1637 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1638 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1640 else if (TREE_CODE (t) == MEM_REF)
1642 tree op0 = TREE_OPERAND (t, 0);
1643 if (TREE_CODE (op0) == ADDR_EXPR
1644 && (DECL_P (TREE_OPERAND (op0, 0))
1645 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
1647 if (DECL_P (TREE_OPERAND (op0, 0)))
1648 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1649 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1651 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
1652 #ifdef CONSTANT_ALIGNMENT
1653 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1654 attrs.align);
1655 #endif
1657 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1659 unsigned HOST_WIDE_INT ioff
1660 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1661 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1662 attrs.align = MIN (aoff, attrs.align);
1665 else
1666 /* ??? This isn't fully correct, we can't set the alignment from the
1667 type in all cases. */
1668 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1671 else if (TREE_CODE (t) == TARGET_MEM_REF)
1672 /* ??? This isn't fully correct, we can't set the alignment from the
1673 type in all cases. */
1674 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1676 /* If the size is known, we can set that. */
1677 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1679 attrs.size_known_p = true;
1680 attrs.size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
1687 tree base;
1688 bool align_computed = false;
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1695 while (CONVERT_EXPR_P (t)
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
1698 t = TREE_OPERAND (t, 0);
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1703 base = get_base_address (t);
1704 if (base)
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1725 else
1726 as = TYPE_ADDR_SPACE (type);
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1736 attrs.expr = t;
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
1739 apply_bitpos = bitpos;
1740 if (DECL_SIZE_UNIT (t) && host_integerp (DECL_SIZE_UNIT (t), 1))
1742 attrs.size_known_p = true;
1743 attrs.size = tree_low_cst (DECL_SIZE_UNIT (t), 1);
1745 else
1746 attrs.size_known_p = false;
1747 attrs.align = DECL_ALIGN (t);
1748 align_computed = true;
1751 /* If this is a constant, we know the alignment. */
1752 else if (CONSTANT_CLASS_P (t))
1754 attrs.align = TYPE_ALIGN (type);
1755 #ifdef CONSTANT_ALIGNMENT
1756 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
1757 #endif
1758 align_computed = true;
1761 /* If this is a field reference and not a bit-field, record it. */
1762 /* ??? There is some information that can be gleaned from bit-fields,
1763 such as the word offset in the structure that might be modified.
1764 But skip it for now. */
1765 else if (TREE_CODE (t) == COMPONENT_REF
1766 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1768 attrs.expr = t;
1769 attrs.offset_known_p = true;
1770 attrs.offset = 0;
1771 apply_bitpos = bitpos;
1772 /* ??? Any reason the field size would be different than
1773 the size we got from the type? */
1776 /* If this is an array reference, look for an outer field reference. */
1777 else if (TREE_CODE (t) == ARRAY_REF)
1779 tree off_tree = size_zero_node;
1780 /* We can't modify t, because we use it at the end of the
1781 function. */
1782 tree t2 = t;
1786 tree index = TREE_OPERAND (t2, 1);
1787 tree low_bound = array_ref_low_bound (t2);
1788 tree unit_size = array_ref_element_size (t2);
1790 /* We assume all arrays have sizes that are a multiple of a byte.
1791 First subtract the lower bound, if any, in the type of the
1792 index, then convert to sizetype and multiply by the size of
1793 the array element. */
1794 if (! integer_zerop (low_bound))
1795 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1796 index, low_bound);
1798 off_tree = size_binop (PLUS_EXPR,
1799 size_binop (MULT_EXPR,
1800 fold_convert (sizetype,
1801 index),
1802 unit_size),
1803 off_tree);
1804 t2 = TREE_OPERAND (t2, 0);
1806 while (TREE_CODE (t2) == ARRAY_REF);
1808 if (DECL_P (t2))
1810 attrs.expr = t2;
1811 attrs.offset_known_p = false;
1812 if (host_integerp (off_tree, 1))
1814 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1815 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1816 attrs.align = DECL_ALIGN (t2);
1817 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1818 attrs.align = aoff;
1819 align_computed = true;
1820 attrs.offset_known_p = true;
1821 attrs.offset = ioff;
1822 apply_bitpos = bitpos;
1825 else if (TREE_CODE (t2) == COMPONENT_REF)
1827 attrs.expr = t2;
1828 attrs.offset_known_p = false;
1829 if (host_integerp (off_tree, 1))
1831 attrs.offset_known_p = true;
1832 attrs.offset = tree_low_cst (off_tree, 1);
1833 apply_bitpos = bitpos;
1835 /* ??? Any reason the field size would be different than
1836 the size we got from the type? */
1840 /* If this is an indirect reference, record it. */
1841 else if (TREE_CODE (t) == MEM_REF
1842 || TREE_CODE (t) == TARGET_MEM_REF)
1844 attrs.expr = t;
1845 attrs.offset_known_p = true;
1846 attrs.offset = 0;
1847 apply_bitpos = bitpos;
1850 if (!align_computed)
1852 unsigned int obj_align = get_object_alignment (t);
1853 attrs.align = MAX (attrs.align, obj_align);
1856 else
1857 as = TYPE_ADDR_SPACE (type);
1859 /* If we modified OFFSET based on T, then subtract the outstanding
1860 bit position offset. Similarly, increase the size of the accessed
1861 object to contain the negative offset. */
1862 if (apply_bitpos)
1864 gcc_assert (attrs.offset_known_p);
1865 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1866 if (attrs.size_known_p)
1867 attrs.size += apply_bitpos / BITS_PER_UNIT;
1870 /* Now set the attributes we computed above. */
1871 attrs.addrspace = as;
1872 set_mem_attrs (ref, &attrs);
1875 void
1876 set_mem_attributes (rtx ref, tree t, int objectp)
1878 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1881 /* Set the alias set of MEM to SET. */
1883 void
1884 set_mem_alias_set (rtx mem, alias_set_type set)
1886 struct mem_attrs attrs;
1888 /* If the new and old alias sets don't conflict, something is wrong. */
1889 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1890 attrs = *get_mem_attrs (mem);
1891 attrs.alias = set;
1892 set_mem_attrs (mem, &attrs);
1895 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1897 void
1898 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1900 struct mem_attrs attrs;
1902 attrs = *get_mem_attrs (mem);
1903 attrs.addrspace = addrspace;
1904 set_mem_attrs (mem, &attrs);
1907 /* Set the alignment of MEM to ALIGN bits. */
1909 void
1910 set_mem_align (rtx mem, unsigned int align)
1912 struct mem_attrs attrs;
1914 attrs = *get_mem_attrs (mem);
1915 attrs.align = align;
1916 set_mem_attrs (mem, &attrs);
1919 /* Set the expr for MEM to EXPR. */
1921 void
1922 set_mem_expr (rtx mem, tree expr)
1924 struct mem_attrs attrs;
1926 attrs = *get_mem_attrs (mem);
1927 attrs.expr = expr;
1928 set_mem_attrs (mem, &attrs);
1931 /* Set the offset of MEM to OFFSET. */
1933 void
1934 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
1936 struct mem_attrs attrs;
1938 attrs = *get_mem_attrs (mem);
1939 attrs.offset_known_p = true;
1940 attrs.offset = offset;
1941 set_mem_attrs (mem, &attrs);
1944 /* Clear the offset of MEM. */
1946 void
1947 clear_mem_offset (rtx mem)
1949 struct mem_attrs attrs;
1951 attrs = *get_mem_attrs (mem);
1952 attrs.offset_known_p = false;
1953 set_mem_attrs (mem, &attrs);
1956 /* Set the size of MEM to SIZE. */
1958 void
1959 set_mem_size (rtx mem, HOST_WIDE_INT size)
1961 struct mem_attrs attrs;
1963 attrs = *get_mem_attrs (mem);
1964 attrs.size_known_p = true;
1965 attrs.size = size;
1966 set_mem_attrs (mem, &attrs);
1969 /* Clear the size of MEM. */
1971 void
1972 clear_mem_size (rtx mem)
1974 struct mem_attrs attrs;
1976 attrs = *get_mem_attrs (mem);
1977 attrs.size_known_p = false;
1978 set_mem_attrs (mem, &attrs);
1981 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1982 and its address changed to ADDR. (VOIDmode means don't change the mode.
1983 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1984 returned memory location is required to be valid. The memory
1985 attributes are not changed. */
1987 static rtx
1988 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1990 addr_space_t as;
1991 rtx new_rtx;
1993 gcc_assert (MEM_P (memref));
1994 as = MEM_ADDR_SPACE (memref);
1995 if (mode == VOIDmode)
1996 mode = GET_MODE (memref);
1997 if (addr == 0)
1998 addr = XEXP (memref, 0);
1999 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2000 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2001 return memref;
2003 if (validate)
2005 if (reload_in_progress || reload_completed)
2006 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2007 else
2008 addr = memory_address_addr_space (mode, addr, as);
2011 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2012 return memref;
2014 new_rtx = gen_rtx_MEM (mode, addr);
2015 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2016 return new_rtx;
2019 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2020 way we are changing MEMREF, so we only preserve the alias set. */
2023 change_address (rtx memref, enum machine_mode mode, rtx addr)
2025 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
2026 enum machine_mode mmode = GET_MODE (new_rtx);
2027 struct mem_attrs attrs, *defattrs;
2029 attrs = *get_mem_attrs (memref);
2030 defattrs = mode_mem_attrs[(int) mmode];
2031 attrs.expr = NULL_TREE;
2032 attrs.offset_known_p = false;
2033 attrs.size_known_p = defattrs->size_known_p;
2034 attrs.size = defattrs->size;
2035 attrs.align = defattrs->align;
2037 /* If there are no changes, just return the original memory reference. */
2038 if (new_rtx == memref)
2040 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2041 return new_rtx;
2043 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2044 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2047 set_mem_attrs (new_rtx, &attrs);
2048 return new_rtx;
2051 /* Return a memory reference like MEMREF, but with its mode changed
2052 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2053 nonzero, the memory address is forced to be valid.
2054 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2055 and the caller is responsible for adjusting MEMREF base register.
2056 If ADJUST_OBJECT is zero, the underlying object associated with the
2057 memory reference is left unchanged and the caller is responsible for
2058 dealing with it. Otherwise, if the new memory reference is outside
2059 the underlying object, even partially, then the object is dropped. */
2062 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2063 int validate, int adjust_address, int adjust_object)
2065 rtx addr = XEXP (memref, 0);
2066 rtx new_rtx;
2067 enum machine_mode address_mode;
2068 int pbits;
2069 struct mem_attrs attrs, *defattrs;
2070 unsigned HOST_WIDE_INT max_align;
2072 attrs = *get_mem_attrs (memref);
2074 /* If there are no changes, just return the original memory reference. */
2075 if (mode == GET_MODE (memref) && !offset
2076 && (!validate || memory_address_addr_space_p (mode, addr,
2077 attrs.addrspace)))
2078 return memref;
2080 /* ??? Prefer to create garbage instead of creating shared rtl.
2081 This may happen even if offset is nonzero -- consider
2082 (plus (plus reg reg) const_int) -- so do this always. */
2083 addr = copy_rtx (addr);
2085 /* Convert a possibly large offset to a signed value within the
2086 range of the target address space. */
2087 address_mode = get_address_mode (memref);
2088 pbits = GET_MODE_BITSIZE (address_mode);
2089 if (HOST_BITS_PER_WIDE_INT > pbits)
2091 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2092 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2093 >> shift);
2096 if (adjust_address)
2098 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2099 object, we can merge it into the LO_SUM. */
2100 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2101 && offset >= 0
2102 && (unsigned HOST_WIDE_INT) offset
2103 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2104 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2105 plus_constant (address_mode,
2106 XEXP (addr, 1), offset));
2107 else
2108 addr = plus_constant (address_mode, addr, offset);
2111 new_rtx = change_address_1 (memref, mode, addr, validate);
2113 /* If the address is a REG, change_address_1 rightfully returns memref,
2114 but this would destroy memref's MEM_ATTRS. */
2115 if (new_rtx == memref && offset != 0)
2116 new_rtx = copy_rtx (new_rtx);
2118 /* Conservatively drop the object if we don't know where we start from. */
2119 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2121 attrs.expr = NULL_TREE;
2122 attrs.alias = 0;
2125 /* Compute the new values of the memory attributes due to this adjustment.
2126 We add the offsets and update the alignment. */
2127 if (attrs.offset_known_p)
2129 attrs.offset += offset;
2131 /* Drop the object if the new left end is not within its bounds. */
2132 if (adjust_object && attrs.offset < 0)
2134 attrs.expr = NULL_TREE;
2135 attrs.alias = 0;
2139 /* Compute the new alignment by taking the MIN of the alignment and the
2140 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2141 if zero. */
2142 if (offset != 0)
2144 max_align = (offset & -offset) * BITS_PER_UNIT;
2145 attrs.align = MIN (attrs.align, max_align);
2148 /* We can compute the size in a number of ways. */
2149 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2150 if (defattrs->size_known_p)
2152 /* Drop the object if the new right end is not within its bounds. */
2153 if (adjust_object && (offset + defattrs->size) > attrs.size)
2155 attrs.expr = NULL_TREE;
2156 attrs.alias = 0;
2158 attrs.size_known_p = true;
2159 attrs.size = defattrs->size;
2161 else if (attrs.size_known_p)
2163 attrs.size -= offset;
2164 /* ??? The store_by_pieces machinery generates negative sizes. */
2165 gcc_assert (!(adjust_object && attrs.size < 0));
2168 set_mem_attrs (new_rtx, &attrs);
2170 return new_rtx;
2173 /* Return a memory reference like MEMREF, but with its mode changed
2174 to MODE and its address changed to ADDR, which is assumed to be
2175 MEMREF offset by OFFSET bytes. If VALIDATE is
2176 nonzero, the memory address is forced to be valid. */
2179 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2180 HOST_WIDE_INT offset, int validate)
2182 memref = change_address_1 (memref, VOIDmode, addr, validate);
2183 return adjust_address_1 (memref, mode, offset, validate, 0, 0);
2186 /* Return a memory reference like MEMREF, but whose address is changed by
2187 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2188 known to be in OFFSET (possibly 1). */
2191 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2193 rtx new_rtx, addr = XEXP (memref, 0);
2194 enum machine_mode address_mode;
2195 struct mem_attrs attrs, *defattrs;
2197 attrs = *get_mem_attrs (memref);
2198 address_mode = get_address_mode (memref);
2199 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2201 /* At this point we don't know _why_ the address is invalid. It
2202 could have secondary memory references, multiplies or anything.
2204 However, if we did go and rearrange things, we can wind up not
2205 being able to recognize the magic around pic_offset_table_rtx.
2206 This stuff is fragile, and is yet another example of why it is
2207 bad to expose PIC machinery too early. */
2208 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2209 attrs.addrspace)
2210 && GET_CODE (addr) == PLUS
2211 && XEXP (addr, 0) == pic_offset_table_rtx)
2213 addr = force_reg (GET_MODE (addr), addr);
2214 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2217 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2218 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2220 /* If there are no changes, just return the original memory reference. */
2221 if (new_rtx == memref)
2222 return new_rtx;
2224 /* Update the alignment to reflect the offset. Reset the offset, which
2225 we don't know. */
2226 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2227 attrs.offset_known_p = false;
2228 attrs.size_known_p = defattrs->size_known_p;
2229 attrs.size = defattrs->size;
2230 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2231 set_mem_attrs (new_rtx, &attrs);
2232 return new_rtx;
2235 /* Return a memory reference like MEMREF, but with its address changed to
2236 ADDR. The caller is asserting that the actual piece of memory pointed
2237 to is the same, just the form of the address is being changed, such as
2238 by putting something into a register. */
2241 replace_equiv_address (rtx memref, rtx addr)
2243 /* change_address_1 copies the memory attribute structure without change
2244 and that's exactly what we want here. */
2245 update_temp_slot_address (XEXP (memref, 0), addr);
2246 return change_address_1 (memref, VOIDmode, addr, 1);
2249 /* Likewise, but the reference is not required to be valid. */
2252 replace_equiv_address_nv (rtx memref, rtx addr)
2254 return change_address_1 (memref, VOIDmode, addr, 0);
2257 /* Return a memory reference like MEMREF, but with its mode widened to
2258 MODE and offset by OFFSET. This would be used by targets that e.g.
2259 cannot issue QImode memory operations and have to use SImode memory
2260 operations plus masking logic. */
2263 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2265 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0);
2266 struct mem_attrs attrs;
2267 unsigned int size = GET_MODE_SIZE (mode);
2269 /* If there are no changes, just return the original memory reference. */
2270 if (new_rtx == memref)
2271 return new_rtx;
2273 attrs = *get_mem_attrs (new_rtx);
2275 /* If we don't know what offset we were at within the expression, then
2276 we can't know if we've overstepped the bounds. */
2277 if (! attrs.offset_known_p)
2278 attrs.expr = NULL_TREE;
2280 while (attrs.expr)
2282 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2284 tree field = TREE_OPERAND (attrs.expr, 1);
2285 tree offset = component_ref_field_offset (attrs.expr);
2287 if (! DECL_SIZE_UNIT (field))
2289 attrs.expr = NULL_TREE;
2290 break;
2293 /* Is the field at least as large as the access? If so, ok,
2294 otherwise strip back to the containing structure. */
2295 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2296 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2297 && attrs.offset >= 0)
2298 break;
2300 if (! host_integerp (offset, 1))
2302 attrs.expr = NULL_TREE;
2303 break;
2306 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2307 attrs.offset += tree_low_cst (offset, 1);
2308 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2309 / BITS_PER_UNIT);
2311 /* Similarly for the decl. */
2312 else if (DECL_P (attrs.expr)
2313 && DECL_SIZE_UNIT (attrs.expr)
2314 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2315 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2316 && (! attrs.offset_known_p || attrs.offset >= 0))
2317 break;
2318 else
2320 /* The widened memory access overflows the expression, which means
2321 that it could alias another expression. Zap it. */
2322 attrs.expr = NULL_TREE;
2323 break;
2327 if (! attrs.expr)
2328 attrs.offset_known_p = false;
2330 /* The widened memory may alias other stuff, so zap the alias set. */
2331 /* ??? Maybe use get_alias_set on any remaining expression. */
2332 attrs.alias = 0;
2333 attrs.size_known_p = true;
2334 attrs.size = size;
2335 set_mem_attrs (new_rtx, &attrs);
2336 return new_rtx;
2339 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2340 static GTY(()) tree spill_slot_decl;
2342 tree
2343 get_spill_slot_decl (bool force_build_p)
2345 tree d = spill_slot_decl;
2346 rtx rd;
2347 struct mem_attrs attrs;
2349 if (d || !force_build_p)
2350 return d;
2352 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2353 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2354 DECL_ARTIFICIAL (d) = 1;
2355 DECL_IGNORED_P (d) = 1;
2356 TREE_USED (d) = 1;
2357 spill_slot_decl = d;
2359 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2360 MEM_NOTRAP_P (rd) = 1;
2361 attrs = *mode_mem_attrs[(int) BLKmode];
2362 attrs.alias = new_alias_set ();
2363 attrs.expr = d;
2364 set_mem_attrs (rd, &attrs);
2365 SET_DECL_RTL (d, rd);
2367 return d;
2370 /* Given MEM, a result from assign_stack_local, fill in the memory
2371 attributes as appropriate for a register allocator spill slot.
2372 These slots are not aliasable by other memory. We arrange for
2373 them all to use a single MEM_EXPR, so that the aliasing code can
2374 work properly in the case of shared spill slots. */
2376 void
2377 set_mem_attrs_for_spill (rtx mem)
2379 struct mem_attrs attrs;
2380 rtx addr;
2382 attrs = *get_mem_attrs (mem);
2383 attrs.expr = get_spill_slot_decl (true);
2384 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2385 attrs.addrspace = ADDR_SPACE_GENERIC;
2387 /* We expect the incoming memory to be of the form:
2388 (mem:MODE (plus (reg sfp) (const_int offset)))
2389 with perhaps the plus missing for offset = 0. */
2390 addr = XEXP (mem, 0);
2391 attrs.offset_known_p = true;
2392 attrs.offset = 0;
2393 if (GET_CODE (addr) == PLUS
2394 && CONST_INT_P (XEXP (addr, 1)))
2395 attrs.offset = INTVAL (XEXP (addr, 1));
2397 set_mem_attrs (mem, &attrs);
2398 MEM_NOTRAP_P (mem) = 1;
2401 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2404 gen_label_rtx (void)
2406 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2407 NULL, label_num++, NULL);
2410 /* For procedure integration. */
2412 /* Install new pointers to the first and last insns in the chain.
2413 Also, set cur_insn_uid to one higher than the last in use.
2414 Used for an inline-procedure after copying the insn chain. */
2416 void
2417 set_new_first_and_last_insn (rtx first, rtx last)
2419 rtx insn;
2421 set_first_insn (first);
2422 set_last_insn (last);
2423 cur_insn_uid = 0;
2425 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2427 int debug_count = 0;
2429 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2430 cur_debug_insn_uid = 0;
2432 for (insn = first; insn; insn = NEXT_INSN (insn))
2433 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2434 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2435 else
2437 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2438 if (DEBUG_INSN_P (insn))
2439 debug_count++;
2442 if (debug_count)
2443 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2444 else
2445 cur_debug_insn_uid++;
2447 else
2448 for (insn = first; insn; insn = NEXT_INSN (insn))
2449 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2451 cur_insn_uid++;
2454 /* Go through all the RTL insn bodies and copy any invalid shared
2455 structure. This routine should only be called once. */
2457 static void
2458 unshare_all_rtl_1 (rtx insn)
2460 /* Unshare just about everything else. */
2461 unshare_all_rtl_in_chain (insn);
2463 /* Make sure the addresses of stack slots found outside the insn chain
2464 (such as, in DECL_RTL of a variable) are not shared
2465 with the insn chain.
2467 This special care is necessary when the stack slot MEM does not
2468 actually appear in the insn chain. If it does appear, its address
2469 is unshared from all else at that point. */
2470 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2473 /* Go through all the RTL insn bodies and copy any invalid shared
2474 structure, again. This is a fairly expensive thing to do so it
2475 should be done sparingly. */
2477 void
2478 unshare_all_rtl_again (rtx insn)
2480 rtx p;
2481 tree decl;
2483 for (p = insn; p; p = NEXT_INSN (p))
2484 if (INSN_P (p))
2486 reset_used_flags (PATTERN (p));
2487 reset_used_flags (REG_NOTES (p));
2488 if (CALL_P (p))
2489 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2492 /* Make sure that virtual stack slots are not shared. */
2493 set_used_decls (DECL_INITIAL (cfun->decl));
2495 /* Make sure that virtual parameters are not shared. */
2496 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2497 set_used_flags (DECL_RTL (decl));
2499 reset_used_flags (stack_slot_list);
2501 unshare_all_rtl_1 (insn);
2504 unsigned int
2505 unshare_all_rtl (void)
2507 unshare_all_rtl_1 (get_insns ());
2508 return 0;
2512 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2513 Recursively does the same for subexpressions. */
2515 static void
2516 verify_rtx_sharing (rtx orig, rtx insn)
2518 rtx x = orig;
2519 int i;
2520 enum rtx_code code;
2521 const char *format_ptr;
2523 if (x == 0)
2524 return;
2526 code = GET_CODE (x);
2528 /* These types may be freely shared. */
2530 switch (code)
2532 case REG:
2533 case DEBUG_EXPR:
2534 case VALUE:
2535 CASE_CONST_ANY:
2536 case SYMBOL_REF:
2537 case LABEL_REF:
2538 case CODE_LABEL:
2539 case PC:
2540 case CC0:
2541 case RETURN:
2542 case SIMPLE_RETURN:
2543 case SCRATCH:
2544 return;
2545 /* SCRATCH must be shared because they represent distinct values. */
2546 case CLOBBER:
2547 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2548 return;
2549 break;
2551 case CONST:
2552 if (shared_const_p (orig))
2553 return;
2554 break;
2556 case MEM:
2557 /* A MEM is allowed to be shared if its address is constant. */
2558 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2559 || reload_completed || reload_in_progress)
2560 return;
2562 break;
2564 default:
2565 break;
2568 /* This rtx may not be shared. If it has already been seen,
2569 replace it with a copy of itself. */
2570 #ifdef ENABLE_CHECKING
2571 if (RTX_FLAG (x, used))
2573 error ("invalid rtl sharing found in the insn");
2574 debug_rtx (insn);
2575 error ("shared rtx");
2576 debug_rtx (x);
2577 internal_error ("internal consistency failure");
2579 #endif
2580 gcc_assert (!RTX_FLAG (x, used));
2582 RTX_FLAG (x, used) = 1;
2584 /* Now scan the subexpressions recursively. */
2586 format_ptr = GET_RTX_FORMAT (code);
2588 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2590 switch (*format_ptr++)
2592 case 'e':
2593 verify_rtx_sharing (XEXP (x, i), insn);
2594 break;
2596 case 'E':
2597 if (XVEC (x, i) != NULL)
2599 int j;
2600 int len = XVECLEN (x, i);
2602 for (j = 0; j < len; j++)
2604 /* We allow sharing of ASM_OPERANDS inside single
2605 instruction. */
2606 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2607 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2608 == ASM_OPERANDS))
2609 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2610 else
2611 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2614 break;
2617 return;
2620 /* Go through all the RTL insn bodies and check that there is no unexpected
2621 sharing in between the subexpressions. */
2623 DEBUG_FUNCTION void
2624 verify_rtl_sharing (void)
2626 rtx p;
2628 timevar_push (TV_VERIFY_RTL_SHARING);
2630 for (p = get_insns (); p; p = NEXT_INSN (p))
2631 if (INSN_P (p))
2633 reset_used_flags (PATTERN (p));
2634 reset_used_flags (REG_NOTES (p));
2635 if (CALL_P (p))
2636 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2637 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2639 int i;
2640 rtx q, sequence = PATTERN (p);
2642 for (i = 0; i < XVECLEN (sequence, 0); i++)
2644 q = XVECEXP (sequence, 0, i);
2645 gcc_assert (INSN_P (q));
2646 reset_used_flags (PATTERN (q));
2647 reset_used_flags (REG_NOTES (q));
2648 if (CALL_P (q))
2649 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2654 for (p = get_insns (); p; p = NEXT_INSN (p))
2655 if (INSN_P (p))
2657 verify_rtx_sharing (PATTERN (p), p);
2658 verify_rtx_sharing (REG_NOTES (p), p);
2659 if (CALL_P (p))
2660 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2663 timevar_pop (TV_VERIFY_RTL_SHARING);
2666 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2667 Assumes the mark bits are cleared at entry. */
2669 void
2670 unshare_all_rtl_in_chain (rtx insn)
2672 for (; insn; insn = NEXT_INSN (insn))
2673 if (INSN_P (insn))
2675 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2676 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2677 if (CALL_P (insn))
2678 CALL_INSN_FUNCTION_USAGE (insn)
2679 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2683 /* Go through all virtual stack slots of a function and mark them as
2684 shared. We never replace the DECL_RTLs themselves with a copy,
2685 but expressions mentioned into a DECL_RTL cannot be shared with
2686 expressions in the instruction stream.
2688 Note that reload may convert pseudo registers into memories in-place.
2689 Pseudo registers are always shared, but MEMs never are. Thus if we
2690 reset the used flags on MEMs in the instruction stream, we must set
2691 them again on MEMs that appear in DECL_RTLs. */
2693 static void
2694 set_used_decls (tree blk)
2696 tree t;
2698 /* Mark decls. */
2699 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2700 if (DECL_RTL_SET_P (t))
2701 set_used_flags (DECL_RTL (t));
2703 /* Now process sub-blocks. */
2704 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2705 set_used_decls (t);
2708 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2709 Recursively does the same for subexpressions. Uses
2710 copy_rtx_if_shared_1 to reduce stack space. */
2713 copy_rtx_if_shared (rtx orig)
2715 copy_rtx_if_shared_1 (&orig);
2716 return orig;
2719 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2720 use. Recursively does the same for subexpressions. */
2722 static void
2723 copy_rtx_if_shared_1 (rtx *orig1)
2725 rtx x;
2726 int i;
2727 enum rtx_code code;
2728 rtx *last_ptr;
2729 const char *format_ptr;
2730 int copied = 0;
2731 int length;
2733 /* Repeat is used to turn tail-recursion into iteration. */
2734 repeat:
2735 x = *orig1;
2737 if (x == 0)
2738 return;
2740 code = GET_CODE (x);
2742 /* These types may be freely shared. */
2744 switch (code)
2746 case REG:
2747 case DEBUG_EXPR:
2748 case VALUE:
2749 CASE_CONST_ANY:
2750 case SYMBOL_REF:
2751 case LABEL_REF:
2752 case CODE_LABEL:
2753 case PC:
2754 case CC0:
2755 case RETURN:
2756 case SIMPLE_RETURN:
2757 case SCRATCH:
2758 /* SCRATCH must be shared because they represent distinct values. */
2759 return;
2760 case CLOBBER:
2761 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2762 return;
2763 break;
2765 case CONST:
2766 if (shared_const_p (x))
2767 return;
2768 break;
2770 case DEBUG_INSN:
2771 case INSN:
2772 case JUMP_INSN:
2773 case CALL_INSN:
2774 case NOTE:
2775 case BARRIER:
2776 /* The chain of insns is not being copied. */
2777 return;
2779 default:
2780 break;
2783 /* This rtx may not be shared. If it has already been seen,
2784 replace it with a copy of itself. */
2786 if (RTX_FLAG (x, used))
2788 x = shallow_copy_rtx (x);
2789 copied = 1;
2791 RTX_FLAG (x, used) = 1;
2793 /* Now scan the subexpressions recursively.
2794 We can store any replaced subexpressions directly into X
2795 since we know X is not shared! Any vectors in X
2796 must be copied if X was copied. */
2798 format_ptr = GET_RTX_FORMAT (code);
2799 length = GET_RTX_LENGTH (code);
2800 last_ptr = NULL;
2802 for (i = 0; i < length; i++)
2804 switch (*format_ptr++)
2806 case 'e':
2807 if (last_ptr)
2808 copy_rtx_if_shared_1 (last_ptr);
2809 last_ptr = &XEXP (x, i);
2810 break;
2812 case 'E':
2813 if (XVEC (x, i) != NULL)
2815 int j;
2816 int len = XVECLEN (x, i);
2818 /* Copy the vector iff I copied the rtx and the length
2819 is nonzero. */
2820 if (copied && len > 0)
2821 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2823 /* Call recursively on all inside the vector. */
2824 for (j = 0; j < len; j++)
2826 if (last_ptr)
2827 copy_rtx_if_shared_1 (last_ptr);
2828 last_ptr = &XVECEXP (x, i, j);
2831 break;
2834 *orig1 = x;
2835 if (last_ptr)
2837 orig1 = last_ptr;
2838 goto repeat;
2840 return;
2843 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
2845 static void
2846 mark_used_flags (rtx x, int flag)
2848 int i, j;
2849 enum rtx_code code;
2850 const char *format_ptr;
2851 int length;
2853 /* Repeat is used to turn tail-recursion into iteration. */
2854 repeat:
2855 if (x == 0)
2856 return;
2858 code = GET_CODE (x);
2860 /* These types may be freely shared so we needn't do any resetting
2861 for them. */
2863 switch (code)
2865 case REG:
2866 case DEBUG_EXPR:
2867 case VALUE:
2868 CASE_CONST_ANY:
2869 case SYMBOL_REF:
2870 case CODE_LABEL:
2871 case PC:
2872 case CC0:
2873 case RETURN:
2874 case SIMPLE_RETURN:
2875 return;
2877 case DEBUG_INSN:
2878 case INSN:
2879 case JUMP_INSN:
2880 case CALL_INSN:
2881 case NOTE:
2882 case LABEL_REF:
2883 case BARRIER:
2884 /* The chain of insns is not being copied. */
2885 return;
2887 default:
2888 break;
2891 RTX_FLAG (x, used) = flag;
2893 format_ptr = GET_RTX_FORMAT (code);
2894 length = GET_RTX_LENGTH (code);
2896 for (i = 0; i < length; i++)
2898 switch (*format_ptr++)
2900 case 'e':
2901 if (i == length-1)
2903 x = XEXP (x, i);
2904 goto repeat;
2906 mark_used_flags (XEXP (x, i), flag);
2907 break;
2909 case 'E':
2910 for (j = 0; j < XVECLEN (x, i); j++)
2911 mark_used_flags (XVECEXP (x, i, j), flag);
2912 break;
2917 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2918 to look for shared sub-parts. */
2920 void
2921 reset_used_flags (rtx x)
2923 mark_used_flags (x, 0);
2926 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2927 to look for shared sub-parts. */
2929 void
2930 set_used_flags (rtx x)
2932 mark_used_flags (x, 1);
2935 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2936 Return X or the rtx for the pseudo reg the value of X was copied into.
2937 OTHER must be valid as a SET_DEST. */
2940 make_safe_from (rtx x, rtx other)
2942 while (1)
2943 switch (GET_CODE (other))
2945 case SUBREG:
2946 other = SUBREG_REG (other);
2947 break;
2948 case STRICT_LOW_PART:
2949 case SIGN_EXTEND:
2950 case ZERO_EXTEND:
2951 other = XEXP (other, 0);
2952 break;
2953 default:
2954 goto done;
2956 done:
2957 if ((MEM_P (other)
2958 && ! CONSTANT_P (x)
2959 && !REG_P (x)
2960 && GET_CODE (x) != SUBREG)
2961 || (REG_P (other)
2962 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2963 || reg_mentioned_p (other, x))))
2965 rtx temp = gen_reg_rtx (GET_MODE (x));
2966 emit_move_insn (temp, x);
2967 return temp;
2969 return x;
2972 /* Emission of insns (adding them to the doubly-linked list). */
2974 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2977 get_last_insn_anywhere (void)
2979 struct sequence_stack *stack;
2980 if (get_last_insn ())
2981 return get_last_insn ();
2982 for (stack = seq_stack; stack; stack = stack->next)
2983 if (stack->last != 0)
2984 return stack->last;
2985 return 0;
2988 /* Return the first nonnote insn emitted in current sequence or current
2989 function. This routine looks inside SEQUENCEs. */
2992 get_first_nonnote_insn (void)
2994 rtx insn = get_insns ();
2996 if (insn)
2998 if (NOTE_P (insn))
2999 for (insn = next_insn (insn);
3000 insn && NOTE_P (insn);
3001 insn = next_insn (insn))
3002 continue;
3003 else
3005 if (NONJUMP_INSN_P (insn)
3006 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3007 insn = XVECEXP (PATTERN (insn), 0, 0);
3011 return insn;
3014 /* Return the last nonnote insn emitted in current sequence or current
3015 function. This routine looks inside SEQUENCEs. */
3018 get_last_nonnote_insn (void)
3020 rtx insn = get_last_insn ();
3022 if (insn)
3024 if (NOTE_P (insn))
3025 for (insn = previous_insn (insn);
3026 insn && NOTE_P (insn);
3027 insn = previous_insn (insn))
3028 continue;
3029 else
3031 if (NONJUMP_INSN_P (insn)
3032 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3033 insn = XVECEXP (PATTERN (insn), 0,
3034 XVECLEN (PATTERN (insn), 0) - 1);
3038 return insn;
3041 /* Return the number of actual (non-debug) insns emitted in this
3042 function. */
3045 get_max_insn_count (void)
3047 int n = cur_insn_uid;
3049 /* The table size must be stable across -g, to avoid codegen
3050 differences due to debug insns, and not be affected by
3051 -fmin-insn-uid, to avoid excessive table size and to simplify
3052 debugging of -fcompare-debug failures. */
3053 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3054 n -= cur_debug_insn_uid;
3055 else
3056 n -= MIN_NONDEBUG_INSN_UID;
3058 return n;
3062 /* Return the next insn. If it is a SEQUENCE, return the first insn
3063 of the sequence. */
3066 next_insn (rtx insn)
3068 if (insn)
3070 insn = NEXT_INSN (insn);
3071 if (insn && NONJUMP_INSN_P (insn)
3072 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3073 insn = XVECEXP (PATTERN (insn), 0, 0);
3076 return insn;
3079 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3080 of the sequence. */
3083 previous_insn (rtx insn)
3085 if (insn)
3087 insn = PREV_INSN (insn);
3088 if (insn && NONJUMP_INSN_P (insn)
3089 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3090 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3093 return insn;
3096 /* Return the next insn after INSN that is not a NOTE. This routine does not
3097 look inside SEQUENCEs. */
3100 next_nonnote_insn (rtx insn)
3102 while (insn)
3104 insn = NEXT_INSN (insn);
3105 if (insn == 0 || !NOTE_P (insn))
3106 break;
3109 return insn;
3112 /* Return the next insn after INSN that is not a NOTE, but stop the
3113 search before we enter another basic block. This routine does not
3114 look inside SEQUENCEs. */
3117 next_nonnote_insn_bb (rtx insn)
3119 while (insn)
3121 insn = NEXT_INSN (insn);
3122 if (insn == 0 || !NOTE_P (insn))
3123 break;
3124 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3125 return NULL_RTX;
3128 return insn;
3131 /* Return the previous insn before INSN that is not a NOTE. This routine does
3132 not look inside SEQUENCEs. */
3135 prev_nonnote_insn (rtx insn)
3137 while (insn)
3139 insn = PREV_INSN (insn);
3140 if (insn == 0 || !NOTE_P (insn))
3141 break;
3144 return insn;
3147 /* Return the previous insn before INSN that is not a NOTE, but stop
3148 the search before we enter another basic block. This routine does
3149 not look inside SEQUENCEs. */
3152 prev_nonnote_insn_bb (rtx insn)
3154 while (insn)
3156 insn = PREV_INSN (insn);
3157 if (insn == 0 || !NOTE_P (insn))
3158 break;
3159 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3160 return NULL_RTX;
3163 return insn;
3166 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3167 routine does not look inside SEQUENCEs. */
3170 next_nondebug_insn (rtx insn)
3172 while (insn)
3174 insn = NEXT_INSN (insn);
3175 if (insn == 0 || !DEBUG_INSN_P (insn))
3176 break;
3179 return insn;
3182 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3183 This routine does not look inside SEQUENCEs. */
3186 prev_nondebug_insn (rtx insn)
3188 while (insn)
3190 insn = PREV_INSN (insn);
3191 if (insn == 0 || !DEBUG_INSN_P (insn))
3192 break;
3195 return insn;
3198 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3199 This routine does not look inside SEQUENCEs. */
3202 next_nonnote_nondebug_insn (rtx insn)
3204 while (insn)
3206 insn = NEXT_INSN (insn);
3207 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3208 break;
3211 return insn;
3214 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3215 This routine does not look inside SEQUENCEs. */
3218 prev_nonnote_nondebug_insn (rtx insn)
3220 while (insn)
3222 insn = PREV_INSN (insn);
3223 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3224 break;
3227 return insn;
3230 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3231 or 0, if there is none. This routine does not look inside
3232 SEQUENCEs. */
3235 next_real_insn (rtx insn)
3237 while (insn)
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || INSN_P (insn))
3241 break;
3244 return insn;
3247 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3248 or 0, if there is none. This routine does not look inside
3249 SEQUENCEs. */
3252 prev_real_insn (rtx insn)
3254 while (insn)
3256 insn = PREV_INSN (insn);
3257 if (insn == 0 || INSN_P (insn))
3258 break;
3261 return insn;
3264 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3265 This routine does not look inside SEQUENCEs. */
3268 last_call_insn (void)
3270 rtx insn;
3272 for (insn = get_last_insn ();
3273 insn && !CALL_P (insn);
3274 insn = PREV_INSN (insn))
3277 return insn;
3280 /* Find the next insn after INSN that really does something. This routine
3281 does not look inside SEQUENCEs. After reload this also skips over
3282 standalone USE and CLOBBER insn. */
3285 active_insn_p (const_rtx insn)
3287 return (CALL_P (insn) || JUMP_P (insn)
3288 || (NONJUMP_INSN_P (insn)
3289 && (! reload_completed
3290 || (GET_CODE (PATTERN (insn)) != USE
3291 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3295 next_active_insn (rtx insn)
3297 while (insn)
3299 insn = NEXT_INSN (insn);
3300 if (insn == 0 || active_insn_p (insn))
3301 break;
3304 return insn;
3307 /* Find the last insn before INSN that really does something. This routine
3308 does not look inside SEQUENCEs. After reload this also skips over
3309 standalone USE and CLOBBER insn. */
3312 prev_active_insn (rtx insn)
3314 while (insn)
3316 insn = PREV_INSN (insn);
3317 if (insn == 0 || active_insn_p (insn))
3318 break;
3321 return insn;
3324 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3327 next_label (rtx insn)
3329 while (insn)
3331 insn = NEXT_INSN (insn);
3332 if (insn == 0 || LABEL_P (insn))
3333 break;
3336 return insn;
3339 /* Return the last label to mark the same position as LABEL. Return LABEL
3340 itself if it is null or any return rtx. */
3343 skip_consecutive_labels (rtx label)
3345 rtx insn;
3347 if (label && ANY_RETURN_P (label))
3348 return label;
3350 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3351 if (LABEL_P (insn))
3352 label = insn;
3354 return label;
3357 #ifdef HAVE_cc0
3358 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3359 and REG_CC_USER notes so we can find it. */
3361 void
3362 link_cc0_insns (rtx insn)
3364 rtx user = next_nonnote_insn (insn);
3366 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3367 user = XVECEXP (PATTERN (user), 0, 0);
3369 add_reg_note (user, REG_CC_SETTER, insn);
3370 add_reg_note (insn, REG_CC_USER, user);
3373 /* Return the next insn that uses CC0 after INSN, which is assumed to
3374 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3375 applied to the result of this function should yield INSN).
3377 Normally, this is simply the next insn. However, if a REG_CC_USER note
3378 is present, it contains the insn that uses CC0.
3380 Return 0 if we can't find the insn. */
3383 next_cc0_user (rtx insn)
3385 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3387 if (note)
3388 return XEXP (note, 0);
3390 insn = next_nonnote_insn (insn);
3391 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3392 insn = XVECEXP (PATTERN (insn), 0, 0);
3394 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3395 return insn;
3397 return 0;
3400 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3401 note, it is the previous insn. */
3404 prev_cc0_setter (rtx insn)
3406 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3408 if (note)
3409 return XEXP (note, 0);
3411 insn = prev_nonnote_insn (insn);
3412 gcc_assert (sets_cc0_p (PATTERN (insn)));
3414 return insn;
3416 #endif
3418 #ifdef AUTO_INC_DEC
3419 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3421 static int
3422 find_auto_inc (rtx *xp, void *data)
3424 rtx x = *xp;
3425 rtx reg = (rtx) data;
3427 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3428 return 0;
3430 switch (GET_CODE (x))
3432 case PRE_DEC:
3433 case PRE_INC:
3434 case POST_DEC:
3435 case POST_INC:
3436 case PRE_MODIFY:
3437 case POST_MODIFY:
3438 if (rtx_equal_p (reg, XEXP (x, 0)))
3439 return 1;
3440 break;
3442 default:
3443 gcc_unreachable ();
3445 return -1;
3447 #endif
3449 /* Increment the label uses for all labels present in rtx. */
3451 static void
3452 mark_label_nuses (rtx x)
3454 enum rtx_code code;
3455 int i, j;
3456 const char *fmt;
3458 code = GET_CODE (x);
3459 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3460 LABEL_NUSES (XEXP (x, 0))++;
3462 fmt = GET_RTX_FORMAT (code);
3463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3465 if (fmt[i] == 'e')
3466 mark_label_nuses (XEXP (x, i));
3467 else if (fmt[i] == 'E')
3468 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3469 mark_label_nuses (XVECEXP (x, i, j));
3474 /* Try splitting insns that can be split for better scheduling.
3475 PAT is the pattern which might split.
3476 TRIAL is the insn providing PAT.
3477 LAST is nonzero if we should return the last insn of the sequence produced.
3479 If this routine succeeds in splitting, it returns the first or last
3480 replacement insn depending on the value of LAST. Otherwise, it
3481 returns TRIAL. If the insn to be returned can be split, it will be. */
3484 try_split (rtx pat, rtx trial, int last)
3486 rtx before = PREV_INSN (trial);
3487 rtx after = NEXT_INSN (trial);
3488 int has_barrier = 0;
3489 rtx note, seq, tem;
3490 int probability;
3491 rtx insn_last, insn;
3492 int njumps = 0;
3494 /* We're not good at redistributing frame information. */
3495 if (RTX_FRAME_RELATED_P (trial))
3496 return trial;
3498 if (any_condjump_p (trial)
3499 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3500 split_branch_probability = INTVAL (XEXP (note, 0));
3501 probability = split_branch_probability;
3503 seq = split_insns (pat, trial);
3505 split_branch_probability = -1;
3507 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3508 We may need to handle this specially. */
3509 if (after && BARRIER_P (after))
3511 has_barrier = 1;
3512 after = NEXT_INSN (after);
3515 if (!seq)
3516 return trial;
3518 /* Avoid infinite loop if any insn of the result matches
3519 the original pattern. */
3520 insn_last = seq;
3521 while (1)
3523 if (INSN_P (insn_last)
3524 && rtx_equal_p (PATTERN (insn_last), pat))
3525 return trial;
3526 if (!NEXT_INSN (insn_last))
3527 break;
3528 insn_last = NEXT_INSN (insn_last);
3531 /* We will be adding the new sequence to the function. The splitters
3532 may have introduced invalid RTL sharing, so unshare the sequence now. */
3533 unshare_all_rtl_in_chain (seq);
3535 /* Mark labels. */
3536 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3538 if (JUMP_P (insn))
3540 mark_jump_label (PATTERN (insn), insn, 0);
3541 njumps++;
3542 if (probability != -1
3543 && any_condjump_p (insn)
3544 && !find_reg_note (insn, REG_BR_PROB, 0))
3546 /* We can preserve the REG_BR_PROB notes only if exactly
3547 one jump is created, otherwise the machine description
3548 is responsible for this step using
3549 split_branch_probability variable. */
3550 gcc_assert (njumps == 1);
3551 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3556 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3557 in SEQ and copy any additional information across. */
3558 if (CALL_P (trial))
3560 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3561 if (CALL_P (insn))
3563 rtx next, *p;
3565 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3566 target may have explicitly specified. */
3567 p = &CALL_INSN_FUNCTION_USAGE (insn);
3568 while (*p)
3569 p = &XEXP (*p, 1);
3570 *p = CALL_INSN_FUNCTION_USAGE (trial);
3572 /* If the old call was a sibling call, the new one must
3573 be too. */
3574 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3576 /* If the new call is the last instruction in the sequence,
3577 it will effectively replace the old call in-situ. Otherwise
3578 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3579 so that it comes immediately after the new call. */
3580 if (NEXT_INSN (insn))
3581 for (next = NEXT_INSN (trial);
3582 next && NOTE_P (next);
3583 next = NEXT_INSN (next))
3584 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3586 remove_insn (next);
3587 add_insn_after (next, insn, NULL);
3588 break;
3593 /* Copy notes, particularly those related to the CFG. */
3594 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3596 switch (REG_NOTE_KIND (note))
3598 case REG_EH_REGION:
3599 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3600 break;
3602 case REG_NORETURN:
3603 case REG_SETJMP:
3604 case REG_TM:
3605 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3607 if (CALL_P (insn))
3608 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3610 break;
3612 case REG_NON_LOCAL_GOTO:
3613 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3615 if (JUMP_P (insn))
3616 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3618 break;
3620 #ifdef AUTO_INC_DEC
3621 case REG_INC:
3622 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3624 rtx reg = XEXP (note, 0);
3625 if (!FIND_REG_INC_NOTE (insn, reg)
3626 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3627 add_reg_note (insn, REG_INC, reg);
3629 break;
3630 #endif
3632 case REG_ARGS_SIZE:
3633 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3634 break;
3636 default:
3637 break;
3641 /* If there are LABELS inside the split insns increment the
3642 usage count so we don't delete the label. */
3643 if (INSN_P (trial))
3645 insn = insn_last;
3646 while (insn != NULL_RTX)
3648 /* JUMP_P insns have already been "marked" above. */
3649 if (NONJUMP_INSN_P (insn))
3650 mark_label_nuses (PATTERN (insn));
3652 insn = PREV_INSN (insn);
3656 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3658 delete_insn (trial);
3659 if (has_barrier)
3660 emit_barrier_after (tem);
3662 /* Recursively call try_split for each new insn created; by the
3663 time control returns here that insn will be fully split, so
3664 set LAST and continue from the insn after the one returned.
3665 We can't use next_active_insn here since AFTER may be a note.
3666 Ignore deleted insns, which can be occur if not optimizing. */
3667 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3668 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3669 tem = try_split (PATTERN (tem), tem, 1);
3671 /* Return either the first or the last insn, depending on which was
3672 requested. */
3673 return last
3674 ? (after ? PREV_INSN (after) : get_last_insn ())
3675 : NEXT_INSN (before);
3678 /* Make and return an INSN rtx, initializing all its slots.
3679 Store PATTERN in the pattern slots. */
3682 make_insn_raw (rtx pattern)
3684 rtx insn;
3686 insn = rtx_alloc (INSN);
3688 INSN_UID (insn) = cur_insn_uid++;
3689 PATTERN (insn) = pattern;
3690 INSN_CODE (insn) = -1;
3691 REG_NOTES (insn) = NULL;
3692 INSN_LOCATOR (insn) = curr_insn_locator ();
3693 BLOCK_FOR_INSN (insn) = NULL;
3695 #ifdef ENABLE_RTL_CHECKING
3696 if (insn
3697 && INSN_P (insn)
3698 && (returnjump_p (insn)
3699 || (GET_CODE (insn) == SET
3700 && SET_DEST (insn) == pc_rtx)))
3702 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3703 debug_rtx (insn);
3705 #endif
3707 return insn;
3710 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3712 static rtx
3713 make_debug_insn_raw (rtx pattern)
3715 rtx insn;
3717 insn = rtx_alloc (DEBUG_INSN);
3718 INSN_UID (insn) = cur_debug_insn_uid++;
3719 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3720 INSN_UID (insn) = cur_insn_uid++;
3722 PATTERN (insn) = pattern;
3723 INSN_CODE (insn) = -1;
3724 REG_NOTES (insn) = NULL;
3725 INSN_LOCATOR (insn) = curr_insn_locator ();
3726 BLOCK_FOR_INSN (insn) = NULL;
3728 return insn;
3731 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3733 static rtx
3734 make_jump_insn_raw (rtx pattern)
3736 rtx insn;
3738 insn = rtx_alloc (JUMP_INSN);
3739 INSN_UID (insn) = cur_insn_uid++;
3741 PATTERN (insn) = pattern;
3742 INSN_CODE (insn) = -1;
3743 REG_NOTES (insn) = NULL;
3744 JUMP_LABEL (insn) = NULL;
3745 INSN_LOCATOR (insn) = curr_insn_locator ();
3746 BLOCK_FOR_INSN (insn) = NULL;
3748 return insn;
3751 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3753 static rtx
3754 make_call_insn_raw (rtx pattern)
3756 rtx insn;
3758 insn = rtx_alloc (CALL_INSN);
3759 INSN_UID (insn) = cur_insn_uid++;
3761 PATTERN (insn) = pattern;
3762 INSN_CODE (insn) = -1;
3763 REG_NOTES (insn) = NULL;
3764 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3765 INSN_LOCATOR (insn) = curr_insn_locator ();
3766 BLOCK_FOR_INSN (insn) = NULL;
3768 return insn;
3771 /* Add INSN to the end of the doubly-linked list.
3772 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3774 void
3775 add_insn (rtx insn)
3777 PREV_INSN (insn) = get_last_insn();
3778 NEXT_INSN (insn) = 0;
3780 if (NULL != get_last_insn())
3781 NEXT_INSN (get_last_insn ()) = insn;
3783 if (NULL == get_insns ())
3784 set_first_insn (insn);
3786 set_last_insn (insn);
3789 /* Add INSN into the doubly-linked list after insn AFTER. This and
3790 the next should be the only functions called to insert an insn once
3791 delay slots have been filled since only they know how to update a
3792 SEQUENCE. */
3794 void
3795 add_insn_after (rtx insn, rtx after, basic_block bb)
3797 rtx next = NEXT_INSN (after);
3799 gcc_assert (!optimize || !INSN_DELETED_P (after));
3801 NEXT_INSN (insn) = next;
3802 PREV_INSN (insn) = after;
3804 if (next)
3806 PREV_INSN (next) = insn;
3807 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3808 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3810 else if (get_last_insn () == after)
3811 set_last_insn (insn);
3812 else
3814 struct sequence_stack *stack = seq_stack;
3815 /* Scan all pending sequences too. */
3816 for (; stack; stack = stack->next)
3817 if (after == stack->last)
3819 stack->last = insn;
3820 break;
3823 gcc_assert (stack);
3826 if (!BARRIER_P (after)
3827 && !BARRIER_P (insn)
3828 && (bb = BLOCK_FOR_INSN (after)))
3830 set_block_for_insn (insn, bb);
3831 if (INSN_P (insn))
3832 df_insn_rescan (insn);
3833 /* Should not happen as first in the BB is always
3834 either NOTE or LABEL. */
3835 if (BB_END (bb) == after
3836 /* Avoid clobbering of structure when creating new BB. */
3837 && !BARRIER_P (insn)
3838 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3839 BB_END (bb) = insn;
3842 NEXT_INSN (after) = insn;
3843 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3845 rtx sequence = PATTERN (after);
3846 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3850 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3851 the previous should be the only functions called to insert an insn
3852 once delay slots have been filled since only they know how to
3853 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3854 bb from before. */
3856 void
3857 add_insn_before (rtx insn, rtx before, basic_block bb)
3859 rtx prev = PREV_INSN (before);
3861 gcc_assert (!optimize || !INSN_DELETED_P (before));
3863 PREV_INSN (insn) = prev;
3864 NEXT_INSN (insn) = before;
3866 if (prev)
3868 NEXT_INSN (prev) = insn;
3869 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3871 rtx sequence = PATTERN (prev);
3872 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3875 else if (get_insns () == before)
3876 set_first_insn (insn);
3877 else
3879 struct sequence_stack *stack = seq_stack;
3880 /* Scan all pending sequences too. */
3881 for (; stack; stack = stack->next)
3882 if (before == stack->first)
3884 stack->first = insn;
3885 break;
3888 gcc_assert (stack);
3891 if (!bb
3892 && !BARRIER_P (before)
3893 && !BARRIER_P (insn))
3894 bb = BLOCK_FOR_INSN (before);
3896 if (bb)
3898 set_block_for_insn (insn, bb);
3899 if (INSN_P (insn))
3900 df_insn_rescan (insn);
3901 /* Should not happen as first in the BB is always either NOTE or
3902 LABEL. */
3903 gcc_assert (BB_HEAD (bb) != insn
3904 /* Avoid clobbering of structure when creating new BB. */
3905 || BARRIER_P (insn)
3906 || NOTE_INSN_BASIC_BLOCK_P (insn));
3909 PREV_INSN (before) = insn;
3910 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3911 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3915 /* Replace insn with an deleted instruction note. */
3917 void
3918 set_insn_deleted (rtx insn)
3920 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3921 PUT_CODE (insn, NOTE);
3922 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3926 /* Remove an insn from its doubly-linked list. This function knows how
3927 to handle sequences. */
3928 void
3929 remove_insn (rtx insn)
3931 rtx next = NEXT_INSN (insn);
3932 rtx prev = PREV_INSN (insn);
3933 basic_block bb;
3935 /* Later in the code, the block will be marked dirty. */
3936 df_insn_delete (NULL, INSN_UID (insn));
3938 if (prev)
3940 NEXT_INSN (prev) = next;
3941 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3943 rtx sequence = PATTERN (prev);
3944 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3947 else if (get_insns () == insn)
3949 if (next)
3950 PREV_INSN (next) = NULL;
3951 set_first_insn (next);
3953 else
3955 struct sequence_stack *stack = seq_stack;
3956 /* Scan all pending sequences too. */
3957 for (; stack; stack = stack->next)
3958 if (insn == stack->first)
3960 stack->first = next;
3961 break;
3964 gcc_assert (stack);
3967 if (next)
3969 PREV_INSN (next) = prev;
3970 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3971 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3973 else if (get_last_insn () == insn)
3974 set_last_insn (prev);
3975 else
3977 struct sequence_stack *stack = seq_stack;
3978 /* Scan all pending sequences too. */
3979 for (; stack; stack = stack->next)
3980 if (insn == stack->last)
3982 stack->last = prev;
3983 break;
3986 gcc_assert (stack);
3988 if (!BARRIER_P (insn)
3989 && (bb = BLOCK_FOR_INSN (insn)))
3991 if (NONDEBUG_INSN_P (insn))
3992 df_set_bb_dirty (bb);
3993 if (BB_HEAD (bb) == insn)
3995 /* Never ever delete the basic block note without deleting whole
3996 basic block. */
3997 gcc_assert (!NOTE_P (insn));
3998 BB_HEAD (bb) = next;
4000 if (BB_END (bb) == insn)
4001 BB_END (bb) = prev;
4005 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4007 void
4008 add_function_usage_to (rtx call_insn, rtx call_fusage)
4010 gcc_assert (call_insn && CALL_P (call_insn));
4012 /* Put the register usage information on the CALL. If there is already
4013 some usage information, put ours at the end. */
4014 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4016 rtx link;
4018 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4019 link = XEXP (link, 1))
4022 XEXP (link, 1) = call_fusage;
4024 else
4025 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4028 /* Delete all insns made since FROM.
4029 FROM becomes the new last instruction. */
4031 void
4032 delete_insns_since (rtx from)
4034 if (from == 0)
4035 set_first_insn (0);
4036 else
4037 NEXT_INSN (from) = 0;
4038 set_last_insn (from);
4041 /* This function is deprecated, please use sequences instead.
4043 Move a consecutive bunch of insns to a different place in the chain.
4044 The insns to be moved are those between FROM and TO.
4045 They are moved to a new position after the insn AFTER.
4046 AFTER must not be FROM or TO or any insn in between.
4048 This function does not know about SEQUENCEs and hence should not be
4049 called after delay-slot filling has been done. */
4051 void
4052 reorder_insns_nobb (rtx from, rtx to, rtx after)
4054 #ifdef ENABLE_CHECKING
4055 rtx x;
4056 for (x = from; x != to; x = NEXT_INSN (x))
4057 gcc_assert (after != x);
4058 gcc_assert (after != to);
4059 #endif
4061 /* Splice this bunch out of where it is now. */
4062 if (PREV_INSN (from))
4063 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4064 if (NEXT_INSN (to))
4065 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4066 if (get_last_insn () == to)
4067 set_last_insn (PREV_INSN (from));
4068 if (get_insns () == from)
4069 set_first_insn (NEXT_INSN (to));
4071 /* Make the new neighbors point to it and it to them. */
4072 if (NEXT_INSN (after))
4073 PREV_INSN (NEXT_INSN (after)) = to;
4075 NEXT_INSN (to) = NEXT_INSN (after);
4076 PREV_INSN (from) = after;
4077 NEXT_INSN (after) = from;
4078 if (after == get_last_insn())
4079 set_last_insn (to);
4082 /* Same as function above, but take care to update BB boundaries. */
4083 void
4084 reorder_insns (rtx from, rtx to, rtx after)
4086 rtx prev = PREV_INSN (from);
4087 basic_block bb, bb2;
4089 reorder_insns_nobb (from, to, after);
4091 if (!BARRIER_P (after)
4092 && (bb = BLOCK_FOR_INSN (after)))
4094 rtx x;
4095 df_set_bb_dirty (bb);
4097 if (!BARRIER_P (from)
4098 && (bb2 = BLOCK_FOR_INSN (from)))
4100 if (BB_END (bb2) == to)
4101 BB_END (bb2) = prev;
4102 df_set_bb_dirty (bb2);
4105 if (BB_END (bb) == after)
4106 BB_END (bb) = to;
4108 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4109 if (!BARRIER_P (x))
4110 df_insn_change_bb (x, bb);
4115 /* Emit insn(s) of given code and pattern
4116 at a specified place within the doubly-linked list.
4118 All of the emit_foo global entry points accept an object
4119 X which is either an insn list or a PATTERN of a single
4120 instruction.
4122 There are thus a few canonical ways to generate code and
4123 emit it at a specific place in the instruction stream. For
4124 example, consider the instruction named SPOT and the fact that
4125 we would like to emit some instructions before SPOT. We might
4126 do it like this:
4128 start_sequence ();
4129 ... emit the new instructions ...
4130 insns_head = get_insns ();
4131 end_sequence ();
4133 emit_insn_before (insns_head, SPOT);
4135 It used to be common to generate SEQUENCE rtl instead, but that
4136 is a relic of the past which no longer occurs. The reason is that
4137 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4138 generated would almost certainly die right after it was created. */
4140 static rtx
4141 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4142 rtx (*make_raw) (rtx))
4144 rtx insn;
4146 gcc_assert (before);
4148 if (x == NULL_RTX)
4149 return last;
4151 switch (GET_CODE (x))
4153 case DEBUG_INSN:
4154 case INSN:
4155 case JUMP_INSN:
4156 case CALL_INSN:
4157 case CODE_LABEL:
4158 case BARRIER:
4159 case NOTE:
4160 insn = x;
4161 while (insn)
4163 rtx next = NEXT_INSN (insn);
4164 add_insn_before (insn, before, bb);
4165 last = insn;
4166 insn = next;
4168 break;
4170 #ifdef ENABLE_RTL_CHECKING
4171 case SEQUENCE:
4172 gcc_unreachable ();
4173 break;
4174 #endif
4176 default:
4177 last = (*make_raw) (x);
4178 add_insn_before (last, before, bb);
4179 break;
4182 return last;
4185 /* Make X be output before the instruction BEFORE. */
4188 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4190 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4193 /* Make an instruction with body X and code JUMP_INSN
4194 and output it before the instruction BEFORE. */
4197 emit_jump_insn_before_noloc (rtx x, rtx before)
4199 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4200 make_jump_insn_raw);
4203 /* Make an instruction with body X and code CALL_INSN
4204 and output it before the instruction BEFORE. */
4207 emit_call_insn_before_noloc (rtx x, rtx before)
4209 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4210 make_call_insn_raw);
4213 /* Make an instruction with body X and code DEBUG_INSN
4214 and output it before the instruction BEFORE. */
4217 emit_debug_insn_before_noloc (rtx x, rtx before)
4219 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4220 make_debug_insn_raw);
4223 /* Make an insn of code BARRIER
4224 and output it before the insn BEFORE. */
4227 emit_barrier_before (rtx before)
4229 rtx insn = rtx_alloc (BARRIER);
4231 INSN_UID (insn) = cur_insn_uid++;
4233 add_insn_before (insn, before, NULL);
4234 return insn;
4237 /* Emit the label LABEL before the insn BEFORE. */
4240 emit_label_before (rtx label, rtx before)
4242 gcc_checking_assert (INSN_UID (label) == 0);
4243 INSN_UID (label) = cur_insn_uid++;
4244 add_insn_before (label, before, NULL);
4245 return label;
4248 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4251 emit_note_before (enum insn_note subtype, rtx before)
4253 rtx note = rtx_alloc (NOTE);
4254 INSN_UID (note) = cur_insn_uid++;
4255 NOTE_KIND (note) = subtype;
4256 BLOCK_FOR_INSN (note) = NULL;
4257 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4259 add_insn_before (note, before, NULL);
4260 return note;
4263 /* Helper for emit_insn_after, handles lists of instructions
4264 efficiently. */
4266 static rtx
4267 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4269 rtx last;
4270 rtx after_after;
4271 if (!bb && !BARRIER_P (after))
4272 bb = BLOCK_FOR_INSN (after);
4274 if (bb)
4276 df_set_bb_dirty (bb);
4277 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4278 if (!BARRIER_P (last))
4280 set_block_for_insn (last, bb);
4281 df_insn_rescan (last);
4283 if (!BARRIER_P (last))
4285 set_block_for_insn (last, bb);
4286 df_insn_rescan (last);
4288 if (BB_END (bb) == after)
4289 BB_END (bb) = last;
4291 else
4292 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4293 continue;
4295 after_after = NEXT_INSN (after);
4297 NEXT_INSN (after) = first;
4298 PREV_INSN (first) = after;
4299 NEXT_INSN (last) = after_after;
4300 if (after_after)
4301 PREV_INSN (after_after) = last;
4303 if (after == get_last_insn())
4304 set_last_insn (last);
4306 return last;
4309 static rtx
4310 emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4311 rtx (*make_raw)(rtx))
4313 rtx last = after;
4315 gcc_assert (after);
4317 if (x == NULL_RTX)
4318 return last;
4320 switch (GET_CODE (x))
4322 case DEBUG_INSN:
4323 case INSN:
4324 case JUMP_INSN:
4325 case CALL_INSN:
4326 case CODE_LABEL:
4327 case BARRIER:
4328 case NOTE:
4329 last = emit_insn_after_1 (x, after, bb);
4330 break;
4332 #ifdef ENABLE_RTL_CHECKING
4333 case SEQUENCE:
4334 gcc_unreachable ();
4335 break;
4336 #endif
4338 default:
4339 last = (*make_raw) (x);
4340 add_insn_after (last, after, bb);
4341 break;
4344 return last;
4347 /* Make X be output after the insn AFTER and set the BB of insn. If
4348 BB is NULL, an attempt is made to infer the BB from AFTER. */
4351 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4353 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4357 /* Make an insn of code JUMP_INSN with body X
4358 and output it after the insn AFTER. */
4361 emit_jump_insn_after_noloc (rtx x, rtx after)
4363 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
4366 /* Make an instruction with body X and code CALL_INSN
4367 and output it after the instruction AFTER. */
4370 emit_call_insn_after_noloc (rtx x, rtx after)
4372 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4375 /* Make an instruction with body X and code CALL_INSN
4376 and output it after the instruction AFTER. */
4379 emit_debug_insn_after_noloc (rtx x, rtx after)
4381 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4384 /* Make an insn of code BARRIER
4385 and output it after the insn AFTER. */
4388 emit_barrier_after (rtx after)
4390 rtx insn = rtx_alloc (BARRIER);
4392 INSN_UID (insn) = cur_insn_uid++;
4394 add_insn_after (insn, after, NULL);
4395 return insn;
4398 /* Emit the label LABEL after the insn AFTER. */
4401 emit_label_after (rtx label, rtx after)
4403 gcc_checking_assert (INSN_UID (label) == 0);
4404 INSN_UID (label) = cur_insn_uid++;
4405 add_insn_after (label, after, NULL);
4406 return label;
4409 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4412 emit_note_after (enum insn_note subtype, rtx after)
4414 rtx note = rtx_alloc (NOTE);
4415 INSN_UID (note) = cur_insn_uid++;
4416 NOTE_KIND (note) = subtype;
4417 BLOCK_FOR_INSN (note) = NULL;
4418 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4419 add_insn_after (note, after, NULL);
4420 return note;
4423 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4424 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4426 static rtx
4427 emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4428 rtx (*make_raw) (rtx))
4430 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4432 if (pattern == NULL_RTX || !loc)
4433 return last;
4435 after = NEXT_INSN (after);
4436 while (1)
4438 if (active_insn_p (after) && !INSN_LOCATOR (after))
4439 INSN_LOCATOR (after) = loc;
4440 if (after == last)
4441 break;
4442 after = NEXT_INSN (after);
4444 return last;
4447 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4448 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4449 any DEBUG_INSNs. */
4451 static rtx
4452 emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4453 rtx (*make_raw) (rtx))
4455 rtx prev = after;
4457 if (skip_debug_insns)
4458 while (DEBUG_INSN_P (prev))
4459 prev = PREV_INSN (prev);
4461 if (INSN_P (prev))
4462 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4463 make_raw);
4464 else
4465 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4468 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4470 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4472 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4475 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4477 emit_insn_after (rtx pattern, rtx after)
4479 return emit_pattern_after (pattern, after, true, make_insn_raw);
4482 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4484 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4486 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
4489 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4491 emit_jump_insn_after (rtx pattern, rtx after)
4493 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
4496 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4498 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4500 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4503 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4505 emit_call_insn_after (rtx pattern, rtx after)
4507 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4510 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4512 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4514 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4517 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4519 emit_debug_insn_after (rtx pattern, rtx after)
4521 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4524 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4525 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4526 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4527 CALL_INSN, etc. */
4529 static rtx
4530 emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4531 rtx (*make_raw) (rtx))
4533 rtx first = PREV_INSN (before);
4534 rtx last = emit_pattern_before_noloc (pattern, before,
4535 insnp ? before : NULL_RTX,
4536 NULL, make_raw);
4538 if (pattern == NULL_RTX || !loc)
4539 return last;
4541 if (!first)
4542 first = get_insns ();
4543 else
4544 first = NEXT_INSN (first);
4545 while (1)
4547 if (active_insn_p (first) && !INSN_LOCATOR (first))
4548 INSN_LOCATOR (first) = loc;
4549 if (first == last)
4550 break;
4551 first = NEXT_INSN (first);
4553 return last;
4556 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4557 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4558 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4559 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4561 static rtx
4562 emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4563 bool insnp, rtx (*make_raw) (rtx))
4565 rtx next = before;
4567 if (skip_debug_insns)
4568 while (DEBUG_INSN_P (next))
4569 next = PREV_INSN (next);
4571 if (INSN_P (next))
4572 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4573 insnp, make_raw);
4574 else
4575 return emit_pattern_before_noloc (pattern, before,
4576 insnp ? before : NULL_RTX,
4577 NULL, make_raw);
4580 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4582 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4584 return emit_pattern_before_setloc (pattern, before, loc, true,
4585 make_insn_raw);
4588 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4590 emit_insn_before (rtx pattern, rtx before)
4592 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4595 /* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4597 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4599 return emit_pattern_before_setloc (pattern, before, loc, false,
4600 make_jump_insn_raw);
4603 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4605 emit_jump_insn_before (rtx pattern, rtx before)
4607 return emit_pattern_before (pattern, before, true, false,
4608 make_jump_insn_raw);
4611 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4613 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4615 return emit_pattern_before_setloc (pattern, before, loc, false,
4616 make_call_insn_raw);
4619 /* Like emit_call_insn_before_noloc,
4620 but set insn_locator according to BEFORE. */
4622 emit_call_insn_before (rtx pattern, rtx before)
4624 return emit_pattern_before (pattern, before, true, false,
4625 make_call_insn_raw);
4628 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4630 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4632 return emit_pattern_before_setloc (pattern, before, loc, false,
4633 make_debug_insn_raw);
4636 /* Like emit_debug_insn_before_noloc,
4637 but set insn_locator according to BEFORE. */
4639 emit_debug_insn_before (rtx pattern, rtx before)
4641 return emit_pattern_before (pattern, before, false, false,
4642 make_debug_insn_raw);
4645 /* Take X and emit it at the end of the doubly-linked
4646 INSN list.
4648 Returns the last insn emitted. */
4651 emit_insn (rtx x)
4653 rtx last = get_last_insn();
4654 rtx insn;
4656 if (x == NULL_RTX)
4657 return last;
4659 switch (GET_CODE (x))
4661 case DEBUG_INSN:
4662 case INSN:
4663 case JUMP_INSN:
4664 case CALL_INSN:
4665 case CODE_LABEL:
4666 case BARRIER:
4667 case NOTE:
4668 insn = x;
4669 while (insn)
4671 rtx next = NEXT_INSN (insn);
4672 add_insn (insn);
4673 last = insn;
4674 insn = next;
4676 break;
4678 #ifdef ENABLE_RTL_CHECKING
4679 case SEQUENCE:
4680 gcc_unreachable ();
4681 break;
4682 #endif
4684 default:
4685 last = make_insn_raw (x);
4686 add_insn (last);
4687 break;
4690 return last;
4693 /* Make an insn of code DEBUG_INSN with pattern X
4694 and add it to the end of the doubly-linked list. */
4697 emit_debug_insn (rtx x)
4699 rtx last = get_last_insn();
4700 rtx insn;
4702 if (x == NULL_RTX)
4703 return last;
4705 switch (GET_CODE (x))
4707 case DEBUG_INSN:
4708 case INSN:
4709 case JUMP_INSN:
4710 case CALL_INSN:
4711 case CODE_LABEL:
4712 case BARRIER:
4713 case NOTE:
4714 insn = x;
4715 while (insn)
4717 rtx next = NEXT_INSN (insn);
4718 add_insn (insn);
4719 last = insn;
4720 insn = next;
4722 break;
4724 #ifdef ENABLE_RTL_CHECKING
4725 case SEQUENCE:
4726 gcc_unreachable ();
4727 break;
4728 #endif
4730 default:
4731 last = make_debug_insn_raw (x);
4732 add_insn (last);
4733 break;
4736 return last;
4739 /* Make an insn of code JUMP_INSN with pattern X
4740 and add it to the end of the doubly-linked list. */
4743 emit_jump_insn (rtx x)
4745 rtx last = NULL_RTX, insn;
4747 switch (GET_CODE (x))
4749 case DEBUG_INSN:
4750 case INSN:
4751 case JUMP_INSN:
4752 case CALL_INSN:
4753 case CODE_LABEL:
4754 case BARRIER:
4755 case NOTE:
4756 insn = x;
4757 while (insn)
4759 rtx next = NEXT_INSN (insn);
4760 add_insn (insn);
4761 last = insn;
4762 insn = next;
4764 break;
4766 #ifdef ENABLE_RTL_CHECKING
4767 case SEQUENCE:
4768 gcc_unreachable ();
4769 break;
4770 #endif
4772 default:
4773 last = make_jump_insn_raw (x);
4774 add_insn (last);
4775 break;
4778 return last;
4781 /* Make an insn of code CALL_INSN with pattern X
4782 and add it to the end of the doubly-linked list. */
4785 emit_call_insn (rtx x)
4787 rtx insn;
4789 switch (GET_CODE (x))
4791 case DEBUG_INSN:
4792 case INSN:
4793 case JUMP_INSN:
4794 case CALL_INSN:
4795 case CODE_LABEL:
4796 case BARRIER:
4797 case NOTE:
4798 insn = emit_insn (x);
4799 break;
4801 #ifdef ENABLE_RTL_CHECKING
4802 case SEQUENCE:
4803 gcc_unreachable ();
4804 break;
4805 #endif
4807 default:
4808 insn = make_call_insn_raw (x);
4809 add_insn (insn);
4810 break;
4813 return insn;
4816 /* Add the label LABEL to the end of the doubly-linked list. */
4819 emit_label (rtx label)
4821 gcc_checking_assert (INSN_UID (label) == 0);
4822 INSN_UID (label) = cur_insn_uid++;
4823 add_insn (label);
4824 return label;
4827 /* Make an insn of code BARRIER
4828 and add it to the end of the doubly-linked list. */
4831 emit_barrier (void)
4833 rtx barrier = rtx_alloc (BARRIER);
4834 INSN_UID (barrier) = cur_insn_uid++;
4835 add_insn (barrier);
4836 return barrier;
4839 /* Emit a copy of note ORIG. */
4842 emit_note_copy (rtx orig)
4844 rtx note;
4846 note = rtx_alloc (NOTE);
4848 INSN_UID (note) = cur_insn_uid++;
4849 NOTE_DATA (note) = NOTE_DATA (orig);
4850 NOTE_KIND (note) = NOTE_KIND (orig);
4851 BLOCK_FOR_INSN (note) = NULL;
4852 add_insn (note);
4854 return note;
4857 /* Make an insn of code NOTE or type NOTE_NO
4858 and add it to the end of the doubly-linked list. */
4861 emit_note (enum insn_note kind)
4863 rtx note;
4865 note = rtx_alloc (NOTE);
4866 INSN_UID (note) = cur_insn_uid++;
4867 NOTE_KIND (note) = kind;
4868 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4869 BLOCK_FOR_INSN (note) = NULL;
4870 add_insn (note);
4871 return note;
4874 /* Emit a clobber of lvalue X. */
4877 emit_clobber (rtx x)
4879 /* CONCATs should not appear in the insn stream. */
4880 if (GET_CODE (x) == CONCAT)
4882 emit_clobber (XEXP (x, 0));
4883 return emit_clobber (XEXP (x, 1));
4885 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4888 /* Return a sequence of insns to clobber lvalue X. */
4891 gen_clobber (rtx x)
4893 rtx seq;
4895 start_sequence ();
4896 emit_clobber (x);
4897 seq = get_insns ();
4898 end_sequence ();
4899 return seq;
4902 /* Emit a use of rvalue X. */
4905 emit_use (rtx x)
4907 /* CONCATs should not appear in the insn stream. */
4908 if (GET_CODE (x) == CONCAT)
4910 emit_use (XEXP (x, 0));
4911 return emit_use (XEXP (x, 1));
4913 return emit_insn (gen_rtx_USE (VOIDmode, x));
4916 /* Return a sequence of insns to use rvalue X. */
4919 gen_use (rtx x)
4921 rtx seq;
4923 start_sequence ();
4924 emit_use (x);
4925 seq = get_insns ();
4926 end_sequence ();
4927 return seq;
4930 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4931 note of this type already exists, remove it first. */
4934 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4936 rtx note = find_reg_note (insn, kind, NULL_RTX);
4938 switch (kind)
4940 case REG_EQUAL:
4941 case REG_EQUIV:
4942 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4943 has multiple sets (some callers assume single_set
4944 means the insn only has one set, when in fact it
4945 means the insn only has one * useful * set). */
4946 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4948 gcc_assert (!note);
4949 return NULL_RTX;
4952 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4953 It serves no useful purpose and breaks eliminate_regs. */
4954 if (GET_CODE (datum) == ASM_OPERANDS)
4955 return NULL_RTX;
4957 if (note)
4959 XEXP (note, 0) = datum;
4960 df_notes_rescan (insn);
4961 return note;
4963 break;
4965 default:
4966 if (note)
4968 XEXP (note, 0) = datum;
4969 return note;
4971 break;
4974 add_reg_note (insn, kind, datum);
4976 switch (kind)
4978 case REG_EQUAL:
4979 case REG_EQUIV:
4980 df_notes_rescan (insn);
4981 break;
4982 default:
4983 break;
4986 return REG_NOTES (insn);
4989 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
4991 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
4993 rtx set = single_set (insn);
4995 if (set && SET_DEST (set) == dst)
4996 return set_unique_reg_note (insn, kind, datum);
4997 return NULL_RTX;
5000 /* Return an indication of which type of insn should have X as a body.
5001 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5003 static enum rtx_code
5004 classify_insn (rtx x)
5006 if (LABEL_P (x))
5007 return CODE_LABEL;
5008 if (GET_CODE (x) == CALL)
5009 return CALL_INSN;
5010 if (ANY_RETURN_P (x))
5011 return JUMP_INSN;
5012 if (GET_CODE (x) == SET)
5014 if (SET_DEST (x) == pc_rtx)
5015 return JUMP_INSN;
5016 else if (GET_CODE (SET_SRC (x)) == CALL)
5017 return CALL_INSN;
5018 else
5019 return INSN;
5021 if (GET_CODE (x) == PARALLEL)
5023 int j;
5024 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5025 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5026 return CALL_INSN;
5027 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5028 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5029 return JUMP_INSN;
5030 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5031 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5032 return CALL_INSN;
5034 return INSN;
5037 /* Emit the rtl pattern X as an appropriate kind of insn.
5038 If X is a label, it is simply added into the insn chain. */
5041 emit (rtx x)
5043 enum rtx_code code = classify_insn (x);
5045 switch (code)
5047 case CODE_LABEL:
5048 return emit_label (x);
5049 case INSN:
5050 return emit_insn (x);
5051 case JUMP_INSN:
5053 rtx insn = emit_jump_insn (x);
5054 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5055 return emit_barrier ();
5056 return insn;
5058 case CALL_INSN:
5059 return emit_call_insn (x);
5060 case DEBUG_INSN:
5061 return emit_debug_insn (x);
5062 default:
5063 gcc_unreachable ();
5067 /* Space for free sequence stack entries. */
5068 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5070 /* Begin emitting insns to a sequence. If this sequence will contain
5071 something that might cause the compiler to pop arguments to function
5072 calls (because those pops have previously been deferred; see
5073 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5074 before calling this function. That will ensure that the deferred
5075 pops are not accidentally emitted in the middle of this sequence. */
5077 void
5078 start_sequence (void)
5080 struct sequence_stack *tem;
5082 if (free_sequence_stack != NULL)
5084 tem = free_sequence_stack;
5085 free_sequence_stack = tem->next;
5087 else
5088 tem = ggc_alloc_sequence_stack ();
5090 tem->next = seq_stack;
5091 tem->first = get_insns ();
5092 tem->last = get_last_insn ();
5094 seq_stack = tem;
5096 set_first_insn (0);
5097 set_last_insn (0);
5100 /* Set up the insn chain starting with FIRST as the current sequence,
5101 saving the previously current one. See the documentation for
5102 start_sequence for more information about how to use this function. */
5104 void
5105 push_to_sequence (rtx first)
5107 rtx last;
5109 start_sequence ();
5111 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5114 set_first_insn (first);
5115 set_last_insn (last);
5118 /* Like push_to_sequence, but take the last insn as an argument to avoid
5119 looping through the list. */
5121 void
5122 push_to_sequence2 (rtx first, rtx last)
5124 start_sequence ();
5126 set_first_insn (first);
5127 set_last_insn (last);
5130 /* Set up the outer-level insn chain
5131 as the current sequence, saving the previously current one. */
5133 void
5134 push_topmost_sequence (void)
5136 struct sequence_stack *stack, *top = NULL;
5138 start_sequence ();
5140 for (stack = seq_stack; stack; stack = stack->next)
5141 top = stack;
5143 set_first_insn (top->first);
5144 set_last_insn (top->last);
5147 /* After emitting to the outer-level insn chain, update the outer-level
5148 insn chain, and restore the previous saved state. */
5150 void
5151 pop_topmost_sequence (void)
5153 struct sequence_stack *stack, *top = NULL;
5155 for (stack = seq_stack; stack; stack = stack->next)
5156 top = stack;
5158 top->first = get_insns ();
5159 top->last = get_last_insn ();
5161 end_sequence ();
5164 /* After emitting to a sequence, restore previous saved state.
5166 To get the contents of the sequence just made, you must call
5167 `get_insns' *before* calling here.
5169 If the compiler might have deferred popping arguments while
5170 generating this sequence, and this sequence will not be immediately
5171 inserted into the instruction stream, use do_pending_stack_adjust
5172 before calling get_insns. That will ensure that the deferred
5173 pops are inserted into this sequence, and not into some random
5174 location in the instruction stream. See INHIBIT_DEFER_POP for more
5175 information about deferred popping of arguments. */
5177 void
5178 end_sequence (void)
5180 struct sequence_stack *tem = seq_stack;
5182 set_first_insn (tem->first);
5183 set_last_insn (tem->last);
5184 seq_stack = tem->next;
5186 memset (tem, 0, sizeof (*tem));
5187 tem->next = free_sequence_stack;
5188 free_sequence_stack = tem;
5191 /* Return 1 if currently emitting into a sequence. */
5194 in_sequence_p (void)
5196 return seq_stack != 0;
5199 /* Put the various virtual registers into REGNO_REG_RTX. */
5201 static void
5202 init_virtual_regs (void)
5204 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5205 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5206 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5207 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5208 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5209 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5210 = virtual_preferred_stack_boundary_rtx;
5214 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5215 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5216 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5217 static int copy_insn_n_scratches;
5219 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5220 copied an ASM_OPERANDS.
5221 In that case, it is the original input-operand vector. */
5222 static rtvec orig_asm_operands_vector;
5224 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5225 copied an ASM_OPERANDS.
5226 In that case, it is the copied input-operand vector. */
5227 static rtvec copy_asm_operands_vector;
5229 /* Likewise for the constraints vector. */
5230 static rtvec orig_asm_constraints_vector;
5231 static rtvec copy_asm_constraints_vector;
5233 /* Recursively create a new copy of an rtx for copy_insn.
5234 This function differs from copy_rtx in that it handles SCRATCHes and
5235 ASM_OPERANDs properly.
5236 Normally, this function is not used directly; use copy_insn as front end.
5237 However, you could first copy an insn pattern with copy_insn and then use
5238 this function afterwards to properly copy any REG_NOTEs containing
5239 SCRATCHes. */
5242 copy_insn_1 (rtx orig)
5244 rtx copy;
5245 int i, j;
5246 RTX_CODE code;
5247 const char *format_ptr;
5249 if (orig == NULL)
5250 return NULL;
5252 code = GET_CODE (orig);
5254 switch (code)
5256 case REG:
5257 case DEBUG_EXPR:
5258 CASE_CONST_ANY:
5259 case SYMBOL_REF:
5260 case CODE_LABEL:
5261 case PC:
5262 case CC0:
5263 case RETURN:
5264 case SIMPLE_RETURN:
5265 return orig;
5266 case CLOBBER:
5267 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5268 return orig;
5269 break;
5271 case SCRATCH:
5272 for (i = 0; i < copy_insn_n_scratches; i++)
5273 if (copy_insn_scratch_in[i] == orig)
5274 return copy_insn_scratch_out[i];
5275 break;
5277 case CONST:
5278 if (shared_const_p (orig))
5279 return orig;
5280 break;
5282 /* A MEM with a constant address is not sharable. The problem is that
5283 the constant address may need to be reloaded. If the mem is shared,
5284 then reloading one copy of this mem will cause all copies to appear
5285 to have been reloaded. */
5287 default:
5288 break;
5291 /* Copy the various flags, fields, and other information. We assume
5292 that all fields need copying, and then clear the fields that should
5293 not be copied. That is the sensible default behavior, and forces
5294 us to explicitly document why we are *not* copying a flag. */
5295 copy = shallow_copy_rtx (orig);
5297 /* We do not copy the USED flag, which is used as a mark bit during
5298 walks over the RTL. */
5299 RTX_FLAG (copy, used) = 0;
5301 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5302 if (INSN_P (orig))
5304 RTX_FLAG (copy, jump) = 0;
5305 RTX_FLAG (copy, call) = 0;
5306 RTX_FLAG (copy, frame_related) = 0;
5309 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5311 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5312 switch (*format_ptr++)
5314 case 'e':
5315 if (XEXP (orig, i) != NULL)
5316 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5317 break;
5319 case 'E':
5320 case 'V':
5321 if (XVEC (orig, i) == orig_asm_constraints_vector)
5322 XVEC (copy, i) = copy_asm_constraints_vector;
5323 else if (XVEC (orig, i) == orig_asm_operands_vector)
5324 XVEC (copy, i) = copy_asm_operands_vector;
5325 else if (XVEC (orig, i) != NULL)
5327 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5328 for (j = 0; j < XVECLEN (copy, i); j++)
5329 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5331 break;
5333 case 't':
5334 case 'w':
5335 case 'i':
5336 case 's':
5337 case 'S':
5338 case 'u':
5339 case '0':
5340 /* These are left unchanged. */
5341 break;
5343 default:
5344 gcc_unreachable ();
5347 if (code == SCRATCH)
5349 i = copy_insn_n_scratches++;
5350 gcc_assert (i < MAX_RECOG_OPERANDS);
5351 copy_insn_scratch_in[i] = orig;
5352 copy_insn_scratch_out[i] = copy;
5354 else if (code == ASM_OPERANDS)
5356 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5357 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5358 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5359 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5362 return copy;
5365 /* Create a new copy of an rtx.
5366 This function differs from copy_rtx in that it handles SCRATCHes and
5367 ASM_OPERANDs properly.
5368 INSN doesn't really have to be a full INSN; it could be just the
5369 pattern. */
5371 copy_insn (rtx insn)
5373 copy_insn_n_scratches = 0;
5374 orig_asm_operands_vector = 0;
5375 orig_asm_constraints_vector = 0;
5376 copy_asm_operands_vector = 0;
5377 copy_asm_constraints_vector = 0;
5378 return copy_insn_1 (insn);
5381 /* Initialize data structures and variables in this file
5382 before generating rtl for each function. */
5384 void
5385 init_emit (void)
5387 set_first_insn (NULL);
5388 set_last_insn (NULL);
5389 if (MIN_NONDEBUG_INSN_UID)
5390 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5391 else
5392 cur_insn_uid = 1;
5393 cur_debug_insn_uid = 1;
5394 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5395 first_label_num = label_num;
5396 seq_stack = NULL;
5398 /* Init the tables that describe all the pseudo regs. */
5400 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5402 crtl->emit.regno_pointer_align
5403 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5405 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
5407 /* Put copies of all the hard registers into regno_reg_rtx. */
5408 memcpy (regno_reg_rtx,
5409 initial_regno_reg_rtx,
5410 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5412 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5413 init_virtual_regs ();
5415 /* Indicate that the virtual registers and stack locations are
5416 all pointers. */
5417 REG_POINTER (stack_pointer_rtx) = 1;
5418 REG_POINTER (frame_pointer_rtx) = 1;
5419 REG_POINTER (hard_frame_pointer_rtx) = 1;
5420 REG_POINTER (arg_pointer_rtx) = 1;
5422 REG_POINTER (virtual_incoming_args_rtx) = 1;
5423 REG_POINTER (virtual_stack_vars_rtx) = 1;
5424 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5425 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5426 REG_POINTER (virtual_cfa_rtx) = 1;
5428 #ifdef STACK_BOUNDARY
5429 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5430 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5431 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5432 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5434 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5435 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5436 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5437 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5438 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5439 #endif
5441 #ifdef INIT_EXPANDERS
5442 INIT_EXPANDERS;
5443 #endif
5446 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5448 static rtx
5449 gen_const_vector (enum machine_mode mode, int constant)
5451 rtx tem;
5452 rtvec v;
5453 int units, i;
5454 enum machine_mode inner;
5456 units = GET_MODE_NUNITS (mode);
5457 inner = GET_MODE_INNER (mode);
5459 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5461 v = rtvec_alloc (units);
5463 /* We need to call this function after we set the scalar const_tiny_rtx
5464 entries. */
5465 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5467 for (i = 0; i < units; ++i)
5468 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5470 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5471 return tem;
5474 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5475 all elements are zero, and the one vector when all elements are one. */
5477 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5479 enum machine_mode inner = GET_MODE_INNER (mode);
5480 int nunits = GET_MODE_NUNITS (mode);
5481 rtx x;
5482 int i;
5484 /* Check to see if all of the elements have the same value. */
5485 x = RTVEC_ELT (v, nunits - 1);
5486 for (i = nunits - 2; i >= 0; i--)
5487 if (RTVEC_ELT (v, i) != x)
5488 break;
5490 /* If the values are all the same, check to see if we can use one of the
5491 standard constant vectors. */
5492 if (i == -1)
5494 if (x == CONST0_RTX (inner))
5495 return CONST0_RTX (mode);
5496 else if (x == CONST1_RTX (inner))
5497 return CONST1_RTX (mode);
5498 else if (x == CONSTM1_RTX (inner))
5499 return CONSTM1_RTX (mode);
5502 return gen_rtx_raw_CONST_VECTOR (mode, v);
5505 /* Initialise global register information required by all functions. */
5507 void
5508 init_emit_regs (void)
5510 int i;
5511 enum machine_mode mode;
5512 mem_attrs *attrs;
5514 /* Reset register attributes */
5515 htab_empty (reg_attrs_htab);
5517 /* We need reg_raw_mode, so initialize the modes now. */
5518 init_reg_modes_target ();
5520 /* Assign register numbers to the globally defined register rtx. */
5521 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5522 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5523 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5524 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5525 virtual_incoming_args_rtx =
5526 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5527 virtual_stack_vars_rtx =
5528 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5529 virtual_stack_dynamic_rtx =
5530 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5531 virtual_outgoing_args_rtx =
5532 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5533 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5534 virtual_preferred_stack_boundary_rtx =
5535 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5537 /* Initialize RTL for commonly used hard registers. These are
5538 copied into regno_reg_rtx as we begin to compile each function. */
5539 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5540 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5542 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5543 return_address_pointer_rtx
5544 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5545 #endif
5547 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5548 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5549 else
5550 pic_offset_table_rtx = NULL_RTX;
5552 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5554 mode = (enum machine_mode) i;
5555 attrs = ggc_alloc_cleared_mem_attrs ();
5556 attrs->align = BITS_PER_UNIT;
5557 attrs->addrspace = ADDR_SPACE_GENERIC;
5558 if (mode != BLKmode)
5560 attrs->size_known_p = true;
5561 attrs->size = GET_MODE_SIZE (mode);
5562 if (STRICT_ALIGNMENT)
5563 attrs->align = GET_MODE_ALIGNMENT (mode);
5565 mode_mem_attrs[i] = attrs;
5569 /* Create some permanent unique rtl objects shared between all functions. */
5571 void
5572 init_emit_once (void)
5574 int i;
5575 enum machine_mode mode;
5576 enum machine_mode double_mode;
5578 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5579 hash tables. */
5580 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5581 const_int_htab_eq, NULL);
5583 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5584 const_double_htab_eq, NULL);
5586 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5587 const_fixed_htab_eq, NULL);
5589 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5590 mem_attrs_htab_eq, NULL);
5591 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5592 reg_attrs_htab_eq, NULL);
5594 /* Compute the word and byte modes. */
5596 byte_mode = VOIDmode;
5597 word_mode = VOIDmode;
5598 double_mode = VOIDmode;
5600 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5601 mode != VOIDmode;
5602 mode = GET_MODE_WIDER_MODE (mode))
5604 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5605 && byte_mode == VOIDmode)
5606 byte_mode = mode;
5608 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5609 && word_mode == VOIDmode)
5610 word_mode = mode;
5613 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5614 mode != VOIDmode;
5615 mode = GET_MODE_WIDER_MODE (mode))
5617 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5618 && double_mode == VOIDmode)
5619 double_mode = mode;
5622 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5624 #ifdef INIT_EXPANDERS
5625 /* This is to initialize {init|mark|free}_machine_status before the first
5626 call to push_function_context_to. This is needed by the Chill front
5627 end which calls push_function_context_to before the first call to
5628 init_function_start. */
5629 INIT_EXPANDERS;
5630 #endif
5632 /* Create the unique rtx's for certain rtx codes and operand values. */
5634 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5635 tries to use these variables. */
5636 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5637 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5638 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5640 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5641 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5642 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5643 else
5644 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5646 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5647 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5648 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5650 dconstm1 = dconst1;
5651 dconstm1.sign = 1;
5653 dconsthalf = dconst1;
5654 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5656 for (i = 0; i < 3; i++)
5658 const REAL_VALUE_TYPE *const r =
5659 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5661 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5662 mode != VOIDmode;
5663 mode = GET_MODE_WIDER_MODE (mode))
5664 const_tiny_rtx[i][(int) mode] =
5665 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5667 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5668 mode != VOIDmode;
5669 mode = GET_MODE_WIDER_MODE (mode))
5670 const_tiny_rtx[i][(int) mode] =
5671 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5673 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5675 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5676 mode != VOIDmode;
5677 mode = GET_MODE_WIDER_MODE (mode))
5678 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5680 for (mode = MIN_MODE_PARTIAL_INT;
5681 mode <= MAX_MODE_PARTIAL_INT;
5682 mode = (enum machine_mode)((int)(mode) + 1))
5683 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5686 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5688 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5689 mode != VOIDmode;
5690 mode = GET_MODE_WIDER_MODE (mode))
5691 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5693 for (mode = MIN_MODE_PARTIAL_INT;
5694 mode <= MAX_MODE_PARTIAL_INT;
5695 mode = (enum machine_mode)((int)(mode) + 1))
5696 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5698 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5699 mode != VOIDmode;
5700 mode = GET_MODE_WIDER_MODE (mode))
5702 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5703 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5707 mode != VOIDmode;
5708 mode = GET_MODE_WIDER_MODE (mode))
5710 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5711 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5715 mode != VOIDmode;
5716 mode = GET_MODE_WIDER_MODE (mode))
5718 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5719 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5720 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
5723 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5724 mode != VOIDmode;
5725 mode = GET_MODE_WIDER_MODE (mode))
5727 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5728 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5731 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5732 mode != VOIDmode;
5733 mode = GET_MODE_WIDER_MODE (mode))
5735 FCONST0(mode).data.high = 0;
5736 FCONST0(mode).data.low = 0;
5737 FCONST0(mode).mode = mode;
5738 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5739 FCONST0 (mode), mode);
5742 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5743 mode != VOIDmode;
5744 mode = GET_MODE_WIDER_MODE (mode))
5746 FCONST0(mode).data.high = 0;
5747 FCONST0(mode).data.low = 0;
5748 FCONST0(mode).mode = mode;
5749 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5750 FCONST0 (mode), mode);
5753 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5754 mode != VOIDmode;
5755 mode = GET_MODE_WIDER_MODE (mode))
5757 FCONST0(mode).data.high = 0;
5758 FCONST0(mode).data.low = 0;
5759 FCONST0(mode).mode = mode;
5760 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5761 FCONST0 (mode), mode);
5763 /* We store the value 1. */
5764 FCONST1(mode).data.high = 0;
5765 FCONST1(mode).data.low = 0;
5766 FCONST1(mode).mode = mode;
5767 lshift_double (1, 0, GET_MODE_FBIT (mode),
5768 HOST_BITS_PER_DOUBLE_INT,
5769 &FCONST1(mode).data.low,
5770 &FCONST1(mode).data.high,
5771 SIGNED_FIXED_POINT_MODE_P (mode));
5772 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5773 FCONST1 (mode), mode);
5776 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5777 mode != VOIDmode;
5778 mode = GET_MODE_WIDER_MODE (mode))
5780 FCONST0(mode).data.high = 0;
5781 FCONST0(mode).data.low = 0;
5782 FCONST0(mode).mode = mode;
5783 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5784 FCONST0 (mode), mode);
5786 /* We store the value 1. */
5787 FCONST1(mode).data.high = 0;
5788 FCONST1(mode).data.low = 0;
5789 FCONST1(mode).mode = mode;
5790 lshift_double (1, 0, GET_MODE_FBIT (mode),
5791 HOST_BITS_PER_DOUBLE_INT,
5792 &FCONST1(mode).data.low,
5793 &FCONST1(mode).data.high,
5794 SIGNED_FIXED_POINT_MODE_P (mode));
5795 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5796 FCONST1 (mode), mode);
5799 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5800 mode != VOIDmode;
5801 mode = GET_MODE_WIDER_MODE (mode))
5803 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5810 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5813 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5814 mode != VOIDmode;
5815 mode = GET_MODE_WIDER_MODE (mode))
5817 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5818 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5821 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5822 mode != VOIDmode;
5823 mode = GET_MODE_WIDER_MODE (mode))
5825 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5826 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5829 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5830 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5831 const_tiny_rtx[0][i] = const0_rtx;
5833 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5834 if (STORE_FLAG_VALUE == 1)
5835 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5837 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5838 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5839 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5840 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
5843 /* Produce exact duplicate of insn INSN after AFTER.
5844 Care updating of libcall regions if present. */
5847 emit_copy_of_insn_after (rtx insn, rtx after)
5849 rtx new_rtx, link;
5851 switch (GET_CODE (insn))
5853 case INSN:
5854 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5855 break;
5857 case JUMP_INSN:
5858 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5859 break;
5861 case DEBUG_INSN:
5862 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5863 break;
5865 case CALL_INSN:
5866 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5867 if (CALL_INSN_FUNCTION_USAGE (insn))
5868 CALL_INSN_FUNCTION_USAGE (new_rtx)
5869 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5870 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5871 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5872 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5873 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
5874 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
5875 break;
5877 default:
5878 gcc_unreachable ();
5881 /* Update LABEL_NUSES. */
5882 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
5884 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
5886 /* If the old insn is frame related, then so is the new one. This is
5887 primarily needed for IA-64 unwind info which marks epilogue insns,
5888 which may be duplicated by the basic block reordering code. */
5889 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
5891 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5892 will make them. REG_LABEL_TARGETs are created there too, but are
5893 supposed to be sticky, so we copy them. */
5894 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5895 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5897 if (GET_CODE (link) == EXPR_LIST)
5898 add_reg_note (new_rtx, REG_NOTE_KIND (link),
5899 copy_insn_1 (XEXP (link, 0)));
5900 else
5901 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
5904 INSN_CODE (new_rtx) = INSN_CODE (insn);
5905 return new_rtx;
5908 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5910 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5912 if (hard_reg_clobbers[mode][regno])
5913 return hard_reg_clobbers[mode][regno];
5914 else
5915 return (hard_reg_clobbers[mode][regno] =
5916 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5919 /* Data structures representing mapping of INSN_LOCATOR into scope blocks, line
5920 numbers and files. In order to be GGC friendly we need to use separate
5921 varrays. This also slightly improve the memory locality in binary search.
5922 The _locs array contains locators where the given property change. The
5923 block_locators_blocks contains the scope block that is used for all insn
5924 locator greater than corresponding block_locators_locs value and smaller
5925 than the following one. Similarly for the other properties. */
5926 static VEC(int,heap) *block_locators_locs;
5927 static GTY(()) VEC(tree,gc) *block_locators_blocks;
5928 static VEC(int,heap) *locations_locators_locs;
5929 DEF_VEC_A(location_t);
5930 DEF_VEC_ALLOC_A(location_t,heap);
5931 static VEC(location_t,heap) *locations_locators_vals;
5932 int prologue_locator;
5933 int epilogue_locator;
5935 /* Hold current location information and last location information, so the
5936 datastructures are built lazily only when some instructions in given
5937 place are needed. */
5938 static location_t curr_location, last_location;
5939 static tree curr_block, last_block;
5940 static int curr_rtl_loc = -1;
5942 /* Allocate insn locator datastructure. */
5943 void
5944 insn_locators_alloc (void)
5946 prologue_locator = epilogue_locator = 0;
5948 block_locators_locs = VEC_alloc (int, heap, 32);
5949 block_locators_blocks = VEC_alloc (tree, gc, 32);
5950 locations_locators_locs = VEC_alloc (int, heap, 32);
5951 locations_locators_vals = VEC_alloc (location_t, heap, 32);
5953 curr_location = UNKNOWN_LOCATION;
5954 last_location = UNKNOWN_LOCATION;
5955 curr_block = NULL;
5956 last_block = NULL;
5957 curr_rtl_loc = 0;
5960 /* At the end of emit stage, clear current location. */
5961 void
5962 insn_locators_finalize (void)
5964 if (curr_rtl_loc >= 0)
5965 epilogue_locator = curr_insn_locator ();
5966 curr_rtl_loc = -1;
5969 /* Allocate insn locator datastructure. */
5970 void
5971 insn_locators_free (void)
5973 prologue_locator = epilogue_locator = 0;
5975 VEC_free (int, heap, block_locators_locs);
5976 VEC_free (tree,gc, block_locators_blocks);
5977 VEC_free (int, heap, locations_locators_locs);
5978 VEC_free (location_t, heap, locations_locators_vals);
5981 /* Set current location. */
5982 void
5983 set_curr_insn_source_location (location_t location)
5985 /* IV opts calls into RTL expansion to compute costs of operations. At this
5986 time locators are not initialized. */
5987 if (curr_rtl_loc == -1)
5988 return;
5989 curr_location = location;
5992 /* Get current location. */
5993 location_t
5994 get_curr_insn_source_location (void)
5996 return curr_location;
5999 /* Set current scope block. */
6000 void
6001 set_curr_insn_block (tree b)
6003 /* IV opts calls into RTL expansion to compute costs of operations. At this
6004 time locators are not initialized. */
6005 if (curr_rtl_loc == -1)
6006 return;
6007 if (b)
6008 curr_block = b;
6011 /* Get current scope block. */
6012 tree
6013 get_curr_insn_block (void)
6015 return curr_block;
6018 /* Return current insn locator. */
6020 curr_insn_locator (void)
6022 if (curr_rtl_loc == -1 || curr_location == UNKNOWN_LOCATION)
6023 return 0;
6024 if (last_block != curr_block)
6026 curr_rtl_loc++;
6027 VEC_safe_push (int, heap, block_locators_locs, curr_rtl_loc);
6028 VEC_safe_push (tree, gc, block_locators_blocks, curr_block);
6029 last_block = curr_block;
6031 if (last_location != curr_location)
6033 curr_rtl_loc++;
6034 VEC_safe_push (int, heap, locations_locators_locs, curr_rtl_loc);
6035 VEC_safe_push (location_t, heap, locations_locators_vals, curr_location);
6036 last_location = curr_location;
6038 return curr_rtl_loc;
6042 /* Return lexical scope block locator belongs to. */
6043 static tree
6044 locator_scope (int loc)
6046 int max = VEC_length (int, block_locators_locs);
6047 int min = 0;
6049 /* When block_locators_locs was initialized, the pro- and epilogue
6050 insns didn't exist yet and can therefore not be found this way.
6051 But we know that they belong to the outer most block of the
6052 current function.
6053 Without this test, the prologue would be put inside the block of
6054 the first valid instruction in the function and when that first
6055 insn is part of an inlined function then the low_pc of that
6056 inlined function is messed up. Likewise for the epilogue and
6057 the last valid instruction. */
6058 if (loc == prologue_locator || loc == epilogue_locator)
6059 return DECL_INITIAL (cfun->decl);
6061 if (!max || !loc)
6062 return NULL;
6063 while (1)
6065 int pos = (min + max) / 2;
6066 int tmp = VEC_index (int, block_locators_locs, pos);
6068 if (tmp <= loc && min != pos)
6069 min = pos;
6070 else if (tmp > loc && max != pos)
6071 max = pos;
6072 else
6074 min = pos;
6075 break;
6078 return VEC_index (tree, block_locators_blocks, min);
6081 /* Return lexical scope block insn belongs to. */
6082 tree
6083 insn_scope (const_rtx insn)
6085 return locator_scope (INSN_LOCATOR (insn));
6088 /* Return line number of the statement specified by the locator. */
6089 location_t
6090 locator_location (int loc)
6092 int max = VEC_length (int, locations_locators_locs);
6093 int min = 0;
6095 while (1)
6097 int pos = (min + max) / 2;
6098 int tmp = VEC_index (int, locations_locators_locs, pos);
6100 if (tmp <= loc && min != pos)
6101 min = pos;
6102 else if (tmp > loc && max != pos)
6103 max = pos;
6104 else
6106 min = pos;
6107 break;
6110 return VEC_index (location_t, locations_locators_vals, min);
6113 /* Return source line of the statement that produced this insn. */
6115 locator_line (int loc)
6117 expanded_location xloc;
6118 if (!loc)
6119 return 0;
6120 else
6121 xloc = expand_location (locator_location (loc));
6122 return xloc.line;
6125 /* Return line number of the statement that produced this insn. */
6127 insn_line (const_rtx insn)
6129 return locator_line (INSN_LOCATOR (insn));
6132 /* Return source file of the statement specified by LOC. */
6133 const char *
6134 locator_file (int loc)
6136 expanded_location xloc;
6137 if (!loc)
6138 return 0;
6139 else
6140 xloc = expand_location (locator_location (loc));
6141 return xloc.file;
6144 /* Return source file of the statement that produced this insn. */
6145 const char *
6146 insn_file (const_rtx insn)
6148 return locator_file (INSN_LOCATOR (insn));
6151 /* Return true if LOC1 and LOC2 locators have the same location and scope. */
6152 bool
6153 locator_eq (int loc1, int loc2)
6155 if (loc1 == loc2)
6156 return true;
6157 if (locator_location (loc1) != locator_location (loc2))
6158 return false;
6159 return locator_scope (loc1) == locator_scope (loc2);
6163 /* Return true if memory model MODEL requires a pre-operation (release-style)
6164 barrier or a post-operation (acquire-style) barrier. While not universal,
6165 this function matches behavior of several targets. */
6167 bool
6168 need_atomic_barrier_p (enum memmodel model, bool pre)
6170 switch (model)
6172 case MEMMODEL_RELAXED:
6173 case MEMMODEL_CONSUME:
6174 return false;
6175 case MEMMODEL_RELEASE:
6176 return pre;
6177 case MEMMODEL_ACQUIRE:
6178 return !pre;
6179 case MEMMODEL_ACQ_REL:
6180 case MEMMODEL_SEQ_CST:
6181 return true;
6182 default:
6183 gcc_unreachable ();
6187 #include "gt-emit-rtl.h"