gcc/:
[official-gcc.git] / gcc / ira.c
blobdf5e7957009cbe8d2c96f70288b25cfad92a61d1
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "expr.h"
314 #include "recog.h"
315 #include "params.h"
316 #include "timevar.h"
317 #include "tree-pass.h"
318 #include "output.h"
319 #include "except.h"
320 #include "reload.h"
321 #include "errors.h"
322 #include "integrate.h"
323 #include "df.h"
324 #include "ggc.h"
325 #include "ira-int.h"
328 /* A modified value of flag `-fira-verbose' used internally. */
329 int internal_flag_ira_verbose;
331 /* Dump file of the allocator if it is not NULL. */
332 FILE *ira_dump_file;
334 /* Pools for allocnos, copies, allocno live ranges. */
335 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
337 /* The number of elements in the following array. */
338 int ira_spilled_reg_stack_slots_num;
340 /* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
344 /* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348 int ira_overall_cost;
349 int ira_reg_cost, ira_mem_cost;
350 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351 int ira_move_loops_num, ira_additional_jumps_num;
353 /* All registers that can be eliminated. */
355 HARD_REG_SET eliminable_regset;
357 /* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
361 /* The following two variables are array analogs of the macros
362 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
363 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
366 /* Similar to may_move_in_cost but it is calculated in IRA instead of
367 regclass. Another difference is that we take only available hard
368 registers into account to figure out that one register class is a
369 subset of the another one. */
370 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
372 /* Similar to may_move_out_cost but it is calculated in IRA instead of
373 regclass. Another difference is that we take only available hard
374 registers into account to figure out that one register class is a
375 subset of the another one. */
376 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
378 /* Register class subset relation: TRUE if the first class is a subset
379 of the second one considering only hard registers available for the
380 allocation. */
381 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
383 /* Temporary hard reg set used for a different calculation. */
384 static HARD_REG_SET temp_hard_regset;
388 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
389 static void
390 setup_reg_mode_hard_regset (void)
392 int i, m, hard_regno;
394 for (m = 0; m < NUM_MACHINE_MODES; m++)
395 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
397 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
398 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
399 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
400 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
401 hard_regno + i);
407 /* Hard registers that can not be used for the register allocator for
408 all functions of the current compilation unit. */
409 static HARD_REG_SET no_unit_alloc_regs;
411 /* Array of the number of hard registers of given class which are
412 available for allocation. The order is defined by the
413 allocation order. */
414 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
416 /* The number of elements of the above array for given register
417 class. */
418 int ira_class_hard_regs_num[N_REG_CLASSES];
420 /* Index (in ira_class_hard_regs) for given register class and hard
421 register (in general case a hard register can belong to several
422 register classes). The index is negative for hard registers
423 unavailable for the allocation. */
424 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
426 /* The function sets up the three arrays declared above. */
427 static void
428 setup_class_hard_regs (void)
430 int cl, i, hard_regno, n;
431 HARD_REG_SET processed_hard_reg_set;
433 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
434 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
435 putting hard callee-used hard registers first). But our
436 heuristics work better. */
437 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
439 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
440 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
441 CLEAR_HARD_REG_SET (processed_hard_reg_set);
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 ira_class_hard_reg_index[cl][0] = -1;
444 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
446 #ifdef REG_ALLOC_ORDER
447 hard_regno = reg_alloc_order[i];
448 #else
449 hard_regno = i;
450 #endif
451 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
452 continue;
453 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
454 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
455 ira_class_hard_reg_index[cl][hard_regno] = -1;
456 else
458 ira_class_hard_reg_index[cl][hard_regno] = n;
459 ira_class_hard_regs[cl][n++] = hard_regno;
462 ira_class_hard_regs_num[cl] = n;
466 /* Number of given class hard registers available for the register
467 allocation for given classes. */
468 int ira_available_class_regs[N_REG_CLASSES];
470 /* Set up IRA_AVAILABLE_CLASS_REGS. */
471 static void
472 setup_available_class_regs (void)
474 int i, j;
476 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
477 for (i = 0; i < N_REG_CLASSES; i++)
479 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
480 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
483 ira_available_class_regs[i]++;
487 /* Set up global variables defining info about hard registers for the
488 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
489 that we can use the hard frame pointer for the allocation. */
490 static void
491 setup_alloc_regs (bool use_hard_frame_p)
493 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
494 if (! use_hard_frame_p)
495 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
496 setup_class_hard_regs ();
497 setup_available_class_regs ();
502 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
503 static void
504 setup_class_subset_and_memory_move_costs (void)
506 int cl, cl2;
507 enum machine_mode mode;
508 HARD_REG_SET temp_hard_regset2;
510 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
511 ira_memory_move_cost[mode][NO_REGS][0]
512 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
513 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
515 if (cl != (int) NO_REGS)
516 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
518 ira_memory_move_cost[mode][cl][0] =
519 MEMORY_MOVE_COST (mode, (enum reg_class) cl, 0);
520 ira_memory_move_cost[mode][cl][1] =
521 MEMORY_MOVE_COST (mode, (enum reg_class) cl, 1);
522 /* Costs for NO_REGS are used in cost calculation on the
523 1st pass when the preferred register classes are not
524 known yet. In this case we take the best scenario. */
525 if (ira_memory_move_cost[mode][NO_REGS][0]
526 > ira_memory_move_cost[mode][cl][0])
527 ira_memory_move_cost[mode][NO_REGS][0]
528 = ira_memory_move_cost[mode][cl][0];
529 if (ira_memory_move_cost[mode][NO_REGS][1]
530 > ira_memory_move_cost[mode][cl][1])
531 ira_memory_move_cost[mode][NO_REGS][1]
532 = ira_memory_move_cost[mode][cl][1];
534 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
536 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
537 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
538 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
539 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
540 ira_class_subset_p[cl][cl2]
541 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
548 /* Define the following macro if allocation through malloc if
549 preferable. */
550 #define IRA_NO_OBSTACK
552 #ifndef IRA_NO_OBSTACK
553 /* Obstack used for storing all dynamic data (except bitmaps) of the
554 IRA. */
555 static struct obstack ira_obstack;
556 #endif
558 /* Obstack used for storing all bitmaps of the IRA. */
559 static struct bitmap_obstack ira_bitmap_obstack;
561 /* Allocate memory of size LEN for IRA data. */
562 void *
563 ira_allocate (size_t len)
565 void *res;
567 #ifndef IRA_NO_OBSTACK
568 res = obstack_alloc (&ira_obstack, len);
569 #else
570 res = xmalloc (len);
571 #endif
572 return res;
575 /* Reallocate memory PTR of size LEN for IRA data. */
576 void *
577 ira_reallocate (void *ptr, size_t len)
579 void *res;
581 #ifndef IRA_NO_OBSTACK
582 res = obstack_alloc (&ira_obstack, len);
583 #else
584 res = xrealloc (ptr, len);
585 #endif
586 return res;
589 /* Free memory ADDR allocated for IRA data. */
590 void
591 ira_free (void *addr ATTRIBUTE_UNUSED)
593 #ifndef IRA_NO_OBSTACK
594 /* do nothing */
595 #else
596 free (addr);
597 #endif
601 /* Allocate and returns bitmap for IRA. */
602 bitmap
603 ira_allocate_bitmap (void)
605 return BITMAP_ALLOC (&ira_bitmap_obstack);
608 /* Free bitmap B allocated for IRA. */
609 void
610 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
612 /* do nothing */
617 /* Output information about allocation of all allocnos (except for
618 caps) into file F. */
619 void
620 ira_print_disposition (FILE *f)
622 int i, n, max_regno;
623 ira_allocno_t a;
624 basic_block bb;
626 fprintf (f, "Disposition:");
627 max_regno = max_reg_num ();
628 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
629 for (a = ira_regno_allocno_map[i];
630 a != NULL;
631 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
633 if (n % 4 == 0)
634 fprintf (f, "\n");
635 n++;
636 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
637 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
638 fprintf (f, "b%-3d", bb->index);
639 else
640 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
641 if (ALLOCNO_HARD_REGNO (a) >= 0)
642 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
643 else
644 fprintf (f, " mem");
646 fprintf (f, "\n");
649 /* Outputs information about allocation of all allocnos into
650 stderr. */
651 void
652 ira_debug_disposition (void)
654 ira_print_disposition (stderr);
659 /* For each reg class, table listing all the classes contained in it
660 (excluding the class itself. Non-allocatable registers are
661 excluded from the consideration). */
662 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
664 /* Initialize the table of subclasses of each reg class. */
665 static void
666 setup_reg_subclasses (void)
668 int i, j;
669 HARD_REG_SET temp_hard_regset2;
671 for (i = 0; i < N_REG_CLASSES; i++)
672 for (j = 0; j < N_REG_CLASSES; j++)
673 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
675 for (i = 0; i < N_REG_CLASSES; i++)
677 if (i == (int) NO_REGS)
678 continue;
680 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
681 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
682 if (hard_reg_set_empty_p (temp_hard_regset))
683 continue;
684 for (j = 0; j < N_REG_CLASSES; j++)
685 if (i != j)
687 enum reg_class *p;
689 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
690 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
691 if (! hard_reg_set_subset_p (temp_hard_regset,
692 temp_hard_regset2))
693 continue;
694 p = &alloc_reg_class_subclasses[j][0];
695 while (*p != LIM_REG_CLASSES) p++;
696 *p = (enum reg_class) i;
703 /* Number of cover classes. Cover classes is non-intersected register
704 classes containing all hard-registers available for the
705 allocation. */
706 int ira_reg_class_cover_size;
708 /* The array containing cover classes (see also comments for macro
709 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
710 used for this. */
711 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
713 /* The number of elements in the subsequent array. */
714 int ira_important_classes_num;
716 /* The array containing non-empty classes (including non-empty cover
717 classes) which are subclasses of cover classes. Such classes is
718 important for calculation of the hard register usage costs. */
719 enum reg_class ira_important_classes[N_REG_CLASSES];
721 /* The array containing indexes of important classes in the previous
722 array. The array elements are defined only for important
723 classes. */
724 int ira_important_class_nums[N_REG_CLASSES];
726 /* Set the four global variables defined above. */
727 static void
728 setup_cover_and_important_classes (void)
730 int i, j, n;
731 bool set_p, eq_p;
732 enum reg_class cl;
733 const enum reg_class *cover_classes;
734 HARD_REG_SET temp_hard_regset2;
735 static enum reg_class classes[LIM_REG_CLASSES + 1];
737 if (targetm.ira_cover_classes == NULL)
738 cover_classes = NULL;
739 else
740 cover_classes = targetm.ira_cover_classes ();
741 if (cover_classes == NULL)
742 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
743 else
745 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
746 classes[i] = cl;
747 classes[i] = LIM_REG_CLASSES;
750 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
752 n = 0;
753 for (i = 0; i <= LIM_REG_CLASSES; i++)
755 if (i == NO_REGS)
756 continue;
757 #ifdef CONSTRAINT__LIMIT
758 for (j = 0; j < CONSTRAINT__LIMIT; j++)
759 if ((int) regclass_for_constraint (j) == i)
760 break;
761 if (j < CONSTRAINT__LIMIT)
763 classes[n++] = i;
764 continue;
766 #endif
767 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
768 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
769 for (j = 0; j < LIM_REG_CLASSES; j++)
771 if (i == j)
772 continue;
773 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
774 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
775 no_unit_alloc_regs);
776 if (hard_reg_set_equal_p (temp_hard_regset,
777 temp_hard_regset2))
778 break;
780 if (j >= i)
781 classes[n++] = i;
783 classes[n] = LIM_REG_CLASSES;
786 ira_reg_class_cover_size = 0;
787 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
789 for (j = 0; j < i; j++)
790 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
791 && reg_classes_intersect_p (cl, classes[j]))
792 gcc_unreachable ();
793 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
794 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
795 if (! hard_reg_set_empty_p (temp_hard_regset))
796 ira_reg_class_cover[ira_reg_class_cover_size++] = cl;
798 ira_important_classes_num = 0;
799 for (cl = 0; cl < N_REG_CLASSES; cl++)
801 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
802 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
803 if (! hard_reg_set_empty_p (temp_hard_regset))
805 set_p = eq_p = false;
806 for (j = 0; j < ira_reg_class_cover_size; j++)
808 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
809 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
810 COPY_HARD_REG_SET (temp_hard_regset2,
811 reg_class_contents[ira_reg_class_cover[j]]);
812 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
813 if (cl == ira_reg_class_cover[j])
815 eq_p = false;
816 set_p = true;
817 break;
819 else if (hard_reg_set_equal_p (temp_hard_regset,
820 temp_hard_regset2))
821 eq_p = true;
822 else if (hard_reg_set_subset_p (temp_hard_regset,
823 temp_hard_regset2))
824 set_p = true;
826 if (set_p && ! eq_p)
828 ira_important_class_nums[cl] = ira_important_classes_num;
829 ira_important_classes[ira_important_classes_num++] = cl;
835 /* Map of all register classes to corresponding cover class containing
836 the given class. If given class is not a subset of a cover class,
837 we translate it into the cheapest cover class. */
838 enum reg_class ira_class_translate[N_REG_CLASSES];
840 /* Set up array IRA_CLASS_TRANSLATE. */
841 static void
842 setup_class_translate (void)
844 enum reg_class cl, cover_class, best_class, *cl_ptr;
845 enum machine_mode mode;
846 int i, cost, min_cost, best_cost;
848 for (cl = 0; cl < N_REG_CLASSES; cl++)
849 ira_class_translate[cl] = NO_REGS;
851 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
852 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
854 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
855 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
856 for (i = 0; i < ira_reg_class_cover_size; i++)
858 HARD_REG_SET temp_hard_regset2;
860 cover_class = ira_reg_class_cover[i];
861 COPY_HARD_REG_SET (temp_hard_regset2,
862 reg_class_contents[cover_class]);
863 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
864 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
865 ira_class_translate[cl] = cover_class;
868 for (i = 0; i < ira_reg_class_cover_size; i++)
870 cover_class = ira_reg_class_cover[i];
871 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
872 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
873 (cl = *cl_ptr) != LIM_REG_CLASSES;
874 cl_ptr++)
876 if (ira_class_translate[cl] == NO_REGS)
877 ira_class_translate[cl] = cover_class;
878 #ifdef ENABLE_IRA_CHECKING
879 else
881 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
882 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
883 if (! hard_reg_set_empty_p (temp_hard_regset))
884 gcc_unreachable ();
886 #endif
888 ira_class_translate[cover_class] = cover_class;
890 /* For classes which are not fully covered by a cover class (in
891 other words covered by more one cover class), use the cheapest
892 cover class. */
893 for (cl = 0; cl < N_REG_CLASSES; cl++)
895 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
896 continue;
897 best_class = NO_REGS;
898 best_cost = INT_MAX;
899 for (i = 0; i < ira_reg_class_cover_size; i++)
901 cover_class = ira_reg_class_cover[i];
902 COPY_HARD_REG_SET (temp_hard_regset,
903 reg_class_contents[cover_class]);
904 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
905 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
906 if (! hard_reg_set_empty_p (temp_hard_regset))
908 min_cost = INT_MAX;
909 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
911 cost = (ira_memory_move_cost[mode][cl][0]
912 + ira_memory_move_cost[mode][cl][1]);
913 if (min_cost > cost)
914 min_cost = cost;
916 if (best_class == NO_REGS || best_cost > min_cost)
918 best_class = cover_class;
919 best_cost = min_cost;
923 ira_class_translate[cl] = best_class;
927 /* The biggest important reg_class inside of intersection of the two
928 reg_classes (that is calculated taking only hard registers
929 available for allocation into account). If the both reg_classes
930 contain no hard registers available for allocation, the value is
931 calculated by taking all hard-registers including fixed ones into
932 account. */
933 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
935 /* True if the two classes (that is calculated taking only hard
936 registers available for allocation into account) are
937 intersected. */
938 bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
940 /* Important classes with end marker LIM_REG_CLASSES which are
941 supersets with given important class (the first index). That
942 includes given class itself. This is calculated taking only hard
943 registers available for allocation into account. */
944 enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
946 /* The biggest important reg_class inside of union of the two
947 reg_classes (that is calculated taking only hard registers
948 available for allocation into account). If the both reg_classes
949 contain no hard registers available for allocation, the value is
950 calculated by taking all hard-registers including fixed ones into
951 account. In other words, the value is the corresponding
952 reg_class_subunion value. */
953 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
955 /* Set up the above reg class relations. */
956 static void
957 setup_reg_class_relations (void)
959 int i, cl1, cl2, cl3;
960 HARD_REG_SET intersection_set, union_set, temp_set2;
961 bool important_class_p[N_REG_CLASSES];
963 memset (important_class_p, 0, sizeof (important_class_p));
964 for (i = 0; i < ira_important_classes_num; i++)
965 important_class_p[ira_important_classes[i]] = true;
966 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
968 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
969 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
971 ira_reg_classes_intersect_p[cl1][cl2] = false;
972 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
973 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
974 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
975 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
976 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
977 if (hard_reg_set_empty_p (temp_hard_regset)
978 && hard_reg_set_empty_p (temp_set2))
980 for (i = 0;; i++)
982 cl3 = reg_class_subclasses[cl1][i];
983 if (cl3 == LIM_REG_CLASSES)
984 break;
985 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
986 (enum reg_class) cl3))
987 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
989 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
990 continue;
992 ira_reg_classes_intersect_p[cl1][cl2]
993 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
994 if (important_class_p[cl1] && important_class_p[cl2]
995 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
997 enum reg_class *p;
999 p = &ira_reg_class_super_classes[cl1][0];
1000 while (*p != LIM_REG_CLASSES)
1001 p++;
1002 *p++ = (enum reg_class) cl2;
1003 *p = LIM_REG_CLASSES;
1005 ira_reg_class_union[cl1][cl2] = NO_REGS;
1006 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1007 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1008 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1009 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1010 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1011 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1012 for (i = 0; i < ira_important_classes_num; i++)
1014 cl3 = ira_important_classes[i];
1015 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1016 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1017 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1019 COPY_HARD_REG_SET
1020 (temp_set2,
1021 reg_class_contents[(int)
1022 ira_reg_class_intersect[cl1][cl2]]);
1023 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1024 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1025 /* Ignore unavailable hard registers and prefer
1026 smallest class for debugging purposes. */
1027 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1028 && hard_reg_set_subset_p
1029 (reg_class_contents[cl3],
1030 reg_class_contents
1031 [(int) ira_reg_class_intersect[cl1][cl2]])))
1032 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1034 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1036 COPY_HARD_REG_SET
1037 (temp_set2,
1038 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1039 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1040 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1041 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1043 && (! hard_reg_set_equal_p (temp_set2,
1044 temp_hard_regset)
1045 /* Ignore unavailable hard registers and
1046 prefer smallest class for debugging
1047 purposes. */
1048 || hard_reg_set_subset_p
1049 (reg_class_contents[cl3],
1050 reg_class_contents
1051 [(int) ira_reg_class_union[cl1][cl2]]))))
1052 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1059 /* Output all cover classes and the translation map into file F. */
1060 static void
1061 print_class_cover (FILE *f)
1063 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1064 int i;
1066 fprintf (f, "Class cover:\n");
1067 for (i = 0; i < ira_reg_class_cover_size; i++)
1068 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1069 fprintf (f, "\nClass translation:\n");
1070 for (i = 0; i < N_REG_CLASSES; i++)
1071 fprintf (f, " %s -> %s\n", reg_class_names[i],
1072 reg_class_names[ira_class_translate[i]]);
1075 /* Output all cover classes and the translation map into
1076 stderr. */
1077 void
1078 ira_debug_class_cover (void)
1080 print_class_cover (stderr);
1083 /* Set up different arrays concerning class subsets, cover and
1084 important classes. */
1085 static void
1086 find_reg_class_closure (void)
1088 setup_reg_subclasses ();
1089 setup_cover_and_important_classes ();
1090 setup_class_translate ();
1091 setup_reg_class_relations ();
1096 /* Map: hard register number -> cover class it belongs to. If the
1097 corresponding class is NO_REGS, the hard register is not available
1098 for allocation. */
1099 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1101 /* Set up the array above. */
1102 static void
1103 setup_hard_regno_cover_class (void)
1105 int i, j;
1106 enum reg_class cl;
1108 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1110 ira_hard_regno_cover_class[i] = NO_REGS;
1111 for (j = 0; j < ira_reg_class_cover_size; j++)
1113 cl = ira_reg_class_cover[j];
1114 if (ira_class_hard_reg_index[cl][i] >= 0)
1116 ira_hard_regno_cover_class[i] = cl;
1117 break;
1126 /* Map: register class x machine mode -> number of hard registers of
1127 given class needed to store value of given mode. If the number is
1128 different, the size will be negative. */
1129 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1131 /* Maximal value of the previous array elements. */
1132 int ira_max_nregs;
1134 /* Form IRA_REG_CLASS_NREGS map. */
1135 static void
1136 setup_reg_class_nregs (void)
1138 int cl, m;
1140 ira_max_nregs = -1;
1141 for (cl = 0; cl < N_REG_CLASSES; cl++)
1142 for (m = 0; m < MAX_MACHINE_MODE; m++)
1144 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1145 (enum machine_mode) m);
1146 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1147 ira_max_nregs = ira_reg_class_nregs[cl][m];
1153 /* Array whose values are hard regset of hard registers available for
1154 the allocation of given register class whose HARD_REGNO_MODE_OK
1155 values for given mode are zero. */
1156 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1158 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1159 static void
1160 setup_prohibited_class_mode_regs (void)
1162 int i, j, k, hard_regno;
1163 enum reg_class cl;
1165 for (i = 0; i < ira_reg_class_cover_size; i++)
1167 cl = ira_reg_class_cover[i];
1168 for (j = 0; j < NUM_MACHINE_MODES; j++)
1170 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1171 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1173 hard_regno = ira_class_hard_regs[cl][k];
1174 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1175 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1176 hard_regno);
1184 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1185 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1186 not done yet. */
1187 void
1188 ira_init_register_move_cost (enum machine_mode mode)
1190 int cl1, cl2;
1192 ira_assert (ira_register_move_cost[mode] == NULL
1193 && ira_may_move_in_cost[mode] == NULL
1194 && ira_may_move_out_cost[mode] == NULL);
1195 if (move_cost[mode] == NULL)
1196 init_move_cost (mode);
1197 ira_register_move_cost[mode] = move_cost[mode];
1198 /* Don't use ira_allocate because the tables exist out of scope of a
1199 IRA call. */
1200 ira_may_move_in_cost[mode]
1201 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1202 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1203 sizeof (move_table) * N_REG_CLASSES);
1204 ira_may_move_out_cost[mode]
1205 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1206 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1207 sizeof (move_table) * N_REG_CLASSES);
1208 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1210 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1212 if (ira_class_subset_p[cl1][cl2])
1213 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1214 if (ira_class_subset_p[cl2][cl1])
1215 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1222 /* This is called once during compiler work. It sets up
1223 different arrays whose values don't depend on the compiled
1224 function. */
1225 void
1226 ira_init_once (void)
1228 enum machine_mode mode;
1230 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1232 ira_register_move_cost[mode] = NULL;
1233 ira_may_move_in_cost[mode] = NULL;
1234 ira_may_move_out_cost[mode] = NULL;
1236 ira_init_costs_once ();
1239 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1240 ira_may_move_out_cost for each mode. */
1241 static void
1242 free_register_move_costs (void)
1244 enum machine_mode mode;
1246 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1248 if (ira_may_move_in_cost[mode] != NULL)
1249 free (ira_may_move_in_cost[mode]);
1250 if (ira_may_move_out_cost[mode] != NULL)
1251 free (ira_may_move_out_cost[mode]);
1252 ira_register_move_cost[mode] = NULL;
1253 ira_may_move_in_cost[mode] = NULL;
1254 ira_may_move_out_cost[mode] = NULL;
1258 /* This is called every time when register related information is
1259 changed. */
1260 void
1261 ira_init (void)
1263 free_register_move_costs ();
1264 setup_reg_mode_hard_regset ();
1265 setup_alloc_regs (flag_omit_frame_pointer != 0);
1266 setup_class_subset_and_memory_move_costs ();
1267 find_reg_class_closure ();
1268 setup_hard_regno_cover_class ();
1269 setup_reg_class_nregs ();
1270 setup_prohibited_class_mode_regs ();
1271 ira_init_costs ();
1274 /* Function called once at the end of compiler work. */
1275 void
1276 ira_finish_once (void)
1278 ira_finish_costs_once ();
1279 free_register_move_costs ();
1284 /* Array whose values are hard regset of hard registers for which
1285 move of the hard register in given mode into itself is
1286 prohibited. */
1287 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1289 /* Flag of that the above array has been initialized. */
1290 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1292 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1293 static void
1294 setup_prohibited_mode_move_regs (void)
1296 int i, j;
1297 rtx test_reg1, test_reg2, move_pat, move_insn;
1299 if (ira_prohibited_mode_move_regs_initialized_p)
1300 return;
1301 ira_prohibited_mode_move_regs_initialized_p = true;
1302 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1303 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1304 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1305 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1306 for (i = 0; i < NUM_MACHINE_MODES; i++)
1308 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1309 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1311 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1312 continue;
1313 SET_REGNO (test_reg1, j);
1314 PUT_MODE (test_reg1, i);
1315 SET_REGNO (test_reg2, j);
1316 PUT_MODE (test_reg2, i);
1317 INSN_CODE (move_insn) = -1;
1318 recog_memoized (move_insn);
1319 if (INSN_CODE (move_insn) < 0)
1320 continue;
1321 extract_insn (move_insn);
1322 if (! constrain_operands (1))
1323 continue;
1324 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1331 /* Function specific hard registers that can not be used for the
1332 register allocation. */
1333 HARD_REG_SET ira_no_alloc_regs;
1335 /* Return TRUE if *LOC contains an asm. */
1336 static int
1337 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1339 if ( !*loc)
1340 return FALSE;
1341 if (GET_CODE (*loc) == ASM_OPERANDS)
1342 return TRUE;
1343 return FALSE;
1347 /* Return TRUE if INSN contains an ASM. */
1348 static bool
1349 insn_contains_asm (rtx insn)
1351 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1354 /* Set up regs_asm_clobbered. */
1355 static void
1356 compute_regs_asm_clobbered (char *regs_asm_clobbered)
1358 basic_block bb;
1360 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
1362 FOR_EACH_BB (bb)
1364 rtx insn;
1365 FOR_BB_INSNS_REVERSE (bb, insn)
1367 df_ref *def_rec;
1369 if (insn_contains_asm (insn))
1370 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1372 df_ref def = *def_rec;
1373 unsigned int dregno = DF_REF_REGNO (def);
1374 if (dregno < FIRST_PSEUDO_REGISTER)
1376 unsigned int i;
1377 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1378 unsigned int end = dregno
1379 + hard_regno_nregs[dregno][mode] - 1;
1381 for (i = dregno; i <= end; ++i)
1382 regs_asm_clobbered[i] = 1;
1390 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1391 static void
1392 setup_eliminable_regset (void)
1394 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1395 asm. Unlike regs_ever_live, elements of this array corresponding
1396 to eliminable regs (like the frame pointer) are set if an asm
1397 sets them. */
1398 char *regs_asm_clobbered
1399 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1400 #ifdef ELIMINABLE_REGS
1401 int i;
1402 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1403 #endif
1404 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1405 sp for alloca. So we can't eliminate the frame pointer in that
1406 case. At some point, we should improve this by emitting the
1407 sp-adjusting insns for this case. */
1408 int need_fp
1409 = (! flag_omit_frame_pointer
1410 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1411 || crtl->accesses_prior_frames
1412 || crtl->stack_realign_needed
1413 || FRAME_POINTER_REQUIRED);
1415 frame_pointer_needed = need_fp;
1417 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1418 CLEAR_HARD_REG_SET (eliminable_regset);
1420 compute_regs_asm_clobbered (regs_asm_clobbered);
1421 /* Build the regset of all eliminable registers and show we can't
1422 use those that we already know won't be eliminated. */
1423 #ifdef ELIMINABLE_REGS
1424 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1426 bool cannot_elim
1427 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
1428 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1430 if (! regs_asm_clobbered[eliminables[i].from])
1432 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1434 if (cannot_elim)
1435 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1437 else if (cannot_elim)
1438 error ("%s cannot be used in asm here",
1439 reg_names[eliminables[i].from]);
1440 else
1441 df_set_regs_ever_live (eliminables[i].from, true);
1443 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1444 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1446 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1447 if (need_fp)
1448 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1450 else if (need_fp)
1451 error ("%s cannot be used in asm here",
1452 reg_names[HARD_FRAME_POINTER_REGNUM]);
1453 else
1454 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1455 #endif
1457 #else
1458 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1460 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1461 if (need_fp)
1462 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1464 else if (need_fp)
1465 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1466 else
1467 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1468 #endif
1473 /* The length of the following two arrays. */
1474 int ira_reg_equiv_len;
1476 /* The element value is TRUE if the corresponding regno value is
1477 invariant. */
1478 bool *ira_reg_equiv_invariant_p;
1480 /* The element value is equiv constant of given pseudo-register or
1481 NULL_RTX. */
1482 rtx *ira_reg_equiv_const;
1484 /* Set up the two arrays declared above. */
1485 static void
1486 find_reg_equiv_invariant_const (void)
1488 int i;
1489 bool invariant_p;
1490 rtx list, insn, note, constant, x;
1492 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1494 constant = NULL_RTX;
1495 invariant_p = false;
1496 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1498 insn = XEXP (list, 0);
1499 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1501 if (note == NULL_RTX)
1502 continue;
1504 x = XEXP (note, 0);
1506 if (! function_invariant_p (x)
1507 || ! flag_pic
1508 /* A function invariant is often CONSTANT_P but may
1509 include a register. We promise to only pass CONSTANT_P
1510 objects to LEGITIMATE_PIC_OPERAND_P. */
1511 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1513 /* It can happen that a REG_EQUIV note contains a MEM
1514 that is not a legitimate memory operand. As later
1515 stages of the reload assume that all addresses found
1516 in the reg_equiv_* arrays were originally legitimate,
1517 we ignore such REG_EQUIV notes. */
1518 if (memory_operand (x, VOIDmode))
1519 invariant_p = MEM_READONLY_P (x);
1520 else if (function_invariant_p (x))
1522 if (GET_CODE (x) == PLUS
1523 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1524 invariant_p = true;
1525 else
1526 constant = x;
1530 ira_reg_equiv_invariant_p[i] = invariant_p;
1531 ira_reg_equiv_const[i] = constant;
1537 /* Vector of substitutions of register numbers,
1538 used to map pseudo regs into hardware regs.
1539 This is set up as a result of register allocation.
1540 Element N is the hard reg assigned to pseudo reg N,
1541 or is -1 if no hard reg was assigned.
1542 If N is a hard reg number, element N is N. */
1543 short *reg_renumber;
1545 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1546 the allocation found by IRA. */
1547 static void
1548 setup_reg_renumber (void)
1550 int regno, hard_regno;
1551 ira_allocno_t a;
1552 ira_allocno_iterator ai;
1554 caller_save_needed = 0;
1555 FOR_EACH_ALLOCNO (a, ai)
1557 /* There are no caps at this point. */
1558 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1559 if (! ALLOCNO_ASSIGNED_P (a))
1560 /* It can happen if A is not referenced but partially anticipated
1561 somewhere in a region. */
1562 ALLOCNO_ASSIGNED_P (a) = true;
1563 ira_free_allocno_updated_costs (a);
1564 hard_regno = ALLOCNO_HARD_REGNO (a);
1565 regno = (int) REGNO (ALLOCNO_REG (a));
1566 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1567 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1568 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1569 call_used_reg_set))
1571 ira_assert (!optimize || flag_caller_saves
1572 || regno >= ira_reg_equiv_len
1573 || ira_reg_equiv_const[regno]
1574 || ira_reg_equiv_invariant_p[regno]);
1575 caller_save_needed = 1;
1580 /* Set up allocno assignment flags for further allocation
1581 improvements. */
1582 static void
1583 setup_allocno_assignment_flags (void)
1585 int hard_regno;
1586 ira_allocno_t a;
1587 ira_allocno_iterator ai;
1589 FOR_EACH_ALLOCNO (a, ai)
1591 if (! ALLOCNO_ASSIGNED_P (a))
1592 /* It can happen if A is not referenced but partially anticipated
1593 somewhere in a region. */
1594 ira_free_allocno_updated_costs (a);
1595 hard_regno = ALLOCNO_HARD_REGNO (a);
1596 /* Don't assign hard registers to allocnos which are destination
1597 of removed store at the end of loop. It has no sense to keep
1598 the same value in different hard registers. It is also
1599 impossible to assign hard registers correctly to such
1600 allocnos because the cost info and info about intersected
1601 calls are incorrect for them. */
1602 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1603 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1604 || (ALLOCNO_MEMORY_COST (a)
1605 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1606 ira_assert (hard_regno < 0
1607 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1608 reg_class_contents
1609 [ALLOCNO_COVER_CLASS (a)]));
1613 /* Evaluate overall allocation cost and the costs for using hard
1614 registers and memory for allocnos. */
1615 static void
1616 calculate_allocation_cost (void)
1618 int hard_regno, cost;
1619 ira_allocno_t a;
1620 ira_allocno_iterator ai;
1622 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1623 FOR_EACH_ALLOCNO (a, ai)
1625 hard_regno = ALLOCNO_HARD_REGNO (a);
1626 ira_assert (hard_regno < 0
1627 || ! ira_hard_reg_not_in_set_p
1628 (hard_regno, ALLOCNO_MODE (a),
1629 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1630 if (hard_regno < 0)
1632 cost = ALLOCNO_MEMORY_COST (a);
1633 ira_mem_cost += cost;
1635 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1637 cost = (ALLOCNO_HARD_REG_COSTS (a)
1638 [ira_class_hard_reg_index
1639 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1640 ira_reg_cost += cost;
1642 else
1644 cost = ALLOCNO_COVER_CLASS_COST (a);
1645 ira_reg_cost += cost;
1647 ira_overall_cost += cost;
1650 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1652 fprintf (ira_dump_file,
1653 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1654 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1655 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1656 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1657 ira_move_loops_num, ira_additional_jumps_num);
1662 #ifdef ENABLE_IRA_CHECKING
1663 /* Check the correctness of the allocation. We do need this because
1664 of complicated code to transform more one region internal
1665 representation into one region representation. */
1666 static void
1667 check_allocation (void)
1669 ira_allocno_t a, conflict_a;
1670 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1671 ira_allocno_conflict_iterator aci;
1672 ira_allocno_iterator ai;
1674 FOR_EACH_ALLOCNO (a, ai)
1676 if (ALLOCNO_CAP_MEMBER (a) != NULL
1677 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1678 continue;
1679 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1680 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1681 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1683 conflict_nregs
1684 = (hard_regno_nregs
1685 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1686 if ((conflict_hard_regno <= hard_regno
1687 && hard_regno < conflict_hard_regno + conflict_nregs)
1688 || (hard_regno <= conflict_hard_regno
1689 && conflict_hard_regno < hard_regno + nregs))
1691 fprintf (stderr, "bad allocation for %d and %d\n",
1692 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1693 gcc_unreachable ();
1698 #endif
1700 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1701 by IRA. */
1702 static void
1703 fix_reg_equiv_init (void)
1705 int max_regno = max_reg_num ();
1706 int i, new_regno;
1707 rtx x, prev, next, insn, set;
1709 if (reg_equiv_init_size < max_regno)
1711 reg_equiv_init
1712 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1713 while (reg_equiv_init_size < max_regno)
1714 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1715 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1716 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1718 next = XEXP (x, 1);
1719 insn = XEXP (x, 0);
1720 set = single_set (insn);
1721 ira_assert (set != NULL_RTX
1722 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1723 if (REG_P (SET_DEST (set))
1724 && ((int) REGNO (SET_DEST (set)) == i
1725 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1726 new_regno = REGNO (SET_DEST (set));
1727 else if (REG_P (SET_SRC (set))
1728 && ((int) REGNO (SET_SRC (set)) == i
1729 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1730 new_regno = REGNO (SET_SRC (set));
1731 else
1732 gcc_unreachable ();
1733 if (new_regno == i)
1734 prev = x;
1735 else
1737 if (prev == NULL_RTX)
1738 reg_equiv_init[i] = next;
1739 else
1740 XEXP (prev, 1) = next;
1741 XEXP (x, 1) = reg_equiv_init[new_regno];
1742 reg_equiv_init[new_regno] = x;
1748 #ifdef ENABLE_IRA_CHECKING
1749 /* Print redundant memory-memory copies. */
1750 static void
1751 print_redundant_copies (void)
1753 int hard_regno;
1754 ira_allocno_t a;
1755 ira_copy_t cp, next_cp;
1756 ira_allocno_iterator ai;
1758 FOR_EACH_ALLOCNO (a, ai)
1760 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1761 /* It is a cap. */
1762 continue;
1763 hard_regno = ALLOCNO_HARD_REGNO (a);
1764 if (hard_regno >= 0)
1765 continue;
1766 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1767 if (cp->first == a)
1768 next_cp = cp->next_first_allocno_copy;
1769 else
1771 next_cp = cp->next_second_allocno_copy;
1772 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1773 && cp->insn != NULL_RTX
1774 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1775 fprintf (ira_dump_file,
1776 " Redundant move from %d(freq %d):%d\n",
1777 INSN_UID (cp->insn), cp->freq, hard_regno);
1781 #endif
1783 /* Setup preferred and alternative classes for new pseudo-registers
1784 created by IRA starting with START. */
1785 static void
1786 setup_preferred_alternate_classes_for_new_pseudos (int start)
1788 int i, old_regno;
1789 int max_regno = max_reg_num ();
1791 for (i = start; i < max_regno; i++)
1793 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1794 ira_assert (i != old_regno);
1795 setup_reg_classes (i, reg_preferred_class (old_regno),
1796 reg_alternate_class (old_regno));
1797 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1798 fprintf (ira_dump_file,
1799 " New r%d: setting preferred %s, alternative %s\n",
1800 i, reg_class_names[reg_preferred_class (old_regno)],
1801 reg_class_names[reg_alternate_class (old_regno)]);
1807 /* Regional allocation can create new pseudo-registers. This function
1808 expands some arrays for pseudo-registers. */
1809 static void
1810 expand_reg_info (int old_size)
1812 int i;
1813 int size = max_reg_num ();
1815 resize_reg_info ();
1816 for (i = old_size; i < size; i++)
1818 reg_renumber[i] = -1;
1819 setup_reg_classes (i, GENERAL_REGS, ALL_REGS);
1823 /* Return TRUE if there is too high register pressure in the function.
1824 It is used to decide when stack slot sharing is worth to do. */
1825 static bool
1826 too_high_register_pressure_p (void)
1828 int i;
1829 enum reg_class cover_class;
1831 for (i = 0; i < ira_reg_class_cover_size; i++)
1833 cover_class = ira_reg_class_cover[i];
1834 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1835 return true;
1837 return false;
1842 /* Indicate that hard register number FROM was eliminated and replaced with
1843 an offset from hard register number TO. The status of hard registers live
1844 at the start of a basic block is updated by replacing a use of FROM with
1845 a use of TO. */
1847 void
1848 mark_elimination (int from, int to)
1850 basic_block bb;
1852 FOR_EACH_BB (bb)
1854 /* We don't use LIVE info in IRA. */
1855 regset r = DF_LR_IN (bb);
1857 if (REGNO_REG_SET_P (r, from))
1859 CLEAR_REGNO_REG_SET (r, from);
1860 SET_REGNO_REG_SET (r, to);
1867 struct equivalence
1869 /* Set when a REG_EQUIV note is found or created. Use to
1870 keep track of what memory accesses might be created later,
1871 e.g. by reload. */
1872 rtx replacement;
1873 rtx *src_p;
1874 /* The list of each instruction which initializes this register. */
1875 rtx init_insns;
1876 /* Loop depth is used to recognize equivalences which appear
1877 to be present within the same loop (or in an inner loop). */
1878 int loop_depth;
1879 /* Nonzero if this had a preexisting REG_EQUIV note. */
1880 int is_arg_equivalence;
1881 /* Set when an attempt should be made to replace a register
1882 with the associated src_p entry. */
1883 char replace;
1886 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1887 structure for that register. */
1888 static struct equivalence *reg_equiv;
1890 /* Used for communication between the following two functions: contains
1891 a MEM that we wish to ensure remains unchanged. */
1892 static rtx equiv_mem;
1894 /* Set nonzero if EQUIV_MEM is modified. */
1895 static int equiv_mem_modified;
1897 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1898 Called via note_stores. */
1899 static void
1900 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1901 void *data ATTRIBUTE_UNUSED)
1903 if ((REG_P (dest)
1904 && reg_overlap_mentioned_p (dest, equiv_mem))
1905 || (MEM_P (dest)
1906 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1907 equiv_mem_modified = 1;
1910 /* Verify that no store between START and the death of REG invalidates
1911 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1912 by storing into an overlapping memory location, or with a non-const
1913 CALL_INSN.
1915 Return 1 if MEMREF remains valid. */
1916 static int
1917 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1919 rtx insn;
1920 rtx note;
1922 equiv_mem = memref;
1923 equiv_mem_modified = 0;
1925 /* If the memory reference has side effects or is volatile, it isn't a
1926 valid equivalence. */
1927 if (side_effects_p (memref))
1928 return 0;
1930 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1932 if (! INSN_P (insn))
1933 continue;
1935 if (find_reg_note (insn, REG_DEAD, reg))
1936 return 1;
1938 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1939 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1940 return 0;
1942 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1944 /* If a register mentioned in MEMREF is modified via an
1945 auto-increment, we lose the equivalence. Do the same if one
1946 dies; although we could extend the life, it doesn't seem worth
1947 the trouble. */
1949 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1950 if ((REG_NOTE_KIND (note) == REG_INC
1951 || REG_NOTE_KIND (note) == REG_DEAD)
1952 && REG_P (XEXP (note, 0))
1953 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1954 return 0;
1957 return 0;
1960 /* Returns zero if X is known to be invariant. */
1961 static int
1962 equiv_init_varies_p (rtx x)
1964 RTX_CODE code = GET_CODE (x);
1965 int i;
1966 const char *fmt;
1968 switch (code)
1970 case MEM:
1971 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
1973 case CONST:
1974 case CONST_INT:
1975 case CONST_DOUBLE:
1976 case CONST_FIXED:
1977 case CONST_VECTOR:
1978 case SYMBOL_REF:
1979 case LABEL_REF:
1980 return 0;
1982 case REG:
1983 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
1985 case ASM_OPERANDS:
1986 if (MEM_VOLATILE_P (x))
1987 return 1;
1989 /* Fall through. */
1991 default:
1992 break;
1995 fmt = GET_RTX_FORMAT (code);
1996 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1997 if (fmt[i] == 'e')
1999 if (equiv_init_varies_p (XEXP (x, i)))
2000 return 1;
2002 else if (fmt[i] == 'E')
2004 int j;
2005 for (j = 0; j < XVECLEN (x, i); j++)
2006 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2007 return 1;
2010 return 0;
2013 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2014 X is only movable if the registers it uses have equivalent initializations
2015 which appear to be within the same loop (or in an inner loop) and movable
2016 or if they are not candidates for local_alloc and don't vary. */
2017 static int
2018 equiv_init_movable_p (rtx x, int regno)
2020 int i, j;
2021 const char *fmt;
2022 enum rtx_code code = GET_CODE (x);
2024 switch (code)
2026 case SET:
2027 return equiv_init_movable_p (SET_SRC (x), regno);
2029 case CC0:
2030 case CLOBBER:
2031 return 0;
2033 case PRE_INC:
2034 case PRE_DEC:
2035 case POST_INC:
2036 case POST_DEC:
2037 case PRE_MODIFY:
2038 case POST_MODIFY:
2039 return 0;
2041 case REG:
2042 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2043 && reg_equiv[REGNO (x)].replace)
2044 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2046 case UNSPEC_VOLATILE:
2047 return 0;
2049 case ASM_OPERANDS:
2050 if (MEM_VOLATILE_P (x))
2051 return 0;
2053 /* Fall through. */
2055 default:
2056 break;
2059 fmt = GET_RTX_FORMAT (code);
2060 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2061 switch (fmt[i])
2063 case 'e':
2064 if (! equiv_init_movable_p (XEXP (x, i), regno))
2065 return 0;
2066 break;
2067 case 'E':
2068 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2069 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2070 return 0;
2071 break;
2074 return 1;
2077 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2078 static int
2079 contains_replace_regs (rtx x)
2081 int i, j;
2082 const char *fmt;
2083 enum rtx_code code = GET_CODE (x);
2085 switch (code)
2087 case CONST_INT:
2088 case CONST:
2089 case LABEL_REF:
2090 case SYMBOL_REF:
2091 case CONST_DOUBLE:
2092 case CONST_FIXED:
2093 case CONST_VECTOR:
2094 case PC:
2095 case CC0:
2096 case HIGH:
2097 return 0;
2099 case REG:
2100 return reg_equiv[REGNO (x)].replace;
2102 default:
2103 break;
2106 fmt = GET_RTX_FORMAT (code);
2107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2108 switch (fmt[i])
2110 case 'e':
2111 if (contains_replace_regs (XEXP (x, i)))
2112 return 1;
2113 break;
2114 case 'E':
2115 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2116 if (contains_replace_regs (XVECEXP (x, i, j)))
2117 return 1;
2118 break;
2121 return 0;
2124 /* TRUE if X references a memory location that would be affected by a store
2125 to MEMREF. */
2126 static int
2127 memref_referenced_p (rtx memref, rtx x)
2129 int i, j;
2130 const char *fmt;
2131 enum rtx_code code = GET_CODE (x);
2133 switch (code)
2135 case CONST_INT:
2136 case CONST:
2137 case LABEL_REF:
2138 case SYMBOL_REF:
2139 case CONST_DOUBLE:
2140 case CONST_FIXED:
2141 case CONST_VECTOR:
2142 case PC:
2143 case CC0:
2144 case HIGH:
2145 case LO_SUM:
2146 return 0;
2148 case REG:
2149 return (reg_equiv[REGNO (x)].replacement
2150 && memref_referenced_p (memref,
2151 reg_equiv[REGNO (x)].replacement));
2153 case MEM:
2154 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2155 return 1;
2156 break;
2158 case SET:
2159 /* If we are setting a MEM, it doesn't count (its address does), but any
2160 other SET_DEST that has a MEM in it is referencing the MEM. */
2161 if (MEM_P (SET_DEST (x)))
2163 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2164 return 1;
2166 else if (memref_referenced_p (memref, SET_DEST (x)))
2167 return 1;
2169 return memref_referenced_p (memref, SET_SRC (x));
2171 default:
2172 break;
2175 fmt = GET_RTX_FORMAT (code);
2176 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2177 switch (fmt[i])
2179 case 'e':
2180 if (memref_referenced_p (memref, XEXP (x, i)))
2181 return 1;
2182 break;
2183 case 'E':
2184 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2185 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2186 return 1;
2187 break;
2190 return 0;
2193 /* TRUE if some insn in the range (START, END] references a memory location
2194 that would be affected by a store to MEMREF. */
2195 static int
2196 memref_used_between_p (rtx memref, rtx start, rtx end)
2198 rtx insn;
2200 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2201 insn = NEXT_INSN (insn))
2203 if (!INSN_P (insn))
2204 continue;
2206 if (memref_referenced_p (memref, PATTERN (insn)))
2207 return 1;
2209 /* Nonconst functions may access memory. */
2210 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2211 return 1;
2214 return 0;
2217 /* Mark REG as having no known equivalence.
2218 Some instructions might have been processed before and furnished
2219 with REG_EQUIV notes for this register; these notes will have to be
2220 removed.
2221 STORE is the piece of RTL that does the non-constant / conflicting
2222 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2223 but needs to be there because this function is called from note_stores. */
2224 static void
2225 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2227 int regno;
2228 rtx list;
2230 if (!REG_P (reg))
2231 return;
2232 regno = REGNO (reg);
2233 list = reg_equiv[regno].init_insns;
2234 if (list == const0_rtx)
2235 return;
2236 reg_equiv[regno].init_insns = const0_rtx;
2237 reg_equiv[regno].replacement = NULL_RTX;
2238 /* This doesn't matter for equivalences made for argument registers, we
2239 should keep their initialization insns. */
2240 if (reg_equiv[regno].is_arg_equivalence)
2241 return;
2242 reg_equiv_init[regno] = NULL_RTX;
2243 for (; list; list = XEXP (list, 1))
2245 rtx insn = XEXP (list, 0);
2246 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2250 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2251 static int recorded_label_ref;
2253 /* Find registers that are equivalent to a single value throughout the
2254 compilation (either because they can be referenced in memory or are set once
2255 from a single constant). Lower their priority for a register.
2257 If such a register is only referenced once, try substituting its value
2258 into the using insn. If it succeeds, we can eliminate the register
2259 completely.
2261 Initialize the REG_EQUIV_INIT array of initializing insns.
2263 Return non-zero if jump label rebuilding should be done. */
2264 static int
2265 update_equiv_regs (void)
2267 rtx insn;
2268 basic_block bb;
2269 int loop_depth;
2270 bitmap cleared_regs;
2272 /* We need to keep track of whether or not we recorded a LABEL_REF so
2273 that we know if the jump optimizer needs to be rerun. */
2274 recorded_label_ref = 0;
2276 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2277 reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
2278 reg_equiv_init_size = max_regno;
2280 init_alias_analysis ();
2282 /* Scan the insns and find which registers have equivalences. Do this
2283 in a separate scan of the insns because (due to -fcse-follow-jumps)
2284 a register can be set below its use. */
2285 FOR_EACH_BB (bb)
2287 loop_depth = bb->loop_depth;
2289 for (insn = BB_HEAD (bb);
2290 insn != NEXT_INSN (BB_END (bb));
2291 insn = NEXT_INSN (insn))
2293 rtx note;
2294 rtx set;
2295 rtx dest, src;
2296 int regno;
2298 if (! INSN_P (insn))
2299 continue;
2301 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2302 if (REG_NOTE_KIND (note) == REG_INC)
2303 no_equiv (XEXP (note, 0), note, NULL);
2305 set = single_set (insn);
2307 /* If this insn contains more (or less) than a single SET,
2308 only mark all destinations as having no known equivalence. */
2309 if (set == 0)
2311 note_stores (PATTERN (insn), no_equiv, NULL);
2312 continue;
2314 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2316 int i;
2318 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2320 rtx part = XVECEXP (PATTERN (insn), 0, i);
2321 if (part != set)
2322 note_stores (part, no_equiv, NULL);
2326 dest = SET_DEST (set);
2327 src = SET_SRC (set);
2329 /* See if this is setting up the equivalence between an argument
2330 register and its stack slot. */
2331 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2332 if (note)
2334 gcc_assert (REG_P (dest));
2335 regno = REGNO (dest);
2337 /* Note that we don't want to clear reg_equiv_init even if there
2338 are multiple sets of this register. */
2339 reg_equiv[regno].is_arg_equivalence = 1;
2341 /* Record for reload that this is an equivalencing insn. */
2342 if (rtx_equal_p (src, XEXP (note, 0)))
2343 reg_equiv_init[regno]
2344 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2346 /* Continue normally in case this is a candidate for
2347 replacements. */
2350 if (!optimize)
2351 continue;
2353 /* We only handle the case of a pseudo register being set
2354 once, or always to the same value. */
2355 /* ??? The mn10200 port breaks if we add equivalences for
2356 values that need an ADDRESS_REGS register and set them equivalent
2357 to a MEM of a pseudo. The actual problem is in the over-conservative
2358 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2359 calculate_needs, but we traditionally work around this problem
2360 here by rejecting equivalences when the destination is in a register
2361 that's likely spilled. This is fragile, of course, since the
2362 preferred class of a pseudo depends on all instructions that set
2363 or use it. */
2365 if (!REG_P (dest)
2366 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2367 || reg_equiv[regno].init_insns == const0_rtx
2368 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2369 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2371 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2372 also set somewhere else to a constant. */
2373 note_stores (set, no_equiv, NULL);
2374 continue;
2377 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2379 /* cse sometimes generates function invariants, but doesn't put a
2380 REG_EQUAL note on the insn. Since this note would be redundant,
2381 there's no point creating it earlier than here. */
2382 if (! note && ! rtx_varies_p (src, 0))
2383 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2385 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2386 since it represents a function call */
2387 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2388 note = NULL_RTX;
2390 if (DF_REG_DEF_COUNT (regno) != 1
2391 && (! note
2392 || rtx_varies_p (XEXP (note, 0), 0)
2393 || (reg_equiv[regno].replacement
2394 && ! rtx_equal_p (XEXP (note, 0),
2395 reg_equiv[regno].replacement))))
2397 no_equiv (dest, set, NULL);
2398 continue;
2400 /* Record this insn as initializing this register. */
2401 reg_equiv[regno].init_insns
2402 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2404 /* If this register is known to be equal to a constant, record that
2405 it is always equivalent to the constant. */
2406 if (DF_REG_DEF_COUNT (regno) == 1
2407 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2409 rtx note_value = XEXP (note, 0);
2410 remove_note (insn, note);
2411 set_unique_reg_note (insn, REG_EQUIV, note_value);
2414 /* If this insn introduces a "constant" register, decrease the priority
2415 of that register. Record this insn if the register is only used once
2416 more and the equivalence value is the same as our source.
2418 The latter condition is checked for two reasons: First, it is an
2419 indication that it may be more efficient to actually emit the insn
2420 as written (if no registers are available, reload will substitute
2421 the equivalence). Secondly, it avoids problems with any registers
2422 dying in this insn whose death notes would be missed.
2424 If we don't have a REG_EQUIV note, see if this insn is loading
2425 a register used only in one basic block from a MEM. If so, and the
2426 MEM remains unchanged for the life of the register, add a REG_EQUIV
2427 note. */
2429 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2431 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2432 && MEM_P (SET_SRC (set))
2433 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2434 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2436 if (note)
2438 int regno = REGNO (dest);
2439 rtx x = XEXP (note, 0);
2441 /* If we haven't done so, record for reload that this is an
2442 equivalencing insn. */
2443 if (!reg_equiv[regno].is_arg_equivalence)
2444 reg_equiv_init[regno]
2445 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2447 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2448 We might end up substituting the LABEL_REF for uses of the
2449 pseudo here or later. That kind of transformation may turn an
2450 indirect jump into a direct jump, in which case we must rerun the
2451 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2452 if (GET_CODE (x) == LABEL_REF
2453 || (GET_CODE (x) == CONST
2454 && GET_CODE (XEXP (x, 0)) == PLUS
2455 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2456 recorded_label_ref = 1;
2458 reg_equiv[regno].replacement = x;
2459 reg_equiv[regno].src_p = &SET_SRC (set);
2460 reg_equiv[regno].loop_depth = loop_depth;
2462 /* Don't mess with things live during setjmp. */
2463 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2465 /* Note that the statement below does not affect the priority
2466 in local-alloc! */
2467 REG_LIVE_LENGTH (regno) *= 2;
2469 /* If the register is referenced exactly twice, meaning it is
2470 set once and used once, indicate that the reference may be
2471 replaced by the equivalence we computed above. Do this
2472 even if the register is only used in one block so that
2473 dependencies can be handled where the last register is
2474 used in a different block (i.e. HIGH / LO_SUM sequences)
2475 and to reduce the number of registers alive across
2476 calls. */
2478 if (REG_N_REFS (regno) == 2
2479 && (rtx_equal_p (x, src)
2480 || ! equiv_init_varies_p (src))
2481 && NONJUMP_INSN_P (insn)
2482 && equiv_init_movable_p (PATTERN (insn), regno))
2483 reg_equiv[regno].replace = 1;
2489 if (!optimize)
2490 goto out;
2492 /* A second pass, to gather additional equivalences with memory. This needs
2493 to be done after we know which registers we are going to replace. */
2495 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2497 rtx set, src, dest;
2498 unsigned regno;
2500 if (! INSN_P (insn))
2501 continue;
2503 set = single_set (insn);
2504 if (! set)
2505 continue;
2507 dest = SET_DEST (set);
2508 src = SET_SRC (set);
2510 /* If this sets a MEM to the contents of a REG that is only used
2511 in a single basic block, see if the register is always equivalent
2512 to that memory location and if moving the store from INSN to the
2513 insn that set REG is safe. If so, put a REG_EQUIV note on the
2514 initializing insn.
2516 Don't add a REG_EQUIV note if the insn already has one. The existing
2517 REG_EQUIV is likely more useful than the one we are adding.
2519 If one of the regs in the address has reg_equiv[REGNO].replace set,
2520 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2521 optimization may move the set of this register immediately before
2522 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2523 the mention in the REG_EQUIV note would be to an uninitialized
2524 pseudo. */
2526 if (MEM_P (dest) && REG_P (src)
2527 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2528 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2529 && DF_REG_DEF_COUNT (regno) == 1
2530 && reg_equiv[regno].init_insns != 0
2531 && reg_equiv[regno].init_insns != const0_rtx
2532 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2533 REG_EQUIV, NULL_RTX)
2534 && ! contains_replace_regs (XEXP (dest, 0)))
2536 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2537 if (validate_equiv_mem (init_insn, src, dest)
2538 && ! memref_used_between_p (dest, init_insn, insn)
2539 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2540 multiple sets. */
2541 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2543 /* This insn makes the equivalence, not the one initializing
2544 the register. */
2545 reg_equiv_init[regno]
2546 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2547 df_notes_rescan (init_insn);
2552 cleared_regs = BITMAP_ALLOC (NULL);
2553 /* Now scan all regs killed in an insn to see if any of them are
2554 registers only used that once. If so, see if we can replace the
2555 reference with the equivalent form. If we can, delete the
2556 initializing reference and this register will go away. If we
2557 can't replace the reference, and the initializing reference is
2558 within the same loop (or in an inner loop), then move the register
2559 initialization just before the use, so that they are in the same
2560 basic block. */
2561 FOR_EACH_BB_REVERSE (bb)
2563 loop_depth = bb->loop_depth;
2564 for (insn = BB_END (bb);
2565 insn != PREV_INSN (BB_HEAD (bb));
2566 insn = PREV_INSN (insn))
2568 rtx link;
2570 if (! INSN_P (insn))
2571 continue;
2573 /* Don't substitute into a non-local goto, this confuses CFG. */
2574 if (JUMP_P (insn)
2575 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2576 continue;
2578 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2580 if (REG_NOTE_KIND (link) == REG_DEAD
2581 /* Make sure this insn still refers to the register. */
2582 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2584 int regno = REGNO (XEXP (link, 0));
2585 rtx equiv_insn;
2587 if (! reg_equiv[regno].replace
2588 || reg_equiv[regno].loop_depth < loop_depth)
2589 continue;
2591 /* reg_equiv[REGNO].replace gets set only when
2592 REG_N_REFS[REGNO] is 2, i.e. the register is set
2593 once and used once. (If it were only set, but not used,
2594 flow would have deleted the setting insns.) Hence
2595 there can only be one insn in reg_equiv[REGNO].init_insns. */
2596 gcc_assert (reg_equiv[regno].init_insns
2597 && !XEXP (reg_equiv[regno].init_insns, 1));
2598 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2600 /* We may not move instructions that can throw, since
2601 that changes basic block boundaries and we are not
2602 prepared to adjust the CFG to match. */
2603 if (can_throw_internal (equiv_insn))
2604 continue;
2606 if (asm_noperands (PATTERN (equiv_insn)) < 0
2607 && validate_replace_rtx (regno_reg_rtx[regno],
2608 *(reg_equiv[regno].src_p), insn))
2610 rtx equiv_link;
2611 rtx last_link;
2612 rtx note;
2614 /* Find the last note. */
2615 for (last_link = link; XEXP (last_link, 1);
2616 last_link = XEXP (last_link, 1))
2619 /* Append the REG_DEAD notes from equiv_insn. */
2620 equiv_link = REG_NOTES (equiv_insn);
2621 while (equiv_link)
2623 note = equiv_link;
2624 equiv_link = XEXP (equiv_link, 1);
2625 if (REG_NOTE_KIND (note) == REG_DEAD)
2627 remove_note (equiv_insn, note);
2628 XEXP (last_link, 1) = note;
2629 XEXP (note, 1) = NULL_RTX;
2630 last_link = note;
2634 remove_death (regno, insn);
2635 SET_REG_N_REFS (regno, 0);
2636 REG_FREQ (regno) = 0;
2637 delete_insn (equiv_insn);
2639 reg_equiv[regno].init_insns
2640 = XEXP (reg_equiv[regno].init_insns, 1);
2642 reg_equiv_init[regno] = NULL_RTX;
2643 bitmap_set_bit (cleared_regs, regno);
2645 /* Move the initialization of the register to just before
2646 INSN. Update the flow information. */
2647 else if (PREV_INSN (insn) != equiv_insn)
2649 rtx new_insn;
2651 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2652 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2653 REG_NOTES (equiv_insn) = 0;
2654 /* Rescan it to process the notes. */
2655 df_insn_rescan (new_insn);
2657 /* Make sure this insn is recognized before
2658 reload begins, otherwise
2659 eliminate_regs_in_insn will die. */
2660 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2662 delete_insn (equiv_insn);
2664 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2666 REG_BASIC_BLOCK (regno) = bb->index;
2667 REG_N_CALLS_CROSSED (regno) = 0;
2668 REG_FREQ_CALLS_CROSSED (regno) = 0;
2669 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2670 REG_LIVE_LENGTH (regno) = 2;
2672 if (insn == BB_HEAD (bb))
2673 BB_HEAD (bb) = PREV_INSN (insn);
2675 reg_equiv_init[regno]
2676 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2677 bitmap_set_bit (cleared_regs, regno);
2684 if (!bitmap_empty_p (cleared_regs))
2685 FOR_EACH_BB (bb)
2687 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2688 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2689 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2690 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2693 BITMAP_FREE (cleared_regs);
2695 out:
2696 /* Clean up. */
2698 end_alias_analysis ();
2699 free (reg_equiv);
2700 return recorded_label_ref;
2705 /* Print chain C to FILE. */
2706 static void
2707 print_insn_chain (FILE *file, struct insn_chain *c)
2709 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2710 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2711 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2715 /* Print all reload_insn_chains to FILE. */
2716 static void
2717 print_insn_chains (FILE *file)
2719 struct insn_chain *c;
2720 for (c = reload_insn_chain; c ; c = c->next)
2721 print_insn_chain (file, c);
2724 /* Return true if pseudo REGNO should be added to set live_throughout
2725 or dead_or_set of the insn chains for reload consideration. */
2726 static bool
2727 pseudo_for_reload_consideration_p (int regno)
2729 /* Consider spilled pseudos too for IRA because they still have a
2730 chance to get hard-registers in the reload when IRA is used. */
2731 return (reg_renumber[regno] >= 0
2732 || (ira_conflicts_p && flag_ira_share_spill_slots));
2735 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2736 REG to the number of nregs, and INIT_VALUE to get the
2737 initialization. ALLOCNUM need not be the regno of REG. */
2738 static void
2739 init_live_subregs (bool init_value, sbitmap *live_subregs,
2740 int *live_subregs_used, int allocnum, rtx reg)
2742 unsigned int regno = REGNO (SUBREG_REG (reg));
2743 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2745 gcc_assert (size > 0);
2747 /* Been there, done that. */
2748 if (live_subregs_used[allocnum])
2749 return;
2751 /* Create a new one with zeros. */
2752 if (live_subregs[allocnum] == NULL)
2753 live_subregs[allocnum] = sbitmap_alloc (size);
2755 /* If the entire reg was live before blasting into subregs, we need
2756 to init all of the subregs to ones else init to 0. */
2757 if (init_value)
2758 sbitmap_ones (live_subregs[allocnum]);
2759 else
2760 sbitmap_zero (live_subregs[allocnum]);
2762 /* Set the number of bits that we really want. */
2763 live_subregs_used[allocnum] = size;
2766 /* Walk the insns of the current function and build reload_insn_chain,
2767 and record register life information. */
2768 static void
2769 build_insn_chain (void)
2771 unsigned int i;
2772 struct insn_chain **p = &reload_insn_chain;
2773 basic_block bb;
2774 struct insn_chain *c = NULL;
2775 struct insn_chain *next = NULL;
2776 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2777 bitmap elim_regset = BITMAP_ALLOC (NULL);
2778 /* live_subregs is a vector used to keep accurate information about
2779 which hardregs are live in multiword pseudos. live_subregs and
2780 live_subregs_used are indexed by pseudo number. The live_subreg
2781 entry for a particular pseudo is only used if the corresponding
2782 element is non zero in live_subregs_used. The value in
2783 live_subregs_used is number of bytes that the pseudo can
2784 occupy. */
2785 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2786 int *live_subregs_used = XNEWVEC (int, max_regno);
2788 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2789 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2790 bitmap_set_bit (elim_regset, i);
2791 FOR_EACH_BB_REVERSE (bb)
2793 bitmap_iterator bi;
2794 rtx insn;
2796 CLEAR_REG_SET (live_relevant_regs);
2797 memset (live_subregs_used, 0, max_regno * sizeof (int));
2799 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2801 if (i >= FIRST_PSEUDO_REGISTER)
2802 break;
2803 bitmap_set_bit (live_relevant_regs, i);
2806 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2807 FIRST_PSEUDO_REGISTER, i, bi)
2809 if (pseudo_for_reload_consideration_p (i))
2810 bitmap_set_bit (live_relevant_regs, i);
2813 FOR_BB_INSNS_REVERSE (bb, insn)
2815 if (!NOTE_P (insn) && !BARRIER_P (insn))
2817 unsigned int uid = INSN_UID (insn);
2818 df_ref *def_rec;
2819 df_ref *use_rec;
2821 c = new_insn_chain ();
2822 c->next = next;
2823 next = c;
2824 *p = c;
2825 p = &c->prev;
2827 c->insn = insn;
2828 c->block = bb->index;
2830 if (INSN_P (insn))
2831 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2833 df_ref def = *def_rec;
2834 unsigned int regno = DF_REF_REGNO (def);
2836 /* Ignore may clobbers because these are generated
2837 from calls. However, every other kind of def is
2838 added to dead_or_set. */
2839 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2841 if (regno < FIRST_PSEUDO_REGISTER)
2843 if (!fixed_regs[regno])
2844 bitmap_set_bit (&c->dead_or_set, regno);
2846 else if (pseudo_for_reload_consideration_p (regno))
2847 bitmap_set_bit (&c->dead_or_set, regno);
2850 if ((regno < FIRST_PSEUDO_REGISTER
2851 || reg_renumber[regno] >= 0
2852 || ira_conflicts_p)
2853 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2855 rtx reg = DF_REF_REG (def);
2857 /* We can model subregs, but not if they are
2858 wrapped in ZERO_EXTRACTS. */
2859 if (GET_CODE (reg) == SUBREG
2860 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2862 unsigned int start = SUBREG_BYTE (reg);
2863 unsigned int last = start
2864 + GET_MODE_SIZE (GET_MODE (reg));
2866 init_live_subregs
2867 (bitmap_bit_p (live_relevant_regs, regno),
2868 live_subregs, live_subregs_used, regno, reg);
2870 if (!DF_REF_FLAGS_IS_SET
2871 (def, DF_REF_STRICT_LOW_PART))
2873 /* Expand the range to cover entire words.
2874 Bytes added here are "don't care". */
2875 start
2876 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2877 last = ((last + UNITS_PER_WORD - 1)
2878 / UNITS_PER_WORD * UNITS_PER_WORD);
2881 /* Ignore the paradoxical bits. */
2882 if ((int)last > live_subregs_used[regno])
2883 last = live_subregs_used[regno];
2885 while (start < last)
2887 RESET_BIT (live_subregs[regno], start);
2888 start++;
2891 if (sbitmap_empty_p (live_subregs[regno]))
2893 live_subregs_used[regno] = 0;
2894 bitmap_clear_bit (live_relevant_regs, regno);
2896 else
2897 /* Set live_relevant_regs here because
2898 that bit has to be true to get us to
2899 look at the live_subregs fields. */
2900 bitmap_set_bit (live_relevant_regs, regno);
2902 else
2904 /* DF_REF_PARTIAL is generated for
2905 subregs, STRICT_LOW_PART, and
2906 ZERO_EXTRACT. We handle the subreg
2907 case above so here we have to keep from
2908 modeling the def as a killing def. */
2909 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2911 bitmap_clear_bit (live_relevant_regs, regno);
2912 live_subregs_used[regno] = 0;
2918 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2919 bitmap_copy (&c->live_throughout, live_relevant_regs);
2921 if (INSN_P (insn))
2922 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2924 df_ref use = *use_rec;
2925 unsigned int regno = DF_REF_REGNO (use);
2926 rtx reg = DF_REF_REG (use);
2928 /* DF_REF_READ_WRITE on a use means that this use
2929 is fabricated from a def that is a partial set
2930 to a multiword reg. Here, we only model the
2931 subreg case that is not wrapped in ZERO_EXTRACT
2932 precisely so we do not need to look at the
2933 fabricated use. */
2934 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2935 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2936 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2937 continue;
2939 /* Add the last use of each var to dead_or_set. */
2940 if (!bitmap_bit_p (live_relevant_regs, regno))
2942 if (regno < FIRST_PSEUDO_REGISTER)
2944 if (!fixed_regs[regno])
2945 bitmap_set_bit (&c->dead_or_set, regno);
2947 else if (pseudo_for_reload_consideration_p (regno))
2948 bitmap_set_bit (&c->dead_or_set, regno);
2951 if (regno < FIRST_PSEUDO_REGISTER
2952 || pseudo_for_reload_consideration_p (regno))
2954 if (GET_CODE (reg) == SUBREG
2955 && !DF_REF_FLAGS_IS_SET (use,
2956 DF_REF_SIGN_EXTRACT
2957 | DF_REF_ZERO_EXTRACT))
2959 unsigned int start = SUBREG_BYTE (reg);
2960 unsigned int last = start
2961 + GET_MODE_SIZE (GET_MODE (reg));
2963 init_live_subregs
2964 (bitmap_bit_p (live_relevant_regs, regno),
2965 live_subregs, live_subregs_used, regno, reg);
2967 /* Ignore the paradoxical bits. */
2968 if ((int)last > live_subregs_used[regno])
2969 last = live_subregs_used[regno];
2971 while (start < last)
2973 SET_BIT (live_subregs[regno], start);
2974 start++;
2977 else
2978 /* Resetting the live_subregs_used is
2979 effectively saying do not use the subregs
2980 because we are reading the whole
2981 pseudo. */
2982 live_subregs_used[regno] = 0;
2983 bitmap_set_bit (live_relevant_regs, regno);
2989 /* FIXME!! The following code is a disaster. Reload needs to see the
2990 labels and jump tables that are just hanging out in between
2991 the basic blocks. See pr33676. */
2992 insn = BB_HEAD (bb);
2994 /* Skip over the barriers and cruft. */
2995 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2996 || BLOCK_FOR_INSN (insn) == bb))
2997 insn = PREV_INSN (insn);
2999 /* While we add anything except barriers and notes, the focus is
3000 to get the labels and jump tables into the
3001 reload_insn_chain. */
3002 while (insn)
3004 if (!NOTE_P (insn) && !BARRIER_P (insn))
3006 if (BLOCK_FOR_INSN (insn))
3007 break;
3009 c = new_insn_chain ();
3010 c->next = next;
3011 next = c;
3012 *p = c;
3013 p = &c->prev;
3015 /* The block makes no sense here, but it is what the old
3016 code did. */
3017 c->block = bb->index;
3018 c->insn = insn;
3019 bitmap_copy (&c->live_throughout, live_relevant_regs);
3021 insn = PREV_INSN (insn);
3025 for (i = 0; i < (unsigned int) max_regno; i++)
3026 if (live_subregs[i])
3027 free (live_subregs[i]);
3029 reload_insn_chain = c;
3030 *p = NULL;
3032 free (live_subregs);
3033 free (live_subregs_used);
3034 BITMAP_FREE (live_relevant_regs);
3035 BITMAP_FREE (elim_regset);
3037 if (dump_file)
3038 print_insn_chains (dump_file);
3043 /* All natural loops. */
3044 struct loops ira_loops;
3046 /* True if we have allocno conflicts. It is false for non-optimized
3047 mode or when the conflict table is too big. */
3048 bool ira_conflicts_p;
3050 /* This is the main entry of IRA. */
3051 static void
3052 ira (FILE *f)
3054 int overall_cost_before, allocated_reg_info_size;
3055 bool loops_p;
3056 int max_regno_before_ira, ira_max_point_before_emit;
3057 int rebuild_p;
3058 int saved_flag_ira_share_spill_slots;
3059 basic_block bb;
3061 timevar_push (TV_IRA);
3063 if (flag_ira_verbose < 10)
3065 internal_flag_ira_verbose = flag_ira_verbose;
3066 ira_dump_file = f;
3068 else
3070 internal_flag_ira_verbose = flag_ira_verbose - 10;
3071 ira_dump_file = stderr;
3074 ira_conflicts_p = optimize > 0;
3075 setup_prohibited_mode_move_regs ();
3077 df_note_add_problem ();
3079 if (optimize == 1)
3081 df_live_add_problem ();
3082 df_live_set_all_dirty ();
3084 #ifdef ENABLE_CHECKING
3085 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3086 #endif
3087 df_analyze ();
3088 df_clear_flags (DF_NO_INSN_RESCAN);
3089 regstat_init_n_sets_and_refs ();
3090 regstat_compute_ri ();
3092 /* If we are not optimizing, then this is the only place before
3093 register allocation where dataflow is done. And that is needed
3094 to generate these warnings. */
3095 if (warn_clobbered)
3096 generate_setjmp_warnings ();
3098 /* Determine if the current function is a leaf before running IRA
3099 since this can impact optimizations done by the prologue and
3100 epilogue thus changing register elimination offsets. */
3101 current_function_is_leaf = leaf_function_p ();
3103 rebuild_p = update_equiv_regs ();
3105 #ifndef IRA_NO_OBSTACK
3106 gcc_obstack_init (&ira_obstack);
3107 #endif
3108 bitmap_obstack_initialize (&ira_bitmap_obstack);
3109 if (optimize)
3111 max_regno = max_reg_num ();
3112 ira_reg_equiv_len = max_regno;
3113 ira_reg_equiv_invariant_p
3114 = (bool *) ira_allocate (max_regno * sizeof (bool));
3115 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3116 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3117 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3118 find_reg_equiv_invariant_const ();
3119 if (rebuild_p)
3121 timevar_push (TV_JUMP);
3122 rebuild_jump_labels (get_insns ());
3123 purge_all_dead_edges ();
3124 timevar_pop (TV_JUMP);
3128 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3129 allocate_reg_info ();
3130 setup_eliminable_regset ();
3132 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3133 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3134 ira_move_loops_num = ira_additional_jumps_num = 0;
3136 ira_assert (current_loops == NULL);
3137 flow_loops_find (&ira_loops);
3138 current_loops = &ira_loops;
3140 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3141 fprintf (ira_dump_file, "Building IRA IR\n");
3142 loops_p = ira_build (optimize
3143 && (flag_ira_region == IRA_REGION_ALL
3144 || flag_ira_region == IRA_REGION_MIXED));
3146 ira_assert (ira_conflicts_p || !loops_p);
3148 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3149 if (too_high_register_pressure_p ())
3150 /* It is just wasting compiler's time to pack spilled pseudos into
3151 stack slots in this case -- prohibit it. */
3152 flag_ira_share_spill_slots = FALSE;
3154 ira_color ();
3156 ira_max_point_before_emit = ira_max_point;
3158 ira_emit (loops_p);
3160 if (ira_conflicts_p)
3162 max_regno = max_reg_num ();
3164 if (! loops_p)
3165 ira_initiate_assign ();
3166 else
3168 expand_reg_info (allocated_reg_info_size);
3169 setup_preferred_alternate_classes_for_new_pseudos
3170 (allocated_reg_info_size);
3171 allocated_reg_info_size = max_regno;
3173 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3174 fprintf (ira_dump_file, "Flattening IR\n");
3175 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3176 /* New insns were generated: add notes and recalculate live
3177 info. */
3178 df_analyze ();
3180 flow_loops_find (&ira_loops);
3181 current_loops = &ira_loops;
3183 setup_allocno_assignment_flags ();
3184 ira_initiate_assign ();
3185 ira_reassign_conflict_allocnos (max_regno);
3189 setup_reg_renumber ();
3191 calculate_allocation_cost ();
3193 #ifdef ENABLE_IRA_CHECKING
3194 if (ira_conflicts_p)
3195 check_allocation ();
3196 #endif
3198 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3199 max_regno = max_reg_num ();
3201 /* And the reg_equiv_memory_loc array. */
3202 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3203 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3204 sizeof (rtx) * max_regno);
3205 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3207 if (max_regno != max_regno_before_ira)
3209 regstat_free_n_sets_and_refs ();
3210 regstat_free_ri ();
3211 regstat_init_n_sets_and_refs ();
3212 regstat_compute_ri ();
3215 allocate_initial_values (reg_equiv_memory_loc);
3217 overall_cost_before = ira_overall_cost;
3218 if (ira_conflicts_p)
3220 fix_reg_equiv_init ();
3222 #ifdef ENABLE_IRA_CHECKING
3223 print_redundant_copies ();
3224 #endif
3226 ira_spilled_reg_stack_slots_num = 0;
3227 ira_spilled_reg_stack_slots
3228 = ((struct ira_spilled_reg_stack_slot *)
3229 ira_allocate (max_regno
3230 * sizeof (struct ira_spilled_reg_stack_slot)));
3231 memset (ira_spilled_reg_stack_slots, 0,
3232 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3235 timevar_pop (TV_IRA);
3237 timevar_push (TV_RELOAD);
3238 df_set_flags (DF_NO_INSN_RESCAN);
3239 build_insn_chain ();
3241 reload_completed = !reload (get_insns (), ira_conflicts_p);
3243 timevar_pop (TV_RELOAD);
3245 timevar_push (TV_IRA);
3247 if (ira_conflicts_p)
3249 ira_free (ira_spilled_reg_stack_slots);
3251 ira_finish_assign ();
3254 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3255 && overall_cost_before != ira_overall_cost)
3256 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3257 ira_destroy ();
3259 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3261 flow_loops_free (&ira_loops);
3262 free_dominance_info (CDI_DOMINATORS);
3263 FOR_ALL_BB (bb)
3264 bb->loop_father = NULL;
3265 current_loops = NULL;
3267 regstat_free_ri ();
3268 regstat_free_n_sets_and_refs ();
3270 if (optimize)
3272 cleanup_cfg (CLEANUP_EXPENSIVE);
3274 ira_free (ira_reg_equiv_invariant_p);
3275 ira_free (ira_reg_equiv_const);
3278 bitmap_obstack_release (&ira_bitmap_obstack);
3279 #ifndef IRA_NO_OBSTACK
3280 obstack_free (&ira_obstack, NULL);
3281 #endif
3283 /* The code after the reload has changed so much that at this point
3284 we might as well just rescan everything. Not that
3285 df_rescan_all_insns is not going to help here because it does not
3286 touch the artificial uses and defs. */
3287 df_finish_pass (true);
3288 if (optimize > 1)
3289 df_live_add_problem ();
3290 df_scan_alloc (NULL);
3291 df_scan_blocks ();
3293 if (optimize)
3294 df_analyze ();
3296 timevar_pop (TV_IRA);
3301 static bool
3302 gate_ira (void)
3304 return true;
3307 /* Run the integrated register allocator. */
3308 static unsigned int
3309 rest_of_handle_ira (void)
3311 ira (dump_file);
3312 return 0;
3315 struct rtl_opt_pass pass_ira =
3318 RTL_PASS,
3319 "ira", /* name */
3320 gate_ira, /* gate */
3321 rest_of_handle_ira, /* execute */
3322 NULL, /* sub */
3323 NULL, /* next */
3324 0, /* static_pass_number */
3325 TV_NONE, /* tv_id */
3326 0, /* properties_required */
3327 0, /* properties_provided */
3328 0, /* properties_destroyed */
3329 0, /* todo_flags_start */
3330 TODO_dump_func |
3331 TODO_ggc_collect /* todo_flags_finish */