2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "tree-pass.h"
30 #include "gimple-ssa.h"
31 #include "optabs-query.h"
32 #include "tree-pretty-print.h"
33 #include "fold-const.h"
34 #include "stor-layout.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
45 #include "tree-scalar-evolution.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-data-ref.h"
51 /* This pass inserts prefetch instructions to optimize cache usage during
52 accesses to arrays in loops. It processes loops sequentially and:
54 1) Gathers all memory references in the single loop.
55 2) For each of the references it decides when it is profitable to prefetch
56 it. To do it, we evaluate the reuse among the accesses, and determines
57 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
58 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
59 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
60 iterations of the loop that are zero modulo PREFETCH_MOD). For example
61 (assuming cache line size is 64 bytes, char has size 1 byte and there
62 is no hardware sequential prefetch):
65 for (i = 0; i < max; i++)
72 a[187*i + 50] = ...; (5)
75 (0) obviously has PREFETCH_BEFORE 1
76 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
77 location 64 iterations before it, and PREFETCH_MOD 64 (since
78 it hits the same cache line otherwise).
79 (2) has PREFETCH_MOD 64
80 (3) has PREFETCH_MOD 4
81 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
82 the cache line accessed by (5) is the same with probability only
84 (5) has PREFETCH_MOD 1 as well.
86 Additionally, we use data dependence analysis to determine for each
87 reference the distance till the first reuse; this information is used
88 to determine the temporality of the issued prefetch instruction.
90 3) We determine how much ahead we need to prefetch. The number of
91 iterations needed is time to fetch / time spent in one iteration of
92 the loop. The problem is that we do not know either of these values,
93 so we just make a heuristic guess based on a magic (possibly)
94 target-specific constant and size of the loop.
96 4) Determine which of the references we prefetch. We take into account
97 that there is a maximum number of simultaneous prefetches (provided
98 by machine description). We prefetch as many prefetches as possible
99 while still within this bound (starting with those with lowest
100 prefetch_mod, since they are responsible for most of the cache
103 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
104 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
105 prefetching nonaccessed memory.
106 TODO -- actually implement peeling.
108 6) We actually emit the prefetch instructions. ??? Perhaps emit the
109 prefetch instructions with guards in cases where 5) was not sufficient
110 to satisfy the constraints?
112 A cost model is implemented to determine whether or not prefetching is
113 profitable for a given loop. The cost model has three heuristics:
115 1. Function trip_count_to_ahead_ratio_too_small_p implements a
116 heuristic that determines whether or not the loop has too few
117 iterations (compared to ahead). Prefetching is not likely to be
118 beneficial if the trip count to ahead ratio is below a certain
121 2. Function mem_ref_count_reasonable_p implements a heuristic that
122 determines whether the given loop has enough CPU ops that can be
123 overlapped with cache missing memory ops. If not, the loop
124 won't benefit from prefetching. In the implementation,
125 prefetching is not considered beneficial if the ratio between
126 the instruction count and the mem ref count is below a certain
129 3. Function insn_to_prefetch_ratio_too_small_p implements a
130 heuristic that disables prefetching in a loop if the prefetching
131 cost is above a certain limit. The relative prefetching cost is
132 estimated by taking the ratio between the prefetch count and the
133 total intruction count (this models the I-cache cost).
135 The limits used in these heuristics are defined as parameters with
136 reasonable default values. Machine-specific default values will be
140 -- write and use more general reuse analysis (that could be also used
141 in other cache aimed loop optimizations)
142 -- make it behave sanely together with the prefetches given by user
143 (now we just ignore them; at the very least we should avoid
144 optimizing loops in that user put his own prefetches)
145 -- we assume cache line size alignment of arrays; this could be
148 /* Magic constants follow. These should be replaced by machine specific
151 /* True if write can be prefetched by a read prefetch. */
153 #ifndef WRITE_CAN_USE_READ_PREFETCH
154 #define WRITE_CAN_USE_READ_PREFETCH 1
157 /* True if read can be prefetched by a write prefetch. */
159 #ifndef READ_CAN_USE_WRITE_PREFETCH
160 #define READ_CAN_USE_WRITE_PREFETCH 0
163 /* The size of the block loaded by a single prefetch. Usually, this is
164 the same as cache line size (at the moment, we only consider one level
165 of cache hierarchy). */
167 #ifndef PREFETCH_BLOCK
168 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
171 /* Do we have a forward hardware sequential prefetching? */
173 #ifndef HAVE_FORWARD_PREFETCH
174 #define HAVE_FORWARD_PREFETCH 0
177 /* Do we have a backward hardware sequential prefetching? */
179 #ifndef HAVE_BACKWARD_PREFETCH
180 #define HAVE_BACKWARD_PREFETCH 0
183 /* In some cases we are only able to determine that there is a certain
184 probability that the two accesses hit the same cache line. In this
185 case, we issue the prefetches for both of them if this probability
186 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
188 #ifndef ACCEPTABLE_MISS_RATE
189 #define ACCEPTABLE_MISS_RATE 50
192 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
193 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
195 /* We consider a memory access nontemporal if it is not reused sooner than
196 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
197 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
198 so that we use nontemporal prefetches e.g. if single memory location
199 is accessed several times in a single iteration of the loop. */
200 #define NONTEMPORAL_FRACTION 16
202 /* In case we have to emit a memory fence instruction after the loop that
203 uses nontemporal stores, this defines the builtin to use. */
205 #ifndef FENCE_FOLLOWING_MOVNT
206 #define FENCE_FOLLOWING_MOVNT NULL_TREE
209 /* It is not profitable to prefetch when the trip count is not at
210 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
211 For example, in a loop with a prefetch ahead distance of 10,
212 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
213 profitable to prefetch when the trip count is greater or equal to
214 40. In that case, 30 out of the 40 iterations will benefit from
217 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
218 #define TRIP_COUNT_TO_AHEAD_RATIO 4
221 /* The group of references between that reuse may occur. */
225 tree base
; /* Base of the reference. */
226 tree step
; /* Step of the reference. */
227 struct mem_ref
*refs
; /* References in the group. */
228 struct mem_ref_group
*next
; /* Next group of references. */
231 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
233 #define PREFETCH_ALL HOST_WIDE_INT_M1U
235 /* Do not generate a prefetch if the unroll factor is significantly less
236 than what is required by the prefetch. This is to avoid redundant
237 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
238 2, prefetching requires unrolling the loop 16 times, but
239 the loop is actually unrolled twice. In this case (ratio = 8),
240 prefetching is not likely to be beneficial. */
242 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
243 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
246 /* Some of the prefetch computations have quadratic complexity. We want to
247 avoid huge compile times and, therefore, want to limit the amount of
248 memory references per loop where we consider prefetching. */
250 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
251 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
254 /* The memory reference. */
258 gimple
*stmt
; /* Statement in that the reference appears. */
259 tree mem
; /* The reference. */
260 HOST_WIDE_INT delta
; /* Constant offset of the reference. */
261 struct mem_ref_group
*group
; /* The group of references it belongs to. */
262 unsigned HOST_WIDE_INT prefetch_mod
;
263 /* Prefetch only each PREFETCH_MOD-th
265 unsigned HOST_WIDE_INT prefetch_before
;
266 /* Prefetch only first PREFETCH_BEFORE
268 unsigned reuse_distance
; /* The amount of data accessed before the first
269 reuse of this value. */
270 struct mem_ref
*next
; /* The next reference in the group. */
271 unsigned write_p
: 1; /* Is it a write? */
272 unsigned independent_p
: 1; /* True if the reference is independent on
273 all other references inside the loop. */
274 unsigned issue_prefetch_p
: 1; /* Should we really issue the prefetch? */
275 unsigned storent_p
: 1; /* True if we changed the store to a
279 /* Dumps information about memory reference */
281 dump_mem_details (FILE *file
, tree base
, tree step
,
282 HOST_WIDE_INT delta
, bool write_p
)
284 fprintf (file
, "(base ");
285 print_generic_expr (file
, base
, TDF_SLIM
);
286 fprintf (file
, ", step ");
287 if (cst_and_fits_in_hwi (step
))
288 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, int_cst_value (step
));
290 print_generic_expr (file
, step
, TDF_TREE
);
291 fprintf (file
, ")\n");
292 fprintf (file
, " delta ");
293 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, delta
);
294 fprintf (file
, "\n");
295 fprintf (file
, " %s\n", write_p
? "write" : "read");
296 fprintf (file
, "\n");
299 /* Dumps information about reference REF to FILE. */
302 dump_mem_ref (FILE *file
, struct mem_ref
*ref
)
304 fprintf (file
, "Reference %p:\n", (void *) ref
);
306 fprintf (file
, " group %p ", (void *) ref
->group
);
308 dump_mem_details (file
, ref
->group
->base
, ref
->group
->step
, ref
->delta
,
312 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
315 static struct mem_ref_group
*
316 find_or_create_group (struct mem_ref_group
**groups
, tree base
, tree step
)
318 struct mem_ref_group
*group
;
320 for (; *groups
; groups
= &(*groups
)->next
)
322 if (operand_equal_p ((*groups
)->step
, step
, 0)
323 && operand_equal_p ((*groups
)->base
, base
, 0))
326 /* If step is an integer constant, keep the list of groups sorted
327 by decreasing step. */
328 if (cst_and_fits_in_hwi ((*groups
)->step
) && cst_and_fits_in_hwi (step
)
329 && int_cst_value ((*groups
)->step
) < int_cst_value (step
))
333 group
= XNEW (struct mem_ref_group
);
337 group
->next
= *groups
;
343 /* Records a memory reference MEM in GROUP with offset DELTA and write status
344 WRITE_P. The reference occurs in statement STMT. */
347 record_ref (struct mem_ref_group
*group
, gimple
*stmt
, tree mem
,
348 HOST_WIDE_INT delta
, bool write_p
)
350 struct mem_ref
**aref
;
352 /* Do not record the same address twice. */
353 for (aref
= &group
->refs
; *aref
; aref
= &(*aref
)->next
)
355 /* It does not have to be possible for write reference to reuse the read
356 prefetch, or vice versa. */
357 if (!WRITE_CAN_USE_READ_PREFETCH
359 && !(*aref
)->write_p
)
361 if (!READ_CAN_USE_WRITE_PREFETCH
366 if ((*aref
)->delta
== delta
)
370 (*aref
) = XNEW (struct mem_ref
);
371 (*aref
)->stmt
= stmt
;
373 (*aref
)->delta
= delta
;
374 (*aref
)->write_p
= write_p
;
375 (*aref
)->prefetch_before
= PREFETCH_ALL
;
376 (*aref
)->prefetch_mod
= 1;
377 (*aref
)->reuse_distance
= 0;
378 (*aref
)->issue_prefetch_p
= false;
379 (*aref
)->group
= group
;
380 (*aref
)->next
= NULL
;
381 (*aref
)->independent_p
= false;
382 (*aref
)->storent_p
= false;
384 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
385 dump_mem_ref (dump_file
, *aref
);
388 /* Release memory references in GROUPS. */
391 release_mem_refs (struct mem_ref_group
*groups
)
393 struct mem_ref_group
*next_g
;
394 struct mem_ref
*ref
, *next_r
;
396 for (; groups
; groups
= next_g
)
398 next_g
= groups
->next
;
399 for (ref
= groups
->refs
; ref
; ref
= next_r
)
408 /* A structure used to pass arguments to idx_analyze_ref. */
412 struct loop
*loop
; /* Loop of the reference. */
413 gimple
*stmt
; /* Statement of the reference. */
414 tree
*step
; /* Step of the memory reference. */
415 HOST_WIDE_INT
*delta
; /* Offset of the memory reference. */
418 /* Analyzes a single INDEX of a memory reference to obtain information
419 described at analyze_ref. Callback for for_each_index. */
422 idx_analyze_ref (tree base
, tree
*index
, void *data
)
424 struct ar_data
*ar_data
= (struct ar_data
*) data
;
425 tree ibase
, step
, stepsize
;
426 HOST_WIDE_INT idelta
= 0, imult
= 1;
429 if (!simple_iv (ar_data
->loop
, loop_containing_stmt (ar_data
->stmt
),
435 if (TREE_CODE (ibase
) == POINTER_PLUS_EXPR
436 && cst_and_fits_in_hwi (TREE_OPERAND (ibase
, 1)))
438 idelta
= int_cst_value (TREE_OPERAND (ibase
, 1));
439 ibase
= TREE_OPERAND (ibase
, 0);
441 if (cst_and_fits_in_hwi (ibase
))
443 idelta
+= int_cst_value (ibase
);
444 ibase
= build_int_cst (TREE_TYPE (ibase
), 0);
447 if (TREE_CODE (base
) == ARRAY_REF
)
449 stepsize
= array_ref_element_size (base
);
450 if (!cst_and_fits_in_hwi (stepsize
))
452 imult
= int_cst_value (stepsize
);
453 step
= fold_build2 (MULT_EXPR
, sizetype
,
454 fold_convert (sizetype
, step
),
455 fold_convert (sizetype
, stepsize
));
459 if (*ar_data
->step
== NULL_TREE
)
460 *ar_data
->step
= step
;
462 *ar_data
->step
= fold_build2 (PLUS_EXPR
, sizetype
,
463 fold_convert (sizetype
, *ar_data
->step
),
464 fold_convert (sizetype
, step
));
465 *ar_data
->delta
+= idelta
;
471 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
472 STEP are integer constants and iter is number of iterations of LOOP. The
473 reference occurs in statement STMT. Strips nonaddressable component
474 references from REF_P. */
477 analyze_ref (struct loop
*loop
, tree
*ref_p
, tree
*base
,
478 tree
*step
, HOST_WIDE_INT
*delta
,
481 struct ar_data ar_data
;
483 HOST_WIDE_INT bit_offset
;
489 /* First strip off the component references. Ignore bitfields.
490 Also strip off the real and imagine parts of a complex, so that
491 they can have the same base. */
492 if (TREE_CODE (ref
) == REALPART_EXPR
493 || TREE_CODE (ref
) == IMAGPART_EXPR
494 || (TREE_CODE (ref
) == COMPONENT_REF
495 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref
, 1))))
497 if (TREE_CODE (ref
) == IMAGPART_EXPR
)
498 *delta
+= int_size_in_bytes (TREE_TYPE (ref
));
499 ref
= TREE_OPERAND (ref
, 0);
504 for (; TREE_CODE (ref
) == COMPONENT_REF
; ref
= TREE_OPERAND (ref
, 0))
506 off
= DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1));
507 bit_offset
= TREE_INT_CST_LOW (off
);
508 gcc_assert (bit_offset
% BITS_PER_UNIT
== 0);
510 *delta
+= bit_offset
/ BITS_PER_UNIT
;
513 *base
= unshare_expr (ref
);
517 ar_data
.delta
= delta
;
518 return for_each_index (base
, idx_analyze_ref
, &ar_data
);
521 /* Record a memory reference REF to the list REFS. The reference occurs in
522 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
523 reference was recorded, false otherwise. */
526 gather_memory_references_ref (struct loop
*loop
, struct mem_ref_group
**refs
,
527 tree ref
, bool write_p
, gimple
*stmt
)
531 struct mem_ref_group
*agrp
;
533 if (get_base_address (ref
) == NULL
)
536 if (!analyze_ref (loop
, &ref
, &base
, &step
, &delta
, stmt
))
538 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
539 if (step
== NULL_TREE
)
542 /* Stop if the address of BASE could not be taken. */
543 if (may_be_nonaddressable_p (base
))
546 /* Limit non-constant step prefetching only to the innermost loops and
547 only when the step is loop invariant in the entire loop nest. */
548 if (!cst_and_fits_in_hwi (step
))
550 if (loop
->inner
!= NULL
)
552 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
554 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
555 print_generic_expr (dump_file
, ref
, TDF_TREE
);
556 fprintf (dump_file
,":");
557 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
559 "Ignoring %p, non-constant step prefetching is "
560 "limited to inner most loops \n",
567 if (!expr_invariant_in_loop_p (loop_outermost (loop
), step
))
569 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
571 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
572 print_generic_expr (dump_file
, ref
, TDF_TREE
);
573 fprintf (dump_file
,":");
574 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
576 "Not prefetching, ignoring %p due to "
577 "loop variant step\n",
585 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
586 are integer constants. */
587 agrp
= find_or_create_group (refs
, base
, step
);
588 record_ref (agrp
, stmt
, ref
, delta
, write_p
);
593 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
594 true if there are no other memory references inside the loop. */
596 static struct mem_ref_group
*
597 gather_memory_references (struct loop
*loop
, bool *no_other_refs
, unsigned *ref_count
)
599 basic_block
*body
= get_loop_body_in_dom_order (loop
);
602 gimple_stmt_iterator bsi
;
605 struct mem_ref_group
*refs
= NULL
;
607 *no_other_refs
= true;
610 /* Scan the loop body in order, so that the former references precede the
612 for (i
= 0; i
< loop
->num_nodes
; i
++)
615 if (bb
->loop_father
!= loop
)
618 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
620 stmt
= gsi_stmt (bsi
);
622 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
624 if (gimple_vuse (stmt
)
625 || (is_gimple_call (stmt
)
626 && !(gimple_call_flags (stmt
) & ECF_CONST
)))
627 *no_other_refs
= false;
631 if (! gimple_vuse (stmt
))
634 lhs
= gimple_assign_lhs (stmt
);
635 rhs
= gimple_assign_rhs1 (stmt
);
637 if (REFERENCE_CLASS_P (rhs
))
639 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
643 if (REFERENCE_CLASS_P (lhs
))
645 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
656 /* Prune the prefetch candidate REF using the self-reuse. */
659 prune_ref_by_self_reuse (struct mem_ref
*ref
)
664 /* If the step size is non constant, we cannot calculate prefetch_mod. */
665 if (!cst_and_fits_in_hwi (ref
->group
->step
))
668 step
= int_cst_value (ref
->group
->step
);
674 /* Prefetch references to invariant address just once. */
675 ref
->prefetch_before
= 1;
682 if (step
> PREFETCH_BLOCK
)
685 if ((backward
&& HAVE_BACKWARD_PREFETCH
)
686 || (!backward
&& HAVE_FORWARD_PREFETCH
))
688 ref
->prefetch_before
= 1;
692 ref
->prefetch_mod
= PREFETCH_BLOCK
/ step
;
695 /* Divides X by BY, rounding down. */
698 ddown (HOST_WIDE_INT x
, unsigned HOST_WIDE_INT by
)
703 return x
/ (HOST_WIDE_INT
) by
;
705 return (x
+ (HOST_WIDE_INT
) by
- 1) / (HOST_WIDE_INT
) by
;
708 /* Given a CACHE_LINE_SIZE and two inductive memory references
709 with a common STEP greater than CACHE_LINE_SIZE and an address
710 difference DELTA, compute the probability that they will fall
711 in different cache lines. Return true if the computed miss rate
712 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
713 number of distinct iterations after which the pattern repeats itself.
714 ALIGN_UNIT is the unit of alignment in bytes. */
717 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size
,
718 HOST_WIDE_INT step
, HOST_WIDE_INT delta
,
719 unsigned HOST_WIDE_INT distinct_iters
,
722 unsigned align
, iter
;
723 int total_positions
, miss_positions
, max_allowed_miss_positions
;
724 int address1
, address2
, cache_line1
, cache_line2
;
726 /* It always misses if delta is greater than or equal to the cache
728 if (delta
>= (HOST_WIDE_INT
) cache_line_size
)
732 total_positions
= (cache_line_size
/ align_unit
) * distinct_iters
;
733 max_allowed_miss_positions
= (ACCEPTABLE_MISS_RATE
* total_positions
) / 1000;
735 /* Iterate through all possible alignments of the first
736 memory reference within its cache line. */
737 for (align
= 0; align
< cache_line_size
; align
+= align_unit
)
739 /* Iterate through all distinct iterations. */
740 for (iter
= 0; iter
< distinct_iters
; iter
++)
742 address1
= align
+ step
* iter
;
743 address2
= address1
+ delta
;
744 cache_line1
= address1
/ cache_line_size
;
745 cache_line2
= address2
/ cache_line_size
;
746 if (cache_line1
!= cache_line2
)
749 if (miss_positions
> max_allowed_miss_positions
)
756 /* Prune the prefetch candidate REF using the reuse with BY.
757 If BY_IS_BEFORE is true, BY is before REF in the loop. */
760 prune_ref_by_group_reuse (struct mem_ref
*ref
, struct mem_ref
*by
,
765 HOST_WIDE_INT delta_r
= ref
->delta
, delta_b
= by
->delta
;
766 HOST_WIDE_INT delta
= delta_b
- delta_r
;
767 HOST_WIDE_INT hit_from
;
768 unsigned HOST_WIDE_INT prefetch_before
, prefetch_block
;
769 HOST_WIDE_INT reduced_step
;
770 unsigned HOST_WIDE_INT reduced_prefetch_block
;
774 /* If the step is non constant we cannot calculate prefetch_before. */
775 if (!cst_and_fits_in_hwi (ref
->group
->step
)) {
779 step
= int_cst_value (ref
->group
->step
);
786 /* If the references has the same address, only prefetch the
789 ref
->prefetch_before
= 0;
796 /* If the reference addresses are invariant and fall into the
797 same cache line, prefetch just the first one. */
801 if (ddown (ref
->delta
, PREFETCH_BLOCK
)
802 != ddown (by
->delta
, PREFETCH_BLOCK
))
805 ref
->prefetch_before
= 0;
809 /* Only prune the reference that is behind in the array. */
815 /* Transform the data so that we may assume that the accesses
819 delta_r
= PREFETCH_BLOCK
- 1 - delta_r
;
820 delta_b
= PREFETCH_BLOCK
- 1 - delta_b
;
828 /* Check whether the two references are likely to hit the same cache
829 line, and how distant the iterations in that it occurs are from
832 if (step
<= PREFETCH_BLOCK
)
834 /* The accesses are sure to meet. Let us check when. */
835 hit_from
= ddown (delta_b
, PREFETCH_BLOCK
) * PREFETCH_BLOCK
;
836 prefetch_before
= (hit_from
- delta_r
+ step
- 1) / step
;
838 /* Do not reduce prefetch_before if we meet beyond cache size. */
839 if (prefetch_before
> absu_hwi (L2_CACHE_SIZE_BYTES
/ step
))
840 prefetch_before
= PREFETCH_ALL
;
841 if (prefetch_before
< ref
->prefetch_before
)
842 ref
->prefetch_before
= prefetch_before
;
847 /* A more complicated case with step > prefetch_block. First reduce
848 the ratio between the step and the cache line size to its simplest
849 terms. The resulting denominator will then represent the number of
850 distinct iterations after which each address will go back to its
851 initial location within the cache line. This computation assumes
852 that PREFETCH_BLOCK is a power of two. */
853 prefetch_block
= PREFETCH_BLOCK
;
854 reduced_prefetch_block
= prefetch_block
;
856 while ((reduced_step
& 1) == 0
857 && reduced_prefetch_block
> 1)
860 reduced_prefetch_block
>>= 1;
863 prefetch_before
= delta
/ step
;
865 ref_type
= TREE_TYPE (ref
->mem
);
866 align_unit
= TYPE_ALIGN (ref_type
) / 8;
867 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
868 reduced_prefetch_block
, align_unit
))
870 /* Do not reduce prefetch_before if we meet beyond cache size. */
871 if (prefetch_before
> L2_CACHE_SIZE_BYTES
/ PREFETCH_BLOCK
)
872 prefetch_before
= PREFETCH_ALL
;
873 if (prefetch_before
< ref
->prefetch_before
)
874 ref
->prefetch_before
= prefetch_before
;
879 /* Try also the following iteration. */
881 delta
= step
- delta
;
882 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
883 reduced_prefetch_block
, align_unit
))
885 if (prefetch_before
< ref
->prefetch_before
)
886 ref
->prefetch_before
= prefetch_before
;
891 /* The ref probably does not reuse by. */
895 /* Prune the prefetch candidate REF using the reuses with other references
899 prune_ref_by_reuse (struct mem_ref
*ref
, struct mem_ref
*refs
)
901 struct mem_ref
*prune_by
;
904 prune_ref_by_self_reuse (ref
);
906 for (prune_by
= refs
; prune_by
; prune_by
= prune_by
->next
)
914 if (!WRITE_CAN_USE_READ_PREFETCH
916 && !prune_by
->write_p
)
918 if (!READ_CAN_USE_WRITE_PREFETCH
920 && prune_by
->write_p
)
923 prune_ref_by_group_reuse (ref
, prune_by
, before
);
927 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
930 prune_group_by_reuse (struct mem_ref_group
*group
)
932 struct mem_ref
*ref_pruned
;
934 for (ref_pruned
= group
->refs
; ref_pruned
; ref_pruned
= ref_pruned
->next
)
936 prune_ref_by_reuse (ref_pruned
, group
->refs
);
938 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
940 fprintf (dump_file
, "Reference %p:", (void *) ref_pruned
);
942 if (ref_pruned
->prefetch_before
== PREFETCH_ALL
943 && ref_pruned
->prefetch_mod
== 1)
944 fprintf (dump_file
, " no restrictions");
945 else if (ref_pruned
->prefetch_before
== 0)
946 fprintf (dump_file
, " do not prefetch");
947 else if (ref_pruned
->prefetch_before
<= ref_pruned
->prefetch_mod
)
948 fprintf (dump_file
, " prefetch once");
951 if (ref_pruned
->prefetch_before
!= PREFETCH_ALL
)
953 fprintf (dump_file
, " prefetch before ");
954 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
955 ref_pruned
->prefetch_before
);
957 if (ref_pruned
->prefetch_mod
!= 1)
959 fprintf (dump_file
, " prefetch mod ");
960 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
961 ref_pruned
->prefetch_mod
);
964 fprintf (dump_file
, "\n");
969 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
972 prune_by_reuse (struct mem_ref_group
*groups
)
974 for (; groups
; groups
= groups
->next
)
975 prune_group_by_reuse (groups
);
978 /* Returns true if we should issue prefetch for REF. */
981 should_issue_prefetch_p (struct mem_ref
*ref
)
983 /* For now do not issue prefetches for only first few of the
985 if (ref
->prefetch_before
!= PREFETCH_ALL
)
987 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
988 fprintf (dump_file
, "Ignoring %p due to prefetch_before\n",
993 /* Do not prefetch nontemporal stores. */
996 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
997 fprintf (dump_file
, "Ignoring nontemporal store %p\n", (void *) ref
);
1004 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1005 AHEAD is the number of iterations to prefetch ahead (which corresponds
1006 to the number of simultaneous instances of one prefetch running at a
1007 time). UNROLL_FACTOR is the factor by that the loop is going to be
1008 unrolled. Returns true if there is anything to prefetch. */
1011 schedule_prefetches (struct mem_ref_group
*groups
, unsigned unroll_factor
,
1014 unsigned remaining_prefetch_slots
, n_prefetches
, prefetch_slots
;
1015 unsigned slots_per_prefetch
;
1016 struct mem_ref
*ref
;
1019 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1020 remaining_prefetch_slots
= SIMULTANEOUS_PREFETCHES
;
1022 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1023 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1024 it will need a prefetch slot. */
1025 slots_per_prefetch
= (ahead
+ unroll_factor
/ 2) / unroll_factor
;
1026 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1027 fprintf (dump_file
, "Each prefetch instruction takes %u prefetch slots.\n",
1028 slots_per_prefetch
);
1030 /* For now we just take memory references one by one and issue
1031 prefetches for as many as possible. The groups are sorted
1032 starting with the largest step, since the references with
1033 large step are more likely to cause many cache misses. */
1035 for (; groups
; groups
= groups
->next
)
1036 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1038 if (!should_issue_prefetch_p (ref
))
1041 /* The loop is far from being sufficiently unrolled for this
1042 prefetch. Do not generate prefetch to avoid many redudant
1044 if (ref
->prefetch_mod
/ unroll_factor
> PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
)
1047 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1048 and we unroll the loop UNROLL_FACTOR times, we need to insert
1049 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1051 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1052 / ref
->prefetch_mod
);
1053 prefetch_slots
= n_prefetches
* slots_per_prefetch
;
1055 /* If more than half of the prefetches would be lost anyway, do not
1056 issue the prefetch. */
1057 if (2 * remaining_prefetch_slots
< prefetch_slots
)
1060 ref
->issue_prefetch_p
= true;
1062 if (remaining_prefetch_slots
<= prefetch_slots
)
1064 remaining_prefetch_slots
-= prefetch_slots
;
1071 /* Return TRUE if no prefetch is going to be generated in the given
1075 nothing_to_prefetch_p (struct mem_ref_group
*groups
)
1077 struct mem_ref
*ref
;
1079 for (; groups
; groups
= groups
->next
)
1080 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1081 if (should_issue_prefetch_p (ref
))
1087 /* Estimate the number of prefetches in the given GROUPS.
1088 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1091 estimate_prefetch_count (struct mem_ref_group
*groups
, unsigned unroll_factor
)
1093 struct mem_ref
*ref
;
1094 unsigned n_prefetches
;
1095 int prefetch_count
= 0;
1097 for (; groups
; groups
= groups
->next
)
1098 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1099 if (should_issue_prefetch_p (ref
))
1101 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1102 / ref
->prefetch_mod
);
1103 prefetch_count
+= n_prefetches
;
1106 return prefetch_count
;
1109 /* Issue prefetches for the reference REF into loop as decided before.
1110 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1111 is the factor by which LOOP was unrolled. */
1114 issue_prefetch_ref (struct mem_ref
*ref
, unsigned unroll_factor
, unsigned ahead
)
1116 HOST_WIDE_INT delta
;
1117 tree addr
, addr_base
, write_p
, local
, forward
;
1119 gimple_stmt_iterator bsi
;
1120 unsigned n_prefetches
, ap
;
1121 bool nontemporal
= ref
->reuse_distance
>= L2_CACHE_SIZE_BYTES
;
1123 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1124 fprintf (dump_file
, "Issued%s prefetch for %p.\n",
1125 nontemporal
? " nontemporal" : "",
1128 bsi
= gsi_for_stmt (ref
->stmt
);
1130 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1131 / ref
->prefetch_mod
);
1132 addr_base
= build_fold_addr_expr_with_type (ref
->mem
, ptr_type_node
);
1133 addr_base
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr_base
),
1134 true, NULL
, true, GSI_SAME_STMT
);
1135 write_p
= ref
->write_p
? integer_one_node
: integer_zero_node
;
1136 local
= nontemporal
? integer_zero_node
: integer_three_node
;
1138 for (ap
= 0; ap
< n_prefetches
; ap
++)
1140 if (cst_and_fits_in_hwi (ref
->group
->step
))
1142 /* Determine the address to prefetch. */
1143 delta
= (ahead
+ ap
* ref
->prefetch_mod
) *
1144 int_cst_value (ref
->group
->step
);
1145 addr
= fold_build_pointer_plus_hwi (addr_base
, delta
);
1146 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true, NULL
,
1147 true, GSI_SAME_STMT
);
1151 /* The step size is non-constant but loop-invariant. We use the
1152 heuristic to simply prefetch ahead iterations ahead. */
1153 forward
= fold_build2 (MULT_EXPR
, sizetype
,
1154 fold_convert (sizetype
, ref
->group
->step
),
1155 fold_convert (sizetype
, size_int (ahead
)));
1156 addr
= fold_build_pointer_plus (addr_base
, forward
);
1157 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true,
1158 NULL
, true, GSI_SAME_STMT
);
1161 if (addr_base
!= addr
1162 && TREE_CODE (addr_base
) == SSA_NAME
1163 && TREE_CODE (addr
) == SSA_NAME
)
1165 duplicate_ssa_name_ptr_info (addr
, SSA_NAME_PTR_INFO (addr_base
));
1166 /* As this isn't a plain copy we have to reset alignment
1168 if (SSA_NAME_PTR_INFO (addr
))
1169 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr
));
1172 /* Create the prefetch instruction. */
1173 prefetch
= gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH
),
1174 3, addr
, write_p
, local
);
1175 gsi_insert_before (&bsi
, prefetch
, GSI_SAME_STMT
);
1179 /* Issue prefetches for the references in GROUPS into loop as decided before.
1180 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1181 factor by that LOOP was unrolled. */
1184 issue_prefetches (struct mem_ref_group
*groups
,
1185 unsigned unroll_factor
, unsigned ahead
)
1187 struct mem_ref
*ref
;
1189 for (; groups
; groups
= groups
->next
)
1190 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1191 if (ref
->issue_prefetch_p
)
1192 issue_prefetch_ref (ref
, unroll_factor
, ahead
);
1195 /* Returns true if REF is a memory write for that a nontemporal store insn
1199 nontemporal_store_p (struct mem_ref
*ref
)
1202 enum insn_code code
;
1204 /* REF must be a write that is not reused. We require it to be independent
1205 on all other memory references in the loop, as the nontemporal stores may
1206 be reordered with respect to other memory references. */
1208 || !ref
->independent_p
1209 || ref
->reuse_distance
< L2_CACHE_SIZE_BYTES
)
1212 /* Check that we have the storent instruction for the mode. */
1213 mode
= TYPE_MODE (TREE_TYPE (ref
->mem
));
1214 if (mode
== BLKmode
)
1217 code
= optab_handler (storent_optab
, mode
);
1218 return code
!= CODE_FOR_nothing
;
1221 /* If REF is a nontemporal store, we mark the corresponding modify statement
1222 and return true. Otherwise, we return false. */
1225 mark_nontemporal_store (struct mem_ref
*ref
)
1227 if (!nontemporal_store_p (ref
))
1230 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1231 fprintf (dump_file
, "Marked reference %p as a nontemporal store.\n",
1234 gimple_assign_set_nontemporal_move (ref
->stmt
, true);
1235 ref
->storent_p
= true;
1240 /* Issue a memory fence instruction after LOOP. */
1243 emit_mfence_after_loop (struct loop
*loop
)
1245 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1248 gimple_stmt_iterator bsi
;
1251 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1253 call
= gimple_build_call (FENCE_FOLLOWING_MOVNT
, 0);
1255 if (!single_pred_p (exit
->dest
)
1256 /* If possible, we prefer not to insert the fence on other paths
1258 && !(exit
->flags
& EDGE_ABNORMAL
))
1259 split_loop_exit_edge (exit
);
1260 bsi
= gsi_after_labels (exit
->dest
);
1262 gsi_insert_before (&bsi
, call
, GSI_NEW_STMT
);
1266 update_ssa (TODO_update_ssa_only_virtuals
);
1269 /* Returns true if we can use storent in loop, false otherwise. */
1272 may_use_storent_in_loop_p (struct loop
*loop
)
1276 if (loop
->inner
!= NULL
)
1279 /* If we must issue a mfence insn after using storent, check that there
1280 is a suitable place for it at each of the loop exits. */
1281 if (FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1283 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1287 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1288 if ((exit
->flags
& EDGE_ABNORMAL
)
1289 && exit
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1298 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1299 references in the loop. */
1302 mark_nontemporal_stores (struct loop
*loop
, struct mem_ref_group
*groups
)
1304 struct mem_ref
*ref
;
1307 if (!may_use_storent_in_loop_p (loop
))
1310 for (; groups
; groups
= groups
->next
)
1311 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1312 any
|= mark_nontemporal_store (ref
);
1314 if (any
&& FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1315 emit_mfence_after_loop (loop
);
1318 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1319 this is the case, fill in DESC by the description of number of
1323 should_unroll_loop_p (struct loop
*loop
, struct tree_niter_desc
*desc
,
1326 if (!can_unroll_loop_p (loop
, factor
, desc
))
1329 /* We only consider loops without control flow for unrolling. This is not
1330 a hard restriction -- tree_unroll_loop works with arbitrary loops
1331 as well; but the unrolling/prefetching is usually more profitable for
1332 loops consisting of a single basic block, and we want to limit the
1334 if (loop
->num_nodes
> 2)
1340 /* Determine the coefficient by that unroll LOOP, from the information
1341 contained in the list of memory references REFS. Description of
1342 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1343 insns of the LOOP. EST_NITER is the estimated number of iterations of
1344 the loop, or -1 if no estimate is available. */
1347 determine_unroll_factor (struct loop
*loop
, struct mem_ref_group
*refs
,
1348 unsigned ninsns
, struct tree_niter_desc
*desc
,
1349 HOST_WIDE_INT est_niter
)
1351 unsigned upper_bound
;
1352 unsigned nfactor
, factor
, mod_constraint
;
1353 struct mem_ref_group
*agp
;
1354 struct mem_ref
*ref
;
1356 /* First check whether the loop is not too large to unroll. We ignore
1357 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1358 from unrolling them enough to make exactly one cache line covered by each
1359 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1360 us from unrolling the loops too many times in cases where we only expect
1361 gains from better scheduling and decreasing loop overhead, which is not
1363 upper_bound
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / ninsns
;
1365 /* If we unrolled the loop more times than it iterates, the unrolled version
1366 of the loop would be never entered. */
1367 if (est_niter
>= 0 && est_niter
< (HOST_WIDE_INT
) upper_bound
)
1368 upper_bound
= est_niter
;
1370 if (upper_bound
<= 1)
1373 /* Choose the factor so that we may prefetch each cache just once,
1374 but bound the unrolling by UPPER_BOUND. */
1376 for (agp
= refs
; agp
; agp
= agp
->next
)
1377 for (ref
= agp
->refs
; ref
; ref
= ref
->next
)
1378 if (should_issue_prefetch_p (ref
))
1380 mod_constraint
= ref
->prefetch_mod
;
1381 nfactor
= least_common_multiple (mod_constraint
, factor
);
1382 if (nfactor
<= upper_bound
)
1386 if (!should_unroll_loop_p (loop
, desc
, factor
))
1392 /* Returns the total volume of the memory references REFS, taking into account
1393 reuses in the innermost loop and cache line size. TODO -- we should also
1394 take into account reuses across the iterations of the loops in the loop
1398 volume_of_references (struct mem_ref_group
*refs
)
1400 unsigned volume
= 0;
1401 struct mem_ref_group
*gr
;
1402 struct mem_ref
*ref
;
1404 for (gr
= refs
; gr
; gr
= gr
->next
)
1405 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1407 /* Almost always reuses another value? */
1408 if (ref
->prefetch_before
!= PREFETCH_ALL
)
1411 /* If several iterations access the same cache line, use the size of
1412 the line divided by this number. Otherwise, a cache line is
1413 accessed in each iteration. TODO -- in the latter case, we should
1414 take the size of the reference into account, rounding it up on cache
1415 line size multiple. */
1416 volume
+= L1_CACHE_LINE_SIZE
/ ref
->prefetch_mod
;
1421 /* Returns the volume of memory references accessed across VEC iterations of
1422 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1423 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1426 volume_of_dist_vector (lambda_vector vec
, unsigned *loop_sizes
, unsigned n
)
1430 for (i
= 0; i
< n
; i
++)
1437 gcc_assert (vec
[i
] > 0);
1439 /* We ignore the parts of the distance vector in subloops, since usually
1440 the numbers of iterations are much smaller. */
1441 return loop_sizes
[i
] * vec
[i
];
1444 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1445 at the position corresponding to the loop of the step. N is the depth
1446 of the considered loop nest, and, LOOP is its innermost loop. */
1449 add_subscript_strides (tree access_fn
, unsigned stride
,
1450 HOST_WIDE_INT
*strides
, unsigned n
, struct loop
*loop
)
1454 HOST_WIDE_INT astep
;
1455 unsigned min_depth
= loop_depth (loop
) - n
;
1457 while (TREE_CODE (access_fn
) == POLYNOMIAL_CHREC
)
1459 aloop
= get_chrec_loop (access_fn
);
1460 step
= CHREC_RIGHT (access_fn
);
1461 access_fn
= CHREC_LEFT (access_fn
);
1463 if ((unsigned) loop_depth (aloop
) <= min_depth
)
1466 if (tree_fits_shwi_p (step
))
1467 astep
= tree_to_shwi (step
);
1469 astep
= L1_CACHE_LINE_SIZE
;
1471 strides
[n
- 1 - loop_depth (loop
) + loop_depth (aloop
)] += astep
* stride
;
1476 /* Returns the volume of memory references accessed between two consecutive
1477 self-reuses of the reference DR. We consider the subscripts of DR in N
1478 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1479 loops. LOOP is the innermost loop of the current loop nest. */
1482 self_reuse_distance (data_reference_p dr
, unsigned *loop_sizes
, unsigned n
,
1485 tree stride
, access_fn
;
1486 HOST_WIDE_INT
*strides
, astride
;
1487 vec
<tree
> access_fns
;
1488 tree ref
= DR_REF (dr
);
1489 unsigned i
, ret
= ~0u;
1491 /* In the following example:
1493 for (i = 0; i < N; i++)
1494 for (j = 0; j < N; j++)
1496 the same cache line is accessed each N steps (except if the change from
1497 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1498 we cannot rely purely on the results of the data dependence analysis.
1500 Instead, we compute the stride of the reference in each loop, and consider
1501 the innermost loop in that the stride is less than cache size. */
1503 strides
= XCNEWVEC (HOST_WIDE_INT
, n
);
1504 access_fns
= DR_ACCESS_FNS (dr
);
1506 FOR_EACH_VEC_ELT (access_fns
, i
, access_fn
)
1508 /* Keep track of the reference corresponding to the subscript, so that we
1510 while (handled_component_p (ref
) && TREE_CODE (ref
) != ARRAY_REF
)
1511 ref
= TREE_OPERAND (ref
, 0);
1513 if (TREE_CODE (ref
) == ARRAY_REF
)
1515 stride
= TYPE_SIZE_UNIT (TREE_TYPE (ref
));
1516 if (tree_fits_uhwi_p (stride
))
1517 astride
= tree_to_uhwi (stride
);
1519 astride
= L1_CACHE_LINE_SIZE
;
1521 ref
= TREE_OPERAND (ref
, 0);
1526 add_subscript_strides (access_fn
, astride
, strides
, n
, loop
);
1529 for (i
= n
; i
-- > 0; )
1531 unsigned HOST_WIDE_INT s
;
1533 s
= strides
[i
] < 0 ? -strides
[i
] : strides
[i
];
1535 if (s
< (unsigned) L1_CACHE_LINE_SIZE
1537 > (unsigned) (L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)))
1539 ret
= loop_sizes
[i
];
1548 /* Determines the distance till the first reuse of each reference in REFS
1549 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1550 memory references in the loop. Return false if the analysis fails. */
1553 determine_loop_nest_reuse (struct loop
*loop
, struct mem_ref_group
*refs
,
1556 struct loop
*nest
, *aloop
;
1557 vec
<data_reference_p
> datarefs
= vNULL
;
1558 vec
<ddr_p
> dependences
= vNULL
;
1559 struct mem_ref_group
*gr
;
1560 struct mem_ref
*ref
, *refb
;
1561 auto_vec
<loop_p
> vloops
;
1562 unsigned *loop_data_size
;
1564 unsigned volume
, dist
, adist
;
1566 data_reference_p dr
;
1572 /* Find the outermost loop of the loop nest of loop (we require that
1573 there are no sibling loops inside the nest). */
1577 aloop
= loop_outer (nest
);
1579 if (aloop
== current_loops
->tree_root
1580 || aloop
->inner
->next
)
1586 /* For each loop, determine the amount of data accessed in each iteration.
1587 We use this to estimate whether the reference is evicted from the
1588 cache before its reuse. */
1589 find_loop_nest (nest
, &vloops
);
1590 n
= vloops
.length ();
1591 loop_data_size
= XNEWVEC (unsigned, n
);
1592 volume
= volume_of_references (refs
);
1596 loop_data_size
[i
] = volume
;
1597 /* Bound the volume by the L2 cache size, since above this bound,
1598 all dependence distances are equivalent. */
1599 if (volume
> L2_CACHE_SIZE_BYTES
)
1603 vol
= estimated_stmt_executions_int (aloop
);
1605 vol
= expected_loop_iterations (aloop
);
1609 /* Prepare the references in the form suitable for data dependence
1610 analysis. We ignore unanalyzable data references (the results
1611 are used just as a heuristics to estimate temporality of the
1612 references, hence we do not need to worry about correctness). */
1613 for (gr
= refs
; gr
; gr
= gr
->next
)
1614 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1616 dr
= create_data_ref (nest
, loop_containing_stmt (ref
->stmt
),
1617 ref
->mem
, ref
->stmt
, !ref
->write_p
);
1621 ref
->reuse_distance
= volume
;
1623 datarefs
.safe_push (dr
);
1626 no_other_refs
= false;
1629 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1631 dist
= self_reuse_distance (dr
, loop_data_size
, n
, loop
);
1632 ref
= (struct mem_ref
*) dr
->aux
;
1633 if (ref
->reuse_distance
> dist
)
1634 ref
->reuse_distance
= dist
;
1637 ref
->independent_p
= true;
1640 if (!compute_all_dependences (datarefs
, &dependences
, vloops
, true))
1643 FOR_EACH_VEC_ELT (dependences
, i
, dep
)
1645 if (DDR_ARE_DEPENDENT (dep
) == chrec_known
)
1648 ref
= (struct mem_ref
*) DDR_A (dep
)->aux
;
1649 refb
= (struct mem_ref
*) DDR_B (dep
)->aux
;
1651 if (DDR_ARE_DEPENDENT (dep
) == chrec_dont_know
1652 || DDR_NUM_DIST_VECTS (dep
) == 0)
1654 /* If the dependence cannot be analyzed, assume that there might be
1658 ref
->independent_p
= false;
1659 refb
->independent_p
= false;
1663 /* The distance vectors are normalized to be always lexicographically
1664 positive, hence we cannot tell just from them whether DDR_A comes
1665 before DDR_B or vice versa. However, it is not important,
1666 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1667 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1668 in cache (and marking it as nontemporal would not affect
1672 for (j
= 0; j
< DDR_NUM_DIST_VECTS (dep
); j
++)
1674 adist
= volume_of_dist_vector (DDR_DIST_VECT (dep
, j
),
1677 /* If this is a dependence in the innermost loop (i.e., the
1678 distances in all superloops are zero) and it is not
1679 the trivial self-dependence with distance zero, record that
1680 the references are not completely independent. */
1681 if (lambda_vector_zerop (DDR_DIST_VECT (dep
, j
), n
- 1)
1683 || DDR_DIST_VECT (dep
, j
)[n
-1] != 0))
1685 ref
->independent_p
= false;
1686 refb
->independent_p
= false;
1689 /* Ignore accesses closer than
1690 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1691 so that we use nontemporal prefetches e.g. if single memory
1692 location is accessed several times in a single iteration of
1694 if (adist
< L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)
1702 if (ref
->reuse_distance
> dist
)
1703 ref
->reuse_distance
= dist
;
1704 if (refb
->reuse_distance
> dist
)
1705 refb
->reuse_distance
= dist
;
1708 free_dependence_relations (dependences
);
1709 free_data_refs (datarefs
);
1710 free (loop_data_size
);
1712 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1714 fprintf (dump_file
, "Reuse distances:\n");
1715 for (gr
= refs
; gr
; gr
= gr
->next
)
1716 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1717 fprintf (dump_file
, " ref %p distance %u\n",
1718 (void *) ref
, ref
->reuse_distance
);
1724 /* Determine whether or not the trip count to ahead ratio is too small based
1725 on prefitablility consideration.
1726 AHEAD: the iteration ahead distance,
1727 EST_NITER: the estimated trip count. */
1730 trip_count_to_ahead_ratio_too_small_p (unsigned ahead
, HOST_WIDE_INT est_niter
)
1732 /* Assume trip count to ahead ratio is big enough if the trip count could not
1733 be estimated at compile time. */
1737 if (est_niter
< (HOST_WIDE_INT
) (TRIP_COUNT_TO_AHEAD_RATIO
* ahead
))
1739 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1741 "Not prefetching -- loop estimated to roll only %d times\n",
1749 /* Determine whether or not the number of memory references in the loop is
1750 reasonable based on the profitablity and compilation time considerations.
1751 NINSNS: estimated number of instructions in the loop,
1752 MEM_REF_COUNT: total number of memory references in the loop. */
1755 mem_ref_count_reasonable_p (unsigned ninsns
, unsigned mem_ref_count
)
1757 int insn_to_mem_ratio
;
1759 if (mem_ref_count
== 0)
1762 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1763 (compute_all_dependences) have high costs based on quadratic complexity.
1764 To avoid huge compilation time, we give up prefetching if mem_ref_count
1766 if (mem_ref_count
> PREFETCH_MAX_MEM_REFS_PER_LOOP
)
1769 /* Prefetching improves performance by overlapping cache missing
1770 memory accesses with CPU operations. If the loop does not have
1771 enough CPU operations to overlap with memory operations, prefetching
1772 won't give a significant benefit. One approximate way of checking
1773 this is to require the ratio of instructions to memory references to
1774 be above a certain limit. This approximation works well in practice.
1775 TODO: Implement a more precise computation by estimating the time
1776 for each CPU or memory op in the loop. Time estimates for memory ops
1777 should account for cache misses. */
1778 insn_to_mem_ratio
= ninsns
/ mem_ref_count
;
1780 if (insn_to_mem_ratio
< PREFETCH_MIN_INSN_TO_MEM_RATIO
)
1782 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1784 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1792 /* Determine whether or not the instruction to prefetch ratio in the loop is
1793 too small based on the profitablity consideration.
1794 NINSNS: estimated number of instructions in the loop,
1795 PREFETCH_COUNT: an estimate of the number of prefetches,
1796 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1799 insn_to_prefetch_ratio_too_small_p (unsigned ninsns
, unsigned prefetch_count
,
1800 unsigned unroll_factor
)
1802 int insn_to_prefetch_ratio
;
1804 /* Prefetching most likely causes performance degradation when the instruction
1805 to prefetch ratio is too small. Too many prefetch instructions in a loop
1806 may reduce the I-cache performance.
1807 (unroll_factor * ninsns) is used to estimate the number of instructions in
1808 the unrolled loop. This implementation is a bit simplistic -- the number
1809 of issued prefetch instructions is also affected by unrolling. So,
1810 prefetch_mod and the unroll factor should be taken into account when
1811 determining prefetch_count. Also, the number of insns of the unrolled
1812 loop will usually be significantly smaller than the number of insns of the
1813 original loop * unroll_factor (at least the induction variable increases
1814 and the exit branches will get eliminated), so it might be better to use
1815 tree_estimate_loop_size + estimated_unrolled_size. */
1816 insn_to_prefetch_ratio
= (unroll_factor
* ninsns
) / prefetch_count
;
1817 if (insn_to_prefetch_ratio
< MIN_INSN_TO_PREFETCH_RATIO
)
1819 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1821 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1822 insn_to_prefetch_ratio
);
1830 /* Issue prefetch instructions for array references in LOOP. Returns
1831 true if the LOOP was unrolled. */
1834 loop_prefetch_arrays (struct loop
*loop
)
1836 struct mem_ref_group
*refs
;
1837 unsigned ahead
, ninsns
, time
, unroll_factor
;
1838 HOST_WIDE_INT est_niter
;
1839 struct tree_niter_desc desc
;
1840 bool unrolled
= false, no_other_refs
;
1841 unsigned prefetch_count
;
1842 unsigned mem_ref_count
;
1844 if (optimize_loop_nest_for_size_p (loop
))
1846 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1847 fprintf (dump_file
, " ignored (cold area)\n");
1851 /* FIXME: the time should be weighted by the probabilities of the blocks in
1853 time
= tree_num_loop_insns (loop
, &eni_time_weights
);
1857 ahead
= (PREFETCH_LATENCY
+ time
- 1) / time
;
1858 est_niter
= estimated_stmt_executions_int (loop
);
1859 if (est_niter
== -1)
1860 est_niter
= likely_max_stmt_executions_int (loop
);
1862 /* Prefetching is not likely to be profitable if the trip count to ahead
1863 ratio is too small. */
1864 if (trip_count_to_ahead_ratio_too_small_p (ahead
, est_niter
))
1867 ninsns
= tree_num_loop_insns (loop
, &eni_size_weights
);
1869 /* Step 1: gather the memory references. */
1870 refs
= gather_memory_references (loop
, &no_other_refs
, &mem_ref_count
);
1872 /* Give up prefetching if the number of memory references in the
1873 loop is not reasonable based on profitablity and compilation time
1875 if (!mem_ref_count_reasonable_p (ninsns
, mem_ref_count
))
1878 /* Step 2: estimate the reuse effects. */
1879 prune_by_reuse (refs
);
1881 if (nothing_to_prefetch_p (refs
))
1884 if (!determine_loop_nest_reuse (loop
, refs
, no_other_refs
))
1887 /* Step 3: determine unroll factor. */
1888 unroll_factor
= determine_unroll_factor (loop
, refs
, ninsns
, &desc
,
1891 /* Estimate prefetch count for the unrolled loop. */
1892 prefetch_count
= estimate_prefetch_count (refs
, unroll_factor
);
1893 if (prefetch_count
== 0)
1896 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1897 fprintf (dump_file
, "Ahead %d, unroll factor %d, trip count "
1898 HOST_WIDE_INT_PRINT_DEC
"\n"
1899 "insn count %d, mem ref count %d, prefetch count %d\n",
1900 ahead
, unroll_factor
, est_niter
,
1901 ninsns
, mem_ref_count
, prefetch_count
);
1903 /* Prefetching is not likely to be profitable if the instruction to prefetch
1904 ratio is too small. */
1905 if (insn_to_prefetch_ratio_too_small_p (ninsns
, prefetch_count
,
1909 mark_nontemporal_stores (loop
, refs
);
1911 /* Step 4: what to prefetch? */
1912 if (!schedule_prefetches (refs
, unroll_factor
, ahead
))
1915 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1916 iterations so that we do not issue superfluous prefetches. */
1917 if (unroll_factor
!= 1)
1919 tree_unroll_loop (loop
, unroll_factor
,
1920 single_dom_exit (loop
), &desc
);
1924 /* Step 6: issue the prefetches. */
1925 issue_prefetches (refs
, unroll_factor
, ahead
);
1928 release_mem_refs (refs
);
1932 /* Issue prefetch instructions for array references in loops. */
1935 tree_ssa_prefetch_arrays (void)
1938 bool unrolled
= false;
1941 if (!targetm
.have_prefetch ()
1942 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1943 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1944 of processor costs and i486 does not have prefetch, but
1945 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */
1946 || PREFETCH_BLOCK
== 0)
1949 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1951 fprintf (dump_file
, "Prefetching parameters:\n");
1952 fprintf (dump_file
, " simultaneous prefetches: %d\n",
1953 SIMULTANEOUS_PREFETCHES
);
1954 fprintf (dump_file
, " prefetch latency: %d\n", PREFETCH_LATENCY
);
1955 fprintf (dump_file
, " prefetch block size: %d\n", PREFETCH_BLOCK
);
1956 fprintf (dump_file
, " L1 cache size: %d lines, %d kB\n",
1957 L1_CACHE_SIZE_BYTES
/ L1_CACHE_LINE_SIZE
, L1_CACHE_SIZE
);
1958 fprintf (dump_file
, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE
);
1959 fprintf (dump_file
, " L2 cache size: %d kB\n", L2_CACHE_SIZE
);
1960 fprintf (dump_file
, " min insn-to-prefetch ratio: %d \n",
1961 MIN_INSN_TO_PREFETCH_RATIO
);
1962 fprintf (dump_file
, " min insn-to-mem ratio: %d \n",
1963 PREFETCH_MIN_INSN_TO_MEM_RATIO
);
1964 fprintf (dump_file
, "\n");
1967 initialize_original_copy_tables ();
1969 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH
))
1971 tree type
= build_function_type_list (void_type_node
,
1972 const_ptr_type_node
, NULL_TREE
);
1973 tree decl
= add_builtin_function ("__builtin_prefetch", type
,
1974 BUILT_IN_PREFETCH
, BUILT_IN_NORMAL
,
1976 DECL_IS_NOVOPS (decl
) = true;
1977 set_builtin_decl (BUILT_IN_PREFETCH
, decl
, false);
1980 /* We assume that size of cache line is a power of two, so verify this
1982 gcc_assert ((PREFETCH_BLOCK
& (PREFETCH_BLOCK
- 1)) == 0);
1984 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1986 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1987 fprintf (dump_file
, "Processing loop %d:\n", loop
->num
);
1989 unrolled
|= loop_prefetch_arrays (loop
);
1991 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1992 fprintf (dump_file
, "\n\n");
1998 todo_flags
|= TODO_cleanup_cfg
;
2001 free_original_copy_tables ();
2009 const pass_data pass_data_loop_prefetch
=
2011 GIMPLE_PASS
, /* type */
2012 "aprefetch", /* name */
2013 OPTGROUP_LOOP
, /* optinfo_flags */
2014 TV_TREE_PREFETCH
, /* tv_id */
2015 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2016 0, /* properties_provided */
2017 0, /* properties_destroyed */
2018 0, /* todo_flags_start */
2019 0, /* todo_flags_finish */
2022 class pass_loop_prefetch
: public gimple_opt_pass
2025 pass_loop_prefetch (gcc::context
*ctxt
)
2026 : gimple_opt_pass (pass_data_loop_prefetch
, ctxt
)
2029 /* opt_pass methods: */
2030 virtual bool gate (function
*) { return flag_prefetch_loop_arrays
> 0; }
2031 virtual unsigned int execute (function
*);
2033 }; // class pass_loop_prefetch
2036 pass_loop_prefetch::execute (function
*fun
)
2038 if (number_of_loops (fun
) <= 1)
2041 return tree_ssa_prefetch_arrays ();
2047 make_pass_loop_prefetch (gcc::context
*ctxt
)
2049 return new pass_loop_prefetch (ctxt
);