1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
36 #include "splay-tree.h"
38 #include "langhooks.h"
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
45 struct S {int i; double d; };
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate descendents, however, since we propagate all
64 grandchildren up one level.
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
70 typedef struct alias_set_entry
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set
;
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all descendents. So, if we have:
78 struct T { struct S s; float f; }
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
89 static int rtx_equal_for_memref_p
PARAMS ((rtx
, rtx
));
90 static rtx find_symbolic_term
PARAMS ((rtx
));
91 rtx get_addr
PARAMS ((rtx
));
92 static int memrefs_conflict_p
PARAMS ((int, rtx
, int, rtx
,
94 static void record_set
PARAMS ((rtx
, rtx
, void *));
95 static rtx find_base_term
PARAMS ((rtx
));
96 static int base_alias_check
PARAMS ((rtx
, rtx
, enum machine_mode
,
98 static rtx find_base_value
PARAMS ((rtx
));
99 static int mems_in_disjoint_alias_sets_p
PARAMS ((rtx
, rtx
));
100 static int insert_subset_children
PARAMS ((splay_tree_node
, void*));
101 static tree find_base_decl
PARAMS ((tree
));
102 static alias_set_entry get_alias_set_entry
PARAMS ((HOST_WIDE_INT
));
103 static rtx fixed_scalar_and_varying_struct_p
PARAMS ((rtx
, rtx
, rtx
, rtx
,
104 int (*) (rtx
, int)));
105 static int aliases_everything_p
PARAMS ((rtx
));
106 static bool nonoverlapping_component_refs_p
PARAMS ((tree
, tree
));
107 static tree decl_for_component_ref
PARAMS ((tree
));
108 static rtx adjust_offset_for_component_ref
PARAMS ((tree
, rtx
));
109 static int nonoverlapping_memrefs_p
PARAMS ((rtx
, rtx
));
110 static int write_dependence_p
PARAMS ((rtx
, rtx
, int));
111 static int nonlocal_mentioned_p
PARAMS ((rtx
));
113 /* Set up all info needed to perform alias analysis on memory references. */
115 /* Returns the size in bytes of the mode of X. */
116 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
118 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
119 different alias sets. We ignore alias sets in functions making use
120 of variable arguments because the va_arg macros on some systems are
122 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
123 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
125 /* Cap the number of passes we make over the insns propagating alias
126 information through set chains. 10 is a completely arbitrary choice. */
127 #define MAX_ALIAS_LOOP_PASSES 10
129 /* reg_base_value[N] gives an address to which register N is related.
130 If all sets after the first add or subtract to the current value
131 or otherwise modify it so it does not point to a different top level
132 object, reg_base_value[N] is equal to the address part of the source
135 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
136 expressions represent certain special values: function arguments and
137 the stack, frame, and argument pointers.
139 The contents of an ADDRESS is not normally used, the mode of the
140 ADDRESS determines whether the ADDRESS is a function argument or some
141 other special value. Pointer equality, not rtx_equal_p, determines whether
142 two ADDRESS expressions refer to the same base address.
144 The only use of the contents of an ADDRESS is for determining if the
145 current function performs nonlocal memory memory references for the
146 purposes of marking the function as a constant function. */
148 static rtx
*reg_base_value
;
149 static rtx
*new_reg_base_value
;
150 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
152 #define REG_BASE_VALUE(X) \
153 (REGNO (X) < reg_base_value_size \
154 ? reg_base_value[REGNO (X)] : 0)
156 /* Vector of known invariant relationships between registers. Set in
157 loop unrolling. Indexed by register number, if nonzero the value
158 is an expression describing this register in terms of another.
160 The length of this array is REG_BASE_VALUE_SIZE.
162 Because this array contains only pseudo registers it has no effect
164 static rtx
*alias_invariant
;
166 /* Vector indexed by N giving the initial (unchanging) value known for
167 pseudo-register N. This array is initialized in
168 init_alias_analysis, and does not change until end_alias_analysis
170 rtx
*reg_known_value
;
172 /* Indicates number of valid entries in reg_known_value. */
173 static unsigned int reg_known_value_size
;
175 /* Vector recording for each reg_known_value whether it is due to a
176 REG_EQUIV note. Future passes (viz., reload) may replace the
177 pseudo with the equivalent expression and so we account for the
178 dependences that would be introduced if that happens.
180 The REG_EQUIV notes created in assign_parms may mention the arg
181 pointer, and there are explicit insns in the RTL that modify the
182 arg pointer. Thus we must ensure that such insns don't get
183 scheduled across each other because that would invalidate the
184 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
185 wrong, but solving the problem in the scheduler will likely give
186 better code, so we do it here. */
187 char *reg_known_equiv_p
;
189 /* True when scanning insns from the start of the rtl to the
190 NOTE_INSN_FUNCTION_BEG note. */
191 static int copying_arguments
;
193 /* The splay-tree used to store the various alias set entries. */
194 static splay_tree alias_sets
;
196 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
197 such an entry, or NULL otherwise. */
199 static alias_set_entry
200 get_alias_set_entry (alias_set
)
201 HOST_WIDE_INT alias_set
;
204 = splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
206 return sn
!= 0 ? ((alias_set_entry
) sn
->value
) : 0;
209 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
210 the two MEMs cannot alias each other. */
213 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
217 #ifdef ENABLE_CHECKING
218 /* Perform a basic sanity check. Namely, that there are no alias sets
219 if we're not using strict aliasing. This helps to catch bugs
220 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
221 where a MEM is allocated in some way other than by the use of
222 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
223 use alias sets to indicate that spilled registers cannot alias each
224 other, we might need to remove this check. */
225 if (! flag_strict_aliasing
226 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
230 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
233 /* Insert the NODE into the splay tree given by DATA. Used by
234 record_alias_subset via splay_tree_foreach. */
237 insert_subset_children (node
, data
)
238 splay_tree_node node
;
241 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
246 /* Return 1 if the two specified alias sets may conflict. */
249 alias_sets_conflict_p (set1
, set2
)
250 HOST_WIDE_INT set1
, set2
;
254 /* If have no alias set information for one of the operands, we have
255 to assume it can alias anything. */
256 if (set1
== 0 || set2
== 0
257 /* If the two alias sets are the same, they may alias. */
261 /* See if the first alias set is a subset of the second. */
262 ase
= get_alias_set_entry (set1
);
264 && (ase
->has_zero_child
265 || splay_tree_lookup (ase
->children
,
266 (splay_tree_key
) set2
)))
269 /* Now do the same, but with the alias sets reversed. */
270 ase
= get_alias_set_entry (set2
);
272 && (ase
->has_zero_child
273 || splay_tree_lookup (ase
->children
,
274 (splay_tree_key
) set1
)))
277 /* The two alias sets are distinct and neither one is the
278 child of the other. Therefore, they cannot alias. */
282 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
283 has any readonly fields. If any of the fields have types that
284 contain readonly fields, return true as well. */
287 readonly_fields_p (type
)
292 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
293 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
296 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
297 if (TREE_CODE (field
) == FIELD_DECL
298 && (TREE_READONLY (field
)
299 || readonly_fields_p (TREE_TYPE (field
))))
305 /* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
311 objects_must_conflict_p (t1
, t2
)
314 /* If neither has a type specified, we don't know if they'll conflict
315 because we may be using them to store objects of various types, for
316 example the argument and local variables areas of inlined functions. */
317 if (t1
== 0 && t2
== 0)
320 /* If one or the other has readonly fields or is readonly,
321 then they may not conflict. */
322 if ((t1
!= 0 && readonly_fields_p (t1
))
323 || (t2
!= 0 && readonly_fields_p (t2
))
324 || (t1
!= 0 && TYPE_READONLY (t1
))
325 || (t2
!= 0 && TYPE_READONLY (t2
)))
328 /* If they are the same type, they must conflict. */
330 /* Likewise if both are volatile. */
331 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
334 /* If one is aggregate and the other is scalar then they may not
336 if ((t1
!= 0 && AGGREGATE_TYPE_P (t1
))
337 != (t2
!= 0 && AGGREGATE_TYPE_P (t2
)))
340 /* Otherwise they conflict only if the alias sets conflict. */
341 return alias_sets_conflict_p (t1
? get_alias_set (t1
) : 0,
342 t2
? get_alias_set (t2
) : 0);
345 /* T is an expression with pointer type. Find the DECL on which this
346 expression is based. (For example, in `a[i]' this would be `a'.)
347 If there is no such DECL, or a unique decl cannot be determined,
348 NULL_TREE is returned. */
356 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
359 /* If this is a declaration, return it. */
360 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
363 /* Handle general expressions. It would be nice to deal with
364 COMPONENT_REFs here. If we could tell that `a' and `b' were the
365 same, then `a->f' and `b->f' are also the same. */
366 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
369 return find_base_decl (TREE_OPERAND (t
, 0));
372 /* Return 0 if found in neither or both are the same. */
373 d0
= find_base_decl (TREE_OPERAND (t
, 0));
374 d1
= find_base_decl (TREE_OPERAND (t
, 1));
385 d0
= find_base_decl (TREE_OPERAND (t
, 0));
386 d1
= find_base_decl (TREE_OPERAND (t
, 1));
387 d2
= find_base_decl (TREE_OPERAND (t
, 2));
389 /* Set any nonzero values from the last, then from the first. */
390 if (d1
== 0) d1
= d2
;
391 if (d0
== 0) d0
= d1
;
392 if (d1
== 0) d1
= d0
;
393 if (d2
== 0) d2
= d1
;
395 /* At this point all are nonzero or all are zero. If all three are the
396 same, return it. Otherwise, return zero. */
397 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
404 /* Return 1 if all the nested component references handled by
405 get_inner_reference in T are such that we can address the object in T. */
411 /* If we're at the end, it is vacuously addressable. */
412 if (! handled_component_p (t
))
415 /* Bitfields are never addressable. */
416 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
419 /* Fields are addressable unless they are marked as nonaddressable or
420 the containing type has alias set 0. */
421 else if (TREE_CODE (t
) == COMPONENT_REF
422 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
423 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
424 && can_address_p (TREE_OPERAND (t
, 0)))
427 /* Likewise for arrays. */
428 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
429 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
430 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
431 && can_address_p (TREE_OPERAND (t
, 0)))
437 /* Return the alias set for T, which may be either a type or an
438 expression. Call language-specific routine for help, if needed. */
446 /* If we're not doing any alias analysis, just assume everything
447 aliases everything else. Also return 0 if this or its type is
449 if (! flag_strict_aliasing
|| t
== error_mark_node
451 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
454 /* We can be passed either an expression or a type. This and the
455 language-specific routine may make mutually-recursive calls to each other
456 to figure out what to do. At each juncture, we see if this is a tree
457 that the language may need to handle specially. First handle things that
462 tree placeholder_ptr
= 0;
464 /* Remove any nops, then give the language a chance to do
465 something with this tree before we look at it. */
467 set
= (*lang_hooks
.get_alias_set
) (t
);
471 /* First see if the actual object referenced is an INDIRECT_REF from a
472 restrict-qualified pointer or a "void *". Replace
473 PLACEHOLDER_EXPRs. */
474 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
475 || handled_component_p (inner
))
477 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
478 inner
= find_placeholder (inner
, &placeholder_ptr
);
480 inner
= TREE_OPERAND (inner
, 0);
485 /* Check for accesses through restrict-qualified pointers. */
486 if (TREE_CODE (inner
) == INDIRECT_REF
)
488 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
490 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
492 /* If we haven't computed the actual alias set, do it now. */
493 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
495 /* No two restricted pointers can point at the same thing.
496 However, a restricted pointer can point at the same thing
497 as an unrestricted pointer, if that unrestricted pointer
498 is based on the restricted pointer. So, we make the
499 alias set for the restricted pointer a subset of the
500 alias set for the type pointed to by the type of the
502 HOST_WIDE_INT pointed_to_alias_set
503 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
505 if (pointed_to_alias_set
== 0)
506 /* It's not legal to make a subset of alias set zero. */
510 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
511 record_alias_subset (pointed_to_alias_set
,
512 DECL_POINTER_ALIAS_SET (decl
));
516 /* We use the alias set indicated in the declaration. */
517 return DECL_POINTER_ALIAS_SET (decl
);
520 /* If we have an INDIRECT_REF via a void pointer, we don't
521 know anything about what that might alias. */
522 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
526 /* Otherwise, pick up the outermost object that we could have a pointer
527 to, processing conversion and PLACEHOLDER_EXPR as above. */
529 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
530 || (handled_component_p (t
) && ! can_address_p (t
)))
532 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
533 t
= find_placeholder (t
, &placeholder_ptr
);
535 t
= TREE_OPERAND (t
, 0);
540 /* If we've already determined the alias set for a decl, just return
541 it. This is necessary for C++ anonymous unions, whose component
542 variables don't look like union members (boo!). */
543 if (TREE_CODE (t
) == VAR_DECL
544 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
545 return MEM_ALIAS_SET (DECL_RTL (t
));
547 /* Now all we care about is the type. */
551 /* Variant qualifiers don't affect the alias set, so get the main
552 variant. If this is a type with a known alias set, return it. */
553 t
= TYPE_MAIN_VARIANT (t
);
554 if (TYPE_ALIAS_SET_KNOWN_P (t
))
555 return TYPE_ALIAS_SET (t
);
557 /* See if the language has special handling for this type. */
558 set
= (*lang_hooks
.get_alias_set
) (t
);
562 /* There are no objects of FUNCTION_TYPE, so there's no point in
563 using up an alias set for them. (There are, of course, pointers
564 and references to functions, but that's different.) */
565 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
568 /* Unless the language specifies otherwise, let vector types alias
569 their components. This avoids some nasty type punning issues in
570 normal usage. And indeed lets vectors be treated more like an
572 else if (TREE_CODE (t
) == VECTOR_TYPE
)
573 set
= get_alias_set (TREE_TYPE (t
));
576 /* Otherwise make a new alias set for this type. */
577 set
= new_alias_set ();
579 TYPE_ALIAS_SET (t
) = set
;
581 /* If this is an aggregate type, we must record any component aliasing
583 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
584 record_component_aliases (t
);
589 /* Return a brand-new alias set. */
594 static HOST_WIDE_INT last_alias_set
;
596 if (flag_strict_aliasing
)
597 return ++last_alias_set
;
602 /* Indicate that things in SUBSET can alias things in SUPERSET, but
603 not vice versa. For example, in C, a store to an `int' can alias a
604 structure containing an `int', but not vice versa. Here, the
605 structure would be the SUPERSET and `int' the SUBSET. This
606 function should be called only once per SUPERSET/SUBSET pair.
608 It is illegal for SUPERSET to be zero; everything is implicitly a
609 subset of alias set zero. */
612 record_alias_subset (superset
, subset
)
613 HOST_WIDE_INT superset
;
614 HOST_WIDE_INT subset
;
616 alias_set_entry superset_entry
;
617 alias_set_entry subset_entry
;
619 /* It is possible in complex type situations for both sets to be the same,
620 in which case we can ignore this operation. */
621 if (superset
== subset
)
627 superset_entry
= get_alias_set_entry (superset
);
628 if (superset_entry
== 0)
630 /* Create an entry for the SUPERSET, so that we have a place to
631 attach the SUBSET. */
633 = (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
634 superset_entry
->alias_set
= superset
;
635 superset_entry
->children
636 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
637 superset_entry
->has_zero_child
= 0;
638 splay_tree_insert (alias_sets
, (splay_tree_key
) superset
,
639 (splay_tree_value
) superset_entry
);
643 superset_entry
->has_zero_child
= 1;
646 subset_entry
= get_alias_set_entry (subset
);
647 /* If there is an entry for the subset, enter all of its children
648 (if they are not already present) as children of the SUPERSET. */
651 if (subset_entry
->has_zero_child
)
652 superset_entry
->has_zero_child
= 1;
654 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
655 superset_entry
->children
);
658 /* Enter the SUBSET itself as a child of the SUPERSET. */
659 splay_tree_insert (superset_entry
->children
,
660 (splay_tree_key
) subset
, 0);
664 /* Record that component types of TYPE, if any, are part of that type for
665 aliasing purposes. For record types, we only record component types
666 for fields that are marked addressable. For array types, we always
667 record the component types, so the front end should not call this
668 function if the individual component aren't addressable. */
671 record_component_aliases (type
)
674 HOST_WIDE_INT superset
= get_alias_set (type
);
680 switch (TREE_CODE (type
))
683 if (! TYPE_NONALIASED_COMPONENT (type
))
684 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
689 case QUAL_UNION_TYPE
:
690 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
691 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
692 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
696 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
704 /* Allocate an alias set for use in storing and reading from the varargs
708 get_varargs_alias_set ()
710 static HOST_WIDE_INT set
= -1;
713 set
= new_alias_set ();
718 /* Likewise, but used for the fixed portions of the frame, e.g., register
722 get_frame_alias_set ()
724 static HOST_WIDE_INT set
= -1;
727 set
= new_alias_set ();
732 /* Inside SRC, the source of a SET, find a base address. */
735 find_base_value (src
)
740 switch (GET_CODE (src
))
748 /* At the start of a function, argument registers have known base
749 values which may be lost later. Returning an ADDRESS
750 expression here allows optimization based on argument values
751 even when the argument registers are used for other purposes. */
752 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
753 return new_reg_base_value
[regno
];
755 /* If a pseudo has a known base value, return it. Do not do this
756 for non-fixed hard regs since it can result in a circular
757 dependency chain for registers which have values at function entry.
759 The test above is not sufficient because the scheduler may move
760 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
761 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
762 && regno
< reg_base_value_size
763 && reg_base_value
[regno
])
764 return reg_base_value
[regno
];
769 /* Check for an argument passed in memory. Only record in the
770 copying-arguments block; it is too hard to track changes
772 if (copying_arguments
773 && (XEXP (src
, 0) == arg_pointer_rtx
774 || (GET_CODE (XEXP (src
, 0)) == PLUS
775 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
776 return gen_rtx_ADDRESS (VOIDmode
, src
);
781 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
784 /* ... fall through ... */
789 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
791 /* If either operand is a REG that is a known pointer, then it
793 if (REG_P (src_0
) && REG_POINTER (src_0
))
794 return find_base_value (src_0
);
795 if (REG_P (src_1
) && REG_POINTER (src_1
))
796 return find_base_value (src_1
);
798 /* If either operand is a REG, then see if we already have
799 a known value for it. */
802 temp
= find_base_value (src_0
);
809 temp
= find_base_value (src_1
);
814 /* If either base is named object or a special address
815 (like an argument or stack reference), then use it for the
818 && (GET_CODE (src_0
) == SYMBOL_REF
819 || GET_CODE (src_0
) == LABEL_REF
820 || (GET_CODE (src_0
) == ADDRESS
821 && GET_MODE (src_0
) != VOIDmode
)))
825 && (GET_CODE (src_1
) == SYMBOL_REF
826 || GET_CODE (src_1
) == LABEL_REF
827 || (GET_CODE (src_1
) == ADDRESS
828 && GET_MODE (src_1
) != VOIDmode
)))
831 /* Guess which operand is the base address:
832 If either operand is a symbol, then it is the base. If
833 either operand is a CONST_INT, then the other is the base. */
834 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
835 return find_base_value (src_0
);
836 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
837 return find_base_value (src_1
);
843 /* The standard form is (lo_sum reg sym) so look only at the
845 return find_base_value (XEXP (src
, 1));
848 /* If the second operand is constant set the base
849 address to the first operand. */
850 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
851 return find_base_value (XEXP (src
, 0));
855 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
865 return find_base_value (XEXP (src
, 0));
868 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
870 rtx temp
= find_base_value (XEXP (src
, 0));
872 #ifdef POINTERS_EXTEND_UNSIGNED
873 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
874 temp
= convert_memory_address (Pmode
, temp
);
887 /* Called from init_alias_analysis indirectly through note_stores. */
889 /* While scanning insns to find base values, reg_seen[N] is nonzero if
890 register N has been set in this function. */
891 static char *reg_seen
;
893 /* Addresses which are known not to alias anything else are identified
894 by a unique integer. */
895 static int unique_id
;
898 record_set (dest
, set
, data
)
900 void *data ATTRIBUTE_UNUSED
;
905 if (GET_CODE (dest
) != REG
)
908 regno
= REGNO (dest
);
910 if (regno
>= reg_base_value_size
)
915 /* A CLOBBER wipes out any old value but does not prevent a previously
916 unset register from acquiring a base address (i.e. reg_seen is not
918 if (GET_CODE (set
) == CLOBBER
)
920 new_reg_base_value
[regno
] = 0;
929 new_reg_base_value
[regno
] = 0;
933 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
934 GEN_INT (unique_id
++));
938 /* This is not the first set. If the new value is not related to the
939 old value, forget the base value. Note that the following code is
941 extern int x, y; int *p = &x; p += (&y-&x);
942 ANSI C does not allow computing the difference of addresses
943 of distinct top level objects. */
944 if (new_reg_base_value
[regno
])
945 switch (GET_CODE (src
))
949 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
950 new_reg_base_value
[regno
] = 0;
953 /* If the value we add in the PLUS is also a valid base value,
954 this might be the actual base value, and the original value
957 rtx other
= NULL_RTX
;
959 if (XEXP (src
, 0) == dest
)
960 other
= XEXP (src
, 1);
961 else if (XEXP (src
, 1) == dest
)
962 other
= XEXP (src
, 0);
964 if (! other
|| find_base_value (other
))
965 new_reg_base_value
[regno
] = 0;
969 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
970 new_reg_base_value
[regno
] = 0;
973 new_reg_base_value
[regno
] = 0;
976 /* If this is the first set of a register, record the value. */
977 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
978 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
979 new_reg_base_value
[regno
] = find_base_value (src
);
984 /* Called from loop optimization when a new pseudo-register is
985 created. It indicates that REGNO is being set to VAL. f INVARIANT
986 is true then this value also describes an invariant relationship
987 which can be used to deduce that two registers with unknown values
991 record_base_value (regno
, val
, invariant
)
996 if (regno
>= reg_base_value_size
)
999 if (invariant
&& alias_invariant
)
1000 alias_invariant
[regno
] = val
;
1002 if (GET_CODE (val
) == REG
)
1004 if (REGNO (val
) < reg_base_value_size
)
1005 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
1010 reg_base_value
[regno
] = find_base_value (val
);
1013 /* Clear alias info for a register. This is used if an RTL transformation
1014 changes the value of a register. This is used in flow by AUTO_INC_DEC
1015 optimizations. We don't need to clear reg_base_value, since flow only
1016 changes the offset. */
1019 clear_reg_alias_info (reg
)
1022 unsigned int regno
= REGNO (reg
);
1024 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
1025 reg_known_value
[regno
] = reg
;
1028 /* Returns a canonical version of X, from the point of view alias
1029 analysis. (For example, if X is a MEM whose address is a register,
1030 and the register has a known value (say a SYMBOL_REF), then a MEM
1031 whose address is the SYMBOL_REF is returned.) */
1037 /* Recursively look for equivalences. */
1038 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
1039 && REGNO (x
) < reg_known_value_size
)
1040 return reg_known_value
[REGNO (x
)] == x
1041 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1042 else if (GET_CODE (x
) == PLUS
)
1044 rtx x0
= canon_rtx (XEXP (x
, 0));
1045 rtx x1
= canon_rtx (XEXP (x
, 1));
1047 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1049 if (GET_CODE (x0
) == CONST_INT
)
1050 return plus_constant (x1
, INTVAL (x0
));
1051 else if (GET_CODE (x1
) == CONST_INT
)
1052 return plus_constant (x0
, INTVAL (x1
));
1053 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1057 /* This gives us much better alias analysis when called from
1058 the loop optimizer. Note we want to leave the original
1059 MEM alone, but need to return the canonicalized MEM with
1060 all the flags with their original values. */
1061 else if (GET_CODE (x
) == MEM
)
1062 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1067 /* Return 1 if X and Y are identical-looking rtx's.
1069 We use the data in reg_known_value above to see if two registers with
1070 different numbers are, in fact, equivalent. */
1073 rtx_equal_for_memref_p (x
, y
)
1081 if (x
== 0 && y
== 0)
1083 if (x
== 0 || y
== 0)
1092 code
= GET_CODE (x
);
1093 /* Rtx's of different codes cannot be equal. */
1094 if (code
!= GET_CODE (y
))
1097 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1098 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1100 if (GET_MODE (x
) != GET_MODE (y
))
1103 /* Some RTL can be compared without a recursive examination. */
1107 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1110 return REGNO (x
) == REGNO (y
);
1113 return XEXP (x
, 0) == XEXP (y
, 0);
1116 return XSTR (x
, 0) == XSTR (y
, 0);
1120 /* There's no need to compare the contents of CONST_DOUBLEs or
1121 CONST_INTs because pointer equality is a good enough
1122 comparison for these nodes. */
1126 return (XINT (x
, 1) == XINT (y
, 1)
1127 && rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0)));
1133 /* For commutative operations, the RTX match if the operand match in any
1134 order. Also handle the simple binary and unary cases without a loop. */
1135 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1136 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1137 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1138 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1139 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1140 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1141 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1142 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
1143 else if (GET_RTX_CLASS (code
) == '1')
1144 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
1146 /* Compare the elements. If any pair of corresponding elements
1147 fail to match, return 0 for the whole things.
1149 Limit cases to types which actually appear in addresses. */
1151 fmt
= GET_RTX_FORMAT (code
);
1152 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1157 if (XINT (x
, i
) != XINT (y
, i
))
1162 /* Two vectors must have the same length. */
1163 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1166 /* And the corresponding elements must match. */
1167 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1168 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
),
1169 XVECEXP (y
, i
, j
)) == 0)
1174 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
1178 /* This can happen for asm operands. */
1180 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1184 /* This can happen for an asm which clobbers memory. */
1188 /* It is believed that rtx's at this level will never
1189 contain anything but integers and other rtx's,
1190 except for within LABEL_REFs and SYMBOL_REFs. */
1198 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1199 X and return it, or return 0 if none found. */
1202 find_symbolic_term (x
)
1209 code
= GET_CODE (x
);
1210 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1212 if (GET_RTX_CLASS (code
) == 'o')
1215 fmt
= GET_RTX_FORMAT (code
);
1216 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1222 t
= find_symbolic_term (XEXP (x
, i
));
1226 else if (fmt
[i
] == 'E')
1237 struct elt_loc_list
*l
;
1239 #if defined (FIND_BASE_TERM)
1240 /* Try machine-dependent ways to find the base term. */
1241 x
= FIND_BASE_TERM (x
);
1244 switch (GET_CODE (x
))
1247 return REG_BASE_VALUE (x
);
1250 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1260 return find_base_term (XEXP (x
, 0));
1263 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1265 rtx temp
= find_base_term (XEXP (x
, 0));
1267 #ifdef POINTERS_EXTEND_UNSIGNED
1268 if (temp
!= 0 && CONSTANT_P (temp
) && GET_MODE (temp
) != Pmode
)
1269 temp
= convert_memory_address (Pmode
, temp
);
1276 val
= CSELIB_VAL_PTR (x
);
1277 for (l
= val
->locs
; l
; l
= l
->next
)
1278 if ((x
= find_base_term (l
->loc
)) != 0)
1284 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1291 rtx tmp1
= XEXP (x
, 0);
1292 rtx tmp2
= XEXP (x
, 1);
1294 /* This is a little bit tricky since we have to determine which of
1295 the two operands represents the real base address. Otherwise this
1296 routine may return the index register instead of the base register.
1298 That may cause us to believe no aliasing was possible, when in
1299 fact aliasing is possible.
1301 We use a few simple tests to guess the base register. Additional
1302 tests can certainly be added. For example, if one of the operands
1303 is a shift or multiply, then it must be the index register and the
1304 other operand is the base register. */
1306 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1307 return find_base_term (tmp2
);
1309 /* If either operand is known to be a pointer, then use it
1310 to determine the base term. */
1311 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1312 return find_base_term (tmp1
);
1314 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1315 return find_base_term (tmp2
);
1317 /* Neither operand was known to be a pointer. Go ahead and find the
1318 base term for both operands. */
1319 tmp1
= find_base_term (tmp1
);
1320 tmp2
= find_base_term (tmp2
);
1322 /* If either base term is named object or a special address
1323 (like an argument or stack reference), then use it for the
1326 && (GET_CODE (tmp1
) == SYMBOL_REF
1327 || GET_CODE (tmp1
) == LABEL_REF
1328 || (GET_CODE (tmp1
) == ADDRESS
1329 && GET_MODE (tmp1
) != VOIDmode
)))
1333 && (GET_CODE (tmp2
) == SYMBOL_REF
1334 || GET_CODE (tmp2
) == LABEL_REF
1335 || (GET_CODE (tmp2
) == ADDRESS
1336 && GET_MODE (tmp2
) != VOIDmode
)))
1339 /* We could not determine which of the two operands was the
1340 base register and which was the index. So we can determine
1341 nothing from the base alias check. */
1346 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) != 0)
1347 return find_base_term (XEXP (x
, 0));
1355 return REG_BASE_VALUE (frame_pointer_rtx
);
1362 /* Return 0 if the addresses X and Y are known to point to different
1363 objects, 1 if they might be pointers to the same object. */
1366 base_alias_check (x
, y
, x_mode
, y_mode
)
1368 enum machine_mode x_mode
, y_mode
;
1370 rtx x_base
= find_base_term (x
);
1371 rtx y_base
= find_base_term (y
);
1373 /* If the address itself has no known base see if a known equivalent
1374 value has one. If either address still has no known base, nothing
1375 is known about aliasing. */
1380 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1383 x_base
= find_base_term (x_c
);
1391 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1394 y_base
= find_base_term (y_c
);
1399 /* If the base addresses are equal nothing is known about aliasing. */
1400 if (rtx_equal_p (x_base
, y_base
))
1403 /* The base addresses of the read and write are different expressions.
1404 If they are both symbols and they are not accessed via AND, there is
1405 no conflict. We can bring knowledge of object alignment into play
1406 here. For example, on alpha, "char a, b;" can alias one another,
1407 though "char a; long b;" cannot. */
1408 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1410 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1412 if (GET_CODE (x
) == AND
1413 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1414 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1416 if (GET_CODE (y
) == AND
1417 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1418 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1420 /* Differing symbols never alias. */
1424 /* If one address is a stack reference there can be no alias:
1425 stack references using different base registers do not alias,
1426 a stack reference can not alias a parameter, and a stack reference
1427 can not alias a global. */
1428 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1429 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1432 if (! flag_argument_noalias
)
1435 if (flag_argument_noalias
> 1)
1438 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1439 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1442 /* Convert the address X into something we can use. This is done by returning
1443 it unchanged unless it is a value; in the latter case we call cselib to get
1444 a more useful rtx. */
1451 struct elt_loc_list
*l
;
1453 if (GET_CODE (x
) != VALUE
)
1455 v
= CSELIB_VAL_PTR (x
);
1456 for (l
= v
->locs
; l
; l
= l
->next
)
1457 if (CONSTANT_P (l
->loc
))
1459 for (l
= v
->locs
; l
; l
= l
->next
)
1460 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1463 return v
->locs
->loc
;
1467 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1468 where SIZE is the size in bytes of the memory reference. If ADDR
1469 is not modified by the memory reference then ADDR is returned. */
1472 addr_side_effect_eval (addr
, size
, n_refs
)
1479 switch (GET_CODE (addr
))
1482 offset
= (n_refs
+ 1) * size
;
1485 offset
= -(n_refs
+ 1) * size
;
1488 offset
= n_refs
* size
;
1491 offset
= -n_refs
* size
;
1499 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
1501 addr
= XEXP (addr
, 0);
1506 /* Return nonzero if X and Y (memory addresses) could reference the
1507 same location in memory. C is an offset accumulator. When
1508 C is nonzero, we are testing aliases between X and Y + C.
1509 XSIZE is the size in bytes of the X reference,
1510 similarly YSIZE is the size in bytes for Y.
1512 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1513 referenced (the reference was BLKmode), so make the most pessimistic
1516 If XSIZE or YSIZE is negative, we may access memory outside the object
1517 being referenced as a side effect. This can happen when using AND to
1518 align memory references, as is done on the Alpha.
1520 Nice to notice that varying addresses cannot conflict with fp if no
1521 local variables had their addresses taken, but that's too hard now. */
1524 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
1529 if (GET_CODE (x
) == VALUE
)
1531 if (GET_CODE (y
) == VALUE
)
1533 if (GET_CODE (x
) == HIGH
)
1535 else if (GET_CODE (x
) == LO_SUM
)
1538 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
1539 if (GET_CODE (y
) == HIGH
)
1541 else if (GET_CODE (y
) == LO_SUM
)
1544 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
1546 if (rtx_equal_for_memref_p (x
, y
))
1548 if (xsize
<= 0 || ysize
<= 0)
1550 if (c
>= 0 && xsize
> c
)
1552 if (c
< 0 && ysize
+c
> 0)
1557 /* This code used to check for conflicts involving stack references and
1558 globals but the base address alias code now handles these cases. */
1560 if (GET_CODE (x
) == PLUS
)
1562 /* The fact that X is canonicalized means that this
1563 PLUS rtx is canonicalized. */
1564 rtx x0
= XEXP (x
, 0);
1565 rtx x1
= XEXP (x
, 1);
1567 if (GET_CODE (y
) == PLUS
)
1569 /* The fact that Y is canonicalized means that this
1570 PLUS rtx is canonicalized. */
1571 rtx y0
= XEXP (y
, 0);
1572 rtx y1
= XEXP (y
, 1);
1574 if (rtx_equal_for_memref_p (x1
, y1
))
1575 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1576 if (rtx_equal_for_memref_p (x0
, y0
))
1577 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1578 if (GET_CODE (x1
) == CONST_INT
)
1580 if (GET_CODE (y1
) == CONST_INT
)
1581 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1582 c
- INTVAL (x1
) + INTVAL (y1
));
1584 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1587 else if (GET_CODE (y1
) == CONST_INT
)
1588 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1592 else if (GET_CODE (x1
) == CONST_INT
)
1593 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1595 else if (GET_CODE (y
) == PLUS
)
1597 /* The fact that Y is canonicalized means that this
1598 PLUS rtx is canonicalized. */
1599 rtx y0
= XEXP (y
, 0);
1600 rtx y1
= XEXP (y
, 1);
1602 if (GET_CODE (y1
) == CONST_INT
)
1603 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1608 if (GET_CODE (x
) == GET_CODE (y
))
1609 switch (GET_CODE (x
))
1613 /* Handle cases where we expect the second operands to be the
1614 same, and check only whether the first operand would conflict
1617 rtx x1
= canon_rtx (XEXP (x
, 1));
1618 rtx y1
= canon_rtx (XEXP (y
, 1));
1619 if (! rtx_equal_for_memref_p (x1
, y1
))
1621 x0
= canon_rtx (XEXP (x
, 0));
1622 y0
= canon_rtx (XEXP (y
, 0));
1623 if (rtx_equal_for_memref_p (x0
, y0
))
1624 return (xsize
== 0 || ysize
== 0
1625 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1627 /* Can't properly adjust our sizes. */
1628 if (GET_CODE (x1
) != CONST_INT
)
1630 xsize
/= INTVAL (x1
);
1631 ysize
/= INTVAL (x1
);
1633 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1637 /* Are these registers known not to be equal? */
1638 if (alias_invariant
)
1640 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1641 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1643 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1644 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1646 if (i_x
== 0 && i_y
== 0)
1649 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1650 ysize
, i_y
? i_y
: y
, c
))
1659 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1660 as an access with indeterminate size. Assume that references
1661 besides AND are aligned, so if the size of the other reference is
1662 at least as large as the alignment, assume no other overlap. */
1663 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1665 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1667 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1669 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1671 /* ??? If we are indexing far enough into the array/structure, we
1672 may yet be able to determine that we can not overlap. But we
1673 also need to that we are far enough from the end not to overlap
1674 a following reference, so we do nothing with that for now. */
1675 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1677 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1680 if (GET_CODE (x
) == ADDRESSOF
)
1682 if (y
== frame_pointer_rtx
1683 || GET_CODE (y
) == ADDRESSOF
)
1684 return xsize
<= 0 || ysize
<= 0;
1686 if (GET_CODE (y
) == ADDRESSOF
)
1688 if (x
== frame_pointer_rtx
)
1689 return xsize
<= 0 || ysize
<= 0;
1694 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1696 c
+= (INTVAL (y
) - INTVAL (x
));
1697 return (xsize
<= 0 || ysize
<= 0
1698 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1701 if (GET_CODE (x
) == CONST
)
1703 if (GET_CODE (y
) == CONST
)
1704 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1705 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1707 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1710 if (GET_CODE (y
) == CONST
)
1711 return memrefs_conflict_p (xsize
, x
, ysize
,
1712 canon_rtx (XEXP (y
, 0)), c
);
1715 return (xsize
<= 0 || ysize
<= 0
1716 || (rtx_equal_for_memref_p (x
, y
)
1717 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1724 /* Functions to compute memory dependencies.
1726 Since we process the insns in execution order, we can build tables
1727 to keep track of what registers are fixed (and not aliased), what registers
1728 are varying in known ways, and what registers are varying in unknown
1731 If both memory references are volatile, then there must always be a
1732 dependence between the two references, since their order can not be
1733 changed. A volatile and non-volatile reference can be interchanged
1736 A MEM_IN_STRUCT reference at a non-AND varying address can never
1737 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1738 also must allow AND addresses, because they may generate accesses
1739 outside the object being referenced. This is used to generate
1740 aligned addresses from unaligned addresses, for instance, the alpha
1741 storeqi_unaligned pattern. */
1743 /* Read dependence: X is read after read in MEM takes place. There can
1744 only be a dependence here if both reads are volatile. */
1747 read_dependence (mem
, x
)
1751 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1754 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1755 MEM2 is a reference to a structure at a varying address, or returns
1756 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1757 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1758 to decide whether or not an address may vary; it should return
1759 nonzero whenever variation is possible.
1760 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1763 fixed_scalar_and_varying_struct_p (mem1
, mem2
, mem1_addr
, mem2_addr
, varies_p
)
1765 rtx mem1_addr
, mem2_addr
;
1766 int (*varies_p
) PARAMS ((rtx
, int));
1768 if (! flag_strict_aliasing
)
1771 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1772 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1773 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1777 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1778 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1779 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1786 /* Returns nonzero if something about the mode or address format MEM1
1787 indicates that it might well alias *anything*. */
1790 aliases_everything_p (mem
)
1793 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1794 /* If the address is an AND, its very hard to know at what it is
1795 actually pointing. */
1801 /* Return true if we can determine that the fields referenced cannot
1802 overlap for any pair of objects. */
1805 nonoverlapping_component_refs_p (x
, y
)
1808 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1812 /* The comparison has to be done at a common type, since we don't
1813 know how the inheritance hierarchy works. */
1817 fieldx
= TREE_OPERAND (x
, 1);
1818 typex
= DECL_FIELD_CONTEXT (fieldx
);
1823 fieldy
= TREE_OPERAND (y
, 1);
1824 typey
= DECL_FIELD_CONTEXT (fieldy
);
1829 y
= TREE_OPERAND (y
, 0);
1831 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1833 x
= TREE_OPERAND (x
, 0);
1835 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1837 /* Never found a common type. */
1841 /* If we're left with accessing different fields of a structure,
1843 if (TREE_CODE (typex
) == RECORD_TYPE
1844 && fieldx
!= fieldy
)
1847 /* The comparison on the current field failed. If we're accessing
1848 a very nested structure, look at the next outer level. */
1849 x
= TREE_OPERAND (x
, 0);
1850 y
= TREE_OPERAND (y
, 0);
1853 && TREE_CODE (x
) == COMPONENT_REF
1854 && TREE_CODE (y
) == COMPONENT_REF
);
1859 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1862 decl_for_component_ref (x
)
1867 x
= TREE_OPERAND (x
, 0);
1869 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1871 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1874 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1875 offset of the field reference. */
1878 adjust_offset_for_component_ref (x
, offset
)
1882 HOST_WIDE_INT ioffset
;
1887 ioffset
= INTVAL (offset
);
1890 tree field
= TREE_OPERAND (x
, 1);
1892 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1894 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1895 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1898 x
= TREE_OPERAND (x
, 0);
1900 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1902 return GEN_INT (ioffset
);
1905 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1906 X and Y and they do not overlap. */
1909 nonoverlapping_memrefs_p (x
, y
)
1912 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1915 rtx moffsetx
, moffsety
;
1916 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1918 /* Unless both have exprs, we can't tell anything. */
1919 if (exprx
== 0 || expry
== 0)
1922 /* If both are field references, we may be able to determine something. */
1923 if (TREE_CODE (exprx
) == COMPONENT_REF
1924 && TREE_CODE (expry
) == COMPONENT_REF
1925 && nonoverlapping_component_refs_p (exprx
, expry
))
1928 /* If the field reference test failed, look at the DECLs involved. */
1929 moffsetx
= MEM_OFFSET (x
);
1930 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1932 tree t
= decl_for_component_ref (exprx
);
1935 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1938 moffsety
= MEM_OFFSET (y
);
1939 if (TREE_CODE (expry
) == COMPONENT_REF
)
1941 tree t
= decl_for_component_ref (expry
);
1944 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
1948 if (! DECL_P (exprx
) || ! DECL_P (expry
))
1951 rtlx
= DECL_RTL (exprx
);
1952 rtly
= DECL_RTL (expry
);
1954 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1955 can't overlap unless they are the same because we never reuse that part
1956 of the stack frame used for locals for spilled pseudos. */
1957 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
1958 && ! rtx_equal_p (rtlx
, rtly
))
1961 /* Get the base and offsets of both decls. If either is a register, we
1962 know both are and are the same, so use that as the base. The only
1963 we can avoid overlap is if we can deduce that they are nonoverlapping
1964 pieces of that decl, which is very rare. */
1965 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
1966 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
1967 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
1969 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
1970 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
1971 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
1973 /* If the bases are different, we know they do not overlap if both
1974 are constants or if one is a constant and the other a pointer into the
1975 stack frame. Otherwise a different base means we can't tell if they
1977 if (! rtx_equal_p (basex
, basey
))
1978 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
1979 || (CONSTANT_P (basex
) && REG_P (basey
)
1980 && REGNO_PTR_FRAME_P (REGNO (basey
)))
1981 || (CONSTANT_P (basey
) && REG_P (basex
)
1982 && REGNO_PTR_FRAME_P (REGNO (basex
))));
1984 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
1985 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
1987 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
1988 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
1991 /* If we have an offset for either memref, it can update the values computed
1994 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
1996 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
1998 /* If a memref has both a size and an offset, we can use the smaller size.
1999 We can't do this if the offset isn't known because we must view this
2000 memref as being anywhere inside the DECL's MEM. */
2001 if (MEM_SIZE (x
) && moffsetx
)
2002 sizex
= INTVAL (MEM_SIZE (x
));
2003 if (MEM_SIZE (y
) && moffsety
)
2004 sizey
= INTVAL (MEM_SIZE (y
));
2006 /* Put the values of the memref with the lower offset in X's values. */
2007 if (offsetx
> offsety
)
2009 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2010 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2013 /* If we don't know the size of the lower-offset value, we can't tell
2014 if they conflict. Otherwise, we do the test. */
2015 return sizex
>= 0 && offsety
> offsetx
+ sizex
;
2018 /* True dependence: X is read after store in MEM takes place. */
2021 true_dependence (mem
, mem_mode
, x
, varies
)
2023 enum machine_mode mem_mode
;
2025 int (*varies
) PARAMS ((rtx
, int));
2027 rtx x_addr
, mem_addr
;
2030 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2033 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2034 This is used in epilogue deallocation functions. */
2035 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2037 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2040 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2043 /* Unchanging memory can't conflict with non-unchanging memory.
2044 A non-unchanging read can conflict with a non-unchanging write.
2045 An unchanging read can conflict with an unchanging write since
2046 there may be a single store to this address to initialize it.
2047 Note that an unchanging store can conflict with a non-unchanging read
2048 since we have to make conservative assumptions when we have a
2049 record with readonly fields and we are copying the whole thing.
2050 Just fall through to the code below to resolve potential conflicts.
2051 This won't handle all cases optimally, but the possible performance
2052 loss should be negligible. */
2053 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2056 if (nonoverlapping_memrefs_p (mem
, x
))
2059 if (mem_mode
== VOIDmode
)
2060 mem_mode
= GET_MODE (mem
);
2062 x_addr
= get_addr (XEXP (x
, 0));
2063 mem_addr
= get_addr (XEXP (mem
, 0));
2065 base
= find_base_term (x_addr
);
2066 if (base
&& (GET_CODE (base
) == LABEL_REF
2067 || (GET_CODE (base
) == SYMBOL_REF
2068 && CONSTANT_POOL_ADDRESS_P (base
))))
2071 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2074 x_addr
= canon_rtx (x_addr
);
2075 mem_addr
= canon_rtx (mem_addr
);
2077 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2078 SIZE_FOR_MODE (x
), x_addr
, 0))
2081 if (aliases_everything_p (x
))
2084 /* We cannot use aliases_everything_p to test MEM, since we must look
2085 at MEM_MODE, rather than GET_MODE (MEM). */
2086 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2089 /* In true_dependence we also allow BLKmode to alias anything. Why
2090 don't we do this in anti_dependence and output_dependence? */
2091 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2094 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2098 /* Canonical true dependence: X is read after store in MEM takes place.
2099 Variant of true_dependence which assumes MEM has already been
2100 canonicalized (hence we no longer do that here).
2101 The mem_addr argument has been added, since true_dependence computed
2102 this value prior to canonicalizing. */
2105 canon_true_dependence (mem
, mem_mode
, mem_addr
, x
, varies
)
2106 rtx mem
, mem_addr
, x
;
2107 enum machine_mode mem_mode
;
2108 int (*varies
) PARAMS ((rtx
, int));
2112 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2115 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2116 This is used in epilogue deallocation functions. */
2117 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2119 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2122 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2125 /* If X is an unchanging read, then it can't possibly conflict with any
2126 non-unchanging store. It may conflict with an unchanging write though,
2127 because there may be a single store to this address to initialize it.
2128 Just fall through to the code below to resolve the case where we have
2129 both an unchanging read and an unchanging write. This won't handle all
2130 cases optimally, but the possible performance loss should be
2132 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2135 if (nonoverlapping_memrefs_p (x
, mem
))
2138 x_addr
= get_addr (XEXP (x
, 0));
2140 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2143 x_addr
= canon_rtx (x_addr
);
2144 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2145 SIZE_FOR_MODE (x
), x_addr
, 0))
2148 if (aliases_everything_p (x
))
2151 /* We cannot use aliases_everything_p to test MEM, since we must look
2152 at MEM_MODE, rather than GET_MODE (MEM). */
2153 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2156 /* In true_dependence we also allow BLKmode to alias anything. Why
2157 don't we do this in anti_dependence and output_dependence? */
2158 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2161 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2165 /* Returns non-zero if a write to X might alias a previous read from
2166 (or, if WRITEP is non-zero, a write to) MEM. */
2169 write_dependence_p (mem
, x
, writep
)
2174 rtx x_addr
, mem_addr
;
2178 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2181 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2182 This is used in epilogue deallocation functions. */
2183 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2185 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2188 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2191 /* Unchanging memory can't conflict with non-unchanging memory. */
2192 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2195 /* If MEM is an unchanging read, then it can't possibly conflict with
2196 the store to X, because there is at most one store to MEM, and it must
2197 have occurred somewhere before MEM. */
2198 if (! writep
&& RTX_UNCHANGING_P (mem
))
2201 if (nonoverlapping_memrefs_p (x
, mem
))
2204 x_addr
= get_addr (XEXP (x
, 0));
2205 mem_addr
= get_addr (XEXP (mem
, 0));
2209 base
= find_base_term (mem_addr
);
2210 if (base
&& (GET_CODE (base
) == LABEL_REF
2211 || (GET_CODE (base
) == SYMBOL_REF
2212 && CONSTANT_POOL_ADDRESS_P (base
))))
2216 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2220 x_addr
= canon_rtx (x_addr
);
2221 mem_addr
= canon_rtx (mem_addr
);
2223 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2224 SIZE_FOR_MODE (x
), x_addr
, 0))
2228 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2231 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2232 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2235 /* Anti dependence: X is written after read in MEM takes place. */
2238 anti_dependence (mem
, x
)
2242 return write_dependence_p (mem
, x
, /*writep=*/0);
2245 /* Output dependence: X is written after store in MEM takes place. */
2248 output_dependence (mem
, x
)
2252 return write_dependence_p (mem
, x
, /*writep=*/1);
2255 /* Returns non-zero if X mentions something which is not
2256 local to the function and is not constant. */
2259 nonlocal_mentioned_p (x
)
2266 code
= GET_CODE (x
);
2268 if (GET_RTX_CLASS (code
) == 'i')
2270 /* Constant functions can be constant if they don't use
2271 scratch memory used to mark function w/o side effects. */
2272 if (code
== CALL_INSN
&& CONST_OR_PURE_CALL_P (x
))
2274 x
= CALL_INSN_FUNCTION_USAGE (x
);
2280 code
= GET_CODE (x
);
2286 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2288 /* Global registers are not local. */
2289 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2290 && global_regs
[subreg_regno (x
)])
2298 /* Global registers are not local. */
2299 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2314 /* Constants in the function's constants pool are constant. */
2315 if (CONSTANT_POOL_ADDRESS_P (x
))
2320 /* Non-constant calls and recursion are not local. */
2324 /* Be overly conservative and consider any volatile memory
2325 reference as not local. */
2326 if (MEM_VOLATILE_P (x
))
2328 base
= find_base_term (XEXP (x
, 0));
2331 /* A Pmode ADDRESS could be a reference via the structure value
2332 address or static chain. Such memory references are nonlocal.
2334 Thus, we have to examine the contents of the ADDRESS to find
2335 out if this is a local reference or not. */
2336 if (GET_CODE (base
) == ADDRESS
2337 && GET_MODE (base
) == Pmode
2338 && (XEXP (base
, 0) == stack_pointer_rtx
2339 || XEXP (base
, 0) == arg_pointer_rtx
2340 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2341 || XEXP (base
, 0) == hard_frame_pointer_rtx
2343 || XEXP (base
, 0) == frame_pointer_rtx
))
2345 /* Constants in the function's constant pool are constant. */
2346 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2351 case UNSPEC_VOLATILE
:
2356 if (MEM_VOLATILE_P (x
))
2365 /* Recursively scan the operands of this expression. */
2368 const char *fmt
= GET_RTX_FORMAT (code
);
2371 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2373 if (fmt
[i
] == 'e' && XEXP (x
, i
))
2375 if (nonlocal_mentioned_p (XEXP (x
, i
)))
2378 else if (fmt
[i
] == 'E')
2381 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2382 if (nonlocal_mentioned_p (XVECEXP (x
, i
, j
)))
2391 /* Mark the function if it is constant. */
2394 mark_constant_function ()
2397 int nonlocal_mentioned
;
2399 if (TREE_PUBLIC (current_function_decl
)
2400 || TREE_READONLY (current_function_decl
)
2401 || DECL_IS_PURE (current_function_decl
)
2402 || TREE_THIS_VOLATILE (current_function_decl
)
2403 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
)
2406 /* A loop might not return which counts as a side effect. */
2407 if (mark_dfs_back_edges ())
2410 nonlocal_mentioned
= 0;
2412 init_alias_analysis ();
2414 /* Determine if this is a constant function. */
2416 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2417 if (INSN_P (insn
) && nonlocal_mentioned_p (insn
))
2419 nonlocal_mentioned
= 1;
2423 end_alias_analysis ();
2425 /* Mark the function. */
2427 if (! nonlocal_mentioned
)
2428 TREE_READONLY (current_function_decl
) = 1;
2432 static HARD_REG_SET argument_registers
;
2439 #ifndef OUTGOING_REGNO
2440 #define OUTGOING_REGNO(N) N
2442 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2443 /* Check whether this register can hold an incoming pointer
2444 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2445 numbers, so translate if necessary due to register windows. */
2446 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2447 && HARD_REGNO_MODE_OK (i
, Pmode
))
2448 SET_HARD_REG_BIT (argument_registers
, i
);
2450 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
2453 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2457 init_alias_analysis ()
2459 int maxreg
= max_reg_num ();
2465 reg_known_value_size
= maxreg
;
2468 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2469 - FIRST_PSEUDO_REGISTER
;
2471 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2472 - FIRST_PSEUDO_REGISTER
;
2474 /* Overallocate reg_base_value to allow some growth during loop
2475 optimization. Loop unrolling can create a large number of
2477 reg_base_value_size
= maxreg
* 2;
2478 reg_base_value
= (rtx
*) xcalloc (reg_base_value_size
, sizeof (rtx
));
2479 ggc_add_rtx_root (reg_base_value
, reg_base_value_size
);
2481 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
2482 reg_seen
= (char *) xmalloc (reg_base_value_size
);
2483 if (! reload_completed
&& flag_unroll_loops
)
2485 /* ??? Why are we realloc'ing if we're just going to zero it? */
2486 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
2487 reg_base_value_size
* sizeof (rtx
));
2488 memset ((char *)alias_invariant
, 0, reg_base_value_size
* sizeof (rtx
));
2491 /* The basic idea is that each pass through this loop will use the
2492 "constant" information from the previous pass to propagate alias
2493 information through another level of assignments.
2495 This could get expensive if the assignment chains are long. Maybe
2496 we should throttle the number of iterations, possibly based on
2497 the optimization level or flag_expensive_optimizations.
2499 We could propagate more information in the first pass by making use
2500 of REG_N_SETS to determine immediately that the alias information
2501 for a pseudo is "constant".
2503 A program with an uninitialized variable can cause an infinite loop
2504 here. Instead of doing a full dataflow analysis to detect such problems
2505 we just cap the number of iterations for the loop.
2507 The state of the arrays for the set chain in question does not matter
2508 since the program has undefined behavior. */
2513 /* Assume nothing will change this iteration of the loop. */
2516 /* We want to assign the same IDs each iteration of this loop, so
2517 start counting from zero each iteration of the loop. */
2520 /* We're at the start of the function each iteration through the
2521 loop, so we're copying arguments. */
2522 copying_arguments
= 1;
2524 /* Wipe the potential alias information clean for this pass. */
2525 memset ((char *) new_reg_base_value
, 0, reg_base_value_size
* sizeof (rtx
));
2527 /* Wipe the reg_seen array clean. */
2528 memset ((char *) reg_seen
, 0, reg_base_value_size
);
2530 /* Mark all hard registers which may contain an address.
2531 The stack, frame and argument pointers may contain an address.
2532 An argument register which can hold a Pmode value may contain
2533 an address even if it is not in BASE_REGS.
2535 The address expression is VOIDmode for an argument and
2536 Pmode for other registers. */
2538 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2539 if (TEST_HARD_REG_BIT (argument_registers
, i
))
2540 new_reg_base_value
[i
] = gen_rtx_ADDRESS (VOIDmode
,
2541 gen_rtx_REG (Pmode
, i
));
2543 new_reg_base_value
[STACK_POINTER_REGNUM
]
2544 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2545 new_reg_base_value
[ARG_POINTER_REGNUM
]
2546 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2547 new_reg_base_value
[FRAME_POINTER_REGNUM
]
2548 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2549 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2550 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2551 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2554 /* Walk the insns adding values to the new_reg_base_value array. */
2555 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2561 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2562 /* The prologue/epilogue insns are not threaded onto the
2563 insn chain until after reload has completed. Thus,
2564 there is no sense wasting time checking if INSN is in
2565 the prologue/epilogue until after reload has completed. */
2566 if (reload_completed
2567 && prologue_epilogue_contains (insn
))
2571 /* If this insn has a noalias note, process it, Otherwise,
2572 scan for sets. A simple set will have no side effects
2573 which could change the base value of any other register. */
2575 if (GET_CODE (PATTERN (insn
)) == SET
2576 && REG_NOTES (insn
) != 0
2577 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2578 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2580 note_stores (PATTERN (insn
), record_set
, NULL
);
2582 set
= single_set (insn
);
2585 && GET_CODE (SET_DEST (set
)) == REG
2586 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2588 unsigned int regno
= REGNO (SET_DEST (set
));
2589 rtx src
= SET_SRC (set
);
2591 if (REG_NOTES (insn
) != 0
2592 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2593 && REG_N_SETS (regno
) == 1)
2594 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2595 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2596 && ! rtx_varies_p (XEXP (note
, 0), 1)
2597 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2599 reg_known_value
[regno
] = XEXP (note
, 0);
2600 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2602 else if (REG_N_SETS (regno
) == 1
2603 && GET_CODE (src
) == PLUS
2604 && GET_CODE (XEXP (src
, 0)) == REG
2605 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2606 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2607 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2609 rtx op0
= XEXP (src
, 0);
2610 op0
= reg_known_value
[REGNO (op0
)];
2611 reg_known_value
[regno
]
2612 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2613 reg_known_equiv_p
[regno
] = 0;
2615 else if (REG_N_SETS (regno
) == 1
2616 && ! rtx_varies_p (src
, 1))
2618 reg_known_value
[regno
] = src
;
2619 reg_known_equiv_p
[regno
] = 0;
2623 else if (GET_CODE (insn
) == NOTE
2624 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2625 copying_arguments
= 0;
2628 /* Now propagate values from new_reg_base_value to reg_base_value. */
2629 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2631 if (new_reg_base_value
[ui
]
2632 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
2633 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
2635 reg_base_value
[ui
] = new_reg_base_value
[ui
];
2640 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2642 /* Fill in the remaining entries. */
2643 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
2644 if (reg_known_value
[i
] == 0)
2645 reg_known_value
[i
] = regno_reg_rtx
[i
];
2647 /* Simplify the reg_base_value array so that no register refers to
2648 another register, except to special registers indirectly through
2649 ADDRESS expressions.
2651 In theory this loop can take as long as O(registers^2), but unless
2652 there are very long dependency chains it will run in close to linear
2655 This loop may not be needed any longer now that the main loop does
2656 a better job at propagating alias information. */
2662 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2664 rtx base
= reg_base_value
[ui
];
2665 if (base
&& GET_CODE (base
) == REG
)
2667 unsigned int base_regno
= REGNO (base
);
2668 if (base_regno
== ui
) /* register set from itself */
2669 reg_base_value
[ui
] = 0;
2671 reg_base_value
[ui
] = reg_base_value
[base_regno
];
2676 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2679 free (new_reg_base_value
);
2680 new_reg_base_value
= 0;
2686 end_alias_analysis ()
2688 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2689 reg_known_value
= 0;
2690 reg_known_value_size
= 0;
2691 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2692 reg_known_equiv_p
= 0;
2695 ggc_del_root (reg_base_value
);
2696 free (reg_base_value
);
2699 reg_base_value_size
= 0;
2700 if (alias_invariant
)
2702 free (alias_invariant
);
2703 alias_invariant
= 0;