1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
94 #include "insn-config.h"
95 #include "insn-codes.h"
99 #include "hard-reg-set.h"
103 #include "function.h"
107 #ifndef REGISTER_MOVE_COST
108 #define REGISTER_MOVE_COST(x, y) 2
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
119 /* All reloads of the current insn are recorded here. See reload.h for
122 struct reload rld
[MAX_RELOADS
];
124 /* All the "earlyclobber" operands of the current insn
125 are recorded here. */
127 rtx reload_earlyclobbers
[MAX_RECOG_OPERANDS
];
129 int reload_n_operands
;
131 /* Replacing reloads.
133 If `replace_reloads' is nonzero, then as each reload is recorded
134 an entry is made for it in the table `replacements'.
135 Then later `subst_reloads' can look through that table and
136 perform all the replacements needed. */
138 /* Nonzero means record the places to replace. */
139 static int replace_reloads
;
141 /* Each replacement is recorded with a structure like this. */
144 rtx
*where
; /* Location to store in */
145 rtx
*subreg_loc
; /* Location of SUBREG if WHERE is inside
146 a SUBREG; 0 otherwise. */
147 int what
; /* which reload this is for */
148 enum machine_mode mode
; /* mode it must have */
151 static struct replacement replacements
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
153 /* Number of replacements currently recorded. */
154 static int n_replacements
;
156 /* Used to track what is modified by an operand. */
159 int reg_flag
; /* Nonzero if referencing a register. */
160 int safe
; /* Nonzero if this can't conflict with anything. */
161 rtx base
; /* Base address for MEM. */
162 HOST_WIDE_INT start
; /* Starting offset or register number. */
163 HOST_WIDE_INT end
; /* Ending offset or register number. */
166 #ifdef SECONDARY_MEMORY_NEEDED
168 /* Save MEMs needed to copy from one class of registers to another. One MEM
169 is used per mode, but normally only one or two modes are ever used.
171 We keep two versions, before and after register elimination. The one
172 after register elimination is record separately for each operand. This
173 is done in case the address is not valid to be sure that we separately
176 static rtx secondary_memlocs
[NUM_MACHINE_MODES
];
177 static rtx secondary_memlocs_elim
[NUM_MACHINE_MODES
][MAX_RECOG_OPERANDS
];
180 /* The instruction we are doing reloads for;
181 so we can test whether a register dies in it. */
182 static rtx this_insn
;
184 /* Nonzero if this instruction is a user-specified asm with operands. */
185 static int this_insn_is_asm
;
187 /* If hard_regs_live_known is nonzero,
188 we can tell which hard regs are currently live,
189 at least enough to succeed in choosing dummy reloads. */
190 static int hard_regs_live_known
;
192 /* Indexed by hard reg number,
193 element is nonnegative if hard reg has been spilled.
194 This vector is passed to `find_reloads' as an argument
195 and is not changed here. */
196 static short *static_reload_reg_p
;
198 /* Set to 1 in subst_reg_equivs if it changes anything. */
199 static int subst_reg_equivs_changed
;
201 /* On return from push_reload, holds the reload-number for the OUT
202 operand, which can be different for that from the input operand. */
203 static int output_reloadnum
;
205 /* Compare two RTX's. */
206 #define MATCHES(x, y) \
207 (x == y || (x != 0 && (GET_CODE (x) == REG \
208 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
209 : rtx_equal_p (x, y) && ! side_effects_p (x))))
211 /* Indicates if two reloads purposes are for similar enough things that we
212 can merge their reloads. */
213 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
214 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
215 || ((when1) == (when2) && (op1) == (op2)) \
216 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
217 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
218 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
219 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
220 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
222 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
223 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
224 ((when1) != (when2) \
225 || ! ((op1) == (op2) \
226 || (when1) == RELOAD_FOR_INPUT \
227 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
228 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
230 /* If we are going to reload an address, compute the reload type to
232 #define ADDR_TYPE(type) \
233 ((type) == RELOAD_FOR_INPUT_ADDRESS \
234 ? RELOAD_FOR_INPADDR_ADDRESS \
235 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
236 ? RELOAD_FOR_OUTADDR_ADDRESS \
239 #ifdef HAVE_SECONDARY_RELOADS
240 static int push_secondary_reload
PROTO((int, rtx
, int, int, enum reg_class
,
241 enum machine_mode
, enum reload_type
,
244 static enum reg_class find_valid_class
PROTO((enum machine_mode
, int));
245 static int push_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*, enum reg_class
,
246 enum machine_mode
, enum machine_mode
,
247 int, int, int, enum reload_type
));
248 static void push_replacement
PROTO((rtx
*, int, enum machine_mode
));
249 static void combine_reloads
PROTO((void));
250 static int find_reusable_reload
PROTO((rtx
*, rtx
, enum reg_class
,
251 enum reload_type
, int, int));
252 static rtx find_dummy_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*,
253 enum machine_mode
, enum machine_mode
,
254 enum reg_class
, int, int));
255 static int hard_reg_set_here_p
PROTO((int, int, rtx
));
256 static struct decomposition decompose
PROTO((rtx
));
257 static int immune_p
PROTO((rtx
, rtx
, struct decomposition
));
258 static int alternative_allows_memconst
PROTO((const char *, int));
259 static rtx find_reloads_toplev
PROTO((rtx
, int, enum reload_type
, int, int, rtx
));
260 static rtx make_memloc
PROTO((rtx
, int));
261 static int find_reloads_address
PROTO((enum machine_mode
, rtx
*, rtx
, rtx
*,
262 int, enum reload_type
, int, rtx
));
263 static rtx subst_reg_equivs
PROTO((rtx
, rtx
));
264 static rtx subst_indexed_address
PROTO((rtx
));
265 static int find_reloads_address_1
PROTO((enum machine_mode
, rtx
, int, rtx
*,
266 int, enum reload_type
,int, rtx
));
267 static void find_reloads_address_part
PROTO((rtx
, rtx
*, enum reg_class
,
268 enum machine_mode
, int,
269 enum reload_type
, int));
270 static rtx find_reloads_subreg_address
PROTO((rtx
, int, int, enum reload_type
,
272 static int find_inc_amount
PROTO((rtx
, rtx
));
273 static int loc_mentioned_in_p
PROTO((rtx
*, rtx
));
274 extern void debug_reload_to_stream
PROTO((FILE *));
275 extern void debug_reload
PROTO((void));
277 #ifdef HAVE_SECONDARY_RELOADS
279 /* Determine if any secondary reloads are needed for loading (if IN_P is
280 non-zero) or storing (if IN_P is zero) X to or from a reload register of
281 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
282 are needed, push them.
284 Return the reload number of the secondary reload we made, or -1 if
285 we didn't need one. *PICODE is set to the insn_code to use if we do
286 need a secondary reload. */
289 push_secondary_reload (in_p
, x
, opnum
, optional
, reload_class
, reload_mode
,
295 enum reg_class reload_class
;
296 enum machine_mode reload_mode
;
297 enum reload_type type
;
298 enum insn_code
*picode
;
300 enum reg_class
class = NO_REGS
;
301 enum machine_mode mode
= reload_mode
;
302 enum insn_code icode
= CODE_FOR_nothing
;
303 enum reg_class t_class
= NO_REGS
;
304 enum machine_mode t_mode
= VOIDmode
;
305 enum insn_code t_icode
= CODE_FOR_nothing
;
306 enum reload_type secondary_type
;
307 int s_reload
, t_reload
= -1;
309 if (type
== RELOAD_FOR_INPUT_ADDRESS
310 || type
== RELOAD_FOR_OUTPUT_ADDRESS
311 || type
== RELOAD_FOR_INPADDR_ADDRESS
312 || type
== RELOAD_FOR_OUTADDR_ADDRESS
)
313 secondary_type
= type
;
315 secondary_type
= in_p
? RELOAD_FOR_INPUT_ADDRESS
: RELOAD_FOR_OUTPUT_ADDRESS
;
317 *picode
= CODE_FOR_nothing
;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x
) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x
))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
326 reload_mode
= GET_MODE (x
);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem
[REGNO (x
)] != 0)
337 x
= reg_equiv_mem
[REGNO (x
)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS
)
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
356 icode
= (in_p
? reload_in_optab
[(int) reload_mode
]
357 : reload_out_optab
[(int) reload_mode
]);
359 if (icode
!= CODE_FOR_nothing
360 && insn_data
[(int) icode
].operand
[in_p
].predicate
361 && (! (insn_data
[(int) icode
].operand
[in_p
].predicate
) (x
, reload_mode
)))
362 icode
= CODE_FOR_nothing
;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
370 if (icode
!= CODE_FOR_nothing
)
372 /* If IN_P is non-zero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
378 = insn_data
[(int) icode
].operand
[!in_p
].constraint
[in_p
];
379 enum reg_class insn_class
380 = (insn_letter
== 'r' ? GENERAL_REGS
381 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter
));
383 if (insn_class
== NO_REGS
385 && insn_data
[(int) icode
].operand
[!in_p
].constraint
[0] != '=')
386 /* The scratch register's constraint must start with "=&". */
387 || insn_data
[(int) icode
].operand
[2].constraint
[0] != '='
388 || insn_data
[(int) icode
].operand
[2].constraint
[1] != '&')
391 if (reg_class_subset_p (reload_class
, insn_class
))
392 mode
= insn_data
[(int) icode
].operand
[2].mode
;
395 char t_letter
= insn_data
[(int) icode
].operand
[2].constraint
[2];
397 t_mode
= insn_data
[(int) icode
].operand
[2].mode
;
398 t_class
= (t_letter
== 'r' ? GENERAL_REGS
399 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter
));
401 icode
= CODE_FOR_nothing
;
405 /* This case isn't valid, so fail. Reload is allowed to use the same
406 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
407 in the case of a secondary register, we actually need two different
408 registers for correct code. We fail here to prevent the possibility of
409 silently generating incorrect code later.
411 The convention is that secondary input reloads are valid only if the
412 secondary_class is different from class. If you have such a case, you
413 can not use secondary reloads, you must work around the problem some
416 Allow this when MODE is not reload_mode and assume that the generated
417 code handles this case (it does on the Alpha, which is the only place
418 this currently happens). */
420 if (in_p
&& class == reload_class
&& mode
== reload_mode
)
423 /* If we need a tertiary reload, see if we have one we can reuse or else
426 if (t_class
!= NO_REGS
)
428 for (t_reload
= 0; t_reload
< n_reloads
; t_reload
++)
429 if (rld
[t_reload
].secondary_p
430 && (reg_class_subset_p (t_class
, rld
[t_reload
].class)
431 || reg_class_subset_p (rld
[t_reload
].class, t_class
))
432 && ((in_p
&& rld
[t_reload
].inmode
== t_mode
)
433 || (! in_p
&& rld
[t_reload
].outmode
== t_mode
))
434 && ((in_p
&& (rld
[t_reload
].secondary_in_icode
435 == CODE_FOR_nothing
))
436 || (! in_p
&&(rld
[t_reload
].secondary_out_icode
437 == CODE_FOR_nothing
)))
438 && (reg_class_size
[(int) t_class
] == 1 || SMALL_REGISTER_CLASSES
)
439 && MERGABLE_RELOADS (secondary_type
,
440 rld
[t_reload
].when_needed
,
441 opnum
, rld
[t_reload
].opnum
))
444 rld
[t_reload
].inmode
= t_mode
;
446 rld
[t_reload
].outmode
= t_mode
;
448 if (reg_class_subset_p (t_class
, rld
[t_reload
].class))
449 rld
[t_reload
].class = t_class
;
451 rld
[t_reload
].opnum
= MIN (rld
[t_reload
].opnum
, opnum
);
452 rld
[t_reload
].optional
&= optional
;
453 rld
[t_reload
].secondary_p
= 1;
454 if (MERGE_TO_OTHER (secondary_type
, rld
[t_reload
].when_needed
,
455 opnum
, rld
[t_reload
].opnum
))
456 rld
[t_reload
].when_needed
= RELOAD_OTHER
;
459 if (t_reload
== n_reloads
)
461 /* We need to make a new tertiary reload for this register class. */
462 rld
[t_reload
].in
= rld
[t_reload
].out
= 0;
463 rld
[t_reload
].class = t_class
;
464 rld
[t_reload
].inmode
= in_p
? t_mode
: VOIDmode
;
465 rld
[t_reload
].outmode
= ! in_p
? t_mode
: VOIDmode
;
466 rld
[t_reload
].reg_rtx
= 0;
467 rld
[t_reload
].optional
= optional
;
468 rld
[t_reload
].nongroup
= 0;
469 rld
[t_reload
].inc
= 0;
470 /* Maybe we could combine these, but it seems too tricky. */
471 rld
[t_reload
].nocombine
= 1;
472 rld
[t_reload
].in_reg
= 0;
473 rld
[t_reload
].out_reg
= 0;
474 rld
[t_reload
].opnum
= opnum
;
475 rld
[t_reload
].when_needed
= secondary_type
;
476 rld
[t_reload
].secondary_in_reload
= -1;
477 rld
[t_reload
].secondary_out_reload
= -1;
478 rld
[t_reload
].secondary_in_icode
= CODE_FOR_nothing
;
479 rld
[t_reload
].secondary_out_icode
= CODE_FOR_nothing
;
480 rld
[t_reload
].secondary_p
= 1;
486 /* See if we can reuse an existing secondary reload. */
487 for (s_reload
= 0; s_reload
< n_reloads
; s_reload
++)
488 if (rld
[s_reload
].secondary_p
489 && (reg_class_subset_p (class, rld
[s_reload
].class)
490 || reg_class_subset_p (rld
[s_reload
].class, class))
491 && ((in_p
&& rld
[s_reload
].inmode
== mode
)
492 || (! in_p
&& rld
[s_reload
].outmode
== mode
))
493 && ((in_p
&& rld
[s_reload
].secondary_in_reload
== t_reload
)
494 || (! in_p
&& rld
[s_reload
].secondary_out_reload
== t_reload
))
495 && ((in_p
&& rld
[s_reload
].secondary_in_icode
== t_icode
)
496 || (! in_p
&& rld
[s_reload
].secondary_out_icode
== t_icode
))
497 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
498 && MERGABLE_RELOADS (secondary_type
, rld
[s_reload
].when_needed
,
499 opnum
, rld
[s_reload
].opnum
))
502 rld
[s_reload
].inmode
= mode
;
504 rld
[s_reload
].outmode
= mode
;
506 if (reg_class_subset_p (class, rld
[s_reload
].class))
507 rld
[s_reload
].class = class;
509 rld
[s_reload
].opnum
= MIN (rld
[s_reload
].opnum
, opnum
);
510 rld
[s_reload
].optional
&= optional
;
511 rld
[s_reload
].secondary_p
= 1;
512 if (MERGE_TO_OTHER (secondary_type
, rld
[s_reload
].when_needed
,
513 opnum
, rld
[s_reload
].opnum
))
514 rld
[s_reload
].when_needed
= RELOAD_OTHER
;
517 if (s_reload
== n_reloads
)
519 #ifdef SECONDARY_MEMORY_NEEDED
520 /* If we need a memory location to copy between the two reload regs,
521 set it up now. Note that we do the input case before making
522 the reload and the output case after. This is due to the
523 way reloads are output. */
525 if (in_p
&& icode
== CODE_FOR_nothing
526 && SECONDARY_MEMORY_NEEDED (class, reload_class
, mode
))
527 get_secondary_mem (x
, reload_mode
, opnum
, type
);
530 /* We need to make a new secondary reload for this register class. */
531 rld
[s_reload
].in
= rld
[s_reload
].out
= 0;
532 rld
[s_reload
].class = class;
534 rld
[s_reload
].inmode
= in_p
? mode
: VOIDmode
;
535 rld
[s_reload
].outmode
= ! in_p
? mode
: VOIDmode
;
536 rld
[s_reload
].reg_rtx
= 0;
537 rld
[s_reload
].optional
= optional
;
538 rld
[s_reload
].nongroup
= 0;
539 rld
[s_reload
].inc
= 0;
540 /* Maybe we could combine these, but it seems too tricky. */
541 rld
[s_reload
].nocombine
= 1;
542 rld
[s_reload
].in_reg
= 0;
543 rld
[s_reload
].out_reg
= 0;
544 rld
[s_reload
].opnum
= opnum
;
545 rld
[s_reload
].when_needed
= secondary_type
;
546 rld
[s_reload
].secondary_in_reload
= in_p
? t_reload
: -1;
547 rld
[s_reload
].secondary_out_reload
= ! in_p
? t_reload
: -1;
548 rld
[s_reload
].secondary_in_icode
= in_p
? t_icode
: CODE_FOR_nothing
;
549 rld
[s_reload
].secondary_out_icode
550 = ! in_p
? t_icode
: CODE_FOR_nothing
;
551 rld
[s_reload
].secondary_p
= 1;
555 #ifdef SECONDARY_MEMORY_NEEDED
556 if (! in_p
&& icode
== CODE_FOR_nothing
557 && SECONDARY_MEMORY_NEEDED (reload_class
, class, mode
))
558 get_secondary_mem (x
, mode
, opnum
, type
);
565 #endif /* HAVE_SECONDARY_RELOADS */
567 #ifdef SECONDARY_MEMORY_NEEDED
569 /* Return a memory location that will be used to copy X in mode MODE.
570 If we haven't already made a location for this mode in this insn,
571 call find_reloads_address on the location being returned. */
574 get_secondary_mem (x
, mode
, opnum
, type
)
575 rtx x ATTRIBUTE_UNUSED
;
576 enum machine_mode mode
;
578 enum reload_type type
;
583 /* By default, if MODE is narrower than a word, widen it to a word.
584 This is required because most machines that require these memory
585 locations do not support short load and stores from all registers
586 (e.g., FP registers). */
588 #ifdef SECONDARY_MEMORY_NEEDED_MODE
589 mode
= SECONDARY_MEMORY_NEEDED_MODE (mode
);
591 if (GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
592 mode
= mode_for_size (BITS_PER_WORD
, GET_MODE_CLASS (mode
), 0);
595 /* If we already have made a MEM for this operand in MODE, return it. */
596 if (secondary_memlocs_elim
[(int) mode
][opnum
] != 0)
597 return secondary_memlocs_elim
[(int) mode
][opnum
];
599 /* If this is the first time we've tried to get a MEM for this mode,
600 allocate a new one. `something_changed' in reload will get set
601 by noticing that the frame size has changed. */
603 if (secondary_memlocs
[(int) mode
] == 0)
605 #ifdef SECONDARY_MEMORY_NEEDED_RTX
606 secondary_memlocs
[(int) mode
] = SECONDARY_MEMORY_NEEDED_RTX (mode
);
608 secondary_memlocs
[(int) mode
]
609 = assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
613 /* Get a version of the address doing any eliminations needed. If that
614 didn't give us a new MEM, make a new one if it isn't valid. */
616 loc
= eliminate_regs (secondary_memlocs
[(int) mode
], VOIDmode
, NULL_RTX
);
617 mem_valid
= strict_memory_address_p (mode
, XEXP (loc
, 0));
619 if (! mem_valid
&& loc
== secondary_memlocs
[(int) mode
])
620 loc
= copy_rtx (loc
);
622 /* The only time the call below will do anything is if the stack
623 offset is too large. In that case IND_LEVELS doesn't matter, so we
624 can just pass a zero. Adjust the type to be the address of the
625 corresponding object. If the address was valid, save the eliminated
626 address. If it wasn't valid, we need to make a reload each time, so
631 type
= (type
== RELOAD_FOR_INPUT
? RELOAD_FOR_INPUT_ADDRESS
632 : type
== RELOAD_FOR_OUTPUT
? RELOAD_FOR_OUTPUT_ADDRESS
635 find_reloads_address (mode
, NULL_PTR
, XEXP (loc
, 0), &XEXP (loc
, 0),
639 secondary_memlocs_elim
[(int) mode
][opnum
] = loc
;
643 /* Clear any secondary memory locations we've made. */
646 clear_secondary_mem ()
648 bzero ((char *) secondary_memlocs
, sizeof secondary_memlocs
);
650 #endif /* SECONDARY_MEMORY_NEEDED */
652 /* Find the largest class for which every register number plus N is valid in
653 M1 (if in range). Abort if no such class exists. */
655 static enum reg_class
656 find_valid_class (m1
, n
)
657 enum machine_mode m1
;
662 enum reg_class best_class
= NO_REGS
;
665 for (class = 1; class < N_REG_CLASSES
; class++)
668 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
&& ! bad
; regno
++)
669 if (TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
670 && TEST_HARD_REG_BIT (reg_class_contents
[class], regno
+ n
)
671 && ! HARD_REGNO_MODE_OK (regno
+ n
, m1
))
674 if (! bad
&& reg_class_size
[class] > best_size
)
675 best_class
= class, best_size
= reg_class_size
[class];
684 /* Return the number of a previously made reload that can be combined with
685 a new one, or n_reloads if none of the existing reloads can be used.
686 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
687 push_reload, they determine the kind of the new reload that we try to
688 combine. P_IN points to the corresponding value of IN, which can be
689 modified by this function.
690 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
692 find_reusable_reload (p_in
, out
, class, type
, opnum
, dont_share
)
694 enum reg_class
class;
695 enum reload_type type
;
696 int opnum
, dont_share
;
700 /* We can't merge two reloads if the output of either one is
703 if (earlyclobber_operand_p (out
))
706 /* We can use an existing reload if the class is right
707 and at least one of IN and OUT is a match
708 and the other is at worst neutral.
709 (A zero compared against anything is neutral.)
711 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
712 for the same thing since that can cause us to need more reload registers
713 than we otherwise would. */
715 for (i
= 0; i
< n_reloads
; i
++)
716 if ((reg_class_subset_p (class, rld
[i
].class)
717 || reg_class_subset_p (rld
[i
].class, class))
718 /* If the existing reload has a register, it must fit our class. */
719 && (rld
[i
].reg_rtx
== 0
720 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
721 true_regnum (rld
[i
].reg_rtx
)))
722 && ((in
!= 0 && MATCHES (rld
[i
].in
, in
) && ! dont_share
723 && (out
== 0 || rld
[i
].out
== 0 || MATCHES (rld
[i
].out
, out
)))
724 || (out
!= 0 && MATCHES (rld
[i
].out
, out
)
725 && (in
== 0 || rld
[i
].in
== 0 || MATCHES (rld
[i
].in
, in
))))
726 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
727 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
728 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
, opnum
, rld
[i
].opnum
))
731 /* Reloading a plain reg for input can match a reload to postincrement
732 that reg, since the postincrement's value is the right value.
733 Likewise, it can match a preincrement reload, since we regard
734 the preincrementation as happening before any ref in this insn
736 for (i
= 0; i
< n_reloads
; i
++)
737 if ((reg_class_subset_p (class, rld
[i
].class)
738 || reg_class_subset_p (rld
[i
].class, class))
739 /* If the existing reload has a register, it must fit our
741 && (rld
[i
].reg_rtx
== 0
742 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
743 true_regnum (rld
[i
].reg_rtx
)))
744 && out
== 0 && rld
[i
].out
== 0 && rld
[i
].in
!= 0
745 && ((GET_CODE (in
) == REG
746 && (GET_CODE (rld
[i
].in
) == POST_INC
747 || GET_CODE (rld
[i
].in
) == POST_DEC
748 || GET_CODE (rld
[i
].in
) == PRE_INC
749 || GET_CODE (rld
[i
].in
) == PRE_DEC
)
750 && MATCHES (XEXP (rld
[i
].in
, 0), in
))
752 (GET_CODE (rld
[i
].in
) == REG
753 && (GET_CODE (in
) == POST_INC
754 || GET_CODE (in
) == POST_DEC
755 || GET_CODE (in
) == PRE_INC
756 || GET_CODE (in
) == PRE_DEC
)
757 && MATCHES (XEXP (in
, 0), rld
[i
].in
)))
758 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
759 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
760 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
,
761 opnum
, rld
[i
].opnum
))
763 /* Make sure reload_in ultimately has the increment,
764 not the plain register. */
765 if (GET_CODE (in
) == REG
)
772 /* Record one reload that needs to be performed.
773 IN is an rtx saying where the data are to be found before this instruction.
774 OUT says where they must be stored after the instruction.
775 (IN is zero for data not read, and OUT is zero for data not written.)
776 INLOC and OUTLOC point to the places in the instructions where
777 IN and OUT were found.
778 If IN and OUT are both non-zero, it means the same register must be used
779 to reload both IN and OUT.
781 CLASS is a register class required for the reloaded data.
782 INMODE is the machine mode that the instruction requires
783 for the reg that replaces IN and OUTMODE is likewise for OUT.
785 If IN is zero, then OUT's location and mode should be passed as
788 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
790 OPTIONAL nonzero means this reload does not need to be performed:
791 it can be discarded if that is more convenient.
793 OPNUM and TYPE say what the purpose of this reload is.
795 The return value is the reload-number for this reload.
797 If both IN and OUT are nonzero, in some rare cases we might
798 want to make two separate reloads. (Actually we never do this now.)
799 Therefore, the reload-number for OUT is stored in
800 output_reloadnum when we return; the return value applies to IN.
801 Usually (presently always), when IN and OUT are nonzero,
802 the two reload-numbers are equal, but the caller should be careful to
806 push_reload (in
, out
, inloc
, outloc
, class,
807 inmode
, outmode
, strict_low
, optional
, opnum
, type
)
810 enum reg_class
class;
811 enum machine_mode inmode
, outmode
;
815 enum reload_type type
;
819 int dont_remove_subreg
= 0;
820 rtx
*in_subreg_loc
= 0, *out_subreg_loc
= 0;
821 int secondary_in_reload
= -1, secondary_out_reload
= -1;
822 enum insn_code secondary_in_icode
= CODE_FOR_nothing
;
823 enum insn_code secondary_out_icode
= CODE_FOR_nothing
;
825 /* INMODE and/or OUTMODE could be VOIDmode if no mode
826 has been specified for the operand. In that case,
827 use the operand's mode as the mode to reload. */
828 if (inmode
== VOIDmode
&& in
!= 0)
829 inmode
= GET_MODE (in
);
830 if (outmode
== VOIDmode
&& out
!= 0)
831 outmode
= GET_MODE (out
);
833 /* If IN is a pseudo register everywhere-equivalent to a constant, and
834 it is not in a hard register, reload straight from the constant,
835 since we want to get rid of such pseudo registers.
836 Often this is done earlier, but not always in find_reloads_address. */
837 if (in
!= 0 && GET_CODE (in
) == REG
)
839 register int regno
= REGNO (in
);
841 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
842 && reg_equiv_constant
[regno
] != 0)
843 in
= reg_equiv_constant
[regno
];
846 /* Likewise for OUT. Of course, OUT will never be equivalent to
847 an actual constant, but it might be equivalent to a memory location
848 (in the case of a parameter). */
849 if (out
!= 0 && GET_CODE (out
) == REG
)
851 register int regno
= REGNO (out
);
853 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
854 && reg_equiv_constant
[regno
] != 0)
855 out
= reg_equiv_constant
[regno
];
858 /* If we have a read-write operand with an address side-effect,
859 change either IN or OUT so the side-effect happens only once. */
860 if (in
!= 0 && out
!= 0 && GET_CODE (in
) == MEM
&& rtx_equal_p (in
, out
))
862 if (GET_CODE (XEXP (in
, 0)) == POST_INC
863 || GET_CODE (XEXP (in
, 0)) == POST_DEC
)
864 in
= gen_rtx_MEM (GET_MODE (in
), XEXP (XEXP (in
, 0), 0));
865 if (GET_CODE (XEXP (in
, 0)) == PRE_INC
866 || GET_CODE (XEXP (in
, 0)) == PRE_DEC
)
867 out
= gen_rtx_MEM (GET_MODE (out
), XEXP (XEXP (out
, 0), 0));
870 /* If we are reloading a (SUBREG constant ...), really reload just the
871 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
872 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
873 a pseudo and hence will become a MEM) with M1 wider than M2 and the
874 register is a pseudo, also reload the inside expression.
875 For machines that extend byte loads, do this for any SUBREG of a pseudo
876 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
877 M2 is an integral mode that gets extended when loaded.
878 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
879 either M1 is not valid for R or M2 is wider than a word but we only
880 need one word to store an M2-sized quantity in R.
881 (However, if OUT is nonzero, we need to reload the reg *and*
882 the subreg, so do nothing here, and let following statement handle it.)
884 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
885 we can't handle it here because CONST_INT does not indicate a mode.
887 Similarly, we must reload the inside expression if we have a
888 STRICT_LOW_PART (presumably, in == out in the cas).
890 Also reload the inner expression if it does not require a secondary
891 reload but the SUBREG does.
893 Finally, reload the inner expression if it is a register that is in
894 the class whose registers cannot be referenced in a different size
895 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
896 cannot reload just the inside since we might end up with the wrong
897 register class. But if it is inside a STRICT_LOW_PART, we have
898 no choice, so we hope we do get the right register class there. */
900 if (in
!= 0 && GET_CODE (in
) == SUBREG
901 && (SUBREG_WORD (in
) == 0 || strict_low
)
902 #ifdef CLASS_CANNOT_CHANGE_SIZE
903 && class != CLASS_CANNOT_CHANGE_SIZE
905 && (CONSTANT_P (SUBREG_REG (in
))
906 || GET_CODE (SUBREG_REG (in
)) == PLUS
908 || (((GET_CODE (SUBREG_REG (in
)) == REG
909 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
)
910 || GET_CODE (SUBREG_REG (in
)) == MEM
)
911 && ((GET_MODE_SIZE (inmode
)
912 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
913 #ifdef LOAD_EXTEND_OP
914 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
915 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
917 && (GET_MODE_SIZE (inmode
)
918 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
919 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in
)))
920 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in
))) != NIL
)
922 #ifdef WORD_REGISTER_OPERATIONS
923 || ((GET_MODE_SIZE (inmode
)
924 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
925 && ((GET_MODE_SIZE (inmode
) - 1) / UNITS_PER_WORD
==
926 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))) - 1)
930 || (GET_CODE (SUBREG_REG (in
)) == REG
931 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
932 /* The case where out is nonzero
933 is handled differently in the following statement. */
934 && (out
== 0 || SUBREG_WORD (in
) == 0)
935 && ((GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
936 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
938 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
940 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
941 GET_MODE (SUBREG_REG (in
)))))
942 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in
))
945 #ifdef SECONDARY_INPUT_RELOAD_CLASS
946 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode
, in
) != NO_REGS
947 && (SECONDARY_INPUT_RELOAD_CLASS (class,
948 GET_MODE (SUBREG_REG (in
)),
952 #ifdef CLASS_CANNOT_CHANGE_SIZE
953 || (GET_CODE (SUBREG_REG (in
)) == REG
954 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
955 && (TEST_HARD_REG_BIT
956 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
957 REGNO (SUBREG_REG (in
))))
958 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
959 != GET_MODE_SIZE (inmode
)))
963 in_subreg_loc
= inloc
;
964 inloc
= &SUBREG_REG (in
);
966 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
967 if (GET_CODE (in
) == MEM
)
968 /* This is supposed to happen only for paradoxical subregs made by
969 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
970 if (GET_MODE_SIZE (GET_MODE (in
)) > GET_MODE_SIZE (inmode
))
973 inmode
= GET_MODE (in
);
976 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
977 either M1 is not valid for R or M2 is wider than a word but we only
978 need one word to store an M2-sized quantity in R.
980 However, we must reload the inner reg *as well as* the subreg in
983 /* Similar issue for (SUBREG constant ...) if it was not handled by the
984 code above. This can happen if SUBREG_WORD != 0. */
986 if (in
!= 0 && GET_CODE (in
) == SUBREG
987 && (CONSTANT_P (SUBREG_REG (in
))
988 || (GET_CODE (SUBREG_REG (in
)) == REG
989 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
990 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in
))
993 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
994 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
996 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
998 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
999 GET_MODE (SUBREG_REG (in
)))))))))
1001 /* This relies on the fact that emit_reload_insns outputs the
1002 instructions for input reloads of type RELOAD_OTHER in the same
1003 order as the reloads. Thus if the outer reload is also of type
1004 RELOAD_OTHER, we are guaranteed that this inner reload will be
1005 output before the outer reload. */
1006 push_reload (SUBREG_REG (in
), NULL_RTX
, &SUBREG_REG (in
), NULL_PTR
,
1007 find_valid_class (inmode
, SUBREG_WORD (in
)),
1008 VOIDmode
, VOIDmode
, 0, 0, opnum
, type
);
1009 dont_remove_subreg
= 1;
1012 /* Similarly for paradoxical and problematical SUBREGs on the output.
1013 Note that there is no reason we need worry about the previous value
1014 of SUBREG_REG (out); even if wider than out,
1015 storing in a subreg is entitled to clobber it all
1016 (except in the case of STRICT_LOW_PART,
1017 and in that case the constraint should label it input-output.) */
1018 if (out
!= 0 && GET_CODE (out
) == SUBREG
1019 && (SUBREG_WORD (out
) == 0 || strict_low
)
1020 #ifdef CLASS_CANNOT_CHANGE_SIZE
1021 && class != CLASS_CANNOT_CHANGE_SIZE
1023 && (CONSTANT_P (SUBREG_REG (out
))
1025 || (((GET_CODE (SUBREG_REG (out
)) == REG
1026 && REGNO (SUBREG_REG (out
)) >= FIRST_PSEUDO_REGISTER
)
1027 || GET_CODE (SUBREG_REG (out
)) == MEM
)
1028 && ((GET_MODE_SIZE (outmode
)
1029 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1030 #ifdef WORD_REGISTER_OPERATIONS
1031 || ((GET_MODE_SIZE (outmode
)
1032 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1033 && ((GET_MODE_SIZE (outmode
) - 1) / UNITS_PER_WORD
==
1034 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))) - 1)
1038 || (GET_CODE (SUBREG_REG (out
)) == REG
1039 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1040 && ((GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
1041 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1043 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1045 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out
)),
1046 GET_MODE (SUBREG_REG (out
)))))
1047 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out
))
1048 + SUBREG_WORD (out
)),
1050 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1051 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode
, out
) != NO_REGS
1052 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1053 GET_MODE (SUBREG_REG (out
)),
1057 #ifdef CLASS_CANNOT_CHANGE_SIZE
1058 || (GET_CODE (SUBREG_REG (out
)) == REG
1059 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1060 && (TEST_HARD_REG_BIT
1061 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
1062 REGNO (SUBREG_REG (out
))))
1063 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1064 != GET_MODE_SIZE (outmode
)))
1068 out_subreg_loc
= outloc
;
1069 outloc
= &SUBREG_REG (out
);
1071 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1072 if (GET_CODE (out
) == MEM
1073 && GET_MODE_SIZE (GET_MODE (out
)) > GET_MODE_SIZE (outmode
))
1076 outmode
= GET_MODE (out
);
1079 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1080 either M1 is not valid for R or M2 is wider than a word but we only
1081 need one word to store an M2-sized quantity in R.
1083 However, we must reload the inner reg *as well as* the subreg in
1084 that case. In this case, the inner reg is an in-out reload. */
1086 if (out
!= 0 && GET_CODE (out
) == SUBREG
1087 && GET_CODE (SUBREG_REG (out
)) == REG
1088 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1089 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out
)) + SUBREG_WORD (out
),
1091 || (GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
1092 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1094 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1096 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out
)),
1097 GET_MODE (SUBREG_REG (out
)))))))
1099 /* This relies on the fact that emit_reload_insns outputs the
1100 instructions for output reloads of type RELOAD_OTHER in reverse
1101 order of the reloads. Thus if the outer reload is also of type
1102 RELOAD_OTHER, we are guaranteed that this inner reload will be
1103 output after the outer reload. */
1104 dont_remove_subreg
= 1;
1105 push_reload (SUBREG_REG (out
), SUBREG_REG (out
), &SUBREG_REG (out
),
1107 find_valid_class (outmode
, SUBREG_WORD (out
)),
1108 VOIDmode
, VOIDmode
, 0, 0,
1109 opnum
, RELOAD_OTHER
);
1112 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1113 if (in
!= 0 && out
!= 0 && GET_CODE (out
) == MEM
1114 && (GET_CODE (in
) == REG
|| GET_CODE (in
) == MEM
)
1115 && reg_overlap_mentioned_for_reload_p (in
, XEXP (out
, 0)))
1118 /* If IN is a SUBREG of a hard register, make a new REG. This
1119 simplifies some of the cases below. */
1121 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& GET_CODE (SUBREG_REG (in
)) == REG
1122 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1123 && ! dont_remove_subreg
)
1124 in
= gen_rtx_REG (GET_MODE (in
),
1125 REGNO (SUBREG_REG (in
)) + SUBREG_WORD (in
));
1127 /* Similarly for OUT. */
1128 if (out
!= 0 && GET_CODE (out
) == SUBREG
1129 && GET_CODE (SUBREG_REG (out
)) == REG
1130 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1131 && ! dont_remove_subreg
)
1132 out
= gen_rtx_REG (GET_MODE (out
),
1133 REGNO (SUBREG_REG (out
)) + SUBREG_WORD (out
));
1135 /* Narrow down the class of register wanted if that is
1136 desirable on this machine for efficiency. */
1138 class = PREFERRED_RELOAD_CLASS (in
, class);
1140 /* Output reloads may need analogous treatment, different in detail. */
1141 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1143 class = PREFERRED_OUTPUT_RELOAD_CLASS (out
, class);
1146 /* Make sure we use a class that can handle the actual pseudo
1147 inside any subreg. For example, on the 386, QImode regs
1148 can appear within SImode subregs. Although GENERAL_REGS
1149 can handle SImode, QImode needs a smaller class. */
1150 #ifdef LIMIT_RELOAD_CLASS
1152 class = LIMIT_RELOAD_CLASS (inmode
, class);
1153 else if (in
!= 0 && GET_CODE (in
) == SUBREG
)
1154 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in
)), class);
1157 class = LIMIT_RELOAD_CLASS (outmode
, class);
1158 if (out
!= 0 && GET_CODE (out
) == SUBREG
)
1159 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out
)), class);
1162 /* Verify that this class is at least possible for the mode that
1164 if (this_insn_is_asm
)
1166 enum machine_mode mode
;
1167 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
1171 if (mode
== VOIDmode
)
1173 error_for_asm (this_insn
, "cannot reload integer constant operand in `asm'");
1178 outmode
= word_mode
;
1180 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1181 if (HARD_REGNO_MODE_OK (i
, mode
)
1182 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
))
1184 int nregs
= HARD_REGNO_NREGS (i
, mode
);
1187 for (j
= 1; j
< nregs
; j
++)
1188 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
+ j
))
1193 if (i
== FIRST_PSEUDO_REGISTER
)
1195 error_for_asm (this_insn
, "impossible register constraint in `asm'");
1200 /* Optional output reloads are always OK even if we have no register class,
1201 since the function of these reloads is only to have spill_reg_store etc.
1202 set, so that the storing insn can be deleted later. */
1203 if (class == NO_REGS
1204 && (optional
== 0 || type
!= RELOAD_FOR_OUTPUT
))
1207 i
= find_reusable_reload (&in
, out
, class, type
, opnum
, dont_share
);
1211 /* See if we need a secondary reload register to move between CLASS
1212 and IN or CLASS and OUT. Get the icode and push any required reloads
1213 needed for each of them if so. */
1215 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1218 = push_secondary_reload (1, in
, opnum
, optional
, class, inmode
, type
,
1219 &secondary_in_icode
);
1222 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1223 if (out
!= 0 && GET_CODE (out
) != SCRATCH
)
1224 secondary_out_reload
1225 = push_secondary_reload (0, out
, opnum
, optional
, class, outmode
,
1226 type
, &secondary_out_icode
);
1229 /* We found no existing reload suitable for re-use.
1230 So add an additional reload. */
1232 #ifdef SECONDARY_MEMORY_NEEDED
1233 /* If a memory location is needed for the copy, make one. */
1234 if (in
!= 0 && GET_CODE (in
) == REG
1235 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1236 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in
)),
1238 get_secondary_mem (in
, inmode
, opnum
, type
);
1244 rld
[i
].class = class;
1245 rld
[i
].inmode
= inmode
;
1246 rld
[i
].outmode
= outmode
;
1248 rld
[i
].optional
= optional
;
1249 rld
[i
].nongroup
= 0;
1251 rld
[i
].nocombine
= 0;
1252 rld
[i
].in_reg
= inloc
? *inloc
: 0;
1253 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1254 rld
[i
].opnum
= opnum
;
1255 rld
[i
].when_needed
= type
;
1256 rld
[i
].secondary_in_reload
= secondary_in_reload
;
1257 rld
[i
].secondary_out_reload
= secondary_out_reload
;
1258 rld
[i
].secondary_in_icode
= secondary_in_icode
;
1259 rld
[i
].secondary_out_icode
= secondary_out_icode
;
1260 rld
[i
].secondary_p
= 0;
1264 #ifdef SECONDARY_MEMORY_NEEDED
1265 if (out
!= 0 && GET_CODE (out
) == REG
1266 && REGNO (out
) < FIRST_PSEUDO_REGISTER
1267 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out
)),
1269 get_secondary_mem (out
, outmode
, opnum
, type
);
1274 /* We are reusing an existing reload,
1275 but we may have additional information for it.
1276 For example, we may now have both IN and OUT
1277 while the old one may have just one of them. */
1279 /* The modes can be different. If they are, we want to reload in
1280 the larger mode, so that the value is valid for both modes. */
1281 if (inmode
!= VOIDmode
1282 && GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (rld
[i
].inmode
))
1283 rld
[i
].inmode
= inmode
;
1284 if (outmode
!= VOIDmode
1285 && GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (rld
[i
].outmode
))
1286 rld
[i
].outmode
= outmode
;
1289 rtx in_reg
= inloc
? *inloc
: 0;
1290 /* If we merge reloads for two distinct rtl expressions that
1291 are identical in content, there might be duplicate address
1292 reloads. Remove the extra set now, so that if we later find
1293 that we can inherit this reload, we can get rid of the
1294 address reloads altogether.
1296 Do not do this if both reloads are optional since the result
1297 would be an optional reload which could potentially leave
1298 unresolved address replacements.
1300 It is not sufficient to call transfer_replacements since
1301 choose_reload_regs will remove the replacements for address
1302 reloads of inherited reloads which results in the same
1304 if (rld
[i
].in
!= in
&& rtx_equal_p (in
, rld
[i
].in
)
1305 && ! (rld
[i
].optional
&& optional
))
1307 /* We must keep the address reload with the lower operand
1309 if (opnum
> rld
[i
].opnum
)
1311 remove_address_replacements (in
);
1313 in_reg
= rld
[i
].in_reg
;
1316 remove_address_replacements (rld
[i
].in
);
1319 rld
[i
].in_reg
= in_reg
;
1324 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1326 if (reg_class_subset_p (class, rld
[i
].class))
1327 rld
[i
].class = class;
1328 rld
[i
].optional
&= optional
;
1329 if (MERGE_TO_OTHER (type
, rld
[i
].when_needed
,
1330 opnum
, rld
[i
].opnum
))
1331 rld
[i
].when_needed
= RELOAD_OTHER
;
1332 rld
[i
].opnum
= MIN (rld
[i
].opnum
, opnum
);
1335 /* If the ostensible rtx being reload differs from the rtx found
1336 in the location to substitute, this reload is not safe to combine
1337 because we cannot reliably tell whether it appears in the insn. */
1339 if (in
!= 0 && in
!= *inloc
)
1340 rld
[i
].nocombine
= 1;
1343 /* This was replaced by changes in find_reloads_address_1 and the new
1344 function inc_for_reload, which go with a new meaning of reload_inc. */
1346 /* If this is an IN/OUT reload in an insn that sets the CC,
1347 it must be for an autoincrement. It doesn't work to store
1348 the incremented value after the insn because that would clobber the CC.
1349 So we must do the increment of the value reloaded from,
1350 increment it, store it back, then decrement again. */
1351 if (out
!= 0 && sets_cc0_p (PATTERN (this_insn
)))
1355 rld
[i
].inc
= find_inc_amount (PATTERN (this_insn
), in
);
1356 /* If we did not find a nonzero amount-to-increment-by,
1357 that contradicts the belief that IN is being incremented
1358 in an address in this insn. */
1359 if (rld
[i
].inc
== 0)
1364 /* If we will replace IN and OUT with the reload-reg,
1365 record where they are located so that substitution need
1366 not do a tree walk. */
1368 if (replace_reloads
)
1372 register struct replacement
*r
= &replacements
[n_replacements
++];
1374 r
->subreg_loc
= in_subreg_loc
;
1378 if (outloc
!= 0 && outloc
!= inloc
)
1380 register struct replacement
*r
= &replacements
[n_replacements
++];
1383 r
->subreg_loc
= out_subreg_loc
;
1388 /* If this reload is just being introduced and it has both
1389 an incoming quantity and an outgoing quantity that are
1390 supposed to be made to match, see if either one of the two
1391 can serve as the place to reload into.
1393 If one of them is acceptable, set rld[i].reg_rtx
1396 if (in
!= 0 && out
!= 0 && in
!= out
&& rld
[i
].reg_rtx
== 0)
1398 rld
[i
].reg_rtx
= find_dummy_reload (in
, out
, inloc
, outloc
,
1401 earlyclobber_operand_p (out
));
1403 /* If the outgoing register already contains the same value
1404 as the incoming one, we can dispense with loading it.
1405 The easiest way to tell the caller that is to give a phony
1406 value for the incoming operand (same as outgoing one). */
1407 if (rld
[i
].reg_rtx
== out
1408 && (GET_CODE (in
) == REG
|| CONSTANT_P (in
))
1409 && 0 != find_equiv_reg (in
, this_insn
, 0, REGNO (out
),
1410 static_reload_reg_p
, i
, inmode
))
1414 /* If this is an input reload and the operand contains a register that
1415 dies in this insn and is used nowhere else, see if it is the right class
1416 to be used for this reload. Use it if so. (This occurs most commonly
1417 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1418 this if it is also an output reload that mentions the register unless
1419 the output is a SUBREG that clobbers an entire register.
1421 Note that the operand might be one of the spill regs, if it is a
1422 pseudo reg and we are in a block where spilling has not taken place.
1423 But if there is no spilling in this block, that is OK.
1424 An explicitly used hard reg cannot be a spill reg. */
1426 if (rld
[i
].reg_rtx
== 0 && in
!= 0)
1431 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1432 if (REG_NOTE_KIND (note
) == REG_DEAD
1433 && GET_CODE (XEXP (note
, 0)) == REG
1434 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1435 && reg_mentioned_p (XEXP (note
, 0), in
)
1436 && ! refers_to_regno_for_reload_p (regno
,
1438 + HARD_REGNO_NREGS (regno
,
1440 PATTERN (this_insn
), inloc
)
1441 /* If this is also an output reload, IN cannot be used as
1442 the reload register if it is set in this insn unless IN
1444 && (out
== 0 || in
== out
1445 || ! hard_reg_set_here_p (regno
,
1447 + HARD_REGNO_NREGS (regno
,
1449 PATTERN (this_insn
)))
1450 /* ??? Why is this code so different from the previous?
1451 Is there any simple coherent way to describe the two together?
1452 What's going on here. */
1454 || (GET_CODE (in
) == SUBREG
1455 && (((GET_MODE_SIZE (GET_MODE (in
)) + (UNITS_PER_WORD
- 1))
1457 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1458 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
1459 /* Make sure the operand fits in the reg that dies. */
1460 && GET_MODE_SIZE (inmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1461 && HARD_REGNO_MODE_OK (regno
, inmode
)
1462 && GET_MODE_SIZE (outmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1463 && HARD_REGNO_MODE_OK (regno
, outmode
))
1466 int nregs
= HARD_REGNO_NREGS (regno
, inmode
);
1467 for (offs
= 0; offs
< nregs
; offs
++)
1468 if (fixed_regs
[regno
+ offs
]
1469 || ! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1475 rld
[i
].reg_rtx
= gen_rtx_REG (inmode
, regno
);
1482 output_reloadnum
= i
;
1487 /* Record an additional place we must replace a value
1488 for which we have already recorded a reload.
1489 RELOADNUM is the value returned by push_reload
1490 when the reload was recorded.
1491 This is used in insn patterns that use match_dup. */
1494 push_replacement (loc
, reloadnum
, mode
)
1497 enum machine_mode mode
;
1499 if (replace_reloads
)
1501 register struct replacement
*r
= &replacements
[n_replacements
++];
1502 r
->what
= reloadnum
;
1509 /* Transfer all replacements that used to be in reload FROM to be in
1513 transfer_replacements (to
, from
)
1518 for (i
= 0; i
< n_replacements
; i
++)
1519 if (replacements
[i
].what
== from
)
1520 replacements
[i
].what
= to
;
1523 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1524 or a subpart of it. If we have any replacements registered for IN_RTX,
1525 cancel the reloads that were supposed to load them.
1526 Return non-zero if we canceled any reloads. */
1528 remove_address_replacements (in_rtx
)
1532 char reload_flags
[MAX_RELOADS
];
1533 int something_changed
= 0;
1535 bzero (reload_flags
, sizeof reload_flags
);
1536 for (i
= 0, j
= 0; i
< n_replacements
; i
++)
1538 if (loc_mentioned_in_p (replacements
[i
].where
, in_rtx
))
1539 reload_flags
[replacements
[i
].what
] |= 1;
1542 replacements
[j
++] = replacements
[i
];
1543 reload_flags
[replacements
[i
].what
] |= 2;
1546 /* Note that the following store must be done before the recursive calls. */
1549 for (i
= n_reloads
- 1; i
>= 0; i
--)
1551 if (reload_flags
[i
] == 1)
1553 deallocate_reload_reg (i
);
1554 remove_address_replacements (rld
[i
].in
);
1556 something_changed
= 1;
1559 return something_changed
;
1562 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
1564 loc_mentioned_in_p (loc
, in
)
1567 enum rtx_code code
= GET_CODE (in
);
1568 const char *fmt
= GET_RTX_FORMAT (code
);
1571 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1573 if (loc
== &in
->fld
[i
].rtx
)
1577 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
1580 else if (fmt
[i
] == 'E')
1581 for (j
= XVECLEN (in
, i
) - 1; i
>= 0; i
--)
1582 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
1588 /* If there is only one output reload, and it is not for an earlyclobber
1589 operand, try to combine it with a (logically unrelated) input reload
1590 to reduce the number of reload registers needed.
1592 This is safe if the input reload does not appear in
1593 the value being output-reloaded, because this implies
1594 it is not needed any more once the original insn completes.
1596 If that doesn't work, see we can use any of the registers that
1597 die in this insn as a reload register. We can if it is of the right
1598 class and does not appear in the value being output-reloaded. */
1604 int output_reload
= -1;
1605 int secondary_out
= -1;
1608 /* Find the output reload; return unless there is exactly one
1609 and that one is mandatory. */
1611 for (i
= 0; i
< n_reloads
; i
++)
1612 if (rld
[i
].out
!= 0)
1614 if (output_reload
>= 0)
1619 if (output_reload
< 0 || rld
[output_reload
].optional
)
1622 /* An input-output reload isn't combinable. */
1624 if (rld
[output_reload
].in
!= 0)
1627 /* If this reload is for an earlyclobber operand, we can't do anything. */
1628 if (earlyclobber_operand_p (rld
[output_reload
].out
))
1631 /* Check each input reload; can we combine it? */
1633 for (i
= 0; i
< n_reloads
; i
++)
1634 if (rld
[i
].in
&& ! rld
[i
].optional
&& ! rld
[i
].nocombine
1635 /* Life span of this reload must not extend past main insn. */
1636 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
1637 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
1638 && rld
[i
].when_needed
!= RELOAD_OTHER
1639 && (CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].inmode
)
1640 == CLASS_MAX_NREGS (rld
[output_reload
].class,
1641 rld
[output_reload
].outmode
))
1643 && rld
[i
].reg_rtx
== 0
1644 #ifdef SECONDARY_MEMORY_NEEDED
1645 /* Don't combine two reloads with different secondary
1646 memory locations. */
1647 && (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
] == 0
1648 || secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] == 0
1649 || rtx_equal_p (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
],
1650 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
]))
1652 && (SMALL_REGISTER_CLASSES
1653 ? (rld
[i
].class == rld
[output_reload
].class)
1654 : (reg_class_subset_p (rld
[i
].class,
1655 rld
[output_reload
].class)
1656 || reg_class_subset_p (rld
[output_reload
].class,
1658 && (MATCHES (rld
[i
].in
, rld
[output_reload
].out
)
1659 /* Args reversed because the first arg seems to be
1660 the one that we imagine being modified
1661 while the second is the one that might be affected. */
1662 || (! reg_overlap_mentioned_for_reload_p (rld
[output_reload
].out
,
1664 /* However, if the input is a register that appears inside
1665 the output, then we also can't share.
1666 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1667 If the same reload reg is used for both reg 69 and the
1668 result to be stored in memory, then that result
1669 will clobber the address of the memory ref. */
1670 && ! (GET_CODE (rld
[i
].in
) == REG
1671 && reg_overlap_mentioned_for_reload_p (rld
[i
].in
,
1672 rld
[output_reload
].out
))))
1673 && (reg_class_size
[(int) rld
[i
].class]
1674 || SMALL_REGISTER_CLASSES
)
1675 /* We will allow making things slightly worse by combining an
1676 input and an output, but no worse than that. */
1677 && (rld
[i
].when_needed
== RELOAD_FOR_INPUT
1678 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT
))
1682 /* We have found a reload to combine with! */
1683 rld
[i
].out
= rld
[output_reload
].out
;
1684 rld
[i
].out_reg
= rld
[output_reload
].out_reg
;
1685 rld
[i
].outmode
= rld
[output_reload
].outmode
;
1686 /* Mark the old output reload as inoperative. */
1687 rld
[output_reload
].out
= 0;
1688 /* The combined reload is needed for the entire insn. */
1689 rld
[i
].when_needed
= RELOAD_OTHER
;
1690 /* If the output reload had a secondary reload, copy it. */
1691 if (rld
[output_reload
].secondary_out_reload
!= -1)
1693 rld
[i
].secondary_out_reload
1694 = rld
[output_reload
].secondary_out_reload
;
1695 rld
[i
].secondary_out_icode
1696 = rld
[output_reload
].secondary_out_icode
;
1699 #ifdef SECONDARY_MEMORY_NEEDED
1700 /* Copy any secondary MEM. */
1701 if (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] != 0)
1702 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
]
1703 = secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
];
1705 /* If required, minimize the register class. */
1706 if (reg_class_subset_p (rld
[output_reload
].class,
1708 rld
[i
].class = rld
[output_reload
].class;
1710 /* Transfer all replacements from the old reload to the combined. */
1711 for (j
= 0; j
< n_replacements
; j
++)
1712 if (replacements
[j
].what
== output_reload
)
1713 replacements
[j
].what
= i
;
1718 /* If this insn has only one operand that is modified or written (assumed
1719 to be the first), it must be the one corresponding to this reload. It
1720 is safe to use anything that dies in this insn for that output provided
1721 that it does not occur in the output (we already know it isn't an
1722 earlyclobber. If this is an asm insn, give up. */
1724 if (INSN_CODE (this_insn
) == -1)
1727 for (i
= 1; i
< insn_data
[INSN_CODE (this_insn
)].n_operands
; i
++)
1728 if (insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '='
1729 || insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '+')
1732 /* See if some hard register that dies in this insn and is not used in
1733 the output is the right class. Only works if the register we pick
1734 up can fully hold our output reload. */
1735 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1736 if (REG_NOTE_KIND (note
) == REG_DEAD
1737 && GET_CODE (XEXP (note
, 0)) == REG
1738 && ! reg_overlap_mentioned_for_reload_p (XEXP (note
, 0),
1739 rld
[output_reload
].out
)
1740 && REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1741 && HARD_REGNO_MODE_OK (REGNO (XEXP (note
, 0)), rld
[output_reload
].outmode
)
1742 && TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[output_reload
].class],
1743 REGNO (XEXP (note
, 0)))
1744 && (HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), rld
[output_reload
].outmode
)
1745 <= HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), GET_MODE (XEXP (note
, 0))))
1746 /* Ensure that a secondary or tertiary reload for this output
1747 won't want this register. */
1748 && ((secondary_out
= rld
[output_reload
].secondary_out_reload
) == -1
1749 || (! (TEST_HARD_REG_BIT
1750 (reg_class_contents
[(int) rld
[secondary_out
].class],
1751 REGNO (XEXP (note
, 0))))
1752 && ((secondary_out
= rld
[secondary_out
].secondary_out_reload
) == -1
1753 || ! (TEST_HARD_REG_BIT
1754 (reg_class_contents
[(int) rld
[secondary_out
].class],
1755 REGNO (XEXP (note
, 0)))))))
1756 && ! fixed_regs
[REGNO (XEXP (note
, 0))])
1758 rld
[output_reload
].reg_rtx
1759 = gen_rtx_REG (rld
[output_reload
].outmode
,
1760 REGNO (XEXP (note
, 0)));
1765 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1766 See if one of IN and OUT is a register that may be used;
1767 this is desirable since a spill-register won't be needed.
1768 If so, return the register rtx that proves acceptable.
1770 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1771 CLASS is the register class required for the reload.
1773 If FOR_REAL is >= 0, it is the number of the reload,
1774 and in some cases when it can be discovered that OUT doesn't need
1775 to be computed, clear out rld[FOR_REAL].out.
1777 If FOR_REAL is -1, this should not be done, because this call
1778 is just to see if a register can be found, not to find and install it.
1780 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1781 puts an additional constraint on being able to use IN for OUT since
1782 IN must not appear elsewhere in the insn (it is assumed that IN itself
1783 is safe from the earlyclobber). */
1786 find_dummy_reload (real_in
, real_out
, inloc
, outloc
,
1787 inmode
, outmode
, class, for_real
, earlyclobber
)
1788 rtx real_in
, real_out
;
1789 rtx
*inloc
, *outloc
;
1790 enum machine_mode inmode
, outmode
;
1791 enum reg_class
class;
1801 /* If operands exceed a word, we can't use either of them
1802 unless they have the same size. */
1803 if (GET_MODE_SIZE (outmode
) != GET_MODE_SIZE (inmode
)
1804 && (GET_MODE_SIZE (outmode
) > UNITS_PER_WORD
1805 || GET_MODE_SIZE (inmode
) > UNITS_PER_WORD
))
1808 /* Find the inside of any subregs. */
1809 while (GET_CODE (out
) == SUBREG
)
1811 out_offset
= SUBREG_WORD (out
);
1812 out
= SUBREG_REG (out
);
1814 while (GET_CODE (in
) == SUBREG
)
1816 in_offset
= SUBREG_WORD (in
);
1817 in
= SUBREG_REG (in
);
1820 /* Narrow down the reg class, the same way push_reload will;
1821 otherwise we might find a dummy now, but push_reload won't. */
1822 class = PREFERRED_RELOAD_CLASS (in
, class);
1824 /* See if OUT will do. */
1825 if (GET_CODE (out
) == REG
1826 && REGNO (out
) < FIRST_PSEUDO_REGISTER
)
1828 register int regno
= REGNO (out
) + out_offset
;
1829 int nwords
= HARD_REGNO_NREGS (regno
, outmode
);
1832 /* When we consider whether the insn uses OUT,
1833 ignore references within IN. They don't prevent us
1834 from copying IN into OUT, because those refs would
1835 move into the insn that reloads IN.
1837 However, we only ignore IN in its role as this reload.
1838 If the insn uses IN elsewhere and it contains OUT,
1839 that counts. We can't be sure it's the "same" operand
1840 so it might not go through this reload. */
1842 *inloc
= const0_rtx
;
1844 if (regno
< FIRST_PSEUDO_REGISTER
1845 && ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1846 PATTERN (this_insn
), outloc
))
1849 for (i
= 0; i
< nwords
; i
++)
1850 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1856 if (GET_CODE (real_out
) == REG
)
1859 value
= gen_rtx_REG (outmode
, regno
);
1866 /* Consider using IN if OUT was not acceptable
1867 or if OUT dies in this insn (like the quotient in a divmod insn).
1868 We can't use IN unless it is dies in this insn,
1869 which means we must know accurately which hard regs are live.
1870 Also, the result can't go in IN if IN is used within OUT,
1871 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1872 if (hard_regs_live_known
1873 && GET_CODE (in
) == REG
1874 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1876 || find_reg_note (this_insn
, REG_UNUSED
, real_out
))
1877 && find_reg_note (this_insn
, REG_DEAD
, real_in
)
1878 && !fixed_regs
[REGNO (in
)]
1879 && HARD_REGNO_MODE_OK (REGNO (in
),
1880 /* The only case where out and real_out might
1881 have different modes is where real_out
1882 is a subreg, and in that case, out
1884 (GET_MODE (out
) != VOIDmode
1885 ? GET_MODE (out
) : outmode
)))
1887 register int regno
= REGNO (in
) + in_offset
;
1888 int nwords
= HARD_REGNO_NREGS (regno
, inmode
);
1890 if (! refers_to_regno_for_reload_p (regno
, regno
+ nwords
, out
, NULL_PTR
)
1891 && ! hard_reg_set_here_p (regno
, regno
+ nwords
,
1892 PATTERN (this_insn
))
1894 || ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1895 PATTERN (this_insn
), inloc
)))
1898 for (i
= 0; i
< nwords
; i
++)
1899 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1905 /* If we were going to use OUT as the reload reg
1906 and changed our mind, it means OUT is a dummy that
1907 dies here. So don't bother copying value to it. */
1908 if (for_real
>= 0 && value
== real_out
)
1909 rld
[for_real
].out
= 0;
1910 if (GET_CODE (real_in
) == REG
)
1913 value
= gen_rtx_REG (inmode
, regno
);
1921 /* This page contains subroutines used mainly for determining
1922 whether the IN or an OUT of a reload can serve as the
1925 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1928 earlyclobber_operand_p (x
)
1933 for (i
= 0; i
< n_earlyclobbers
; i
++)
1934 if (reload_earlyclobbers
[i
] == x
)
1940 /* Return 1 if expression X alters a hard reg in the range
1941 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1942 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1943 X should be the body of an instruction. */
1946 hard_reg_set_here_p (beg_regno
, end_regno
, x
)
1947 register int beg_regno
, end_regno
;
1950 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1952 register rtx op0
= SET_DEST (x
);
1953 while (GET_CODE (op0
) == SUBREG
)
1954 op0
= SUBREG_REG (op0
);
1955 if (GET_CODE (op0
) == REG
)
1957 register int r
= REGNO (op0
);
1958 /* See if this reg overlaps range under consideration. */
1960 && r
+ HARD_REGNO_NREGS (r
, GET_MODE (op0
)) > beg_regno
)
1964 else if (GET_CODE (x
) == PARALLEL
)
1966 register int i
= XVECLEN (x
, 0) - 1;
1968 if (hard_reg_set_here_p (beg_regno
, end_regno
, XVECEXP (x
, 0, i
)))
1975 /* Return 1 if ADDR is a valid memory address for mode MODE,
1976 and check that each pseudo reg has the proper kind of
1980 strict_memory_address_p (mode
, addr
)
1981 enum machine_mode mode
;
1984 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1991 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1992 if they are the same hard reg, and has special hacks for
1993 autoincrement and autodecrement.
1994 This is specifically intended for find_reloads to use
1995 in determining whether two operands match.
1996 X is the operand whose number is the lower of the two.
1998 The value is 2 if Y contains a pre-increment that matches
1999 a non-incrementing address in X. */
2001 /* ??? To be completely correct, we should arrange to pass
2002 for X the output operand and for Y the input operand.
2003 For now, we assume that the output operand has the lower number
2004 because that is natural in (SET output (... input ...)). */
2007 operands_match_p (x
, y
)
2011 register RTX_CODE code
= GET_CODE (x
);
2012 register const char *fmt
;
2017 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
2018 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
2019 && GET_CODE (SUBREG_REG (y
)) == REG
)))
2025 i
= REGNO (SUBREG_REG (x
));
2026 if (i
>= FIRST_PSEUDO_REGISTER
)
2028 i
+= SUBREG_WORD (x
);
2033 if (GET_CODE (y
) == SUBREG
)
2035 j
= REGNO (SUBREG_REG (y
));
2036 if (j
>= FIRST_PSEUDO_REGISTER
)
2038 j
+= SUBREG_WORD (y
);
2043 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2044 multiple hard register group, so that for example (reg:DI 0) and
2045 (reg:SI 1) will be considered the same register. */
2046 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
2047 && i
< FIRST_PSEUDO_REGISTER
)
2048 i
+= (GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
) - 1;
2049 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (y
)) > UNITS_PER_WORD
2050 && j
< FIRST_PSEUDO_REGISTER
)
2051 j
+= (GET_MODE_SIZE (GET_MODE (y
)) / UNITS_PER_WORD
) - 1;
2055 /* If two operands must match, because they are really a single
2056 operand of an assembler insn, then two postincrements are invalid
2057 because the assembler insn would increment only once.
2058 On the other hand, an postincrement matches ordinary indexing
2059 if the postincrement is the output operand. */
2060 if (code
== POST_DEC
|| code
== POST_INC
)
2061 return operands_match_p (XEXP (x
, 0), y
);
2062 /* Two preincrements are invalid
2063 because the assembler insn would increment only once.
2064 On the other hand, an preincrement matches ordinary indexing
2065 if the preincrement is the input operand.
2066 In this case, return 2, since some callers need to do special
2067 things when this happens. */
2068 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
)
2069 return operands_match_p (x
, XEXP (y
, 0)) ? 2 : 0;
2073 /* Now we have disposed of all the cases
2074 in which different rtx codes can match. */
2075 if (code
!= GET_CODE (y
))
2077 if (code
== LABEL_REF
)
2078 return XEXP (x
, 0) == XEXP (y
, 0);
2079 if (code
== SYMBOL_REF
)
2080 return XSTR (x
, 0) == XSTR (y
, 0);
2082 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2084 if (GET_MODE (x
) != GET_MODE (y
))
2087 /* Compare the elements. If any pair of corresponding elements
2088 fail to match, return 0 for the whole things. */
2091 fmt
= GET_RTX_FORMAT (code
);
2092 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2098 if (XWINT (x
, i
) != XWINT (y
, i
))
2103 if (XINT (x
, i
) != XINT (y
, i
))
2108 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
));
2111 /* If any subexpression returns 2,
2112 we should return 2 if we are successful. */
2121 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2123 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
2125 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
2133 /* It is believed that rtx's at this level will never
2134 contain anything but integers and other rtx's,
2135 except for within LABEL_REFs and SYMBOL_REFs. */
2140 return 1 + success_2
;
2143 /* Describe the range of registers or memory referenced by X.
2144 If X is a register, set REG_FLAG and put the first register
2145 number into START and the last plus one into END.
2146 If X is a memory reference, put a base address into BASE
2147 and a range of integer offsets into START and END.
2148 If X is pushing on the stack, we can assume it causes no trouble,
2149 so we set the SAFE field. */
2151 static struct decomposition
2155 struct decomposition val
;
2161 if (GET_CODE (x
) == MEM
)
2163 rtx base
= NULL_RTX
, offset
= 0;
2164 rtx addr
= XEXP (x
, 0);
2166 if (GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
2167 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
2169 val
.base
= XEXP (addr
, 0);
2170 val
.start
= - GET_MODE_SIZE (GET_MODE (x
));
2171 val
.end
= GET_MODE_SIZE (GET_MODE (x
));
2172 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2176 if (GET_CODE (addr
) == CONST
)
2178 addr
= XEXP (addr
, 0);
2181 if (GET_CODE (addr
) == PLUS
)
2183 if (CONSTANT_P (XEXP (addr
, 0)))
2185 base
= XEXP (addr
, 1);
2186 offset
= XEXP (addr
, 0);
2188 else if (CONSTANT_P (XEXP (addr
, 1)))
2190 base
= XEXP (addr
, 0);
2191 offset
= XEXP (addr
, 1);
2198 offset
= const0_rtx
;
2200 if (GET_CODE (offset
) == CONST
)
2201 offset
= XEXP (offset
, 0);
2202 if (GET_CODE (offset
) == PLUS
)
2204 if (GET_CODE (XEXP (offset
, 0)) == CONST_INT
)
2206 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 1));
2207 offset
= XEXP (offset
, 0);
2209 else if (GET_CODE (XEXP (offset
, 1)) == CONST_INT
)
2211 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 0));
2212 offset
= XEXP (offset
, 1);
2216 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2217 offset
= const0_rtx
;
2220 else if (GET_CODE (offset
) != CONST_INT
)
2222 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2223 offset
= const0_rtx
;
2226 if (all_const
&& GET_CODE (base
) == PLUS
)
2227 base
= gen_rtx_CONST (GET_MODE (base
), base
);
2229 if (GET_CODE (offset
) != CONST_INT
)
2232 val
.start
= INTVAL (offset
);
2233 val
.end
= val
.start
+ GET_MODE_SIZE (GET_MODE (x
));
2237 else if (GET_CODE (x
) == REG
)
2240 val
.start
= true_regnum (x
);
2243 /* A pseudo with no hard reg. */
2244 val
.start
= REGNO (x
);
2245 val
.end
= val
.start
+ 1;
2249 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2251 else if (GET_CODE (x
) == SUBREG
)
2253 if (GET_CODE (SUBREG_REG (x
)) != REG
)
2254 /* This could be more precise, but it's good enough. */
2255 return decompose (SUBREG_REG (x
));
2257 val
.start
= true_regnum (x
);
2259 return decompose (SUBREG_REG (x
));
2262 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2264 else if (CONSTANT_P (x
)
2265 /* This hasn't been assigned yet, so it can't conflict yet. */
2266 || GET_CODE (x
) == SCRATCH
)
2273 /* Return 1 if altering Y will not modify the value of X.
2274 Y is also described by YDATA, which should be decompose (Y). */
2277 immune_p (x
, y
, ydata
)
2279 struct decomposition ydata
;
2281 struct decomposition xdata
;
2284 return !refers_to_regno_for_reload_p (ydata
.start
, ydata
.end
, x
, NULL_PTR
);
2288 if (GET_CODE (y
) != MEM
)
2290 /* If Y is memory and X is not, Y can't affect X. */
2291 if (GET_CODE (x
) != MEM
)
2294 xdata
= decompose (x
);
2296 if (! rtx_equal_p (xdata
.base
, ydata
.base
))
2298 /* If bases are distinct symbolic constants, there is no overlap. */
2299 if (CONSTANT_P (xdata
.base
) && CONSTANT_P (ydata
.base
))
2301 /* Constants and stack slots never overlap. */
2302 if (CONSTANT_P (xdata
.base
)
2303 && (ydata
.base
== frame_pointer_rtx
2304 || ydata
.base
== hard_frame_pointer_rtx
2305 || ydata
.base
== stack_pointer_rtx
))
2307 if (CONSTANT_P (ydata
.base
)
2308 && (xdata
.base
== frame_pointer_rtx
2309 || xdata
.base
== hard_frame_pointer_rtx
2310 || xdata
.base
== stack_pointer_rtx
))
2312 /* If either base is variable, we don't know anything. */
2317 return (xdata
.start
>= ydata
.end
|| ydata
.start
>= xdata
.end
);
2320 /* Similar, but calls decompose. */
2323 safe_from_earlyclobber (op
, clobber
)
2326 struct decomposition early_data
;
2328 early_data
= decompose (clobber
);
2329 return immune_p (op
, clobber
, early_data
);
2332 /* Main entry point of this file: search the body of INSN
2333 for values that need reloading and record them with push_reload.
2334 REPLACE nonzero means record also where the values occur
2335 so that subst_reloads can be used.
2337 IND_LEVELS says how many levels of indirection are supported by this
2338 machine; a value of zero means that a memory reference is not a valid
2341 LIVE_KNOWN says we have valid information about which hard
2342 regs are live at each point in the program; this is true when
2343 we are called from global_alloc but false when stupid register
2344 allocation has been done.
2346 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2347 which is nonnegative if the reg has been commandeered for reloading into.
2348 It is copied into STATIC_RELOAD_REG_P and referenced from there
2349 by various subroutines.
2351 Return TRUE if some operands need to be changed, because of swapping
2352 commutative operands, reg_equiv_address substitution, or whatever. */
2355 find_reloads (insn
, replace
, ind_levels
, live_known
, reload_reg_p
)
2357 int replace
, ind_levels
;
2359 short *reload_reg_p
;
2361 register int insn_code_number
;
2364 /* These start out as the constraints for the insn
2365 and they are chewed up as we consider alternatives. */
2366 char *constraints
[MAX_RECOG_OPERANDS
];
2367 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2369 enum reg_class preferred_class
[MAX_RECOG_OPERANDS
];
2370 char pref_or_nothing
[MAX_RECOG_OPERANDS
];
2371 /* Nonzero for a MEM operand whose entire address needs a reload. */
2372 int address_reloaded
[MAX_RECOG_OPERANDS
];
2373 /* Value of enum reload_type to use for operand. */
2374 enum reload_type operand_type
[MAX_RECOG_OPERANDS
];
2375 /* Value of enum reload_type to use within address of operand. */
2376 enum reload_type address_type
[MAX_RECOG_OPERANDS
];
2377 /* Save the usage of each operand. */
2378 enum reload_usage
{ RELOAD_READ
, RELOAD_READ_WRITE
, RELOAD_WRITE
} modified
[MAX_RECOG_OPERANDS
];
2379 int no_input_reloads
= 0, no_output_reloads
= 0;
2381 int this_alternative
[MAX_RECOG_OPERANDS
];
2382 char this_alternative_win
[MAX_RECOG_OPERANDS
];
2383 char this_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2384 char this_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2385 int this_alternative_matches
[MAX_RECOG_OPERANDS
];
2387 int goal_alternative
[MAX_RECOG_OPERANDS
];
2388 int this_alternative_number
;
2389 int goal_alternative_number
;
2390 int operand_reloadnum
[MAX_RECOG_OPERANDS
];
2391 int goal_alternative_matches
[MAX_RECOG_OPERANDS
];
2392 int goal_alternative_matched
[MAX_RECOG_OPERANDS
];
2393 char goal_alternative_win
[MAX_RECOG_OPERANDS
];
2394 char goal_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2395 char goal_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2396 int goal_alternative_swapped
;
2400 char operands_match
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
2401 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2402 rtx body
= PATTERN (insn
);
2403 rtx set
= single_set (insn
);
2404 int goal_earlyclobber
, this_earlyclobber
;
2405 enum machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
2411 n_earlyclobbers
= 0;
2412 replace_reloads
= replace
;
2413 hard_regs_live_known
= live_known
;
2414 static_reload_reg_p
= reload_reg_p
;
2416 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2417 neither are insns that SET cc0. Insns that use CC0 are not allowed
2418 to have any input reloads. */
2419 if (GET_CODE (insn
) == JUMP_INSN
|| GET_CODE (insn
) == CALL_INSN
)
2420 no_output_reloads
= 1;
2423 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
2424 no_input_reloads
= 1;
2425 if (reg_set_p (cc0_rtx
, PATTERN (insn
)))
2426 no_output_reloads
= 1;
2429 #ifdef SECONDARY_MEMORY_NEEDED
2430 /* The eliminated forms of any secondary memory locations are per-insn, so
2431 clear them out here. */
2433 bzero ((char *) secondary_memlocs_elim
, sizeof secondary_memlocs_elim
);
2436 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2437 is cheap to move between them. If it is not, there may not be an insn
2438 to do the copy, so we may need a reload. */
2439 if (GET_CODE (body
) == SET
2440 && GET_CODE (SET_DEST (body
)) == REG
2441 && REGNO (SET_DEST (body
)) < FIRST_PSEUDO_REGISTER
2442 && GET_CODE (SET_SRC (body
)) == REG
2443 && REGNO (SET_SRC (body
)) < FIRST_PSEUDO_REGISTER
2444 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body
))),
2445 REGNO_REG_CLASS (REGNO (SET_DEST (body
)))) == 2)
2448 extract_insn (insn
);
2450 noperands
= reload_n_operands
= recog_data
.n_operands
;
2451 n_alternatives
= recog_data
.n_alternatives
;
2453 /* Just return "no reloads" if insn has no operands with constraints. */
2454 if (noperands
== 0 || n_alternatives
== 0)
2457 insn_code_number
= INSN_CODE (insn
);
2458 this_insn_is_asm
= insn_code_number
< 0;
2460 memcpy (operand_mode
, recog_data
.operand_mode
,
2461 noperands
* sizeof (enum machine_mode
));
2462 memcpy (constraints
, recog_data
.constraints
, noperands
* sizeof (char *));
2466 /* If we will need to know, later, whether some pair of operands
2467 are the same, we must compare them now and save the result.
2468 Reloading the base and index registers will clobber them
2469 and afterward they will fail to match. */
2471 for (i
= 0; i
< noperands
; i
++)
2476 substed_operand
[i
] = recog_data
.operand
[i
];
2479 modified
[i
] = RELOAD_READ
;
2481 /* Scan this operand's constraint to see if it is an output operand,
2482 an in-out operand, is commutative, or should match another. */
2487 modified
[i
] = RELOAD_WRITE
;
2489 modified
[i
] = RELOAD_READ_WRITE
;
2492 /* The last operand should not be marked commutative. */
2493 if (i
== noperands
- 1)
2498 else if (c
>= '0' && c
<= '9')
2501 operands_match
[c
][i
]
2502 = operands_match_p (recog_data
.operand
[c
],
2503 recog_data
.operand
[i
]);
2505 /* An operand may not match itself. */
2509 /* If C can be commuted with C+1, and C might need to match I,
2510 then C+1 might also need to match I. */
2511 if (commutative
>= 0)
2513 if (c
== commutative
|| c
== commutative
+ 1)
2515 int other
= c
+ (c
== commutative
? 1 : -1);
2516 operands_match
[other
][i
]
2517 = operands_match_p (recog_data
.operand
[other
],
2518 recog_data
.operand
[i
]);
2520 if (i
== commutative
|| i
== commutative
+ 1)
2522 int other
= i
+ (i
== commutative
? 1 : -1);
2523 operands_match
[c
][other
]
2524 = operands_match_p (recog_data
.operand
[c
],
2525 recog_data
.operand
[other
]);
2527 /* Note that C is supposed to be less than I.
2528 No need to consider altering both C and I because in
2529 that case we would alter one into the other. */
2535 /* Examine each operand that is a memory reference or memory address
2536 and reload parts of the addresses into index registers.
2537 Also here any references to pseudo regs that didn't get hard regs
2538 but are equivalent to constants get replaced in the insn itself
2539 with those constants. Nobody will ever see them again.
2541 Finally, set up the preferred classes of each operand. */
2543 for (i
= 0; i
< noperands
; i
++)
2545 register RTX_CODE code
= GET_CODE (recog_data
.operand
[i
]);
2547 address_reloaded
[i
] = 0;
2548 operand_type
[i
] = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT
2549 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT
2552 = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT_ADDRESS
2553 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT_ADDRESS
2556 if (*constraints
[i
] == 0)
2557 /* Ignore things like match_operator operands. */
2559 else if (constraints
[i
][0] == 'p')
2561 find_reloads_address (VOIDmode
, NULL_PTR
,
2562 recog_data
.operand
[i
],
2563 recog_data
.operand_loc
[i
],
2564 i
, operand_type
[i
], ind_levels
, insn
);
2566 /* If we now have a simple operand where we used to have a
2567 PLUS or MULT, re-recognize and try again. */
2568 if ((GET_RTX_CLASS (GET_CODE (*recog_data
.operand_loc
[i
])) == 'o'
2569 || GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2570 && (GET_CODE (recog_data
.operand
[i
]) == MULT
2571 || GET_CODE (recog_data
.operand
[i
]) == PLUS
))
2573 INSN_CODE (insn
) = -1;
2574 retval
= find_reloads (insn
, replace
, ind_levels
, live_known
,
2579 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2580 substed_operand
[i
] = recog_data
.operand
[i
];
2582 else if (code
== MEM
)
2585 = find_reloads_address (GET_MODE (recog_data
.operand
[i
]),
2586 recog_data
.operand_loc
[i
],
2587 XEXP (recog_data
.operand
[i
], 0),
2588 &XEXP (recog_data
.operand
[i
], 0),
2589 i
, address_type
[i
], ind_levels
, insn
);
2590 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2591 substed_operand
[i
] = recog_data
.operand
[i
];
2593 else if (code
== SUBREG
)
2595 rtx reg
= SUBREG_REG (recog_data
.operand
[i
]);
2597 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2600 && &SET_DEST (set
) == recog_data
.operand_loc
[i
],
2603 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2604 that didn't get a hard register, emit a USE with a REG_EQUAL
2605 note in front so that we might inherit a previous, possibly
2609 && GET_CODE (op
) == MEM
2610 && GET_CODE (reg
) == REG
2611 && (GET_MODE_SIZE (GET_MODE (reg
))
2612 >= GET_MODE_SIZE (GET_MODE (op
))))
2613 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode
, reg
), insn
))
2614 = gen_rtx_EXPR_LIST (REG_EQUAL
,
2615 reg_equiv_memory_loc
[REGNO (reg
)], NULL_RTX
);
2617 substed_operand
[i
] = recog_data
.operand
[i
] = op
;
2619 else if (code
== PLUS
|| GET_RTX_CLASS (code
) == '1')
2620 /* We can get a PLUS as an "operand" as a result of register
2621 elimination. See eliminate_regs and gen_reload. We handle
2622 a unary operator by reloading the operand. */
2623 substed_operand
[i
] = recog_data
.operand
[i
]
2624 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2625 ind_levels
, 0, insn
);
2626 else if (code
== REG
)
2628 /* This is equivalent to calling find_reloads_toplev.
2629 The code is duplicated for speed.
2630 When we find a pseudo always equivalent to a constant,
2631 we replace it by the constant. We must be sure, however,
2632 that we don't try to replace it in the insn in which it
2634 register int regno
= REGNO (recog_data
.operand
[i
]);
2635 if (reg_equiv_constant
[regno
] != 0
2636 && (set
== 0 || &SET_DEST (set
) != recog_data
.operand_loc
[i
]))
2638 /* Record the existing mode so that the check if constants are
2639 allowed will work when operand_mode isn't specified. */
2641 if (operand_mode
[i
] == VOIDmode
)
2642 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2644 substed_operand
[i
] = recog_data
.operand
[i
]
2645 = reg_equiv_constant
[regno
];
2647 if (reg_equiv_memory_loc
[regno
] != 0
2648 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
2649 /* We need not give a valid is_set_dest argument since the case
2650 of a constant equivalence was checked above. */
2651 substed_operand
[i
] = recog_data
.operand
[i
]
2652 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2653 ind_levels
, 0, insn
);
2655 /* If the operand is still a register (we didn't replace it with an
2656 equivalent), get the preferred class to reload it into. */
2657 code
= GET_CODE (recog_data
.operand
[i
]);
2659 = ((code
== REG
&& REGNO (recog_data
.operand
[i
])
2660 >= FIRST_PSEUDO_REGISTER
)
2661 ? reg_preferred_class (REGNO (recog_data
.operand
[i
]))
2665 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
2666 && reg_alternate_class (REGNO (recog_data
.operand
[i
])) == NO_REGS
);
2669 /* If this is simply a copy from operand 1 to operand 0, merge the
2670 preferred classes for the operands. */
2671 if (set
!= 0 && noperands
>= 2 && recog_data
.operand
[0] == SET_DEST (set
)
2672 && recog_data
.operand
[1] == SET_SRC (set
))
2674 preferred_class
[0] = preferred_class
[1]
2675 = reg_class_subunion
[(int) preferred_class
[0]][(int) preferred_class
[1]];
2676 pref_or_nothing
[0] |= pref_or_nothing
[1];
2677 pref_or_nothing
[1] |= pref_or_nothing
[0];
2680 /* Now see what we need for pseudo-regs that didn't get hard regs
2681 or got the wrong kind of hard reg. For this, we must consider
2682 all the operands together against the register constraints. */
2684 best
= MAX_RECOG_OPERANDS
* 2 + 600;
2687 goal_alternative_swapped
= 0;
2690 /* The constraints are made of several alternatives.
2691 Each operand's constraint looks like foo,bar,... with commas
2692 separating the alternatives. The first alternatives for all
2693 operands go together, the second alternatives go together, etc.
2695 First loop over alternatives. */
2697 for (this_alternative_number
= 0;
2698 this_alternative_number
< n_alternatives
;
2699 this_alternative_number
++)
2701 /* Loop over operands for one constraint alternative. */
2702 /* LOSERS counts those that don't fit this alternative
2703 and would require loading. */
2705 /* BAD is set to 1 if it some operand can't fit this alternative
2706 even after reloading. */
2708 /* REJECT is a count of how undesirable this alternative says it is
2709 if any reloading is required. If the alternative matches exactly
2710 then REJECT is ignored, but otherwise it gets this much
2711 counted against it in addition to the reloading needed. Each
2712 ? counts three times here since we want the disparaging caused by
2713 a bad register class to only count 1/3 as much. */
2716 this_earlyclobber
= 0;
2718 for (i
= 0; i
< noperands
; i
++)
2720 register char *p
= constraints
[i
];
2721 register int win
= 0;
2722 /* 0 => this operand can be reloaded somehow for this alternative */
2724 /* 0 => this operand can be reloaded if the alternative allows regs. */
2727 register rtx operand
= recog_data
.operand
[i
];
2729 /* Nonzero means this is a MEM that must be reloaded into a reg
2730 regardless of what the constraint says. */
2731 int force_reload
= 0;
2733 /* Nonzero if a constant forced into memory would be OK for this
2736 int earlyclobber
= 0;
2738 /* If the predicate accepts a unary operator, it means that
2739 we need to reload the operand, but do not do this for
2740 match_operator and friends. */
2741 if (GET_RTX_CLASS (GET_CODE (operand
)) == '1' && *p
!= 0)
2742 operand
= XEXP (operand
, 0);
2744 /* If the operand is a SUBREG, extract
2745 the REG or MEM (or maybe even a constant) within.
2746 (Constants can occur as a result of reg_equiv_constant.) */
2748 while (GET_CODE (operand
) == SUBREG
)
2750 offset
+= SUBREG_WORD (operand
);
2751 operand
= SUBREG_REG (operand
);
2752 /* Force reload if this is a constant or PLUS or if there may
2753 be a problem accessing OPERAND in the outer mode. */
2754 if (CONSTANT_P (operand
)
2755 || GET_CODE (operand
) == PLUS
2756 /* We must force a reload of paradoxical SUBREGs
2757 of a MEM because the alignment of the inner value
2758 may not be enough to do the outer reference. On
2759 big-endian machines, it may also reference outside
2762 On machines that extend byte operations and we have a
2763 SUBREG where both the inner and outer modes are no wider
2764 than a word and the inner mode is narrower, is integral,
2765 and gets extended when loaded from memory, combine.c has
2766 made assumptions about the behavior of the machine in such
2767 register access. If the data is, in fact, in memory we
2768 must always load using the size assumed to be in the
2769 register and let the insn do the different-sized
2772 This is doubly true if WORD_REGISTER_OPERATIONS. In
2773 this case eliminate_regs has left non-paradoxical
2774 subregs for push_reloads to see. Make sure it does
2775 by forcing the reload.
2777 ??? When is it right at this stage to have a subreg
2778 of a mem that is _not_ to be handled specialy? IMO
2779 those should have been reduced to just a mem. */
2780 || ((GET_CODE (operand
) == MEM
2781 || (GET_CODE (operand
)== REG
2782 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
2783 #ifndef WORD_REGISTER_OPERATIONS
2784 && (((GET_MODE_BITSIZE (GET_MODE (operand
))
2785 < BIGGEST_ALIGNMENT
)
2786 && (GET_MODE_SIZE (operand_mode
[i
])
2787 > GET_MODE_SIZE (GET_MODE (operand
))))
2788 || (GET_CODE (operand
) == MEM
&& BYTES_BIG_ENDIAN
)
2789 #ifdef LOAD_EXTEND_OP
2790 || (GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2791 && (GET_MODE_SIZE (GET_MODE (operand
))
2793 && (GET_MODE_SIZE (operand_mode
[i
])
2794 > GET_MODE_SIZE (GET_MODE (operand
)))
2795 && INTEGRAL_MODE_P (GET_MODE (operand
))
2796 && LOAD_EXTEND_OP (GET_MODE (operand
)) != NIL
)
2801 /* Subreg of a hard reg which can't handle the subreg's mode
2802 or which would handle that mode in the wrong number of
2803 registers for subregging to work. */
2804 || (GET_CODE (operand
) == REG
2805 && REGNO (operand
) < FIRST_PSEUDO_REGISTER
2806 && ((GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2807 && (GET_MODE_SIZE (GET_MODE (operand
))
2809 && ((GET_MODE_SIZE (GET_MODE (operand
))
2811 != HARD_REGNO_NREGS (REGNO (operand
),
2812 GET_MODE (operand
))))
2813 || ! HARD_REGNO_MODE_OK (REGNO (operand
) + offset
,
2818 this_alternative
[i
] = (int) NO_REGS
;
2819 this_alternative_win
[i
] = 0;
2820 this_alternative_offmemok
[i
] = 0;
2821 this_alternative_earlyclobber
[i
] = 0;
2822 this_alternative_matches
[i
] = -1;
2824 /* An empty constraint or empty alternative
2825 allows anything which matched the pattern. */
2826 if (*p
== 0 || *p
== ',')
2829 /* Scan this alternative's specs for this operand;
2830 set WIN if the operand fits any letter in this alternative.
2831 Otherwise, clear BADOP if this operand could
2832 fit some letter after reloads,
2833 or set WINREG if this operand could fit after reloads
2834 provided the constraint allows some registers. */
2836 while (*p
&& (c
= *p
++) != ',')
2839 case '=': case '+': case '*':
2843 /* The last operand should not be marked commutative. */
2844 if (i
!= noperands
- 1)
2857 /* Ignore rest of this alternative as far as
2858 reloading is concerned. */
2859 while (*p
&& *p
!= ',') p
++;
2862 case '0': case '1': case '2': case '3': case '4':
2863 case '5': case '6': case '7': case '8': case '9':
2866 this_alternative_matches
[i
] = c
;
2867 /* We are supposed to match a previous operand.
2868 If we do, we win if that one did.
2869 If we do not, count both of the operands as losers.
2870 (This is too conservative, since most of the time
2871 only a single reload insn will be needed to make
2872 the two operands win. As a result, this alternative
2873 may be rejected when it is actually desirable.) */
2874 if ((swapped
&& (c
!= commutative
|| i
!= commutative
+ 1))
2875 /* If we are matching as if two operands were swapped,
2876 also pretend that operands_match had been computed
2878 But if I is the second of those and C is the first,
2879 don't exchange them, because operands_match is valid
2880 only on one side of its diagonal. */
2882 [(c
== commutative
|| c
== commutative
+ 1)
2883 ? 2*commutative
+ 1 - c
: c
]
2884 [(i
== commutative
|| i
== commutative
+ 1)
2885 ? 2*commutative
+ 1 - i
: i
])
2886 : operands_match
[c
][i
])
2888 /* If we are matching a non-offsettable address where an
2889 offsettable address was expected, then we must reject
2890 this combination, because we can't reload it. */
2891 if (this_alternative_offmemok
[c
]
2892 && GET_CODE (recog_data
.operand
[c
]) == MEM
2893 && this_alternative
[c
] == (int) NO_REGS
2894 && ! this_alternative_win
[c
])
2897 win
= this_alternative_win
[c
];
2901 /* Operands don't match. */
2903 /* Retroactively mark the operand we had to match
2904 as a loser, if it wasn't already. */
2905 if (this_alternative_win
[c
])
2907 this_alternative_win
[c
] = 0;
2908 if (this_alternative
[c
] == (int) NO_REGS
)
2910 /* But count the pair only once in the total badness of
2911 this alternative, if the pair can be a dummy reload. */
2913 = find_dummy_reload (recog_data
.operand
[i
],
2914 recog_data
.operand
[c
],
2915 recog_data
.operand_loc
[i
],
2916 recog_data
.operand_loc
[c
],
2917 operand_mode
[i
], operand_mode
[c
],
2918 this_alternative
[c
], -1,
2919 this_alternative_earlyclobber
[c
]);
2924 /* This can be fixed with reloads if the operand
2925 we are supposed to match can be fixed with reloads. */
2927 this_alternative
[i
] = this_alternative
[c
];
2929 /* If we have to reload this operand and some previous
2930 operand also had to match the same thing as this
2931 operand, we don't know how to do that. So reject this
2933 if (! win
|| force_reload
)
2934 for (j
= 0; j
< i
; j
++)
2935 if (this_alternative_matches
[j
]
2936 == this_alternative_matches
[i
])
2942 /* All necessary reloads for an address_operand
2943 were handled in find_reloads_address. */
2944 this_alternative
[i
] = (int) BASE_REG_CLASS
;
2951 if (GET_CODE (operand
) == MEM
2952 || (GET_CODE (operand
) == REG
2953 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
2954 && reg_renumber
[REGNO (operand
)] < 0))
2956 if (CONSTANT_P (operand
)
2957 /* force_const_mem does not accept HIGH. */
2958 && GET_CODE (operand
) != HIGH
)
2964 if (GET_CODE (operand
) == MEM
2965 && ! address_reloaded
[i
]
2966 && (GET_CODE (XEXP (operand
, 0)) == PRE_DEC
2967 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
2972 if (GET_CODE (operand
) == MEM
2973 && ! address_reloaded
[i
]
2974 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
2975 || GET_CODE (XEXP (operand
, 0)) == POST_INC
))
2979 /* Memory operand whose address is not offsettable. */
2983 if (GET_CODE (operand
) == MEM
2984 && ! (ind_levels
? offsettable_memref_p (operand
)
2985 : offsettable_nonstrict_memref_p (operand
))
2986 /* Certain mem addresses will become offsettable
2987 after they themselves are reloaded. This is important;
2988 we don't want our own handling of unoffsettables
2989 to override the handling of reg_equiv_address. */
2990 && !(GET_CODE (XEXP (operand
, 0)) == REG
2992 || reg_equiv_address
[REGNO (XEXP (operand
, 0))] != 0)))
2996 /* Memory operand whose address is offsettable. */
3000 if ((GET_CODE (operand
) == MEM
3001 /* If IND_LEVELS, find_reloads_address won't reload a
3002 pseudo that didn't get a hard reg, so we have to
3003 reject that case. */
3004 && ((ind_levels
? offsettable_memref_p (operand
)
3005 : offsettable_nonstrict_memref_p (operand
))
3006 /* A reloaded address is offsettable because it is now
3007 just a simple register indirect. */
3008 || address_reloaded
[i
]))
3009 || (GET_CODE (operand
) == REG
3010 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3011 && reg_renumber
[REGNO (operand
)] < 0
3012 /* If reg_equiv_address is nonzero, we will be
3013 loading it into a register; hence it will be
3014 offsettable, but we cannot say that reg_equiv_mem
3015 is offsettable without checking. */
3016 && ((reg_equiv_mem
[REGNO (operand
)] != 0
3017 && offsettable_memref_p (reg_equiv_mem
[REGNO (operand
)]))
3018 || (reg_equiv_address
[REGNO (operand
)] != 0))))
3020 /* force_const_mem does not accept HIGH. */
3021 if ((CONSTANT_P (operand
) && GET_CODE (operand
) != HIGH
)
3022 || GET_CODE (operand
) == MEM
)
3029 /* Output operand that is stored before the need for the
3030 input operands (and their index registers) is over. */
3031 earlyclobber
= 1, this_earlyclobber
= 1;
3035 #ifndef REAL_ARITHMETIC
3036 /* Match any floating double constant, but only if
3037 we can examine the bits of it reliably. */
3038 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
3039 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
3040 && GET_MODE (operand
) != VOIDmode
&& ! flag_pretend_float
)
3043 if (GET_CODE (operand
) == CONST_DOUBLE
)
3048 if (GET_CODE (operand
) == CONST_DOUBLE
)
3054 if (GET_CODE (operand
) == CONST_DOUBLE
3055 && CONST_DOUBLE_OK_FOR_LETTER_P (operand
, c
))
3060 if (GET_CODE (operand
) == CONST_INT
3061 || (GET_CODE (operand
) == CONST_DOUBLE
3062 && GET_MODE (operand
) == VOIDmode
))
3065 if (CONSTANT_P (operand
)
3066 #ifdef LEGITIMATE_PIC_OPERAND_P
3067 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (operand
))
3074 if (GET_CODE (operand
) == CONST_INT
3075 || (GET_CODE (operand
) == CONST_DOUBLE
3076 && GET_MODE (operand
) == VOIDmode
))
3088 if (GET_CODE (operand
) == CONST_INT
3089 && CONST_OK_FOR_LETTER_P (INTVAL (operand
), c
))
3099 /* A PLUS is never a valid operand, but reload can make
3100 it from a register when eliminating registers. */
3101 && GET_CODE (operand
) != PLUS
3102 /* A SCRATCH is not a valid operand. */
3103 && GET_CODE (operand
) != SCRATCH
3104 #ifdef LEGITIMATE_PIC_OPERAND_P
3105 && (! CONSTANT_P (operand
)
3107 || LEGITIMATE_PIC_OPERAND_P (operand
))
3109 && (GENERAL_REGS
== ALL_REGS
3110 || GET_CODE (operand
) != REG
3111 || (REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3112 && reg_renumber
[REGNO (operand
)] < 0)))
3114 /* Drop through into 'r' case */
3118 = (int) reg_class_subunion
[this_alternative
[i
]][(int) GENERAL_REGS
];
3121 #ifdef EXTRA_CONSTRAINT
3127 if (EXTRA_CONSTRAINT (operand
, c
))
3134 = (int) reg_class_subunion
[this_alternative
[i
]][(int) REG_CLASS_FROM_LETTER (c
)];
3137 if (GET_MODE (operand
) == BLKmode
)
3140 if (GET_CODE (operand
) == REG
3141 && reg_fits_class_p (operand
, this_alternative
[i
],
3142 offset
, GET_MODE (recog_data
.operand
[i
])))
3149 /* If this operand could be handled with a reg,
3150 and some reg is allowed, then this operand can be handled. */
3151 if (winreg
&& this_alternative
[i
] != (int) NO_REGS
)
3154 /* Record which operands fit this alternative. */
3155 this_alternative_earlyclobber
[i
] = earlyclobber
;
3156 if (win
&& ! force_reload
)
3157 this_alternative_win
[i
] = 1;
3160 int const_to_mem
= 0;
3162 this_alternative_offmemok
[i
] = offmemok
;
3166 /* Alternative loses if it has no regs for a reg operand. */
3167 if (GET_CODE (operand
) == REG
3168 && this_alternative
[i
] == (int) NO_REGS
3169 && this_alternative_matches
[i
] < 0)
3172 /* If this is a constant that is reloaded into the desired
3173 class by copying it to memory first, count that as another
3174 reload. This is consistent with other code and is
3175 required to avoid choosing another alternative when
3176 the constant is moved into memory by this function on
3177 an early reload pass. Note that the test here is
3178 precisely the same as in the code below that calls
3180 if (CONSTANT_P (operand
)
3181 /* force_const_mem does not accept HIGH. */
3182 && GET_CODE (operand
) != HIGH
3183 && ((PREFERRED_RELOAD_CLASS (operand
,
3184 (enum reg_class
) this_alternative
[i
])
3186 || no_input_reloads
)
3187 && operand_mode
[i
] != VOIDmode
)
3190 if (this_alternative
[i
] != (int) NO_REGS
)
3194 /* If we can't reload this value at all, reject this
3195 alternative. Note that we could also lose due to
3196 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3199 if (! CONSTANT_P (operand
)
3200 && (enum reg_class
) this_alternative
[i
] != NO_REGS
3201 && (PREFERRED_RELOAD_CLASS (operand
,
3202 (enum reg_class
) this_alternative
[i
])
3206 /* Alternative loses if it requires a type of reload not
3207 permitted for this insn. We can always reload SCRATCH
3208 and objects with a REG_UNUSED note. */
3209 else if (GET_CODE (operand
) != SCRATCH
3210 && modified
[i
] != RELOAD_READ
&& no_output_reloads
3211 && ! find_reg_note (insn
, REG_UNUSED
, operand
))
3213 else if (modified
[i
] != RELOAD_WRITE
&& no_input_reloads
3218 /* We prefer to reload pseudos over reloading other things,
3219 since such reloads may be able to be eliminated later.
3220 If we are reloading a SCRATCH, we won't be generating any
3221 insns, just using a register, so it is also preferred.
3222 So bump REJECT in other cases. Don't do this in the
3223 case where we are forcing a constant into memory and
3224 it will then win since we don't want to have a different
3225 alternative match then. */
3226 if (! (GET_CODE (operand
) == REG
3227 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
3228 && GET_CODE (operand
) != SCRATCH
3229 && ! (const_to_mem
&& constmemok
))
3232 /* Input reloads can be inherited more often than output
3233 reloads can be removed, so penalize output reloads. */
3234 if (operand_type
[i
] != RELOAD_FOR_INPUT
3235 && GET_CODE (operand
) != SCRATCH
)
3239 /* If this operand is a pseudo register that didn't get a hard
3240 reg and this alternative accepts some register, see if the
3241 class that we want is a subset of the preferred class for this
3242 register. If not, but it intersects that class, use the
3243 preferred class instead. If it does not intersect the preferred
3244 class, show that usage of this alternative should be discouraged;
3245 it will be discouraged more still if the register is `preferred
3246 or nothing'. We do this because it increases the chance of
3247 reusing our spill register in a later insn and avoiding a pair
3248 of memory stores and loads.
3250 Don't bother with this if this alternative will accept this
3253 Don't do this for a multiword operand, since it is only a
3254 small win and has the risk of requiring more spill registers,
3255 which could cause a large loss.
3257 Don't do this if the preferred class has only one register
3258 because we might otherwise exhaust the class. */
3261 if (! win
&& this_alternative
[i
] != (int) NO_REGS
3262 && GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
3263 && reg_class_size
[(int) preferred_class
[i
]] > 1)
3265 if (! reg_class_subset_p (this_alternative
[i
],
3266 preferred_class
[i
]))
3268 /* Since we don't have a way of forming the intersection,
3269 we just do something special if the preferred class
3270 is a subset of the class we have; that's the most
3271 common case anyway. */
3272 if (reg_class_subset_p (preferred_class
[i
],
3273 this_alternative
[i
]))
3274 this_alternative
[i
] = (int) preferred_class
[i
];
3276 reject
+= (2 + 2 * pref_or_nothing
[i
]);
3281 /* Now see if any output operands that are marked "earlyclobber"
3282 in this alternative conflict with any input operands
3283 or any memory addresses. */
3285 for (i
= 0; i
< noperands
; i
++)
3286 if (this_alternative_earlyclobber
[i
]
3287 && this_alternative_win
[i
])
3289 struct decomposition early_data
;
3291 early_data
= decompose (recog_data
.operand
[i
]);
3293 if (modified
[i
] == RELOAD_READ
)
3296 if (this_alternative
[i
] == NO_REGS
)
3298 this_alternative_earlyclobber
[i
] = 0;
3299 if (this_insn_is_asm
)
3300 error_for_asm (this_insn
,
3301 "`&' constraint used with no register class");
3306 for (j
= 0; j
< noperands
; j
++)
3307 /* Is this an input operand or a memory ref? */
3308 if ((GET_CODE (recog_data
.operand
[j
]) == MEM
3309 || modified
[j
] != RELOAD_WRITE
)
3311 /* Ignore things like match_operator operands. */
3312 && *recog_data
.constraints
[j
] != 0
3313 /* Don't count an input operand that is constrained to match
3314 the early clobber operand. */
3315 && ! (this_alternative_matches
[j
] == i
3316 && rtx_equal_p (recog_data
.operand
[i
],
3317 recog_data
.operand
[j
]))
3318 /* Is it altered by storing the earlyclobber operand? */
3319 && !immune_p (recog_data
.operand
[j
], recog_data
.operand
[i
],
3322 /* If the output is in a single-reg class,
3323 it's costly to reload it, so reload the input instead. */
3324 if (reg_class_size
[this_alternative
[i
]] == 1
3325 && (GET_CODE (recog_data
.operand
[j
]) == REG
3326 || GET_CODE (recog_data
.operand
[j
]) == SUBREG
))
3329 this_alternative_win
[j
] = 0;
3334 /* If an earlyclobber operand conflicts with something,
3335 it must be reloaded, so request this and count the cost. */
3339 this_alternative_win
[i
] = 0;
3340 for (j
= 0; j
< noperands
; j
++)
3341 if (this_alternative_matches
[j
] == i
3342 && this_alternative_win
[j
])
3344 this_alternative_win
[j
] = 0;
3350 /* If one alternative accepts all the operands, no reload required,
3351 choose that alternative; don't consider the remaining ones. */
3354 /* Unswap these so that they are never swapped at `finish'. */
3355 if (commutative
>= 0)
3357 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3358 recog_data
.operand
[commutative
+ 1]
3359 = substed_operand
[commutative
+ 1];
3361 for (i
= 0; i
< noperands
; i
++)
3363 goal_alternative_win
[i
] = 1;
3364 goal_alternative
[i
] = this_alternative
[i
];
3365 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3366 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3367 goal_alternative_earlyclobber
[i
]
3368 = this_alternative_earlyclobber
[i
];
3370 goal_alternative_number
= this_alternative_number
;
3371 goal_alternative_swapped
= swapped
;
3372 goal_earlyclobber
= this_earlyclobber
;
3376 /* REJECT, set by the ! and ? constraint characters and when a register
3377 would be reloaded into a non-preferred class, discourages the use of
3378 this alternative for a reload goal. REJECT is incremented by six
3379 for each ? and two for each non-preferred class. */
3380 losers
= losers
* 6 + reject
;
3382 /* If this alternative can be made to work by reloading,
3383 and it needs less reloading than the others checked so far,
3384 record it as the chosen goal for reloading. */
3385 if (! bad
&& best
> losers
)
3387 for (i
= 0; i
< noperands
; i
++)
3389 goal_alternative
[i
] = this_alternative
[i
];
3390 goal_alternative_win
[i
] = this_alternative_win
[i
];
3391 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3392 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3393 goal_alternative_earlyclobber
[i
]
3394 = this_alternative_earlyclobber
[i
];
3396 goal_alternative_swapped
= swapped
;
3398 goal_alternative_number
= this_alternative_number
;
3399 goal_earlyclobber
= this_earlyclobber
;
3403 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3404 then we need to try each alternative twice,
3405 the second time matching those two operands
3406 as if we had exchanged them.
3407 To do this, really exchange them in operands.
3409 If we have just tried the alternatives the second time,
3410 return operands to normal and drop through. */
3412 if (commutative
>= 0)
3417 register enum reg_class tclass
;
3420 recog_data
.operand
[commutative
] = substed_operand
[commutative
+ 1];
3421 recog_data
.operand
[commutative
+ 1] = substed_operand
[commutative
];
3423 tclass
= preferred_class
[commutative
];
3424 preferred_class
[commutative
] = preferred_class
[commutative
+ 1];
3425 preferred_class
[commutative
+ 1] = tclass
;
3427 t
= pref_or_nothing
[commutative
];
3428 pref_or_nothing
[commutative
] = pref_or_nothing
[commutative
+ 1];
3429 pref_or_nothing
[commutative
+ 1] = t
;
3431 memcpy (constraints
, recog_data
.constraints
,
3432 noperands
* sizeof (char *));
3437 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3438 recog_data
.operand
[commutative
+ 1]
3439 = substed_operand
[commutative
+ 1];
3443 /* The operands don't meet the constraints.
3444 goal_alternative describes the alternative
3445 that we could reach by reloading the fewest operands.
3446 Reload so as to fit it. */
3448 if (best
== MAX_RECOG_OPERANDS
* 2 + 600)
3450 /* No alternative works with reloads?? */
3451 if (insn_code_number
>= 0)
3452 fatal_insn ("Unable to generate reloads for:", insn
);
3453 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3454 /* Avoid further trouble with this insn. */
3455 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3460 /* Jump to `finish' from above if all operands are valid already.
3461 In that case, goal_alternative_win is all 1. */
3464 /* Right now, for any pair of operands I and J that are required to match,
3466 goal_alternative_matches[J] is I.
3467 Set up goal_alternative_matched as the inverse function:
3468 goal_alternative_matched[I] = J. */
3470 for (i
= 0; i
< noperands
; i
++)
3471 goal_alternative_matched
[i
] = -1;
3473 for (i
= 0; i
< noperands
; i
++)
3474 if (! goal_alternative_win
[i
]
3475 && goal_alternative_matches
[i
] >= 0)
3476 goal_alternative_matched
[goal_alternative_matches
[i
]] = i
;
3478 /* If the best alternative is with operands 1 and 2 swapped,
3479 consider them swapped before reporting the reloads. Update the
3480 operand numbers of any reloads already pushed. */
3482 if (goal_alternative_swapped
)
3486 tem
= substed_operand
[commutative
];
3487 substed_operand
[commutative
] = substed_operand
[commutative
+ 1];
3488 substed_operand
[commutative
+ 1] = tem
;
3489 tem
= recog_data
.operand
[commutative
];
3490 recog_data
.operand
[commutative
] = recog_data
.operand
[commutative
+ 1];
3491 recog_data
.operand
[commutative
+ 1] = tem
;
3492 tem
= *recog_data
.operand_loc
[commutative
];
3493 *recog_data
.operand_loc
[commutative
]
3494 = *recog_data
.operand_loc
[commutative
+ 1];
3495 *recog_data
.operand_loc
[commutative
+1] = tem
;
3497 for (i
= 0; i
< n_reloads
; i
++)
3499 if (rld
[i
].opnum
== commutative
)
3500 rld
[i
].opnum
= commutative
+ 1;
3501 else if (rld
[i
].opnum
== commutative
+ 1)
3502 rld
[i
].opnum
= commutative
;
3506 for (i
= 0; i
< noperands
; i
++)
3508 operand_reloadnum
[i
] = -1;
3510 /* If this is an earlyclobber operand, we need to widen the scope.
3511 The reload must remain valid from the start of the insn being
3512 reloaded until after the operand is stored into its destination.
3513 We approximate this with RELOAD_OTHER even though we know that we
3514 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3516 One special case that is worth checking is when we have an
3517 output that is earlyclobber but isn't used past the insn (typically
3518 a SCRATCH). In this case, we only need have the reload live
3519 through the insn itself, but not for any of our input or output
3521 But we must not accidentally narrow the scope of an existing
3522 RELOAD_OTHER reload - leave these alone.
3524 In any case, anything needed to address this operand can remain
3525 however they were previously categorized. */
3527 if (goal_alternative_earlyclobber
[i
] && operand_type
[i
] != RELOAD_OTHER
)
3529 = (find_reg_note (insn
, REG_UNUSED
, recog_data
.operand
[i
])
3530 ? RELOAD_FOR_INSN
: RELOAD_OTHER
);
3533 /* Any constants that aren't allowed and can't be reloaded
3534 into registers are here changed into memory references. */
3535 for (i
= 0; i
< noperands
; i
++)
3536 if (! goal_alternative_win
[i
]
3537 && CONSTANT_P (recog_data
.operand
[i
])
3538 /* force_const_mem does not accept HIGH. */
3539 && GET_CODE (recog_data
.operand
[i
]) != HIGH
3540 && ((PREFERRED_RELOAD_CLASS (recog_data
.operand
[i
],
3541 (enum reg_class
) goal_alternative
[i
])
3543 || no_input_reloads
)
3544 && operand_mode
[i
] != VOIDmode
)
3546 substed_operand
[i
] = recog_data
.operand
[i
]
3547 = find_reloads_toplev (force_const_mem (operand_mode
[i
],
3548 recog_data
.operand
[i
]),
3549 i
, address_type
[i
], ind_levels
, 0, insn
);
3550 if (alternative_allows_memconst (recog_data
.constraints
[i
],
3551 goal_alternative_number
))
3552 goal_alternative_win
[i
] = 1;
3555 /* Record the values of the earlyclobber operands for the caller. */
3556 if (goal_earlyclobber
)
3557 for (i
= 0; i
< noperands
; i
++)
3558 if (goal_alternative_earlyclobber
[i
])
3559 reload_earlyclobbers
[n_earlyclobbers
++] = recog_data
.operand
[i
];
3561 /* Now record reloads for all the operands that need them. */
3562 for (i
= 0; i
< noperands
; i
++)
3563 if (! goal_alternative_win
[i
])
3565 /* Operands that match previous ones have already been handled. */
3566 if (goal_alternative_matches
[i
] >= 0)
3568 /* Handle an operand with a nonoffsettable address
3569 appearing where an offsettable address will do
3570 by reloading the address into a base register.
3572 ??? We can also do this when the operand is a register and
3573 reg_equiv_mem is not offsettable, but this is a bit tricky,
3574 so we don't bother with it. It may not be worth doing. */
3575 else if (goal_alternative_matched
[i
] == -1
3576 && goal_alternative_offmemok
[i
]
3577 && GET_CODE (recog_data
.operand
[i
]) == MEM
)
3579 operand_reloadnum
[i
]
3580 = push_reload (XEXP (recog_data
.operand
[i
], 0), NULL_RTX
,
3581 &XEXP (recog_data
.operand
[i
], 0), NULL_PTR
,
3583 GET_MODE (XEXP (recog_data
.operand
[i
], 0)),
3584 VOIDmode
, 0, 0, i
, RELOAD_FOR_INPUT
);
3585 rld
[operand_reloadnum
[i
]].inc
3586 = GET_MODE_SIZE (GET_MODE (recog_data
.operand
[i
]));
3588 /* If this operand is an output, we will have made any
3589 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3590 now we are treating part of the operand as an input, so
3591 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3593 if (modified
[i
] == RELOAD_WRITE
)
3595 for (j
= 0; j
< n_reloads
; j
++)
3597 if (rld
[j
].opnum
== i
)
3599 if (rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
)
3600 rld
[j
].when_needed
= RELOAD_FOR_INPUT_ADDRESS
;
3601 else if (rld
[j
].when_needed
3602 == RELOAD_FOR_OUTADDR_ADDRESS
)
3603 rld
[j
].when_needed
= RELOAD_FOR_INPADDR_ADDRESS
;
3608 else if (goal_alternative_matched
[i
] == -1)
3610 operand_reloadnum
[i
]
3611 = push_reload ((modified
[i
] != RELOAD_WRITE
3612 ? recog_data
.operand
[i
] : 0),
3613 (modified
[i
] != RELOAD_READ
3614 ? recog_data
.operand
[i
] : 0),
3615 (modified
[i
] != RELOAD_WRITE
3616 ? recog_data
.operand_loc
[i
] : 0),
3617 (modified
[i
] != RELOAD_READ
3618 ? recog_data
.operand_loc
[i
] : 0),
3619 (enum reg_class
) goal_alternative
[i
],
3620 (modified
[i
] == RELOAD_WRITE
3621 ? VOIDmode
: operand_mode
[i
]),
3622 (modified
[i
] == RELOAD_READ
3623 ? VOIDmode
: operand_mode
[i
]),
3624 (insn_code_number
< 0 ? 0
3625 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
3626 0, i
, operand_type
[i
]);
3628 /* In a matching pair of operands, one must be input only
3629 and the other must be output only.
3630 Pass the input operand as IN and the other as OUT. */
3631 else if (modified
[i
] == RELOAD_READ
3632 && modified
[goal_alternative_matched
[i
]] == RELOAD_WRITE
)
3634 operand_reloadnum
[i
]
3635 = push_reload (recog_data
.operand
[i
],
3636 recog_data
.operand
[goal_alternative_matched
[i
]],
3637 recog_data
.operand_loc
[i
],
3638 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3639 (enum reg_class
) goal_alternative
[i
],
3641 operand_mode
[goal_alternative_matched
[i
]],
3642 0, 0, i
, RELOAD_OTHER
);
3643 operand_reloadnum
[goal_alternative_matched
[i
]] = output_reloadnum
;
3645 else if (modified
[i
] == RELOAD_WRITE
3646 && modified
[goal_alternative_matched
[i
]] == RELOAD_READ
)
3648 operand_reloadnum
[goal_alternative_matched
[i
]]
3649 = push_reload (recog_data
.operand
[goal_alternative_matched
[i
]],
3650 recog_data
.operand
[i
],
3651 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3652 recog_data
.operand_loc
[i
],
3653 (enum reg_class
) goal_alternative
[i
],
3654 operand_mode
[goal_alternative_matched
[i
]],
3656 0, 0, i
, RELOAD_OTHER
);
3657 operand_reloadnum
[i
] = output_reloadnum
;
3659 else if (insn_code_number
>= 0)
3663 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3664 /* Avoid further trouble with this insn. */
3665 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3670 else if (goal_alternative_matched
[i
] < 0
3671 && goal_alternative_matches
[i
] < 0
3674 /* For each non-matching operand that's a MEM or a pseudo-register
3675 that didn't get a hard register, make an optional reload.
3676 This may get done even if the insn needs no reloads otherwise. */
3678 rtx operand
= recog_data
.operand
[i
];
3680 while (GET_CODE (operand
) == SUBREG
)
3681 operand
= XEXP (operand
, 0);
3682 if ((GET_CODE (operand
) == MEM
3683 || (GET_CODE (operand
) == REG
3684 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3685 /* If this is only for an output, the optional reload would not
3686 actually cause us to use a register now, just note that
3687 something is stored here. */
3688 && ((enum reg_class
) goal_alternative
[i
] != NO_REGS
3689 || modified
[i
] == RELOAD_WRITE
)
3690 && ! no_input_reloads
3691 /* An optional output reload might allow to delete INSN later.
3692 We mustn't make in-out reloads on insns that are not permitted
3694 If this is an asm, we can't delete it; we must not even call
3695 push_reload for an optional output reload in this case,
3696 because we can't be sure that the constraint allows a register,
3697 and push_reload verifies the constraints for asms. */
3698 && (modified
[i
] == RELOAD_READ
3699 || (! no_output_reloads
&& ! this_insn_is_asm
)))
3700 operand_reloadnum
[i
]
3701 = push_reload ((modified
[i
] != RELOAD_WRITE
3702 ? recog_data
.operand
[i
] : 0),
3703 (modified
[i
] != RELOAD_READ
3704 ? recog_data
.operand
[i
] : 0),
3705 (modified
[i
] != RELOAD_WRITE
3706 ? recog_data
.operand_loc
[i
] : 0),
3707 (modified
[i
] != RELOAD_READ
3708 ? recog_data
.operand_loc
[i
] : 0),
3709 (enum reg_class
) goal_alternative
[i
],
3710 (modified
[i
] == RELOAD_WRITE
3711 ? VOIDmode
: operand_mode
[i
]),
3712 (modified
[i
] == RELOAD_READ
3713 ? VOIDmode
: operand_mode
[i
]),
3714 (insn_code_number
< 0 ? 0
3715 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
3716 1, i
, operand_type
[i
]);
3717 /* If a memory reference remains (either as a MEM or a pseudo that
3718 did not get a hard register), yet we can't make an optional
3719 reload, check if this is actually a pseudo register reference;
3720 we then need to emit a USE and/or a CLOBBER so that reload
3721 inheritance will do the right thing. */
3723 && (GET_CODE (operand
) == MEM
3724 || (GET_CODE (operand
) == REG
3725 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3726 && reg_renumber
[REGNO (operand
)] < 0)))
3728 operand
= *recog_data
.operand_loc
[i
];
3730 while (GET_CODE (operand
) == SUBREG
)
3731 operand
= XEXP (operand
, 0);
3732 if (GET_CODE (operand
) == REG
)
3734 if (modified
[i
] != RELOAD_WRITE
)
3735 emit_insn_before (gen_rtx_USE (VOIDmode
, operand
), insn
);
3736 if (modified
[i
] != RELOAD_READ
)
3737 emit_insn_after (gen_rtx_CLOBBER (VOIDmode
, operand
), insn
);
3741 else if (goal_alternative_matches
[i
] >= 0
3742 && goal_alternative_win
[goal_alternative_matches
[i
]]
3743 && modified
[i
] == RELOAD_READ
3744 && modified
[goal_alternative_matches
[i
]] == RELOAD_WRITE
3745 && ! no_input_reloads
&& ! no_output_reloads
3748 /* Similarly, make an optional reload for a pair of matching
3749 objects that are in MEM or a pseudo that didn't get a hard reg. */
3751 rtx operand
= recog_data
.operand
[i
];
3753 while (GET_CODE (operand
) == SUBREG
)
3754 operand
= XEXP (operand
, 0);
3755 if ((GET_CODE (operand
) == MEM
3756 || (GET_CODE (operand
) == REG
3757 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3758 && ((enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]]
3760 operand_reloadnum
[i
] = operand_reloadnum
[goal_alternative_matches
[i
]]
3761 = push_reload (recog_data
.operand
[goal_alternative_matches
[i
]],
3762 recog_data
.operand
[i
],
3763 recog_data
.operand_loc
[goal_alternative_matches
[i
]],
3764 recog_data
.operand_loc
[i
],
3765 (enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]],
3766 operand_mode
[goal_alternative_matches
[i
]],
3768 0, 1, goal_alternative_matches
[i
], RELOAD_OTHER
);
3771 /* Perform whatever substitutions on the operands we are supposed
3772 to make due to commutativity or replacement of registers
3773 with equivalent constants or memory slots. */
3775 for (i
= 0; i
< noperands
; i
++)
3777 /* We only do this on the last pass through reload, because it is
3778 possible for some data (like reg_equiv_address) to be changed during
3779 later passes. Moreover, we loose the opportunity to get a useful
3780 reload_{in,out}_reg when we do these replacements. */
3784 rtx substitution
= substed_operand
[i
];
3786 *recog_data
.operand_loc
[i
] = substitution
;
3788 /* If we're replacing an operand with a LABEL_REF, we need
3789 to make sure that there's a REG_LABEL note attached to
3790 this instruction. */
3791 if (GET_CODE (insn
) != JUMP_INSN
3792 && GET_CODE (substitution
) == LABEL_REF
3793 && !find_reg_note (insn
, REG_LABEL
, XEXP (substitution
, 0)))
3794 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_LABEL
,
3795 XEXP (substitution
, 0),
3799 retval
|= (substed_operand
[i
] != *recog_data
.operand_loc
[i
]);
3802 /* If this insn pattern contains any MATCH_DUP's, make sure that
3803 they will be substituted if the operands they match are substituted.
3804 Also do now any substitutions we already did on the operands.
3806 Don't do this if we aren't making replacements because we might be
3807 propagating things allocated by frame pointer elimination into places
3808 it doesn't expect. */
3810 if (insn_code_number
>= 0 && replace
)
3811 for (i
= insn_data
[insn_code_number
].n_dups
- 1; i
>= 0; i
--)
3813 int opno
= recog_data
.dup_num
[i
];
3814 *recog_data
.dup_loc
[i
] = *recog_data
.operand_loc
[opno
];
3815 if (operand_reloadnum
[opno
] >= 0)
3816 push_replacement (recog_data
.dup_loc
[i
], operand_reloadnum
[opno
],
3817 insn_data
[insn_code_number
].operand
[opno
].mode
);
3821 /* This loses because reloading of prior insns can invalidate the equivalence
3822 (or at least find_equiv_reg isn't smart enough to find it any more),
3823 causing this insn to need more reload regs than it needed before.
3824 It may be too late to make the reload regs available.
3825 Now this optimization is done safely in choose_reload_regs. */
3827 /* For each reload of a reg into some other class of reg,
3828 search for an existing equivalent reg (same value now) in the right class.
3829 We can use it as long as we don't need to change its contents. */
3830 for (i
= 0; i
< n_reloads
; i
++)
3831 if (rld
[i
].reg_rtx
== 0
3833 && GET_CODE (rld
[i
].in
) == REG
3837 = find_equiv_reg (rld
[i
].in
, insn
, rld
[i
].class, -1,
3838 static_reload_reg_p
, 0, rld
[i
].inmode
);
3839 /* Prevent generation of insn to load the value
3840 because the one we found already has the value. */
3842 rld
[i
].in
= rld
[i
].reg_rtx
;
3846 /* Perhaps an output reload can be combined with another
3847 to reduce needs by one. */
3848 if (!goal_earlyclobber
)
3851 /* If we have a pair of reloads for parts of an address, they are reloading
3852 the same object, the operands themselves were not reloaded, and they
3853 are for two operands that are supposed to match, merge the reloads and
3854 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3856 for (i
= 0; i
< n_reloads
; i
++)
3860 for (j
= i
+ 1; j
< n_reloads
; j
++)
3861 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3862 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3863 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3864 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3865 && (rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3866 || rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3867 || rld
[j
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3868 || rld
[j
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3869 && rtx_equal_p (rld
[i
].in
, rld
[j
].in
)
3870 && (operand_reloadnum
[rld
[i
].opnum
] < 0
3871 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
)
3872 && (operand_reloadnum
[rld
[j
].opnum
] < 0
3873 || rld
[operand_reloadnum
[rld
[j
].opnum
]].optional
)
3874 && (goal_alternative_matches
[rld
[i
].opnum
] == rld
[j
].opnum
3875 || (goal_alternative_matches
[rld
[j
].opnum
]
3878 for (k
= 0; k
< n_replacements
; k
++)
3879 if (replacements
[k
].what
== j
)
3880 replacements
[k
].what
= i
;
3882 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3883 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3884 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
3886 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
3891 /* Scan all the reloads and update their type.
3892 If a reload is for the address of an operand and we didn't reload
3893 that operand, change the type. Similarly, change the operand number
3894 of a reload when two operands match. If a reload is optional, treat it
3895 as though the operand isn't reloaded.
3897 ??? This latter case is somewhat odd because if we do the optional
3898 reload, it means the object is hanging around. Thus we need only
3899 do the address reload if the optional reload was NOT done.
3901 Change secondary reloads to be the address type of their operand, not
3904 If an operand's reload is now RELOAD_OTHER, change any
3905 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3906 RELOAD_FOR_OTHER_ADDRESS. */
3908 for (i
= 0; i
< n_reloads
; i
++)
3910 if (rld
[i
].secondary_p
3911 && rld
[i
].when_needed
== operand_type
[rld
[i
].opnum
])
3912 rld
[i
].when_needed
= address_type
[rld
[i
].opnum
];
3914 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3915 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3916 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3917 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3918 && (operand_reloadnum
[rld
[i
].opnum
] < 0
3919 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
))
3921 /* If we have a secondary reload to go along with this reload,
3922 change its type to RELOAD_FOR_OPADDR_ADDR. */
3924 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3925 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
3926 && rld
[i
].secondary_in_reload
!= -1)
3928 int secondary_in_reload
= rld
[i
].secondary_in_reload
;
3930 rld
[secondary_in_reload
].when_needed
3931 = RELOAD_FOR_OPADDR_ADDR
;
3933 /* If there's a tertiary reload we have to change it also. */
3934 if (secondary_in_reload
> 0
3935 && rld
[secondary_in_reload
].secondary_in_reload
!= -1)
3936 rld
[rld
[secondary_in_reload
].secondary_in_reload
].when_needed
3937 = RELOAD_FOR_OPADDR_ADDR
;
3940 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3941 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3942 && rld
[i
].secondary_out_reload
!= -1)
3944 int secondary_out_reload
= rld
[i
].secondary_out_reload
;
3946 rld
[secondary_out_reload
].when_needed
3947 = RELOAD_FOR_OPADDR_ADDR
;
3949 /* If there's a tertiary reload we have to change it also. */
3950 if (secondary_out_reload
3951 && rld
[secondary_out_reload
].secondary_out_reload
!= -1)
3952 rld
[rld
[secondary_out_reload
].secondary_out_reload
].when_needed
3953 = RELOAD_FOR_OPADDR_ADDR
;
3956 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3957 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3958 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
3960 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
3963 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3964 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
3965 && operand_reloadnum
[rld
[i
].opnum
] >= 0
3966 && (rld
[operand_reloadnum
[rld
[i
].opnum
]].when_needed
3968 rld
[i
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
3970 if (goal_alternative_matches
[rld
[i
].opnum
] >= 0)
3971 rld
[i
].opnum
= goal_alternative_matches
[rld
[i
].opnum
];
3974 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3975 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3976 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3978 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3979 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3980 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3981 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3982 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3983 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3984 This is complicated by the fact that a single operand can have more
3985 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3986 choose_reload_regs without affecting code quality, and cases that
3987 actually fail are extremely rare, so it turns out to be better to fix
3988 the problem here by not generating cases that choose_reload_regs will
3990 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
3991 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
3993 We can reduce the register pressure by exploiting that a
3994 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
3995 does not conflict with any of them, if it is only used for the first of
3996 the RELOAD_FOR_X_ADDRESS reloads. */
3998 int first_op_addr_num
= -2;
3999 int first_inpaddr_num
[MAX_RECOG_OPERANDS
];
4000 int first_outpaddr_num
[MAX_RECOG_OPERANDS
];
4002 /* We use last_op_addr_reload and the contents of the above arrays
4003 first as flags - -2 means no instance encountered, -1 means exactly
4004 one instance encountered.
4005 If more than one instance has been encountered, we store the reload
4006 number of the first reload of the kind in question; reload numbers
4007 are known to be non-negative. */
4008 for (i
= 0; i
< noperands
; i
++)
4009 first_inpaddr_num
[i
] = first_outpaddr_num
[i
] = -2;
4010 for (i
= n_reloads
- 1; i
>= 0; i
--)
4012 switch (rld
[i
].when_needed
)
4014 case RELOAD_FOR_OPERAND_ADDRESS
:
4015 if (++first_op_addr_num
>= 0)
4017 first_op_addr_num
= i
;
4021 case RELOAD_FOR_INPUT_ADDRESS
:
4022 if (++first_inpaddr_num
[rld
[i
].opnum
] >= 0)
4024 first_inpaddr_num
[rld
[i
].opnum
] = i
;
4028 case RELOAD_FOR_OUTPUT_ADDRESS
:
4029 if (++first_outpaddr_num
[rld
[i
].opnum
] >= 0)
4031 first_outpaddr_num
[rld
[i
].opnum
] = i
;
4042 for (i
= 0; i
< n_reloads
; i
++)
4044 int first_num
, type
;
4046 switch (rld
[i
].when_needed
)
4048 case RELOAD_FOR_OPADDR_ADDR
:
4049 first_num
= first_op_addr_num
;
4050 type
= RELOAD_FOR_OPERAND_ADDRESS
;
4052 case RELOAD_FOR_INPADDR_ADDRESS
:
4053 first_num
= first_inpaddr_num
[rld
[i
].opnum
];
4054 type
= RELOAD_FOR_INPUT_ADDRESS
;
4056 case RELOAD_FOR_OUTADDR_ADDRESS
:
4057 first_num
= first_outpaddr_num
[rld
[i
].opnum
];
4058 type
= RELOAD_FOR_OUTPUT_ADDRESS
;
4065 else if (i
> first_num
)
4066 rld
[i
].when_needed
= type
;
4069 /* Check if the only TYPE reload that uses reload I is
4070 reload FIRST_NUM. */
4071 for (j
= n_reloads
- 1; j
> first_num
; j
--)
4073 if (rld
[j
].when_needed
== type
4074 && (rld
[i
].secondary_p
4075 ? rld
[j
].secondary_in_reload
== i
4076 : reg_mentioned_p (rld
[i
].in
, rld
[j
].in
)))
4078 rld
[i
].when_needed
= type
;
4087 /* See if we have any reloads that are now allowed to be merged
4088 because we've changed when the reload is needed to
4089 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4090 check for the most common cases. */
4092 for (i
= 0; i
< n_reloads
; i
++)
4093 if (rld
[i
].in
!= 0 && rld
[i
].out
== 0
4094 && (rld
[i
].when_needed
== RELOAD_FOR_OPERAND_ADDRESS
4095 || rld
[i
].when_needed
== RELOAD_FOR_OPADDR_ADDR
4096 || rld
[i
].when_needed
== RELOAD_FOR_OTHER_ADDRESS
))
4097 for (j
= 0; j
< n_reloads
; j
++)
4098 if (i
!= j
&& rld
[j
].in
!= 0 && rld
[j
].out
== 0
4099 && rld
[j
].when_needed
== rld
[i
].when_needed
4100 && MATCHES (rld
[i
].in
, rld
[j
].in
)
4101 && rld
[i
].class == rld
[j
].class
4102 && !rld
[i
].nocombine
&& !rld
[j
].nocombine
4103 && rld
[i
].reg_rtx
== rld
[j
].reg_rtx
)
4105 rld
[i
].opnum
= MIN (rld
[i
].opnum
, rld
[j
].opnum
);
4106 transfer_replacements (i
, j
);
4111 /* If we made any reloads for addresses, see if they violate a
4112 "no input reloads" requirement for this insn. But loads that we
4113 do after the insn (such as for output addresses) are fine. */
4114 if (no_input_reloads
)
4115 for (i
= 0; i
< n_reloads
; i
++)
4117 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
4118 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
)
4122 /* Set which reloads must use registers not used in any group. Start
4123 with those that conflict with a group and then include ones that
4124 conflict with ones that are already known to conflict with a group. */
4127 for (i
= 0; i
< n_reloads
; i
++)
4129 enum machine_mode mode
= rld
[i
].inmode
;
4130 enum reg_class
class = rld
[i
].class;
4133 if (GET_MODE_SIZE (rld
[i
].outmode
) > GET_MODE_SIZE (mode
))
4134 mode
= rld
[i
].outmode
;
4135 size
= CLASS_MAX_NREGS (class, mode
);
4138 for (j
= 0; j
< n_reloads
; j
++)
4139 if ((CLASS_MAX_NREGS (rld
[j
].class,
4140 (GET_MODE_SIZE (rld
[j
].outmode
)
4141 > GET_MODE_SIZE (rld
[j
].inmode
))
4142 ? rld
[j
].outmode
: rld
[j
].inmode
)
4145 && (rld
[j
].in
!= 0 || rld
[j
].out
!= 0
4146 || rld
[j
].secondary_p
)
4147 && reloads_conflict (i
, j
)
4148 && reg_classes_intersect_p (class, rld
[j
].class))
4150 rld
[i
].nongroup
= 1;
4160 for (i
= 0; i
< n_reloads
; i
++)
4162 enum machine_mode mode
= rld
[i
].inmode
;
4163 enum reg_class
class = rld
[i
].class;
4166 if (GET_MODE_SIZE (rld
[i
].outmode
) > GET_MODE_SIZE (mode
))
4167 mode
= rld
[i
].outmode
;
4168 size
= CLASS_MAX_NREGS (class, mode
);
4170 if (! rld
[i
].nongroup
&& size
== 1)
4171 for (j
= 0; j
< n_reloads
; j
++)
4173 && reloads_conflict (i
, j
)
4174 && reg_classes_intersect_p (class, rld
[j
].class))
4176 rld
[i
].nongroup
= 1;
4183 /* Compute reload_mode and reload_nregs. */
4184 for (i
= 0; i
< n_reloads
; i
++)
4187 = (rld
[i
].inmode
== VOIDmode
4188 || (GET_MODE_SIZE (rld
[i
].outmode
)
4189 > GET_MODE_SIZE (rld
[i
].inmode
)))
4190 ? rld
[i
].outmode
: rld
[i
].inmode
;
4192 rld
[i
].nregs
= CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].mode
);
4198 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4199 accepts a memory operand with constant address. */
4202 alternative_allows_memconst (constraint
, altnum
)
4203 const char *constraint
;
4207 /* Skip alternatives before the one requested. */
4210 while (*constraint
++ != ',');
4213 /* Scan the requested alternative for 'm' or 'o'.
4214 If one of them is present, this alternative accepts memory constants. */
4215 while ((c
= *constraint
++) && c
!= ',' && c
!= '#')
4216 if (c
== 'm' || c
== 'o')
4221 /* Scan X for memory references and scan the addresses for reloading.
4222 Also checks for references to "constant" regs that we want to eliminate
4223 and replaces them with the values they stand for.
4224 We may alter X destructively if it contains a reference to such.
4225 If X is just a constant reg, we return the equivalent value
4228 IND_LEVELS says how many levels of indirect addressing this machine
4231 OPNUM and TYPE identify the purpose of the reload.
4233 IS_SET_DEST is true if X is the destination of a SET, which is not
4234 appropriate to be replaced by a constant.
4236 INSN, if nonzero, is the insn in which we do the reload. It is used
4237 to determine if we may generate output reloads, and where to put USEs
4238 for pseudos that we have to replace with stack slots. */
4241 find_reloads_toplev (x
, opnum
, type
, ind_levels
, is_set_dest
, insn
)
4244 enum reload_type type
;
4249 register RTX_CODE code
= GET_CODE (x
);
4251 register const char *fmt
= GET_RTX_FORMAT (code
);
4257 /* This code is duplicated for speed in find_reloads. */
4258 register int regno
= REGNO (x
);
4259 if (reg_equiv_constant
[regno
] != 0 && !is_set_dest
)
4260 x
= reg_equiv_constant
[regno
];
4262 /* This creates (subreg (mem...)) which would cause an unnecessary
4263 reload of the mem. */
4264 else if (reg_equiv_mem
[regno
] != 0)
4265 x
= reg_equiv_mem
[regno
];
4267 else if (reg_equiv_memory_loc
[regno
]
4268 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
4270 rtx mem
= make_memloc (x
, regno
);
4271 if (reg_equiv_address
[regno
]
4272 || ! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
4274 /* If this is not a toplevel operand, find_reloads doesn't see
4275 this substitution. We have to emit a USE of the pseudo so
4276 that delete_output_reload can see it. */
4277 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
4278 emit_insn_before (gen_rtx_USE (VOIDmode
, x
), insn
);
4280 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0), &XEXP (x
, 0),
4281 opnum
, type
, ind_levels
, insn
);
4289 find_reloads_address (GET_MODE (x
), &tem
, XEXP (x
, 0), &XEXP (x
, 0),
4290 opnum
, type
, ind_levels
, insn
);
4294 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
)
4296 /* Check for SUBREG containing a REG that's equivalent to a constant.
4297 If the constant has a known value, truncate it right now.
4298 Similarly if we are extracting a single-word of a multi-word
4299 constant. If the constant is symbolic, allow it to be substituted
4300 normally. push_reload will strip the subreg later. If the
4301 constant is VOIDmode, abort because we will lose the mode of
4302 the register (this should never happen because one of the cases
4303 above should handle it). */
4305 register int regno
= REGNO (SUBREG_REG (x
));
4308 if (subreg_lowpart_p (x
)
4309 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4310 && reg_equiv_constant
[regno
] != 0
4311 && (tem
= gen_lowpart_common (GET_MODE (x
),
4312 reg_equiv_constant
[regno
])) != 0)
4315 if (GET_MODE_BITSIZE (GET_MODE (x
)) == BITS_PER_WORD
4316 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4317 && reg_equiv_constant
[regno
] != 0
4318 && (tem
= operand_subword (reg_equiv_constant
[regno
],
4320 GET_MODE (SUBREG_REG (x
)))) != 0)
4322 /* TEM is now a word sized constant for the bits from X that
4323 we wanted. However, TEM may be the wrong representation.
4325 Use gen_lowpart_common to convert a CONST_INT into a
4326 CONST_DOUBLE and vice versa as needed according to by the mode
4328 tem
= gen_lowpart_common (GET_MODE (x
), tem
);
4334 /* If the SUBREG is wider than a word, the above test will fail.
4335 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4336 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4337 a 32 bit target. We still can - and have to - handle this
4338 for non-paradoxical subregs of CONST_INTs. */
4339 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4340 && reg_equiv_constant
[regno
] != 0
4341 && GET_CODE (reg_equiv_constant
[regno
]) == CONST_INT
4342 && (GET_MODE_SIZE (GET_MODE (x
))
4343 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
4345 int shift
= SUBREG_WORD (x
) * BITS_PER_WORD
;
4346 if (WORDS_BIG_ENDIAN
)
4347 shift
= (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4348 - GET_MODE_BITSIZE (GET_MODE (x
))
4350 /* Here we use the knowledge that CONST_INTs have a
4351 HOST_WIDE_INT field. */
4352 if (shift
>= HOST_BITS_PER_WIDE_INT
)
4353 shift
= HOST_BITS_PER_WIDE_INT
- 1;
4354 return GEN_INT (INTVAL (reg_equiv_constant
[regno
]) >> shift
);
4357 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4358 && reg_equiv_constant
[regno
] != 0
4359 && GET_MODE (reg_equiv_constant
[regno
]) == VOIDmode
)
4362 /* If the subreg contains a reg that will be converted to a mem,
4363 convert the subreg to a narrower memref now.
4364 Otherwise, we would get (subreg (mem ...) ...),
4365 which would force reload of the mem.
4367 We also need to do this if there is an equivalent MEM that is
4368 not offsettable. In that case, alter_subreg would produce an
4369 invalid address on big-endian machines.
4371 For machines that extend byte loads, we must not reload using
4372 a wider mode if we have a paradoxical SUBREG. find_reloads will
4373 force a reload in that case. So we should not do anything here. */
4375 else if (regno
>= FIRST_PSEUDO_REGISTER
4376 #ifdef LOAD_EXTEND_OP
4377 && (GET_MODE_SIZE (GET_MODE (x
))
4378 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4380 && (reg_equiv_address
[regno
] != 0
4381 || (reg_equiv_mem
[regno
] != 0
4382 && (! strict_memory_address_p (GET_MODE (x
),
4383 XEXP (reg_equiv_mem
[regno
], 0))
4384 || ! offsettable_memref_p (reg_equiv_mem
[regno
])
4385 || num_not_at_initial_offset
))))
4386 x
= find_reloads_subreg_address (x
, 1, opnum
, type
, ind_levels
,
4390 for (copied
= 0, i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4394 rtx new_part
= find_reloads_toplev (XEXP (x
, i
), opnum
, type
,
4395 ind_levels
, is_set_dest
, insn
);
4396 /* If we have replaced a reg with it's equivalent memory loc -
4397 that can still be handled here e.g. if it's in a paradoxical
4398 subreg - we must make the change in a copy, rather than using
4399 a destructive change. This way, find_reloads can still elect
4400 not to do the change. */
4401 if (new_part
!= XEXP (x
, i
) && ! CONSTANT_P (new_part
) && ! copied
)
4403 x
= shallow_copy_rtx (x
);
4406 XEXP (x
, i
) = new_part
;
4412 /* Return a mem ref for the memory equivalent of reg REGNO.
4413 This mem ref is not shared with anything. */
4416 make_memloc (ad
, regno
)
4420 /* We must rerun eliminate_regs, in case the elimination
4421 offsets have changed. */
4423 = XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0, NULL_RTX
), 0);
4425 /* If TEM might contain a pseudo, we must copy it to avoid
4426 modifying it when we do the substitution for the reload. */
4427 if (rtx_varies_p (tem
))
4428 tem
= copy_rtx (tem
);
4430 tem
= gen_rtx_MEM (GET_MODE (ad
), tem
);
4431 RTX_UNCHANGING_P (tem
) = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
4435 /* Record all reloads needed for handling memory address AD
4436 which appears in *LOC in a memory reference to mode MODE
4437 which itself is found in location *MEMREFLOC.
4438 Note that we take shortcuts assuming that no multi-reg machine mode
4439 occurs as part of an address.
4441 OPNUM and TYPE specify the purpose of this reload.
4443 IND_LEVELS says how many levels of indirect addressing this machine
4446 INSN, if nonzero, is the insn in which we do the reload. It is used
4447 to determine if we may generate output reloads, and where to put USEs
4448 for pseudos that we have to replace with stack slots.
4450 Value is nonzero if this address is reloaded or replaced as a whole.
4451 This is interesting to the caller if the address is an autoincrement.
4453 Note that there is no verification that the address will be valid after
4454 this routine does its work. Instead, we rely on the fact that the address
4455 was valid when reload started. So we need only undo things that reload
4456 could have broken. These are wrong register types, pseudos not allocated
4457 to a hard register, and frame pointer elimination. */
4460 find_reloads_address (mode
, memrefloc
, ad
, loc
, opnum
, type
, ind_levels
, insn
)
4461 enum machine_mode mode
;
4466 enum reload_type type
;
4471 int removed_and
= 0;
4474 /* If the address is a register, see if it is a legitimate address and
4475 reload if not. We first handle the cases where we need not reload
4476 or where we must reload in a non-standard way. */
4478 if (GET_CODE (ad
) == REG
)
4482 if (reg_equiv_constant
[regno
] != 0
4483 && strict_memory_address_p (mode
, reg_equiv_constant
[regno
]))
4485 *loc
= ad
= reg_equiv_constant
[regno
];
4489 tem
= reg_equiv_memory_loc
[regno
];
4492 if (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
)
4494 tem
= make_memloc (ad
, regno
);
4495 if (! strict_memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
4497 find_reloads_address (GET_MODE (tem
), NULL_PTR
, XEXP (tem
, 0),
4498 &XEXP (tem
, 0), opnum
, ADDR_TYPE (type
),
4501 /* We can avoid a reload if the register's equivalent memory
4502 expression is valid as an indirect memory address.
4503 But not all addresses are valid in a mem used as an indirect
4504 address: only reg or reg+constant. */
4507 && strict_memory_address_p (mode
, tem
)
4508 && (GET_CODE (XEXP (tem
, 0)) == REG
4509 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4510 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == REG
4511 && CONSTANT_P (XEXP (XEXP (tem
, 0), 1)))))
4513 /* TEM is not the same as what we'll be replacing the
4514 pseudo with after reload, put a USE in front of INSN
4515 in the final reload pass. */
4517 && num_not_at_initial_offset
4518 && ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
4521 emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
);
4522 /* This doesn't really count as replacing the address
4523 as a whole, since it is still a memory access. */
4531 /* The only remaining case where we can avoid a reload is if this is a
4532 hard register that is valid as a base register and which is not the
4533 subject of a CLOBBER in this insn. */
4535 else if (regno
< FIRST_PSEUDO_REGISTER
4536 && REGNO_MODE_OK_FOR_BASE_P (regno
, mode
)
4537 && ! regno_clobbered_p (regno
, this_insn
))
4540 /* If we do not have one of the cases above, we must do the reload. */
4541 push_reload (ad
, NULL_RTX
, loc
, NULL_PTR
, BASE_REG_CLASS
,
4542 GET_MODE (ad
), VOIDmode
, 0, 0, opnum
, type
);
4546 if (strict_memory_address_p (mode
, ad
))
4548 /* The address appears valid, so reloads are not needed.
4549 But the address may contain an eliminable register.
4550 This can happen because a machine with indirect addressing
4551 may consider a pseudo register by itself a valid address even when
4552 it has failed to get a hard reg.
4553 So do a tree-walk to find and eliminate all such regs. */
4555 /* But first quickly dispose of a common case. */
4556 if (GET_CODE (ad
) == PLUS
4557 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
4558 && GET_CODE (XEXP (ad
, 0)) == REG
4559 && reg_equiv_constant
[REGNO (XEXP (ad
, 0))] == 0)
4562 subst_reg_equivs_changed
= 0;
4563 *loc
= subst_reg_equivs (ad
, insn
);
4565 if (! subst_reg_equivs_changed
)
4568 /* Check result for validity after substitution. */
4569 if (strict_memory_address_p (mode
, ad
))
4573 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4578 LEGITIMIZE_RELOAD_ADDRESS (ad
, GET_MODE (*memrefloc
), opnum
, type
,
4583 *memrefloc
= copy_rtx (*memrefloc
);
4584 XEXP (*memrefloc
, 0) = ad
;
4585 move_replacements (&ad
, &XEXP (*memrefloc
, 0));
4591 /* The address is not valid. We have to figure out why. First see if
4592 we have an outer AND and remove it if so. Then analyze what's inside. */
4594 if (GET_CODE (ad
) == AND
)
4597 loc
= &XEXP (ad
, 0);
4601 /* One possibility for why the address is invalid is that it is itself
4602 a MEM. This can happen when the frame pointer is being eliminated, a
4603 pseudo is not allocated to a hard register, and the offset between the
4604 frame and stack pointers is not its initial value. In that case the
4605 pseudo will have been replaced by a MEM referring to the
4607 if (GET_CODE (ad
) == MEM
)
4609 /* First ensure that the address in this MEM is valid. Then, unless
4610 indirect addresses are valid, reload the MEM into a register. */
4612 find_reloads_address (GET_MODE (ad
), &tem
, XEXP (ad
, 0), &XEXP (ad
, 0),
4613 opnum
, ADDR_TYPE (type
),
4614 ind_levels
== 0 ? 0 : ind_levels
- 1, insn
);
4616 /* If tem was changed, then we must create a new memory reference to
4617 hold it and store it back into memrefloc. */
4618 if (tem
!= ad
&& memrefloc
)
4620 *memrefloc
= copy_rtx (*memrefloc
);
4621 copy_replacements (tem
, XEXP (*memrefloc
, 0));
4622 loc
= &XEXP (*memrefloc
, 0);
4624 loc
= &XEXP (*loc
, 0);
4627 /* Check similar cases as for indirect addresses as above except
4628 that we can allow pseudos and a MEM since they should have been
4629 taken care of above. */
4632 || (GET_CODE (XEXP (tem
, 0)) == SYMBOL_REF
&& ! indirect_symref_ok
)
4633 || GET_CODE (XEXP (tem
, 0)) == MEM
4634 || ! (GET_CODE (XEXP (tem
, 0)) == REG
4635 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4636 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == REG
4637 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)))
4639 /* Must use TEM here, not AD, since it is the one that will
4640 have any subexpressions reloaded, if needed. */
4641 push_reload (tem
, NULL_RTX
, loc
, NULL_PTR
,
4642 BASE_REG_CLASS
, GET_MODE (tem
),
4645 return ! removed_and
;
4651 /* If we have address of a stack slot but it's not valid because the
4652 displacement is too large, compute the sum in a register.
4653 Handle all base registers here, not just fp/ap/sp, because on some
4654 targets (namely SH) we can also get too large displacements from
4655 big-endian corrections. */
4656 else if (GET_CODE (ad
) == PLUS
4657 && GET_CODE (XEXP (ad
, 0)) == REG
4658 && REGNO (XEXP (ad
, 0)) < FIRST_PSEUDO_REGISTER
4659 && REG_MODE_OK_FOR_BASE_P (XEXP (ad
, 0), mode
)
4660 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4662 /* Unshare the MEM rtx so we can safely alter it. */
4665 *memrefloc
= copy_rtx (*memrefloc
);
4666 loc
= &XEXP (*memrefloc
, 0);
4668 loc
= &XEXP (*loc
, 0);
4671 if (double_reg_address_ok
)
4673 /* Unshare the sum as well. */
4674 *loc
= ad
= copy_rtx (ad
);
4676 /* Reload the displacement into an index reg.
4677 We assume the frame pointer or arg pointer is a base reg. */
4678 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1),
4679 INDEX_REG_CLASS
, GET_MODE (ad
), opnum
,
4685 /* If the sum of two regs is not necessarily valid,
4686 reload the sum into a base reg.
4687 That will at least work. */
4688 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
,
4689 Pmode
, opnum
, type
, ind_levels
);
4691 return ! removed_and
;
4694 /* If we have an indexed stack slot, there are three possible reasons why
4695 it might be invalid: The index might need to be reloaded, the address
4696 might have been made by frame pointer elimination and hence have a
4697 constant out of range, or both reasons might apply.
4699 We can easily check for an index needing reload, but even if that is the
4700 case, we might also have an invalid constant. To avoid making the
4701 conservative assumption and requiring two reloads, we see if this address
4702 is valid when not interpreted strictly. If it is, the only problem is
4703 that the index needs a reload and find_reloads_address_1 will take care
4706 If we decide to do something here, it must be that
4707 `double_reg_address_ok' is true and that this address rtl was made by
4708 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4709 rework the sum so that the reload register will be added to the index.
4710 This is safe because we know the address isn't shared.
4712 We check for fp/ap/sp as both the first and second operand of the
4715 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4716 && GET_CODE (XEXP (ad
, 0)) == PLUS
4717 && (XEXP (XEXP (ad
, 0), 0) == frame_pointer_rtx
4718 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4719 || XEXP (XEXP (ad
, 0), 0) == hard_frame_pointer_rtx
4721 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4722 || XEXP (XEXP (ad
, 0), 0) == arg_pointer_rtx
4724 || XEXP (XEXP (ad
, 0), 0) == stack_pointer_rtx
)
4725 && ! memory_address_p (mode
, ad
))
4727 *loc
= ad
= gen_rtx_PLUS (GET_MODE (ad
),
4728 plus_constant (XEXP (XEXP (ad
, 0), 0),
4729 INTVAL (XEXP (ad
, 1))),
4730 XEXP (XEXP (ad
, 0), 1));
4731 find_reloads_address_part (XEXP (ad
, 0), &XEXP (ad
, 0), BASE_REG_CLASS
,
4732 GET_MODE (ad
), opnum
, type
, ind_levels
);
4733 find_reloads_address_1 (mode
, XEXP (ad
, 1), 1, &XEXP (ad
, 1), opnum
,
4739 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4740 && GET_CODE (XEXP (ad
, 0)) == PLUS
4741 && (XEXP (XEXP (ad
, 0), 1) == frame_pointer_rtx
4742 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4743 || XEXP (XEXP (ad
, 0), 1) == hard_frame_pointer_rtx
4745 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4746 || XEXP (XEXP (ad
, 0), 1) == arg_pointer_rtx
4748 || XEXP (XEXP (ad
, 0), 1) == stack_pointer_rtx
)
4749 && ! memory_address_p (mode
, ad
))
4751 *loc
= ad
= gen_rtx_PLUS (GET_MODE (ad
),
4752 XEXP (XEXP (ad
, 0), 0),
4753 plus_constant (XEXP (XEXP (ad
, 0), 1),
4754 INTVAL (XEXP (ad
, 1))));
4755 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1), BASE_REG_CLASS
,
4756 GET_MODE (ad
), opnum
, type
, ind_levels
);
4757 find_reloads_address_1 (mode
, XEXP (ad
, 0), 1, &XEXP (ad
, 0), opnum
,
4763 /* See if address becomes valid when an eliminable register
4764 in a sum is replaced. */
4767 if (GET_CODE (ad
) == PLUS
)
4768 tem
= subst_indexed_address (ad
);
4769 if (tem
!= ad
&& strict_memory_address_p (mode
, tem
))
4771 /* Ok, we win that way. Replace any additional eliminable
4774 subst_reg_equivs_changed
= 0;
4775 tem
= subst_reg_equivs (tem
, insn
);
4777 /* Make sure that didn't make the address invalid again. */
4779 if (! subst_reg_equivs_changed
|| strict_memory_address_p (mode
, tem
))
4786 /* If constants aren't valid addresses, reload the constant address
4788 if (CONSTANT_P (ad
) && ! strict_memory_address_p (mode
, ad
))
4790 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4791 Unshare it so we can safely alter it. */
4792 if (memrefloc
&& GET_CODE (ad
) == SYMBOL_REF
4793 && CONSTANT_POOL_ADDRESS_P (ad
))
4795 *memrefloc
= copy_rtx (*memrefloc
);
4796 loc
= &XEXP (*memrefloc
, 0);
4798 loc
= &XEXP (*loc
, 0);
4801 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
, Pmode
, opnum
, type
,
4803 return ! removed_and
;
4806 return find_reloads_address_1 (mode
, ad
, 0, loc
, opnum
, type
, ind_levels
,
4810 /* Find all pseudo regs appearing in AD
4811 that are eliminable in favor of equivalent values
4812 and do not have hard regs; replace them by their equivalents.
4813 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4814 front of it for pseudos that we have to replace with stack slots. */
4817 subst_reg_equivs (ad
, insn
)
4821 register RTX_CODE code
= GET_CODE (ad
);
4823 register const char *fmt
;
4839 register int regno
= REGNO (ad
);
4841 if (reg_equiv_constant
[regno
] != 0)
4843 subst_reg_equivs_changed
= 1;
4844 return reg_equiv_constant
[regno
];
4846 if (reg_equiv_memory_loc
[regno
] && num_not_at_initial_offset
)
4848 rtx mem
= make_memloc (ad
, regno
);
4849 if (! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
4851 subst_reg_equivs_changed
= 1;
4852 emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
);
4860 /* Quickly dispose of a common case. */
4861 if (XEXP (ad
, 0) == frame_pointer_rtx
4862 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4870 fmt
= GET_RTX_FORMAT (code
);
4871 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4873 XEXP (ad
, i
) = subst_reg_equivs (XEXP (ad
, i
), insn
);
4877 /* Compute the sum of X and Y, making canonicalizations assumed in an
4878 address, namely: sum constant integers, surround the sum of two
4879 constants with a CONST, put the constant as the second operand, and
4880 group the constant on the outermost sum.
4882 This routine assumes both inputs are already in canonical form. */
4889 enum machine_mode mode
= GET_MODE (x
);
4891 if (mode
== VOIDmode
)
4892 mode
= GET_MODE (y
);
4894 if (mode
== VOIDmode
)
4897 if (GET_CODE (x
) == CONST_INT
)
4898 return plus_constant (y
, INTVAL (x
));
4899 else if (GET_CODE (y
) == CONST_INT
)
4900 return plus_constant (x
, INTVAL (y
));
4901 else if (CONSTANT_P (x
))
4902 tem
= x
, x
= y
, y
= tem
;
4904 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
4905 return form_sum (XEXP (x
, 0), form_sum (XEXP (x
, 1), y
));
4907 /* Note that if the operands of Y are specified in the opposite
4908 order in the recursive calls below, infinite recursion will occur. */
4909 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
4910 return form_sum (form_sum (x
, XEXP (y
, 0)), XEXP (y
, 1));
4912 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4913 constant will have been placed second. */
4914 if (CONSTANT_P (x
) && CONSTANT_P (y
))
4916 if (GET_CODE (x
) == CONST
)
4918 if (GET_CODE (y
) == CONST
)
4921 return gen_rtx_CONST (VOIDmode
, gen_rtx_PLUS (mode
, x
, y
));
4924 return gen_rtx_PLUS (mode
, x
, y
);
4927 /* If ADDR is a sum containing a pseudo register that should be
4928 replaced with a constant (from reg_equiv_constant),
4929 return the result of doing so, and also apply the associative
4930 law so that the result is more likely to be a valid address.
4931 (But it is not guaranteed to be one.)
4933 Note that at most one register is replaced, even if more are
4934 replaceable. Also, we try to put the result into a canonical form
4935 so it is more likely to be a valid address.
4937 In all other cases, return ADDR. */
4940 subst_indexed_address (addr
)
4943 rtx op0
= 0, op1
= 0, op2
= 0;
4947 if (GET_CODE (addr
) == PLUS
)
4949 /* Try to find a register to replace. */
4950 op0
= XEXP (addr
, 0), op1
= XEXP (addr
, 1), op2
= 0;
4951 if (GET_CODE (op0
) == REG
4952 && (regno
= REGNO (op0
)) >= FIRST_PSEUDO_REGISTER
4953 && reg_renumber
[regno
] < 0
4954 && reg_equiv_constant
[regno
] != 0)
4955 op0
= reg_equiv_constant
[regno
];
4956 else if (GET_CODE (op1
) == REG
4957 && (regno
= REGNO (op1
)) >= FIRST_PSEUDO_REGISTER
4958 && reg_renumber
[regno
] < 0
4959 && reg_equiv_constant
[regno
] != 0)
4960 op1
= reg_equiv_constant
[regno
];
4961 else if (GET_CODE (op0
) == PLUS
4962 && (tem
= subst_indexed_address (op0
)) != op0
)
4964 else if (GET_CODE (op1
) == PLUS
4965 && (tem
= subst_indexed_address (op1
)) != op1
)
4970 /* Pick out up to three things to add. */
4971 if (GET_CODE (op1
) == PLUS
)
4972 op2
= XEXP (op1
, 1), op1
= XEXP (op1
, 0);
4973 else if (GET_CODE (op0
) == PLUS
)
4974 op2
= op1
, op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4976 /* Compute the sum. */
4978 op1
= form_sum (op1
, op2
);
4980 op0
= form_sum (op0
, op1
);
4987 /* Record the pseudo registers we must reload into hard registers in a
4988 subexpression of a would-be memory address, X referring to a value
4989 in mode MODE. (This function is not called if the address we find
4992 CONTEXT = 1 means we are considering regs as index regs,
4993 = 0 means we are considering them as base regs.
4995 OPNUM and TYPE specify the purpose of any reloads made.
4997 IND_LEVELS says how many levels of indirect addressing are
4998 supported at this point in the address.
5000 INSN, if nonzero, is the insn in which we do the reload. It is used
5001 to determine if we may generate output reloads.
5003 We return nonzero if X, as a whole, is reloaded or replaced. */
5005 /* Note that we take shortcuts assuming that no multi-reg machine mode
5006 occurs as part of an address.
5007 Also, this is not fully machine-customizable; it works for machines
5008 such as vaxes and 68000's and 32000's, but other possible machines
5009 could have addressing modes that this does not handle right. */
5012 find_reloads_address_1 (mode
, x
, context
, loc
, opnum
, type
, ind_levels
, insn
)
5013 enum machine_mode mode
;
5018 enum reload_type type
;
5022 register RTX_CODE code
= GET_CODE (x
);
5028 register rtx orig_op0
= XEXP (x
, 0);
5029 register rtx orig_op1
= XEXP (x
, 1);
5030 register RTX_CODE code0
= GET_CODE (orig_op0
);
5031 register RTX_CODE code1
= GET_CODE (orig_op1
);
5032 register rtx op0
= orig_op0
;
5033 register rtx op1
= orig_op1
;
5035 if (GET_CODE (op0
) == SUBREG
)
5037 op0
= SUBREG_REG (op0
);
5038 code0
= GET_CODE (op0
);
5039 if (code0
== REG
&& REGNO (op0
) < FIRST_PSEUDO_REGISTER
)
5040 op0
= gen_rtx_REG (word_mode
,
5041 REGNO (op0
) + SUBREG_WORD (orig_op0
));
5044 if (GET_CODE (op1
) == SUBREG
)
5046 op1
= SUBREG_REG (op1
);
5047 code1
= GET_CODE (op1
);
5048 if (code1
== REG
&& REGNO (op1
) < FIRST_PSEUDO_REGISTER
)
5049 op1
= gen_rtx_REG (GET_MODE (op1
),
5050 REGNO (op1
) + SUBREG_WORD (orig_op1
));
5053 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
5054 || code0
== ZERO_EXTEND
|| code1
== MEM
)
5056 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5057 type
, ind_levels
, insn
);
5058 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5059 type
, ind_levels
, insn
);
5062 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
5063 || code1
== ZERO_EXTEND
|| code0
== MEM
)
5065 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5066 type
, ind_levels
, insn
);
5067 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5068 type
, ind_levels
, insn
);
5071 else if (code0
== CONST_INT
|| code0
== CONST
5072 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
5073 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5074 type
, ind_levels
, insn
);
5076 else if (code1
== CONST_INT
|| code1
== CONST
5077 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
5078 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5079 type
, ind_levels
, insn
);
5081 else if (code0
== REG
&& code1
== REG
)
5083 if (REG_OK_FOR_INDEX_P (op0
)
5084 && REG_MODE_OK_FOR_BASE_P (op1
, mode
))
5086 else if (REG_OK_FOR_INDEX_P (op1
)
5087 && REG_MODE_OK_FOR_BASE_P (op0
, mode
))
5089 else if (REG_MODE_OK_FOR_BASE_P (op1
, mode
))
5090 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5091 type
, ind_levels
, insn
);
5092 else if (REG_MODE_OK_FOR_BASE_P (op0
, mode
))
5093 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5094 type
, ind_levels
, insn
);
5095 else if (REG_OK_FOR_INDEX_P (op1
))
5096 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5097 type
, ind_levels
, insn
);
5098 else if (REG_OK_FOR_INDEX_P (op0
))
5099 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5100 type
, ind_levels
, insn
);
5103 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5104 type
, ind_levels
, insn
);
5105 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5106 type
, ind_levels
, insn
);
5110 else if (code0
== REG
)
5112 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5113 type
, ind_levels
, insn
);
5114 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5115 type
, ind_levels
, insn
);
5118 else if (code1
== REG
)
5120 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5121 type
, ind_levels
, insn
);
5122 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5123 type
, ind_levels
, insn
);
5133 if (GET_CODE (XEXP (x
, 0)) == REG
)
5135 register int regno
= REGNO (XEXP (x
, 0));
5139 /* A register that is incremented cannot be constant! */
5140 if (regno
>= FIRST_PSEUDO_REGISTER
5141 && reg_equiv_constant
[regno
] != 0)
5144 /* Handle a register that is equivalent to a memory location
5145 which cannot be addressed directly. */
5146 if (reg_equiv_memory_loc
[regno
] != 0
5147 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5149 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5150 if (reg_equiv_address
[regno
]
5151 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5153 /* First reload the memory location's address.
5154 We can't use ADDR_TYPE (type) here, because we need to
5155 write back the value after reading it, hence we actually
5156 need two registers. */
5157 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5158 &XEXP (tem
, 0), opnum
, type
,
5160 /* Put this inside a new increment-expression. */
5161 x
= gen_rtx_fmt_e (GET_CODE (x
), GET_MODE (x
), tem
);
5162 /* Proceed to reload that, as if it contained a register. */
5166 /* If we have a hard register that is ok as an index,
5167 don't make a reload. If an autoincrement of a nice register
5168 isn't "valid", it must be that no autoincrement is "valid".
5169 If that is true and something made an autoincrement anyway,
5170 this must be a special context where one is allowed.
5171 (For example, a "push" instruction.)
5172 We can't improve this address, so leave it alone. */
5174 /* Otherwise, reload the autoincrement into a suitable hard reg
5175 and record how much to increment by. */
5177 if (reg_renumber
[regno
] >= 0)
5178 regno
= reg_renumber
[regno
];
5179 if ((regno
>= FIRST_PSEUDO_REGISTER
5180 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
5181 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
))))
5188 /* If we can output the register afterwards, do so, this
5189 saves the extra update.
5190 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5191 CALL_INSN - and it does not set CC0.
5192 But don't do this if we cannot directly address the
5193 memory location, since this will make it harder to
5194 reuse address reloads, and increases register pressure.
5195 Also don't do this if we can probably update x directly. */
5196 rtx equiv
= (GET_CODE (XEXP (x
, 0)) == MEM
5198 : reg_equiv_mem
[regno
]);
5199 int icode
= (int) add_optab
->handlers
[(int) Pmode
].insn_code
;
5200 if (insn
&& GET_CODE (insn
) == INSN
&& equiv
5201 && memory_operand (equiv
, GET_MODE (equiv
))
5203 && ! sets_cc0_p (PATTERN (insn
))
5205 && ! (icode
!= CODE_FOR_nothing
5206 && ((*insn_data
[icode
].operand
[0].predicate
)
5208 && ((*insn_data
[icode
].operand
[1].predicate
)
5214 = push_reload (x
, x
, loc
, loc
,
5215 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5216 GET_MODE (x
), GET_MODE (x
), 0, 0,
5217 opnum
, RELOAD_OTHER
);
5219 /* If we created a new MEM based on reg_equiv_mem[REGNO], then
5220 LOC above is part of the new MEM, not the MEM in INSN.
5222 We must also replace the address of the MEM in INSN. */
5223 if (&XEXP (x_orig
, 0) != loc
)
5224 push_replacement (&XEXP (x_orig
, 0), reloadnum
, VOIDmode
);
5230 = push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5231 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5232 GET_MODE (x
), GET_MODE (x
), 0, 0,
5235 = find_inc_amount (PATTERN (this_insn
), XEXP (x_orig
, 0));
5241 /* Update the REG_INC notes. */
5243 for (link
= REG_NOTES (this_insn
);
5244 link
; link
= XEXP (link
, 1))
5245 if (REG_NOTE_KIND (link
) == REG_INC
5246 && REGNO (XEXP (link
, 0)) == REGNO (XEXP (x_orig
, 0)))
5247 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5253 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
5255 /* This is probably the result of a substitution, by eliminate_regs,
5256 of an equivalent address for a pseudo that was not allocated to a
5257 hard register. Verify that the specified address is valid and
5258 reload it into a register. */
5259 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5260 rtx tem ATTRIBUTE_UNUSED
= XEXP (x
, 0);
5264 /* Since we know we are going to reload this item, don't decrement
5265 for the indirection level.
5267 Note that this is actually conservative: it would be slightly
5268 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5270 /* We can't use ADDR_TYPE (type) here, because we need to
5271 write back the value after reading it, hence we actually
5272 need two registers. */
5273 find_reloads_address (GET_MODE (x
), &XEXP (x
, 0),
5274 XEXP (XEXP (x
, 0), 0), &XEXP (XEXP (x
, 0), 0),
5275 opnum
, type
, ind_levels
, insn
);
5277 reloadnum
= push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5278 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5279 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5281 = find_inc_amount (PATTERN (this_insn
), XEXP (x
, 0));
5283 link
= FIND_REG_INC_NOTE (this_insn
, tem
);
5285 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5292 /* This is probably the result of a substitution, by eliminate_regs, of
5293 an equivalent address for a pseudo that was not allocated to a hard
5294 register. Verify that the specified address is valid and reload it
5297 Since we know we are going to reload this item, don't decrement for
5298 the indirection level.
5300 Note that this is actually conservative: it would be slightly more
5301 efficient to use the value of SPILL_INDIRECT_LEVELS from
5304 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5305 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5306 push_reload (*loc
, NULL_RTX
, loc
, NULL_PTR
,
5307 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5308 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5313 register int regno
= REGNO (x
);
5315 if (reg_equiv_constant
[regno
] != 0)
5317 find_reloads_address_part (reg_equiv_constant
[regno
], loc
,
5318 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5319 GET_MODE (x
), opnum
, type
, ind_levels
);
5323 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5324 that feeds this insn. */
5325 if (reg_equiv_mem
[regno
] != 0)
5327 push_reload (reg_equiv_mem
[regno
], NULL_RTX
, loc
, NULL_PTR
,
5328 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5329 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5334 if (reg_equiv_memory_loc
[regno
]
5335 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5337 rtx tem
= make_memloc (x
, regno
);
5338 if (reg_equiv_address
[regno
] != 0
5339 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5342 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0),
5343 &XEXP (x
, 0), opnum
, ADDR_TYPE (type
),
5348 if (reg_renumber
[regno
] >= 0)
5349 regno
= reg_renumber
[regno
];
5351 if ((regno
>= FIRST_PSEUDO_REGISTER
5352 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
5353 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
))))
5355 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5356 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5357 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5361 /* If a register appearing in an address is the subject of a CLOBBER
5362 in this insn, reload it into some other register to be safe.
5363 The CLOBBER is supposed to make the register unavailable
5364 from before this insn to after it. */
5365 if (regno_clobbered_p (regno
, this_insn
))
5367 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5368 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5369 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5376 if (GET_CODE (SUBREG_REG (x
)) == REG
)
5378 /* If this is a SUBREG of a hard register and the resulting register
5379 is of the wrong class, reload the whole SUBREG. This avoids
5380 needless copies if SUBREG_REG is multi-word. */
5381 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5383 int regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
5385 if (! (context
? REGNO_OK_FOR_INDEX_P (regno
)
5386 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
)))
5388 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5389 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5390 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5394 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5395 is larger than the class size, then reload the whole SUBREG. */
5398 enum reg_class
class = (context
? INDEX_REG_CLASS
5400 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x
)))
5401 > reg_class_size
[class])
5403 x
= find_reloads_subreg_address (x
, 0, opnum
, type
,
5405 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
, class,
5406 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5418 register const char *fmt
= GET_RTX_FORMAT (code
);
5421 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5424 find_reloads_address_1 (mode
, XEXP (x
, i
), context
, &XEXP (x
, i
),
5425 opnum
, type
, ind_levels
, insn
);
5432 /* X, which is found at *LOC, is a part of an address that needs to be
5433 reloaded into a register of class CLASS. If X is a constant, or if
5434 X is a PLUS that contains a constant, check that the constant is a
5435 legitimate operand and that we are supposed to be able to load
5436 it into the register.
5438 If not, force the constant into memory and reload the MEM instead.
5440 MODE is the mode to use, in case X is an integer constant.
5442 OPNUM and TYPE describe the purpose of any reloads made.
5444 IND_LEVELS says how many levels of indirect addressing this machine
5448 find_reloads_address_part (x
, loc
, class, mode
, opnum
, type
, ind_levels
)
5451 enum reg_class
class;
5452 enum machine_mode mode
;
5454 enum reload_type type
;
5458 && (! LEGITIMATE_CONSTANT_P (x
)
5459 || PREFERRED_RELOAD_CLASS (x
, class) == NO_REGS
))
5463 /* If this is a CONST_INT, it could have been created by a
5464 plus_constant call in eliminate_regs, which means it may be
5465 on the reload_obstack. reload_obstack will be freed later, so
5466 we can't allow such RTL to be put in the constant pool. There
5467 is code in force_const_mem to check for this case, but it doesn't
5468 work because we have already popped off the reload_obstack, so
5469 rtl_obstack == saveable_obstack is true at this point. */
5470 if (GET_CODE (x
) == CONST_INT
)
5471 tem
= x
= force_const_mem (mode
, GEN_INT (INTVAL (x
)));
5473 tem
= x
= force_const_mem (mode
, x
);
5475 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
5476 opnum
, type
, ind_levels
, 0);
5479 else if (GET_CODE (x
) == PLUS
5480 && CONSTANT_P (XEXP (x
, 1))
5481 && (! LEGITIMATE_CONSTANT_P (XEXP (x
, 1))
5482 || PREFERRED_RELOAD_CLASS (XEXP (x
, 1), class) == NO_REGS
))
5486 /* See comment above. */
5487 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
5488 tem
= force_const_mem (GET_MODE (x
), GEN_INT (INTVAL (XEXP (x
, 1))));
5490 tem
= force_const_mem (GET_MODE (x
), XEXP (x
, 1));
5492 x
= gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0), tem
);
5493 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
5494 opnum
, type
, ind_levels
, 0);
5497 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
, class,
5498 mode
, VOIDmode
, 0, 0, opnum
, type
);
5501 /* X, a subreg of a pseudo, is a part of an address that needs to be
5504 If the pseudo is equivalent to a memory location that cannot be directly
5505 addressed, make the necessary address reloads.
5507 If address reloads have been necessary, or if the address is changed
5508 by register elimination, return the rtx of the memory location;
5509 otherwise, return X.
5511 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5514 OPNUM and TYPE identify the purpose of the reload.
5516 IND_LEVELS says how many levels of indirect addressing are
5517 supported at this point in the address.
5519 INSN, if nonzero, is the insn in which we do the reload. It is used
5520 to determine where to put USEs for pseudos that we have to replace with
5524 find_reloads_subreg_address (x
, force_replace
, opnum
, type
,
5529 enum reload_type type
;
5533 int regno
= REGNO (SUBREG_REG (x
));
5535 if (reg_equiv_memory_loc
[regno
])
5537 /* If the address is not directly addressable, or if the address is not
5538 offsettable, then it must be replaced. */
5540 && (reg_equiv_address
[regno
]
5541 || ! offsettable_memref_p (reg_equiv_mem
[regno
])))
5544 if (force_replace
|| num_not_at_initial_offset
)
5546 rtx tem
= make_memloc (SUBREG_REG (x
), regno
);
5548 /* If the address changes because of register elimination, then
5549 it must be replaced. */
5551 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5553 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
5555 if (BYTES_BIG_ENDIAN
)
5559 size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
5560 offset
+= MIN (size
, UNITS_PER_WORD
);
5561 size
= GET_MODE_SIZE (GET_MODE (x
));
5562 offset
-= MIN (size
, UNITS_PER_WORD
);
5564 XEXP (tem
, 0) = plus_constant (XEXP (tem
, 0), offset
);
5565 PUT_MODE (tem
, GET_MODE (x
));
5566 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5567 &XEXP (tem
, 0), opnum
, ADDR_TYPE (type
),
5569 /* If this is not a toplevel operand, find_reloads doesn't see
5570 this substitution. We have to emit a USE of the pseudo so
5571 that delete_output_reload can see it. */
5572 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
5573 emit_insn_before (gen_rtx_USE (VOIDmode
, SUBREG_REG (x
)), insn
);
5581 /* Substitute into the current INSN the registers into which we have reloaded
5582 the things that need reloading. The array `replacements'
5583 says contains the locations of all pointers that must be changed
5584 and says what to replace them with.
5586 Return the rtx that X translates into; usually X, but modified. */
5593 for (i
= 0; i
< n_replacements
; i
++)
5595 register struct replacement
*r
= &replacements
[i
];
5596 register rtx reloadreg
= rld
[r
->what
].reg_rtx
;
5599 /* Encapsulate RELOADREG so its machine mode matches what
5600 used to be there. Note that gen_lowpart_common will
5601 do the wrong thing if RELOADREG is multi-word. RELOADREG
5602 will always be a REG here. */
5603 if (GET_MODE (reloadreg
) != r
->mode
&& r
->mode
!= VOIDmode
)
5604 reloadreg
= gen_rtx_REG (r
->mode
, REGNO (reloadreg
));
5606 /* If we are putting this into a SUBREG and RELOADREG is a
5607 SUBREG, we would be making nested SUBREGs, so we have to fix
5608 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5610 if (r
->subreg_loc
!= 0 && GET_CODE (reloadreg
) == SUBREG
)
5612 if (GET_MODE (*r
->subreg_loc
)
5613 == GET_MODE (SUBREG_REG (reloadreg
)))
5614 *r
->subreg_loc
= SUBREG_REG (reloadreg
);
5617 *r
->where
= SUBREG_REG (reloadreg
);
5618 SUBREG_WORD (*r
->subreg_loc
) += SUBREG_WORD (reloadreg
);
5622 *r
->where
= reloadreg
;
5624 /* If reload got no reg and isn't optional, something's wrong. */
5625 else if (! rld
[r
->what
].optional
)
5630 /* Make a copy of any replacements being done into X and move those copies
5631 to locations in Y, a copy of X. We only look at the highest level of
5635 copy_replacements (x
, y
)
5640 enum rtx_code code
= GET_CODE (x
);
5641 const char *fmt
= GET_RTX_FORMAT (code
);
5642 struct replacement
*r
;
5644 /* We can't support X being a SUBREG because we might then need to know its
5645 location if something inside it was replaced. */
5649 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5651 for (j
= 0; j
< n_replacements
; j
++)
5653 if (replacements
[j
].subreg_loc
== &XEXP (x
, i
))
5655 r
= &replacements
[n_replacements
++];
5656 r
->where
= replacements
[j
].where
;
5657 r
->subreg_loc
= &XEXP (y
, i
);
5658 r
->what
= replacements
[j
].what
;
5659 r
->mode
= replacements
[j
].mode
;
5661 else if (replacements
[j
].where
== &XEXP (x
, i
))
5663 r
= &replacements
[n_replacements
++];
5664 r
->where
= &XEXP (y
, i
);
5666 r
->what
= replacements
[j
].what
;
5667 r
->mode
= replacements
[j
].mode
;
5672 /* Change any replacements being done to *X to be done to *Y */
5675 move_replacements (x
, y
)
5681 for (i
= 0; i
< n_replacements
; i
++)
5682 if (replacements
[i
].subreg_loc
== x
)
5683 replacements
[i
].subreg_loc
= y
;
5684 else if (replacements
[i
].where
== x
)
5686 replacements
[i
].where
= y
;
5687 replacements
[i
].subreg_loc
= 0;
5691 /* If LOC was scheduled to be replaced by something, return the replacement.
5692 Otherwise, return *LOC. */
5695 find_replacement (loc
)
5698 struct replacement
*r
;
5700 for (r
= &replacements
[0]; r
< &replacements
[n_replacements
]; r
++)
5702 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
5704 if (reloadreg
&& r
->where
== loc
)
5706 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
5707 reloadreg
= gen_rtx_REG (r
->mode
, REGNO (reloadreg
));
5711 else if (reloadreg
&& r
->subreg_loc
== loc
)
5713 /* RELOADREG must be either a REG or a SUBREG.
5715 ??? Is it actually still ever a SUBREG? If so, why? */
5717 if (GET_CODE (reloadreg
) == REG
)
5718 return gen_rtx_REG (GET_MODE (*loc
),
5719 REGNO (reloadreg
) + SUBREG_WORD (*loc
));
5720 else if (GET_MODE (reloadreg
) == GET_MODE (*loc
))
5723 return gen_rtx_SUBREG (GET_MODE (*loc
), SUBREG_REG (reloadreg
),
5724 SUBREG_WORD (reloadreg
) + SUBREG_WORD (*loc
));
5728 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5729 what's inside and make a new rtl if so. */
5730 if (GET_CODE (*loc
) == PLUS
|| GET_CODE (*loc
) == MINUS
5731 || GET_CODE (*loc
) == MULT
)
5733 rtx x
= find_replacement (&XEXP (*loc
, 0));
5734 rtx y
= find_replacement (&XEXP (*loc
, 1));
5736 if (x
!= XEXP (*loc
, 0) || y
!= XEXP (*loc
, 1))
5737 return gen_rtx_fmt_ee (GET_CODE (*loc
), GET_MODE (*loc
), x
, y
);
5743 /* Return nonzero if register in range [REGNO, ENDREGNO)
5744 appears either explicitly or implicitly in X
5745 other than being stored into (except for earlyclobber operands).
5747 References contained within the substructure at LOC do not count.
5748 LOC may be zero, meaning don't ignore anything.
5750 This is similar to refers_to_regno_p in rtlanal.c except that we
5751 look at equivalences for pseudos that didn't get hard registers. */
5754 refers_to_regno_for_reload_p (regno
, endregno
, x
, loc
)
5755 int regno
, endregno
;
5760 register RTX_CODE code
;
5761 register const char *fmt
;
5767 code
= GET_CODE (x
);
5774 /* If this is a pseudo, a hard register must not have been allocated.
5775 X must therefore either be a constant or be in memory. */
5776 if (i
>= FIRST_PSEUDO_REGISTER
)
5778 if (reg_equiv_memory_loc
[i
])
5779 return refers_to_regno_for_reload_p (regno
, endregno
,
5780 reg_equiv_memory_loc
[i
],
5783 if (reg_equiv_constant
[i
])
5789 return (endregno
> i
5790 && regno
< i
+ (i
< FIRST_PSEUDO_REGISTER
5791 ? HARD_REGNO_NREGS (i
, GET_MODE (x
))
5795 /* If this is a SUBREG of a hard reg, we can see exactly which
5796 registers are being modified. Otherwise, handle normally. */
5797 if (GET_CODE (SUBREG_REG (x
)) == REG
5798 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5800 int inner_regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
5802 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
5803 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5805 return endregno
> inner_regno
&& regno
< inner_endregno
;
5811 if (&SET_DEST (x
) != loc
5812 /* Note setting a SUBREG counts as referring to the REG it is in for
5813 a pseudo but not for hard registers since we can
5814 treat each word individually. */
5815 && ((GET_CODE (SET_DEST (x
)) == SUBREG
5816 && loc
!= &SUBREG_REG (SET_DEST (x
))
5817 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
5818 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
5819 && refers_to_regno_for_reload_p (regno
, endregno
,
5820 SUBREG_REG (SET_DEST (x
)),
5822 /* If the output is an earlyclobber operand, this is
5824 || ((GET_CODE (SET_DEST (x
)) != REG
5825 || earlyclobber_operand_p (SET_DEST (x
)))
5826 && refers_to_regno_for_reload_p (regno
, endregno
,
5827 SET_DEST (x
), loc
))))
5830 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
5839 /* X does not match, so try its subexpressions. */
5841 fmt
= GET_RTX_FORMAT (code
);
5842 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5844 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
5852 if (refers_to_regno_for_reload_p (regno
, endregno
,
5856 else if (fmt
[i
] == 'E')
5859 for (j
= XVECLEN (x
, i
) - 1; j
>=0; j
--)
5860 if (loc
!= &XVECEXP (x
, i
, j
)
5861 && refers_to_regno_for_reload_p (regno
, endregno
,
5862 XVECEXP (x
, i
, j
), loc
))
5869 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5870 we check if any register number in X conflicts with the relevant register
5871 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5872 contains a MEM (we don't bother checking for memory addresses that can't
5873 conflict because we expect this to be a rare case.
5875 This function is similar to reg_overlap_mention_p in rtlanal.c except
5876 that we look at equivalences for pseudos that didn't get hard registers. */
5879 reg_overlap_mentioned_for_reload_p (x
, in
)
5882 int regno
, endregno
;
5884 /* Overly conservative. */
5885 if (GET_CODE (x
) == STRICT_LOW_PART
)
5888 /* If either argument is a constant, then modifying X can not affect IN. */
5889 if (CONSTANT_P (x
) || CONSTANT_P (in
))
5891 else if (GET_CODE (x
) == SUBREG
)
5893 regno
= REGNO (SUBREG_REG (x
));
5894 if (regno
< FIRST_PSEUDO_REGISTER
)
5895 regno
+= SUBREG_WORD (x
);
5897 else if (GET_CODE (x
) == REG
)
5901 /* If this is a pseudo, it must not have been assigned a hard register.
5902 Therefore, it must either be in memory or be a constant. */
5904 if (regno
>= FIRST_PSEUDO_REGISTER
)
5906 if (reg_equiv_memory_loc
[regno
])
5907 return refers_to_mem_for_reload_p (in
);
5908 else if (reg_equiv_constant
[regno
])
5913 else if (GET_CODE (x
) == MEM
)
5914 return refers_to_mem_for_reload_p (in
);
5915 else if (GET_CODE (x
) == SCRATCH
|| GET_CODE (x
) == PC
5916 || GET_CODE (x
) == CC0
)
5917 return reg_mentioned_p (x
, in
);
5921 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
5922 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5924 return refers_to_regno_for_reload_p (regno
, endregno
, in
, NULL_PTR
);
5927 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5931 refers_to_mem_for_reload_p (x
)
5937 if (GET_CODE (x
) == MEM
)
5940 if (GET_CODE (x
) == REG
)
5941 return (REGNO (x
) >= FIRST_PSEUDO_REGISTER
5942 && reg_equiv_memory_loc
[REGNO (x
)]);
5944 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5945 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5947 && (GET_CODE (XEXP (x
, i
)) == MEM
5948 || refers_to_mem_for_reload_p (XEXP (x
, i
))))
5954 /* Check the insns before INSN to see if there is a suitable register
5955 containing the same value as GOAL.
5956 If OTHER is -1, look for a register in class CLASS.
5957 Otherwise, just see if register number OTHER shares GOAL's value.
5959 Return an rtx for the register found, or zero if none is found.
5961 If RELOAD_REG_P is (short *)1,
5962 we reject any hard reg that appears in reload_reg_rtx
5963 because such a hard reg is also needed coming into this insn.
5965 If RELOAD_REG_P is any other nonzero value,
5966 it is a vector indexed by hard reg number
5967 and we reject any hard reg whose element in the vector is nonnegative
5968 as well as any that appears in reload_reg_rtx.
5970 If GOAL is zero, then GOALREG is a register number; we look
5971 for an equivalent for that register.
5973 MODE is the machine mode of the value we want an equivalence for.
5974 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5976 This function is used by jump.c as well as in the reload pass.
5978 If GOAL is the sum of the stack pointer and a constant, we treat it
5979 as if it were a constant except that sp is required to be unchanging. */
5982 find_equiv_reg (goal
, insn
, class, other
, reload_reg_p
, goalreg
, mode
)
5985 enum reg_class
class;
5987 short *reload_reg_p
;
5989 enum machine_mode mode
;
5991 register rtx p
= insn
;
5992 rtx goaltry
, valtry
, value
, where
;
5994 register int regno
= -1;
5998 int goal_mem_addr_varies
= 0;
5999 int need_stable_sp
= 0;
6005 else if (GET_CODE (goal
) == REG
)
6006 regno
= REGNO (goal
);
6007 else if (GET_CODE (goal
) == MEM
)
6009 enum rtx_code code
= GET_CODE (XEXP (goal
, 0));
6010 if (MEM_VOLATILE_P (goal
))
6012 if (flag_float_store
&& GET_MODE_CLASS (GET_MODE (goal
)) == MODE_FLOAT
)
6014 /* An address with side effects must be reexecuted. */
6027 else if (CONSTANT_P (goal
))
6029 else if (GET_CODE (goal
) == PLUS
6030 && XEXP (goal
, 0) == stack_pointer_rtx
6031 && CONSTANT_P (XEXP (goal
, 1)))
6032 goal_const
= need_stable_sp
= 1;
6033 else if (GET_CODE (goal
) == PLUS
6034 && XEXP (goal
, 0) == frame_pointer_rtx
6035 && CONSTANT_P (XEXP (goal
, 1)))
6040 /* Scan insns back from INSN, looking for one that copies
6041 a value into or out of GOAL.
6042 Stop and give up if we reach a label. */
6047 if (p
== 0 || GET_CODE (p
) == CODE_LABEL
)
6049 if (GET_CODE (p
) == INSN
6050 /* If we don't want spill regs ... */
6051 && (! (reload_reg_p
!= 0
6052 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1)
6053 /* ... then ignore insns introduced by reload; they aren't useful
6054 and can cause results in reload_as_needed to be different
6055 from what they were when calculating the need for spills.
6056 If we notice an input-reload insn here, we will reject it below,
6057 but it might hide a usable equivalent. That makes bad code.
6058 It may even abort: perhaps no reg was spilled for this insn
6059 because it was assumed we would find that equivalent. */
6060 || INSN_UID (p
) < reload_first_uid
))
6063 pat
= single_set (p
);
6064 /* First check for something that sets some reg equal to GOAL. */
6067 && true_regnum (SET_SRC (pat
)) == regno
6068 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6071 && true_regnum (SET_DEST (pat
)) == regno
6072 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0)
6074 (goal_const
&& rtx_equal_p (SET_SRC (pat
), goal
)
6075 /* When looking for stack pointer + const,
6076 make sure we don't use a stack adjust. */
6077 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat
), goal
)
6078 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6080 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0
6081 && rtx_renumbered_equal_p (goal
, SET_SRC (pat
)))
6083 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0
6084 && rtx_renumbered_equal_p (goal
, SET_DEST (pat
)))
6085 /* If we are looking for a constant,
6086 and something equivalent to that constant was copied
6087 into a reg, we can use that reg. */
6088 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6090 && rtx_equal_p (XEXP (tem
, 0), goal
)
6091 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6092 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6094 && GET_CODE (SET_DEST (pat
)) == REG
6095 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6096 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
6097 && GET_CODE (goal
) == CONST_INT
6098 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 0, 0,
6100 && rtx_equal_p (goal
, goaltry
)
6101 && (valtry
= operand_subword (SET_DEST (pat
), 0, 0,
6103 && (valueno
= true_regnum (valtry
)) >= 0)
6104 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6106 && GET_CODE (SET_DEST (pat
)) == REG
6107 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6108 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
6109 && GET_CODE (goal
) == CONST_INT
6110 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 1, 0,
6112 && rtx_equal_p (goal
, goaltry
)
6114 = operand_subword (SET_DEST (pat
), 1, 0, VOIDmode
))
6115 && (valueno
= true_regnum (valtry
)) >= 0)))
6118 : ((unsigned) valueno
< FIRST_PSEUDO_REGISTER
6119 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
6129 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6130 (or copying VALUE into GOAL, if GOAL is also a register).
6131 Now verify that VALUE is really valid. */
6133 /* VALUENO is the register number of VALUE; a hard register. */
6135 /* Don't try to re-use something that is killed in this insn. We want
6136 to be able to trust REG_UNUSED notes. */
6137 if (find_reg_note (where
, REG_UNUSED
, value
))
6140 /* If we propose to get the value from the stack pointer or if GOAL is
6141 a MEM based on the stack pointer, we need a stable SP. */
6142 if (valueno
== STACK_POINTER_REGNUM
|| regno
== STACK_POINTER_REGNUM
6143 || (goal_mem
&& reg_overlap_mentioned_for_reload_p (stack_pointer_rtx
,
6147 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6148 if (GET_MODE (value
) != mode
)
6151 /* Reject VALUE if it was loaded from GOAL
6152 and is also a register that appears in the address of GOAL. */
6154 if (goal_mem
&& value
== SET_DEST (single_set (where
))
6155 && refers_to_regno_for_reload_p (valueno
,
6157 + HARD_REGNO_NREGS (valueno
, mode
)),
6161 /* Reject registers that overlap GOAL. */
6163 if (!goal_mem
&& !goal_const
6164 && regno
+ HARD_REGNO_NREGS (regno
, mode
) > valueno
6165 && regno
< valueno
+ HARD_REGNO_NREGS (valueno
, mode
))
6168 /* Reject VALUE if it is one of the regs reserved for reloads.
6169 Reload1 knows how to reuse them anyway, and it would get
6170 confused if we allocated one without its knowledge.
6171 (Now that insns introduced by reload are ignored above,
6172 this case shouldn't happen, but I'm not positive.) */
6174 if (reload_reg_p
!= 0 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1
6175 && reload_reg_p
[valueno
] >= 0)
6178 nregs
= HARD_REGNO_NREGS (regno
, mode
);
6179 valuenregs
= HARD_REGNO_NREGS (valueno
, mode
);
6181 /* Reject VALUE if it is a register being used for an input reload
6182 even if it is not one of those reserved. */
6184 if (reload_reg_p
!= 0)
6187 for (i
= 0; i
< n_reloads
; i
++)
6188 if (rld
[i
].reg_rtx
!= 0 && rld
[i
].in
)
6190 int regno1
= REGNO (rld
[i
].reg_rtx
);
6191 int nregs1
= HARD_REGNO_NREGS (regno1
,
6192 GET_MODE (rld
[i
].reg_rtx
));
6193 if (regno1
< valueno
+ valuenregs
6194 && regno1
+ nregs1
> valueno
)
6200 /* We must treat frame pointer as varying here,
6201 since it can vary--in a nonlocal goto as generated by expand_goto. */
6202 goal_mem_addr_varies
= !CONSTANT_ADDRESS_P (XEXP (goal
, 0));
6204 /* Now verify that the values of GOAL and VALUE remain unaltered
6205 until INSN is reached. */
6214 /* Don't trust the conversion past a function call
6215 if either of the two is in a call-clobbered register, or memory. */
6216 if (GET_CODE (p
) == CALL_INSN
6217 && ((regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
6218 && call_used_regs
[regno
])
6220 (valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
6221 && call_used_regs
[valueno
])
6227 #ifdef NON_SAVING_SETJMP
6228 if (NON_SAVING_SETJMP
&& GET_CODE (p
) == NOTE
6229 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_SETJMP
)
6233 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
6237 /* Watch out for unspec_volatile, and volatile asms. */
6238 if (volatile_insn_p (pat
))
6241 /* If this insn P stores in either GOAL or VALUE, return 0.
6242 If GOAL is a memory ref and this insn writes memory, return 0.
6243 If GOAL is a memory ref and its address is not constant,
6244 and this insn P changes a register used in GOAL, return 0. */
6246 if (GET_CODE (pat
) == SET
|| GET_CODE (pat
) == CLOBBER
)
6248 register rtx dest
= SET_DEST (pat
);
6249 while (GET_CODE (dest
) == SUBREG
6250 || GET_CODE (dest
) == ZERO_EXTRACT
6251 || GET_CODE (dest
) == SIGN_EXTRACT
6252 || GET_CODE (dest
) == STRICT_LOW_PART
)
6253 dest
= XEXP (dest
, 0);
6254 if (GET_CODE (dest
) == REG
)
6256 register int xregno
= REGNO (dest
);
6258 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6259 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6262 if (xregno
< regno
+ nregs
&& xregno
+ xnregs
> regno
)
6264 if (xregno
< valueno
+ valuenregs
6265 && xregno
+ xnregs
> valueno
)
6267 if (goal_mem_addr_varies
6268 && reg_overlap_mentioned_for_reload_p (dest
, goal
))
6270 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6273 else if (goal_mem
&& GET_CODE (dest
) == MEM
6274 && ! push_operand (dest
, GET_MODE (dest
)))
6276 else if (GET_CODE (dest
) == MEM
&& regno
>= FIRST_PSEUDO_REGISTER
6277 && reg_equiv_memory_loc
[regno
] != 0)
6279 else if (need_stable_sp
&& push_operand (dest
, GET_MODE (dest
)))
6282 else if (GET_CODE (pat
) == PARALLEL
)
6285 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
6287 register rtx v1
= XVECEXP (pat
, 0, i
);
6288 if (GET_CODE (v1
) == SET
|| GET_CODE (v1
) == CLOBBER
)
6290 register rtx dest
= SET_DEST (v1
);
6291 while (GET_CODE (dest
) == SUBREG
6292 || GET_CODE (dest
) == ZERO_EXTRACT
6293 || GET_CODE (dest
) == SIGN_EXTRACT
6294 || GET_CODE (dest
) == STRICT_LOW_PART
)
6295 dest
= XEXP (dest
, 0);
6296 if (GET_CODE (dest
) == REG
)
6298 register int xregno
= REGNO (dest
);
6300 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6301 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6304 if (xregno
< regno
+ nregs
6305 && xregno
+ xnregs
> regno
)
6307 if (xregno
< valueno
+ valuenregs
6308 && xregno
+ xnregs
> valueno
)
6310 if (goal_mem_addr_varies
6311 && reg_overlap_mentioned_for_reload_p (dest
,
6314 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6317 else if (goal_mem
&& GET_CODE (dest
) == MEM
6318 && ! push_operand (dest
, GET_MODE (dest
)))
6320 else if (GET_CODE (dest
) == MEM
&& regno
>= FIRST_PSEUDO_REGISTER
6321 && reg_equiv_memory_loc
[regno
] != 0)
6323 else if (need_stable_sp
6324 && push_operand (dest
, GET_MODE (dest
)))
6330 if (GET_CODE (p
) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (p
))
6334 for (link
= CALL_INSN_FUNCTION_USAGE (p
); XEXP (link
, 1) != 0;
6335 link
= XEXP (link
, 1))
6337 pat
= XEXP (link
, 0);
6338 if (GET_CODE (pat
) == CLOBBER
)
6340 register rtx dest
= SET_DEST (pat
);
6341 while (GET_CODE (dest
) == SUBREG
6342 || GET_CODE (dest
) == ZERO_EXTRACT
6343 || GET_CODE (dest
) == SIGN_EXTRACT
6344 || GET_CODE (dest
) == STRICT_LOW_PART
)
6345 dest
= XEXP (dest
, 0);
6346 if (GET_CODE (dest
) == REG
)
6348 register int xregno
= REGNO (dest
);
6350 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6351 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6354 if (xregno
< regno
+ nregs
6355 && xregno
+ xnregs
> regno
)
6357 if (xregno
< valueno
+ valuenregs
6358 && xregno
+ xnregs
> valueno
)
6360 if (goal_mem_addr_varies
6361 && reg_overlap_mentioned_for_reload_p (dest
,
6365 else if (goal_mem
&& GET_CODE (dest
) == MEM
6366 && ! push_operand (dest
, GET_MODE (dest
)))
6368 else if (need_stable_sp
6369 && push_operand (dest
, GET_MODE (dest
)))
6376 /* If this insn auto-increments or auto-decrements
6377 either regno or valueno, return 0 now.
6378 If GOAL is a memory ref and its address is not constant,
6379 and this insn P increments a register used in GOAL, return 0. */
6383 for (link
= REG_NOTES (p
); link
; link
= XEXP (link
, 1))
6384 if (REG_NOTE_KIND (link
) == REG_INC
6385 && GET_CODE (XEXP (link
, 0)) == REG
)
6387 register int incno
= REGNO (XEXP (link
, 0));
6388 if (incno
< regno
+ nregs
&& incno
>= regno
)
6390 if (incno
< valueno
+ valuenregs
&& incno
>= valueno
)
6392 if (goal_mem_addr_varies
6393 && reg_overlap_mentioned_for_reload_p (XEXP (link
, 0),
6403 /* Find a place where INCED appears in an increment or decrement operator
6404 within X, and return the amount INCED is incremented or decremented by.
6405 The value is always positive. */
6408 find_inc_amount (x
, inced
)
6411 register enum rtx_code code
= GET_CODE (x
);
6412 register const char *fmt
;
6417 register rtx addr
= XEXP (x
, 0);
6418 if ((GET_CODE (addr
) == PRE_DEC
6419 || GET_CODE (addr
) == POST_DEC
6420 || GET_CODE (addr
) == PRE_INC
6421 || GET_CODE (addr
) == POST_INC
)
6422 && XEXP (addr
, 0) == inced
)
6423 return GET_MODE_SIZE (GET_MODE (x
));
6426 fmt
= GET_RTX_FORMAT (code
);
6427 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6431 register int tem
= find_inc_amount (XEXP (x
, i
), inced
);
6438 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6440 register int tem
= find_inc_amount (XVECEXP (x
, i
, j
), inced
);
6450 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6453 regno_clobbered_p (regno
, insn
)
6457 if (GET_CODE (PATTERN (insn
)) == CLOBBER
6458 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
)
6459 return REGNO (XEXP (PATTERN (insn
), 0)) == regno
;
6461 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
6463 int i
= XVECLEN (PATTERN (insn
), 0) - 1;
6467 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
6468 if (GET_CODE (elt
) == CLOBBER
&& GET_CODE (XEXP (elt
, 0)) == REG
6469 && REGNO (XEXP (elt
, 0)) == regno
)
6477 static const char *reload_when_needed_name
[] =
6480 "RELOAD_FOR_OUTPUT",
6482 "RELOAD_FOR_INPUT_ADDRESS",
6483 "RELOAD_FOR_INPADDR_ADDRESS",
6484 "RELOAD_FOR_OUTPUT_ADDRESS",
6485 "RELOAD_FOR_OUTADDR_ADDRESS",
6486 "RELOAD_FOR_OPERAND_ADDRESS",
6487 "RELOAD_FOR_OPADDR_ADDR",
6489 "RELOAD_FOR_OTHER_ADDRESS"
6492 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
6494 /* These functions are used to print the variables set by 'find_reloads' */
6497 debug_reload_to_stream (f
)
6505 for (r
= 0; r
< n_reloads
; r
++)
6507 fprintf (f
, "Reload %d: ", r
);
6511 fprintf (f
, "reload_in (%s) = ",
6512 GET_MODE_NAME (rld
[r
].inmode
));
6513 print_inline_rtx (f
, rld
[r
].in
, 24);
6514 fprintf (f
, "\n\t");
6517 if (rld
[r
].out
!= 0)
6519 fprintf (f
, "reload_out (%s) = ",
6520 GET_MODE_NAME (rld
[r
].outmode
));
6521 print_inline_rtx (f
, rld
[r
].out
, 24);
6522 fprintf (f
, "\n\t");
6525 fprintf (f
, "%s, ", reg_class_names
[(int) rld
[r
].class]);
6527 fprintf (f
, "%s (opnum = %d)",
6528 reload_when_needed_name
[(int) rld
[r
].when_needed
],
6531 if (rld
[r
].optional
)
6532 fprintf (f
, ", optional");
6534 if (rld
[r
].nongroup
)
6535 fprintf (stderr
, ", nongroup");
6537 if (rld
[r
].inc
!= 0)
6538 fprintf (f
, ", inc by %d", rld
[r
].inc
);
6540 if (rld
[r
].nocombine
)
6541 fprintf (f
, ", can't combine");
6543 if (rld
[r
].secondary_p
)
6544 fprintf (f
, ", secondary_reload_p");
6546 if (rld
[r
].in_reg
!= 0)
6548 fprintf (f
, "\n\treload_in_reg: ");
6549 print_inline_rtx (f
, rld
[r
].in_reg
, 24);
6552 if (rld
[r
].out_reg
!= 0)
6554 fprintf (f
, "\n\treload_out_reg: ");
6555 print_inline_rtx (f
, rld
[r
].out_reg
, 24);
6558 if (rld
[r
].reg_rtx
!= 0)
6560 fprintf (f
, "\n\treload_reg_rtx: ");
6561 print_inline_rtx (f
, rld
[r
].reg_rtx
, 24);
6565 if (rld
[r
].secondary_in_reload
!= -1)
6567 fprintf (f
, "%ssecondary_in_reload = %d",
6568 prefix
, rld
[r
].secondary_in_reload
);
6572 if (rld
[r
].secondary_out_reload
!= -1)
6573 fprintf (f
, "%ssecondary_out_reload = %d\n",
6574 prefix
, rld
[r
].secondary_out_reload
);
6577 if (rld
[r
].secondary_in_icode
!= CODE_FOR_nothing
)
6579 fprintf (stderr
, "%ssecondary_in_icode = %s", prefix
,
6580 insn_data
[rld
[r
].secondary_in_icode
].name
);
6584 if (rld
[r
].secondary_out_icode
!= CODE_FOR_nothing
)
6585 fprintf (stderr
, "%ssecondary_out_icode = %s", prefix
,
6586 insn_data
[rld
[r
].secondary_out_icode
].name
);
6595 debug_reload_to_stream (stderr
);