2005-12-15 Paolo Bonzini <bonzini@gnu.org>
[official-gcc.git] / gcc / combine.c
blobd09461b3a5beb5e821168ccacb4a729d4b1ed877
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
59 REG_DEAD note is lost
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
62 linking
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
75 combine anyway. */
77 #include "config.h"
78 #include "system.h"
79 #include "coretypes.h"
80 #include "tm.h"
81 #include "rtl.h"
82 #include "tree.h"
83 #include "tm_p.h"
84 #include "flags.h"
85 #include "regs.h"
86 #include "hard-reg-set.h"
87 #include "basic-block.h"
88 #include "insn-config.h"
89 #include "function.h"
90 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
91 #include "expr.h"
92 #include "insn-attr.h"
93 #include "recog.h"
94 #include "real.h"
95 #include "toplev.h"
96 #include "target.h"
97 #include "optabs.h"
98 #include "insn-codes.h"
99 #include "rtlhooks-def.h"
100 /* Include output.h for dump_file. */
101 #include "output.h"
102 #include "params.h"
103 #include "timevar.h"
104 #include "tree-pass.h"
106 /* Number of attempts to combine instructions in this function. */
108 static int combine_attempts;
110 /* Number of attempts that got as far as substitution in this function. */
112 static int combine_merges;
114 /* Number of instructions combined with added SETs in this function. */
116 static int combine_extras;
118 /* Number of instructions combined in this function. */
120 static int combine_successes;
122 /* Totals over entire compilation. */
124 static int total_attempts, total_merges, total_extras, total_successes;
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid;
135 static int max_uid_cuid;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
143 BITS_PER_WORD would invoke undefined behavior. Work around it. */
145 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
146 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
148 /* Maximum register number, which is the size of the tables below. */
150 static unsigned int combine_max_regno;
152 struct reg_stat {
153 /* Record last point of death of (hard or pseudo) register n. */
154 rtx last_death;
156 /* Record last point of modification of (hard or pseudo) register n. */
157 rtx last_set;
159 /* The next group of fields allows the recording of the last value assigned
160 to (hard or pseudo) register n. We use this information to see if an
161 operation being processed is redundant given a prior operation performed
162 on the register. For example, an `and' with a constant is redundant if
163 all the zero bits are already known to be turned off.
165 We use an approach similar to that used by cse, but change it in the
166 following ways:
168 (1) We do not want to reinitialize at each label.
169 (2) It is useful, but not critical, to know the actual value assigned
170 to a register. Often just its form is helpful.
172 Therefore, we maintain the following fields:
174 last_set_value the last value assigned
175 last_set_label records the value of label_tick when the
176 register was assigned
177 last_set_table_tick records the value of label_tick when a
178 value using the register is assigned
179 last_set_invalid set to nonzero when it is not valid
180 to use the value of this register in some
181 register's value
183 To understand the usage of these tables, it is important to understand
184 the distinction between the value in last_set_value being valid and
185 the register being validly contained in some other expression in the
186 table.
188 (The next two parameters are out of date).
190 reg_stat[i].last_set_value is valid if it is nonzero, and either
191 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
193 Register I may validly appear in any expression returned for the value
194 of another register if reg_n_sets[i] is 1. It may also appear in the
195 value for register J if reg_stat[j].last_set_invalid is zero, or
196 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
198 If an expression is found in the table containing a register which may
199 not validly appear in an expression, the register is replaced by
200 something that won't match, (clobber (const_int 0)). */
202 /* Record last value assigned to (hard or pseudo) register n. */
204 rtx last_set_value;
206 /* Record the value of label_tick when an expression involving register n
207 is placed in last_set_value. */
209 int last_set_table_tick;
211 /* Record the value of label_tick when the value for register n is placed in
212 last_set_value. */
214 int last_set_label;
216 /* These fields are maintained in parallel with last_set_value and are
217 used to store the mode in which the register was last set, the bits
218 that were known to be zero when it was last set, and the number of
219 sign bits copies it was known to have when it was last set. */
221 unsigned HOST_WIDE_INT last_set_nonzero_bits;
222 char last_set_sign_bit_copies;
223 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
225 /* Set nonzero if references to register n in expressions should not be
226 used. last_set_invalid is set nonzero when this register is being
227 assigned to and last_set_table_tick == label_tick. */
229 char last_set_invalid;
231 /* Some registers that are set more than once and used in more than one
232 basic block are nevertheless always set in similar ways. For example,
233 a QImode register may be loaded from memory in two places on a machine
234 where byte loads zero extend.
236 We record in the following fields if a register has some leading bits
237 that are always equal to the sign bit, and what we know about the
238 nonzero bits of a register, specifically which bits are known to be
239 zero.
241 If an entry is zero, it means that we don't know anything special. */
243 unsigned char sign_bit_copies;
245 unsigned HOST_WIDE_INT nonzero_bits;
248 static struct reg_stat *reg_stat;
250 /* Record the cuid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
253 static int mem_last_set;
255 /* Record the cuid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
258 static int last_call_cuid;
260 /* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
266 static rtx subst_insn;
268 /* This is the lowest CUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this CUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
275 static int subst_low_cuid;
277 /* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
280 static HARD_REG_SET newpat_used_regs;
282 /* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
286 static rtx added_links_insn;
288 /* Basic block in which we are performing combines. */
289 static basic_block this_basic_block;
291 /* A bitmap indicating which blocks had registers go dead at entry.
292 After combine, we'll need to re-do global life analysis with
293 those blocks as starting points. */
294 static sbitmap refresh_blocks;
296 /* The following array records the insn_rtx_cost for every insn
297 in the instruction stream. */
299 static int *uid_insn_cost;
301 /* Length of the currently allocated uid_insn_cost array. */
303 static int last_insn_cost;
305 /* Incremented for each label. */
307 static int label_tick;
309 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
310 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
312 static enum machine_mode nonzero_bits_mode;
314 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
315 be safely used. It is zero while computing them and after combine has
316 completed. This former test prevents propagating values based on
317 previously set values, which can be incorrect if a variable is modified
318 in a loop. */
320 static int nonzero_sign_valid;
323 /* Record one modification to rtl structure
324 to be undone by storing old_contents into *where.
325 is_int is 1 if the contents are an int. */
327 struct undo
329 struct undo *next;
330 int is_int;
331 union {rtx r; int i;} old_contents;
332 union {rtx *r; int *i;} where;
335 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
336 num_undo says how many are currently recorded.
338 other_insn is nonzero if we have modified some other insn in the process
339 of working on subst_insn. It must be verified too. */
341 struct undobuf
343 struct undo *undos;
344 struct undo *frees;
345 rtx other_insn;
348 static struct undobuf undobuf;
350 /* Number of times the pseudo being substituted for
351 was found and replaced. */
353 static int n_occurrences;
355 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
356 enum machine_mode,
357 unsigned HOST_WIDE_INT,
358 unsigned HOST_WIDE_INT *);
359 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
360 enum machine_mode,
361 unsigned int, unsigned int *);
362 static void do_SUBST (rtx *, rtx);
363 static void do_SUBST_INT (int *, int);
364 static void init_reg_last (void);
365 static void setup_incoming_promotions (void);
366 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
367 static int cant_combine_insn_p (rtx);
368 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
369 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
370 static int contains_muldiv (rtx);
371 static rtx try_combine (rtx, rtx, rtx, int *);
372 static void undo_all (void);
373 static void undo_commit (void);
374 static rtx *find_split_point (rtx *, rtx);
375 static rtx subst (rtx, rtx, rtx, int, int);
376 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
377 static rtx simplify_if_then_else (rtx);
378 static rtx simplify_set (rtx);
379 static rtx simplify_logical (rtx);
380 static rtx expand_compound_operation (rtx);
381 static rtx expand_field_assignment (rtx);
382 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
383 rtx, unsigned HOST_WIDE_INT, int, int, int);
384 static rtx extract_left_shift (rtx, int);
385 static rtx make_compound_operation (rtx, enum rtx_code);
386 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
387 unsigned HOST_WIDE_INT *);
388 static rtx canon_reg_for_combine (rtx, rtx);
389 static rtx force_to_mode (rtx, enum machine_mode,
390 unsigned HOST_WIDE_INT, int);
391 static rtx if_then_else_cond (rtx, rtx *, rtx *);
392 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
393 static int rtx_equal_for_field_assignment_p (rtx, rtx);
394 static rtx make_field_assignment (rtx);
395 static rtx apply_distributive_law (rtx);
396 static rtx distribute_and_simplify_rtx (rtx, int);
397 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
398 unsigned HOST_WIDE_INT);
399 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
400 HOST_WIDE_INT, enum machine_mode, int *);
401 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
402 int);
403 static int recog_for_combine (rtx *, rtx, rtx *);
404 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
405 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
406 static void update_table_tick (rtx);
407 static void record_value_for_reg (rtx, rtx, rtx);
408 static void check_promoted_subreg (rtx, rtx);
409 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
410 static void record_dead_and_set_regs (rtx);
411 static int get_last_value_validate (rtx *, rtx, int, int);
412 static rtx get_last_value (rtx);
413 static int use_crosses_set_p (rtx, int);
414 static void reg_dead_at_p_1 (rtx, rtx, void *);
415 static int reg_dead_at_p (rtx, rtx);
416 static void move_deaths (rtx, rtx, int, rtx, rtx *);
417 static int reg_bitfield_target_p (rtx, rtx);
418 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
419 static void distribute_links (rtx);
420 static void mark_used_regs_combine (rtx);
421 static int insn_cuid (rtx);
422 static void record_promoted_value (rtx, rtx);
423 static int unmentioned_reg_p_1 (rtx *, void *);
424 static bool unmentioned_reg_p (rtx, rtx);
427 /* It is not safe to use ordinary gen_lowpart in combine.
428 See comments in gen_lowpart_for_combine. */
429 #undef RTL_HOOKS_GEN_LOWPART
430 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
432 /* Our implementation of gen_lowpart never emits a new pseudo. */
433 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
434 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
436 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
437 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
439 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
440 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
442 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
445 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
446 insn. The substitution can be undone by undo_all. If INTO is already
447 set to NEWVAL, do not record this change. Because computing NEWVAL might
448 also call SUBST, we have to compute it before we put anything into
449 the undo table. */
451 static void
452 do_SUBST (rtx *into, rtx newval)
454 struct undo *buf;
455 rtx oldval = *into;
457 if (oldval == newval)
458 return;
460 /* We'd like to catch as many invalid transformations here as
461 possible. Unfortunately, there are way too many mode changes
462 that are perfectly valid, so we'd waste too much effort for
463 little gain doing the checks here. Focus on catching invalid
464 transformations involving integer constants. */
465 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
466 && GET_CODE (newval) == CONST_INT)
468 /* Sanity check that we're replacing oldval with a CONST_INT
469 that is a valid sign-extension for the original mode. */
470 gcc_assert (INTVAL (newval)
471 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
473 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
474 CONST_INT is not valid, because after the replacement, the
475 original mode would be gone. Unfortunately, we can't tell
476 when do_SUBST is called to replace the operand thereof, so we
477 perform this test on oldval instead, checking whether an
478 invalid replacement took place before we got here. */
479 gcc_assert (!(GET_CODE (oldval) == SUBREG
480 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
481 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
482 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
485 if (undobuf.frees)
486 buf = undobuf.frees, undobuf.frees = buf->next;
487 else
488 buf = xmalloc (sizeof (struct undo));
490 buf->is_int = 0;
491 buf->where.r = into;
492 buf->old_contents.r = oldval;
493 *into = newval;
495 buf->next = undobuf.undos, undobuf.undos = buf;
498 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
500 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
501 for the value of a HOST_WIDE_INT value (including CONST_INT) is
502 not safe. */
504 static void
505 do_SUBST_INT (int *into, int newval)
507 struct undo *buf;
508 int oldval = *into;
510 if (oldval == newval)
511 return;
513 if (undobuf.frees)
514 buf = undobuf.frees, undobuf.frees = buf->next;
515 else
516 buf = xmalloc (sizeof (struct undo));
518 buf->is_int = 1;
519 buf->where.i = into;
520 buf->old_contents.i = oldval;
521 *into = newval;
523 buf->next = undobuf.undos, undobuf.undos = buf;
526 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
528 /* Subroutine of try_combine. Determine whether the combine replacement
529 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
530 that the original instruction sequence I1, I2 and I3. Note that I1
531 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
532 costs of all instructions can be estimated, and the replacements are
533 more expensive than the original sequence. */
535 static bool
536 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
538 int i1_cost, i2_cost, i3_cost;
539 int new_i2_cost, new_i3_cost;
540 int old_cost, new_cost;
542 /* Lookup the original insn_rtx_costs. */
543 i2_cost = INSN_UID (i2) <= last_insn_cost
544 ? uid_insn_cost[INSN_UID (i2)] : 0;
545 i3_cost = INSN_UID (i3) <= last_insn_cost
546 ? uid_insn_cost[INSN_UID (i3)] : 0;
548 if (i1)
550 i1_cost = INSN_UID (i1) <= last_insn_cost
551 ? uid_insn_cost[INSN_UID (i1)] : 0;
552 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
553 ? i1_cost + i2_cost + i3_cost : 0;
555 else
557 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
558 i1_cost = 0;
561 /* Calculate the replacement insn_rtx_costs. */
562 new_i3_cost = insn_rtx_cost (newpat);
563 if (newi2pat)
565 new_i2_cost = insn_rtx_cost (newi2pat);
566 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
567 ? new_i2_cost + new_i3_cost : 0;
569 else
571 new_cost = new_i3_cost;
572 new_i2_cost = 0;
575 if (undobuf.other_insn)
577 int old_other_cost, new_other_cost;
579 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
580 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
581 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
582 if (old_other_cost > 0 && new_other_cost > 0)
584 old_cost += old_other_cost;
585 new_cost += new_other_cost;
587 else
588 old_cost = 0;
591 /* Disallow this recombination if both new_cost and old_cost are
592 greater than zero, and new_cost is greater than old cost. */
593 if (old_cost > 0
594 && new_cost > old_cost)
596 if (dump_file)
598 if (i1)
600 fprintf (dump_file,
601 "rejecting combination of insns %d, %d and %d\n",
602 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
603 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
604 i1_cost, i2_cost, i3_cost, old_cost);
606 else
608 fprintf (dump_file,
609 "rejecting combination of insns %d and %d\n",
610 INSN_UID (i2), INSN_UID (i3));
611 fprintf (dump_file, "original costs %d + %d = %d\n",
612 i2_cost, i3_cost, old_cost);
615 if (newi2pat)
617 fprintf (dump_file, "replacement costs %d + %d = %d\n",
618 new_i2_cost, new_i3_cost, new_cost);
620 else
621 fprintf (dump_file, "replacement cost %d\n", new_cost);
624 return false;
627 /* Update the uid_insn_cost array with the replacement costs. */
628 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
629 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
630 if (i1)
631 uid_insn_cost[INSN_UID (i1)] = 0;
633 return true;
636 /* Main entry point for combiner. F is the first insn of the function.
637 NREGS is the first unused pseudo-reg number.
639 Return nonzero if the combiner has turned an indirect jump
640 instruction into a direct jump. */
642 combine_instructions (rtx f, unsigned int nregs)
644 rtx insn, next;
645 #ifdef HAVE_cc0
646 rtx prev;
647 #endif
648 int i;
649 unsigned int j = 0;
650 rtx links, nextlinks;
651 sbitmap_iterator sbi;
653 int new_direct_jump_p = 0;
655 combine_attempts = 0;
656 combine_merges = 0;
657 combine_extras = 0;
658 combine_successes = 0;
660 combine_max_regno = nregs;
662 rtl_hooks = combine_rtl_hooks;
664 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
666 init_recog_no_volatile ();
668 /* Compute maximum uid value so uid_cuid can be allocated. */
670 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
671 if (INSN_UID (insn) > i)
672 i = INSN_UID (insn);
674 uid_cuid = xmalloc ((i + 1) * sizeof (int));
675 max_uid_cuid = i;
677 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
679 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
680 problems when, for example, we have j <<= 1 in a loop. */
682 nonzero_sign_valid = 0;
684 /* Compute the mapping from uids to cuids.
685 Cuids are numbers assigned to insns, like uids,
686 except that cuids increase monotonically through the code.
688 Scan all SETs and see if we can deduce anything about what
689 bits are known to be zero for some registers and how many copies
690 of the sign bit are known to exist for those registers.
692 Also set any known values so that we can use it while searching
693 for what bits are known to be set. */
695 label_tick = 1;
697 setup_incoming_promotions ();
699 refresh_blocks = sbitmap_alloc (last_basic_block);
700 sbitmap_zero (refresh_blocks);
702 /* Allocate array of current insn_rtx_costs. */
703 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
704 last_insn_cost = max_uid_cuid;
706 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
708 uid_cuid[INSN_UID (insn)] = ++i;
709 subst_low_cuid = i;
710 subst_insn = insn;
712 if (INSN_P (insn))
714 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
715 NULL);
716 record_dead_and_set_regs (insn);
718 #ifdef AUTO_INC_DEC
719 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
720 if (REG_NOTE_KIND (links) == REG_INC)
721 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
722 NULL);
723 #endif
725 /* Record the current insn_rtx_cost of this instruction. */
726 if (NONJUMP_INSN_P (insn))
727 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
728 if (dump_file)
729 fprintf(dump_file, "insn_cost %d: %d\n",
730 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
733 if (LABEL_P (insn))
734 label_tick++;
737 nonzero_sign_valid = 1;
739 /* Now scan all the insns in forward order. */
741 label_tick = 1;
742 last_call_cuid = 0;
743 mem_last_set = 0;
744 init_reg_last ();
745 setup_incoming_promotions ();
747 FOR_EACH_BB (this_basic_block)
749 for (insn = BB_HEAD (this_basic_block);
750 insn != NEXT_INSN (BB_END (this_basic_block));
751 insn = next ? next : NEXT_INSN (insn))
753 next = 0;
755 if (LABEL_P (insn))
756 label_tick++;
758 else if (INSN_P (insn))
760 /* See if we know about function return values before this
761 insn based upon SUBREG flags. */
762 check_promoted_subreg (insn, PATTERN (insn));
764 /* Try this insn with each insn it links back to. */
766 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
767 if ((next = try_combine (insn, XEXP (links, 0),
768 NULL_RTX, &new_direct_jump_p)) != 0)
769 goto retry;
771 /* Try each sequence of three linked insns ending with this one. */
773 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
775 rtx link = XEXP (links, 0);
777 /* If the linked insn has been replaced by a note, then there
778 is no point in pursuing this chain any further. */
779 if (NOTE_P (link))
780 continue;
782 for (nextlinks = LOG_LINKS (link);
783 nextlinks;
784 nextlinks = XEXP (nextlinks, 1))
785 if ((next = try_combine (insn, link,
786 XEXP (nextlinks, 0),
787 &new_direct_jump_p)) != 0)
788 goto retry;
791 #ifdef HAVE_cc0
792 /* Try to combine a jump insn that uses CC0
793 with a preceding insn that sets CC0, and maybe with its
794 logical predecessor as well.
795 This is how we make decrement-and-branch insns.
796 We need this special code because data flow connections
797 via CC0 do not get entered in LOG_LINKS. */
799 if (JUMP_P (insn)
800 && (prev = prev_nonnote_insn (insn)) != 0
801 && NONJUMP_INSN_P (prev)
802 && sets_cc0_p (PATTERN (prev)))
804 if ((next = try_combine (insn, prev,
805 NULL_RTX, &new_direct_jump_p)) != 0)
806 goto retry;
808 for (nextlinks = LOG_LINKS (prev); nextlinks;
809 nextlinks = XEXP (nextlinks, 1))
810 if ((next = try_combine (insn, prev,
811 XEXP (nextlinks, 0),
812 &new_direct_jump_p)) != 0)
813 goto retry;
816 /* Do the same for an insn that explicitly references CC0. */
817 if (NONJUMP_INSN_P (insn)
818 && (prev = prev_nonnote_insn (insn)) != 0
819 && NONJUMP_INSN_P (prev)
820 && sets_cc0_p (PATTERN (prev))
821 && GET_CODE (PATTERN (insn)) == SET
822 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
824 if ((next = try_combine (insn, prev,
825 NULL_RTX, &new_direct_jump_p)) != 0)
826 goto retry;
828 for (nextlinks = LOG_LINKS (prev); nextlinks;
829 nextlinks = XEXP (nextlinks, 1))
830 if ((next = try_combine (insn, prev,
831 XEXP (nextlinks, 0),
832 &new_direct_jump_p)) != 0)
833 goto retry;
836 /* Finally, see if any of the insns that this insn links to
837 explicitly references CC0. If so, try this insn, that insn,
838 and its predecessor if it sets CC0. */
839 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
840 if (NONJUMP_INSN_P (XEXP (links, 0))
841 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
842 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
843 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
844 && NONJUMP_INSN_P (prev)
845 && sets_cc0_p (PATTERN (prev))
846 && (next = try_combine (insn, XEXP (links, 0),
847 prev, &new_direct_jump_p)) != 0)
848 goto retry;
849 #endif
851 /* Try combining an insn with two different insns whose results it
852 uses. */
853 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
854 for (nextlinks = XEXP (links, 1); nextlinks;
855 nextlinks = XEXP (nextlinks, 1))
856 if ((next = try_combine (insn, XEXP (links, 0),
857 XEXP (nextlinks, 0),
858 &new_direct_jump_p)) != 0)
859 goto retry;
861 /* Try this insn with each REG_EQUAL note it links back to. */
862 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
864 rtx set, note;
865 rtx temp = XEXP (links, 0);
866 if ((set = single_set (temp)) != 0
867 && (note = find_reg_equal_equiv_note (temp)) != 0
868 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
869 /* Avoid using a register that may already been marked
870 dead by an earlier instruction. */
871 && ! unmentioned_reg_p (note, SET_SRC (set))
872 && (GET_MODE (note) == VOIDmode
873 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
874 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
876 /* Temporarily replace the set's source with the
877 contents of the REG_EQUAL note. The insn will
878 be deleted or recognized by try_combine. */
879 rtx orig = SET_SRC (set);
880 SET_SRC (set) = note;
881 next = try_combine (insn, temp, NULL_RTX,
882 &new_direct_jump_p);
883 if (next)
884 goto retry;
885 SET_SRC (set) = orig;
889 if (!NOTE_P (insn))
890 record_dead_and_set_regs (insn);
892 retry:
897 clear_bb_flags ();
899 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, j, sbi)
900 BASIC_BLOCK (j)->flags |= BB_DIRTY;
901 new_direct_jump_p |= purge_all_dead_edges ();
902 delete_noop_moves ();
904 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
905 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
906 | PROP_KILL_DEAD_CODE);
908 /* Clean up. */
909 sbitmap_free (refresh_blocks);
910 free (uid_insn_cost);
911 free (reg_stat);
912 free (uid_cuid);
915 struct undo *undo, *next;
916 for (undo = undobuf.frees; undo; undo = next)
918 next = undo->next;
919 free (undo);
921 undobuf.frees = 0;
924 total_attempts += combine_attempts;
925 total_merges += combine_merges;
926 total_extras += combine_extras;
927 total_successes += combine_successes;
929 nonzero_sign_valid = 0;
930 rtl_hooks = general_rtl_hooks;
932 /* Make recognizer allow volatile MEMs again. */
933 init_recog ();
935 return new_direct_jump_p;
938 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
940 static void
941 init_reg_last (void)
943 unsigned int i;
944 for (i = 0; i < combine_max_regno; i++)
945 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
948 /* Set up any promoted values for incoming argument registers. */
950 static void
951 setup_incoming_promotions (void)
953 unsigned int regno;
954 rtx reg;
955 enum machine_mode mode;
956 int unsignedp;
957 rtx first = get_insns ();
959 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
961 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
962 /* Check whether this register can hold an incoming pointer
963 argument. FUNCTION_ARG_REGNO_P tests outgoing register
964 numbers, so translate if necessary due to register windows. */
965 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
966 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
968 record_value_for_reg
969 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
970 : SIGN_EXTEND),
971 GET_MODE (reg),
972 gen_rtx_CLOBBER (mode, const0_rtx)));
977 /* Called via note_stores. If X is a pseudo that is narrower than
978 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
980 If we are setting only a portion of X and we can't figure out what
981 portion, assume all bits will be used since we don't know what will
982 be happening.
984 Similarly, set how many bits of X are known to be copies of the sign bit
985 at all locations in the function. This is the smallest number implied
986 by any set of X. */
988 static void
989 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
990 void *data ATTRIBUTE_UNUSED)
992 unsigned int num;
994 if (REG_P (x)
995 && REGNO (x) >= FIRST_PSEUDO_REGISTER
996 /* If this register is undefined at the start of the file, we can't
997 say what its contents were. */
998 && ! REGNO_REG_SET_P
999 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start, REGNO (x))
1000 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1002 if (set == 0 || GET_CODE (set) == CLOBBER)
1004 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1005 reg_stat[REGNO (x)].sign_bit_copies = 1;
1006 return;
1009 /* If this is a complex assignment, see if we can convert it into a
1010 simple assignment. */
1011 set = expand_field_assignment (set);
1013 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1014 set what we know about X. */
1016 if (SET_DEST (set) == x
1017 || (GET_CODE (SET_DEST (set)) == SUBREG
1018 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1019 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1020 && SUBREG_REG (SET_DEST (set)) == x))
1022 rtx src = SET_SRC (set);
1024 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1025 /* If X is narrower than a word and SRC is a non-negative
1026 constant that would appear negative in the mode of X,
1027 sign-extend it for use in reg_stat[].nonzero_bits because some
1028 machines (maybe most) will actually do the sign-extension
1029 and this is the conservative approach.
1031 ??? For 2.5, try to tighten up the MD files in this regard
1032 instead of this kludge. */
1034 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1035 && GET_CODE (src) == CONST_INT
1036 && INTVAL (src) > 0
1037 && 0 != (INTVAL (src)
1038 & ((HOST_WIDE_INT) 1
1039 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1040 src = GEN_INT (INTVAL (src)
1041 | ((HOST_WIDE_INT) (-1)
1042 << GET_MODE_BITSIZE (GET_MODE (x))));
1043 #endif
1045 /* Don't call nonzero_bits if it cannot change anything. */
1046 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1047 reg_stat[REGNO (x)].nonzero_bits
1048 |= nonzero_bits (src, nonzero_bits_mode);
1049 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1050 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1051 || reg_stat[REGNO (x)].sign_bit_copies > num)
1052 reg_stat[REGNO (x)].sign_bit_copies = num;
1054 else
1056 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1057 reg_stat[REGNO (x)].sign_bit_copies = 1;
1062 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1063 insns that were previously combined into I3 or that will be combined
1064 into the merger of INSN and I3.
1066 Return 0 if the combination is not allowed for any reason.
1068 If the combination is allowed, *PDEST will be set to the single
1069 destination of INSN and *PSRC to the single source, and this function
1070 will return 1. */
1072 static int
1073 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1074 rtx *pdest, rtx *psrc)
1076 int i;
1077 rtx set = 0, src, dest;
1078 rtx p;
1079 #ifdef AUTO_INC_DEC
1080 rtx link;
1081 #endif
1082 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1083 && next_active_insn (succ) == i3)
1084 : next_active_insn (insn) == i3);
1086 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1087 or a PARALLEL consisting of such a SET and CLOBBERs.
1089 If INSN has CLOBBER parallel parts, ignore them for our processing.
1090 By definition, these happen during the execution of the insn. When it
1091 is merged with another insn, all bets are off. If they are, in fact,
1092 needed and aren't also supplied in I3, they may be added by
1093 recog_for_combine. Otherwise, it won't match.
1095 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1096 note.
1098 Get the source and destination of INSN. If more than one, can't
1099 combine. */
1101 if (GET_CODE (PATTERN (insn)) == SET)
1102 set = PATTERN (insn);
1103 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1104 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1106 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1108 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1109 rtx note;
1111 switch (GET_CODE (elt))
1113 /* This is important to combine floating point insns
1114 for the SH4 port. */
1115 case USE:
1116 /* Combining an isolated USE doesn't make sense.
1117 We depend here on combinable_i3pat to reject them. */
1118 /* The code below this loop only verifies that the inputs of
1119 the SET in INSN do not change. We call reg_set_between_p
1120 to verify that the REG in the USE does not change between
1121 I3 and INSN.
1122 If the USE in INSN was for a pseudo register, the matching
1123 insn pattern will likely match any register; combining this
1124 with any other USE would only be safe if we knew that the
1125 used registers have identical values, or if there was
1126 something to tell them apart, e.g. different modes. For
1127 now, we forgo such complicated tests and simply disallow
1128 combining of USES of pseudo registers with any other USE. */
1129 if (REG_P (XEXP (elt, 0))
1130 && GET_CODE (PATTERN (i3)) == PARALLEL)
1132 rtx i3pat = PATTERN (i3);
1133 int i = XVECLEN (i3pat, 0) - 1;
1134 unsigned int regno = REGNO (XEXP (elt, 0));
1138 rtx i3elt = XVECEXP (i3pat, 0, i);
1140 if (GET_CODE (i3elt) == USE
1141 && REG_P (XEXP (i3elt, 0))
1142 && (REGNO (XEXP (i3elt, 0)) == regno
1143 ? reg_set_between_p (XEXP (elt, 0),
1144 PREV_INSN (insn), i3)
1145 : regno >= FIRST_PSEUDO_REGISTER))
1146 return 0;
1148 while (--i >= 0);
1150 break;
1152 /* We can ignore CLOBBERs. */
1153 case CLOBBER:
1154 break;
1156 case SET:
1157 /* Ignore SETs whose result isn't used but not those that
1158 have side-effects. */
1159 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1160 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1161 || INTVAL (XEXP (note, 0)) <= 0)
1162 && ! side_effects_p (elt))
1163 break;
1165 /* If we have already found a SET, this is a second one and
1166 so we cannot combine with this insn. */
1167 if (set)
1168 return 0;
1170 set = elt;
1171 break;
1173 default:
1174 /* Anything else means we can't combine. */
1175 return 0;
1179 if (set == 0
1180 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1181 so don't do anything with it. */
1182 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1183 return 0;
1185 else
1186 return 0;
1188 if (set == 0)
1189 return 0;
1191 set = expand_field_assignment (set);
1192 src = SET_SRC (set), dest = SET_DEST (set);
1194 /* Don't eliminate a store in the stack pointer. */
1195 if (dest == stack_pointer_rtx
1196 /* Don't combine with an insn that sets a register to itself if it has
1197 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1198 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1199 /* Can't merge an ASM_OPERANDS. */
1200 || GET_CODE (src) == ASM_OPERANDS
1201 /* Can't merge a function call. */
1202 || GET_CODE (src) == CALL
1203 /* Don't eliminate a function call argument. */
1204 || (CALL_P (i3)
1205 && (find_reg_fusage (i3, USE, dest)
1206 || (REG_P (dest)
1207 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1208 && global_regs[REGNO (dest)])))
1209 /* Don't substitute into an incremented register. */
1210 || FIND_REG_INC_NOTE (i3, dest)
1211 || (succ && FIND_REG_INC_NOTE (succ, dest))
1212 /* Don't substitute into a non-local goto, this confuses CFG. */
1213 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1214 #if 0
1215 /* Don't combine the end of a libcall into anything. */
1216 /* ??? This gives worse code, and appears to be unnecessary, since no
1217 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1218 use REG_RETVAL notes for noconflict blocks, but other code here
1219 makes sure that those insns don't disappear. */
1220 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1221 #endif
1222 /* Make sure that DEST is not used after SUCC but before I3. */
1223 || (succ && ! all_adjacent
1224 && reg_used_between_p (dest, succ, i3))
1225 /* Make sure that the value that is to be substituted for the register
1226 does not use any registers whose values alter in between. However,
1227 If the insns are adjacent, a use can't cross a set even though we
1228 think it might (this can happen for a sequence of insns each setting
1229 the same destination; last_set of that register might point to
1230 a NOTE). If INSN has a REG_EQUIV note, the register is always
1231 equivalent to the memory so the substitution is valid even if there
1232 are intervening stores. Also, don't move a volatile asm or
1233 UNSPEC_VOLATILE across any other insns. */
1234 || (! all_adjacent
1235 && (((!MEM_P (src)
1236 || ! find_reg_note (insn, REG_EQUIV, src))
1237 && use_crosses_set_p (src, INSN_CUID (insn)))
1238 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1239 || GET_CODE (src) == UNSPEC_VOLATILE))
1240 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1241 better register allocation by not doing the combine. */
1242 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1243 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1244 /* Don't combine across a CALL_INSN, because that would possibly
1245 change whether the life span of some REGs crosses calls or not,
1246 and it is a pain to update that information.
1247 Exception: if source is a constant, moving it later can't hurt.
1248 Accept that special case, because it helps -fforce-addr a lot. */
1249 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1250 return 0;
1252 /* DEST must either be a REG or CC0. */
1253 if (REG_P (dest))
1255 /* If register alignment is being enforced for multi-word items in all
1256 cases except for parameters, it is possible to have a register copy
1257 insn referencing a hard register that is not allowed to contain the
1258 mode being copied and which would not be valid as an operand of most
1259 insns. Eliminate this problem by not combining with such an insn.
1261 Also, on some machines we don't want to extend the life of a hard
1262 register. */
1264 if (REG_P (src)
1265 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1266 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1267 /* Don't extend the life of a hard register unless it is
1268 user variable (if we have few registers) or it can't
1269 fit into the desired register (meaning something special
1270 is going on).
1271 Also avoid substituting a return register into I3, because
1272 reload can't handle a conflict with constraints of other
1273 inputs. */
1274 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1275 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1276 return 0;
1278 else if (GET_CODE (dest) != CC0)
1279 return 0;
1282 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1283 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1284 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1286 /* Don't substitute for a register intended as a clobberable
1287 operand. */
1288 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1289 if (rtx_equal_p (reg, dest))
1290 return 0;
1292 /* If the clobber represents an earlyclobber operand, we must not
1293 substitute an expression containing the clobbered register.
1294 As we do not analyze the constraint strings here, we have to
1295 make the conservative assumption. However, if the register is
1296 a fixed hard reg, the clobber cannot represent any operand;
1297 we leave it up to the machine description to either accept or
1298 reject use-and-clobber patterns. */
1299 if (!REG_P (reg)
1300 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1301 || !fixed_regs[REGNO (reg)])
1302 if (reg_overlap_mentioned_p (reg, src))
1303 return 0;
1306 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1307 or not), reject, unless nothing volatile comes between it and I3 */
1309 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1311 /* Make sure succ doesn't contain a volatile reference. */
1312 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1313 return 0;
1315 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1316 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1317 return 0;
1320 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1321 to be an explicit register variable, and was chosen for a reason. */
1323 if (GET_CODE (src) == ASM_OPERANDS
1324 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1325 return 0;
1327 /* If there are any volatile insns between INSN and I3, reject, because
1328 they might affect machine state. */
1330 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1331 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1332 return 0;
1334 /* If INSN contains an autoincrement or autodecrement, make sure that
1335 register is not used between there and I3, and not already used in
1336 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1337 Also insist that I3 not be a jump; if it were one
1338 and the incremented register were spilled, we would lose. */
1340 #ifdef AUTO_INC_DEC
1341 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1342 if (REG_NOTE_KIND (link) == REG_INC
1343 && (JUMP_P (i3)
1344 || reg_used_between_p (XEXP (link, 0), insn, i3)
1345 || (pred != NULL_RTX
1346 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1347 || (succ != NULL_RTX
1348 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1349 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1350 return 0;
1351 #endif
1353 #ifdef HAVE_cc0
1354 /* Don't combine an insn that follows a CC0-setting insn.
1355 An insn that uses CC0 must not be separated from the one that sets it.
1356 We do, however, allow I2 to follow a CC0-setting insn if that insn
1357 is passed as I1; in that case it will be deleted also.
1358 We also allow combining in this case if all the insns are adjacent
1359 because that would leave the two CC0 insns adjacent as well.
1360 It would be more logical to test whether CC0 occurs inside I1 or I2,
1361 but that would be much slower, and this ought to be equivalent. */
1363 p = prev_nonnote_insn (insn);
1364 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1365 && ! all_adjacent)
1366 return 0;
1367 #endif
1369 /* If we get here, we have passed all the tests and the combination is
1370 to be allowed. */
1372 *pdest = dest;
1373 *psrc = src;
1375 return 1;
1378 /* LOC is the location within I3 that contains its pattern or the component
1379 of a PARALLEL of the pattern. We validate that it is valid for combining.
1381 One problem is if I3 modifies its output, as opposed to replacing it
1382 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1383 so would produce an insn that is not equivalent to the original insns.
1385 Consider:
1387 (set (reg:DI 101) (reg:DI 100))
1388 (set (subreg:SI (reg:DI 101) 0) <foo>)
1390 This is NOT equivalent to:
1392 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1393 (set (reg:DI 101) (reg:DI 100))])
1395 Not only does this modify 100 (in which case it might still be valid
1396 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1398 We can also run into a problem if I2 sets a register that I1
1399 uses and I1 gets directly substituted into I3 (not via I2). In that
1400 case, we would be getting the wrong value of I2DEST into I3, so we
1401 must reject the combination. This case occurs when I2 and I1 both
1402 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1403 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1404 of a SET must prevent combination from occurring.
1406 Before doing the above check, we first try to expand a field assignment
1407 into a set of logical operations.
1409 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1410 we place a register that is both set and used within I3. If more than one
1411 such register is detected, we fail.
1413 Return 1 if the combination is valid, zero otherwise. */
1415 static int
1416 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1417 int i1_not_in_src, rtx *pi3dest_killed)
1419 rtx x = *loc;
1421 if (GET_CODE (x) == SET)
1423 rtx set = x ;
1424 rtx dest = SET_DEST (set);
1425 rtx src = SET_SRC (set);
1426 rtx inner_dest = dest;
1427 rtx subdest;
1429 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1430 || GET_CODE (inner_dest) == SUBREG
1431 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1432 inner_dest = XEXP (inner_dest, 0);
1434 /* Check for the case where I3 modifies its output, as discussed
1435 above. We don't want to prevent pseudos from being combined
1436 into the address of a MEM, so only prevent the combination if
1437 i1 or i2 set the same MEM. */
1438 if ((inner_dest != dest &&
1439 (!MEM_P (inner_dest)
1440 || rtx_equal_p (i2dest, inner_dest)
1441 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1442 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1443 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1445 /* This is the same test done in can_combine_p except we can't test
1446 all_adjacent; we don't have to, since this instruction will stay
1447 in place, thus we are not considering increasing the lifetime of
1448 INNER_DEST.
1450 Also, if this insn sets a function argument, combining it with
1451 something that might need a spill could clobber a previous
1452 function argument; the all_adjacent test in can_combine_p also
1453 checks this; here, we do a more specific test for this case. */
1455 || (REG_P (inner_dest)
1456 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1457 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1458 GET_MODE (inner_dest))))
1459 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1460 return 0;
1462 /* If DEST is used in I3, it is being killed in this insn, so
1463 record that for later. We have to consider paradoxical
1464 subregs here, since they kill the whole register, but we
1465 ignore partial subregs, STRICT_LOW_PART, etc.
1466 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1467 STACK_POINTER_REGNUM, since these are always considered to be
1468 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1469 subdest = dest;
1470 if (GET_CODE (subdest) == SUBREG
1471 && (GET_MODE_SIZE (GET_MODE (subdest))
1472 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1473 subdest = SUBREG_REG (subdest);
1474 if (pi3dest_killed
1475 && REG_P (subdest)
1476 && reg_referenced_p (subdest, PATTERN (i3))
1477 && REGNO (subdest) != FRAME_POINTER_REGNUM
1478 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1479 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1480 #endif
1481 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1482 && (REGNO (subdest) != ARG_POINTER_REGNUM
1483 || ! fixed_regs [REGNO (subdest)])
1484 #endif
1485 && REGNO (subdest) != STACK_POINTER_REGNUM)
1487 if (*pi3dest_killed)
1488 return 0;
1490 *pi3dest_killed = subdest;
1494 else if (GET_CODE (x) == PARALLEL)
1496 int i;
1498 for (i = 0; i < XVECLEN (x, 0); i++)
1499 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1500 i1_not_in_src, pi3dest_killed))
1501 return 0;
1504 return 1;
1507 /* Return 1 if X is an arithmetic expression that contains a multiplication
1508 and division. We don't count multiplications by powers of two here. */
1510 static int
1511 contains_muldiv (rtx x)
1513 switch (GET_CODE (x))
1515 case MOD: case DIV: case UMOD: case UDIV:
1516 return 1;
1518 case MULT:
1519 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1520 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1521 default:
1522 if (BINARY_P (x))
1523 return contains_muldiv (XEXP (x, 0))
1524 || contains_muldiv (XEXP (x, 1));
1526 if (UNARY_P (x))
1527 return contains_muldiv (XEXP (x, 0));
1529 return 0;
1533 /* Determine whether INSN can be used in a combination. Return nonzero if
1534 not. This is used in try_combine to detect early some cases where we
1535 can't perform combinations. */
1537 static int
1538 cant_combine_insn_p (rtx insn)
1540 rtx set;
1541 rtx src, dest;
1543 /* If this isn't really an insn, we can't do anything.
1544 This can occur when flow deletes an insn that it has merged into an
1545 auto-increment address. */
1546 if (! INSN_P (insn))
1547 return 1;
1549 /* Never combine loads and stores involving hard regs that are likely
1550 to be spilled. The register allocator can usually handle such
1551 reg-reg moves by tying. If we allow the combiner to make
1552 substitutions of likely-spilled regs, reload might die.
1553 As an exception, we allow combinations involving fixed regs; these are
1554 not available to the register allocator so there's no risk involved. */
1556 set = single_set (insn);
1557 if (! set)
1558 return 0;
1559 src = SET_SRC (set);
1560 dest = SET_DEST (set);
1561 if (GET_CODE (src) == SUBREG)
1562 src = SUBREG_REG (src);
1563 if (GET_CODE (dest) == SUBREG)
1564 dest = SUBREG_REG (dest);
1565 if (REG_P (src) && REG_P (dest)
1566 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1567 && ! fixed_regs[REGNO (src)]
1568 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1569 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1570 && ! fixed_regs[REGNO (dest)]
1571 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1572 return 1;
1574 return 0;
1577 struct likely_spilled_retval_info
1579 unsigned regno, nregs;
1580 unsigned mask;
1583 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
1584 hard registers that are known to be written to / clobbered in full. */
1585 static void
1586 likely_spilled_retval_1 (rtx x, rtx set, void *data)
1588 struct likely_spilled_retval_info *info = data;
1589 unsigned regno, nregs;
1590 unsigned new_mask;
1592 if (!REG_P (XEXP (set, 0)))
1593 return;
1594 regno = REGNO (x);
1595 if (regno >= info->regno + info->nregs)
1596 return;
1597 nregs = hard_regno_nregs[regno][GET_MODE (x)];
1598 if (regno + nregs <= info->regno)
1599 return;
1600 new_mask = (2U << (nregs - 1)) - 1;
1601 if (regno < info->regno)
1602 new_mask >>= info->regno - regno;
1603 else
1604 new_mask <<= regno - info->regno;
1605 info->mask &= new_mask;
1608 /* Return nonzero iff part of the return value is live during INSN, and
1609 it is likely spilled. This can happen when more than one insn is needed
1610 to copy the return value, e.g. when we consider to combine into the
1611 second copy insn for a complex value. */
1613 static int
1614 likely_spilled_retval_p (rtx insn)
1616 rtx use = BB_END (this_basic_block);
1617 rtx reg, p;
1618 unsigned regno, nregs;
1619 /* We assume here that no machine mode needs more than
1620 32 hard registers when the value overlaps with a register
1621 for which FUNCTION_VALUE_REGNO_P is true. */
1622 unsigned mask;
1623 struct likely_spilled_retval_info info;
1625 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
1626 return 0;
1627 reg = XEXP (PATTERN (use), 0);
1628 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
1629 return 0;
1630 regno = REGNO (reg);
1631 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
1632 if (nregs == 1)
1633 return 0;
1634 mask = (2U << (nregs - 1)) - 1;
1636 /* Disregard parts of the return value that are set later. */
1637 info.regno = regno;
1638 info.nregs = nregs;
1639 info.mask = mask;
1640 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
1641 note_stores (PATTERN (insn), likely_spilled_retval_1, &info);
1642 mask = info.mask;
1644 /* Check if any of the (probably) live return value registers is
1645 likely spilled. */
1646 nregs --;
1649 if ((mask & 1 << nregs)
1650 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
1651 return 1;
1652 } while (nregs--);
1653 return 0;
1656 /* Adjust INSN after we made a change to its destination.
1658 Changing the destination can invalidate notes that say something about
1659 the results of the insn and a LOG_LINK pointing to the insn. */
1661 static void
1662 adjust_for_new_dest (rtx insn)
1664 rtx *loc;
1666 /* For notes, be conservative and simply remove them. */
1667 loc = &REG_NOTES (insn);
1668 while (*loc)
1670 enum reg_note kind = REG_NOTE_KIND (*loc);
1671 if (kind == REG_EQUAL || kind == REG_EQUIV)
1672 *loc = XEXP (*loc, 1);
1673 else
1674 loc = &XEXP (*loc, 1);
1677 /* The new insn will have a destination that was previously the destination
1678 of an insn just above it. Call distribute_links to make a LOG_LINK from
1679 the next use of that destination. */
1680 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1683 /* Return TRUE if combine can reuse reg X in mode MODE.
1684 ADDED_SETS is nonzero if the original set is still required. */
1685 static bool
1686 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
1688 unsigned int regno;
1690 if (!REG_P(x))
1691 return false;
1693 regno = REGNO (x);
1694 /* Allow hard registers if the new mode is legal, and occupies no more
1695 registers than the old mode. */
1696 if (regno < FIRST_PSEUDO_REGISTER)
1697 return (HARD_REGNO_MODE_OK (regno, mode)
1698 && (hard_regno_nregs[regno][GET_MODE (x)]
1699 >= hard_regno_nregs[regno][mode]));
1701 /* Or a pseudo that is only used once. */
1702 return (REG_N_SETS (regno) == 1 && !added_sets
1703 && !REG_USERVAR_P (x));
1706 /* Try to combine the insns I1 and I2 into I3.
1707 Here I1 and I2 appear earlier than I3.
1708 I1 can be zero; then we combine just I2 into I3.
1710 If we are combining three insns and the resulting insn is not recognized,
1711 try splitting it into two insns. If that happens, I2 and I3 are retained
1712 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1713 are pseudo-deleted.
1715 Return 0 if the combination does not work. Then nothing is changed.
1716 If we did the combination, return the insn at which combine should
1717 resume scanning.
1719 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1720 new direct jump instruction. */
1722 static rtx
1723 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1725 /* New patterns for I3 and I2, respectively. */
1726 rtx newpat, newi2pat = 0;
1727 rtvec newpat_vec_with_clobbers = 0;
1728 int substed_i2 = 0, substed_i1 = 0;
1729 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1730 int added_sets_1, added_sets_2;
1731 /* Total number of SETs to put into I3. */
1732 int total_sets;
1733 /* Nonzero if I2's body now appears in I3. */
1734 int i2_is_used;
1735 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1736 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1737 /* Contains I3 if the destination of I3 is used in its source, which means
1738 that the old life of I3 is being killed. If that usage is placed into
1739 I2 and not in I3, a REG_DEAD note must be made. */
1740 rtx i3dest_killed = 0;
1741 /* SET_DEST and SET_SRC of I2 and I1. */
1742 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1743 /* PATTERN (I2), or a copy of it in certain cases. */
1744 rtx i2pat;
1745 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1746 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1747 int i2dest_killed = 0, i1dest_killed = 0;
1748 int i1_feeds_i3 = 0;
1749 /* Notes that must be added to REG_NOTES in I3 and I2. */
1750 rtx new_i3_notes, new_i2_notes;
1751 /* Notes that we substituted I3 into I2 instead of the normal case. */
1752 int i3_subst_into_i2 = 0;
1753 /* Notes that I1, I2 or I3 is a MULT operation. */
1754 int have_mult = 0;
1755 int swap_i2i3 = 0;
1757 int maxreg;
1758 rtx temp;
1759 rtx link;
1760 int i;
1762 /* Exit early if one of the insns involved can't be used for
1763 combinations. */
1764 if (cant_combine_insn_p (i3)
1765 || cant_combine_insn_p (i2)
1766 || (i1 && cant_combine_insn_p (i1))
1767 || likely_spilled_retval_p (i3)
1768 /* We also can't do anything if I3 has a
1769 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1770 libcall. */
1771 #if 0
1772 /* ??? This gives worse code, and appears to be unnecessary, since no
1773 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1774 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1775 #endif
1777 return 0;
1779 combine_attempts++;
1780 undobuf.other_insn = 0;
1782 /* Reset the hard register usage information. */
1783 CLEAR_HARD_REG_SET (newpat_used_regs);
1785 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1786 code below, set I1 to be the earlier of the two insns. */
1787 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1788 temp = i1, i1 = i2, i2 = temp;
1790 added_links_insn = 0;
1792 /* First check for one important special-case that the code below will
1793 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1794 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1795 we may be able to replace that destination with the destination of I3.
1796 This occurs in the common code where we compute both a quotient and
1797 remainder into a structure, in which case we want to do the computation
1798 directly into the structure to avoid register-register copies.
1800 Note that this case handles both multiple sets in I2 and also
1801 cases where I2 has a number of CLOBBER or PARALLELs.
1803 We make very conservative checks below and only try to handle the
1804 most common cases of this. For example, we only handle the case
1805 where I2 and I3 are adjacent to avoid making difficult register
1806 usage tests. */
1808 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1809 && REG_P (SET_SRC (PATTERN (i3)))
1810 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1811 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1812 && GET_CODE (PATTERN (i2)) == PARALLEL
1813 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1814 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1815 below would need to check what is inside (and reg_overlap_mentioned_p
1816 doesn't support those codes anyway). Don't allow those destinations;
1817 the resulting insn isn't likely to be recognized anyway. */
1818 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1819 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1820 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1821 SET_DEST (PATTERN (i3)))
1822 && next_real_insn (i2) == i3)
1824 rtx p2 = PATTERN (i2);
1826 /* Make sure that the destination of I3,
1827 which we are going to substitute into one output of I2,
1828 is not used within another output of I2. We must avoid making this:
1829 (parallel [(set (mem (reg 69)) ...)
1830 (set (reg 69) ...)])
1831 which is not well-defined as to order of actions.
1832 (Besides, reload can't handle output reloads for this.)
1834 The problem can also happen if the dest of I3 is a memory ref,
1835 if another dest in I2 is an indirect memory ref. */
1836 for (i = 0; i < XVECLEN (p2, 0); i++)
1837 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1838 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1839 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1840 SET_DEST (XVECEXP (p2, 0, i))))
1841 break;
1843 if (i == XVECLEN (p2, 0))
1844 for (i = 0; i < XVECLEN (p2, 0); i++)
1845 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1846 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1847 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1849 combine_merges++;
1851 subst_insn = i3;
1852 subst_low_cuid = INSN_CUID (i2);
1854 added_sets_2 = added_sets_1 = 0;
1855 i2dest = SET_SRC (PATTERN (i3));
1856 i2dest_killed = dead_or_set_p (i2, i2dest);
1858 /* Replace the dest in I2 with our dest and make the resulting
1859 insn the new pattern for I3. Then skip to where we
1860 validate the pattern. Everything was set up above. */
1861 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1862 SET_DEST (PATTERN (i3)));
1864 newpat = p2;
1865 i3_subst_into_i2 = 1;
1866 goto validate_replacement;
1870 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1871 one of those words to another constant, merge them by making a new
1872 constant. */
1873 if (i1 == 0
1874 && (temp = single_set (i2)) != 0
1875 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1876 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1877 && REG_P (SET_DEST (temp))
1878 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1879 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1880 && GET_CODE (PATTERN (i3)) == SET
1881 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1882 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1883 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1884 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1885 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1887 HOST_WIDE_INT lo, hi;
1889 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1890 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1891 else
1893 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1894 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1897 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1899 /* We don't handle the case of the target word being wider
1900 than a host wide int. */
1901 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1903 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1904 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1905 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1907 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1908 hi = INTVAL (SET_SRC (PATTERN (i3)));
1909 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1911 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1912 >> (HOST_BITS_PER_WIDE_INT - 1));
1914 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1915 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1916 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1917 (INTVAL (SET_SRC (PATTERN (i3)))));
1918 if (hi == sign)
1919 hi = lo < 0 ? -1 : 0;
1921 else
1922 /* We don't handle the case of the higher word not fitting
1923 entirely in either hi or lo. */
1924 gcc_unreachable ();
1926 combine_merges++;
1927 subst_insn = i3;
1928 subst_low_cuid = INSN_CUID (i2);
1929 added_sets_2 = added_sets_1 = 0;
1930 i2dest = SET_DEST (temp);
1931 i2dest_killed = dead_or_set_p (i2, i2dest);
1933 SUBST (SET_SRC (temp),
1934 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1936 newpat = PATTERN (i2);
1937 goto validate_replacement;
1940 #ifndef HAVE_cc0
1941 /* If we have no I1 and I2 looks like:
1942 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1943 (set Y OP)])
1944 make up a dummy I1 that is
1945 (set Y OP)
1946 and change I2 to be
1947 (set (reg:CC X) (compare:CC Y (const_int 0)))
1949 (We can ignore any trailing CLOBBERs.)
1951 This undoes a previous combination and allows us to match a branch-and-
1952 decrement insn. */
1954 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1955 && XVECLEN (PATTERN (i2), 0) >= 2
1956 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1957 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1958 == MODE_CC)
1959 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1960 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1961 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1962 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1963 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1964 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1966 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1967 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1968 break;
1970 if (i == 1)
1972 /* We make I1 with the same INSN_UID as I2. This gives it
1973 the same INSN_CUID for value tracking. Our fake I1 will
1974 never appear in the insn stream so giving it the same INSN_UID
1975 as I2 will not cause a problem. */
1977 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1978 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1979 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1980 NULL_RTX);
1982 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1983 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1984 SET_DEST (PATTERN (i1)));
1987 #endif
1989 /* Verify that I2 and I1 are valid for combining. */
1990 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1991 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1993 undo_all ();
1994 return 0;
1997 /* Record whether I2DEST is used in I2SRC and similarly for the other
1998 cases. Knowing this will help in register status updating below. */
1999 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2000 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2001 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2002 i2dest_killed = dead_or_set_p (i2, i2dest);
2003 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2005 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2006 in I2SRC. */
2007 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2009 /* Ensure that I3's pattern can be the destination of combines. */
2010 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2011 i1 && i2dest_in_i1src && i1_feeds_i3,
2012 &i3dest_killed))
2014 undo_all ();
2015 return 0;
2018 /* See if any of the insns is a MULT operation. Unless one is, we will
2019 reject a combination that is, since it must be slower. Be conservative
2020 here. */
2021 if (GET_CODE (i2src) == MULT
2022 || (i1 != 0 && GET_CODE (i1src) == MULT)
2023 || (GET_CODE (PATTERN (i3)) == SET
2024 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2025 have_mult = 1;
2027 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2028 We used to do this EXCEPT in one case: I3 has a post-inc in an
2029 output operand. However, that exception can give rise to insns like
2030 mov r3,(r3)+
2031 which is a famous insn on the PDP-11 where the value of r3 used as the
2032 source was model-dependent. Avoid this sort of thing. */
2034 #if 0
2035 if (!(GET_CODE (PATTERN (i3)) == SET
2036 && REG_P (SET_SRC (PATTERN (i3)))
2037 && MEM_P (SET_DEST (PATTERN (i3)))
2038 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2039 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2040 /* It's not the exception. */
2041 #endif
2042 #ifdef AUTO_INC_DEC
2043 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2044 if (REG_NOTE_KIND (link) == REG_INC
2045 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2046 || (i1 != 0
2047 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2049 undo_all ();
2050 return 0;
2052 #endif
2054 /* See if the SETs in I1 or I2 need to be kept around in the merged
2055 instruction: whenever the value set there is still needed past I3.
2056 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2058 For the SET in I1, we have two cases: If I1 and I2 independently
2059 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2060 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2061 in I1 needs to be kept around unless I1DEST dies or is set in either
2062 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2063 I1DEST. If so, we know I1 feeds into I2. */
2065 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2067 added_sets_1
2068 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2069 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2071 /* If the set in I2 needs to be kept around, we must make a copy of
2072 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2073 PATTERN (I2), we are only substituting for the original I1DEST, not into
2074 an already-substituted copy. This also prevents making self-referential
2075 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2076 I2DEST. */
2078 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
2079 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
2080 : PATTERN (i2));
2082 if (added_sets_2)
2083 i2pat = copy_rtx (i2pat);
2085 combine_merges++;
2087 /* Substitute in the latest insn for the regs set by the earlier ones. */
2089 maxreg = max_reg_num ();
2091 subst_insn = i3;
2093 #ifndef HAVE_cc0
2094 /* Many machines that don't use CC0 have insns that can both perform an
2095 arithmetic operation and set the condition code. These operations will
2096 be represented as a PARALLEL with the first element of the vector
2097 being a COMPARE of an arithmetic operation with the constant zero.
2098 The second element of the vector will set some pseudo to the result
2099 of the same arithmetic operation. If we simplify the COMPARE, we won't
2100 match such a pattern and so will generate an extra insn. Here we test
2101 for this case, where both the comparison and the operation result are
2102 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2103 I2SRC. Later we will make the PARALLEL that contains I2. */
2105 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2106 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2107 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2108 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2110 #ifdef SELECT_CC_MODE
2111 rtx *cc_use;
2112 enum machine_mode compare_mode;
2113 #endif
2115 newpat = PATTERN (i3);
2116 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2118 i2_is_used = 1;
2120 #ifdef SELECT_CC_MODE
2121 /* See if a COMPARE with the operand we substituted in should be done
2122 with the mode that is currently being used. If not, do the same
2123 processing we do in `subst' for a SET; namely, if the destination
2124 is used only once, try to replace it with a register of the proper
2125 mode and also replace the COMPARE. */
2126 if (undobuf.other_insn == 0
2127 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2128 &undobuf.other_insn))
2129 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2130 i2src, const0_rtx))
2131 != GET_MODE (SET_DEST (newpat))))
2133 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2134 compare_mode))
2136 unsigned int regno = REGNO (SET_DEST (newpat));
2137 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2139 if (regno >= FIRST_PSEUDO_REGISTER)
2140 SUBST (regno_reg_rtx[regno], new_dest);
2142 SUBST (SET_DEST (newpat), new_dest);
2143 SUBST (XEXP (*cc_use, 0), new_dest);
2144 SUBST (SET_SRC (newpat),
2145 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2147 else
2148 undobuf.other_insn = 0;
2150 #endif
2152 else
2153 #endif
2155 /* It is possible that the source of I2 or I1 may be performing
2156 an unneeded operation, such as a ZERO_EXTEND of something
2157 that is known to have the high part zero. Handle that case
2158 by letting subst look at the innermost one of them.
2160 Another way to do this would be to have a function that tries
2161 to simplify a single insn instead of merging two or more
2162 insns. We don't do this because of the potential of infinite
2163 loops and because of the potential extra memory required.
2164 However, doing it the way we are is a bit of a kludge and
2165 doesn't catch all cases.
2167 But only do this if -fexpensive-optimizations since it slows
2168 things down and doesn't usually win.
2170 This is not done in the COMPARE case above because the
2171 unmodified I2PAT is used in the PARALLEL and so a pattern
2172 with a modified I2SRC would not match. */
2174 if (flag_expensive_optimizations)
2176 /* Pass pc_rtx so no substitutions are done, just
2177 simplifications. */
2178 if (i1)
2180 subst_low_cuid = INSN_CUID (i1);
2181 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2183 else
2185 subst_low_cuid = INSN_CUID (i2);
2186 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2190 n_occurrences = 0; /* `subst' counts here */
2192 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2193 need to make a unique copy of I2SRC each time we substitute it
2194 to avoid self-referential rtl. */
2196 subst_low_cuid = INSN_CUID (i2);
2197 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2198 ! i1_feeds_i3 && i1dest_in_i1src);
2199 substed_i2 = 1;
2201 /* Record whether i2's body now appears within i3's body. */
2202 i2_is_used = n_occurrences;
2205 /* If we already got a failure, don't try to do more. Otherwise,
2206 try to substitute in I1 if we have it. */
2208 if (i1 && GET_CODE (newpat) != CLOBBER)
2210 /* Before we can do this substitution, we must redo the test done
2211 above (see detailed comments there) that ensures that I1DEST
2212 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2214 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2215 0, (rtx*) 0))
2217 undo_all ();
2218 return 0;
2221 n_occurrences = 0;
2222 subst_low_cuid = INSN_CUID (i1);
2223 newpat = subst (newpat, i1dest, i1src, 0, 0);
2224 substed_i1 = 1;
2227 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2228 to count all the ways that I2SRC and I1SRC can be used. */
2229 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2230 && i2_is_used + added_sets_2 > 1)
2231 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2232 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2233 > 1))
2234 /* Fail if we tried to make a new register. */
2235 || max_reg_num () != maxreg
2236 /* Fail if we couldn't do something and have a CLOBBER. */
2237 || GET_CODE (newpat) == CLOBBER
2238 /* Fail if this new pattern is a MULT and we didn't have one before
2239 at the outer level. */
2240 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2241 && ! have_mult))
2243 undo_all ();
2244 return 0;
2247 /* If the actions of the earlier insns must be kept
2248 in addition to substituting them into the latest one,
2249 we must make a new PARALLEL for the latest insn
2250 to hold additional the SETs. */
2252 if (added_sets_1 || added_sets_2)
2254 combine_extras++;
2256 if (GET_CODE (newpat) == PARALLEL)
2258 rtvec old = XVEC (newpat, 0);
2259 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2260 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2261 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2262 sizeof (old->elem[0]) * old->num_elem);
2264 else
2266 rtx old = newpat;
2267 total_sets = 1 + added_sets_1 + added_sets_2;
2268 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2269 XVECEXP (newpat, 0, 0) = old;
2272 if (added_sets_1)
2273 XVECEXP (newpat, 0, --total_sets)
2274 = (GET_CODE (PATTERN (i1)) == PARALLEL
2275 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2277 if (added_sets_2)
2279 /* If there is no I1, use I2's body as is. We used to also not do
2280 the subst call below if I2 was substituted into I3,
2281 but that could lose a simplification. */
2282 if (i1 == 0)
2283 XVECEXP (newpat, 0, --total_sets) = i2pat;
2284 else
2285 /* See comment where i2pat is assigned. */
2286 XVECEXP (newpat, 0, --total_sets)
2287 = subst (i2pat, i1dest, i1src, 0, 0);
2291 /* We come here when we are replacing a destination in I2 with the
2292 destination of I3. */
2293 validate_replacement:
2295 /* Note which hard regs this insn has as inputs. */
2296 mark_used_regs_combine (newpat);
2298 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2299 consider splitting this pattern, we might need these clobbers. */
2300 if (i1 && GET_CODE (newpat) == PARALLEL
2301 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2303 int len = XVECLEN (newpat, 0);
2305 newpat_vec_with_clobbers = rtvec_alloc (len);
2306 for (i = 0; i < len; i++)
2307 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2310 /* Is the result of combination a valid instruction? */
2311 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2313 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2314 the second SET's destination is a register that is unused and isn't
2315 marked as an instruction that might trap in an EH region. In that case,
2316 we just need the first SET. This can occur when simplifying a divmod
2317 insn. We *must* test for this case here because the code below that
2318 splits two independent SETs doesn't handle this case correctly when it
2319 updates the register status.
2321 It's pointless doing this if we originally had two sets, one from
2322 i3, and one from i2. Combining then splitting the parallel results
2323 in the original i2 again plus an invalid insn (which we delete).
2324 The net effect is only to move instructions around, which makes
2325 debug info less accurate.
2327 Also check the case where the first SET's destination is unused.
2328 That would not cause incorrect code, but does cause an unneeded
2329 insn to remain. */
2331 if (insn_code_number < 0
2332 && !(added_sets_2 && i1 == 0)
2333 && GET_CODE (newpat) == PARALLEL
2334 && XVECLEN (newpat, 0) == 2
2335 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2336 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2337 && asm_noperands (newpat) < 0)
2339 rtx set0 = XVECEXP (newpat, 0, 0);
2340 rtx set1 = XVECEXP (newpat, 0, 1);
2341 rtx note;
2343 if (((REG_P (SET_DEST (set1))
2344 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2345 || (GET_CODE (SET_DEST (set1)) == SUBREG
2346 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2347 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2348 || INTVAL (XEXP (note, 0)) <= 0)
2349 && ! side_effects_p (SET_SRC (set1)))
2351 newpat = set0;
2352 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2355 else if (((REG_P (SET_DEST (set0))
2356 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2357 || (GET_CODE (SET_DEST (set0)) == SUBREG
2358 && find_reg_note (i3, REG_UNUSED,
2359 SUBREG_REG (SET_DEST (set0)))))
2360 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2361 || INTVAL (XEXP (note, 0)) <= 0)
2362 && ! side_effects_p (SET_SRC (set0)))
2364 newpat = set1;
2365 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2367 if (insn_code_number >= 0)
2369 /* If we will be able to accept this, we have made a
2370 change to the destination of I3. This requires us to
2371 do a few adjustments. */
2373 PATTERN (i3) = newpat;
2374 adjust_for_new_dest (i3);
2379 /* If we were combining three insns and the result is a simple SET
2380 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2381 insns. There are two ways to do this. It can be split using a
2382 machine-specific method (like when you have an addition of a large
2383 constant) or by combine in the function find_split_point. */
2385 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2386 && asm_noperands (newpat) < 0)
2388 rtx m_split, *split;
2389 rtx ni2dest = i2dest;
2391 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2392 use I2DEST as a scratch register will help. In the latter case,
2393 convert I2DEST to the mode of the source of NEWPAT if we can. */
2395 m_split = split_insns (newpat, i3);
2397 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2398 inputs of NEWPAT. */
2400 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2401 possible to try that as a scratch reg. This would require adding
2402 more code to make it work though. */
2404 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2406 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2407 /* If I2DEST is a hard register or the only use of a pseudo,
2408 we can change its mode. */
2409 if (new_mode != GET_MODE (i2dest)
2410 && new_mode != VOIDmode
2411 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2412 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2413 REGNO (i2dest));
2415 m_split = split_insns (gen_rtx_PARALLEL
2416 (VOIDmode,
2417 gen_rtvec (2, newpat,
2418 gen_rtx_CLOBBER (VOIDmode,
2419 ni2dest))),
2420 i3);
2421 /* If the split with the mode-changed register didn't work, try
2422 the original register. */
2423 if (! m_split && ni2dest != i2dest)
2425 ni2dest = i2dest;
2426 m_split = split_insns (gen_rtx_PARALLEL
2427 (VOIDmode,
2428 gen_rtvec (2, newpat,
2429 gen_rtx_CLOBBER (VOIDmode,
2430 i2dest))),
2431 i3);
2435 /* If recog_for_combine has discarded clobbers, try to use them
2436 again for the split. */
2437 if (m_split == 0 && newpat_vec_with_clobbers)
2438 m_split
2439 = split_insns (gen_rtx_PARALLEL (VOIDmode,
2440 newpat_vec_with_clobbers), i3);
2442 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2444 m_split = PATTERN (m_split);
2445 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2446 if (insn_code_number >= 0)
2447 newpat = m_split;
2449 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2450 && (next_real_insn (i2) == i3
2451 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2453 rtx i2set, i3set;
2454 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2455 newi2pat = PATTERN (m_split);
2457 i3set = single_set (NEXT_INSN (m_split));
2458 i2set = single_set (m_split);
2460 /* In case we changed the mode of I2DEST, replace it in the
2461 pseudo-register table here. We can't do it above in case this
2462 code doesn't get executed and we do a split the other way. */
2464 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2465 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2467 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2469 /* If I2 or I3 has multiple SETs, we won't know how to track
2470 register status, so don't use these insns. If I2's destination
2471 is used between I2 and I3, we also can't use these insns. */
2473 if (i2_code_number >= 0 && i2set && i3set
2474 && (next_real_insn (i2) == i3
2475 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2476 insn_code_number = recog_for_combine (&newi3pat, i3,
2477 &new_i3_notes);
2478 if (insn_code_number >= 0)
2479 newpat = newi3pat;
2481 /* It is possible that both insns now set the destination of I3.
2482 If so, we must show an extra use of it. */
2484 if (insn_code_number >= 0)
2486 rtx new_i3_dest = SET_DEST (i3set);
2487 rtx new_i2_dest = SET_DEST (i2set);
2489 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2490 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2491 || GET_CODE (new_i3_dest) == SUBREG)
2492 new_i3_dest = XEXP (new_i3_dest, 0);
2494 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2495 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2496 || GET_CODE (new_i2_dest) == SUBREG)
2497 new_i2_dest = XEXP (new_i2_dest, 0);
2499 if (REG_P (new_i3_dest)
2500 && REG_P (new_i2_dest)
2501 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2502 REG_N_SETS (REGNO (new_i2_dest))++;
2506 /* If we can split it and use I2DEST, go ahead and see if that
2507 helps things be recognized. Verify that none of the registers
2508 are set between I2 and I3. */
2509 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2510 #ifdef HAVE_cc0
2511 && REG_P (i2dest)
2512 #endif
2513 /* We need I2DEST in the proper mode. If it is a hard register
2514 or the only use of a pseudo, we can change its mode.
2515 Make sure we don't change a hard register to have a mode that
2516 isn't valid for it, or change the number of registers. */
2517 && (GET_MODE (*split) == GET_MODE (i2dest)
2518 || GET_MODE (*split) == VOIDmode
2519 || can_change_dest_mode (i2dest, added_sets_2,
2520 GET_MODE (*split)))
2521 && (next_real_insn (i2) == i3
2522 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2523 /* We can't overwrite I2DEST if its value is still used by
2524 NEWPAT. */
2525 && ! reg_referenced_p (i2dest, newpat))
2527 rtx newdest = i2dest;
2528 enum rtx_code split_code = GET_CODE (*split);
2529 enum machine_mode split_mode = GET_MODE (*split);
2531 /* Get NEWDEST as a register in the proper mode. We have already
2532 validated that we can do this. */
2533 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2535 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2537 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2538 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2541 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2542 an ASHIFT. This can occur if it was inside a PLUS and hence
2543 appeared to be a memory address. This is a kludge. */
2544 if (split_code == MULT
2545 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2546 && INTVAL (XEXP (*split, 1)) > 0
2547 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2549 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2550 XEXP (*split, 0), GEN_INT (i)));
2551 /* Update split_code because we may not have a multiply
2552 anymore. */
2553 split_code = GET_CODE (*split);
2556 #ifdef INSN_SCHEDULING
2557 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2558 be written as a ZERO_EXTEND. */
2559 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2561 #ifdef LOAD_EXTEND_OP
2562 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2563 what it really is. */
2564 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2565 == SIGN_EXTEND)
2566 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2567 SUBREG_REG (*split)));
2568 else
2569 #endif
2570 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2571 SUBREG_REG (*split)));
2573 #endif
2575 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2576 SUBST (*split, newdest);
2577 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2579 /* recog_for_combine might have added CLOBBERs to newi2pat.
2580 Make sure NEWPAT does not depend on the clobbered regs. */
2581 if (GET_CODE (newi2pat) == PARALLEL)
2582 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
2583 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
2585 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
2586 if (reg_overlap_mentioned_p (reg, newpat))
2588 undo_all ();
2589 return 0;
2593 /* If the split point was a MULT and we didn't have one before,
2594 don't use one now. */
2595 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2596 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2600 /* Check for a case where we loaded from memory in a narrow mode and
2601 then sign extended it, but we need both registers. In that case,
2602 we have a PARALLEL with both loads from the same memory location.
2603 We can split this into a load from memory followed by a register-register
2604 copy. This saves at least one insn, more if register allocation can
2605 eliminate the copy.
2607 We cannot do this if the destination of the first assignment is a
2608 condition code register or cc0. We eliminate this case by making sure
2609 the SET_DEST and SET_SRC have the same mode.
2611 We cannot do this if the destination of the second assignment is
2612 a register that we have already assumed is zero-extended. Similarly
2613 for a SUBREG of such a register. */
2615 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2616 && GET_CODE (newpat) == PARALLEL
2617 && XVECLEN (newpat, 0) == 2
2618 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2619 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2620 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2621 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2622 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2623 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2624 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2625 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2626 INSN_CUID (i2))
2627 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2628 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2629 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2630 (REG_P (temp)
2631 && reg_stat[REGNO (temp)].nonzero_bits != 0
2632 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2633 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2634 && (reg_stat[REGNO (temp)].nonzero_bits
2635 != GET_MODE_MASK (word_mode))))
2636 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2637 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2638 (REG_P (temp)
2639 && reg_stat[REGNO (temp)].nonzero_bits != 0
2640 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2641 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2642 && (reg_stat[REGNO (temp)].nonzero_bits
2643 != GET_MODE_MASK (word_mode)))))
2644 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2645 SET_SRC (XVECEXP (newpat, 0, 1)))
2646 && ! find_reg_note (i3, REG_UNUSED,
2647 SET_DEST (XVECEXP (newpat, 0, 0))))
2649 rtx ni2dest;
2651 newi2pat = XVECEXP (newpat, 0, 0);
2652 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2653 newpat = XVECEXP (newpat, 0, 1);
2654 SUBST (SET_SRC (newpat),
2655 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2656 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2658 if (i2_code_number >= 0)
2659 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2661 if (insn_code_number >= 0)
2662 swap_i2i3 = 1;
2665 /* Similarly, check for a case where we have a PARALLEL of two independent
2666 SETs but we started with three insns. In this case, we can do the sets
2667 as two separate insns. This case occurs when some SET allows two
2668 other insns to combine, but the destination of that SET is still live. */
2670 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2671 && GET_CODE (newpat) == PARALLEL
2672 && XVECLEN (newpat, 0) == 2
2673 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2674 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2675 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2676 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2677 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2678 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2679 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2680 INSN_CUID (i2))
2681 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2682 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2683 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2684 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2685 XVECEXP (newpat, 0, 0))
2686 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2687 XVECEXP (newpat, 0, 1))
2688 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2689 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2691 /* Normally, it doesn't matter which of the two is done first,
2692 but it does if one references cc0. In that case, it has to
2693 be first. */
2694 #ifdef HAVE_cc0
2695 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2697 newi2pat = XVECEXP (newpat, 0, 0);
2698 newpat = XVECEXP (newpat, 0, 1);
2700 else
2701 #endif
2703 newi2pat = XVECEXP (newpat, 0, 1);
2704 newpat = XVECEXP (newpat, 0, 0);
2707 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2709 if (i2_code_number >= 0)
2710 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2713 /* If it still isn't recognized, fail and change things back the way they
2714 were. */
2715 if ((insn_code_number < 0
2716 /* Is the result a reasonable ASM_OPERANDS? */
2717 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2719 undo_all ();
2720 return 0;
2723 /* If we had to change another insn, make sure it is valid also. */
2724 if (undobuf.other_insn)
2726 rtx other_pat = PATTERN (undobuf.other_insn);
2727 rtx new_other_notes;
2728 rtx note, next;
2730 CLEAR_HARD_REG_SET (newpat_used_regs);
2732 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2733 &new_other_notes);
2735 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2737 undo_all ();
2738 return 0;
2741 PATTERN (undobuf.other_insn) = other_pat;
2743 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2744 are still valid. Then add any non-duplicate notes added by
2745 recog_for_combine. */
2746 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2748 next = XEXP (note, 1);
2750 if (REG_NOTE_KIND (note) == REG_UNUSED
2751 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2753 if (REG_P (XEXP (note, 0)))
2754 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2756 remove_note (undobuf.other_insn, note);
2760 for (note = new_other_notes; note; note = XEXP (note, 1))
2761 if (REG_P (XEXP (note, 0)))
2762 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2764 distribute_notes (new_other_notes, undobuf.other_insn,
2765 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
2767 #ifdef HAVE_cc0
2768 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2769 they are adjacent to each other or not. */
2771 rtx p = prev_nonnote_insn (i3);
2772 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2773 && sets_cc0_p (newi2pat))
2775 undo_all ();
2776 return 0;
2779 #endif
2781 /* Only allow this combination if insn_rtx_costs reports that the
2782 replacement instructions are cheaper than the originals. */
2783 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2785 undo_all ();
2786 return 0;
2789 /* We now know that we can do this combination. Merge the insns and
2790 update the status of registers and LOG_LINKS. */
2792 if (swap_i2i3)
2794 rtx insn;
2795 rtx link;
2796 rtx ni2dest;
2798 /* I3 now uses what used to be its destination and which is now
2799 I2's destination. This requires us to do a few adjustments. */
2800 PATTERN (i3) = newpat;
2801 adjust_for_new_dest (i3);
2803 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2804 so we still will.
2806 However, some later insn might be using I2's dest and have
2807 a LOG_LINK pointing at I3. We must remove this link.
2808 The simplest way to remove the link is to point it at I1,
2809 which we know will be a NOTE. */
2811 /* newi2pat is usually a SET here; however, recog_for_combine might
2812 have added some clobbers. */
2813 if (GET_CODE (newi2pat) == PARALLEL)
2814 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2815 else
2816 ni2dest = SET_DEST (newi2pat);
2818 for (insn = NEXT_INSN (i3);
2819 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2820 || insn != BB_HEAD (this_basic_block->next_bb));
2821 insn = NEXT_INSN (insn))
2823 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2825 for (link = LOG_LINKS (insn); link;
2826 link = XEXP (link, 1))
2827 if (XEXP (link, 0) == i3)
2828 XEXP (link, 0) = i1;
2830 break;
2836 rtx i3notes, i2notes, i1notes = 0;
2837 rtx i3links, i2links, i1links = 0;
2838 rtx midnotes = 0;
2839 unsigned int regno;
2840 /* Compute which registers we expect to eliminate. newi2pat may be setting
2841 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2842 same as i3dest, in which case newi2pat may be setting i1dest. */
2843 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
2844 || i2dest_in_i2src || i2dest_in_i1src
2845 || !i2dest_killed
2846 ? 0 : i2dest);
2847 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
2848 || (newi2pat && reg_set_p (i1dest, newi2pat))
2849 || !i1dest_killed
2850 ? 0 : i1dest);
2852 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2853 clear them. */
2854 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2855 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2856 if (i1)
2857 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2859 /* Ensure that we do not have something that should not be shared but
2860 occurs multiple times in the new insns. Check this by first
2861 resetting all the `used' flags and then copying anything is shared. */
2863 reset_used_flags (i3notes);
2864 reset_used_flags (i2notes);
2865 reset_used_flags (i1notes);
2866 reset_used_flags (newpat);
2867 reset_used_flags (newi2pat);
2868 if (undobuf.other_insn)
2869 reset_used_flags (PATTERN (undobuf.other_insn));
2871 i3notes = copy_rtx_if_shared (i3notes);
2872 i2notes = copy_rtx_if_shared (i2notes);
2873 i1notes = copy_rtx_if_shared (i1notes);
2874 newpat = copy_rtx_if_shared (newpat);
2875 newi2pat = copy_rtx_if_shared (newi2pat);
2876 if (undobuf.other_insn)
2877 reset_used_flags (PATTERN (undobuf.other_insn));
2879 INSN_CODE (i3) = insn_code_number;
2880 PATTERN (i3) = newpat;
2882 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2884 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2886 reset_used_flags (call_usage);
2887 call_usage = copy_rtx (call_usage);
2889 if (substed_i2)
2890 replace_rtx (call_usage, i2dest, i2src);
2892 if (substed_i1)
2893 replace_rtx (call_usage, i1dest, i1src);
2895 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2898 if (undobuf.other_insn)
2899 INSN_CODE (undobuf.other_insn) = other_code_number;
2901 /* We had one special case above where I2 had more than one set and
2902 we replaced a destination of one of those sets with the destination
2903 of I3. In that case, we have to update LOG_LINKS of insns later
2904 in this basic block. Note that this (expensive) case is rare.
2906 Also, in this case, we must pretend that all REG_NOTEs for I2
2907 actually came from I3, so that REG_UNUSED notes from I2 will be
2908 properly handled. */
2910 if (i3_subst_into_i2)
2912 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2913 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2914 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2915 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2916 && ! find_reg_note (i2, REG_UNUSED,
2917 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2918 for (temp = NEXT_INSN (i2);
2919 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2920 || BB_HEAD (this_basic_block) != temp);
2921 temp = NEXT_INSN (temp))
2922 if (temp != i3 && INSN_P (temp))
2923 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2924 if (XEXP (link, 0) == i2)
2925 XEXP (link, 0) = i3;
2927 if (i3notes)
2929 rtx link = i3notes;
2930 while (XEXP (link, 1))
2931 link = XEXP (link, 1);
2932 XEXP (link, 1) = i2notes;
2934 else
2935 i3notes = i2notes;
2936 i2notes = 0;
2939 LOG_LINKS (i3) = 0;
2940 REG_NOTES (i3) = 0;
2941 LOG_LINKS (i2) = 0;
2942 REG_NOTES (i2) = 0;
2944 if (newi2pat)
2946 INSN_CODE (i2) = i2_code_number;
2947 PATTERN (i2) = newi2pat;
2949 else
2950 SET_INSN_DELETED (i2);
2952 if (i1)
2954 LOG_LINKS (i1) = 0;
2955 REG_NOTES (i1) = 0;
2956 SET_INSN_DELETED (i1);
2959 /* Get death notes for everything that is now used in either I3 or
2960 I2 and used to die in a previous insn. If we built two new
2961 patterns, move from I1 to I2 then I2 to I3 so that we get the
2962 proper movement on registers that I2 modifies. */
2964 if (newi2pat)
2966 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2967 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2969 else
2970 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2971 i3, &midnotes);
2973 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2974 if (i3notes)
2975 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
2976 elim_i2, elim_i1);
2977 if (i2notes)
2978 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
2979 elim_i2, elim_i1);
2980 if (i1notes)
2981 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
2982 elim_i2, elim_i1);
2983 if (midnotes)
2984 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
2985 elim_i2, elim_i1);
2987 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2988 know these are REG_UNUSED and want them to go to the desired insn,
2989 so we always pass it as i3. We have not counted the notes in
2990 reg_n_deaths yet, so we need to do so now. */
2992 if (newi2pat && new_i2_notes)
2994 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2995 if (REG_P (XEXP (temp, 0)))
2996 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2998 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3001 if (new_i3_notes)
3003 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
3004 if (REG_P (XEXP (temp, 0)))
3005 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
3007 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3010 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3011 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3012 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3013 in that case, it might delete I2. Similarly for I2 and I1.
3014 Show an additional death due to the REG_DEAD note we make here. If
3015 we discard it in distribute_notes, we will decrement it again. */
3017 if (i3dest_killed)
3019 if (REG_P (i3dest_killed))
3020 REG_N_DEATHS (REGNO (i3dest_killed))++;
3022 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3023 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3024 NULL_RTX),
3025 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3026 else
3027 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3028 NULL_RTX),
3029 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3030 elim_i2, elim_i1);
3033 if (i2dest_in_i2src)
3035 if (REG_P (i2dest))
3036 REG_N_DEATHS (REGNO (i2dest))++;
3038 if (newi2pat && reg_set_p (i2dest, newi2pat))
3039 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3040 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3041 else
3042 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3043 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3044 NULL_RTX, NULL_RTX);
3047 if (i1dest_in_i1src)
3049 if (REG_P (i1dest))
3050 REG_N_DEATHS (REGNO (i1dest))++;
3052 if (newi2pat && reg_set_p (i1dest, newi2pat))
3053 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3054 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3055 else
3056 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3057 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3058 NULL_RTX, NULL_RTX);
3061 distribute_links (i3links);
3062 distribute_links (i2links);
3063 distribute_links (i1links);
3065 if (REG_P (i2dest))
3067 rtx link;
3068 rtx i2_insn = 0, i2_val = 0, set;
3070 /* The insn that used to set this register doesn't exist, and
3071 this life of the register may not exist either. See if one of
3072 I3's links points to an insn that sets I2DEST. If it does,
3073 that is now the last known value for I2DEST. If we don't update
3074 this and I2 set the register to a value that depended on its old
3075 contents, we will get confused. If this insn is used, thing
3076 will be set correctly in combine_instructions. */
3078 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3079 if ((set = single_set (XEXP (link, 0))) != 0
3080 && rtx_equal_p (i2dest, SET_DEST (set)))
3081 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3083 record_value_for_reg (i2dest, i2_insn, i2_val);
3085 /* If the reg formerly set in I2 died only once and that was in I3,
3086 zero its use count so it won't make `reload' do any work. */
3087 if (! added_sets_2
3088 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3089 && ! i2dest_in_i2src)
3091 regno = REGNO (i2dest);
3092 REG_N_SETS (regno)--;
3096 if (i1 && REG_P (i1dest))
3098 rtx link;
3099 rtx i1_insn = 0, i1_val = 0, set;
3101 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3102 if ((set = single_set (XEXP (link, 0))) != 0
3103 && rtx_equal_p (i1dest, SET_DEST (set)))
3104 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3106 record_value_for_reg (i1dest, i1_insn, i1_val);
3108 regno = REGNO (i1dest);
3109 if (! added_sets_1 && ! i1dest_in_i1src)
3110 REG_N_SETS (regno)--;
3113 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3114 been made to this insn. The order of
3115 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3116 can affect nonzero_bits of newpat */
3117 if (newi2pat)
3118 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3119 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3121 /* Set new_direct_jump_p if a new return or simple jump instruction
3122 has been created.
3124 If I3 is now an unconditional jump, ensure that it has a
3125 BARRIER following it since it may have initially been a
3126 conditional jump. It may also be the last nonnote insn. */
3128 if (returnjump_p (i3) || any_uncondjump_p (i3))
3130 *new_direct_jump_p = 1;
3131 mark_jump_label (PATTERN (i3), i3, 0);
3133 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3134 || !BARRIER_P (temp))
3135 emit_barrier_after (i3);
3138 if (undobuf.other_insn != NULL_RTX
3139 && (returnjump_p (undobuf.other_insn)
3140 || any_uncondjump_p (undobuf.other_insn)))
3142 *new_direct_jump_p = 1;
3144 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3145 || !BARRIER_P (temp))
3146 emit_barrier_after (undobuf.other_insn);
3149 /* An NOOP jump does not need barrier, but it does need cleaning up
3150 of CFG. */
3151 if (GET_CODE (newpat) == SET
3152 && SET_SRC (newpat) == pc_rtx
3153 && SET_DEST (newpat) == pc_rtx)
3154 *new_direct_jump_p = 1;
3157 combine_successes++;
3158 undo_commit ();
3160 if (added_links_insn
3161 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
3162 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
3163 return added_links_insn;
3164 else
3165 return newi2pat ? i2 : i3;
3168 /* Undo all the modifications recorded in undobuf. */
3170 static void
3171 undo_all (void)
3173 struct undo *undo, *next;
3175 for (undo = undobuf.undos; undo; undo = next)
3177 next = undo->next;
3178 if (undo->is_int)
3179 *undo->where.i = undo->old_contents.i;
3180 else
3181 *undo->where.r = undo->old_contents.r;
3183 undo->next = undobuf.frees;
3184 undobuf.frees = undo;
3187 undobuf.undos = 0;
3190 /* We've committed to accepting the changes we made. Move all
3191 of the undos to the free list. */
3193 static void
3194 undo_commit (void)
3196 struct undo *undo, *next;
3198 for (undo = undobuf.undos; undo; undo = next)
3200 next = undo->next;
3201 undo->next = undobuf.frees;
3202 undobuf.frees = undo;
3204 undobuf.undos = 0;
3208 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3209 where we have an arithmetic expression and return that point. LOC will
3210 be inside INSN.
3212 try_combine will call this function to see if an insn can be split into
3213 two insns. */
3215 static rtx *
3216 find_split_point (rtx *loc, rtx insn)
3218 rtx x = *loc;
3219 enum rtx_code code = GET_CODE (x);
3220 rtx *split;
3221 unsigned HOST_WIDE_INT len = 0;
3222 HOST_WIDE_INT pos = 0;
3223 int unsignedp = 0;
3224 rtx inner = NULL_RTX;
3226 /* First special-case some codes. */
3227 switch (code)
3229 case SUBREG:
3230 #ifdef INSN_SCHEDULING
3231 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3232 point. */
3233 if (MEM_P (SUBREG_REG (x)))
3234 return loc;
3235 #endif
3236 return find_split_point (&SUBREG_REG (x), insn);
3238 case MEM:
3239 #ifdef HAVE_lo_sum
3240 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3241 using LO_SUM and HIGH. */
3242 if (GET_CODE (XEXP (x, 0)) == CONST
3243 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3245 SUBST (XEXP (x, 0),
3246 gen_rtx_LO_SUM (Pmode,
3247 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3248 XEXP (x, 0)));
3249 return &XEXP (XEXP (x, 0), 0);
3251 #endif
3253 /* If we have a PLUS whose second operand is a constant and the
3254 address is not valid, perhaps will can split it up using
3255 the machine-specific way to split large constants. We use
3256 the first pseudo-reg (one of the virtual regs) as a placeholder;
3257 it will not remain in the result. */
3258 if (GET_CODE (XEXP (x, 0)) == PLUS
3259 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3260 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3262 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3263 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3264 subst_insn);
3266 /* This should have produced two insns, each of which sets our
3267 placeholder. If the source of the second is a valid address,
3268 we can make put both sources together and make a split point
3269 in the middle. */
3271 if (seq
3272 && NEXT_INSN (seq) != NULL_RTX
3273 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3274 && NONJUMP_INSN_P (seq)
3275 && GET_CODE (PATTERN (seq)) == SET
3276 && SET_DEST (PATTERN (seq)) == reg
3277 && ! reg_mentioned_p (reg,
3278 SET_SRC (PATTERN (seq)))
3279 && NONJUMP_INSN_P (NEXT_INSN (seq))
3280 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3281 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3282 && memory_address_p (GET_MODE (x),
3283 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3285 rtx src1 = SET_SRC (PATTERN (seq));
3286 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3288 /* Replace the placeholder in SRC2 with SRC1. If we can
3289 find where in SRC2 it was placed, that can become our
3290 split point and we can replace this address with SRC2.
3291 Just try two obvious places. */
3293 src2 = replace_rtx (src2, reg, src1);
3294 split = 0;
3295 if (XEXP (src2, 0) == src1)
3296 split = &XEXP (src2, 0);
3297 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3298 && XEXP (XEXP (src2, 0), 0) == src1)
3299 split = &XEXP (XEXP (src2, 0), 0);
3301 if (split)
3303 SUBST (XEXP (x, 0), src2);
3304 return split;
3308 /* If that didn't work, perhaps the first operand is complex and
3309 needs to be computed separately, so make a split point there.
3310 This will occur on machines that just support REG + CONST
3311 and have a constant moved through some previous computation. */
3313 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3314 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3315 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3316 return &XEXP (XEXP (x, 0), 0);
3318 break;
3320 case SET:
3321 #ifdef HAVE_cc0
3322 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3323 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3324 we need to put the operand into a register. So split at that
3325 point. */
3327 if (SET_DEST (x) == cc0_rtx
3328 && GET_CODE (SET_SRC (x)) != COMPARE
3329 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3330 && !OBJECT_P (SET_SRC (x))
3331 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3332 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3333 return &SET_SRC (x);
3334 #endif
3336 /* See if we can split SET_SRC as it stands. */
3337 split = find_split_point (&SET_SRC (x), insn);
3338 if (split && split != &SET_SRC (x))
3339 return split;
3341 /* See if we can split SET_DEST as it stands. */
3342 split = find_split_point (&SET_DEST (x), insn);
3343 if (split && split != &SET_DEST (x))
3344 return split;
3346 /* See if this is a bitfield assignment with everything constant. If
3347 so, this is an IOR of an AND, so split it into that. */
3348 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3349 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3350 <= HOST_BITS_PER_WIDE_INT)
3351 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3352 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3353 && GET_CODE (SET_SRC (x)) == CONST_INT
3354 && ((INTVAL (XEXP (SET_DEST (x), 1))
3355 + INTVAL (XEXP (SET_DEST (x), 2)))
3356 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3357 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3359 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3360 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3361 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3362 rtx dest = XEXP (SET_DEST (x), 0);
3363 enum machine_mode mode = GET_MODE (dest);
3364 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3365 rtx or_mask;
3367 if (BITS_BIG_ENDIAN)
3368 pos = GET_MODE_BITSIZE (mode) - len - pos;
3370 or_mask = gen_int_mode (src << pos, mode);
3371 if (src == mask)
3372 SUBST (SET_SRC (x),
3373 simplify_gen_binary (IOR, mode, dest, or_mask));
3374 else
3376 rtx negmask = gen_int_mode (~(mask << pos), mode);
3377 SUBST (SET_SRC (x),
3378 simplify_gen_binary (IOR, mode,
3379 simplify_gen_binary (AND, mode,
3380 dest, negmask),
3381 or_mask));
3384 SUBST (SET_DEST (x), dest);
3386 split = find_split_point (&SET_SRC (x), insn);
3387 if (split && split != &SET_SRC (x))
3388 return split;
3391 /* Otherwise, see if this is an operation that we can split into two.
3392 If so, try to split that. */
3393 code = GET_CODE (SET_SRC (x));
3395 switch (code)
3397 case AND:
3398 /* If we are AND'ing with a large constant that is only a single
3399 bit and the result is only being used in a context where we
3400 need to know if it is zero or nonzero, replace it with a bit
3401 extraction. This will avoid the large constant, which might
3402 have taken more than one insn to make. If the constant were
3403 not a valid argument to the AND but took only one insn to make,
3404 this is no worse, but if it took more than one insn, it will
3405 be better. */
3407 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3408 && REG_P (XEXP (SET_SRC (x), 0))
3409 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3410 && REG_P (SET_DEST (x))
3411 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3412 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3413 && XEXP (*split, 0) == SET_DEST (x)
3414 && XEXP (*split, 1) == const0_rtx)
3416 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3417 XEXP (SET_SRC (x), 0),
3418 pos, NULL_RTX, 1, 1, 0, 0);
3419 if (extraction != 0)
3421 SUBST (SET_SRC (x), extraction);
3422 return find_split_point (loc, insn);
3425 break;
3427 case NE:
3428 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3429 is known to be on, this can be converted into a NEG of a shift. */
3430 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3431 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3432 && 1 <= (pos = exact_log2
3433 (nonzero_bits (XEXP (SET_SRC (x), 0),
3434 GET_MODE (XEXP (SET_SRC (x), 0))))))
3436 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3438 SUBST (SET_SRC (x),
3439 gen_rtx_NEG (mode,
3440 gen_rtx_LSHIFTRT (mode,
3441 XEXP (SET_SRC (x), 0),
3442 GEN_INT (pos))));
3444 split = find_split_point (&SET_SRC (x), insn);
3445 if (split && split != &SET_SRC (x))
3446 return split;
3448 break;
3450 case SIGN_EXTEND:
3451 inner = XEXP (SET_SRC (x), 0);
3453 /* We can't optimize if either mode is a partial integer
3454 mode as we don't know how many bits are significant
3455 in those modes. */
3456 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3457 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3458 break;
3460 pos = 0;
3461 len = GET_MODE_BITSIZE (GET_MODE (inner));
3462 unsignedp = 0;
3463 break;
3465 case SIGN_EXTRACT:
3466 case ZERO_EXTRACT:
3467 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3468 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3470 inner = XEXP (SET_SRC (x), 0);
3471 len = INTVAL (XEXP (SET_SRC (x), 1));
3472 pos = INTVAL (XEXP (SET_SRC (x), 2));
3474 if (BITS_BIG_ENDIAN)
3475 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3476 unsignedp = (code == ZERO_EXTRACT);
3478 break;
3480 default:
3481 break;
3484 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3486 enum machine_mode mode = GET_MODE (SET_SRC (x));
3488 /* For unsigned, we have a choice of a shift followed by an
3489 AND or two shifts. Use two shifts for field sizes where the
3490 constant might be too large. We assume here that we can
3491 always at least get 8-bit constants in an AND insn, which is
3492 true for every current RISC. */
3494 if (unsignedp && len <= 8)
3496 SUBST (SET_SRC (x),
3497 gen_rtx_AND (mode,
3498 gen_rtx_LSHIFTRT
3499 (mode, gen_lowpart (mode, inner),
3500 GEN_INT (pos)),
3501 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3503 split = find_split_point (&SET_SRC (x), insn);
3504 if (split && split != &SET_SRC (x))
3505 return split;
3507 else
3509 SUBST (SET_SRC (x),
3510 gen_rtx_fmt_ee
3511 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3512 gen_rtx_ASHIFT (mode,
3513 gen_lowpart (mode, inner),
3514 GEN_INT (GET_MODE_BITSIZE (mode)
3515 - len - pos)),
3516 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3518 split = find_split_point (&SET_SRC (x), insn);
3519 if (split && split != &SET_SRC (x))
3520 return split;
3524 /* See if this is a simple operation with a constant as the second
3525 operand. It might be that this constant is out of range and hence
3526 could be used as a split point. */
3527 if (BINARY_P (SET_SRC (x))
3528 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3529 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3530 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3531 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3532 return &XEXP (SET_SRC (x), 1);
3534 /* Finally, see if this is a simple operation with its first operand
3535 not in a register. The operation might require this operand in a
3536 register, so return it as a split point. We can always do this
3537 because if the first operand were another operation, we would have
3538 already found it as a split point. */
3539 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3540 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3541 return &XEXP (SET_SRC (x), 0);
3543 return 0;
3545 case AND:
3546 case IOR:
3547 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3548 it is better to write this as (not (ior A B)) so we can split it.
3549 Similarly for IOR. */
3550 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3552 SUBST (*loc,
3553 gen_rtx_NOT (GET_MODE (x),
3554 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3555 GET_MODE (x),
3556 XEXP (XEXP (x, 0), 0),
3557 XEXP (XEXP (x, 1), 0))));
3558 return find_split_point (loc, insn);
3561 /* Many RISC machines have a large set of logical insns. If the
3562 second operand is a NOT, put it first so we will try to split the
3563 other operand first. */
3564 if (GET_CODE (XEXP (x, 1)) == NOT)
3566 rtx tem = XEXP (x, 0);
3567 SUBST (XEXP (x, 0), XEXP (x, 1));
3568 SUBST (XEXP (x, 1), tem);
3570 break;
3572 default:
3573 break;
3576 /* Otherwise, select our actions depending on our rtx class. */
3577 switch (GET_RTX_CLASS (code))
3579 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3580 case RTX_TERNARY:
3581 split = find_split_point (&XEXP (x, 2), insn);
3582 if (split)
3583 return split;
3584 /* ... fall through ... */
3585 case RTX_BIN_ARITH:
3586 case RTX_COMM_ARITH:
3587 case RTX_COMPARE:
3588 case RTX_COMM_COMPARE:
3589 split = find_split_point (&XEXP (x, 1), insn);
3590 if (split)
3591 return split;
3592 /* ... fall through ... */
3593 case RTX_UNARY:
3594 /* Some machines have (and (shift ...) ...) insns. If X is not
3595 an AND, but XEXP (X, 0) is, use it as our split point. */
3596 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3597 return &XEXP (x, 0);
3599 split = find_split_point (&XEXP (x, 0), insn);
3600 if (split)
3601 return split;
3602 return loc;
3604 default:
3605 /* Otherwise, we don't have a split point. */
3606 return 0;
3610 /* Throughout X, replace FROM with TO, and return the result.
3611 The result is TO if X is FROM;
3612 otherwise the result is X, but its contents may have been modified.
3613 If they were modified, a record was made in undobuf so that
3614 undo_all will (among other things) return X to its original state.
3616 If the number of changes necessary is too much to record to undo,
3617 the excess changes are not made, so the result is invalid.
3618 The changes already made can still be undone.
3619 undobuf.num_undo is incremented for such changes, so by testing that
3620 the caller can tell whether the result is valid.
3622 `n_occurrences' is incremented each time FROM is replaced.
3624 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3626 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3627 by copying if `n_occurrences' is nonzero. */
3629 static rtx
3630 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3632 enum rtx_code code = GET_CODE (x);
3633 enum machine_mode op0_mode = VOIDmode;
3634 const char *fmt;
3635 int len, i;
3636 rtx new;
3638 /* Two expressions are equal if they are identical copies of a shared
3639 RTX or if they are both registers with the same register number
3640 and mode. */
3642 #define COMBINE_RTX_EQUAL_P(X,Y) \
3643 ((X) == (Y) \
3644 || (REG_P (X) && REG_P (Y) \
3645 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3647 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3649 n_occurrences++;
3650 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3653 /* If X and FROM are the same register but different modes, they will
3654 not have been seen as equal above. However, flow.c will make a
3655 LOG_LINKS entry for that case. If we do nothing, we will try to
3656 rerecognize our original insn and, when it succeeds, we will
3657 delete the feeding insn, which is incorrect.
3659 So force this insn not to match in this (rare) case. */
3660 if (! in_dest && code == REG && REG_P (from)
3661 && REGNO (x) == REGNO (from))
3662 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3664 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3665 of which may contain things that can be combined. */
3666 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3667 return x;
3669 /* It is possible to have a subexpression appear twice in the insn.
3670 Suppose that FROM is a register that appears within TO.
3671 Then, after that subexpression has been scanned once by `subst',
3672 the second time it is scanned, TO may be found. If we were
3673 to scan TO here, we would find FROM within it and create a
3674 self-referent rtl structure which is completely wrong. */
3675 if (COMBINE_RTX_EQUAL_P (x, to))
3676 return to;
3678 /* Parallel asm_operands need special attention because all of the
3679 inputs are shared across the arms. Furthermore, unsharing the
3680 rtl results in recognition failures. Failure to handle this case
3681 specially can result in circular rtl.
3683 Solve this by doing a normal pass across the first entry of the
3684 parallel, and only processing the SET_DESTs of the subsequent
3685 entries. Ug. */
3687 if (code == PARALLEL
3688 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3689 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3691 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3693 /* If this substitution failed, this whole thing fails. */
3694 if (GET_CODE (new) == CLOBBER
3695 && XEXP (new, 0) == const0_rtx)
3696 return new;
3698 SUBST (XVECEXP (x, 0, 0), new);
3700 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3702 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3704 if (!REG_P (dest)
3705 && GET_CODE (dest) != CC0
3706 && GET_CODE (dest) != PC)
3708 new = subst (dest, from, to, 0, unique_copy);
3710 /* If this substitution failed, this whole thing fails. */
3711 if (GET_CODE (new) == CLOBBER
3712 && XEXP (new, 0) == const0_rtx)
3713 return new;
3715 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3719 else
3721 len = GET_RTX_LENGTH (code);
3722 fmt = GET_RTX_FORMAT (code);
3724 /* We don't need to process a SET_DEST that is a register, CC0,
3725 or PC, so set up to skip this common case. All other cases
3726 where we want to suppress replacing something inside a
3727 SET_SRC are handled via the IN_DEST operand. */
3728 if (code == SET
3729 && (REG_P (SET_DEST (x))
3730 || GET_CODE (SET_DEST (x)) == CC0
3731 || GET_CODE (SET_DEST (x)) == PC))
3732 fmt = "ie";
3734 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3735 constant. */
3736 if (fmt[0] == 'e')
3737 op0_mode = GET_MODE (XEXP (x, 0));
3739 for (i = 0; i < len; i++)
3741 if (fmt[i] == 'E')
3743 int j;
3744 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3746 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3748 new = (unique_copy && n_occurrences
3749 ? copy_rtx (to) : to);
3750 n_occurrences++;
3752 else
3754 new = subst (XVECEXP (x, i, j), from, to, 0,
3755 unique_copy);
3757 /* If this substitution failed, this whole thing
3758 fails. */
3759 if (GET_CODE (new) == CLOBBER
3760 && XEXP (new, 0) == const0_rtx)
3761 return new;
3764 SUBST (XVECEXP (x, i, j), new);
3767 else if (fmt[i] == 'e')
3769 /* If this is a register being set, ignore it. */
3770 new = XEXP (x, i);
3771 if (in_dest
3772 && i == 0
3773 && (((code == SUBREG || code == ZERO_EXTRACT)
3774 && REG_P (new))
3775 || code == STRICT_LOW_PART))
3778 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3780 /* In general, don't install a subreg involving two
3781 modes not tieable. It can worsen register
3782 allocation, and can even make invalid reload
3783 insns, since the reg inside may need to be copied
3784 from in the outside mode, and that may be invalid
3785 if it is an fp reg copied in integer mode.
3787 We allow two exceptions to this: It is valid if
3788 it is inside another SUBREG and the mode of that
3789 SUBREG and the mode of the inside of TO is
3790 tieable and it is valid if X is a SET that copies
3791 FROM to CC0. */
3793 if (GET_CODE (to) == SUBREG
3794 && ! MODES_TIEABLE_P (GET_MODE (to),
3795 GET_MODE (SUBREG_REG (to)))
3796 && ! (code == SUBREG
3797 && MODES_TIEABLE_P (GET_MODE (x),
3798 GET_MODE (SUBREG_REG (to))))
3799 #ifdef HAVE_cc0
3800 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3801 #endif
3803 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3805 #ifdef CANNOT_CHANGE_MODE_CLASS
3806 if (code == SUBREG
3807 && REG_P (to)
3808 && REGNO (to) < FIRST_PSEUDO_REGISTER
3809 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3810 GET_MODE (to),
3811 GET_MODE (x)))
3812 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3813 #endif
3815 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3816 n_occurrences++;
3818 else
3819 /* If we are in a SET_DEST, suppress most cases unless we
3820 have gone inside a MEM, in which case we want to
3821 simplify the address. We assume here that things that
3822 are actually part of the destination have their inner
3823 parts in the first expression. This is true for SUBREG,
3824 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3825 things aside from REG and MEM that should appear in a
3826 SET_DEST. */
3827 new = subst (XEXP (x, i), from, to,
3828 (((in_dest
3829 && (code == SUBREG || code == STRICT_LOW_PART
3830 || code == ZERO_EXTRACT))
3831 || code == SET)
3832 && i == 0), unique_copy);
3834 /* If we found that we will have to reject this combination,
3835 indicate that by returning the CLOBBER ourselves, rather than
3836 an expression containing it. This will speed things up as
3837 well as prevent accidents where two CLOBBERs are considered
3838 to be equal, thus producing an incorrect simplification. */
3840 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3841 return new;
3843 if (GET_CODE (x) == SUBREG
3844 && (GET_CODE (new) == CONST_INT
3845 || GET_CODE (new) == CONST_DOUBLE))
3847 enum machine_mode mode = GET_MODE (x);
3849 x = simplify_subreg (GET_MODE (x), new,
3850 GET_MODE (SUBREG_REG (x)),
3851 SUBREG_BYTE (x));
3852 if (! x)
3853 x = gen_rtx_CLOBBER (mode, const0_rtx);
3855 else if (GET_CODE (new) == CONST_INT
3856 && GET_CODE (x) == ZERO_EXTEND)
3858 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3859 new, GET_MODE (XEXP (x, 0)));
3860 gcc_assert (x);
3862 else
3863 SUBST (XEXP (x, i), new);
3868 /* Try to simplify X. If the simplification changed the code, it is likely
3869 that further simplification will help, so loop, but limit the number
3870 of repetitions that will be performed. */
3872 for (i = 0; i < 4; i++)
3874 /* If X is sufficiently simple, don't bother trying to do anything
3875 with it. */
3876 if (code != CONST_INT && code != REG && code != CLOBBER)
3877 x = combine_simplify_rtx (x, op0_mode, in_dest);
3879 if (GET_CODE (x) == code)
3880 break;
3882 code = GET_CODE (x);
3884 /* We no longer know the original mode of operand 0 since we
3885 have changed the form of X) */
3886 op0_mode = VOIDmode;
3889 return x;
3892 /* Simplify X, a piece of RTL. We just operate on the expression at the
3893 outer level; call `subst' to simplify recursively. Return the new
3894 expression.
3896 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3897 if we are inside a SET_DEST. */
3899 static rtx
3900 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3902 enum rtx_code code = GET_CODE (x);
3903 enum machine_mode mode = GET_MODE (x);
3904 rtx temp;
3905 rtx reversed;
3906 int i;
3908 /* If this is a commutative operation, put a constant last and a complex
3909 expression first. We don't need to do this for comparisons here. */
3910 if (COMMUTATIVE_ARITH_P (x)
3911 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3913 temp = XEXP (x, 0);
3914 SUBST (XEXP (x, 0), XEXP (x, 1));
3915 SUBST (XEXP (x, 1), temp);
3918 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3919 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3920 things. Check for cases where both arms are testing the same
3921 condition.
3923 Don't do anything if all operands are very simple. */
3925 if ((BINARY_P (x)
3926 && ((!OBJECT_P (XEXP (x, 0))
3927 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3928 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3929 || (!OBJECT_P (XEXP (x, 1))
3930 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3931 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3932 || (UNARY_P (x)
3933 && (!OBJECT_P (XEXP (x, 0))
3934 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3935 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3937 rtx cond, true_rtx, false_rtx;
3939 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3940 if (cond != 0
3941 /* If everything is a comparison, what we have is highly unlikely
3942 to be simpler, so don't use it. */
3943 && ! (COMPARISON_P (x)
3944 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3946 rtx cop1 = const0_rtx;
3947 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3949 if (cond_code == NE && COMPARISON_P (cond))
3950 return x;
3952 /* Simplify the alternative arms; this may collapse the true and
3953 false arms to store-flag values. Be careful to use copy_rtx
3954 here since true_rtx or false_rtx might share RTL with x as a
3955 result of the if_then_else_cond call above. */
3956 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3957 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3959 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3960 is unlikely to be simpler. */
3961 if (general_operand (true_rtx, VOIDmode)
3962 && general_operand (false_rtx, VOIDmode))
3964 enum rtx_code reversed;
3966 /* Restarting if we generate a store-flag expression will cause
3967 us to loop. Just drop through in this case. */
3969 /* If the result values are STORE_FLAG_VALUE and zero, we can
3970 just make the comparison operation. */
3971 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3972 x = simplify_gen_relational (cond_code, mode, VOIDmode,
3973 cond, cop1);
3974 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3975 && ((reversed = reversed_comparison_code_parts
3976 (cond_code, cond, cop1, NULL))
3977 != UNKNOWN))
3978 x = simplify_gen_relational (reversed, mode, VOIDmode,
3979 cond, cop1);
3981 /* Likewise, we can make the negate of a comparison operation
3982 if the result values are - STORE_FLAG_VALUE and zero. */
3983 else if (GET_CODE (true_rtx) == CONST_INT
3984 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3985 && false_rtx == const0_rtx)
3986 x = simplify_gen_unary (NEG, mode,
3987 simplify_gen_relational (cond_code,
3988 mode, VOIDmode,
3989 cond, cop1),
3990 mode);
3991 else if (GET_CODE (false_rtx) == CONST_INT
3992 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3993 && true_rtx == const0_rtx
3994 && ((reversed = reversed_comparison_code_parts
3995 (cond_code, cond, cop1, NULL))
3996 != UNKNOWN))
3997 x = simplify_gen_unary (NEG, mode,
3998 simplify_gen_relational (reversed,
3999 mode, VOIDmode,
4000 cond, cop1),
4001 mode);
4002 else
4003 return gen_rtx_IF_THEN_ELSE (mode,
4004 simplify_gen_relational (cond_code,
4005 mode,
4006 VOIDmode,
4007 cond,
4008 cop1),
4009 true_rtx, false_rtx);
4011 code = GET_CODE (x);
4012 op0_mode = VOIDmode;
4017 /* Try to fold this expression in case we have constants that weren't
4018 present before. */
4019 temp = 0;
4020 switch (GET_RTX_CLASS (code))
4022 case RTX_UNARY:
4023 if (op0_mode == VOIDmode)
4024 op0_mode = GET_MODE (XEXP (x, 0));
4025 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4026 break;
4027 case RTX_COMPARE:
4028 case RTX_COMM_COMPARE:
4030 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4031 if (cmp_mode == VOIDmode)
4033 cmp_mode = GET_MODE (XEXP (x, 1));
4034 if (cmp_mode == VOIDmode)
4035 cmp_mode = op0_mode;
4037 temp = simplify_relational_operation (code, mode, cmp_mode,
4038 XEXP (x, 0), XEXP (x, 1));
4040 break;
4041 case RTX_COMM_ARITH:
4042 case RTX_BIN_ARITH:
4043 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4044 break;
4045 case RTX_BITFIELD_OPS:
4046 case RTX_TERNARY:
4047 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4048 XEXP (x, 1), XEXP (x, 2));
4049 break;
4050 default:
4051 break;
4054 if (temp)
4056 x = temp;
4057 code = GET_CODE (temp);
4058 op0_mode = VOIDmode;
4059 mode = GET_MODE (temp);
4062 /* First see if we can apply the inverse distributive law. */
4063 if (code == PLUS || code == MINUS
4064 || code == AND || code == IOR || code == XOR)
4066 x = apply_distributive_law (x);
4067 code = GET_CODE (x);
4068 op0_mode = VOIDmode;
4071 /* If CODE is an associative operation not otherwise handled, see if we
4072 can associate some operands. This can win if they are constants or
4073 if they are logically related (i.e. (a & b) & a). */
4074 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4075 || code == AND || code == IOR || code == XOR
4076 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4077 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4078 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
4080 if (GET_CODE (XEXP (x, 0)) == code)
4082 rtx other = XEXP (XEXP (x, 0), 0);
4083 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4084 rtx inner_op1 = XEXP (x, 1);
4085 rtx inner;
4087 /* Make sure we pass the constant operand if any as the second
4088 one if this is a commutative operation. */
4089 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4091 rtx tem = inner_op0;
4092 inner_op0 = inner_op1;
4093 inner_op1 = tem;
4095 inner = simplify_binary_operation (code == MINUS ? PLUS
4096 : code == DIV ? MULT
4097 : code,
4098 mode, inner_op0, inner_op1);
4100 /* For commutative operations, try the other pair if that one
4101 didn't simplify. */
4102 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4104 other = XEXP (XEXP (x, 0), 1);
4105 inner = simplify_binary_operation (code, mode,
4106 XEXP (XEXP (x, 0), 0),
4107 XEXP (x, 1));
4110 if (inner)
4111 return simplify_gen_binary (code, mode, other, inner);
4115 /* A little bit of algebraic simplification here. */
4116 switch (code)
4118 case MEM:
4119 /* Ensure that our address has any ASHIFTs converted to MULT in case
4120 address-recognizing predicates are called later. */
4121 temp = make_compound_operation (XEXP (x, 0), MEM);
4122 SUBST (XEXP (x, 0), temp);
4123 break;
4125 case SUBREG:
4126 if (op0_mode == VOIDmode)
4127 op0_mode = GET_MODE (SUBREG_REG (x));
4129 /* See if this can be moved to simplify_subreg. */
4130 if (CONSTANT_P (SUBREG_REG (x))
4131 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4132 /* Don't call gen_lowpart if the inner mode
4133 is VOIDmode and we cannot simplify it, as SUBREG without
4134 inner mode is invalid. */
4135 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4136 || gen_lowpart_common (mode, SUBREG_REG (x))))
4137 return gen_lowpart (mode, SUBREG_REG (x));
4139 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4140 break;
4142 rtx temp;
4143 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4144 SUBREG_BYTE (x));
4145 if (temp)
4146 return temp;
4149 /* Don't change the mode of the MEM if that would change the meaning
4150 of the address. */
4151 if (MEM_P (SUBREG_REG (x))
4152 && (MEM_VOLATILE_P (SUBREG_REG (x))
4153 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4154 return gen_rtx_CLOBBER (mode, const0_rtx);
4156 /* Note that we cannot do any narrowing for non-constants since
4157 we might have been counting on using the fact that some bits were
4158 zero. We now do this in the SET. */
4160 break;
4162 case NOT:
4163 if (GET_CODE (XEXP (x, 0)) == SUBREG
4164 && subreg_lowpart_p (XEXP (x, 0))
4165 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4166 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4167 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4168 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4170 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4172 x = gen_rtx_ROTATE (inner_mode,
4173 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4174 inner_mode),
4175 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4176 return gen_lowpart (mode, x);
4179 /* Apply De Morgan's laws to reduce number of patterns for machines
4180 with negating logical insns (and-not, nand, etc.). If result has
4181 only one NOT, put it first, since that is how the patterns are
4182 coded. */
4184 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4186 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4187 enum machine_mode op_mode;
4189 op_mode = GET_MODE (in1);
4190 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4192 op_mode = GET_MODE (in2);
4193 if (op_mode == VOIDmode)
4194 op_mode = mode;
4195 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4197 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4199 rtx tem = in2;
4200 in2 = in1; in1 = tem;
4203 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4204 mode, in1, in2);
4206 break;
4208 case NEG:
4209 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4210 if (GET_CODE (XEXP (x, 0)) == XOR
4211 && XEXP (XEXP (x, 0), 1) == const1_rtx
4212 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4213 return simplify_gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4214 constm1_rtx);
4216 temp = expand_compound_operation (XEXP (x, 0));
4218 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4219 replaced by (lshiftrt X C). This will convert
4220 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4222 if (GET_CODE (temp) == ASHIFTRT
4223 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4224 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4225 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4226 INTVAL (XEXP (temp, 1)));
4228 /* If X has only a single bit that might be nonzero, say, bit I, convert
4229 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4230 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4231 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4232 or a SUBREG of one since we'd be making the expression more
4233 complex if it was just a register. */
4235 if (!REG_P (temp)
4236 && ! (GET_CODE (temp) == SUBREG
4237 && REG_P (SUBREG_REG (temp)))
4238 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4240 rtx temp1 = simplify_shift_const
4241 (NULL_RTX, ASHIFTRT, mode,
4242 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4243 GET_MODE_BITSIZE (mode) - 1 - i),
4244 GET_MODE_BITSIZE (mode) - 1 - i);
4246 /* If all we did was surround TEMP with the two shifts, we
4247 haven't improved anything, so don't use it. Otherwise,
4248 we are better off with TEMP1. */
4249 if (GET_CODE (temp1) != ASHIFTRT
4250 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4251 || XEXP (XEXP (temp1, 0), 0) != temp)
4252 return temp1;
4254 break;
4256 case TRUNCATE:
4257 /* We can't handle truncation to a partial integer mode here
4258 because we don't know the real bitsize of the partial
4259 integer mode. */
4260 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4261 break;
4263 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4264 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4265 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4266 SUBST (XEXP (x, 0),
4267 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4268 GET_MODE_MASK (mode), 0));
4270 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4271 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4272 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4273 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4274 return XEXP (XEXP (x, 0), 0);
4276 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4277 (OP:SI foo:SI) if OP is NEG or ABS. */
4278 if ((GET_CODE (XEXP (x, 0)) == ABS
4279 || GET_CODE (XEXP (x, 0)) == NEG)
4280 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4281 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4282 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4283 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4284 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4286 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4287 (truncate:SI x). */
4288 if (GET_CODE (XEXP (x, 0)) == SUBREG
4289 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4290 && subreg_lowpart_p (XEXP (x, 0)))
4291 return SUBREG_REG (XEXP (x, 0));
4293 /* If we know that the value is already truncated, we can
4294 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4295 is nonzero for the corresponding modes. But don't do this
4296 for an (LSHIFTRT (MULT ...)) since this will cause problems
4297 with the umulXi3_highpart patterns. */
4298 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4299 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4300 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4301 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4302 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4303 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4304 return gen_lowpart (mode, XEXP (x, 0));
4306 /* A truncate of a comparison can be replaced with a subreg if
4307 STORE_FLAG_VALUE permits. This is like the previous test,
4308 but it works even if the comparison is done in a mode larger
4309 than HOST_BITS_PER_WIDE_INT. */
4310 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4311 && COMPARISON_P (XEXP (x, 0))
4312 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4313 return gen_lowpart (mode, XEXP (x, 0));
4315 /* Similarly, a truncate of a register whose value is a
4316 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4317 permits. */
4318 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4319 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4320 && (temp = get_last_value (XEXP (x, 0)))
4321 && COMPARISON_P (temp))
4322 return gen_lowpart (mode, XEXP (x, 0));
4324 break;
4326 case FLOAT_TRUNCATE:
4327 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4328 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4329 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4330 return XEXP (XEXP (x, 0), 0);
4332 /* (float_truncate:SF (float_truncate:DF foo:XF))
4333 = (float_truncate:SF foo:XF).
4334 This may eliminate double rounding, so it is unsafe.
4336 (float_truncate:SF (float_extend:XF foo:DF))
4337 = (float_truncate:SF foo:DF).
4339 (float_truncate:DF (float_extend:XF foo:SF))
4340 = (float_extend:SF foo:DF). */
4341 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4342 && flag_unsafe_math_optimizations)
4343 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4344 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4345 0)))
4346 > GET_MODE_SIZE (mode)
4347 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4348 mode,
4349 XEXP (XEXP (x, 0), 0), mode);
4351 /* (float_truncate (float x)) is (float x) */
4352 if (GET_CODE (XEXP (x, 0)) == FLOAT
4353 && (flag_unsafe_math_optimizations
4354 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4355 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4356 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4357 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4358 return simplify_gen_unary (FLOAT, mode,
4359 XEXP (XEXP (x, 0), 0),
4360 GET_MODE (XEXP (XEXP (x, 0), 0)));
4362 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4363 (OP:SF foo:SF) if OP is NEG or ABS. */
4364 if ((GET_CODE (XEXP (x, 0)) == ABS
4365 || GET_CODE (XEXP (x, 0)) == NEG)
4366 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4367 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4368 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4369 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4371 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4372 is (float_truncate:SF x). */
4373 if (GET_CODE (XEXP (x, 0)) == SUBREG
4374 && subreg_lowpart_p (XEXP (x, 0))
4375 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4376 return SUBREG_REG (XEXP (x, 0));
4377 break;
4378 case FLOAT_EXTEND:
4379 /* (float_extend (float_extend x)) is (float_extend x)
4381 (float_extend (float x)) is (float x) assuming that double
4382 rounding can't happen.
4384 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4385 || (GET_CODE (XEXP (x, 0)) == FLOAT
4386 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4387 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4388 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4389 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4390 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4391 XEXP (XEXP (x, 0), 0),
4392 GET_MODE (XEXP (XEXP (x, 0), 0)));
4394 break;
4395 #ifdef HAVE_cc0
4396 case COMPARE:
4397 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4398 using cc0, in which case we want to leave it as a COMPARE
4399 so we can distinguish it from a register-register-copy. */
4400 if (XEXP (x, 1) == const0_rtx)
4401 return XEXP (x, 0);
4403 /* x - 0 is the same as x unless x's mode has signed zeros and
4404 allows rounding towards -infinity. Under those conditions,
4405 0 - 0 is -0. */
4406 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4407 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4408 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4409 return XEXP (x, 0);
4410 break;
4411 #endif
4413 case CONST:
4414 /* (const (const X)) can become (const X). Do it this way rather than
4415 returning the inner CONST since CONST can be shared with a
4416 REG_EQUAL note. */
4417 if (GET_CODE (XEXP (x, 0)) == CONST)
4418 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4419 break;
4421 #ifdef HAVE_lo_sum
4422 case LO_SUM:
4423 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4424 can add in an offset. find_split_point will split this address up
4425 again if it doesn't match. */
4426 if (GET_CODE (XEXP (x, 0)) == HIGH
4427 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4428 return XEXP (x, 1);
4429 break;
4430 #endif
4432 case PLUS:
4433 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4435 if (GET_CODE (XEXP (x, 0)) == MULT
4436 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4438 rtx in1, in2;
4440 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4441 in2 = XEXP (XEXP (x, 0), 1);
4442 return simplify_gen_binary (MINUS, mode, XEXP (x, 1),
4443 simplify_gen_binary (MULT, mode,
4444 in1, in2));
4447 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4448 outermost. That's because that's the way indexed addresses are
4449 supposed to appear. This code used to check many more cases, but
4450 they are now checked elsewhere. */
4451 if (GET_CODE (XEXP (x, 0)) == PLUS
4452 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4453 return simplify_gen_binary (PLUS, mode,
4454 simplify_gen_binary (PLUS, mode,
4455 XEXP (XEXP (x, 0), 0),
4456 XEXP (x, 1)),
4457 XEXP (XEXP (x, 0), 1));
4459 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4460 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4461 bit-field and can be replaced by either a sign_extend or a
4462 sign_extract. The `and' may be a zero_extend and the two
4463 <c>, -<c> constants may be reversed. */
4464 if (GET_CODE (XEXP (x, 0)) == XOR
4465 && GET_CODE (XEXP (x, 1)) == CONST_INT
4466 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4467 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4468 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4469 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4470 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4471 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4472 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4473 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4474 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4475 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4476 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4477 == (unsigned int) i + 1))))
4478 return simplify_shift_const
4479 (NULL_RTX, ASHIFTRT, mode,
4480 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4481 XEXP (XEXP (XEXP (x, 0), 0), 0),
4482 GET_MODE_BITSIZE (mode) - (i + 1)),
4483 GET_MODE_BITSIZE (mode) - (i + 1));
4485 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4486 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4487 is 1. This produces better code than the alternative immediately
4488 below. */
4489 if (COMPARISON_P (XEXP (x, 0))
4490 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4491 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4492 && (reversed = reversed_comparison (XEXP (x, 0), mode)))
4493 return
4494 simplify_gen_unary (NEG, mode, reversed, mode);
4496 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4497 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4498 the bitsize of the mode - 1. This allows simplification of
4499 "a = (b & 8) == 0;" */
4500 if (XEXP (x, 1) == constm1_rtx
4501 && !REG_P (XEXP (x, 0))
4502 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4503 && REG_P (SUBREG_REG (XEXP (x, 0))))
4504 && nonzero_bits (XEXP (x, 0), mode) == 1)
4505 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4506 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4507 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4508 GET_MODE_BITSIZE (mode) - 1),
4509 GET_MODE_BITSIZE (mode) - 1);
4511 /* If we are adding two things that have no bits in common, convert
4512 the addition into an IOR. This will often be further simplified,
4513 for example in cases like ((a & 1) + (a & 2)), which can
4514 become a & 3. */
4516 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4517 && (nonzero_bits (XEXP (x, 0), mode)
4518 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4520 /* Try to simplify the expression further. */
4521 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4522 temp = combine_simplify_rtx (tor, mode, in_dest);
4524 /* If we could, great. If not, do not go ahead with the IOR
4525 replacement, since PLUS appears in many special purpose
4526 address arithmetic instructions. */
4527 if (GET_CODE (temp) != CLOBBER && temp != tor)
4528 return temp;
4530 break;
4532 case MINUS:
4533 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4534 by reversing the comparison code if valid. */
4535 if (STORE_FLAG_VALUE == 1
4536 && XEXP (x, 0) == const1_rtx
4537 && COMPARISON_P (XEXP (x, 1))
4538 && (reversed = reversed_comparison (XEXP (x, 1), mode)))
4539 return reversed;
4541 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4542 (and <foo> (const_int pow2-1)) */
4543 if (GET_CODE (XEXP (x, 1)) == AND
4544 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4545 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4546 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4547 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4548 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4550 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4552 if (GET_CODE (XEXP (x, 1)) == MULT
4553 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4555 rtx in1, in2;
4557 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4558 in2 = XEXP (XEXP (x, 1), 1);
4559 return simplify_gen_binary (PLUS, mode,
4560 simplify_gen_binary (MULT, mode,
4561 in1, in2),
4562 XEXP (x, 0));
4565 /* Canonicalize (minus (neg A) (mult B C)) to
4566 (minus (mult (neg B) C) A). */
4567 if (GET_CODE (XEXP (x, 1)) == MULT
4568 && GET_CODE (XEXP (x, 0)) == NEG)
4570 rtx in1, in2;
4572 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4573 in2 = XEXP (XEXP (x, 1), 1);
4574 return simplify_gen_binary (MINUS, mode,
4575 simplify_gen_binary (MULT, mode,
4576 in1, in2),
4577 XEXP (XEXP (x, 0), 0));
4580 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4581 integers. */
4582 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4583 return simplify_gen_binary (MINUS, mode,
4584 simplify_gen_binary (MINUS, mode,
4585 XEXP (x, 0),
4586 XEXP (XEXP (x, 1), 0)),
4587 XEXP (XEXP (x, 1), 1));
4588 break;
4590 case MULT:
4591 /* If we have (mult (plus A B) C), apply the distributive law and then
4592 the inverse distributive law to see if things simplify. This
4593 occurs mostly in addresses, often when unrolling loops. */
4595 if (GET_CODE (XEXP (x, 0)) == PLUS)
4597 rtx result = distribute_and_simplify_rtx (x, 0);
4598 if (result)
4599 return result;
4602 /* Try simplify a*(b/c) as (a*b)/c. */
4603 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4604 && GET_CODE (XEXP (x, 0)) == DIV)
4606 rtx tem = simplify_binary_operation (MULT, mode,
4607 XEXP (XEXP (x, 0), 0),
4608 XEXP (x, 1));
4609 if (tem)
4610 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4612 break;
4614 case UDIV:
4615 /* If this is a divide by a power of two, treat it as a shift if
4616 its first operand is a shift. */
4617 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4618 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4619 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4620 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4621 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4622 || GET_CODE (XEXP (x, 0)) == ROTATE
4623 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4624 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4625 break;
4627 case EQ: case NE:
4628 case GT: case GTU: case GE: case GEU:
4629 case LT: case LTU: case LE: case LEU:
4630 case UNEQ: case LTGT:
4631 case UNGT: case UNGE:
4632 case UNLT: case UNLE:
4633 case UNORDERED: case ORDERED:
4634 /* If the first operand is a condition code, we can't do anything
4635 with it. */
4636 if (GET_CODE (XEXP (x, 0)) == COMPARE
4637 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4638 && ! CC0_P (XEXP (x, 0))))
4640 rtx op0 = XEXP (x, 0);
4641 rtx op1 = XEXP (x, 1);
4642 enum rtx_code new_code;
4644 if (GET_CODE (op0) == COMPARE)
4645 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4647 /* Simplify our comparison, if possible. */
4648 new_code = simplify_comparison (code, &op0, &op1);
4650 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4651 if only the low-order bit is possibly nonzero in X (such as when
4652 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4653 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4654 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4655 (plus X 1).
4657 Remove any ZERO_EXTRACT we made when thinking this was a
4658 comparison. It may now be simpler to use, e.g., an AND. If a
4659 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4660 the call to make_compound_operation in the SET case. */
4662 if (STORE_FLAG_VALUE == 1
4663 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4664 && op1 == const0_rtx
4665 && mode == GET_MODE (op0)
4666 && nonzero_bits (op0, mode) == 1)
4667 return gen_lowpart (mode,
4668 expand_compound_operation (op0));
4670 else if (STORE_FLAG_VALUE == 1
4671 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4672 && op1 == const0_rtx
4673 && mode == GET_MODE (op0)
4674 && (num_sign_bit_copies (op0, mode)
4675 == GET_MODE_BITSIZE (mode)))
4677 op0 = expand_compound_operation (op0);
4678 return simplify_gen_unary (NEG, mode,
4679 gen_lowpart (mode, op0),
4680 mode);
4683 else if (STORE_FLAG_VALUE == 1
4684 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4685 && op1 == const0_rtx
4686 && mode == GET_MODE (op0)
4687 && nonzero_bits (op0, mode) == 1)
4689 op0 = expand_compound_operation (op0);
4690 return simplify_gen_binary (XOR, mode,
4691 gen_lowpart (mode, op0),
4692 const1_rtx);
4695 else if (STORE_FLAG_VALUE == 1
4696 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4697 && op1 == const0_rtx
4698 && mode == GET_MODE (op0)
4699 && (num_sign_bit_copies (op0, mode)
4700 == GET_MODE_BITSIZE (mode)))
4702 op0 = expand_compound_operation (op0);
4703 return plus_constant (gen_lowpart (mode, op0), 1);
4706 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4707 those above. */
4708 if (STORE_FLAG_VALUE == -1
4709 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4710 && op1 == const0_rtx
4711 && (num_sign_bit_copies (op0, mode)
4712 == GET_MODE_BITSIZE (mode)))
4713 return gen_lowpart (mode,
4714 expand_compound_operation (op0));
4716 else if (STORE_FLAG_VALUE == -1
4717 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4718 && op1 == const0_rtx
4719 && mode == GET_MODE (op0)
4720 && nonzero_bits (op0, mode) == 1)
4722 op0 = expand_compound_operation (op0);
4723 return simplify_gen_unary (NEG, mode,
4724 gen_lowpart (mode, op0),
4725 mode);
4728 else if (STORE_FLAG_VALUE == -1
4729 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4730 && op1 == const0_rtx
4731 && mode == GET_MODE (op0)
4732 && (num_sign_bit_copies (op0, mode)
4733 == GET_MODE_BITSIZE (mode)))
4735 op0 = expand_compound_operation (op0);
4736 return simplify_gen_unary (NOT, mode,
4737 gen_lowpart (mode, op0),
4738 mode);
4741 /* If X is 0/1, (eq X 0) is X-1. */
4742 else if (STORE_FLAG_VALUE == -1
4743 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4744 && op1 == const0_rtx
4745 && mode == GET_MODE (op0)
4746 && nonzero_bits (op0, mode) == 1)
4748 op0 = expand_compound_operation (op0);
4749 return plus_constant (gen_lowpart (mode, op0), -1);
4752 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4753 one bit that might be nonzero, we can convert (ne x 0) to
4754 (ashift x c) where C puts the bit in the sign bit. Remove any
4755 AND with STORE_FLAG_VALUE when we are done, since we are only
4756 going to test the sign bit. */
4757 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4758 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4759 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4760 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4761 && op1 == const0_rtx
4762 && mode == GET_MODE (op0)
4763 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4765 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4766 expand_compound_operation (op0),
4767 GET_MODE_BITSIZE (mode) - 1 - i);
4768 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4769 return XEXP (x, 0);
4770 else
4771 return x;
4774 /* If the code changed, return a whole new comparison. */
4775 if (new_code != code)
4776 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4778 /* Otherwise, keep this operation, but maybe change its operands.
4779 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4780 SUBST (XEXP (x, 0), op0);
4781 SUBST (XEXP (x, 1), op1);
4783 break;
4785 case IF_THEN_ELSE:
4786 return simplify_if_then_else (x);
4788 case ZERO_EXTRACT:
4789 case SIGN_EXTRACT:
4790 case ZERO_EXTEND:
4791 case SIGN_EXTEND:
4792 /* If we are processing SET_DEST, we are done. */
4793 if (in_dest)
4794 return x;
4796 return expand_compound_operation (x);
4798 case SET:
4799 return simplify_set (x);
4801 case AND:
4802 case IOR:
4803 case XOR:
4804 return simplify_logical (x);
4806 case ABS:
4807 /* (abs (neg <foo>)) -> (abs <foo>) */
4808 if (GET_CODE (XEXP (x, 0)) == NEG)
4809 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4811 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4812 do nothing. */
4813 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4814 break;
4816 /* If operand is something known to be positive, ignore the ABS. */
4817 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4818 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4819 <= HOST_BITS_PER_WIDE_INT)
4820 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4821 & ((HOST_WIDE_INT) 1
4822 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4823 == 0)))
4824 return XEXP (x, 0);
4826 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4827 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4828 return gen_rtx_NEG (mode, XEXP (x, 0));
4830 break;
4832 case FFS:
4833 /* (ffs (*_extend <X>)) = (ffs <X>) */
4834 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4835 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4836 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4837 break;
4839 case POPCOUNT:
4840 case PARITY:
4841 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4842 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4843 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4844 break;
4846 case FLOAT:
4847 /* (float (sign_extend <X>)) = (float <X>). */
4848 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4849 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4850 break;
4852 case ASHIFT:
4853 case LSHIFTRT:
4854 case ASHIFTRT:
4855 case ROTATE:
4856 case ROTATERT:
4857 /* If this is a shift by a constant amount, simplify it. */
4858 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4859 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4860 INTVAL (XEXP (x, 1)));
4862 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4863 SUBST (XEXP (x, 1),
4864 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4865 ((HOST_WIDE_INT) 1
4866 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4867 - 1,
4868 0));
4869 break;
4871 case VEC_SELECT:
4873 rtx op0 = XEXP (x, 0);
4874 rtx op1 = XEXP (x, 1);
4875 int len;
4877 gcc_assert (GET_CODE (op1) == PARALLEL);
4878 len = XVECLEN (op1, 0);
4879 if (len == 1
4880 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4881 && GET_CODE (op0) == VEC_CONCAT)
4883 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4885 /* Try to find the element in the VEC_CONCAT. */
4886 for (;;)
4888 if (GET_MODE (op0) == GET_MODE (x))
4889 return op0;
4890 if (GET_CODE (op0) == VEC_CONCAT)
4892 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4893 if (offset < op0_size)
4894 op0 = XEXP (op0, 0);
4895 else
4897 offset -= op0_size;
4898 op0 = XEXP (op0, 1);
4901 else
4902 break;
4907 break;
4909 default:
4910 break;
4913 return x;
4916 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4918 static rtx
4919 simplify_if_then_else (rtx x)
4921 enum machine_mode mode = GET_MODE (x);
4922 rtx cond = XEXP (x, 0);
4923 rtx true_rtx = XEXP (x, 1);
4924 rtx false_rtx = XEXP (x, 2);
4925 enum rtx_code true_code = GET_CODE (cond);
4926 int comparison_p = COMPARISON_P (cond);
4927 rtx temp;
4928 int i;
4929 enum rtx_code false_code;
4930 rtx reversed;
4932 /* Simplify storing of the truth value. */
4933 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4934 return simplify_gen_relational (true_code, mode, VOIDmode,
4935 XEXP (cond, 0), XEXP (cond, 1));
4937 /* Also when the truth value has to be reversed. */
4938 if (comparison_p
4939 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4940 && (reversed = reversed_comparison (cond, mode)))
4941 return reversed;
4943 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4944 in it is being compared against certain values. Get the true and false
4945 comparisons and see if that says anything about the value of each arm. */
4947 if (comparison_p
4948 && ((false_code = reversed_comparison_code (cond, NULL))
4949 != UNKNOWN)
4950 && REG_P (XEXP (cond, 0)))
4952 HOST_WIDE_INT nzb;
4953 rtx from = XEXP (cond, 0);
4954 rtx true_val = XEXP (cond, 1);
4955 rtx false_val = true_val;
4956 int swapped = 0;
4958 /* If FALSE_CODE is EQ, swap the codes and arms. */
4960 if (false_code == EQ)
4962 swapped = 1, true_code = EQ, false_code = NE;
4963 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4966 /* If we are comparing against zero and the expression being tested has
4967 only a single bit that might be nonzero, that is its value when it is
4968 not equal to zero. Similarly if it is known to be -1 or 0. */
4970 if (true_code == EQ && true_val == const0_rtx
4971 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4972 false_code = EQ, false_val = GEN_INT (nzb);
4973 else if (true_code == EQ && true_val == const0_rtx
4974 && (num_sign_bit_copies (from, GET_MODE (from))
4975 == GET_MODE_BITSIZE (GET_MODE (from))))
4976 false_code = EQ, false_val = constm1_rtx;
4978 /* Now simplify an arm if we know the value of the register in the
4979 branch and it is used in the arm. Be careful due to the potential
4980 of locally-shared RTL. */
4982 if (reg_mentioned_p (from, true_rtx))
4983 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4984 from, true_val),
4985 pc_rtx, pc_rtx, 0, 0);
4986 if (reg_mentioned_p (from, false_rtx))
4987 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4988 from, false_val),
4989 pc_rtx, pc_rtx, 0, 0);
4991 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4992 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4994 true_rtx = XEXP (x, 1);
4995 false_rtx = XEXP (x, 2);
4996 true_code = GET_CODE (cond);
4999 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5000 reversed, do so to avoid needing two sets of patterns for
5001 subtract-and-branch insns. Similarly if we have a constant in the true
5002 arm, the false arm is the same as the first operand of the comparison, or
5003 the false arm is more complicated than the true arm. */
5005 if (comparison_p
5006 && reversed_comparison_code (cond, NULL) != UNKNOWN
5007 && (true_rtx == pc_rtx
5008 || (CONSTANT_P (true_rtx)
5009 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5010 || true_rtx == const0_rtx
5011 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5012 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5013 && !OBJECT_P (false_rtx))
5014 || reg_mentioned_p (true_rtx, false_rtx)
5015 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5017 true_code = reversed_comparison_code (cond, NULL);
5018 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5019 SUBST (XEXP (x, 1), false_rtx);
5020 SUBST (XEXP (x, 2), true_rtx);
5022 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5023 cond = XEXP (x, 0);
5025 /* It is possible that the conditional has been simplified out. */
5026 true_code = GET_CODE (cond);
5027 comparison_p = COMPARISON_P (cond);
5030 /* If the two arms are identical, we don't need the comparison. */
5032 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5033 return true_rtx;
5035 /* Convert a == b ? b : a to "a". */
5036 if (true_code == EQ && ! side_effects_p (cond)
5037 && !HONOR_NANS (mode)
5038 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5039 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5040 return false_rtx;
5041 else if (true_code == NE && ! side_effects_p (cond)
5042 && !HONOR_NANS (mode)
5043 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5044 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5045 return true_rtx;
5047 /* Look for cases where we have (abs x) or (neg (abs X)). */
5049 if (GET_MODE_CLASS (mode) == MODE_INT
5050 && GET_CODE (false_rtx) == NEG
5051 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5052 && comparison_p
5053 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5054 && ! side_effects_p (true_rtx))
5055 switch (true_code)
5057 case GT:
5058 case GE:
5059 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5060 case LT:
5061 case LE:
5062 return
5063 simplify_gen_unary (NEG, mode,
5064 simplify_gen_unary (ABS, mode, true_rtx, mode),
5065 mode);
5066 default:
5067 break;
5070 /* Look for MIN or MAX. */
5072 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5073 && comparison_p
5074 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5075 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5076 && ! side_effects_p (cond))
5077 switch (true_code)
5079 case GE:
5080 case GT:
5081 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5082 case LE:
5083 case LT:
5084 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5085 case GEU:
5086 case GTU:
5087 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5088 case LEU:
5089 case LTU:
5090 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5091 default:
5092 break;
5095 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5096 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5097 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5098 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5099 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5100 neither 1 or -1, but it isn't worth checking for. */
5102 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5103 && comparison_p
5104 && GET_MODE_CLASS (mode) == MODE_INT
5105 && ! side_effects_p (x))
5107 rtx t = make_compound_operation (true_rtx, SET);
5108 rtx f = make_compound_operation (false_rtx, SET);
5109 rtx cond_op0 = XEXP (cond, 0);
5110 rtx cond_op1 = XEXP (cond, 1);
5111 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5112 enum machine_mode m = mode;
5113 rtx z = 0, c1 = NULL_RTX;
5115 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5116 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5117 || GET_CODE (t) == ASHIFT
5118 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5119 && rtx_equal_p (XEXP (t, 0), f))
5120 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5122 /* If an identity-zero op is commutative, check whether there
5123 would be a match if we swapped the operands. */
5124 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5125 || GET_CODE (t) == XOR)
5126 && rtx_equal_p (XEXP (t, 1), f))
5127 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5128 else if (GET_CODE (t) == SIGN_EXTEND
5129 && (GET_CODE (XEXP (t, 0)) == PLUS
5130 || GET_CODE (XEXP (t, 0)) == MINUS
5131 || GET_CODE (XEXP (t, 0)) == IOR
5132 || GET_CODE (XEXP (t, 0)) == XOR
5133 || GET_CODE (XEXP (t, 0)) == ASHIFT
5134 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5135 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5136 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5137 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5138 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5139 && (num_sign_bit_copies (f, GET_MODE (f))
5140 > (unsigned int)
5141 (GET_MODE_BITSIZE (mode)
5142 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5144 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5145 extend_op = SIGN_EXTEND;
5146 m = GET_MODE (XEXP (t, 0));
5148 else if (GET_CODE (t) == SIGN_EXTEND
5149 && (GET_CODE (XEXP (t, 0)) == PLUS
5150 || GET_CODE (XEXP (t, 0)) == IOR
5151 || GET_CODE (XEXP (t, 0)) == XOR)
5152 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5153 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5154 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5155 && (num_sign_bit_copies (f, GET_MODE (f))
5156 > (unsigned int)
5157 (GET_MODE_BITSIZE (mode)
5158 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5160 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5161 extend_op = SIGN_EXTEND;
5162 m = GET_MODE (XEXP (t, 0));
5164 else if (GET_CODE (t) == ZERO_EXTEND
5165 && (GET_CODE (XEXP (t, 0)) == PLUS
5166 || GET_CODE (XEXP (t, 0)) == MINUS
5167 || GET_CODE (XEXP (t, 0)) == IOR
5168 || GET_CODE (XEXP (t, 0)) == XOR
5169 || GET_CODE (XEXP (t, 0)) == ASHIFT
5170 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5171 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5172 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5173 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5174 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5175 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5176 && ((nonzero_bits (f, GET_MODE (f))
5177 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5178 == 0))
5180 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5181 extend_op = ZERO_EXTEND;
5182 m = GET_MODE (XEXP (t, 0));
5184 else if (GET_CODE (t) == ZERO_EXTEND
5185 && (GET_CODE (XEXP (t, 0)) == PLUS
5186 || GET_CODE (XEXP (t, 0)) == IOR
5187 || GET_CODE (XEXP (t, 0)) == XOR)
5188 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5189 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5190 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5191 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5192 && ((nonzero_bits (f, GET_MODE (f))
5193 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5194 == 0))
5196 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5197 extend_op = ZERO_EXTEND;
5198 m = GET_MODE (XEXP (t, 0));
5201 if (z)
5203 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5204 cond_op0, cond_op1),
5205 pc_rtx, pc_rtx, 0, 0);
5206 temp = simplify_gen_binary (MULT, m, temp,
5207 simplify_gen_binary (MULT, m, c1,
5208 const_true_rtx));
5209 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5210 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5212 if (extend_op != UNKNOWN)
5213 temp = simplify_gen_unary (extend_op, mode, temp, m);
5215 return temp;
5219 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5220 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5221 negation of a single bit, we can convert this operation to a shift. We
5222 can actually do this more generally, but it doesn't seem worth it. */
5224 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5225 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5226 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5227 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5228 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5229 == GET_MODE_BITSIZE (mode))
5230 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5231 return
5232 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5233 gen_lowpart (mode, XEXP (cond, 0)), i);
5235 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5236 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5237 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5238 && GET_MODE (XEXP (cond, 0)) == mode
5239 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5240 == nonzero_bits (XEXP (cond, 0), mode)
5241 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5242 return XEXP (cond, 0);
5244 return x;
5247 /* Simplify X, a SET expression. Return the new expression. */
5249 static rtx
5250 simplify_set (rtx x)
5252 rtx src = SET_SRC (x);
5253 rtx dest = SET_DEST (x);
5254 enum machine_mode mode
5255 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5256 rtx other_insn;
5257 rtx *cc_use;
5259 /* (set (pc) (return)) gets written as (return). */
5260 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5261 return src;
5263 /* Now that we know for sure which bits of SRC we are using, see if we can
5264 simplify the expression for the object knowing that we only need the
5265 low-order bits. */
5267 if (GET_MODE_CLASS (mode) == MODE_INT
5268 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5270 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5271 SUBST (SET_SRC (x), src);
5274 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5275 the comparison result and try to simplify it unless we already have used
5276 undobuf.other_insn. */
5277 if ((GET_MODE_CLASS (mode) == MODE_CC
5278 || GET_CODE (src) == COMPARE
5279 || CC0_P (dest))
5280 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5281 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5282 && COMPARISON_P (*cc_use)
5283 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5285 enum rtx_code old_code = GET_CODE (*cc_use);
5286 enum rtx_code new_code;
5287 rtx op0, op1, tmp;
5288 int other_changed = 0;
5289 enum machine_mode compare_mode = GET_MODE (dest);
5291 if (GET_CODE (src) == COMPARE)
5292 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5293 else
5294 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5296 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5297 op0, op1);
5298 if (!tmp)
5299 new_code = old_code;
5300 else if (!CONSTANT_P (tmp))
5302 new_code = GET_CODE (tmp);
5303 op0 = XEXP (tmp, 0);
5304 op1 = XEXP (tmp, 1);
5306 else
5308 rtx pat = PATTERN (other_insn);
5309 undobuf.other_insn = other_insn;
5310 SUBST (*cc_use, tmp);
5312 /* Attempt to simplify CC user. */
5313 if (GET_CODE (pat) == SET)
5315 rtx new = simplify_rtx (SET_SRC (pat));
5316 if (new != NULL_RTX)
5317 SUBST (SET_SRC (pat), new);
5320 /* Convert X into a no-op move. */
5321 SUBST (SET_DEST (x), pc_rtx);
5322 SUBST (SET_SRC (x), pc_rtx);
5323 return x;
5326 /* Simplify our comparison, if possible. */
5327 new_code = simplify_comparison (new_code, &op0, &op1);
5329 #ifdef SELECT_CC_MODE
5330 /* If this machine has CC modes other than CCmode, check to see if we
5331 need to use a different CC mode here. */
5332 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5333 compare_mode = GET_MODE (op0);
5334 else
5335 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5337 #ifndef HAVE_cc0
5338 /* If the mode changed, we have to change SET_DEST, the mode in the
5339 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5340 a hard register, just build new versions with the proper mode. If it
5341 is a pseudo, we lose unless it is only time we set the pseudo, in
5342 which case we can safely change its mode. */
5343 if (compare_mode != GET_MODE (dest))
5345 if (can_change_dest_mode (dest, 0, compare_mode))
5347 unsigned int regno = REGNO (dest);
5348 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5350 if (regno >= FIRST_PSEUDO_REGISTER)
5351 SUBST (regno_reg_rtx[regno], new_dest);
5353 SUBST (SET_DEST (x), new_dest);
5354 SUBST (XEXP (*cc_use, 0), new_dest);
5355 other_changed = 1;
5357 dest = new_dest;
5360 #endif /* cc0 */
5361 #endif /* SELECT_CC_MODE */
5363 /* If the code changed, we have to build a new comparison in
5364 undobuf.other_insn. */
5365 if (new_code != old_code)
5367 int other_changed_previously = other_changed;
5368 unsigned HOST_WIDE_INT mask;
5370 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5371 dest, const0_rtx));
5372 other_changed = 1;
5374 /* If the only change we made was to change an EQ into an NE or
5375 vice versa, OP0 has only one bit that might be nonzero, and OP1
5376 is zero, check if changing the user of the condition code will
5377 produce a valid insn. If it won't, we can keep the original code
5378 in that insn by surrounding our operation with an XOR. */
5380 if (((old_code == NE && new_code == EQ)
5381 || (old_code == EQ && new_code == NE))
5382 && ! other_changed_previously && op1 == const0_rtx
5383 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5384 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5386 rtx pat = PATTERN (other_insn), note = 0;
5388 if ((recog_for_combine (&pat, other_insn, &note) < 0
5389 && ! check_asm_operands (pat)))
5391 PUT_CODE (*cc_use, old_code);
5392 other_changed = 0;
5394 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5395 op0, GEN_INT (mask));
5400 if (other_changed)
5401 undobuf.other_insn = other_insn;
5403 #ifdef HAVE_cc0
5404 /* If we are now comparing against zero, change our source if
5405 needed. If we do not use cc0, we always have a COMPARE. */
5406 if (op1 == const0_rtx && dest == cc0_rtx)
5408 SUBST (SET_SRC (x), op0);
5409 src = op0;
5411 else
5412 #endif
5414 /* Otherwise, if we didn't previously have a COMPARE in the
5415 correct mode, we need one. */
5416 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5418 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5419 src = SET_SRC (x);
5421 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5423 SUBST(SET_SRC (x), op0);
5424 src = SET_SRC (x);
5426 else
5428 /* Otherwise, update the COMPARE if needed. */
5429 SUBST (XEXP (src, 0), op0);
5430 SUBST (XEXP (src, 1), op1);
5433 else
5435 /* Get SET_SRC in a form where we have placed back any
5436 compound expressions. Then do the checks below. */
5437 src = make_compound_operation (src, SET);
5438 SUBST (SET_SRC (x), src);
5441 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5442 and X being a REG or (subreg (reg)), we may be able to convert this to
5443 (set (subreg:m2 x) (op)).
5445 We can always do this if M1 is narrower than M2 because that means that
5446 we only care about the low bits of the result.
5448 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5449 perform a narrower operation than requested since the high-order bits will
5450 be undefined. On machine where it is defined, this transformation is safe
5451 as long as M1 and M2 have the same number of words. */
5453 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5454 && !OBJECT_P (SUBREG_REG (src))
5455 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5456 / UNITS_PER_WORD)
5457 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5458 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5459 #ifndef WORD_REGISTER_OPERATIONS
5460 && (GET_MODE_SIZE (GET_MODE (src))
5461 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5462 #endif
5463 #ifdef CANNOT_CHANGE_MODE_CLASS
5464 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5465 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5466 GET_MODE (SUBREG_REG (src)),
5467 GET_MODE (src)))
5468 #endif
5469 && (REG_P (dest)
5470 || (GET_CODE (dest) == SUBREG
5471 && REG_P (SUBREG_REG (dest)))))
5473 SUBST (SET_DEST (x),
5474 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5475 dest));
5476 SUBST (SET_SRC (x), SUBREG_REG (src));
5478 src = SET_SRC (x), dest = SET_DEST (x);
5481 #ifdef HAVE_cc0
5482 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5483 in SRC. */
5484 if (dest == cc0_rtx
5485 && GET_CODE (src) == SUBREG
5486 && subreg_lowpart_p (src)
5487 && (GET_MODE_BITSIZE (GET_MODE (src))
5488 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5490 rtx inner = SUBREG_REG (src);
5491 enum machine_mode inner_mode = GET_MODE (inner);
5493 /* Here we make sure that we don't have a sign bit on. */
5494 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5495 && (nonzero_bits (inner, inner_mode)
5496 < ((unsigned HOST_WIDE_INT) 1
5497 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5499 SUBST (SET_SRC (x), inner);
5500 src = SET_SRC (x);
5503 #endif
5505 #ifdef LOAD_EXTEND_OP
5506 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5507 would require a paradoxical subreg. Replace the subreg with a
5508 zero_extend to avoid the reload that would otherwise be required. */
5510 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5511 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5512 && SUBREG_BYTE (src) == 0
5513 && (GET_MODE_SIZE (GET_MODE (src))
5514 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5515 && MEM_P (SUBREG_REG (src)))
5517 SUBST (SET_SRC (x),
5518 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5519 GET_MODE (src), SUBREG_REG (src)));
5521 src = SET_SRC (x);
5523 #endif
5525 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5526 are comparing an item known to be 0 or -1 against 0, use a logical
5527 operation instead. Check for one of the arms being an IOR of the other
5528 arm with some value. We compute three terms to be IOR'ed together. In
5529 practice, at most two will be nonzero. Then we do the IOR's. */
5531 if (GET_CODE (dest) != PC
5532 && GET_CODE (src) == IF_THEN_ELSE
5533 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5534 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5535 && XEXP (XEXP (src, 0), 1) == const0_rtx
5536 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5537 #ifdef HAVE_conditional_move
5538 && ! can_conditionally_move_p (GET_MODE (src))
5539 #endif
5540 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5541 GET_MODE (XEXP (XEXP (src, 0), 0)))
5542 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5543 && ! side_effects_p (src))
5545 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5546 ? XEXP (src, 1) : XEXP (src, 2));
5547 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5548 ? XEXP (src, 2) : XEXP (src, 1));
5549 rtx term1 = const0_rtx, term2, term3;
5551 if (GET_CODE (true_rtx) == IOR
5552 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5553 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5554 else if (GET_CODE (true_rtx) == IOR
5555 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5556 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5557 else if (GET_CODE (false_rtx) == IOR
5558 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5559 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5560 else if (GET_CODE (false_rtx) == IOR
5561 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5562 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5564 term2 = simplify_gen_binary (AND, GET_MODE (src),
5565 XEXP (XEXP (src, 0), 0), true_rtx);
5566 term3 = simplify_gen_binary (AND, GET_MODE (src),
5567 simplify_gen_unary (NOT, GET_MODE (src),
5568 XEXP (XEXP (src, 0), 0),
5569 GET_MODE (src)),
5570 false_rtx);
5572 SUBST (SET_SRC (x),
5573 simplify_gen_binary (IOR, GET_MODE (src),
5574 simplify_gen_binary (IOR, GET_MODE (src),
5575 term1, term2),
5576 term3));
5578 src = SET_SRC (x);
5581 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5582 whole thing fail. */
5583 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5584 return src;
5585 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5586 return dest;
5587 else
5588 /* Convert this into a field assignment operation, if possible. */
5589 return make_field_assignment (x);
5592 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5593 result. */
5595 static rtx
5596 simplify_logical (rtx x)
5598 enum machine_mode mode = GET_MODE (x);
5599 rtx op0 = XEXP (x, 0);
5600 rtx op1 = XEXP (x, 1);
5601 rtx tmp, reversed;
5603 switch (GET_CODE (x))
5605 case AND:
5606 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5607 insn (and may simplify more). */
5608 if (GET_CODE (op0) == XOR
5609 && rtx_equal_p (XEXP (op0, 0), op1)
5610 && ! side_effects_p (op1))
5611 x = simplify_gen_binary (AND, mode,
5612 simplify_gen_unary (NOT, mode,
5613 XEXP (op0, 1), mode),
5614 op1);
5616 if (GET_CODE (op0) == XOR
5617 && rtx_equal_p (XEXP (op0, 1), op1)
5618 && ! side_effects_p (op1))
5619 x = simplify_gen_binary (AND, mode,
5620 simplify_gen_unary (NOT, mode,
5621 XEXP (op0, 0), mode),
5622 op1);
5624 /* Similarly for (~(A ^ B)) & A. */
5625 if (GET_CODE (op0) == NOT
5626 && GET_CODE (XEXP (op0, 0)) == XOR
5627 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5628 && ! side_effects_p (op1))
5629 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5631 if (GET_CODE (op0) == NOT
5632 && GET_CODE (XEXP (op0, 0)) == XOR
5633 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5634 && ! side_effects_p (op1))
5635 x = simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5637 /* We can call simplify_and_const_int only if we don't lose
5638 any (sign) bits when converting INTVAL (op1) to
5639 "unsigned HOST_WIDE_INT". */
5640 if (GET_CODE (op1) == CONST_INT
5641 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5642 || INTVAL (op1) > 0))
5644 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5646 /* If we have (ior (and (X C1) C2)) and the next restart would be
5647 the last, simplify this by making C1 as small as possible
5648 and then exit. Only do this if C1 actually changes: for now
5649 this only saves memory but, should this transformation be
5650 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5651 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5652 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5653 && GET_CODE (op1) == CONST_INT
5654 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5655 return simplify_gen_binary (IOR, mode,
5656 simplify_gen_binary
5657 (AND, mode, XEXP (op0, 0),
5658 GEN_INT (INTVAL (XEXP (op0, 1))
5659 & ~INTVAL (op1))), op1);
5661 if (GET_CODE (x) != AND)
5662 return x;
5664 op0 = XEXP (x, 0);
5665 op1 = XEXP (x, 1);
5668 /* Convert (A | B) & A to A. */
5669 if (GET_CODE (op0) == IOR
5670 && (rtx_equal_p (XEXP (op0, 0), op1)
5671 || rtx_equal_p (XEXP (op0, 1), op1))
5672 && ! side_effects_p (XEXP (op0, 0))
5673 && ! side_effects_p (XEXP (op0, 1)))
5674 return op1;
5676 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5677 apply the distributive law and then the inverse distributive
5678 law to see if things simplify. */
5679 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5681 rtx result = distribute_and_simplify_rtx (x, 0);
5682 if (result)
5683 return result;
5685 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5687 rtx result = distribute_and_simplify_rtx (x, 1);
5688 if (result)
5689 return result;
5691 break;
5693 case IOR:
5694 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5695 if (GET_CODE (op1) == CONST_INT
5696 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5697 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5698 return op1;
5700 /* Convert (A & B) | A to A. */
5701 if (GET_CODE (op0) == AND
5702 && (rtx_equal_p (XEXP (op0, 0), op1)
5703 || rtx_equal_p (XEXP (op0, 1), op1))
5704 && ! side_effects_p (XEXP (op0, 0))
5705 && ! side_effects_p (XEXP (op0, 1)))
5706 return op1;
5708 /* If we have (ior (and A B) C), apply the distributive law and then
5709 the inverse distributive law to see if things simplify. */
5711 if (GET_CODE (op0) == AND)
5713 rtx result = distribute_and_simplify_rtx (x, 0);
5714 if (result)
5715 return result;
5718 if (GET_CODE (op1) == AND)
5720 rtx result = distribute_and_simplify_rtx (x, 1);
5721 if (result)
5722 return result;
5725 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5726 mode size to (rotate A CX). */
5728 if (GET_CODE (op1) == ASHIFT
5729 || GET_CODE (op1) == SUBREG)
5730 tmp = op1, op1 = op0, op0 = tmp;
5732 if (GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT
5733 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5734 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5735 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5736 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5737 == GET_MODE_BITSIZE (mode)))
5738 return gen_rtx_ROTATE (mode, XEXP (op1, 0), XEXP (op0, 1));
5740 /* Same, but for ashift that has been "simplified" to a wider mode
5741 by simplify_shift_const. */
5743 if (GET_CODE (op0) == SUBREG
5744 && GET_CODE (SUBREG_REG (op0)) == ASHIFT
5745 && GET_CODE (op1) == LSHIFTRT
5746 && GET_CODE (XEXP (op1, 0)) == SUBREG
5747 && GET_MODE (op0) == GET_MODE (XEXP (op1, 0))
5748 && SUBREG_BYTE (op0) == SUBREG_BYTE (XEXP (op1, 0))
5749 && (GET_MODE_SIZE (GET_MODE (op0))
5750 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
5751 && rtx_equal_p (XEXP (SUBREG_REG (op0), 0),
5752 SUBREG_REG (XEXP (op1, 0)))
5753 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
5754 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5755 && (INTVAL (XEXP (SUBREG_REG (op0), 1)) + INTVAL (XEXP (op1, 1))
5756 == GET_MODE_BITSIZE (mode)))
5757 return gen_rtx_ROTATE (mode, XEXP (op1, 0),
5758 XEXP (SUBREG_REG (op0), 1));
5760 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5761 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5762 does not affect any of the bits in OP1, it can really be done
5763 as a PLUS and we can associate. We do this by seeing if OP1
5764 can be safely shifted left C bits. */
5765 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5766 && GET_CODE (XEXP (op0, 0)) == PLUS
5767 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5768 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5769 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5771 int count = INTVAL (XEXP (op0, 1));
5772 HOST_WIDE_INT mask = INTVAL (op1) << count;
5774 if (mask >> count == INTVAL (op1)
5775 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5777 SUBST (XEXP (XEXP (op0, 0), 1),
5778 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5779 return op0;
5782 break;
5784 case XOR:
5785 /* If we are XORing two things that have no bits in common,
5786 convert them into an IOR. This helps to detect rotation encoded
5787 using those methods and possibly other simplifications. */
5789 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5790 && (nonzero_bits (op0, mode)
5791 & nonzero_bits (op1, mode)) == 0)
5792 return (simplify_gen_binary (IOR, mode, op0, op1));
5794 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5795 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5796 (NOT y). */
5798 int num_negated = 0;
5800 if (GET_CODE (op0) == NOT)
5801 num_negated++, op0 = XEXP (op0, 0);
5802 if (GET_CODE (op1) == NOT)
5803 num_negated++, op1 = XEXP (op1, 0);
5805 if (num_negated == 2)
5807 SUBST (XEXP (x, 0), op0);
5808 SUBST (XEXP (x, 1), op1);
5810 else if (num_negated == 1)
5811 return
5812 simplify_gen_unary (NOT, mode,
5813 simplify_gen_binary (XOR, mode, op0, op1),
5814 mode);
5817 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5818 correspond to a machine insn or result in further simplifications
5819 if B is a constant. */
5821 if (GET_CODE (op0) == AND
5822 && rtx_equal_p (XEXP (op0, 1), op1)
5823 && ! side_effects_p (op1))
5824 return simplify_gen_binary (AND, mode,
5825 simplify_gen_unary (NOT, mode,
5826 XEXP (op0, 0), mode),
5827 op1);
5829 else if (GET_CODE (op0) == AND
5830 && rtx_equal_p (XEXP (op0, 0), op1)
5831 && ! side_effects_p (op1))
5832 return simplify_gen_binary (AND, mode,
5833 simplify_gen_unary (NOT, mode,
5834 XEXP (op0, 1), mode),
5835 op1);
5837 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5838 comparison if STORE_FLAG_VALUE is 1. */
5839 if (STORE_FLAG_VALUE == 1
5840 && op1 == const1_rtx
5841 && COMPARISON_P (op0)
5842 && (reversed = reversed_comparison (op0, mode)))
5843 return reversed;
5845 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5846 is (lt foo (const_int 0)), so we can perform the above
5847 simplification if STORE_FLAG_VALUE is 1. */
5849 if (STORE_FLAG_VALUE == 1
5850 && op1 == const1_rtx
5851 && GET_CODE (op0) == LSHIFTRT
5852 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5853 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5854 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5856 /* (xor (comparison foo bar) (const_int sign-bit))
5857 when STORE_FLAG_VALUE is the sign bit. */
5858 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5859 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5860 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5861 && op1 == const_true_rtx
5862 && COMPARISON_P (op0)
5863 && (reversed = reversed_comparison (op0, mode)))
5864 return reversed;
5866 break;
5868 default:
5869 gcc_unreachable ();
5872 return x;
5875 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5876 operations" because they can be replaced with two more basic operations.
5877 ZERO_EXTEND is also considered "compound" because it can be replaced with
5878 an AND operation, which is simpler, though only one operation.
5880 The function expand_compound_operation is called with an rtx expression
5881 and will convert it to the appropriate shifts and AND operations,
5882 simplifying at each stage.
5884 The function make_compound_operation is called to convert an expression
5885 consisting of shifts and ANDs into the equivalent compound expression.
5886 It is the inverse of this function, loosely speaking. */
5888 static rtx
5889 expand_compound_operation (rtx x)
5891 unsigned HOST_WIDE_INT pos = 0, len;
5892 int unsignedp = 0;
5893 unsigned int modewidth;
5894 rtx tem;
5896 switch (GET_CODE (x))
5898 case ZERO_EXTEND:
5899 unsignedp = 1;
5900 case SIGN_EXTEND:
5901 /* We can't necessarily use a const_int for a multiword mode;
5902 it depends on implicitly extending the value.
5903 Since we don't know the right way to extend it,
5904 we can't tell whether the implicit way is right.
5906 Even for a mode that is no wider than a const_int,
5907 we can't win, because we need to sign extend one of its bits through
5908 the rest of it, and we don't know which bit. */
5909 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5910 return x;
5912 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5913 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5914 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5915 reloaded. If not for that, MEM's would very rarely be safe.
5917 Reject MODEs bigger than a word, because we might not be able
5918 to reference a two-register group starting with an arbitrary register
5919 (and currently gen_lowpart might crash for a SUBREG). */
5921 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5922 return x;
5924 /* Reject MODEs that aren't scalar integers because turning vector
5925 or complex modes into shifts causes problems. */
5927 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5928 return x;
5930 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5931 /* If the inner object has VOIDmode (the only way this can happen
5932 is if it is an ASM_OPERANDS), we can't do anything since we don't
5933 know how much masking to do. */
5934 if (len == 0)
5935 return x;
5937 break;
5939 case ZERO_EXTRACT:
5940 unsignedp = 1;
5942 /* ... fall through ... */
5944 case SIGN_EXTRACT:
5945 /* If the operand is a CLOBBER, just return it. */
5946 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5947 return XEXP (x, 0);
5949 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5950 || GET_CODE (XEXP (x, 2)) != CONST_INT
5951 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5952 return x;
5954 /* Reject MODEs that aren't scalar integers because turning vector
5955 or complex modes into shifts causes problems. */
5957 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5958 return x;
5960 len = INTVAL (XEXP (x, 1));
5961 pos = INTVAL (XEXP (x, 2));
5963 /* If this goes outside the object being extracted, replace the object
5964 with a (use (mem ...)) construct that only combine understands
5965 and is used only for this purpose. */
5966 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5967 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5969 if (BITS_BIG_ENDIAN)
5970 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5972 break;
5974 default:
5975 return x;
5977 /* Convert sign extension to zero extension, if we know that the high
5978 bit is not set, as this is easier to optimize. It will be converted
5979 back to cheaper alternative in make_extraction. */
5980 if (GET_CODE (x) == SIGN_EXTEND
5981 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5982 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5983 & ~(((unsigned HOST_WIDE_INT)
5984 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5985 >> 1))
5986 == 0)))
5988 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5989 rtx temp2 = expand_compound_operation (temp);
5991 /* Make sure this is a profitable operation. */
5992 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5993 return temp2;
5994 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5995 return temp;
5996 else
5997 return x;
6000 /* We can optimize some special cases of ZERO_EXTEND. */
6001 if (GET_CODE (x) == ZERO_EXTEND)
6003 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6004 know that the last value didn't have any inappropriate bits
6005 set. */
6006 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6007 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6008 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6009 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6010 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6011 return XEXP (XEXP (x, 0), 0);
6013 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6014 if (GET_CODE (XEXP (x, 0)) == SUBREG
6015 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6016 && subreg_lowpart_p (XEXP (x, 0))
6017 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6018 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6019 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6020 return SUBREG_REG (XEXP (x, 0));
6022 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6023 is a comparison and STORE_FLAG_VALUE permits. This is like
6024 the first case, but it works even when GET_MODE (x) is larger
6025 than HOST_WIDE_INT. */
6026 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6027 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6028 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6029 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6030 <= HOST_BITS_PER_WIDE_INT)
6031 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6032 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6033 return XEXP (XEXP (x, 0), 0);
6035 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6036 if (GET_CODE (XEXP (x, 0)) == SUBREG
6037 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6038 && subreg_lowpart_p (XEXP (x, 0))
6039 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6040 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6041 <= HOST_BITS_PER_WIDE_INT)
6042 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6043 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6044 return SUBREG_REG (XEXP (x, 0));
6048 /* If we reach here, we want to return a pair of shifts. The inner
6049 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6050 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6051 logical depending on the value of UNSIGNEDP.
6053 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6054 converted into an AND of a shift.
6056 We must check for the case where the left shift would have a negative
6057 count. This can happen in a case like (x >> 31) & 255 on machines
6058 that can't shift by a constant. On those machines, we would first
6059 combine the shift with the AND to produce a variable-position
6060 extraction. Then the constant of 31 would be substituted in to produce
6061 a such a position. */
6063 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6064 if (modewidth + len >= pos)
6065 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6066 GET_MODE (x),
6067 simplify_shift_const (NULL_RTX, ASHIFT,
6068 GET_MODE (x),
6069 XEXP (x, 0),
6070 modewidth - pos - len),
6071 modewidth - len);
6073 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6074 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6075 simplify_shift_const (NULL_RTX, LSHIFTRT,
6076 GET_MODE (x),
6077 XEXP (x, 0), pos),
6078 ((HOST_WIDE_INT) 1 << len) - 1);
6079 else
6080 /* Any other cases we can't handle. */
6081 return x;
6083 /* If we couldn't do this for some reason, return the original
6084 expression. */
6085 if (GET_CODE (tem) == CLOBBER)
6086 return x;
6088 return tem;
6091 /* X is a SET which contains an assignment of one object into
6092 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6093 or certain SUBREGS). If possible, convert it into a series of
6094 logical operations.
6096 We half-heartedly support variable positions, but do not at all
6097 support variable lengths. */
6099 static rtx
6100 expand_field_assignment (rtx x)
6102 rtx inner;
6103 rtx pos; /* Always counts from low bit. */
6104 int len;
6105 rtx mask, cleared, masked;
6106 enum machine_mode compute_mode;
6108 /* Loop until we find something we can't simplify. */
6109 while (1)
6111 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6112 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6114 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6115 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6116 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6118 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6119 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6121 inner = XEXP (SET_DEST (x), 0);
6122 len = INTVAL (XEXP (SET_DEST (x), 1));
6123 pos = XEXP (SET_DEST (x), 2);
6125 /* If the position is constant and spans the width of INNER,
6126 surround INNER with a USE to indicate this. */
6127 if (GET_CODE (pos) == CONST_INT
6128 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6129 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
6131 if (BITS_BIG_ENDIAN)
6133 if (GET_CODE (pos) == CONST_INT)
6134 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6135 - INTVAL (pos));
6136 else if (GET_CODE (pos) == MINUS
6137 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6138 && (INTVAL (XEXP (pos, 1))
6139 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6140 /* If position is ADJUST - X, new position is X. */
6141 pos = XEXP (pos, 0);
6142 else
6143 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6144 GEN_INT (GET_MODE_BITSIZE (
6145 GET_MODE (inner))
6146 - len),
6147 pos);
6151 /* A SUBREG between two modes that occupy the same numbers of words
6152 can be done by moving the SUBREG to the source. */
6153 else if (GET_CODE (SET_DEST (x)) == SUBREG
6154 /* We need SUBREGs to compute nonzero_bits properly. */
6155 && nonzero_sign_valid
6156 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6157 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6158 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6159 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6161 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6162 gen_lowpart
6163 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6164 SET_SRC (x)));
6165 continue;
6167 else
6168 break;
6170 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6171 inner = SUBREG_REG (inner);
6173 compute_mode = GET_MODE (inner);
6175 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6176 if (! SCALAR_INT_MODE_P (compute_mode))
6178 enum machine_mode imode;
6180 /* Don't do anything for vector or complex integral types. */
6181 if (! FLOAT_MODE_P (compute_mode))
6182 break;
6184 /* Try to find an integral mode to pun with. */
6185 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6186 if (imode == BLKmode)
6187 break;
6189 compute_mode = imode;
6190 inner = gen_lowpart (imode, inner);
6193 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6194 if (len >= HOST_BITS_PER_WIDE_INT)
6195 break;
6197 /* Now compute the equivalent expression. Make a copy of INNER
6198 for the SET_DEST in case it is a MEM into which we will substitute;
6199 we don't want shared RTL in that case. */
6200 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6201 cleared = simplify_gen_binary (AND, compute_mode,
6202 simplify_gen_unary (NOT, compute_mode,
6203 simplify_gen_binary (ASHIFT,
6204 compute_mode,
6205 mask, pos),
6206 compute_mode),
6207 inner);
6208 masked = simplify_gen_binary (ASHIFT, compute_mode,
6209 simplify_gen_binary (
6210 AND, compute_mode,
6211 gen_lowpart (compute_mode, SET_SRC (x)),
6212 mask),
6213 pos);
6215 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6216 simplify_gen_binary (IOR, compute_mode,
6217 cleared, masked));
6220 return x;
6223 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6224 it is an RTX that represents a variable starting position; otherwise,
6225 POS is the (constant) starting bit position (counted from the LSB).
6227 INNER may be a USE. This will occur when we started with a bitfield
6228 that went outside the boundary of the object in memory, which is
6229 allowed on most machines. To isolate this case, we produce a USE
6230 whose mode is wide enough and surround the MEM with it. The only
6231 code that understands the USE is this routine. If it is not removed,
6232 it will cause the resulting insn not to match.
6234 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6235 signed reference.
6237 IN_DEST is nonzero if this is a reference in the destination of a
6238 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6239 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6240 be used.
6242 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6243 ZERO_EXTRACT should be built even for bits starting at bit 0.
6245 MODE is the desired mode of the result (if IN_DEST == 0).
6247 The result is an RTX for the extraction or NULL_RTX if the target
6248 can't handle it. */
6250 static rtx
6251 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6252 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6253 int in_dest, int in_compare)
6255 /* This mode describes the size of the storage area
6256 to fetch the overall value from. Within that, we
6257 ignore the POS lowest bits, etc. */
6258 enum machine_mode is_mode = GET_MODE (inner);
6259 enum machine_mode inner_mode;
6260 enum machine_mode wanted_inner_mode = byte_mode;
6261 enum machine_mode wanted_inner_reg_mode = word_mode;
6262 enum machine_mode pos_mode = word_mode;
6263 enum machine_mode extraction_mode = word_mode;
6264 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6265 int spans_byte = 0;
6266 rtx new = 0;
6267 rtx orig_pos_rtx = pos_rtx;
6268 HOST_WIDE_INT orig_pos;
6270 /* Get some information about INNER and get the innermost object. */
6271 if (GET_CODE (inner) == USE)
6272 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6273 /* We don't need to adjust the position because we set up the USE
6274 to pretend that it was a full-word object. */
6275 spans_byte = 1, inner = XEXP (inner, 0);
6276 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6278 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6279 consider just the QI as the memory to extract from.
6280 The subreg adds or removes high bits; its mode is
6281 irrelevant to the meaning of this extraction,
6282 since POS and LEN count from the lsb. */
6283 if (MEM_P (SUBREG_REG (inner)))
6284 is_mode = GET_MODE (SUBREG_REG (inner));
6285 inner = SUBREG_REG (inner);
6287 else if (GET_CODE (inner) == ASHIFT
6288 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6289 && pos_rtx == 0 && pos == 0
6290 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6292 /* We're extracting the least significant bits of an rtx
6293 (ashift X (const_int C)), where LEN > C. Extract the
6294 least significant (LEN - C) bits of X, giving an rtx
6295 whose mode is MODE, then shift it left C times. */
6296 new = make_extraction (mode, XEXP (inner, 0),
6297 0, 0, len - INTVAL (XEXP (inner, 1)),
6298 unsignedp, in_dest, in_compare);
6299 if (new != 0)
6300 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6303 inner_mode = GET_MODE (inner);
6305 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6306 pos = INTVAL (pos_rtx), pos_rtx = 0;
6308 /* See if this can be done without an extraction. We never can if the
6309 width of the field is not the same as that of some integer mode. For
6310 registers, we can only avoid the extraction if the position is at the
6311 low-order bit and this is either not in the destination or we have the
6312 appropriate STRICT_LOW_PART operation available.
6314 For MEM, we can avoid an extract if the field starts on an appropriate
6315 boundary and we can change the mode of the memory reference. However,
6316 we cannot directly access the MEM if we have a USE and the underlying
6317 MEM is not TMODE. This combination means that MEM was being used in a
6318 context where bits outside its mode were being referenced; that is only
6319 valid in bit-field insns. */
6321 if (tmode != BLKmode
6322 && ! (spans_byte && inner_mode != tmode)
6323 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6324 && !MEM_P (inner)
6325 && (! in_dest
6326 || (REG_P (inner)
6327 && have_insn_for (STRICT_LOW_PART, tmode))))
6328 || (MEM_P (inner) && pos_rtx == 0
6329 && (pos
6330 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6331 : BITS_PER_UNIT)) == 0
6332 /* We can't do this if we are widening INNER_MODE (it
6333 may not be aligned, for one thing). */
6334 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6335 && (inner_mode == tmode
6336 || (! mode_dependent_address_p (XEXP (inner, 0))
6337 && ! MEM_VOLATILE_P (inner))))))
6339 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6340 field. If the original and current mode are the same, we need not
6341 adjust the offset. Otherwise, we do if bytes big endian.
6343 If INNER is not a MEM, get a piece consisting of just the field
6344 of interest (in this case POS % BITS_PER_WORD must be 0). */
6346 if (MEM_P (inner))
6348 HOST_WIDE_INT offset;
6350 /* POS counts from lsb, but make OFFSET count in memory order. */
6351 if (BYTES_BIG_ENDIAN)
6352 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6353 else
6354 offset = pos / BITS_PER_UNIT;
6356 new = adjust_address_nv (inner, tmode, offset);
6358 else if (REG_P (inner))
6360 if (tmode != inner_mode)
6362 /* We can't call gen_lowpart in a DEST since we
6363 always want a SUBREG (see below) and it would sometimes
6364 return a new hard register. */
6365 if (pos || in_dest)
6367 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6369 if (WORDS_BIG_ENDIAN
6370 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6371 final_word = ((GET_MODE_SIZE (inner_mode)
6372 - GET_MODE_SIZE (tmode))
6373 / UNITS_PER_WORD) - final_word;
6375 final_word *= UNITS_PER_WORD;
6376 if (BYTES_BIG_ENDIAN &&
6377 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6378 final_word += (GET_MODE_SIZE (inner_mode)
6379 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6381 /* Avoid creating invalid subregs, for example when
6382 simplifying (x>>32)&255. */
6383 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6384 return NULL_RTX;
6386 new = gen_rtx_SUBREG (tmode, inner, final_word);
6388 else
6389 new = gen_lowpart (tmode, inner);
6391 else
6392 new = inner;
6394 else
6395 new = force_to_mode (inner, tmode,
6396 len >= HOST_BITS_PER_WIDE_INT
6397 ? ~(unsigned HOST_WIDE_INT) 0
6398 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6401 /* If this extraction is going into the destination of a SET,
6402 make a STRICT_LOW_PART unless we made a MEM. */
6404 if (in_dest)
6405 return (MEM_P (new) ? new
6406 : (GET_CODE (new) != SUBREG
6407 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6408 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6410 if (mode == tmode)
6411 return new;
6413 if (GET_CODE (new) == CONST_INT)
6414 return gen_int_mode (INTVAL (new), mode);
6416 /* If we know that no extraneous bits are set, and that the high
6417 bit is not set, convert the extraction to the cheaper of
6418 sign and zero extension, that are equivalent in these cases. */
6419 if (flag_expensive_optimizations
6420 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6421 && ((nonzero_bits (new, tmode)
6422 & ~(((unsigned HOST_WIDE_INT)
6423 GET_MODE_MASK (tmode))
6424 >> 1))
6425 == 0)))
6427 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6428 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6430 /* Prefer ZERO_EXTENSION, since it gives more information to
6431 backends. */
6432 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6433 return temp;
6434 return temp1;
6437 /* Otherwise, sign- or zero-extend unless we already are in the
6438 proper mode. */
6440 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6441 mode, new));
6444 /* Unless this is a COMPARE or we have a funny memory reference,
6445 don't do anything with zero-extending field extracts starting at
6446 the low-order bit since they are simple AND operations. */
6447 if (pos_rtx == 0 && pos == 0 && ! in_dest
6448 && ! in_compare && ! spans_byte && unsignedp)
6449 return 0;
6451 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6452 we would be spanning bytes or if the position is not a constant and the
6453 length is not 1. In all other cases, we would only be going outside
6454 our object in cases when an original shift would have been
6455 undefined. */
6456 if (! spans_byte && MEM_P (inner)
6457 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6458 || (pos_rtx != 0 && len != 1)))
6459 return 0;
6461 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6462 and the mode for the result. */
6463 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6465 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6466 pos_mode = mode_for_extraction (EP_insv, 2);
6467 extraction_mode = mode_for_extraction (EP_insv, 3);
6470 if (! in_dest && unsignedp
6471 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6473 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6474 pos_mode = mode_for_extraction (EP_extzv, 3);
6475 extraction_mode = mode_for_extraction (EP_extzv, 0);
6478 if (! in_dest && ! unsignedp
6479 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6481 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6482 pos_mode = mode_for_extraction (EP_extv, 3);
6483 extraction_mode = mode_for_extraction (EP_extv, 0);
6486 /* Never narrow an object, since that might not be safe. */
6488 if (mode != VOIDmode
6489 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6490 extraction_mode = mode;
6492 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6493 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6494 pos_mode = GET_MODE (pos_rtx);
6496 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6497 if we have to change the mode of memory and cannot, the desired mode is
6498 EXTRACTION_MODE. */
6499 if (!MEM_P (inner))
6500 wanted_inner_mode = wanted_inner_reg_mode;
6501 else if (inner_mode != wanted_inner_mode
6502 && (mode_dependent_address_p (XEXP (inner, 0))
6503 || MEM_VOLATILE_P (inner)))
6504 wanted_inner_mode = extraction_mode;
6506 orig_pos = pos;
6508 if (BITS_BIG_ENDIAN)
6510 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6511 BITS_BIG_ENDIAN style. If position is constant, compute new
6512 position. Otherwise, build subtraction.
6513 Note that POS is relative to the mode of the original argument.
6514 If it's a MEM we need to recompute POS relative to that.
6515 However, if we're extracting from (or inserting into) a register,
6516 we want to recompute POS relative to wanted_inner_mode. */
6517 int width = (MEM_P (inner)
6518 ? GET_MODE_BITSIZE (is_mode)
6519 : GET_MODE_BITSIZE (wanted_inner_mode));
6521 if (pos_rtx == 0)
6522 pos = width - len - pos;
6523 else
6524 pos_rtx
6525 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6526 /* POS may be less than 0 now, but we check for that below.
6527 Note that it can only be less than 0 if !MEM_P (inner). */
6530 /* If INNER has a wider mode, make it smaller. If this is a constant
6531 extract, try to adjust the byte to point to the byte containing
6532 the value. */
6533 if (wanted_inner_mode != VOIDmode
6534 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6535 && ((MEM_P (inner)
6536 && (inner_mode == wanted_inner_mode
6537 || (! mode_dependent_address_p (XEXP (inner, 0))
6538 && ! MEM_VOLATILE_P (inner))))))
6540 int offset = 0;
6542 /* The computations below will be correct if the machine is big
6543 endian in both bits and bytes or little endian in bits and bytes.
6544 If it is mixed, we must adjust. */
6546 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6547 adjust OFFSET to compensate. */
6548 if (BYTES_BIG_ENDIAN
6549 && ! spans_byte
6550 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6551 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6553 /* If this is a constant position, we can move to the desired byte.
6554 Be careful not to go beyond the original object and maintain the
6555 natural alignment of the memory. */
6556 if (pos_rtx == 0)
6558 enum machine_mode bfmode = smallest_mode_for_size (len, MODE_INT);
6559 offset += (pos / GET_MODE_BITSIZE (bfmode)) * GET_MODE_SIZE (bfmode);
6560 pos %= GET_MODE_BITSIZE (bfmode);
6563 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6564 && ! spans_byte
6565 && is_mode != wanted_inner_mode)
6566 offset = (GET_MODE_SIZE (is_mode)
6567 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6569 if (offset != 0 || inner_mode != wanted_inner_mode)
6570 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6573 /* If INNER is not memory, we can always get it into the proper mode. If we
6574 are changing its mode, POS must be a constant and smaller than the size
6575 of the new mode. */
6576 else if (!MEM_P (inner))
6578 if (GET_MODE (inner) != wanted_inner_mode
6579 && (pos_rtx != 0
6580 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6581 return 0;
6583 inner = force_to_mode (inner, wanted_inner_mode,
6584 pos_rtx
6585 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6586 ? ~(unsigned HOST_WIDE_INT) 0
6587 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6588 << orig_pos),
6592 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6593 have to zero extend. Otherwise, we can just use a SUBREG. */
6594 if (pos_rtx != 0
6595 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6597 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6599 /* If we know that no extraneous bits are set, and that the high
6600 bit is not set, convert extraction to cheaper one - either
6601 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6602 cases. */
6603 if (flag_expensive_optimizations
6604 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6605 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6606 & ~(((unsigned HOST_WIDE_INT)
6607 GET_MODE_MASK (GET_MODE (pos_rtx)))
6608 >> 1))
6609 == 0)))
6611 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6613 /* Prefer ZERO_EXTENSION, since it gives more information to
6614 backends. */
6615 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6616 temp = temp1;
6618 pos_rtx = temp;
6620 else if (pos_rtx != 0
6621 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6622 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6624 /* Make POS_RTX unless we already have it and it is correct. If we don't
6625 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6626 be a CONST_INT. */
6627 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6628 pos_rtx = orig_pos_rtx;
6630 else if (pos_rtx == 0)
6631 pos_rtx = GEN_INT (pos);
6633 /* Make the required operation. See if we can use existing rtx. */
6634 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6635 extraction_mode, inner, GEN_INT (len), pos_rtx);
6636 if (! in_dest)
6637 new = gen_lowpart (mode, new);
6639 return new;
6642 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6643 with any other operations in X. Return X without that shift if so. */
6645 static rtx
6646 extract_left_shift (rtx x, int count)
6648 enum rtx_code code = GET_CODE (x);
6649 enum machine_mode mode = GET_MODE (x);
6650 rtx tem;
6652 switch (code)
6654 case ASHIFT:
6655 /* This is the shift itself. If it is wide enough, we will return
6656 either the value being shifted if the shift count is equal to
6657 COUNT or a shift for the difference. */
6658 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6659 && INTVAL (XEXP (x, 1)) >= count)
6660 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6661 INTVAL (XEXP (x, 1)) - count);
6662 break;
6664 case NEG: case NOT:
6665 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6666 return simplify_gen_unary (code, mode, tem, mode);
6668 break;
6670 case PLUS: case IOR: case XOR: case AND:
6671 /* If we can safely shift this constant and we find the inner shift,
6672 make a new operation. */
6673 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6674 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6675 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6676 return simplify_gen_binary (code, mode, tem,
6677 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6679 break;
6681 default:
6682 break;
6685 return 0;
6688 /* Look at the expression rooted at X. Look for expressions
6689 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6690 Form these expressions.
6692 Return the new rtx, usually just X.
6694 Also, for machines like the VAX that don't have logical shift insns,
6695 try to convert logical to arithmetic shift operations in cases where
6696 they are equivalent. This undoes the canonicalizations to logical
6697 shifts done elsewhere.
6699 We try, as much as possible, to re-use rtl expressions to save memory.
6701 IN_CODE says what kind of expression we are processing. Normally, it is
6702 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6703 being kludges), it is MEM. When processing the arguments of a comparison
6704 or a COMPARE against zero, it is COMPARE. */
6706 static rtx
6707 make_compound_operation (rtx x, enum rtx_code in_code)
6709 enum rtx_code code = GET_CODE (x);
6710 enum machine_mode mode = GET_MODE (x);
6711 int mode_width = GET_MODE_BITSIZE (mode);
6712 rtx rhs, lhs;
6713 enum rtx_code next_code;
6714 int i;
6715 rtx new = 0;
6716 rtx tem;
6717 const char *fmt;
6719 /* Select the code to be used in recursive calls. Once we are inside an
6720 address, we stay there. If we have a comparison, set to COMPARE,
6721 but once inside, go back to our default of SET. */
6723 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6724 : ((code == COMPARE || COMPARISON_P (x))
6725 && XEXP (x, 1) == const0_rtx) ? COMPARE
6726 : in_code == COMPARE ? SET : in_code);
6728 /* Process depending on the code of this operation. If NEW is set
6729 nonzero, it will be returned. */
6731 switch (code)
6733 case ASHIFT:
6734 /* Convert shifts by constants into multiplications if inside
6735 an address. */
6736 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6737 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6738 && INTVAL (XEXP (x, 1)) >= 0)
6740 new = make_compound_operation (XEXP (x, 0), next_code);
6741 new = gen_rtx_MULT (mode, new,
6742 GEN_INT ((HOST_WIDE_INT) 1
6743 << INTVAL (XEXP (x, 1))));
6745 break;
6747 case AND:
6748 /* If the second operand is not a constant, we can't do anything
6749 with it. */
6750 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6751 break;
6753 /* If the constant is a power of two minus one and the first operand
6754 is a logical right shift, make an extraction. */
6755 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6756 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6758 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6759 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6760 0, in_code == COMPARE);
6763 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6764 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6765 && subreg_lowpart_p (XEXP (x, 0))
6766 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6767 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6769 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6770 next_code);
6771 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6772 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6773 0, in_code == COMPARE);
6775 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6776 else if ((GET_CODE (XEXP (x, 0)) == XOR
6777 || GET_CODE (XEXP (x, 0)) == IOR)
6778 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6779 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6780 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6782 /* Apply the distributive law, and then try to make extractions. */
6783 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6784 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6785 XEXP (x, 1)),
6786 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6787 XEXP (x, 1)));
6788 new = make_compound_operation (new, in_code);
6791 /* If we are have (and (rotate X C) M) and C is larger than the number
6792 of bits in M, this is an extraction. */
6794 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6795 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6796 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6797 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6799 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6800 new = make_extraction (mode, new,
6801 (GET_MODE_BITSIZE (mode)
6802 - INTVAL (XEXP (XEXP (x, 0), 1))),
6803 NULL_RTX, i, 1, 0, in_code == COMPARE);
6806 /* On machines without logical shifts, if the operand of the AND is
6807 a logical shift and our mask turns off all the propagated sign
6808 bits, we can replace the logical shift with an arithmetic shift. */
6809 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6810 && !have_insn_for (LSHIFTRT, mode)
6811 && have_insn_for (ASHIFTRT, mode)
6812 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6813 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6814 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6815 && mode_width <= HOST_BITS_PER_WIDE_INT)
6817 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6819 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6820 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6821 SUBST (XEXP (x, 0),
6822 gen_rtx_ASHIFTRT (mode,
6823 make_compound_operation
6824 (XEXP (XEXP (x, 0), 0), next_code),
6825 XEXP (XEXP (x, 0), 1)));
6828 /* If the constant is one less than a power of two, this might be
6829 representable by an extraction even if no shift is present.
6830 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6831 we are in a COMPARE. */
6832 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6833 new = make_extraction (mode,
6834 make_compound_operation (XEXP (x, 0),
6835 next_code),
6836 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6838 /* If we are in a comparison and this is an AND with a power of two,
6839 convert this into the appropriate bit extract. */
6840 else if (in_code == COMPARE
6841 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6842 new = make_extraction (mode,
6843 make_compound_operation (XEXP (x, 0),
6844 next_code),
6845 i, NULL_RTX, 1, 1, 0, 1);
6847 break;
6849 case LSHIFTRT:
6850 /* If the sign bit is known to be zero, replace this with an
6851 arithmetic shift. */
6852 if (have_insn_for (ASHIFTRT, mode)
6853 && ! have_insn_for (LSHIFTRT, mode)
6854 && mode_width <= HOST_BITS_PER_WIDE_INT
6855 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6857 new = gen_rtx_ASHIFTRT (mode,
6858 make_compound_operation (XEXP (x, 0),
6859 next_code),
6860 XEXP (x, 1));
6861 break;
6864 /* ... fall through ... */
6866 case ASHIFTRT:
6867 lhs = XEXP (x, 0);
6868 rhs = XEXP (x, 1);
6870 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6871 this is a SIGN_EXTRACT. */
6872 if (GET_CODE (rhs) == CONST_INT
6873 && GET_CODE (lhs) == ASHIFT
6874 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6875 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6877 new = make_compound_operation (XEXP (lhs, 0), next_code);
6878 new = make_extraction (mode, new,
6879 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6880 NULL_RTX, mode_width - INTVAL (rhs),
6881 code == LSHIFTRT, 0, in_code == COMPARE);
6882 break;
6885 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6886 If so, try to merge the shifts into a SIGN_EXTEND. We could
6887 also do this for some cases of SIGN_EXTRACT, but it doesn't
6888 seem worth the effort; the case checked for occurs on Alpha. */
6890 if (!OBJECT_P (lhs)
6891 && ! (GET_CODE (lhs) == SUBREG
6892 && (OBJECT_P (SUBREG_REG (lhs))))
6893 && GET_CODE (rhs) == CONST_INT
6894 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6895 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6896 new = make_extraction (mode, make_compound_operation (new, next_code),
6897 0, NULL_RTX, mode_width - INTVAL (rhs),
6898 code == LSHIFTRT, 0, in_code == COMPARE);
6900 break;
6902 case SUBREG:
6903 /* Call ourselves recursively on the inner expression. If we are
6904 narrowing the object and it has a different RTL code from
6905 what it originally did, do this SUBREG as a force_to_mode. */
6907 tem = make_compound_operation (SUBREG_REG (x), in_code);
6910 rtx simplified;
6911 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
6912 SUBREG_BYTE (x));
6914 if (simplified)
6915 tem = simplified;
6917 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6918 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6919 && subreg_lowpart_p (x))
6921 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6924 /* If we have something other than a SUBREG, we might have
6925 done an expansion, so rerun ourselves. */
6926 if (GET_CODE (newer) != SUBREG)
6927 newer = make_compound_operation (newer, in_code);
6929 return newer;
6932 if (simplified)
6933 return tem;
6935 break;
6937 default:
6938 break;
6941 if (new)
6943 x = gen_lowpart (mode, new);
6944 code = GET_CODE (x);
6947 /* Now recursively process each operand of this operation. */
6948 fmt = GET_RTX_FORMAT (code);
6949 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6950 if (fmt[i] == 'e')
6952 new = make_compound_operation (XEXP (x, i), next_code);
6953 SUBST (XEXP (x, i), new);
6956 /* If this is a commutative operation, the changes to the operands
6957 may have made it noncanonical. */
6958 if (COMMUTATIVE_ARITH_P (x)
6959 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
6961 tem = XEXP (x, 0);
6962 SUBST (XEXP (x, 0), XEXP (x, 1));
6963 SUBST (XEXP (x, 1), tem);
6966 return x;
6969 /* Given M see if it is a value that would select a field of bits
6970 within an item, but not the entire word. Return -1 if not.
6971 Otherwise, return the starting position of the field, where 0 is the
6972 low-order bit.
6974 *PLEN is set to the length of the field. */
6976 static int
6977 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6979 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6980 int pos = exact_log2 (m & -m);
6981 int len = 0;
6983 if (pos >= 0)
6984 /* Now shift off the low-order zero bits and see if we have a
6985 power of two minus 1. */
6986 len = exact_log2 ((m >> pos) + 1);
6988 if (len <= 0)
6989 pos = -1;
6991 *plen = len;
6992 return pos;
6995 /* If X refers to a register that equals REG in value, replace these
6996 references with REG. */
6997 static rtx
6998 canon_reg_for_combine (rtx x, rtx reg)
7000 rtx op0, op1, op2;
7001 const char *fmt;
7002 int i;
7003 bool copied;
7005 enum rtx_code code = GET_CODE (x);
7006 switch (GET_RTX_CLASS (code))
7008 case RTX_UNARY:
7009 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7010 if (op0 != XEXP (x, 0))
7011 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7012 GET_MODE (reg));
7013 break;
7015 case RTX_BIN_ARITH:
7016 case RTX_COMM_ARITH:
7017 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7018 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7019 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7020 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7021 break;
7023 case RTX_COMPARE:
7024 case RTX_COMM_COMPARE:
7025 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7026 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7027 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7028 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7029 GET_MODE (op0), op0, op1);
7030 break;
7032 case RTX_TERNARY:
7033 case RTX_BITFIELD_OPS:
7034 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7035 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7036 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7037 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7038 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7039 GET_MODE (op0), op0, op1, op2);
7041 case RTX_OBJ:
7042 if (REG_P (x))
7044 if (rtx_equal_p (get_last_value (reg), x)
7045 || rtx_equal_p (reg, get_last_value (x)))
7046 return reg;
7047 else
7048 break;
7051 /* fall through */
7053 default:
7054 fmt = GET_RTX_FORMAT (code);
7055 copied = false;
7056 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7057 if (fmt[i] == 'e')
7059 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7060 if (op != XEXP (x, i))
7062 if (!copied)
7064 copied = true;
7065 x = copy_rtx (x);
7067 XEXP (x, i) = op;
7070 else if (fmt[i] == 'E')
7072 int j;
7073 for (j = 0; j < XVECLEN (x, i); j++)
7075 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7076 if (op != XVECEXP (x, i, j))
7078 if (!copied)
7080 copied = true;
7081 x = copy_rtx (x);
7083 XVECEXP (x, i, j) = op;
7088 break;
7091 return x;
7094 /* See if X can be simplified knowing that we will only refer to it in
7095 MODE and will only refer to those bits that are nonzero in MASK.
7096 If other bits are being computed or if masking operations are done
7097 that select a superset of the bits in MASK, they can sometimes be
7098 ignored.
7100 Return a possibly simplified expression, but always convert X to
7101 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7103 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7104 are all off in X. This is used when X will be complemented, by either
7105 NOT, NEG, or XOR. */
7107 static rtx
7108 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7109 int just_select)
7111 enum rtx_code code = GET_CODE (x);
7112 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7113 enum machine_mode op_mode;
7114 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7115 rtx op0, op1, temp;
7117 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7118 code below will do the wrong thing since the mode of such an
7119 expression is VOIDmode.
7121 Also do nothing if X is a CLOBBER; this can happen if X was
7122 the return value from a call to gen_lowpart. */
7123 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7124 return x;
7126 /* We want to perform the operation is its present mode unless we know
7127 that the operation is valid in MODE, in which case we do the operation
7128 in MODE. */
7129 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7130 && have_insn_for (code, mode))
7131 ? mode : GET_MODE (x));
7133 /* It is not valid to do a right-shift in a narrower mode
7134 than the one it came in with. */
7135 if ((code == LSHIFTRT || code == ASHIFTRT)
7136 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7137 op_mode = GET_MODE (x);
7139 /* Truncate MASK to fit OP_MODE. */
7140 if (op_mode)
7141 mask &= GET_MODE_MASK (op_mode);
7143 /* When we have an arithmetic operation, or a shift whose count we
7144 do not know, we need to assume that all bits up to the highest-order
7145 bit in MASK will be needed. This is how we form such a mask. */
7146 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7147 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7148 else
7149 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7150 - 1);
7152 /* Determine what bits of X are guaranteed to be (non)zero. */
7153 nonzero = nonzero_bits (x, mode);
7155 /* If none of the bits in X are needed, return a zero. */
7156 if (! just_select && (nonzero & mask) == 0)
7157 x = const0_rtx;
7159 /* If X is a CONST_INT, return a new one. Do this here since the
7160 test below will fail. */
7161 if (GET_CODE (x) == CONST_INT)
7163 if (SCALAR_INT_MODE_P (mode))
7164 return gen_int_mode (INTVAL (x) & mask, mode);
7165 else
7167 x = GEN_INT (INTVAL (x) & mask);
7168 return gen_lowpart_common (mode, x);
7172 /* If X is narrower than MODE and we want all the bits in X's mode, just
7173 get X in the proper mode. */
7174 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7175 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7176 return gen_lowpart (mode, x);
7178 switch (code)
7180 case CLOBBER:
7181 /* If X is a (clobber (const_int)), return it since we know we are
7182 generating something that won't match. */
7183 return x;
7185 case USE:
7186 /* X is a (use (mem ..)) that was made from a bit-field extraction that
7187 spanned the boundary of the MEM. If we are now masking so it is
7188 within that boundary, we don't need the USE any more. */
7189 if (! BITS_BIG_ENDIAN
7190 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7191 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7192 break;
7194 case SIGN_EXTEND:
7195 case ZERO_EXTEND:
7196 case ZERO_EXTRACT:
7197 case SIGN_EXTRACT:
7198 x = expand_compound_operation (x);
7199 if (GET_CODE (x) != code)
7200 return force_to_mode (x, mode, mask, next_select);
7201 break;
7203 case SUBREG:
7204 if (subreg_lowpart_p (x)
7205 /* We can ignore the effect of this SUBREG if it narrows the mode or
7206 if the constant masks to zero all the bits the mode doesn't
7207 have. */
7208 && ((GET_MODE_SIZE (GET_MODE (x))
7209 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7210 || (0 == (mask
7211 & GET_MODE_MASK (GET_MODE (x))
7212 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7213 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7214 break;
7216 case AND:
7217 /* If this is an AND with a constant, convert it into an AND
7218 whose constant is the AND of that constant with MASK. If it
7219 remains an AND of MASK, delete it since it is redundant. */
7221 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7223 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7224 mask & INTVAL (XEXP (x, 1)));
7226 /* If X is still an AND, see if it is an AND with a mask that
7227 is just some low-order bits. If so, and it is MASK, we don't
7228 need it. */
7230 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7231 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7232 == mask))
7233 x = XEXP (x, 0);
7235 /* If it remains an AND, try making another AND with the bits
7236 in the mode mask that aren't in MASK turned on. If the
7237 constant in the AND is wide enough, this might make a
7238 cheaper constant. */
7240 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7241 && GET_MODE_MASK (GET_MODE (x)) != mask
7242 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7244 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7245 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7246 int width = GET_MODE_BITSIZE (GET_MODE (x));
7247 rtx y;
7249 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7250 number, sign extend it. */
7251 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7252 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7253 cval |= (HOST_WIDE_INT) -1 << width;
7255 y = simplify_gen_binary (AND, GET_MODE (x),
7256 XEXP (x, 0), GEN_INT (cval));
7257 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7258 x = y;
7261 break;
7264 goto binop;
7266 case PLUS:
7267 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7268 low-order bits (as in an alignment operation) and FOO is already
7269 aligned to that boundary, mask C1 to that boundary as well.
7270 This may eliminate that PLUS and, later, the AND. */
7273 unsigned int width = GET_MODE_BITSIZE (mode);
7274 unsigned HOST_WIDE_INT smask = mask;
7276 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7277 number, sign extend it. */
7279 if (width < HOST_BITS_PER_WIDE_INT
7280 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7281 smask |= (HOST_WIDE_INT) -1 << width;
7283 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7284 && exact_log2 (- smask) >= 0
7285 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7286 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7287 return force_to_mode (plus_constant (XEXP (x, 0),
7288 (INTVAL (XEXP (x, 1)) & smask)),
7289 mode, smask, next_select);
7292 /* ... fall through ... */
7294 case MULT:
7295 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7296 most significant bit in MASK since carries from those bits will
7297 affect the bits we are interested in. */
7298 mask = fuller_mask;
7299 goto binop;
7301 case MINUS:
7302 /* If X is (minus C Y) where C's least set bit is larger than any bit
7303 in the mask, then we may replace with (neg Y). */
7304 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7305 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7306 & -INTVAL (XEXP (x, 0))))
7307 > mask))
7309 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7310 GET_MODE (x));
7311 return force_to_mode (x, mode, mask, next_select);
7314 /* Similarly, if C contains every bit in the fuller_mask, then we may
7315 replace with (not Y). */
7316 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7317 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7318 == INTVAL (XEXP (x, 0))))
7320 x = simplify_gen_unary (NOT, GET_MODE (x),
7321 XEXP (x, 1), GET_MODE (x));
7322 return force_to_mode (x, mode, mask, next_select);
7325 mask = fuller_mask;
7326 goto binop;
7328 case IOR:
7329 case XOR:
7330 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7331 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7332 operation which may be a bitfield extraction. Ensure that the
7333 constant we form is not wider than the mode of X. */
7335 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7336 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7337 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7338 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7339 && GET_CODE (XEXP (x, 1)) == CONST_INT
7340 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7341 + floor_log2 (INTVAL (XEXP (x, 1))))
7342 < GET_MODE_BITSIZE (GET_MODE (x)))
7343 && (INTVAL (XEXP (x, 1))
7344 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7346 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7347 << INTVAL (XEXP (XEXP (x, 0), 1)));
7348 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7349 XEXP (XEXP (x, 0), 0), temp);
7350 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7351 XEXP (XEXP (x, 0), 1));
7352 return force_to_mode (x, mode, mask, next_select);
7355 binop:
7356 /* For most binary operations, just propagate into the operation and
7357 change the mode if we have an operation of that mode. */
7359 op0 = gen_lowpart (op_mode,
7360 force_to_mode (XEXP (x, 0), mode, mask,
7361 next_select));
7362 op1 = gen_lowpart (op_mode,
7363 force_to_mode (XEXP (x, 1), mode, mask,
7364 next_select));
7366 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7367 x = simplify_gen_binary (code, op_mode, op0, op1);
7368 break;
7370 case ASHIFT:
7371 /* For left shifts, do the same, but just for the first operand.
7372 However, we cannot do anything with shifts where we cannot
7373 guarantee that the counts are smaller than the size of the mode
7374 because such a count will have a different meaning in a
7375 wider mode. */
7377 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7378 && INTVAL (XEXP (x, 1)) >= 0
7379 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7380 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7381 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7382 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7383 break;
7385 /* If the shift count is a constant and we can do arithmetic in
7386 the mode of the shift, refine which bits we need. Otherwise, use the
7387 conservative form of the mask. */
7388 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7389 && INTVAL (XEXP (x, 1)) >= 0
7390 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7391 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7392 mask >>= INTVAL (XEXP (x, 1));
7393 else
7394 mask = fuller_mask;
7396 op0 = gen_lowpart (op_mode,
7397 force_to_mode (XEXP (x, 0), op_mode,
7398 mask, next_select));
7400 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7401 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7402 break;
7404 case LSHIFTRT:
7405 /* Here we can only do something if the shift count is a constant,
7406 this shift constant is valid for the host, and we can do arithmetic
7407 in OP_MODE. */
7409 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7410 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7411 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7413 rtx inner = XEXP (x, 0);
7414 unsigned HOST_WIDE_INT inner_mask;
7416 /* Select the mask of the bits we need for the shift operand. */
7417 inner_mask = mask << INTVAL (XEXP (x, 1));
7419 /* We can only change the mode of the shift if we can do arithmetic
7420 in the mode of the shift and INNER_MASK is no wider than the
7421 width of X's mode. */
7422 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7423 op_mode = GET_MODE (x);
7425 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7427 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7428 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7431 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7432 shift and AND produces only copies of the sign bit (C2 is one less
7433 than a power of two), we can do this with just a shift. */
7435 if (GET_CODE (x) == LSHIFTRT
7436 && GET_CODE (XEXP (x, 1)) == CONST_INT
7437 /* The shift puts one of the sign bit copies in the least significant
7438 bit. */
7439 && ((INTVAL (XEXP (x, 1))
7440 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7441 >= GET_MODE_BITSIZE (GET_MODE (x)))
7442 && exact_log2 (mask + 1) >= 0
7443 /* Number of bits left after the shift must be more than the mask
7444 needs. */
7445 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7446 <= GET_MODE_BITSIZE (GET_MODE (x)))
7447 /* Must be more sign bit copies than the mask needs. */
7448 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7449 >= exact_log2 (mask + 1)))
7450 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7451 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7452 - exact_log2 (mask + 1)));
7454 goto shiftrt;
7456 case ASHIFTRT:
7457 /* If we are just looking for the sign bit, we don't need this shift at
7458 all, even if it has a variable count. */
7459 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7460 && (mask == ((unsigned HOST_WIDE_INT) 1
7461 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7462 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7464 /* If this is a shift by a constant, get a mask that contains those bits
7465 that are not copies of the sign bit. We then have two cases: If
7466 MASK only includes those bits, this can be a logical shift, which may
7467 allow simplifications. If MASK is a single-bit field not within
7468 those bits, we are requesting a copy of the sign bit and hence can
7469 shift the sign bit to the appropriate location. */
7471 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7472 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7474 int i = -1;
7476 /* If the considered data is wider than HOST_WIDE_INT, we can't
7477 represent a mask for all its bits in a single scalar.
7478 But we only care about the lower bits, so calculate these. */
7480 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7482 nonzero = ~(HOST_WIDE_INT) 0;
7484 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7485 is the number of bits a full-width mask would have set.
7486 We need only shift if these are fewer than nonzero can
7487 hold. If not, we must keep all bits set in nonzero. */
7489 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7490 < HOST_BITS_PER_WIDE_INT)
7491 nonzero >>= INTVAL (XEXP (x, 1))
7492 + HOST_BITS_PER_WIDE_INT
7493 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7495 else
7497 nonzero = GET_MODE_MASK (GET_MODE (x));
7498 nonzero >>= INTVAL (XEXP (x, 1));
7501 if ((mask & ~nonzero) == 0
7502 || (i = exact_log2 (mask)) >= 0)
7504 x = simplify_shift_const
7505 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7506 i < 0 ? INTVAL (XEXP (x, 1))
7507 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7509 if (GET_CODE (x) != ASHIFTRT)
7510 return force_to_mode (x, mode, mask, next_select);
7514 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7515 even if the shift count isn't a constant. */
7516 if (mask == 1)
7517 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7518 XEXP (x, 0), XEXP (x, 1));
7520 shiftrt:
7522 /* If this is a zero- or sign-extension operation that just affects bits
7523 we don't care about, remove it. Be sure the call above returned
7524 something that is still a shift. */
7526 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7527 && GET_CODE (XEXP (x, 1)) == CONST_INT
7528 && INTVAL (XEXP (x, 1)) >= 0
7529 && (INTVAL (XEXP (x, 1))
7530 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7531 && GET_CODE (XEXP (x, 0)) == ASHIFT
7532 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7533 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7534 next_select);
7536 break;
7538 case ROTATE:
7539 case ROTATERT:
7540 /* If the shift count is constant and we can do computations
7541 in the mode of X, compute where the bits we care about are.
7542 Otherwise, we can't do anything. Don't change the mode of
7543 the shift or propagate MODE into the shift, though. */
7544 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7545 && INTVAL (XEXP (x, 1)) >= 0)
7547 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7548 GET_MODE (x), GEN_INT (mask),
7549 XEXP (x, 1));
7550 if (temp && GET_CODE (temp) == CONST_INT)
7551 SUBST (XEXP (x, 0),
7552 force_to_mode (XEXP (x, 0), GET_MODE (x),
7553 INTVAL (temp), next_select));
7555 break;
7557 case NEG:
7558 /* If we just want the low-order bit, the NEG isn't needed since it
7559 won't change the low-order bit. */
7560 if (mask == 1)
7561 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7563 /* We need any bits less significant than the most significant bit in
7564 MASK since carries from those bits will affect the bits we are
7565 interested in. */
7566 mask = fuller_mask;
7567 goto unop;
7569 case NOT:
7570 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7571 same as the XOR case above. Ensure that the constant we form is not
7572 wider than the mode of X. */
7574 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7575 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7576 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7577 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7578 < GET_MODE_BITSIZE (GET_MODE (x)))
7579 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7581 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7582 GET_MODE (x));
7583 temp = simplify_gen_binary (XOR, GET_MODE (x),
7584 XEXP (XEXP (x, 0), 0), temp);
7585 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7586 temp, XEXP (XEXP (x, 0), 1));
7588 return force_to_mode (x, mode, mask, next_select);
7591 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7592 use the full mask inside the NOT. */
7593 mask = fuller_mask;
7595 unop:
7596 op0 = gen_lowpart (op_mode,
7597 force_to_mode (XEXP (x, 0), mode, mask,
7598 next_select));
7599 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7600 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7601 break;
7603 case NE:
7604 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7605 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7606 which is equal to STORE_FLAG_VALUE. */
7607 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7608 && GET_MODE (XEXP (x, 0)) == mode
7609 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7610 && (nonzero_bits (XEXP (x, 0), mode)
7611 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7612 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7614 break;
7616 case IF_THEN_ELSE:
7617 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7618 written in a narrower mode. We play it safe and do not do so. */
7620 SUBST (XEXP (x, 1),
7621 gen_lowpart (GET_MODE (x), force_to_mode (XEXP (x, 1), mode,
7622 mask, next_select)));
7623 SUBST (XEXP (x, 2),
7624 gen_lowpart (GET_MODE (x), force_to_mode (XEXP (x, 2), mode,
7625 mask, next_select)));
7626 break;
7628 default:
7629 break;
7632 /* Ensure we return a value of the proper mode. */
7633 return gen_lowpart (mode, x);
7636 /* Return nonzero if X is an expression that has one of two values depending on
7637 whether some other value is zero or nonzero. In that case, we return the
7638 value that is being tested, *PTRUE is set to the value if the rtx being
7639 returned has a nonzero value, and *PFALSE is set to the other alternative.
7641 If we return zero, we set *PTRUE and *PFALSE to X. */
7643 static rtx
7644 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7646 enum machine_mode mode = GET_MODE (x);
7647 enum rtx_code code = GET_CODE (x);
7648 rtx cond0, cond1, true0, true1, false0, false1;
7649 unsigned HOST_WIDE_INT nz;
7651 /* If we are comparing a value against zero, we are done. */
7652 if ((code == NE || code == EQ)
7653 && XEXP (x, 1) == const0_rtx)
7655 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7656 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7657 return XEXP (x, 0);
7660 /* If this is a unary operation whose operand has one of two values, apply
7661 our opcode to compute those values. */
7662 else if (UNARY_P (x)
7663 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7665 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7666 *pfalse = simplify_gen_unary (code, mode, false0,
7667 GET_MODE (XEXP (x, 0)));
7668 return cond0;
7671 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7672 make can't possibly match and would suppress other optimizations. */
7673 else if (code == COMPARE)
7676 /* If this is a binary operation, see if either side has only one of two
7677 values. If either one does or if both do and they are conditional on
7678 the same value, compute the new true and false values. */
7679 else if (BINARY_P (x))
7681 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7682 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7684 if ((cond0 != 0 || cond1 != 0)
7685 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7687 /* If if_then_else_cond returned zero, then true/false are the
7688 same rtl. We must copy one of them to prevent invalid rtl
7689 sharing. */
7690 if (cond0 == 0)
7691 true0 = copy_rtx (true0);
7692 else if (cond1 == 0)
7693 true1 = copy_rtx (true1);
7695 if (COMPARISON_P (x))
7697 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7698 true0, true1);
7699 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7700 false0, false1);
7702 else
7704 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7705 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7708 return cond0 ? cond0 : cond1;
7711 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7712 operands is zero when the other is nonzero, and vice-versa,
7713 and STORE_FLAG_VALUE is 1 or -1. */
7715 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7716 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7717 || code == UMAX)
7718 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7720 rtx op0 = XEXP (XEXP (x, 0), 1);
7721 rtx op1 = XEXP (XEXP (x, 1), 1);
7723 cond0 = XEXP (XEXP (x, 0), 0);
7724 cond1 = XEXP (XEXP (x, 1), 0);
7726 if (COMPARISON_P (cond0)
7727 && COMPARISON_P (cond1)
7728 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7729 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7730 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7731 || ((swap_condition (GET_CODE (cond0))
7732 == reversed_comparison_code (cond1, NULL))
7733 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7734 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7735 && ! side_effects_p (x))
7737 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7738 *pfalse = simplify_gen_binary (MULT, mode,
7739 (code == MINUS
7740 ? simplify_gen_unary (NEG, mode,
7741 op1, mode)
7742 : op1),
7743 const_true_rtx);
7744 return cond0;
7748 /* Similarly for MULT, AND and UMIN, except that for these the result
7749 is always zero. */
7750 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7751 && (code == MULT || code == AND || code == UMIN)
7752 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7754 cond0 = XEXP (XEXP (x, 0), 0);
7755 cond1 = XEXP (XEXP (x, 1), 0);
7757 if (COMPARISON_P (cond0)
7758 && COMPARISON_P (cond1)
7759 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7760 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7761 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7762 || ((swap_condition (GET_CODE (cond0))
7763 == reversed_comparison_code (cond1, NULL))
7764 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7765 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7766 && ! side_effects_p (x))
7768 *ptrue = *pfalse = const0_rtx;
7769 return cond0;
7774 else if (code == IF_THEN_ELSE)
7776 /* If we have IF_THEN_ELSE already, extract the condition and
7777 canonicalize it if it is NE or EQ. */
7778 cond0 = XEXP (x, 0);
7779 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7780 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7781 return XEXP (cond0, 0);
7782 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7784 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7785 return XEXP (cond0, 0);
7787 else
7788 return cond0;
7791 /* If X is a SUBREG, we can narrow both the true and false values
7792 if the inner expression, if there is a condition. */
7793 else if (code == SUBREG
7794 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7795 &true0, &false0)))
7797 true0 = simplify_gen_subreg (mode, true0,
7798 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7799 false0 = simplify_gen_subreg (mode, false0,
7800 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7801 if (true0 && false0)
7803 *ptrue = true0;
7804 *pfalse = false0;
7805 return cond0;
7809 /* If X is a constant, this isn't special and will cause confusions
7810 if we treat it as such. Likewise if it is equivalent to a constant. */
7811 else if (CONSTANT_P (x)
7812 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7815 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7816 will be least confusing to the rest of the compiler. */
7817 else if (mode == BImode)
7819 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7820 return x;
7823 /* If X is known to be either 0 or -1, those are the true and
7824 false values when testing X. */
7825 else if (x == constm1_rtx || x == const0_rtx
7826 || (mode != VOIDmode
7827 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7829 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7830 return x;
7833 /* Likewise for 0 or a single bit. */
7834 else if (SCALAR_INT_MODE_P (mode)
7835 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7836 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7838 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7839 return x;
7842 /* Otherwise fail; show no condition with true and false values the same. */
7843 *ptrue = *pfalse = x;
7844 return 0;
7847 /* Return the value of expression X given the fact that condition COND
7848 is known to be true when applied to REG as its first operand and VAL
7849 as its second. X is known to not be shared and so can be modified in
7850 place.
7852 We only handle the simplest cases, and specifically those cases that
7853 arise with IF_THEN_ELSE expressions. */
7855 static rtx
7856 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7858 enum rtx_code code = GET_CODE (x);
7859 rtx temp;
7860 const char *fmt;
7861 int i, j;
7863 if (side_effects_p (x))
7864 return x;
7866 /* If either operand of the condition is a floating point value,
7867 then we have to avoid collapsing an EQ comparison. */
7868 if (cond == EQ
7869 && rtx_equal_p (x, reg)
7870 && ! FLOAT_MODE_P (GET_MODE (x))
7871 && ! FLOAT_MODE_P (GET_MODE (val)))
7872 return val;
7874 if (cond == UNEQ && rtx_equal_p (x, reg))
7875 return val;
7877 /* If X is (abs REG) and we know something about REG's relationship
7878 with zero, we may be able to simplify this. */
7880 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7881 switch (cond)
7883 case GE: case GT: case EQ:
7884 return XEXP (x, 0);
7885 case LT: case LE:
7886 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7887 XEXP (x, 0),
7888 GET_MODE (XEXP (x, 0)));
7889 default:
7890 break;
7893 /* The only other cases we handle are MIN, MAX, and comparisons if the
7894 operands are the same as REG and VAL. */
7896 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7898 if (rtx_equal_p (XEXP (x, 0), val))
7899 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7901 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7903 if (COMPARISON_P (x))
7905 if (comparison_dominates_p (cond, code))
7906 return const_true_rtx;
7908 code = reversed_comparison_code (x, NULL);
7909 if (code != UNKNOWN
7910 && comparison_dominates_p (cond, code))
7911 return const0_rtx;
7912 else
7913 return x;
7915 else if (code == SMAX || code == SMIN
7916 || code == UMIN || code == UMAX)
7918 int unsignedp = (code == UMIN || code == UMAX);
7920 /* Do not reverse the condition when it is NE or EQ.
7921 This is because we cannot conclude anything about
7922 the value of 'SMAX (x, y)' when x is not equal to y,
7923 but we can when x equals y. */
7924 if ((code == SMAX || code == UMAX)
7925 && ! (cond == EQ || cond == NE))
7926 cond = reverse_condition (cond);
7928 switch (cond)
7930 case GE: case GT:
7931 return unsignedp ? x : XEXP (x, 1);
7932 case LE: case LT:
7933 return unsignedp ? x : XEXP (x, 0);
7934 case GEU: case GTU:
7935 return unsignedp ? XEXP (x, 1) : x;
7936 case LEU: case LTU:
7937 return unsignedp ? XEXP (x, 0) : x;
7938 default:
7939 break;
7944 else if (code == SUBREG)
7946 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7947 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7949 if (SUBREG_REG (x) != r)
7951 /* We must simplify subreg here, before we lose track of the
7952 original inner_mode. */
7953 new = simplify_subreg (GET_MODE (x), r,
7954 inner_mode, SUBREG_BYTE (x));
7955 if (new)
7956 return new;
7957 else
7958 SUBST (SUBREG_REG (x), r);
7961 return x;
7963 /* We don't have to handle SIGN_EXTEND here, because even in the
7964 case of replacing something with a modeless CONST_INT, a
7965 CONST_INT is already (supposed to be) a valid sign extension for
7966 its narrower mode, which implies it's already properly
7967 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7968 story is different. */
7969 else if (code == ZERO_EXTEND)
7971 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7972 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7974 if (XEXP (x, 0) != r)
7976 /* We must simplify the zero_extend here, before we lose
7977 track of the original inner_mode. */
7978 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7979 r, inner_mode);
7980 if (new)
7981 return new;
7982 else
7983 SUBST (XEXP (x, 0), r);
7986 return x;
7989 fmt = GET_RTX_FORMAT (code);
7990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7992 if (fmt[i] == 'e')
7993 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7994 else if (fmt[i] == 'E')
7995 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7996 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7997 cond, reg, val));
8000 return x;
8003 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8004 assignment as a field assignment. */
8006 static int
8007 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8009 if (x == y || rtx_equal_p (x, y))
8010 return 1;
8012 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8013 return 0;
8015 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8016 Note that all SUBREGs of MEM are paradoxical; otherwise they
8017 would have been rewritten. */
8018 if (MEM_P (x) && GET_CODE (y) == SUBREG
8019 && MEM_P (SUBREG_REG (y))
8020 && rtx_equal_p (SUBREG_REG (y),
8021 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8022 return 1;
8024 if (MEM_P (y) && GET_CODE (x) == SUBREG
8025 && MEM_P (SUBREG_REG (x))
8026 && rtx_equal_p (SUBREG_REG (x),
8027 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8028 return 1;
8030 /* We used to see if get_last_value of X and Y were the same but that's
8031 not correct. In one direction, we'll cause the assignment to have
8032 the wrong destination and in the case, we'll import a register into this
8033 insn that might have already have been dead. So fail if none of the
8034 above cases are true. */
8035 return 0;
8038 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8039 Return that assignment if so.
8041 We only handle the most common cases. */
8043 static rtx
8044 make_field_assignment (rtx x)
8046 rtx dest = SET_DEST (x);
8047 rtx src = SET_SRC (x);
8048 rtx assign;
8049 rtx rhs, lhs;
8050 HOST_WIDE_INT c1;
8051 HOST_WIDE_INT pos;
8052 unsigned HOST_WIDE_INT len;
8053 rtx other;
8054 enum machine_mode mode;
8056 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8057 a clear of a one-bit field. We will have changed it to
8058 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8059 for a SUBREG. */
8061 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8062 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8063 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8064 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8066 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8067 1, 1, 1, 0);
8068 if (assign != 0)
8069 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8070 return x;
8073 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8074 && subreg_lowpart_p (XEXP (src, 0))
8075 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8076 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8077 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8078 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8079 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8080 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8082 assign = make_extraction (VOIDmode, dest, 0,
8083 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8084 1, 1, 1, 0);
8085 if (assign != 0)
8086 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8087 return x;
8090 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8091 one-bit field. */
8092 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8093 && XEXP (XEXP (src, 0), 0) == const1_rtx
8094 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8096 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8097 1, 1, 1, 0);
8098 if (assign != 0)
8099 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8100 return x;
8103 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8104 SRC is an AND with all bits of that field set, then we can discard
8105 the AND. */
8106 if (GET_CODE (dest) == ZERO_EXTRACT
8107 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8108 && GET_CODE (src) == AND
8109 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8111 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8112 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8113 unsigned HOST_WIDE_INT ze_mask;
8115 if (width >= HOST_BITS_PER_WIDE_INT)
8116 ze_mask = -1;
8117 else
8118 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8120 /* Complete overlap. We can remove the source AND. */
8121 if ((and_mask & ze_mask) == ze_mask)
8122 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8124 /* Partial overlap. We can reduce the source AND. */
8125 if ((and_mask & ze_mask) != and_mask)
8127 mode = GET_MODE (src);
8128 src = gen_rtx_AND (mode, XEXP (src, 0),
8129 gen_int_mode (and_mask & ze_mask, mode));
8130 return gen_rtx_SET (VOIDmode, dest, src);
8134 /* The other case we handle is assignments into a constant-position
8135 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8136 a mask that has all one bits except for a group of zero bits and
8137 OTHER is known to have zeros where C1 has ones, this is such an
8138 assignment. Compute the position and length from C1. Shift OTHER
8139 to the appropriate position, force it to the required mode, and
8140 make the extraction. Check for the AND in both operands. */
8142 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8143 return x;
8145 rhs = expand_compound_operation (XEXP (src, 0));
8146 lhs = expand_compound_operation (XEXP (src, 1));
8148 if (GET_CODE (rhs) == AND
8149 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8150 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8151 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8152 else if (GET_CODE (lhs) == AND
8153 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8154 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8155 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8156 else
8157 return x;
8159 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8160 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8161 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8162 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8163 return x;
8165 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8166 if (assign == 0)
8167 return x;
8169 /* The mode to use for the source is the mode of the assignment, or of
8170 what is inside a possible STRICT_LOW_PART. */
8171 mode = (GET_CODE (assign) == STRICT_LOW_PART
8172 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8174 /* Shift OTHER right POS places and make it the source, restricting it
8175 to the proper length and mode. */
8177 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8178 GET_MODE (src),
8179 other, pos),
8180 dest);
8181 src = force_to_mode (src, mode,
8182 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8183 ? ~(unsigned HOST_WIDE_INT) 0
8184 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8187 /* If SRC is masked by an AND that does not make a difference in
8188 the value being stored, strip it. */
8189 if (GET_CODE (assign) == ZERO_EXTRACT
8190 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8191 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8192 && GET_CODE (src) == AND
8193 && GET_CODE (XEXP (src, 1)) == CONST_INT
8194 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8195 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8196 src = XEXP (src, 0);
8198 return gen_rtx_SET (VOIDmode, assign, src);
8201 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8202 if so. */
8204 static rtx
8205 apply_distributive_law (rtx x)
8207 enum rtx_code code = GET_CODE (x);
8208 enum rtx_code inner_code;
8209 rtx lhs, rhs, other;
8210 rtx tem;
8212 /* Distributivity is not true for floating point as it can change the
8213 value. So we don't do it unless -funsafe-math-optimizations. */
8214 if (FLOAT_MODE_P (GET_MODE (x))
8215 && ! flag_unsafe_math_optimizations)
8216 return x;
8218 /* The outer operation can only be one of the following: */
8219 if (code != IOR && code != AND && code != XOR
8220 && code != PLUS && code != MINUS)
8221 return x;
8223 lhs = XEXP (x, 0);
8224 rhs = XEXP (x, 1);
8226 /* If either operand is a primitive we can't do anything, so get out
8227 fast. */
8228 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8229 return x;
8231 lhs = expand_compound_operation (lhs);
8232 rhs = expand_compound_operation (rhs);
8233 inner_code = GET_CODE (lhs);
8234 if (inner_code != GET_CODE (rhs))
8235 return x;
8237 /* See if the inner and outer operations distribute. */
8238 switch (inner_code)
8240 case LSHIFTRT:
8241 case ASHIFTRT:
8242 case AND:
8243 case IOR:
8244 /* These all distribute except over PLUS. */
8245 if (code == PLUS || code == MINUS)
8246 return x;
8247 break;
8249 case MULT:
8250 if (code != PLUS && code != MINUS)
8251 return x;
8252 break;
8254 case ASHIFT:
8255 /* This is also a multiply, so it distributes over everything. */
8256 break;
8258 case SUBREG:
8259 /* Non-paradoxical SUBREGs distributes over all operations,
8260 provided the inner modes and byte offsets are the same, this
8261 is an extraction of a low-order part, we don't convert an fp
8262 operation to int or vice versa, this is not a vector mode,
8263 and we would not be converting a single-word operation into a
8264 multi-word operation. The latter test is not required, but
8265 it prevents generating unneeded multi-word operations. Some
8266 of the previous tests are redundant given the latter test,
8267 but are retained because they are required for correctness.
8269 We produce the result slightly differently in this case. */
8271 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8272 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8273 || ! subreg_lowpart_p (lhs)
8274 || (GET_MODE_CLASS (GET_MODE (lhs))
8275 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8276 || (GET_MODE_SIZE (GET_MODE (lhs))
8277 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8278 || VECTOR_MODE_P (GET_MODE (lhs))
8279 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
8280 return x;
8282 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8283 SUBREG_REG (lhs), SUBREG_REG (rhs));
8284 return gen_lowpart (GET_MODE (x), tem);
8286 default:
8287 return x;
8290 /* Set LHS and RHS to the inner operands (A and B in the example
8291 above) and set OTHER to the common operand (C in the example).
8292 There is only one way to do this unless the inner operation is
8293 commutative. */
8294 if (COMMUTATIVE_ARITH_P (lhs)
8295 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8296 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8297 else if (COMMUTATIVE_ARITH_P (lhs)
8298 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8299 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8300 else if (COMMUTATIVE_ARITH_P (lhs)
8301 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8302 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8303 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8304 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8305 else
8306 return x;
8308 /* Form the new inner operation, seeing if it simplifies first. */
8309 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8311 /* There is one exception to the general way of distributing:
8312 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8313 if (code == XOR && inner_code == IOR)
8315 inner_code = AND;
8316 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8319 /* We may be able to continuing distributing the result, so call
8320 ourselves recursively on the inner operation before forming the
8321 outer operation, which we return. */
8322 return simplify_gen_binary (inner_code, GET_MODE (x),
8323 apply_distributive_law (tem), other);
8326 /* See if X is of the form (* (+ A B) C), and if so convert to
8327 (+ (* A C) (* B C)) and try to simplify.
8329 Most of the time, this results in no change. However, if some of
8330 the operands are the same or inverses of each other, simplifications
8331 will result.
8333 For example, (and (ior A B) (not B)) can occur as the result of
8334 expanding a bit field assignment. When we apply the distributive
8335 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8336 which then simplifies to (and (A (not B))).
8338 Note that no checks happen on the validity of applying the inverse
8339 distributive law. This is pointless since we can do it in the
8340 few places where this routine is called.
8342 N is the index of the term that is decomposed (the arithmetic operation,
8343 i.e. (+ A B) in the first example above). !N is the index of the term that
8344 is distributed, i.e. of C in the first example above. */
8345 static rtx
8346 distribute_and_simplify_rtx (rtx x, int n)
8348 enum machine_mode mode;
8349 enum rtx_code outer_code, inner_code;
8350 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8352 decomposed = XEXP (x, n);
8353 if (!ARITHMETIC_P (decomposed))
8354 return NULL_RTX;
8356 mode = GET_MODE (x);
8357 outer_code = GET_CODE (x);
8358 distributed = XEXP (x, !n);
8360 inner_code = GET_CODE (decomposed);
8361 inner_op0 = XEXP (decomposed, 0);
8362 inner_op1 = XEXP (decomposed, 1);
8364 /* Special case (and (xor B C) (not A)), which is equivalent to
8365 (xor (ior A B) (ior A C)) */
8366 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8368 distributed = XEXP (distributed, 0);
8369 outer_code = IOR;
8372 if (n == 0)
8374 /* Distribute the second term. */
8375 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8376 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8378 else
8380 /* Distribute the first term. */
8381 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8382 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8385 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8386 new_op0, new_op1));
8387 if (GET_CODE (tmp) != outer_code
8388 && rtx_cost (tmp, SET) < rtx_cost (x, SET))
8389 return tmp;
8391 return NULL_RTX;
8394 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8395 in MODE.
8397 Return an equivalent form, if different from X. Otherwise, return X. If
8398 X is zero, we are to always construct the equivalent form. */
8400 static rtx
8401 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8402 unsigned HOST_WIDE_INT constop)
8404 unsigned HOST_WIDE_INT nonzero;
8405 int i;
8407 /* Simplify VAROP knowing that we will be only looking at some of the
8408 bits in it.
8410 Note by passing in CONSTOP, we guarantee that the bits not set in
8411 CONSTOP are not significant and will never be examined. We must
8412 ensure that is the case by explicitly masking out those bits
8413 before returning. */
8414 varop = force_to_mode (varop, mode, constop, 0);
8416 /* If VAROP is a CLOBBER, we will fail so return it. */
8417 if (GET_CODE (varop) == CLOBBER)
8418 return varop;
8420 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8421 to VAROP and return the new constant. */
8422 if (GET_CODE (varop) == CONST_INT)
8423 return gen_int_mode (INTVAL (varop) & constop, mode);
8425 /* See what bits may be nonzero in VAROP. Unlike the general case of
8426 a call to nonzero_bits, here we don't care about bits outside
8427 MODE. */
8429 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8431 /* Turn off all bits in the constant that are known to already be zero.
8432 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8433 which is tested below. */
8435 constop &= nonzero;
8437 /* If we don't have any bits left, return zero. */
8438 if (constop == 0)
8439 return const0_rtx;
8441 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8442 a power of two, we can replace this with an ASHIFT. */
8443 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8444 && (i = exact_log2 (constop)) >= 0)
8445 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8447 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8448 or XOR, then try to apply the distributive law. This may eliminate
8449 operations if either branch can be simplified because of the AND.
8450 It may also make some cases more complex, but those cases probably
8451 won't match a pattern either with or without this. */
8453 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8454 return
8455 gen_lowpart
8456 (mode,
8457 apply_distributive_law
8458 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8459 simplify_and_const_int (NULL_RTX,
8460 GET_MODE (varop),
8461 XEXP (varop, 0),
8462 constop),
8463 simplify_and_const_int (NULL_RTX,
8464 GET_MODE (varop),
8465 XEXP (varop, 1),
8466 constop))));
8468 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8469 the AND and see if one of the operands simplifies to zero. If so, we
8470 may eliminate it. */
8472 if (GET_CODE (varop) == PLUS
8473 && exact_log2 (constop + 1) >= 0)
8475 rtx o0, o1;
8477 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8478 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8479 if (o0 == const0_rtx)
8480 return o1;
8481 if (o1 == const0_rtx)
8482 return o0;
8485 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8486 if we already had one (just check for the simplest cases). */
8487 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8488 && GET_MODE (XEXP (x, 0)) == mode
8489 && SUBREG_REG (XEXP (x, 0)) == varop)
8490 varop = XEXP (x, 0);
8491 else
8492 varop = gen_lowpart (mode, varop);
8494 /* If we can't make the SUBREG, try to return what we were given. */
8495 if (GET_CODE (varop) == CLOBBER)
8496 return x ? x : varop;
8498 /* If we are only masking insignificant bits, return VAROP. */
8499 if (constop == nonzero)
8500 x = varop;
8501 else
8503 /* Otherwise, return an AND. */
8504 constop = trunc_int_for_mode (constop, mode);
8505 /* See how much, if any, of X we can use. */
8506 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8507 x = simplify_gen_binary (AND, mode, varop, GEN_INT (constop));
8509 else
8511 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8512 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8513 SUBST (XEXP (x, 1), GEN_INT (constop));
8515 SUBST (XEXP (x, 0), varop);
8519 return x;
8522 /* Given a REG, X, compute which bits in X can be nonzero.
8523 We don't care about bits outside of those defined in MODE.
8525 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8526 a shift, AND, or zero_extract, we can do better. */
8528 static rtx
8529 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8530 rtx known_x ATTRIBUTE_UNUSED,
8531 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8532 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8533 unsigned HOST_WIDE_INT *nonzero)
8535 rtx tem;
8537 /* If X is a register whose nonzero bits value is current, use it.
8538 Otherwise, if X is a register whose value we can find, use that
8539 value. Otherwise, use the previously-computed global nonzero bits
8540 for this register. */
8542 if (reg_stat[REGNO (x)].last_set_value != 0
8543 && (reg_stat[REGNO (x)].last_set_mode == mode
8544 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8545 && GET_MODE_CLASS (mode) == MODE_INT))
8546 && (reg_stat[REGNO (x)].last_set_label == label_tick
8547 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8548 && REG_N_SETS (REGNO (x)) == 1
8549 && ! REGNO_REG_SET_P
8550 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8551 REGNO (x))))
8552 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8554 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8555 return NULL;
8558 tem = get_last_value (x);
8560 if (tem)
8562 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8563 /* If X is narrower than MODE and TEM is a non-negative
8564 constant that would appear negative in the mode of X,
8565 sign-extend it for use in reg_nonzero_bits because some
8566 machines (maybe most) will actually do the sign-extension
8567 and this is the conservative approach.
8569 ??? For 2.5, try to tighten up the MD files in this regard
8570 instead of this kludge. */
8572 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8573 && GET_CODE (tem) == CONST_INT
8574 && INTVAL (tem) > 0
8575 && 0 != (INTVAL (tem)
8576 & ((HOST_WIDE_INT) 1
8577 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8578 tem = GEN_INT (INTVAL (tem)
8579 | ((HOST_WIDE_INT) (-1)
8580 << GET_MODE_BITSIZE (GET_MODE (x))));
8581 #endif
8582 return tem;
8584 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8586 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8588 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8589 /* We don't know anything about the upper bits. */
8590 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8591 *nonzero &= mask;
8594 return NULL;
8597 /* Return the number of bits at the high-order end of X that are known to
8598 be equal to the sign bit. X will be used in mode MODE; if MODE is
8599 VOIDmode, X will be used in its own mode. The returned value will always
8600 be between 1 and the number of bits in MODE. */
8602 static rtx
8603 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8604 rtx known_x ATTRIBUTE_UNUSED,
8605 enum machine_mode known_mode
8606 ATTRIBUTE_UNUSED,
8607 unsigned int known_ret ATTRIBUTE_UNUSED,
8608 unsigned int *result)
8610 rtx tem;
8612 if (reg_stat[REGNO (x)].last_set_value != 0
8613 && reg_stat[REGNO (x)].last_set_mode == mode
8614 && (reg_stat[REGNO (x)].last_set_label == label_tick
8615 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8616 && REG_N_SETS (REGNO (x)) == 1
8617 && ! REGNO_REG_SET_P
8618 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
8619 REGNO (x))))
8620 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8622 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8623 return NULL;
8626 tem = get_last_value (x);
8627 if (tem != 0)
8628 return tem;
8630 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8631 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8632 *result = reg_stat[REGNO (x)].sign_bit_copies;
8634 return NULL;
8637 /* Return the number of "extended" bits there are in X, when interpreted
8638 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8639 unsigned quantities, this is the number of high-order zero bits.
8640 For signed quantities, this is the number of copies of the sign bit
8641 minus 1. In both case, this function returns the number of "spare"
8642 bits. For example, if two quantities for which this function returns
8643 at least 1 are added, the addition is known not to overflow.
8645 This function will always return 0 unless called during combine, which
8646 implies that it must be called from a define_split. */
8648 unsigned int
8649 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8651 if (nonzero_sign_valid == 0)
8652 return 0;
8654 return (unsignedp
8655 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8656 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8657 - floor_log2 (nonzero_bits (x, mode)))
8658 : 0)
8659 : num_sign_bit_copies (x, mode) - 1);
8662 /* This function is called from `simplify_shift_const' to merge two
8663 outer operations. Specifically, we have already found that we need
8664 to perform operation *POP0 with constant *PCONST0 at the outermost
8665 position. We would now like to also perform OP1 with constant CONST1
8666 (with *POP0 being done last).
8668 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8669 the resulting operation. *PCOMP_P is set to 1 if we would need to
8670 complement the innermost operand, otherwise it is unchanged.
8672 MODE is the mode in which the operation will be done. No bits outside
8673 the width of this mode matter. It is assumed that the width of this mode
8674 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8676 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8677 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8678 result is simply *PCONST0.
8680 If the resulting operation cannot be expressed as one operation, we
8681 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8683 static int
8684 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8686 enum rtx_code op0 = *pop0;
8687 HOST_WIDE_INT const0 = *pconst0;
8689 const0 &= GET_MODE_MASK (mode);
8690 const1 &= GET_MODE_MASK (mode);
8692 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8693 if (op0 == AND)
8694 const1 &= const0;
8696 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8697 if OP0 is SET. */
8699 if (op1 == UNKNOWN || op0 == SET)
8700 return 1;
8702 else if (op0 == UNKNOWN)
8703 op0 = op1, const0 = const1;
8705 else if (op0 == op1)
8707 switch (op0)
8709 case AND:
8710 const0 &= const1;
8711 break;
8712 case IOR:
8713 const0 |= const1;
8714 break;
8715 case XOR:
8716 const0 ^= const1;
8717 break;
8718 case PLUS:
8719 const0 += const1;
8720 break;
8721 case NEG:
8722 op0 = UNKNOWN;
8723 break;
8724 default:
8725 break;
8729 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8730 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8731 return 0;
8733 /* If the two constants aren't the same, we can't do anything. The
8734 remaining six cases can all be done. */
8735 else if (const0 != const1)
8736 return 0;
8738 else
8739 switch (op0)
8741 case IOR:
8742 if (op1 == AND)
8743 /* (a & b) | b == b */
8744 op0 = SET;
8745 else /* op1 == XOR */
8746 /* (a ^ b) | b == a | b */
8748 break;
8750 case XOR:
8751 if (op1 == AND)
8752 /* (a & b) ^ b == (~a) & b */
8753 op0 = AND, *pcomp_p = 1;
8754 else /* op1 == IOR */
8755 /* (a | b) ^ b == a & ~b */
8756 op0 = AND, const0 = ~const0;
8757 break;
8759 case AND:
8760 if (op1 == IOR)
8761 /* (a | b) & b == b */
8762 op0 = SET;
8763 else /* op1 == XOR */
8764 /* (a ^ b) & b) == (~a) & b */
8765 *pcomp_p = 1;
8766 break;
8767 default:
8768 break;
8771 /* Check for NO-OP cases. */
8772 const0 &= GET_MODE_MASK (mode);
8773 if (const0 == 0
8774 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8775 op0 = UNKNOWN;
8776 else if (const0 == 0 && op0 == AND)
8777 op0 = SET;
8778 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8779 && op0 == AND)
8780 op0 = UNKNOWN;
8782 /* ??? Slightly redundant with the above mask, but not entirely.
8783 Moving this above means we'd have to sign-extend the mode mask
8784 for the final test. */
8785 const0 = trunc_int_for_mode (const0, mode);
8787 *pop0 = op0;
8788 *pconst0 = const0;
8790 return 1;
8793 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8794 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8795 that we started with.
8797 The shift is normally computed in the widest mode we find in VAROP, as
8798 long as it isn't a different number of words than RESULT_MODE. Exceptions
8799 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8801 static rtx
8802 simplify_shift_const (rtx x, enum rtx_code code,
8803 enum machine_mode result_mode, rtx varop,
8804 int orig_count)
8806 enum rtx_code orig_code = code;
8807 unsigned int count;
8808 int signed_count;
8809 enum machine_mode mode = result_mode;
8810 enum machine_mode shift_mode, tmode;
8811 unsigned int mode_words
8812 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8813 /* We form (outer_op (code varop count) (outer_const)). */
8814 enum rtx_code outer_op = UNKNOWN;
8815 HOST_WIDE_INT outer_const = 0;
8816 rtx const_rtx;
8817 int complement_p = 0;
8818 rtx new;
8820 /* Make sure and truncate the "natural" shift on the way in. We don't
8821 want to do this inside the loop as it makes it more difficult to
8822 combine shifts. */
8823 if (SHIFT_COUNT_TRUNCATED)
8824 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8826 /* If we were given an invalid count, don't do anything except exactly
8827 what was requested. */
8829 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8831 if (x)
8832 return x;
8834 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8837 count = orig_count;
8839 /* Unless one of the branches of the `if' in this loop does a `continue',
8840 we will `break' the loop after the `if'. */
8842 while (count != 0)
8844 /* If we have an operand of (clobber (const_int 0)), just return that
8845 value. */
8846 if (GET_CODE (varop) == CLOBBER)
8847 return varop;
8849 /* If we discovered we had to complement VAROP, leave. Making a NOT
8850 here would cause an infinite loop. */
8851 if (complement_p)
8852 break;
8854 /* Convert ROTATERT to ROTATE. */
8855 if (code == ROTATERT)
8857 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8858 code = ROTATE;
8859 if (VECTOR_MODE_P (result_mode))
8860 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8861 else
8862 count = bitsize - count;
8865 /* We need to determine what mode we will do the shift in. If the
8866 shift is a right shift or a ROTATE, we must always do it in the mode
8867 it was originally done in. Otherwise, we can do it in MODE, the
8868 widest mode encountered. */
8869 shift_mode
8870 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8871 ? result_mode : mode);
8873 /* Handle cases where the count is greater than the size of the mode
8874 minus 1. For ASHIFT, use the size minus one as the count (this can
8875 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8876 take the count modulo the size. For other shifts, the result is
8877 zero.
8879 Since these shifts are being produced by the compiler by combining
8880 multiple operations, each of which are defined, we know what the
8881 result is supposed to be. */
8883 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8885 if (code == ASHIFTRT)
8886 count = GET_MODE_BITSIZE (shift_mode) - 1;
8887 else if (code == ROTATE || code == ROTATERT)
8888 count %= GET_MODE_BITSIZE (shift_mode);
8889 else
8891 /* We can't simply return zero because there may be an
8892 outer op. */
8893 varop = const0_rtx;
8894 count = 0;
8895 break;
8899 /* An arithmetic right shift of a quantity known to be -1 or 0
8900 is a no-op. */
8901 if (code == ASHIFTRT
8902 && (num_sign_bit_copies (varop, shift_mode)
8903 == GET_MODE_BITSIZE (shift_mode)))
8905 count = 0;
8906 break;
8909 /* If we are doing an arithmetic right shift and discarding all but
8910 the sign bit copies, this is equivalent to doing a shift by the
8911 bitsize minus one. Convert it into that shift because it will often
8912 allow other simplifications. */
8914 if (code == ASHIFTRT
8915 && (count + num_sign_bit_copies (varop, shift_mode)
8916 >= GET_MODE_BITSIZE (shift_mode)))
8917 count = GET_MODE_BITSIZE (shift_mode) - 1;
8919 /* We simplify the tests below and elsewhere by converting
8920 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8921 `make_compound_operation' will convert it to an ASHIFTRT for
8922 those machines (such as VAX) that don't have an LSHIFTRT. */
8923 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8924 && code == ASHIFTRT
8925 && ((nonzero_bits (varop, shift_mode)
8926 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8927 == 0))
8928 code = LSHIFTRT;
8930 if (code == LSHIFTRT
8931 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8932 && !(nonzero_bits (varop, shift_mode) >> count))
8933 varop = const0_rtx;
8934 if (code == ASHIFT
8935 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8936 && !((nonzero_bits (varop, shift_mode) << count)
8937 & GET_MODE_MASK (shift_mode)))
8938 varop = const0_rtx;
8940 switch (GET_CODE (varop))
8942 case SIGN_EXTEND:
8943 case ZERO_EXTEND:
8944 case SIGN_EXTRACT:
8945 case ZERO_EXTRACT:
8946 new = expand_compound_operation (varop);
8947 if (new != varop)
8949 varop = new;
8950 continue;
8952 break;
8954 case MEM:
8955 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8956 minus the width of a smaller mode, we can do this with a
8957 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8958 if ((code == ASHIFTRT || code == LSHIFTRT)
8959 && ! mode_dependent_address_p (XEXP (varop, 0))
8960 && ! MEM_VOLATILE_P (varop)
8961 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8962 MODE_INT, 1)) != BLKmode)
8964 new = adjust_address_nv (varop, tmode,
8965 BYTES_BIG_ENDIAN ? 0
8966 : count / BITS_PER_UNIT);
8968 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8969 : ZERO_EXTEND, mode, new);
8970 count = 0;
8971 continue;
8973 break;
8975 case USE:
8976 /* Similar to the case above, except that we can only do this if
8977 the resulting mode is the same as that of the underlying
8978 MEM and adjust the address depending on the *bits* endianness
8979 because of the way that bit-field extract insns are defined. */
8980 if ((code == ASHIFTRT || code == LSHIFTRT)
8981 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8982 MODE_INT, 1)) != BLKmode
8983 && tmode == GET_MODE (XEXP (varop, 0)))
8985 if (BITS_BIG_ENDIAN)
8986 new = XEXP (varop, 0);
8987 else
8989 new = copy_rtx (XEXP (varop, 0));
8990 SUBST (XEXP (new, 0),
8991 plus_constant (XEXP (new, 0),
8992 count / BITS_PER_UNIT));
8995 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8996 : ZERO_EXTEND, mode, new);
8997 count = 0;
8998 continue;
9000 break;
9002 case SUBREG:
9003 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9004 the same number of words as what we've seen so far. Then store
9005 the widest mode in MODE. */
9006 if (subreg_lowpart_p (varop)
9007 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9008 > GET_MODE_SIZE (GET_MODE (varop)))
9009 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9010 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9011 == mode_words)
9013 varop = SUBREG_REG (varop);
9014 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9015 mode = GET_MODE (varop);
9016 continue;
9018 break;
9020 case MULT:
9021 /* Some machines use MULT instead of ASHIFT because MULT
9022 is cheaper. But it is still better on those machines to
9023 merge two shifts into one. */
9024 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9025 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9027 varop
9028 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9029 XEXP (varop, 0),
9030 GEN_INT (exact_log2 (
9031 INTVAL (XEXP (varop, 1)))));
9032 continue;
9034 break;
9036 case UDIV:
9037 /* Similar, for when divides are cheaper. */
9038 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9039 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9041 varop
9042 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9043 XEXP (varop, 0),
9044 GEN_INT (exact_log2 (
9045 INTVAL (XEXP (varop, 1)))));
9046 continue;
9048 break;
9050 case ASHIFTRT:
9051 /* If we are extracting just the sign bit of an arithmetic
9052 right shift, that shift is not needed. However, the sign
9053 bit of a wider mode may be different from what would be
9054 interpreted as the sign bit in a narrower mode, so, if
9055 the result is narrower, don't discard the shift. */
9056 if (code == LSHIFTRT
9057 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9058 && (GET_MODE_BITSIZE (result_mode)
9059 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9061 varop = XEXP (varop, 0);
9062 continue;
9065 /* ... fall through ... */
9067 case LSHIFTRT:
9068 case ASHIFT:
9069 case ROTATE:
9070 /* Here we have two nested shifts. The result is usually the
9071 AND of a new shift with a mask. We compute the result below. */
9072 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9073 && INTVAL (XEXP (varop, 1)) >= 0
9074 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9075 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9076 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9078 enum rtx_code first_code = GET_CODE (varop);
9079 unsigned int first_count = INTVAL (XEXP (varop, 1));
9080 unsigned HOST_WIDE_INT mask;
9081 rtx mask_rtx;
9083 /* We have one common special case. We can't do any merging if
9084 the inner code is an ASHIFTRT of a smaller mode. However, if
9085 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9086 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9087 we can convert it to
9088 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9089 This simplifies certain SIGN_EXTEND operations. */
9090 if (code == ASHIFT && first_code == ASHIFTRT
9091 && count == (unsigned int)
9092 (GET_MODE_BITSIZE (result_mode)
9093 - GET_MODE_BITSIZE (GET_MODE (varop))))
9095 /* C3 has the low-order C1 bits zero. */
9097 mask = (GET_MODE_MASK (mode)
9098 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9100 varop = simplify_and_const_int (NULL_RTX, result_mode,
9101 XEXP (varop, 0), mask);
9102 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9103 varop, count);
9104 count = first_count;
9105 code = ASHIFTRT;
9106 continue;
9109 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9110 than C1 high-order bits equal to the sign bit, we can convert
9111 this to either an ASHIFT or an ASHIFTRT depending on the
9112 two counts.
9114 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9116 if (code == ASHIFTRT && first_code == ASHIFT
9117 && GET_MODE (varop) == shift_mode
9118 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9119 > first_count))
9121 varop = XEXP (varop, 0);
9123 signed_count = count - first_count;
9124 if (signed_count < 0)
9125 count = -signed_count, code = ASHIFT;
9126 else
9127 count = signed_count;
9129 continue;
9132 /* There are some cases we can't do. If CODE is ASHIFTRT,
9133 we can only do this if FIRST_CODE is also ASHIFTRT.
9135 We can't do the case when CODE is ROTATE and FIRST_CODE is
9136 ASHIFTRT.
9138 If the mode of this shift is not the mode of the outer shift,
9139 we can't do this if either shift is a right shift or ROTATE.
9141 Finally, we can't do any of these if the mode is too wide
9142 unless the codes are the same.
9144 Handle the case where the shift codes are the same
9145 first. */
9147 if (code == first_code)
9149 if (GET_MODE (varop) != result_mode
9150 && (code == ASHIFTRT || code == LSHIFTRT
9151 || code == ROTATE))
9152 break;
9154 count += first_count;
9155 varop = XEXP (varop, 0);
9156 continue;
9159 if (code == ASHIFTRT
9160 || (code == ROTATE && first_code == ASHIFTRT)
9161 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9162 || (GET_MODE (varop) != result_mode
9163 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9164 || first_code == ROTATE
9165 || code == ROTATE)))
9166 break;
9168 /* To compute the mask to apply after the shift, shift the
9169 nonzero bits of the inner shift the same way the
9170 outer shift will. */
9172 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9174 mask_rtx
9175 = simplify_binary_operation (code, result_mode, mask_rtx,
9176 GEN_INT (count));
9178 /* Give up if we can't compute an outer operation to use. */
9179 if (mask_rtx == 0
9180 || GET_CODE (mask_rtx) != CONST_INT
9181 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9182 INTVAL (mask_rtx),
9183 result_mode, &complement_p))
9184 break;
9186 /* If the shifts are in the same direction, we add the
9187 counts. Otherwise, we subtract them. */
9188 signed_count = count;
9189 if ((code == ASHIFTRT || code == LSHIFTRT)
9190 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9191 signed_count += first_count;
9192 else
9193 signed_count -= first_count;
9195 /* If COUNT is positive, the new shift is usually CODE,
9196 except for the two exceptions below, in which case it is
9197 FIRST_CODE. If the count is negative, FIRST_CODE should
9198 always be used */
9199 if (signed_count > 0
9200 && ((first_code == ROTATE && code == ASHIFT)
9201 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9202 code = first_code, count = signed_count;
9203 else if (signed_count < 0)
9204 code = first_code, count = -signed_count;
9205 else
9206 count = signed_count;
9208 varop = XEXP (varop, 0);
9209 continue;
9212 /* If we have (A << B << C) for any shift, we can convert this to
9213 (A << C << B). This wins if A is a constant. Only try this if
9214 B is not a constant. */
9216 else if (GET_CODE (varop) == code
9217 && GET_CODE (XEXP (varop, 1)) != CONST_INT
9218 && 0 != (new
9219 = simplify_binary_operation (code, mode,
9220 XEXP (varop, 0),
9221 GEN_INT (count))))
9223 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
9224 count = 0;
9225 continue;
9227 break;
9229 case NOT:
9230 /* Make this fit the case below. */
9231 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9232 GEN_INT (GET_MODE_MASK (mode)));
9233 continue;
9235 case IOR:
9236 case AND:
9237 case XOR:
9238 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9239 with C the size of VAROP - 1 and the shift is logical if
9240 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9241 we have an (le X 0) operation. If we have an arithmetic shift
9242 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9243 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9245 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9246 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9247 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9248 && (code == LSHIFTRT || code == ASHIFTRT)
9249 && count == (unsigned int)
9250 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9251 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9253 count = 0;
9254 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9255 const0_rtx);
9257 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9258 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9260 continue;
9263 /* If we have (shift (logical)), move the logical to the outside
9264 to allow it to possibly combine with another logical and the
9265 shift to combine with another shift. This also canonicalizes to
9266 what a ZERO_EXTRACT looks like. Also, some machines have
9267 (and (shift)) insns. */
9269 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9270 /* We can't do this if we have (ashiftrt (xor)) and the
9271 constant has its sign bit set in shift_mode. */
9272 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9273 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9274 shift_mode))
9275 && (new = simplify_binary_operation (code, result_mode,
9276 XEXP (varop, 1),
9277 GEN_INT (count))) != 0
9278 && GET_CODE (new) == CONST_INT
9279 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9280 INTVAL (new), result_mode, &complement_p))
9282 varop = XEXP (varop, 0);
9283 continue;
9286 /* If we can't do that, try to simplify the shift in each arm of the
9287 logical expression, make a new logical expression, and apply
9288 the inverse distributive law. This also can't be done
9289 for some (ashiftrt (xor)). */
9290 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9291 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9292 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9293 shift_mode)))
9295 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9296 XEXP (varop, 0), count);
9297 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9298 XEXP (varop, 1), count);
9300 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9301 lhs, rhs);
9302 varop = apply_distributive_law (varop);
9304 count = 0;
9305 continue;
9307 break;
9309 case EQ:
9310 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9311 says that the sign bit can be tested, FOO has mode MODE, C is
9312 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9313 that may be nonzero. */
9314 if (code == LSHIFTRT
9315 && XEXP (varop, 1) == const0_rtx
9316 && GET_MODE (XEXP (varop, 0)) == result_mode
9317 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9318 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9319 && ((STORE_FLAG_VALUE
9320 & ((HOST_WIDE_INT) 1
9321 < (GET_MODE_BITSIZE (result_mode) - 1))))
9322 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9323 && merge_outer_ops (&outer_op, &outer_const, XOR,
9324 (HOST_WIDE_INT) 1, result_mode,
9325 &complement_p))
9327 varop = XEXP (varop, 0);
9328 count = 0;
9329 continue;
9331 break;
9333 case NEG:
9334 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9335 than the number of bits in the mode is equivalent to A. */
9336 if (code == LSHIFTRT
9337 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9338 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9340 varop = XEXP (varop, 0);
9341 count = 0;
9342 continue;
9345 /* NEG commutes with ASHIFT since it is multiplication. Move the
9346 NEG outside to allow shifts to combine. */
9347 if (code == ASHIFT
9348 && merge_outer_ops (&outer_op, &outer_const, NEG,
9349 (HOST_WIDE_INT) 0, result_mode,
9350 &complement_p))
9352 varop = XEXP (varop, 0);
9353 continue;
9355 break;
9357 case PLUS:
9358 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9359 is one less than the number of bits in the mode is
9360 equivalent to (xor A 1). */
9361 if (code == LSHIFTRT
9362 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
9363 && XEXP (varop, 1) == constm1_rtx
9364 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9365 && merge_outer_ops (&outer_op, &outer_const, XOR,
9366 (HOST_WIDE_INT) 1, result_mode,
9367 &complement_p))
9369 count = 0;
9370 varop = XEXP (varop, 0);
9371 continue;
9374 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9375 that might be nonzero in BAR are those being shifted out and those
9376 bits are known zero in FOO, we can replace the PLUS with FOO.
9377 Similarly in the other operand order. This code occurs when
9378 we are computing the size of a variable-size array. */
9380 if ((code == ASHIFTRT || code == LSHIFTRT)
9381 && count < HOST_BITS_PER_WIDE_INT
9382 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9383 && (nonzero_bits (XEXP (varop, 1), result_mode)
9384 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9386 varop = XEXP (varop, 0);
9387 continue;
9389 else if ((code == ASHIFTRT || code == LSHIFTRT)
9390 && count < HOST_BITS_PER_WIDE_INT
9391 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9392 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9393 >> count)
9394 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9395 & nonzero_bits (XEXP (varop, 1),
9396 result_mode)))
9398 varop = XEXP (varop, 1);
9399 continue;
9402 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9403 if (code == ASHIFT
9404 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9405 && (new = simplify_binary_operation (ASHIFT, result_mode,
9406 XEXP (varop, 1),
9407 GEN_INT (count))) != 0
9408 && GET_CODE (new) == CONST_INT
9409 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9410 INTVAL (new), result_mode, &complement_p))
9412 varop = XEXP (varop, 0);
9413 continue;
9416 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9417 signbit', and attempt to change the PLUS to an XOR and move it to
9418 the outer operation as is done above in the AND/IOR/XOR case
9419 leg for shift(logical). See details in logical handling above
9420 for reasoning in doing so. */
9421 if (code == LSHIFTRT
9422 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9423 && mode_signbit_p (result_mode, XEXP (varop, 1))
9424 && (new = simplify_binary_operation (code, result_mode,
9425 XEXP (varop, 1),
9426 GEN_INT (count))) != 0
9427 && GET_CODE (new) == CONST_INT
9428 && merge_outer_ops (&outer_op, &outer_const, XOR,
9429 INTVAL (new), result_mode, &complement_p))
9431 varop = XEXP (varop, 0);
9432 continue;
9435 break;
9437 case MINUS:
9438 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9439 with C the size of VAROP - 1 and the shift is logical if
9440 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9441 we have a (gt X 0) operation. If the shift is arithmetic with
9442 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9443 we have a (neg (gt X 0)) operation. */
9445 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9446 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9447 && count == (unsigned int)
9448 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9449 && (code == LSHIFTRT || code == ASHIFTRT)
9450 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9451 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9452 == count
9453 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9455 count = 0;
9456 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9457 const0_rtx);
9459 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9460 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9462 continue;
9464 break;
9466 case TRUNCATE:
9467 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9468 if the truncate does not affect the value. */
9469 if (code == LSHIFTRT
9470 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9471 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9472 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9473 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9474 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9476 rtx varop_inner = XEXP (varop, 0);
9478 varop_inner
9479 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9480 XEXP (varop_inner, 0),
9481 GEN_INT
9482 (count + INTVAL (XEXP (varop_inner, 1))));
9483 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9484 count = 0;
9485 continue;
9487 break;
9489 default:
9490 break;
9493 break;
9496 /* We need to determine what mode to do the shift in. If the shift is
9497 a right shift or ROTATE, we must always do it in the mode it was
9498 originally done in. Otherwise, we can do it in MODE, the widest mode
9499 encountered. The code we care about is that of the shift that will
9500 actually be done, not the shift that was originally requested. */
9501 shift_mode
9502 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9503 ? result_mode : mode);
9505 /* We have now finished analyzing the shift. The result should be
9506 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9507 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9508 to the result of the shift. OUTER_CONST is the relevant constant,
9509 but we must turn off all bits turned off in the shift.
9511 If we were passed a value for X, see if we can use any pieces of
9512 it. If not, make new rtx. */
9514 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9515 && GET_CODE (XEXP (x, 1)) == CONST_INT
9516 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9517 const_rtx = XEXP (x, 1);
9518 else
9519 const_rtx = GEN_INT (count);
9521 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9522 && GET_MODE (XEXP (x, 0)) == shift_mode
9523 && SUBREG_REG (XEXP (x, 0)) == varop)
9524 varop = XEXP (x, 0);
9525 else if (GET_MODE (varop) != shift_mode)
9526 varop = gen_lowpart (shift_mode, varop);
9528 /* If we can't make the SUBREG, try to return what we were given. */
9529 if (GET_CODE (varop) == CLOBBER)
9530 return x ? x : varop;
9532 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9533 if (new != 0)
9534 x = new;
9535 else
9536 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9538 /* If we have an outer operation and we just made a shift, it is
9539 possible that we could have simplified the shift were it not
9540 for the outer operation. So try to do the simplification
9541 recursively. */
9543 if (outer_op != UNKNOWN && GET_CODE (x) == code
9544 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9545 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9546 INTVAL (XEXP (x, 1)));
9548 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9549 turn off all the bits that the shift would have turned off. */
9550 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9551 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9552 GET_MODE_MASK (result_mode) >> orig_count);
9554 /* Do the remainder of the processing in RESULT_MODE. */
9555 x = gen_lowpart (result_mode, x);
9557 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9558 operation. */
9559 if (complement_p)
9560 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9562 if (outer_op != UNKNOWN)
9564 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9565 outer_const = trunc_int_for_mode (outer_const, result_mode);
9567 if (outer_op == AND)
9568 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9569 else if (outer_op == SET)
9570 /* This means that we have determined that the result is
9571 equivalent to a constant. This should be rare. */
9572 x = GEN_INT (outer_const);
9573 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9574 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9575 else
9576 x = simplify_gen_binary (outer_op, result_mode, x,
9577 GEN_INT (outer_const));
9580 return x;
9583 /* Like recog, but we receive the address of a pointer to a new pattern.
9584 We try to match the rtx that the pointer points to.
9585 If that fails, we may try to modify or replace the pattern,
9586 storing the replacement into the same pointer object.
9588 Modifications include deletion or addition of CLOBBERs.
9590 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9591 the CLOBBERs are placed.
9593 The value is the final insn code from the pattern ultimately matched,
9594 or -1. */
9596 static int
9597 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9599 rtx pat = *pnewpat;
9600 int insn_code_number;
9601 int num_clobbers_to_add = 0;
9602 int i;
9603 rtx notes = 0;
9604 rtx old_notes, old_pat;
9606 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9607 we use to indicate that something didn't match. If we find such a
9608 thing, force rejection. */
9609 if (GET_CODE (pat) == PARALLEL)
9610 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9611 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9612 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9613 return -1;
9615 old_pat = PATTERN (insn);
9616 old_notes = REG_NOTES (insn);
9617 PATTERN (insn) = pat;
9618 REG_NOTES (insn) = 0;
9620 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9622 /* If it isn't, there is the possibility that we previously had an insn
9623 that clobbered some register as a side effect, but the combined
9624 insn doesn't need to do that. So try once more without the clobbers
9625 unless this represents an ASM insn. */
9627 if (insn_code_number < 0 && ! check_asm_operands (pat)
9628 && GET_CODE (pat) == PARALLEL)
9630 int pos;
9632 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9633 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9635 if (i != pos)
9636 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9637 pos++;
9640 SUBST_INT (XVECLEN (pat, 0), pos);
9642 if (pos == 1)
9643 pat = XVECEXP (pat, 0, 0);
9645 PATTERN (insn) = pat;
9646 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9648 PATTERN (insn) = old_pat;
9649 REG_NOTES (insn) = old_notes;
9651 /* Recognize all noop sets, these will be killed by followup pass. */
9652 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9653 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9655 /* If we had any clobbers to add, make a new pattern than contains
9656 them. Then check to make sure that all of them are dead. */
9657 if (num_clobbers_to_add)
9659 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9660 rtvec_alloc (GET_CODE (pat) == PARALLEL
9661 ? (XVECLEN (pat, 0)
9662 + num_clobbers_to_add)
9663 : num_clobbers_to_add + 1));
9665 if (GET_CODE (pat) == PARALLEL)
9666 for (i = 0; i < XVECLEN (pat, 0); i++)
9667 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9668 else
9669 XVECEXP (newpat, 0, 0) = pat;
9671 add_clobbers (newpat, insn_code_number);
9673 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9674 i < XVECLEN (newpat, 0); i++)
9676 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9677 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9678 return -1;
9679 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9680 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9682 pat = newpat;
9685 *pnewpat = pat;
9686 *pnotes = notes;
9688 return insn_code_number;
9691 /* Like gen_lowpart_general but for use by combine. In combine it
9692 is not possible to create any new pseudoregs. However, it is
9693 safe to create invalid memory addresses, because combine will
9694 try to recognize them and all they will do is make the combine
9695 attempt fail.
9697 If for some reason this cannot do its job, an rtx
9698 (clobber (const_int 0)) is returned.
9699 An insn containing that will not be recognized. */
9701 static rtx
9702 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9704 enum machine_mode imode = GET_MODE (x);
9705 unsigned int osize = GET_MODE_SIZE (omode);
9706 unsigned int isize = GET_MODE_SIZE (imode);
9707 rtx result;
9709 if (omode == imode)
9710 return x;
9712 /* Return identity if this is a CONST or symbolic reference. */
9713 if (omode == Pmode
9714 && (GET_CODE (x) == CONST
9715 || GET_CODE (x) == SYMBOL_REF
9716 || GET_CODE (x) == LABEL_REF))
9717 return x;
9719 /* We can only support MODE being wider than a word if X is a
9720 constant integer or has a mode the same size. */
9721 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9722 && ! ((imode == VOIDmode
9723 && (GET_CODE (x) == CONST_INT
9724 || GET_CODE (x) == CONST_DOUBLE))
9725 || isize == osize))
9726 goto fail;
9728 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9729 won't know what to do. So we will strip off the SUBREG here and
9730 process normally. */
9731 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9733 x = SUBREG_REG (x);
9735 /* For use in case we fall down into the address adjustments
9736 further below, we need to adjust the known mode and size of
9737 x; imode and isize, since we just adjusted x. */
9738 imode = GET_MODE (x);
9740 if (imode == omode)
9741 return x;
9743 isize = GET_MODE_SIZE (imode);
9746 result = gen_lowpart_common (omode, x);
9748 #ifdef CANNOT_CHANGE_MODE_CLASS
9749 if (result != 0 && GET_CODE (result) == SUBREG)
9750 record_subregs_of_mode (result);
9751 #endif
9753 if (result)
9754 return result;
9756 if (MEM_P (x))
9758 int offset = 0;
9760 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9761 address. */
9762 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9763 goto fail;
9765 /* If we want to refer to something bigger than the original memref,
9766 generate a paradoxical subreg instead. That will force a reload
9767 of the original memref X. */
9768 if (isize < osize)
9769 return gen_rtx_SUBREG (omode, x, 0);
9771 if (WORDS_BIG_ENDIAN)
9772 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9774 /* Adjust the address so that the address-after-the-data is
9775 unchanged. */
9776 if (BYTES_BIG_ENDIAN)
9777 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9779 return adjust_address_nv (x, omode, offset);
9782 /* If X is a comparison operator, rewrite it in a new mode. This
9783 probably won't match, but may allow further simplifications. */
9784 else if (COMPARISON_P (x))
9785 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9787 /* If we couldn't simplify X any other way, just enclose it in a
9788 SUBREG. Normally, this SUBREG won't match, but some patterns may
9789 include an explicit SUBREG or we may simplify it further in combine. */
9790 else
9792 int offset = 0;
9793 rtx res;
9795 offset = subreg_lowpart_offset (omode, imode);
9796 if (imode == VOIDmode)
9798 imode = int_mode_for_mode (omode);
9799 x = gen_lowpart_common (imode, x);
9800 if (x == NULL)
9801 goto fail;
9803 res = simplify_gen_subreg (omode, x, imode, offset);
9804 if (res)
9805 return res;
9808 fail:
9809 return gen_rtx_CLOBBER (imode, const0_rtx);
9812 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9813 comparison code that will be tested.
9815 The result is a possibly different comparison code to use. *POP0 and
9816 *POP1 may be updated.
9818 It is possible that we might detect that a comparison is either always
9819 true or always false. However, we do not perform general constant
9820 folding in combine, so this knowledge isn't useful. Such tautologies
9821 should have been detected earlier. Hence we ignore all such cases. */
9823 static enum rtx_code
9824 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9826 rtx op0 = *pop0;
9827 rtx op1 = *pop1;
9828 rtx tem, tem1;
9829 int i;
9830 enum machine_mode mode, tmode;
9832 /* Try a few ways of applying the same transformation to both operands. */
9833 while (1)
9835 #ifndef WORD_REGISTER_OPERATIONS
9836 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9837 so check specially. */
9838 if (code != GTU && code != GEU && code != LTU && code != LEU
9839 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9840 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9841 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9842 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9843 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9844 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9845 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9846 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9847 && XEXP (op0, 1) == XEXP (op1, 1)
9848 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9849 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9850 && (INTVAL (XEXP (op0, 1))
9851 == (GET_MODE_BITSIZE (GET_MODE (op0))
9852 - (GET_MODE_BITSIZE
9853 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9855 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9856 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9858 #endif
9860 /* If both operands are the same constant shift, see if we can ignore the
9861 shift. We can if the shift is a rotate or if the bits shifted out of
9862 this shift are known to be zero for both inputs and if the type of
9863 comparison is compatible with the shift. */
9864 if (GET_CODE (op0) == GET_CODE (op1)
9865 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9866 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9867 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9868 && (code != GT && code != LT && code != GE && code != LE))
9869 || (GET_CODE (op0) == ASHIFTRT
9870 && (code != GTU && code != LTU
9871 && code != GEU && code != LEU)))
9872 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9873 && INTVAL (XEXP (op0, 1)) >= 0
9874 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9875 && XEXP (op0, 1) == XEXP (op1, 1))
9877 enum machine_mode mode = GET_MODE (op0);
9878 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9879 int shift_count = INTVAL (XEXP (op0, 1));
9881 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9882 mask &= (mask >> shift_count) << shift_count;
9883 else if (GET_CODE (op0) == ASHIFT)
9884 mask = (mask & (mask << shift_count)) >> shift_count;
9886 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9887 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9888 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9889 else
9890 break;
9893 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9894 SUBREGs are of the same mode, and, in both cases, the AND would
9895 be redundant if the comparison was done in the narrower mode,
9896 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9897 and the operand's possibly nonzero bits are 0xffffff01; in that case
9898 if we only care about QImode, we don't need the AND). This case
9899 occurs if the output mode of an scc insn is not SImode and
9900 STORE_FLAG_VALUE == 1 (e.g., the 386).
9902 Similarly, check for a case where the AND's are ZERO_EXTEND
9903 operations from some narrower mode even though a SUBREG is not
9904 present. */
9906 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9907 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9908 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9910 rtx inner_op0 = XEXP (op0, 0);
9911 rtx inner_op1 = XEXP (op1, 0);
9912 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9913 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9914 int changed = 0;
9916 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9917 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9918 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9919 && (GET_MODE (SUBREG_REG (inner_op0))
9920 == GET_MODE (SUBREG_REG (inner_op1)))
9921 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9922 <= HOST_BITS_PER_WIDE_INT)
9923 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9924 GET_MODE (SUBREG_REG (inner_op0)))))
9925 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9926 GET_MODE (SUBREG_REG (inner_op1))))))
9928 op0 = SUBREG_REG (inner_op0);
9929 op1 = SUBREG_REG (inner_op1);
9931 /* The resulting comparison is always unsigned since we masked
9932 off the original sign bit. */
9933 code = unsigned_condition (code);
9935 changed = 1;
9938 else if (c0 == c1)
9939 for (tmode = GET_CLASS_NARROWEST_MODE
9940 (GET_MODE_CLASS (GET_MODE (op0)));
9941 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9942 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9944 op0 = gen_lowpart (tmode, inner_op0);
9945 op1 = gen_lowpart (tmode, inner_op1);
9946 code = unsigned_condition (code);
9947 changed = 1;
9948 break;
9951 if (! changed)
9952 break;
9955 /* If both operands are NOT, we can strip off the outer operation
9956 and adjust the comparison code for swapped operands; similarly for
9957 NEG, except that this must be an equality comparison. */
9958 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9959 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9960 && (code == EQ || code == NE)))
9961 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9963 else
9964 break;
9967 /* If the first operand is a constant, swap the operands and adjust the
9968 comparison code appropriately, but don't do this if the second operand
9969 is already a constant integer. */
9970 if (swap_commutative_operands_p (op0, op1))
9972 tem = op0, op0 = op1, op1 = tem;
9973 code = swap_condition (code);
9976 /* We now enter a loop during which we will try to simplify the comparison.
9977 For the most part, we only are concerned with comparisons with zero,
9978 but some things may really be comparisons with zero but not start
9979 out looking that way. */
9981 while (GET_CODE (op1) == CONST_INT)
9983 enum machine_mode mode = GET_MODE (op0);
9984 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9985 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9986 int equality_comparison_p;
9987 int sign_bit_comparison_p;
9988 int unsigned_comparison_p;
9989 HOST_WIDE_INT const_op;
9991 /* We only want to handle integral modes. This catches VOIDmode,
9992 CCmode, and the floating-point modes. An exception is that we
9993 can handle VOIDmode if OP0 is a COMPARE or a comparison
9994 operation. */
9996 if (GET_MODE_CLASS (mode) != MODE_INT
9997 && ! (mode == VOIDmode
9998 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9999 break;
10001 /* Get the constant we are comparing against and turn off all bits
10002 not on in our mode. */
10003 const_op = INTVAL (op1);
10004 if (mode != VOIDmode)
10005 const_op = trunc_int_for_mode (const_op, mode);
10006 op1 = GEN_INT (const_op);
10008 /* If we are comparing against a constant power of two and the value
10009 being compared can only have that single bit nonzero (e.g., it was
10010 `and'ed with that bit), we can replace this with a comparison
10011 with zero. */
10012 if (const_op
10013 && (code == EQ || code == NE || code == GE || code == GEU
10014 || code == LT || code == LTU)
10015 && mode_width <= HOST_BITS_PER_WIDE_INT
10016 && exact_log2 (const_op) >= 0
10017 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10019 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10020 op1 = const0_rtx, const_op = 0;
10023 /* Similarly, if we are comparing a value known to be either -1 or
10024 0 with -1, change it to the opposite comparison against zero. */
10026 if (const_op == -1
10027 && (code == EQ || code == NE || code == GT || code == LE
10028 || code == GEU || code == LTU)
10029 && num_sign_bit_copies (op0, mode) == mode_width)
10031 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10032 op1 = const0_rtx, const_op = 0;
10035 /* Do some canonicalizations based on the comparison code. We prefer
10036 comparisons against zero and then prefer equality comparisons.
10037 If we can reduce the size of a constant, we will do that too. */
10039 switch (code)
10041 case LT:
10042 /* < C is equivalent to <= (C - 1) */
10043 if (const_op > 0)
10045 const_op -= 1;
10046 op1 = GEN_INT (const_op);
10047 code = LE;
10048 /* ... fall through to LE case below. */
10050 else
10051 break;
10053 case LE:
10054 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10055 if (const_op < 0)
10057 const_op += 1;
10058 op1 = GEN_INT (const_op);
10059 code = LT;
10062 /* If we are doing a <= 0 comparison on a value known to have
10063 a zero sign bit, we can replace this with == 0. */
10064 else if (const_op == 0
10065 && mode_width <= HOST_BITS_PER_WIDE_INT
10066 && (nonzero_bits (op0, mode)
10067 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10068 code = EQ;
10069 break;
10071 case GE:
10072 /* >= C is equivalent to > (C - 1). */
10073 if (const_op > 0)
10075 const_op -= 1;
10076 op1 = GEN_INT (const_op);
10077 code = GT;
10078 /* ... fall through to GT below. */
10080 else
10081 break;
10083 case GT:
10084 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10085 if (const_op < 0)
10087 const_op += 1;
10088 op1 = GEN_INT (const_op);
10089 code = GE;
10092 /* If we are doing a > 0 comparison on a value known to have
10093 a zero sign bit, we can replace this with != 0. */
10094 else if (const_op == 0
10095 && mode_width <= HOST_BITS_PER_WIDE_INT
10096 && (nonzero_bits (op0, mode)
10097 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10098 code = NE;
10099 break;
10101 case LTU:
10102 /* < C is equivalent to <= (C - 1). */
10103 if (const_op > 0)
10105 const_op -= 1;
10106 op1 = GEN_INT (const_op);
10107 code = LEU;
10108 /* ... fall through ... */
10111 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10112 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10113 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10115 const_op = 0, op1 = const0_rtx;
10116 code = GE;
10117 break;
10119 else
10120 break;
10122 case LEU:
10123 /* unsigned <= 0 is equivalent to == 0 */
10124 if (const_op == 0)
10125 code = EQ;
10127 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10128 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10129 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10131 const_op = 0, op1 = const0_rtx;
10132 code = GE;
10134 break;
10136 case GEU:
10137 /* >= C is equivalent to > (C - 1). */
10138 if (const_op > 1)
10140 const_op -= 1;
10141 op1 = GEN_INT (const_op);
10142 code = GTU;
10143 /* ... fall through ... */
10146 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10147 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10148 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10150 const_op = 0, op1 = const0_rtx;
10151 code = LT;
10152 break;
10154 else
10155 break;
10157 case GTU:
10158 /* unsigned > 0 is equivalent to != 0 */
10159 if (const_op == 0)
10160 code = NE;
10162 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10163 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10164 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10166 const_op = 0, op1 = const0_rtx;
10167 code = LT;
10169 break;
10171 default:
10172 break;
10175 /* Compute some predicates to simplify code below. */
10177 equality_comparison_p = (code == EQ || code == NE);
10178 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10179 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10180 || code == GEU);
10182 /* If this is a sign bit comparison and we can do arithmetic in
10183 MODE, say that we will only be needing the sign bit of OP0. */
10184 if (sign_bit_comparison_p
10185 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10186 op0 = force_to_mode (op0, mode,
10187 ((HOST_WIDE_INT) 1
10188 << (GET_MODE_BITSIZE (mode) - 1)),
10191 /* Now try cases based on the opcode of OP0. If none of the cases
10192 does a "continue", we exit this loop immediately after the
10193 switch. */
10195 switch (GET_CODE (op0))
10197 case ZERO_EXTRACT:
10198 /* If we are extracting a single bit from a variable position in
10199 a constant that has only a single bit set and are comparing it
10200 with zero, we can convert this into an equality comparison
10201 between the position and the location of the single bit. */
10202 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10203 have already reduced the shift count modulo the word size. */
10204 if (!SHIFT_COUNT_TRUNCATED
10205 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10206 && XEXP (op0, 1) == const1_rtx
10207 && equality_comparison_p && const_op == 0
10208 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10210 if (BITS_BIG_ENDIAN)
10212 enum machine_mode new_mode
10213 = mode_for_extraction (EP_extzv, 1);
10214 if (new_mode == MAX_MACHINE_MODE)
10215 i = BITS_PER_WORD - 1 - i;
10216 else
10218 mode = new_mode;
10219 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10223 op0 = XEXP (op0, 2);
10224 op1 = GEN_INT (i);
10225 const_op = i;
10227 /* Result is nonzero iff shift count is equal to I. */
10228 code = reverse_condition (code);
10229 continue;
10232 /* ... fall through ... */
10234 case SIGN_EXTRACT:
10235 tem = expand_compound_operation (op0);
10236 if (tem != op0)
10238 op0 = tem;
10239 continue;
10241 break;
10243 case NOT:
10244 /* If testing for equality, we can take the NOT of the constant. */
10245 if (equality_comparison_p
10246 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10248 op0 = XEXP (op0, 0);
10249 op1 = tem;
10250 continue;
10253 /* If just looking at the sign bit, reverse the sense of the
10254 comparison. */
10255 if (sign_bit_comparison_p)
10257 op0 = XEXP (op0, 0);
10258 code = (code == GE ? LT : GE);
10259 continue;
10261 break;
10263 case NEG:
10264 /* If testing for equality, we can take the NEG of the constant. */
10265 if (equality_comparison_p
10266 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10268 op0 = XEXP (op0, 0);
10269 op1 = tem;
10270 continue;
10273 /* The remaining cases only apply to comparisons with zero. */
10274 if (const_op != 0)
10275 break;
10277 /* When X is ABS or is known positive,
10278 (neg X) is < 0 if and only if X != 0. */
10280 if (sign_bit_comparison_p
10281 && (GET_CODE (XEXP (op0, 0)) == ABS
10282 || (mode_width <= HOST_BITS_PER_WIDE_INT
10283 && (nonzero_bits (XEXP (op0, 0), mode)
10284 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10286 op0 = XEXP (op0, 0);
10287 code = (code == LT ? NE : EQ);
10288 continue;
10291 /* If we have NEG of something whose two high-order bits are the
10292 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10293 if (num_sign_bit_copies (op0, mode) >= 2)
10295 op0 = XEXP (op0, 0);
10296 code = swap_condition (code);
10297 continue;
10299 break;
10301 case ROTATE:
10302 /* If we are testing equality and our count is a constant, we
10303 can perform the inverse operation on our RHS. */
10304 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10305 && (tem = simplify_binary_operation (ROTATERT, mode,
10306 op1, XEXP (op0, 1))) != 0)
10308 op0 = XEXP (op0, 0);
10309 op1 = tem;
10310 continue;
10313 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10314 a particular bit. Convert it to an AND of a constant of that
10315 bit. This will be converted into a ZERO_EXTRACT. */
10316 if (const_op == 0 && sign_bit_comparison_p
10317 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10318 && mode_width <= HOST_BITS_PER_WIDE_INT)
10320 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10321 ((HOST_WIDE_INT) 1
10322 << (mode_width - 1
10323 - INTVAL (XEXP (op0, 1)))));
10324 code = (code == LT ? NE : EQ);
10325 continue;
10328 /* Fall through. */
10330 case ABS:
10331 /* ABS is ignorable inside an equality comparison with zero. */
10332 if (const_op == 0 && equality_comparison_p)
10334 op0 = XEXP (op0, 0);
10335 continue;
10337 break;
10339 case SIGN_EXTEND:
10340 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10341 (compare FOO CONST) if CONST fits in FOO's mode and we
10342 are either testing inequality or have an unsigned
10343 comparison with ZERO_EXTEND or a signed comparison with
10344 SIGN_EXTEND. But don't do it if we don't have a compare
10345 insn of the given mode, since we'd have to revert it
10346 later on, and then we wouldn't know whether to sign- or
10347 zero-extend. */
10348 mode = GET_MODE (XEXP (op0, 0));
10349 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10350 && ! unsigned_comparison_p
10351 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10352 && ((unsigned HOST_WIDE_INT) const_op
10353 < (((unsigned HOST_WIDE_INT) 1
10354 << (GET_MODE_BITSIZE (mode) - 1))))
10355 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10357 op0 = XEXP (op0, 0);
10358 continue;
10360 break;
10362 case SUBREG:
10363 /* Check for the case where we are comparing A - C1 with C2, that is
10365 (subreg:MODE (plus (A) (-C1))) op (C2)
10367 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10368 comparison in the wider mode. One of the following two conditions
10369 must be true in order for this to be valid:
10371 1. The mode extension results in the same bit pattern being added
10372 on both sides and the comparison is equality or unsigned. As
10373 C2 has been truncated to fit in MODE, the pattern can only be
10374 all 0s or all 1s.
10376 2. The mode extension results in the sign bit being copied on
10377 each side.
10379 The difficulty here is that we have predicates for A but not for
10380 (A - C1) so we need to check that C1 is within proper bounds so
10381 as to perturbate A as little as possible. */
10383 if (mode_width <= HOST_BITS_PER_WIDE_INT
10384 && subreg_lowpart_p (op0)
10385 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10386 && GET_CODE (SUBREG_REG (op0)) == PLUS
10387 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10389 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10390 rtx a = XEXP (SUBREG_REG (op0), 0);
10391 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10393 if ((c1 > 0
10394 && (unsigned HOST_WIDE_INT) c1
10395 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10396 && (equality_comparison_p || unsigned_comparison_p)
10397 /* (A - C1) zero-extends if it is positive and sign-extends
10398 if it is negative, C2 both zero- and sign-extends. */
10399 && ((0 == (nonzero_bits (a, inner_mode)
10400 & ~GET_MODE_MASK (mode))
10401 && const_op >= 0)
10402 /* (A - C1) sign-extends if it is positive and 1-extends
10403 if it is negative, C2 both sign- and 1-extends. */
10404 || (num_sign_bit_copies (a, inner_mode)
10405 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10406 - mode_width)
10407 && const_op < 0)))
10408 || ((unsigned HOST_WIDE_INT) c1
10409 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10410 /* (A - C1) always sign-extends, like C2. */
10411 && num_sign_bit_copies (a, inner_mode)
10412 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10413 - (mode_width - 1))))
10415 op0 = SUBREG_REG (op0);
10416 continue;
10420 /* If the inner mode is narrower and we are extracting the low part,
10421 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10422 if (subreg_lowpart_p (op0)
10423 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10424 /* Fall through */ ;
10425 else
10426 break;
10428 /* ... fall through ... */
10430 case ZERO_EXTEND:
10431 mode = GET_MODE (XEXP (op0, 0));
10432 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10433 && (unsigned_comparison_p || equality_comparison_p)
10434 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10435 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10436 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
10438 op0 = XEXP (op0, 0);
10439 continue;
10441 break;
10443 case PLUS:
10444 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10445 this for equality comparisons due to pathological cases involving
10446 overflows. */
10447 if (equality_comparison_p
10448 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10449 op1, XEXP (op0, 1))))
10451 op0 = XEXP (op0, 0);
10452 op1 = tem;
10453 continue;
10456 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10457 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10458 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10460 op0 = XEXP (XEXP (op0, 0), 0);
10461 code = (code == LT ? EQ : NE);
10462 continue;
10464 break;
10466 case MINUS:
10467 /* We used to optimize signed comparisons against zero, but that
10468 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10469 arrive here as equality comparisons, or (GEU, LTU) are
10470 optimized away. No need to special-case them. */
10472 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10473 (eq B (minus A C)), whichever simplifies. We can only do
10474 this for equality comparisons due to pathological cases involving
10475 overflows. */
10476 if (equality_comparison_p
10477 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10478 XEXP (op0, 1), op1)))
10480 op0 = XEXP (op0, 0);
10481 op1 = tem;
10482 continue;
10485 if (equality_comparison_p
10486 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10487 XEXP (op0, 0), op1)))
10489 op0 = XEXP (op0, 1);
10490 op1 = tem;
10491 continue;
10494 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10495 of bits in X minus 1, is one iff X > 0. */
10496 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10497 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10498 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10499 == mode_width - 1
10500 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10502 op0 = XEXP (op0, 1);
10503 code = (code == GE ? LE : GT);
10504 continue;
10506 break;
10508 case XOR:
10509 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10510 if C is zero or B is a constant. */
10511 if (equality_comparison_p
10512 && 0 != (tem = simplify_binary_operation (XOR, mode,
10513 XEXP (op0, 1), op1)))
10515 op0 = XEXP (op0, 0);
10516 op1 = tem;
10517 continue;
10519 break;
10521 case EQ: case NE:
10522 case UNEQ: case LTGT:
10523 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10524 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10525 case UNORDERED: case ORDERED:
10526 /* We can't do anything if OP0 is a condition code value, rather
10527 than an actual data value. */
10528 if (const_op != 0
10529 || CC0_P (XEXP (op0, 0))
10530 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10531 break;
10533 /* Get the two operands being compared. */
10534 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10535 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10536 else
10537 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10539 /* Check for the cases where we simply want the result of the
10540 earlier test or the opposite of that result. */
10541 if (code == NE || code == EQ
10542 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10543 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10544 && (STORE_FLAG_VALUE
10545 & (((HOST_WIDE_INT) 1
10546 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10547 && (code == LT || code == GE)))
10549 enum rtx_code new_code;
10550 if (code == LT || code == NE)
10551 new_code = GET_CODE (op0);
10552 else
10553 new_code = reversed_comparison_code (op0, NULL);
10555 if (new_code != UNKNOWN)
10557 code = new_code;
10558 op0 = tem;
10559 op1 = tem1;
10560 continue;
10563 break;
10565 case IOR:
10566 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10567 iff X <= 0. */
10568 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10569 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10570 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10572 op0 = XEXP (op0, 1);
10573 code = (code == GE ? GT : LE);
10574 continue;
10576 break;
10578 case AND:
10579 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10580 will be converted to a ZERO_EXTRACT later. */
10581 if (const_op == 0 && equality_comparison_p
10582 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10583 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10585 op0 = simplify_and_const_int
10586 (op0, mode, gen_rtx_LSHIFTRT (mode,
10587 XEXP (op0, 1),
10588 XEXP (XEXP (op0, 0), 1)),
10589 (HOST_WIDE_INT) 1);
10590 continue;
10593 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10594 zero and X is a comparison and C1 and C2 describe only bits set
10595 in STORE_FLAG_VALUE, we can compare with X. */
10596 if (const_op == 0 && equality_comparison_p
10597 && mode_width <= HOST_BITS_PER_WIDE_INT
10598 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10599 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10600 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10601 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10602 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10604 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10605 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10606 if ((~STORE_FLAG_VALUE & mask) == 0
10607 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10608 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10609 && COMPARISON_P (tem))))
10611 op0 = XEXP (XEXP (op0, 0), 0);
10612 continue;
10616 /* If we are doing an equality comparison of an AND of a bit equal
10617 to the sign bit, replace this with a LT or GE comparison of
10618 the underlying value. */
10619 if (equality_comparison_p
10620 && const_op == 0
10621 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10622 && mode_width <= HOST_BITS_PER_WIDE_INT
10623 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10624 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10626 op0 = XEXP (op0, 0);
10627 code = (code == EQ ? GE : LT);
10628 continue;
10631 /* If this AND operation is really a ZERO_EXTEND from a narrower
10632 mode, the constant fits within that mode, and this is either an
10633 equality or unsigned comparison, try to do this comparison in
10634 the narrower mode. */
10635 if ((equality_comparison_p || unsigned_comparison_p)
10636 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10637 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10638 & GET_MODE_MASK (mode))
10639 + 1)) >= 0
10640 && const_op >> i == 0
10641 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10643 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10644 continue;
10647 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10648 fits in both M1 and M2 and the SUBREG is either paradoxical
10649 or represents the low part, permute the SUBREG and the AND
10650 and try again. */
10651 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10653 unsigned HOST_WIDE_INT c1;
10654 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10655 /* Require an integral mode, to avoid creating something like
10656 (AND:SF ...). */
10657 if (SCALAR_INT_MODE_P (tmode)
10658 /* It is unsafe to commute the AND into the SUBREG if the
10659 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10660 not defined. As originally written the upper bits
10661 have a defined value due to the AND operation.
10662 However, if we commute the AND inside the SUBREG then
10663 they no longer have defined values and the meaning of
10664 the code has been changed. */
10665 && (0
10666 #ifdef WORD_REGISTER_OPERATIONS
10667 || (mode_width > GET_MODE_BITSIZE (tmode)
10668 && mode_width <= BITS_PER_WORD)
10669 #endif
10670 || (mode_width <= GET_MODE_BITSIZE (tmode)
10671 && subreg_lowpart_p (XEXP (op0, 0))))
10672 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10673 && mode_width <= HOST_BITS_PER_WIDE_INT
10674 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10675 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10676 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10677 && c1 != mask
10678 && c1 != GET_MODE_MASK (tmode))
10680 op0 = simplify_gen_binary (AND, tmode,
10681 SUBREG_REG (XEXP (op0, 0)),
10682 gen_int_mode (c1, tmode));
10683 op0 = gen_lowpart (mode, op0);
10684 continue;
10688 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10689 if (const_op == 0 && equality_comparison_p
10690 && XEXP (op0, 1) == const1_rtx
10691 && GET_CODE (XEXP (op0, 0)) == NOT)
10693 op0 = simplify_and_const_int
10694 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10695 code = (code == NE ? EQ : NE);
10696 continue;
10699 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10700 (eq (and (lshiftrt X) 1) 0).
10701 Also handle the case where (not X) is expressed using xor. */
10702 if (const_op == 0 && equality_comparison_p
10703 && XEXP (op0, 1) == const1_rtx
10704 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10706 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10707 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10709 if (GET_CODE (shift_op) == NOT
10710 || (GET_CODE (shift_op) == XOR
10711 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10712 && GET_CODE (shift_count) == CONST_INT
10713 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10714 && (INTVAL (XEXP (shift_op, 1))
10715 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10717 op0 = simplify_and_const_int
10718 (NULL_RTX, mode,
10719 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10720 (HOST_WIDE_INT) 1);
10721 code = (code == NE ? EQ : NE);
10722 continue;
10725 break;
10727 case ASHIFT:
10728 /* If we have (compare (ashift FOO N) (const_int C)) and
10729 the high order N bits of FOO (N+1 if an inequality comparison)
10730 are known to be zero, we can do this by comparing FOO with C
10731 shifted right N bits so long as the low-order N bits of C are
10732 zero. */
10733 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10734 && INTVAL (XEXP (op0, 1)) >= 0
10735 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10736 < HOST_BITS_PER_WIDE_INT)
10737 && ((const_op
10738 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10739 && mode_width <= HOST_BITS_PER_WIDE_INT
10740 && (nonzero_bits (XEXP (op0, 0), mode)
10741 & ~(mask >> (INTVAL (XEXP (op0, 1))
10742 + ! equality_comparison_p))) == 0)
10744 /* We must perform a logical shift, not an arithmetic one,
10745 as we want the top N bits of C to be zero. */
10746 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10748 temp >>= INTVAL (XEXP (op0, 1));
10749 op1 = gen_int_mode (temp, mode);
10750 op0 = XEXP (op0, 0);
10751 continue;
10754 /* If we are doing a sign bit comparison, it means we are testing
10755 a particular bit. Convert it to the appropriate AND. */
10756 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10757 && mode_width <= HOST_BITS_PER_WIDE_INT)
10759 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10760 ((HOST_WIDE_INT) 1
10761 << (mode_width - 1
10762 - INTVAL (XEXP (op0, 1)))));
10763 code = (code == LT ? NE : EQ);
10764 continue;
10767 /* If this an equality comparison with zero and we are shifting
10768 the low bit to the sign bit, we can convert this to an AND of the
10769 low-order bit. */
10770 if (const_op == 0 && equality_comparison_p
10771 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10772 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10773 == mode_width - 1)
10775 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10776 (HOST_WIDE_INT) 1);
10777 continue;
10779 break;
10781 case ASHIFTRT:
10782 /* If this is an equality comparison with zero, we can do this
10783 as a logical shift, which might be much simpler. */
10784 if (equality_comparison_p && const_op == 0
10785 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10787 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10788 XEXP (op0, 0),
10789 INTVAL (XEXP (op0, 1)));
10790 continue;
10793 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10794 do the comparison in a narrower mode. */
10795 if (! unsigned_comparison_p
10796 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10797 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10798 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10799 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10800 MODE_INT, 1)) != BLKmode
10801 && (((unsigned HOST_WIDE_INT) const_op
10802 + (GET_MODE_MASK (tmode) >> 1) + 1)
10803 <= GET_MODE_MASK (tmode)))
10805 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10806 continue;
10809 /* Likewise if OP0 is a PLUS of a sign extension with a
10810 constant, which is usually represented with the PLUS
10811 between the shifts. */
10812 if (! unsigned_comparison_p
10813 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10814 && GET_CODE (XEXP (op0, 0)) == PLUS
10815 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10816 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10817 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10818 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10819 MODE_INT, 1)) != BLKmode
10820 && (((unsigned HOST_WIDE_INT) const_op
10821 + (GET_MODE_MASK (tmode) >> 1) + 1)
10822 <= GET_MODE_MASK (tmode)))
10824 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10825 rtx add_const = XEXP (XEXP (op0, 0), 1);
10826 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10827 add_const, XEXP (op0, 1));
10829 op0 = simplify_gen_binary (PLUS, tmode,
10830 gen_lowpart (tmode, inner),
10831 new_const);
10832 continue;
10835 /* ... fall through ... */
10836 case LSHIFTRT:
10837 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10838 the low order N bits of FOO are known to be zero, we can do this
10839 by comparing FOO with C shifted left N bits so long as no
10840 overflow occurs. */
10841 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10842 && INTVAL (XEXP (op0, 1)) >= 0
10843 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10844 && mode_width <= HOST_BITS_PER_WIDE_INT
10845 && (nonzero_bits (XEXP (op0, 0), mode)
10846 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10847 && (((unsigned HOST_WIDE_INT) const_op
10848 + (GET_CODE (op0) != LSHIFTRT
10849 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10850 + 1)
10851 : 0))
10852 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10854 /* If the shift was logical, then we must make the condition
10855 unsigned. */
10856 if (GET_CODE (op0) == LSHIFTRT)
10857 code = unsigned_condition (code);
10859 const_op <<= INTVAL (XEXP (op0, 1));
10860 op1 = GEN_INT (const_op);
10861 op0 = XEXP (op0, 0);
10862 continue;
10865 /* If we are using this shift to extract just the sign bit, we
10866 can replace this with an LT or GE comparison. */
10867 if (const_op == 0
10868 && (equality_comparison_p || sign_bit_comparison_p)
10869 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10870 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10871 == mode_width - 1)
10873 op0 = XEXP (op0, 0);
10874 code = (code == NE || code == GT ? LT : GE);
10875 continue;
10877 break;
10879 default:
10880 break;
10883 break;
10886 /* Now make any compound operations involved in this comparison. Then,
10887 check for an outmost SUBREG on OP0 that is not doing anything or is
10888 paradoxical. The latter transformation must only be performed when
10889 it is known that the "extra" bits will be the same in op0 and op1 or
10890 that they don't matter. There are three cases to consider:
10892 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10893 care bits and we can assume they have any convenient value. So
10894 making the transformation is safe.
10896 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10897 In this case the upper bits of op0 are undefined. We should not make
10898 the simplification in that case as we do not know the contents of
10899 those bits.
10901 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10902 UNKNOWN. In that case we know those bits are zeros or ones. We must
10903 also be sure that they are the same as the upper bits of op1.
10905 We can never remove a SUBREG for a non-equality comparison because
10906 the sign bit is in a different place in the underlying object. */
10908 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10909 op1 = make_compound_operation (op1, SET);
10911 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10912 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10914 && (code == NE || code == EQ))
10916 if (GET_MODE_SIZE (GET_MODE (op0))
10917 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10919 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10920 implemented. */
10921 if (REG_P (SUBREG_REG (op0)))
10923 op0 = SUBREG_REG (op0);
10924 op1 = gen_lowpart (GET_MODE (op0), op1);
10927 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10928 <= HOST_BITS_PER_WIDE_INT)
10929 && (nonzero_bits (SUBREG_REG (op0),
10930 GET_MODE (SUBREG_REG (op0)))
10931 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10933 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10935 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10936 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10937 op0 = SUBREG_REG (op0), op1 = tem;
10941 /* We now do the opposite procedure: Some machines don't have compare
10942 insns in all modes. If OP0's mode is an integer mode smaller than a
10943 word and we can't do a compare in that mode, see if there is a larger
10944 mode for which we can do the compare. There are a number of cases in
10945 which we can use the wider mode. */
10947 mode = GET_MODE (op0);
10948 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10949 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10950 && ! have_insn_for (COMPARE, mode))
10951 for (tmode = GET_MODE_WIDER_MODE (mode);
10952 (tmode != VOIDmode
10953 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10954 tmode = GET_MODE_WIDER_MODE (tmode))
10955 if (have_insn_for (COMPARE, tmode))
10957 int zero_extended;
10959 /* If the only nonzero bits in OP0 and OP1 are those in the
10960 narrower mode and this is an equality or unsigned comparison,
10961 we can use the wider mode. Similarly for sign-extended
10962 values, in which case it is true for all comparisons. */
10963 zero_extended = ((code == EQ || code == NE
10964 || code == GEU || code == GTU
10965 || code == LEU || code == LTU)
10966 && (nonzero_bits (op0, tmode)
10967 & ~GET_MODE_MASK (mode)) == 0
10968 && ((GET_CODE (op1) == CONST_INT
10969 || (nonzero_bits (op1, tmode)
10970 & ~GET_MODE_MASK (mode)) == 0)));
10972 if (zero_extended
10973 || ((num_sign_bit_copies (op0, tmode)
10974 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10975 - GET_MODE_BITSIZE (mode)))
10976 && (num_sign_bit_copies (op1, tmode)
10977 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10978 - GET_MODE_BITSIZE (mode)))))
10980 /* If OP0 is an AND and we don't have an AND in MODE either,
10981 make a new AND in the proper mode. */
10982 if (GET_CODE (op0) == AND
10983 && !have_insn_for (AND, mode))
10984 op0 = simplify_gen_binary (AND, tmode,
10985 gen_lowpart (tmode,
10986 XEXP (op0, 0)),
10987 gen_lowpart (tmode,
10988 XEXP (op0, 1)));
10990 op0 = gen_lowpart (tmode, op0);
10991 if (zero_extended && GET_CODE (op1) == CONST_INT)
10992 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10993 op1 = gen_lowpart (tmode, op1);
10994 break;
10997 /* If this is a test for negative, we can make an explicit
10998 test of the sign bit. */
11000 if (op1 == const0_rtx && (code == LT || code == GE)
11001 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11003 op0 = simplify_gen_binary (AND, tmode,
11004 gen_lowpart (tmode, op0),
11005 GEN_INT ((HOST_WIDE_INT) 1
11006 << (GET_MODE_BITSIZE (mode)
11007 - 1)));
11008 code = (code == LT) ? NE : EQ;
11009 break;
11013 #ifdef CANONICALIZE_COMPARISON
11014 /* If this machine only supports a subset of valid comparisons, see if we
11015 can convert an unsupported one into a supported one. */
11016 CANONICALIZE_COMPARISON (code, op0, op1);
11017 #endif
11019 *pop0 = op0;
11020 *pop1 = op1;
11022 return code;
11025 /* Utility function for record_value_for_reg. Count number of
11026 rtxs in X. */
11027 static int
11028 count_rtxs (rtx x)
11030 enum rtx_code code = GET_CODE (x);
11031 const char *fmt;
11032 int i, ret = 1;
11034 if (GET_RTX_CLASS (code) == '2'
11035 || GET_RTX_CLASS (code) == 'c')
11037 rtx x0 = XEXP (x, 0);
11038 rtx x1 = XEXP (x, 1);
11040 if (x0 == x1)
11041 return 1 + 2 * count_rtxs (x0);
11043 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11044 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11045 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11046 return 2 + 2 * count_rtxs (x0)
11047 + count_rtxs (x == XEXP (x1, 0)
11048 ? XEXP (x1, 1) : XEXP (x1, 0));
11050 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11051 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11052 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11053 return 2 + 2 * count_rtxs (x1)
11054 + count_rtxs (x == XEXP (x0, 0)
11055 ? XEXP (x0, 1) : XEXP (x0, 0));
11058 fmt = GET_RTX_FORMAT (code);
11059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11060 if (fmt[i] == 'e')
11061 ret += count_rtxs (XEXP (x, i));
11063 return ret;
11066 /* Utility function for following routine. Called when X is part of a value
11067 being stored into last_set_value. Sets last_set_table_tick
11068 for each register mentioned. Similar to mention_regs in cse.c */
11070 static void
11071 update_table_tick (rtx x)
11073 enum rtx_code code = GET_CODE (x);
11074 const char *fmt = GET_RTX_FORMAT (code);
11075 int i;
11077 if (code == REG)
11079 unsigned int regno = REGNO (x);
11080 unsigned int endregno
11081 = regno + (regno < FIRST_PSEUDO_REGISTER
11082 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11083 unsigned int r;
11085 for (r = regno; r < endregno; r++)
11086 reg_stat[r].last_set_table_tick = label_tick;
11088 return;
11091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11092 /* Note that we can't have an "E" in values stored; see
11093 get_last_value_validate. */
11094 if (fmt[i] == 'e')
11096 /* Check for identical subexpressions. If x contains
11097 identical subexpression we only have to traverse one of
11098 them. */
11099 if (i == 0 && ARITHMETIC_P (x))
11101 /* Note that at this point x1 has already been
11102 processed. */
11103 rtx x0 = XEXP (x, 0);
11104 rtx x1 = XEXP (x, 1);
11106 /* If x0 and x1 are identical then there is no need to
11107 process x0. */
11108 if (x0 == x1)
11109 break;
11111 /* If x0 is identical to a subexpression of x1 then while
11112 processing x1, x0 has already been processed. Thus we
11113 are done with x. */
11114 if (ARITHMETIC_P (x1)
11115 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11116 break;
11118 /* If x1 is identical to a subexpression of x0 then we
11119 still have to process the rest of x0. */
11120 if (ARITHMETIC_P (x0)
11121 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11123 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11124 break;
11128 update_table_tick (XEXP (x, i));
11132 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11133 are saying that the register is clobbered and we no longer know its
11134 value. If INSN is zero, don't update reg_stat[].last_set; this is
11135 only permitted with VALUE also zero and is used to invalidate the
11136 register. */
11138 static void
11139 record_value_for_reg (rtx reg, rtx insn, rtx value)
11141 unsigned int regno = REGNO (reg);
11142 unsigned int endregno
11143 = regno + (regno < FIRST_PSEUDO_REGISTER
11144 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
11145 unsigned int i;
11147 /* If VALUE contains REG and we have a previous value for REG, substitute
11148 the previous value. */
11149 if (value && insn && reg_overlap_mentioned_p (reg, value))
11151 rtx tem;
11153 /* Set things up so get_last_value is allowed to see anything set up to
11154 our insn. */
11155 subst_low_cuid = INSN_CUID (insn);
11156 tem = get_last_value (reg);
11158 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11159 it isn't going to be useful and will take a lot of time to process,
11160 so just use the CLOBBER. */
11162 if (tem)
11164 if (ARITHMETIC_P (tem)
11165 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11166 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11167 tem = XEXP (tem, 0);
11168 else if (count_occurrences (value, reg, 1) >= 2)
11170 /* If there are two or more occurrences of REG in VALUE,
11171 prevent the value from growing too much. */
11172 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11173 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11176 value = replace_rtx (copy_rtx (value), reg, tem);
11180 /* For each register modified, show we don't know its value, that
11181 we don't know about its bitwise content, that its value has been
11182 updated, and that we don't know the location of the death of the
11183 register. */
11184 for (i = regno; i < endregno; i++)
11186 if (insn)
11187 reg_stat[i].last_set = insn;
11189 reg_stat[i].last_set_value = 0;
11190 reg_stat[i].last_set_mode = 0;
11191 reg_stat[i].last_set_nonzero_bits = 0;
11192 reg_stat[i].last_set_sign_bit_copies = 0;
11193 reg_stat[i].last_death = 0;
11196 /* Mark registers that are being referenced in this value. */
11197 if (value)
11198 update_table_tick (value);
11200 /* Now update the status of each register being set.
11201 If someone is using this register in this block, set this register
11202 to invalid since we will get confused between the two lives in this
11203 basic block. This makes using this register always invalid. In cse, we
11204 scan the table to invalidate all entries using this register, but this
11205 is too much work for us. */
11207 for (i = regno; i < endregno; i++)
11209 reg_stat[i].last_set_label = label_tick;
11210 if (value && reg_stat[i].last_set_table_tick == label_tick)
11211 reg_stat[i].last_set_invalid = 1;
11212 else
11213 reg_stat[i].last_set_invalid = 0;
11216 /* The value being assigned might refer to X (like in "x++;"). In that
11217 case, we must replace it with (clobber (const_int 0)) to prevent
11218 infinite loops. */
11219 if (value && ! get_last_value_validate (&value, insn,
11220 reg_stat[regno].last_set_label, 0))
11222 value = copy_rtx (value);
11223 if (! get_last_value_validate (&value, insn,
11224 reg_stat[regno].last_set_label, 1))
11225 value = 0;
11228 /* For the main register being modified, update the value, the mode, the
11229 nonzero bits, and the number of sign bit copies. */
11231 reg_stat[regno].last_set_value = value;
11233 if (value)
11235 enum machine_mode mode = GET_MODE (reg);
11236 subst_low_cuid = INSN_CUID (insn);
11237 reg_stat[regno].last_set_mode = mode;
11238 if (GET_MODE_CLASS (mode) == MODE_INT
11239 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11240 mode = nonzero_bits_mode;
11241 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
11242 reg_stat[regno].last_set_sign_bit_copies
11243 = num_sign_bit_copies (value, GET_MODE (reg));
11247 /* Called via note_stores from record_dead_and_set_regs to handle one
11248 SET or CLOBBER in an insn. DATA is the instruction in which the
11249 set is occurring. */
11251 static void
11252 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
11254 rtx record_dead_insn = (rtx) data;
11256 if (GET_CODE (dest) == SUBREG)
11257 dest = SUBREG_REG (dest);
11259 if (REG_P (dest))
11261 /* If we are setting the whole register, we know its value. Otherwise
11262 show that we don't know the value. We can handle SUBREG in
11263 some cases. */
11264 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11265 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11266 else if (GET_CODE (setter) == SET
11267 && GET_CODE (SET_DEST (setter)) == SUBREG
11268 && SUBREG_REG (SET_DEST (setter)) == dest
11269 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11270 && subreg_lowpart_p (SET_DEST (setter)))
11271 record_value_for_reg (dest, record_dead_insn,
11272 gen_lowpart (GET_MODE (dest),
11273 SET_SRC (setter)));
11274 else
11275 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11277 else if (MEM_P (dest)
11278 /* Ignore pushes, they clobber nothing. */
11279 && ! push_operand (dest, GET_MODE (dest)))
11280 mem_last_set = INSN_CUID (record_dead_insn);
11283 /* Update the records of when each REG was most recently set or killed
11284 for the things done by INSN. This is the last thing done in processing
11285 INSN in the combiner loop.
11287 We update reg_stat[], in particular fields last_set, last_set_value,
11288 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11289 last_death, and also the similar information mem_last_set (which insn
11290 most recently modified memory) and last_call_cuid (which insn was the
11291 most recent subroutine call). */
11293 static void
11294 record_dead_and_set_regs (rtx insn)
11296 rtx link;
11297 unsigned int i;
11299 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11301 if (REG_NOTE_KIND (link) == REG_DEAD
11302 && REG_P (XEXP (link, 0)))
11304 unsigned int regno = REGNO (XEXP (link, 0));
11305 unsigned int endregno
11306 = regno + (regno < FIRST_PSEUDO_REGISTER
11307 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11308 : 1);
11310 for (i = regno; i < endregno; i++)
11311 reg_stat[i].last_death = insn;
11313 else if (REG_NOTE_KIND (link) == REG_INC)
11314 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11317 if (CALL_P (insn))
11319 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11320 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11322 reg_stat[i].last_set_value = 0;
11323 reg_stat[i].last_set_mode = 0;
11324 reg_stat[i].last_set_nonzero_bits = 0;
11325 reg_stat[i].last_set_sign_bit_copies = 0;
11326 reg_stat[i].last_death = 0;
11329 last_call_cuid = mem_last_set = INSN_CUID (insn);
11331 /* Don't bother recording what this insn does. It might set the
11332 return value register, but we can't combine into a call
11333 pattern anyway, so there's no point trying (and it may cause
11334 a crash, if e.g. we wind up asking for last_set_value of a
11335 SUBREG of the return value register). */
11336 return;
11339 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11342 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11343 register present in the SUBREG, so for each such SUBREG go back and
11344 adjust nonzero and sign bit information of the registers that are
11345 known to have some zero/sign bits set.
11347 This is needed because when combine blows the SUBREGs away, the
11348 information on zero/sign bits is lost and further combines can be
11349 missed because of that. */
11351 static void
11352 record_promoted_value (rtx insn, rtx subreg)
11354 rtx links, set;
11355 unsigned int regno = REGNO (SUBREG_REG (subreg));
11356 enum machine_mode mode = GET_MODE (subreg);
11358 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11359 return;
11361 for (links = LOG_LINKS (insn); links;)
11363 insn = XEXP (links, 0);
11364 set = single_set (insn);
11366 if (! set || !REG_P (SET_DEST (set))
11367 || REGNO (SET_DEST (set)) != regno
11368 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11370 links = XEXP (links, 1);
11371 continue;
11374 if (reg_stat[regno].last_set == insn)
11376 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11377 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11380 if (REG_P (SET_SRC (set)))
11382 regno = REGNO (SET_SRC (set));
11383 links = LOG_LINKS (insn);
11385 else
11386 break;
11390 /* Scan X for promoted SUBREGs. For each one found,
11391 note what it implies to the registers used in it. */
11393 static void
11394 check_promoted_subreg (rtx insn, rtx x)
11396 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11397 && REG_P (SUBREG_REG (x)))
11398 record_promoted_value (insn, x);
11399 else
11401 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11402 int i, j;
11404 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11405 switch (format[i])
11407 case 'e':
11408 check_promoted_subreg (insn, XEXP (x, i));
11409 break;
11410 case 'V':
11411 case 'E':
11412 if (XVEC (x, i) != 0)
11413 for (j = 0; j < XVECLEN (x, i); j++)
11414 check_promoted_subreg (insn, XVECEXP (x, i, j));
11415 break;
11420 /* Utility routine for the following function. Verify that all the registers
11421 mentioned in *LOC are valid when *LOC was part of a value set when
11422 label_tick == TICK. Return 0 if some are not.
11424 If REPLACE is nonzero, replace the invalid reference with
11425 (clobber (const_int 0)) and return 1. This replacement is useful because
11426 we often can get useful information about the form of a value (e.g., if
11427 it was produced by a shift that always produces -1 or 0) even though
11428 we don't know exactly what registers it was produced from. */
11430 static int
11431 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11433 rtx x = *loc;
11434 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11435 int len = GET_RTX_LENGTH (GET_CODE (x));
11436 int i;
11438 if (REG_P (x))
11440 unsigned int regno = REGNO (x);
11441 unsigned int endregno
11442 = regno + (regno < FIRST_PSEUDO_REGISTER
11443 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11444 unsigned int j;
11446 for (j = regno; j < endregno; j++)
11447 if (reg_stat[j].last_set_invalid
11448 /* If this is a pseudo-register that was only set once and not
11449 live at the beginning of the function, it is always valid. */
11450 || (! (regno >= FIRST_PSEUDO_REGISTER
11451 && REG_N_SETS (regno) == 1
11452 && (! REGNO_REG_SET_P
11453 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11454 regno)))
11455 && reg_stat[j].last_set_label > tick))
11457 if (replace)
11458 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11459 return replace;
11462 return 1;
11464 /* If this is a memory reference, make sure that there were
11465 no stores after it that might have clobbered the value. We don't
11466 have alias info, so we assume any store invalidates it. */
11467 else if (MEM_P (x) && !MEM_READONLY_P (x)
11468 && INSN_CUID (insn) <= mem_last_set)
11470 if (replace)
11471 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11472 return replace;
11475 for (i = 0; i < len; i++)
11477 if (fmt[i] == 'e')
11479 /* Check for identical subexpressions. If x contains
11480 identical subexpression we only have to traverse one of
11481 them. */
11482 if (i == 1 && ARITHMETIC_P (x))
11484 /* Note that at this point x0 has already been checked
11485 and found valid. */
11486 rtx x0 = XEXP (x, 0);
11487 rtx x1 = XEXP (x, 1);
11489 /* If x0 and x1 are identical then x is also valid. */
11490 if (x0 == x1)
11491 return 1;
11493 /* If x1 is identical to a subexpression of x0 then
11494 while checking x0, x1 has already been checked. Thus
11495 it is valid and so as x. */
11496 if (ARITHMETIC_P (x0)
11497 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11498 return 1;
11500 /* If x0 is identical to a subexpression of x1 then x is
11501 valid iff the rest of x1 is valid. */
11502 if (ARITHMETIC_P (x1)
11503 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11504 return
11505 get_last_value_validate (&XEXP (x1,
11506 x0 == XEXP (x1, 0) ? 1 : 0),
11507 insn, tick, replace);
11510 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11511 replace) == 0)
11512 return 0;
11514 /* Don't bother with these. They shouldn't occur anyway. */
11515 else if (fmt[i] == 'E')
11516 return 0;
11519 /* If we haven't found a reason for it to be invalid, it is valid. */
11520 return 1;
11523 /* Get the last value assigned to X, if known. Some registers
11524 in the value may be replaced with (clobber (const_int 0)) if their value
11525 is known longer known reliably. */
11527 static rtx
11528 get_last_value (rtx x)
11530 unsigned int regno;
11531 rtx value;
11533 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11534 then convert it to the desired mode. If this is a paradoxical SUBREG,
11535 we cannot predict what values the "extra" bits might have. */
11536 if (GET_CODE (x) == SUBREG
11537 && subreg_lowpart_p (x)
11538 && (GET_MODE_SIZE (GET_MODE (x))
11539 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11540 && (value = get_last_value (SUBREG_REG (x))) != 0)
11541 return gen_lowpart (GET_MODE (x), value);
11543 if (!REG_P (x))
11544 return 0;
11546 regno = REGNO (x);
11547 value = reg_stat[regno].last_set_value;
11549 /* If we don't have a value, or if it isn't for this basic block and
11550 it's either a hard register, set more than once, or it's a live
11551 at the beginning of the function, return 0.
11553 Because if it's not live at the beginning of the function then the reg
11554 is always set before being used (is never used without being set).
11555 And, if it's set only once, and it's always set before use, then all
11556 uses must have the same last value, even if it's not from this basic
11557 block. */
11559 if (value == 0
11560 || (reg_stat[regno].last_set_label != label_tick
11561 && (regno < FIRST_PSEUDO_REGISTER
11562 || REG_N_SETS (regno) != 1
11563 || (REGNO_REG_SET_P
11564 (ENTRY_BLOCK_PTR->next_bb->il.rtl->global_live_at_start,
11565 regno)))))
11566 return 0;
11568 /* If the value was set in a later insn than the ones we are processing,
11569 we can't use it even if the register was only set once. */
11570 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11571 return 0;
11573 /* If the value has all its registers valid, return it. */
11574 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11575 reg_stat[regno].last_set_label, 0))
11576 return value;
11578 /* Otherwise, make a copy and replace any invalid register with
11579 (clobber (const_int 0)). If that fails for some reason, return 0. */
11581 value = copy_rtx (value);
11582 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11583 reg_stat[regno].last_set_label, 1))
11584 return value;
11586 return 0;
11589 /* Return nonzero if expression X refers to a REG or to memory
11590 that is set in an instruction more recent than FROM_CUID. */
11592 static int
11593 use_crosses_set_p (rtx x, int from_cuid)
11595 const char *fmt;
11596 int i;
11597 enum rtx_code code = GET_CODE (x);
11599 if (code == REG)
11601 unsigned int regno = REGNO (x);
11602 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11603 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11605 #ifdef PUSH_ROUNDING
11606 /* Don't allow uses of the stack pointer to be moved,
11607 because we don't know whether the move crosses a push insn. */
11608 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11609 return 1;
11610 #endif
11611 for (; regno < endreg; regno++)
11612 if (reg_stat[regno].last_set
11613 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11614 return 1;
11615 return 0;
11618 if (code == MEM && mem_last_set > from_cuid)
11619 return 1;
11621 fmt = GET_RTX_FORMAT (code);
11623 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11625 if (fmt[i] == 'E')
11627 int j;
11628 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11629 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11630 return 1;
11632 else if (fmt[i] == 'e'
11633 && use_crosses_set_p (XEXP (x, i), from_cuid))
11634 return 1;
11636 return 0;
11639 /* Define three variables used for communication between the following
11640 routines. */
11642 static unsigned int reg_dead_regno, reg_dead_endregno;
11643 static int reg_dead_flag;
11645 /* Function called via note_stores from reg_dead_at_p.
11647 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11648 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11650 static void
11651 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11653 unsigned int regno, endregno;
11655 if (!REG_P (dest))
11656 return;
11658 regno = REGNO (dest);
11659 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11660 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11662 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11663 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11666 /* Return nonzero if REG is known to be dead at INSN.
11668 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11669 referencing REG, it is dead. If we hit a SET referencing REG, it is
11670 live. Otherwise, see if it is live or dead at the start of the basic
11671 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11672 must be assumed to be always live. */
11674 static int
11675 reg_dead_at_p (rtx reg, rtx insn)
11677 basic_block block;
11678 unsigned int i;
11680 /* Set variables for reg_dead_at_p_1. */
11681 reg_dead_regno = REGNO (reg);
11682 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11683 ? hard_regno_nregs[reg_dead_regno]
11684 [GET_MODE (reg)]
11685 : 1);
11687 reg_dead_flag = 0;
11689 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11690 we allow the machine description to decide whether use-and-clobber
11691 patterns are OK. */
11692 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11694 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11695 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11696 return 0;
11699 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11700 beginning of function. */
11701 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11702 insn = prev_nonnote_insn (insn))
11704 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11705 if (reg_dead_flag)
11706 return reg_dead_flag == 1 ? 1 : 0;
11708 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11709 return 1;
11712 /* Get the basic block that we were in. */
11713 if (insn == 0)
11714 block = ENTRY_BLOCK_PTR->next_bb;
11715 else
11717 FOR_EACH_BB (block)
11718 if (insn == BB_HEAD (block))
11719 break;
11721 if (block == EXIT_BLOCK_PTR)
11722 return 0;
11725 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11726 if (REGNO_REG_SET_P (block->il.rtl->global_live_at_start, i))
11727 return 0;
11729 return 1;
11732 /* Note hard registers in X that are used. This code is similar to
11733 that in flow.c, but much simpler since we don't care about pseudos. */
11735 static void
11736 mark_used_regs_combine (rtx x)
11738 RTX_CODE code = GET_CODE (x);
11739 unsigned int regno;
11740 int i;
11742 switch (code)
11744 case LABEL_REF:
11745 case SYMBOL_REF:
11746 case CONST_INT:
11747 case CONST:
11748 case CONST_DOUBLE:
11749 case CONST_VECTOR:
11750 case PC:
11751 case ADDR_VEC:
11752 case ADDR_DIFF_VEC:
11753 case ASM_INPUT:
11754 #ifdef HAVE_cc0
11755 /* CC0 must die in the insn after it is set, so we don't need to take
11756 special note of it here. */
11757 case CC0:
11758 #endif
11759 return;
11761 case CLOBBER:
11762 /* If we are clobbering a MEM, mark any hard registers inside the
11763 address as used. */
11764 if (MEM_P (XEXP (x, 0)))
11765 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11766 return;
11768 case REG:
11769 regno = REGNO (x);
11770 /* A hard reg in a wide mode may really be multiple registers.
11771 If so, mark all of them just like the first. */
11772 if (regno < FIRST_PSEUDO_REGISTER)
11774 unsigned int endregno, r;
11776 /* None of this applies to the stack, frame or arg pointers. */
11777 if (regno == STACK_POINTER_REGNUM
11778 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11779 || regno == HARD_FRAME_POINTER_REGNUM
11780 #endif
11781 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11782 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11783 #endif
11784 || regno == FRAME_POINTER_REGNUM)
11785 return;
11787 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11788 for (r = regno; r < endregno; r++)
11789 SET_HARD_REG_BIT (newpat_used_regs, r);
11791 return;
11793 case SET:
11795 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11796 the address. */
11797 rtx testreg = SET_DEST (x);
11799 while (GET_CODE (testreg) == SUBREG
11800 || GET_CODE (testreg) == ZERO_EXTRACT
11801 || GET_CODE (testreg) == STRICT_LOW_PART)
11802 testreg = XEXP (testreg, 0);
11804 if (MEM_P (testreg))
11805 mark_used_regs_combine (XEXP (testreg, 0));
11807 mark_used_regs_combine (SET_SRC (x));
11809 return;
11811 default:
11812 break;
11815 /* Recursively scan the operands of this expression. */
11818 const char *fmt = GET_RTX_FORMAT (code);
11820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11822 if (fmt[i] == 'e')
11823 mark_used_regs_combine (XEXP (x, i));
11824 else if (fmt[i] == 'E')
11826 int j;
11828 for (j = 0; j < XVECLEN (x, i); j++)
11829 mark_used_regs_combine (XVECEXP (x, i, j));
11835 /* Remove register number REGNO from the dead registers list of INSN.
11837 Return the note used to record the death, if there was one. */
11840 remove_death (unsigned int regno, rtx insn)
11842 rtx note = find_regno_note (insn, REG_DEAD, regno);
11844 if (note)
11846 REG_N_DEATHS (regno)--;
11847 remove_note (insn, note);
11850 return note;
11853 /* For each register (hardware or pseudo) used within expression X, if its
11854 death is in an instruction with cuid between FROM_CUID (inclusive) and
11855 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11856 list headed by PNOTES.
11858 That said, don't move registers killed by maybe_kill_insn.
11860 This is done when X is being merged by combination into TO_INSN. These
11861 notes will then be distributed as needed. */
11863 static void
11864 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11865 rtx *pnotes)
11867 const char *fmt;
11868 int len, i;
11869 enum rtx_code code = GET_CODE (x);
11871 if (code == REG)
11873 unsigned int regno = REGNO (x);
11874 rtx where_dead = reg_stat[regno].last_death;
11875 rtx before_dead, after_dead;
11877 /* Don't move the register if it gets killed in between from and to. */
11878 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11879 && ! reg_referenced_p (x, maybe_kill_insn))
11880 return;
11882 /* WHERE_DEAD could be a USE insn made by combine, so first we
11883 make sure that we have insns with valid INSN_CUID values. */
11884 before_dead = where_dead;
11885 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11886 before_dead = PREV_INSN (before_dead);
11888 after_dead = where_dead;
11889 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11890 after_dead = NEXT_INSN (after_dead);
11892 if (before_dead && after_dead
11893 && INSN_CUID (before_dead) >= from_cuid
11894 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11895 || (where_dead != after_dead
11896 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11898 rtx note = remove_death (regno, where_dead);
11900 /* It is possible for the call above to return 0. This can occur
11901 when last_death points to I2 or I1 that we combined with.
11902 In that case make a new note.
11904 We must also check for the case where X is a hard register
11905 and NOTE is a death note for a range of hard registers
11906 including X. In that case, we must put REG_DEAD notes for
11907 the remaining registers in place of NOTE. */
11909 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11910 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11911 > GET_MODE_SIZE (GET_MODE (x))))
11913 unsigned int deadregno = REGNO (XEXP (note, 0));
11914 unsigned int deadend
11915 = (deadregno + hard_regno_nregs[deadregno]
11916 [GET_MODE (XEXP (note, 0))]);
11917 unsigned int ourend
11918 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11919 unsigned int i;
11921 for (i = deadregno; i < deadend; i++)
11922 if (i < regno || i >= ourend)
11923 REG_NOTES (where_dead)
11924 = gen_rtx_EXPR_LIST (REG_DEAD,
11925 regno_reg_rtx[i],
11926 REG_NOTES (where_dead));
11929 /* If we didn't find any note, or if we found a REG_DEAD note that
11930 covers only part of the given reg, and we have a multi-reg hard
11931 register, then to be safe we must check for REG_DEAD notes
11932 for each register other than the first. They could have
11933 their own REG_DEAD notes lying around. */
11934 else if ((note == 0
11935 || (note != 0
11936 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11937 < GET_MODE_SIZE (GET_MODE (x)))))
11938 && regno < FIRST_PSEUDO_REGISTER
11939 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11941 unsigned int ourend
11942 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11943 unsigned int i, offset;
11944 rtx oldnotes = 0;
11946 if (note)
11947 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11948 else
11949 offset = 1;
11951 for (i = regno + offset; i < ourend; i++)
11952 move_deaths (regno_reg_rtx[i],
11953 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11956 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11958 XEXP (note, 1) = *pnotes;
11959 *pnotes = note;
11961 else
11962 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11964 REG_N_DEATHS (regno)++;
11967 return;
11970 else if (GET_CODE (x) == SET)
11972 rtx dest = SET_DEST (x);
11974 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11976 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11977 that accesses one word of a multi-word item, some
11978 piece of everything register in the expression is used by
11979 this insn, so remove any old death. */
11980 /* ??? So why do we test for equality of the sizes? */
11982 if (GET_CODE (dest) == ZERO_EXTRACT
11983 || GET_CODE (dest) == STRICT_LOW_PART
11984 || (GET_CODE (dest) == SUBREG
11985 && (((GET_MODE_SIZE (GET_MODE (dest))
11986 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11987 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11988 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11990 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11991 return;
11994 /* If this is some other SUBREG, we know it replaces the entire
11995 value, so use that as the destination. */
11996 if (GET_CODE (dest) == SUBREG)
11997 dest = SUBREG_REG (dest);
11999 /* If this is a MEM, adjust deaths of anything used in the address.
12000 For a REG (the only other possibility), the entire value is
12001 being replaced so the old value is not used in this insn. */
12003 if (MEM_P (dest))
12004 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
12005 to_insn, pnotes);
12006 return;
12009 else if (GET_CODE (x) == CLOBBER)
12010 return;
12012 len = GET_RTX_LENGTH (code);
12013 fmt = GET_RTX_FORMAT (code);
12015 for (i = 0; i < len; i++)
12017 if (fmt[i] == 'E')
12019 int j;
12020 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12021 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
12022 to_insn, pnotes);
12024 else if (fmt[i] == 'e')
12025 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
12029 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12030 pattern of an insn. X must be a REG. */
12032 static int
12033 reg_bitfield_target_p (rtx x, rtx body)
12035 int i;
12037 if (GET_CODE (body) == SET)
12039 rtx dest = SET_DEST (body);
12040 rtx target;
12041 unsigned int regno, tregno, endregno, endtregno;
12043 if (GET_CODE (dest) == ZERO_EXTRACT)
12044 target = XEXP (dest, 0);
12045 else if (GET_CODE (dest) == STRICT_LOW_PART)
12046 target = SUBREG_REG (XEXP (dest, 0));
12047 else
12048 return 0;
12050 if (GET_CODE (target) == SUBREG)
12051 target = SUBREG_REG (target);
12053 if (!REG_P (target))
12054 return 0;
12056 tregno = REGNO (target), regno = REGNO (x);
12057 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12058 return target == x;
12060 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
12061 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
12063 return endregno > tregno && regno < endtregno;
12066 else if (GET_CODE (body) == PARALLEL)
12067 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12068 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12069 return 1;
12071 return 0;
12074 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12075 as appropriate. I3 and I2 are the insns resulting from the combination
12076 insns including FROM (I2 may be zero).
12078 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12079 not need REG_DEAD notes because they are being substituted for. This
12080 saves searching in the most common cases.
12082 Each note in the list is either ignored or placed on some insns, depending
12083 on the type of note. */
12085 static void
12086 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12087 rtx elim_i1)
12089 rtx note, next_note;
12090 rtx tem;
12092 for (note = notes; note; note = next_note)
12094 rtx place = 0, place2 = 0;
12096 /* If this NOTE references a pseudo register, ensure it references
12097 the latest copy of that register. */
12098 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
12099 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
12100 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
12102 next_note = XEXP (note, 1);
12103 switch (REG_NOTE_KIND (note))
12105 case REG_BR_PROB:
12106 case REG_BR_PRED:
12107 /* Doesn't matter much where we put this, as long as it's somewhere.
12108 It is preferable to keep these notes on branches, which is most
12109 likely to be i3. */
12110 place = i3;
12111 break;
12113 case REG_VALUE_PROFILE:
12114 /* Just get rid of this note, as it is unused later anyway. */
12115 break;
12117 case REG_NON_LOCAL_GOTO:
12118 if (JUMP_P (i3))
12119 place = i3;
12120 else
12122 gcc_assert (i2 && JUMP_P (i2));
12123 place = i2;
12125 break;
12127 case REG_EH_REGION:
12128 /* These notes must remain with the call or trapping instruction. */
12129 if (CALL_P (i3))
12130 place = i3;
12131 else if (i2 && CALL_P (i2))
12132 place = i2;
12133 else
12135 gcc_assert (flag_non_call_exceptions);
12136 if (may_trap_p (i3))
12137 place = i3;
12138 else if (i2 && may_trap_p (i2))
12139 place = i2;
12140 /* ??? Otherwise assume we've combined things such that we
12141 can now prove that the instructions can't trap. Drop the
12142 note in this case. */
12144 break;
12146 case REG_NORETURN:
12147 case REG_SETJMP:
12148 /* These notes must remain with the call. It should not be
12149 possible for both I2 and I3 to be a call. */
12150 if (CALL_P (i3))
12151 place = i3;
12152 else
12154 gcc_assert (i2 && CALL_P (i2));
12155 place = i2;
12157 break;
12159 case REG_UNUSED:
12160 /* Any clobbers for i3 may still exist, and so we must process
12161 REG_UNUSED notes from that insn.
12163 Any clobbers from i2 or i1 can only exist if they were added by
12164 recog_for_combine. In that case, recog_for_combine created the
12165 necessary REG_UNUSED notes. Trying to keep any original
12166 REG_UNUSED notes from these insns can cause incorrect output
12167 if it is for the same register as the original i3 dest.
12168 In that case, we will notice that the register is set in i3,
12169 and then add a REG_UNUSED note for the destination of i3, which
12170 is wrong. However, it is possible to have REG_UNUSED notes from
12171 i2 or i1 for register which were both used and clobbered, so
12172 we keep notes from i2 or i1 if they will turn into REG_DEAD
12173 notes. */
12175 /* If this register is set or clobbered in I3, put the note there
12176 unless there is one already. */
12177 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12179 if (from_insn != i3)
12180 break;
12182 if (! (REG_P (XEXP (note, 0))
12183 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12184 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12185 place = i3;
12187 /* Otherwise, if this register is used by I3, then this register
12188 now dies here, so we must put a REG_DEAD note here unless there
12189 is one already. */
12190 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12191 && ! (REG_P (XEXP (note, 0))
12192 ? find_regno_note (i3, REG_DEAD,
12193 REGNO (XEXP (note, 0)))
12194 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12196 PUT_REG_NOTE_KIND (note, REG_DEAD);
12197 place = i3;
12199 break;
12201 case REG_EQUAL:
12202 case REG_EQUIV:
12203 case REG_NOALIAS:
12204 /* These notes say something about results of an insn. We can
12205 only support them if they used to be on I3 in which case they
12206 remain on I3. Otherwise they are ignored.
12208 If the note refers to an expression that is not a constant, we
12209 must also ignore the note since we cannot tell whether the
12210 equivalence is still true. It might be possible to do
12211 slightly better than this (we only have a problem if I2DEST
12212 or I1DEST is present in the expression), but it doesn't
12213 seem worth the trouble. */
12215 if (from_insn == i3
12216 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12217 place = i3;
12218 break;
12220 case REG_INC:
12221 case REG_NO_CONFLICT:
12222 /* These notes say something about how a register is used. They must
12223 be present on any use of the register in I2 or I3. */
12224 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12225 place = i3;
12227 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12229 if (place)
12230 place2 = i2;
12231 else
12232 place = i2;
12234 break;
12236 case REG_LABEL:
12237 /* This can show up in several ways -- either directly in the
12238 pattern, or hidden off in the constant pool with (or without?)
12239 a REG_EQUAL note. */
12240 /* ??? Ignore the without-reg_equal-note problem for now. */
12241 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12242 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12243 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12244 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12245 place = i3;
12247 if (i2
12248 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12249 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12250 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12251 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12253 if (place)
12254 place2 = i2;
12255 else
12256 place = i2;
12259 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
12260 a JUMP_LABEL instead or decrement LABEL_NUSES. */
12261 if (place && JUMP_P (place))
12263 rtx label = JUMP_LABEL (place);
12265 if (!label)
12266 JUMP_LABEL (place) = XEXP (note, 0);
12267 else
12269 gcc_assert (label == XEXP (note, 0));
12270 if (LABEL_P (label))
12271 LABEL_NUSES (label)--;
12273 place = 0;
12275 if (place2 && JUMP_P (place2))
12277 rtx label = JUMP_LABEL (place2);
12279 if (!label)
12280 JUMP_LABEL (place2) = XEXP (note, 0);
12281 else
12283 gcc_assert (label == XEXP (note, 0));
12284 if (LABEL_P (label))
12285 LABEL_NUSES (label)--;
12287 place2 = 0;
12289 break;
12291 case REG_NONNEG:
12292 /* This note says something about the value of a register prior
12293 to the execution of an insn. It is too much trouble to see
12294 if the note is still correct in all situations. It is better
12295 to simply delete it. */
12296 break;
12298 case REG_RETVAL:
12299 /* If the insn previously containing this note still exists,
12300 put it back where it was. Otherwise move it to the previous
12301 insn. Adjust the corresponding REG_LIBCALL note. */
12302 if (!NOTE_P (from_insn))
12303 place = from_insn;
12304 else
12306 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12307 place = prev_real_insn (from_insn);
12308 if (tem && place)
12309 XEXP (tem, 0) = place;
12310 /* If we're deleting the last remaining instruction of a
12311 libcall sequence, don't add the notes. */
12312 else if (XEXP (note, 0) == from_insn)
12313 tem = place = 0;
12314 /* Don't add the dangling REG_RETVAL note. */
12315 else if (! tem)
12316 place = 0;
12318 break;
12320 case REG_LIBCALL:
12321 /* This is handled similarly to REG_RETVAL. */
12322 if (!NOTE_P (from_insn))
12323 place = from_insn;
12324 else
12326 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12327 place = next_real_insn (from_insn);
12328 if (tem && place)
12329 XEXP (tem, 0) = place;
12330 /* If we're deleting the last remaining instruction of a
12331 libcall sequence, don't add the notes. */
12332 else if (XEXP (note, 0) == from_insn)
12333 tem = place = 0;
12334 /* Don't add the dangling REG_LIBCALL note. */
12335 else if (! tem)
12336 place = 0;
12338 break;
12340 case REG_DEAD:
12341 /* If the register is used as an input in I3, it dies there.
12342 Similarly for I2, if it is nonzero and adjacent to I3.
12344 If the register is not used as an input in either I3 or I2
12345 and it is not one of the registers we were supposed to eliminate,
12346 there are two possibilities. We might have a non-adjacent I2
12347 or we might have somehow eliminated an additional register
12348 from a computation. For example, we might have had A & B where
12349 we discover that B will always be zero. In this case we will
12350 eliminate the reference to A.
12352 In both cases, we must search to see if we can find a previous
12353 use of A and put the death note there. */
12355 if (from_insn
12356 && CALL_P (from_insn)
12357 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12358 place = from_insn;
12359 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12360 place = i3;
12361 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12362 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12363 place = i2;
12365 if (place == 0
12366 && (rtx_equal_p (XEXP (note, 0), elim_i2)
12367 || rtx_equal_p (XEXP (note, 0), elim_i1)))
12368 break;
12370 if (place == 0)
12372 basic_block bb = this_basic_block;
12374 /* You might think you could search back from FROM_INSN
12375 rather than from I3, but combine tries to split invalid
12376 combined instructions. This can result in the old I2
12377 or I1 moving later in the insn sequence. */
12378 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12380 if (! INSN_P (tem))
12382 if (tem == BB_HEAD (bb))
12383 break;
12384 continue;
12387 /* If the register is being set at TEM, see if that is all
12388 TEM is doing. If so, delete TEM. Otherwise, make this
12389 into a REG_UNUSED note instead. Don't delete sets to
12390 global register vars. */
12391 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12392 || !global_regs[REGNO (XEXP (note, 0))])
12393 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12395 rtx set = single_set (tem);
12396 rtx inner_dest = 0;
12397 #ifdef HAVE_cc0
12398 rtx cc0_setter = NULL_RTX;
12399 #endif
12401 if (set != 0)
12402 for (inner_dest = SET_DEST (set);
12403 (GET_CODE (inner_dest) == STRICT_LOW_PART
12404 || GET_CODE (inner_dest) == SUBREG
12405 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12406 inner_dest = XEXP (inner_dest, 0))
12409 /* Verify that it was the set, and not a clobber that
12410 modified the register.
12412 CC0 targets must be careful to maintain setter/user
12413 pairs. If we cannot delete the setter due to side
12414 effects, mark the user with an UNUSED note instead
12415 of deleting it. */
12417 if (set != 0 && ! side_effects_p (SET_SRC (set))
12418 && rtx_equal_p (XEXP (note, 0), inner_dest)
12419 #ifdef HAVE_cc0
12420 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12421 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12422 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12423 #endif
12426 /* Move the notes and links of TEM elsewhere.
12427 This might delete other dead insns recursively.
12428 First set the pattern to something that won't use
12429 any register. */
12430 rtx old_notes = REG_NOTES (tem);
12432 PATTERN (tem) = pc_rtx;
12433 REG_NOTES (tem) = NULL;
12435 distribute_notes (old_notes, tem, tem, NULL_RTX,
12436 NULL_RTX, NULL_RTX);
12437 distribute_links (LOG_LINKS (tem));
12439 SET_INSN_DELETED (tem);
12441 #ifdef HAVE_cc0
12442 /* Delete the setter too. */
12443 if (cc0_setter)
12445 PATTERN (cc0_setter) = pc_rtx;
12446 old_notes = REG_NOTES (cc0_setter);
12447 REG_NOTES (cc0_setter) = NULL;
12449 distribute_notes (old_notes, cc0_setter,
12450 cc0_setter, NULL_RTX,
12451 NULL_RTX, NULL_RTX);
12452 distribute_links (LOG_LINKS (cc0_setter));
12454 SET_INSN_DELETED (cc0_setter);
12456 #endif
12458 else
12460 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12462 /* If there isn't already a REG_UNUSED note, put one
12463 here. Do not place a REG_DEAD note, even if
12464 the register is also used here; that would not
12465 match the algorithm used in lifetime analysis
12466 and can cause the consistency check in the
12467 scheduler to fail. */
12468 if (! find_regno_note (tem, REG_UNUSED,
12469 REGNO (XEXP (note, 0))))
12470 place = tem;
12471 break;
12474 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12475 || (CALL_P (tem)
12476 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12478 /* This may not be the correct place for the death
12479 note if FROM_INSN is before TEM, and the reg is
12480 set between FROM_INSN and TEM. The reg might
12481 die two or more times. An existing death note
12482 means we are looking at the wrong live range. */
12483 if (from_insn
12484 && INSN_CUID (from_insn) < INSN_CUID (tem)
12485 && find_regno_note (tem, REG_DEAD,
12486 REGNO (XEXP (note, 0))))
12488 tem = from_insn;
12489 if (tem == BB_HEAD (bb))
12490 break;
12491 continue;
12494 place = tem;
12496 /* If we are doing a 3->2 combination, and we have a
12497 register which formerly died in i3 and was not used
12498 by i2, which now no longer dies in i3 and is used in
12499 i2 but does not die in i2, and place is between i2
12500 and i3, then we may need to move a link from place to
12501 i2. */
12502 if (i2 && INSN_UID (place) <= max_uid_cuid
12503 && INSN_CUID (place) > INSN_CUID (i2)
12504 && from_insn
12505 && INSN_CUID (from_insn) > INSN_CUID (i2)
12506 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12508 rtx links = LOG_LINKS (place);
12509 LOG_LINKS (place) = 0;
12510 distribute_links (links);
12512 break;
12515 if (tem == BB_HEAD (bb))
12516 break;
12519 /* We haven't found an insn for the death note and it
12520 is still a REG_DEAD note, but we have hit the beginning
12521 of the block. If the existing life info says the reg
12522 was dead, there's nothing left to do. Otherwise, we'll
12523 need to do a global life update after combine. */
12524 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12525 && REGNO_REG_SET_P (bb->il.rtl->global_live_at_start,
12526 REGNO (XEXP (note, 0))))
12527 SET_BIT (refresh_blocks, this_basic_block->index);
12530 /* If the register is set or already dead at PLACE, we needn't do
12531 anything with this note if it is still a REG_DEAD note.
12532 We check here if it is set at all, not if is it totally replaced,
12533 which is what `dead_or_set_p' checks, so also check for it being
12534 set partially. */
12536 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12538 unsigned int regno = REGNO (XEXP (note, 0));
12540 /* Similarly, if the instruction on which we want to place
12541 the note is a noop, we'll need do a global live update
12542 after we remove them in delete_noop_moves. */
12543 if (noop_move_p (place))
12544 SET_BIT (refresh_blocks, this_basic_block->index);
12546 if (dead_or_set_p (place, XEXP (note, 0))
12547 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12549 /* Unless the register previously died in PLACE, clear
12550 last_death. [I no longer understand why this is
12551 being done.] */
12552 if (reg_stat[regno].last_death != place)
12553 reg_stat[regno].last_death = 0;
12554 place = 0;
12556 else
12557 reg_stat[regno].last_death = place;
12559 /* If this is a death note for a hard reg that is occupying
12560 multiple registers, ensure that we are still using all
12561 parts of the object. If we find a piece of the object
12562 that is unused, we must arrange for an appropriate REG_DEAD
12563 note to be added for it. However, we can't just emit a USE
12564 and tag the note to it, since the register might actually
12565 be dead; so we recourse, and the recursive call then finds
12566 the previous insn that used this register. */
12568 if (place && regno < FIRST_PSEUDO_REGISTER
12569 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12571 unsigned int endregno
12572 = regno + hard_regno_nregs[regno]
12573 [GET_MODE (XEXP (note, 0))];
12574 int all_used = 1;
12575 unsigned int i;
12577 for (i = regno; i < endregno; i++)
12578 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12579 && ! find_regno_fusage (place, USE, i))
12580 || dead_or_set_regno_p (place, i))
12581 all_used = 0;
12583 if (! all_used)
12585 /* Put only REG_DEAD notes for pieces that are
12586 not already dead or set. */
12588 for (i = regno; i < endregno;
12589 i += hard_regno_nregs[i][reg_raw_mode[i]])
12591 rtx piece = regno_reg_rtx[i];
12592 basic_block bb = this_basic_block;
12594 if (! dead_or_set_p (place, piece)
12595 && ! reg_bitfield_target_p (piece,
12596 PATTERN (place)))
12598 rtx new_note
12599 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12601 distribute_notes (new_note, place, place,
12602 NULL_RTX, NULL_RTX, NULL_RTX);
12604 else if (! refers_to_regno_p (i, i + 1,
12605 PATTERN (place), 0)
12606 && ! find_regno_fusage (place, USE, i))
12607 for (tem = PREV_INSN (place); ;
12608 tem = PREV_INSN (tem))
12610 if (! INSN_P (tem))
12612 if (tem == BB_HEAD (bb))
12614 SET_BIT (refresh_blocks,
12615 this_basic_block->index);
12616 break;
12618 continue;
12620 if (dead_or_set_p (tem, piece)
12621 || reg_bitfield_target_p (piece,
12622 PATTERN (tem)))
12624 REG_NOTES (tem)
12625 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12626 REG_NOTES (tem));
12627 break;
12633 place = 0;
12637 break;
12639 default:
12640 /* Any other notes should not be present at this point in the
12641 compilation. */
12642 gcc_unreachable ();
12645 if (place)
12647 XEXP (note, 1) = REG_NOTES (place);
12648 REG_NOTES (place) = note;
12650 else if ((REG_NOTE_KIND (note) == REG_DEAD
12651 || REG_NOTE_KIND (note) == REG_UNUSED)
12652 && REG_P (XEXP (note, 0)))
12653 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12655 if (place2)
12657 if ((REG_NOTE_KIND (note) == REG_DEAD
12658 || REG_NOTE_KIND (note) == REG_UNUSED)
12659 && REG_P (XEXP (note, 0)))
12660 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12662 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12663 REG_NOTE_KIND (note),
12664 XEXP (note, 0),
12665 REG_NOTES (place2));
12670 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12671 I3, I2, and I1 to new locations. This is also called to add a link
12672 pointing at I3 when I3's destination is changed. */
12674 static void
12675 distribute_links (rtx links)
12677 rtx link, next_link;
12679 for (link = links; link; link = next_link)
12681 rtx place = 0;
12682 rtx insn;
12683 rtx set, reg;
12685 next_link = XEXP (link, 1);
12687 /* If the insn that this link points to is a NOTE or isn't a single
12688 set, ignore it. In the latter case, it isn't clear what we
12689 can do other than ignore the link, since we can't tell which
12690 register it was for. Such links wouldn't be used by combine
12691 anyway.
12693 It is not possible for the destination of the target of the link to
12694 have been changed by combine. The only potential of this is if we
12695 replace I3, I2, and I1 by I3 and I2. But in that case the
12696 destination of I2 also remains unchanged. */
12698 if (NOTE_P (XEXP (link, 0))
12699 || (set = single_set (XEXP (link, 0))) == 0)
12700 continue;
12702 reg = SET_DEST (set);
12703 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12704 || GET_CODE (reg) == STRICT_LOW_PART)
12705 reg = XEXP (reg, 0);
12707 /* A LOG_LINK is defined as being placed on the first insn that uses
12708 a register and points to the insn that sets the register. Start
12709 searching at the next insn after the target of the link and stop
12710 when we reach a set of the register or the end of the basic block.
12712 Note that this correctly handles the link that used to point from
12713 I3 to I2. Also note that not much searching is typically done here
12714 since most links don't point very far away. */
12716 for (insn = NEXT_INSN (XEXP (link, 0));
12717 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12718 || BB_HEAD (this_basic_block->next_bb) != insn));
12719 insn = NEXT_INSN (insn))
12720 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12722 if (reg_referenced_p (reg, PATTERN (insn)))
12723 place = insn;
12724 break;
12726 else if (CALL_P (insn)
12727 && find_reg_fusage (insn, USE, reg))
12729 place = insn;
12730 break;
12732 else if (INSN_P (insn) && reg_set_p (reg, insn))
12733 break;
12735 /* If we found a place to put the link, place it there unless there
12736 is already a link to the same insn as LINK at that point. */
12738 if (place)
12740 rtx link2;
12742 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12743 if (XEXP (link2, 0) == XEXP (link, 0))
12744 break;
12746 if (link2 == 0)
12748 XEXP (link, 1) = LOG_LINKS (place);
12749 LOG_LINKS (place) = link;
12751 /* Set added_links_insn to the earliest insn we added a
12752 link to. */
12753 if (added_links_insn == 0
12754 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12755 added_links_insn = place;
12761 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12762 Check whether the expression pointer to by LOC is a register or
12763 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12764 Otherwise return zero. */
12766 static int
12767 unmentioned_reg_p_1 (rtx *loc, void *expr)
12769 rtx x = *loc;
12771 if (x != NULL_RTX
12772 && (REG_P (x) || MEM_P (x))
12773 && ! reg_mentioned_p (x, (rtx) expr))
12774 return 1;
12775 return 0;
12778 /* Check for any register or memory mentioned in EQUIV that is not
12779 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12780 of EXPR where some registers may have been replaced by constants. */
12782 static bool
12783 unmentioned_reg_p (rtx equiv, rtx expr)
12785 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12788 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12790 static int
12791 insn_cuid (rtx insn)
12793 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12794 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12795 insn = NEXT_INSN (insn);
12797 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12799 return INSN_CUID (insn);
12802 void
12803 dump_combine_stats (FILE *file)
12805 fprintf
12806 (file,
12807 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12808 combine_attempts, combine_merges, combine_extras, combine_successes);
12811 void
12812 dump_combine_total_stats (FILE *file)
12814 fprintf
12815 (file,
12816 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12817 total_attempts, total_merges, total_extras, total_successes);
12821 static bool
12822 gate_handle_combine (void)
12824 return (optimize > 0);
12827 /* Try combining insns through substitution. */
12828 static void
12829 rest_of_handle_combine (void)
12831 int rebuild_jump_labels_after_combine
12832 = combine_instructions (get_insns (), max_reg_num ());
12834 /* Combining insns may have turned an indirect jump into a
12835 direct jump. Rebuild the JUMP_LABEL fields of jumping
12836 instructions. */
12837 if (rebuild_jump_labels_after_combine)
12839 timevar_push (TV_JUMP);
12840 rebuild_jump_labels (get_insns ());
12841 timevar_pop (TV_JUMP);
12843 delete_dead_jumptables ();
12844 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE);
12848 struct tree_opt_pass pass_combine =
12850 "combine", /* name */
12851 gate_handle_combine, /* gate */
12852 rest_of_handle_combine, /* execute */
12853 NULL, /* sub */
12854 NULL, /* next */
12855 0, /* static_pass_number */
12856 TV_COMBINE, /* tv_id */
12857 0, /* properties_required */
12858 0, /* properties_provided */
12859 0, /* properties_destroyed */
12860 0, /* todo_flags_start */
12861 TODO_dump_func |
12862 TODO_ggc_collect, /* todo_flags_finish */
12863 'c' /* letter */