* jump.c (mark_jump_label): Fix thinko in 2001-05-19 change.
[official-gcc.git] / gcc / tree.c
blob210024e98f060af49541becbe2ce22f7939b46db
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
48 #define obstack_chunk_alloc xmalloc
49 #define obstack_chunk_free free
50 /* obstack.[ch] explicitly declined to prototype this. */
51 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
53 static void unsave_expr_now_r PARAMS ((tree));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Table indexed by tree code giving a string containing a character
60 classifying the tree code. Possibilities are
61 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
63 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
65 char tree_code_type[MAX_TREE_CODES] = {
66 #include "tree.def"
68 #undef DEFTREECODE
70 /* Table indexed by tree code giving number of expression
71 operands beyond the fixed part of the node structure.
72 Not used for types or decls. */
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
76 int tree_code_length[MAX_TREE_CODES] = {
77 #include "tree.def"
79 #undef DEFTREECODE
81 /* Names of tree components.
82 Used for printing out the tree and error messages. */
83 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
85 const char *tree_code_name[MAX_TREE_CODES] = {
86 #include "tree.def"
88 #undef DEFTREECODE
90 /* Statistics-gathering stuff. */
91 typedef enum
93 d_kind,
94 t_kind,
95 b_kind,
96 s_kind,
97 r_kind,
98 e_kind,
99 c_kind,
100 id_kind,
101 op_id_kind,
102 perm_list_kind,
103 temp_list_kind,
104 vec_kind,
105 x_kind,
106 lang_decl,
107 lang_type,
108 all_kinds
109 } tree_node_kind;
111 int tree_node_counts[(int) all_kinds];
112 int tree_node_sizes[(int) all_kinds];
113 int id_string_size = 0;
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "op_identifiers",
125 "perm_tree_lists",
126 "temp_tree_lists",
127 "vecs",
128 "random kinds",
129 "lang_decl kinds",
130 "lang_type kinds"
133 /* Unique id for next decl created. */
134 static int next_decl_uid;
135 /* Unique id for next type created. */
136 static int next_type_uid = 1;
138 /* Here is how primitive or already-canonicalized types' hash
139 codes are made. */
140 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
142 /* Since we cannot rehash a type after it is in the table, we have to
143 keep the hash code. */
145 struct type_hash
147 unsigned long hash;
148 tree type;
151 /* Initial size of the hash table (rounded to next prime). */
152 #define TYPE_HASH_INITIAL_SIZE 1000
154 /* Now here is the hash table. When recording a type, it is added to
155 the slot whose index is the hash code. Note that the hash table is
156 used for several kinds of types (function types, array types and
157 array index range types, for now). While all these live in the
158 same table, they are completely independent, and the hash code is
159 computed differently for each of these. */
161 htab_t type_hash_table;
163 static void build_real_from_int_cst_1 PARAMS ((PTR));
164 static void set_type_quals PARAMS ((tree, int));
165 static void append_random_chars PARAMS ((char *));
166 static void mark_type_hash PARAMS ((void *));
167 static int type_hash_eq PARAMS ((const void*, const void*));
168 static unsigned int type_hash_hash PARAMS ((const void*));
169 static void print_type_hash_statistics PARAMS((void));
170 static int mark_hash_entry PARAMS((void **, void *));
171 static void finish_vector_type PARAMS((tree));
172 static int mark_tree_hashtable_entry PARAMS((void **, void *));
174 /* If non-null, these are language-specific helper functions for
175 unsave_expr_now. If present, LANG_UNSAVE is called before its
176 argument (an UNSAVE_EXPR) is to be unsaved, and all other
177 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
178 called from unsave_expr_1 for language-specific tree codes. */
179 void (*lang_unsave) PARAMS ((tree *));
180 void (*lang_unsave_expr_now) PARAMS ((tree));
182 /* If non-null, these are language-specific helper functions for
183 unsafe_for_reeval. Return negative to not handle some tree. */
184 int (*lang_unsafe_for_reeval) PARAMS ((tree));
186 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
187 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
188 appropriate IDENTIFIER_NODE. Otherwise, set it to the
189 ERROR_MARK_NODE to ensure that the assembler does not talk about
190 it. */
191 void (*lang_set_decl_assembler_name) PARAMS ((tree));
193 tree global_trees[TI_MAX];
194 tree integer_types[itk_none];
196 /* Set the DECL_ASSEMBLER_NAME for DECL. */
197 void
198 set_decl_assembler_name (decl)
199 tree decl;
201 /* The language-independent code should never use the
202 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
203 VAR_DECLs for variables with static storage duration need a real
204 DECL_ASSEMBLER_NAME. */
205 if (TREE_CODE (decl) == FUNCTION_DECL
206 || (TREE_CODE (decl) == VAR_DECL
207 && (TREE_STATIC (decl)
208 || DECL_EXTERNAL (decl)
209 || TREE_PUBLIC (decl))))
210 /* By default, assume the name to use in assembly code is the
211 same as that used in the source language. (That's correct
212 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
213 value as DECL_NAME in build_decl, so this choice provides
214 backwards compatibility with existing front-ends. */
215 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
216 else
217 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
218 these DECLs -- unless they're in language-dependent code, in
219 which case lang_set_decl_assembler_name should handle things. */
220 abort ();
223 /* Init the principal obstacks. */
225 void
226 init_obstacks ()
228 gcc_obstack_init (&permanent_obstack);
230 /* Initialize the hash table of types. */
231 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
232 type_hash_eq, 0);
233 ggc_add_root (&type_hash_table, 1, sizeof type_hash_table, mark_type_hash);
234 ggc_add_tree_root (global_trees, TI_MAX);
235 ggc_add_tree_root (integer_types, itk_none);
237 /* Set lang_set_decl_set_assembler_name to a default value. */
238 lang_set_decl_assembler_name = set_decl_assembler_name;
241 void
242 gcc_obstack_init (obstack)
243 struct obstack *obstack;
245 /* Let particular systems override the size of a chunk. */
246 #ifndef OBSTACK_CHUNK_SIZE
247 #define OBSTACK_CHUNK_SIZE 0
248 #endif
249 /* Let them override the alloc and free routines too. */
250 #ifndef OBSTACK_CHUNK_ALLOC
251 #define OBSTACK_CHUNK_ALLOC xmalloc
252 #endif
253 #ifndef OBSTACK_CHUNK_FREE
254 #define OBSTACK_CHUNK_FREE free
255 #endif
256 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
257 (void *(*) PARAMS ((long))) OBSTACK_CHUNK_ALLOC,
258 (void (*) PARAMS ((void *))) OBSTACK_CHUNK_FREE);
262 /* Allocate SIZE bytes in the permanent obstack
263 and return a pointer to them. */
265 char *
266 permalloc (size)
267 int size;
269 return (char *) obstack_alloc (&permanent_obstack, size);
272 /* Allocate NELEM items of SIZE bytes in the permanent obstack
273 and return a pointer to them. The storage is cleared before
274 returning the value. */
276 char *
277 perm_calloc (nelem, size)
278 int nelem;
279 long size;
281 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
282 memset (rval, 0, nelem * size);
283 return rval;
286 /* Compute the number of bytes occupied by 'node'. This routine only
287 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
288 size_t
289 tree_size (node)
290 tree node;
292 enum tree_code code = TREE_CODE (node);
294 switch (TREE_CODE_CLASS (code))
296 case 'd': /* A decl node */
297 return sizeof (struct tree_decl);
299 case 't': /* a type node */
300 return sizeof (struct tree_type);
302 case 'b': /* a lexical block node */
303 return sizeof (struct tree_block);
305 case 'r': /* a reference */
306 case 'e': /* an expression */
307 case 's': /* an expression with side effects */
308 case '<': /* a comparison expression */
309 case '1': /* a unary arithmetic expression */
310 case '2': /* a binary arithmetic expression */
311 return (sizeof (struct tree_exp)
312 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
314 case 'c': /* a constant */
315 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
316 words is machine-dependent due to varying length of HOST_WIDE_INT,
317 which might be wider than a pointer (e.g., long long). Similarly
318 for REAL_CST, since the number of words is machine-dependent due
319 to varying size and alignment of `double'. */
320 if (code == INTEGER_CST)
321 return sizeof (struct tree_int_cst);
322 else if (code == REAL_CST)
323 return sizeof (struct tree_real_cst);
324 else
325 return (sizeof (struct tree_common)
326 + TREE_CODE_LENGTH (code) * sizeof (char *));
328 case 'x': /* something random, like an identifier. */
330 size_t length;
331 length = (sizeof (struct tree_common)
332 + TREE_CODE_LENGTH (code) * sizeof (char *));
333 if (code == TREE_VEC)
334 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
335 return length;
338 default:
339 abort ();
343 /* Return a newly allocated node of code CODE.
344 For decl and type nodes, some other fields are initialized.
345 The rest of the node is initialized to zero.
347 Achoo! I got a code in the node. */
349 tree
350 make_node (code)
351 enum tree_code code;
353 register tree t;
354 register int type = TREE_CODE_CLASS (code);
355 register size_t length;
356 #ifdef GATHER_STATISTICS
357 register tree_node_kind kind;
358 #endif
359 struct tree_common ttmp;
361 /* We can't allocate a TREE_VEC without knowing how many elements
362 it will have. */
363 if (code == TREE_VEC)
364 abort ();
366 TREE_SET_CODE ((tree)&ttmp, code);
367 length = tree_size ((tree)&ttmp);
369 #ifdef GATHER_STATISTICS
370 switch (type)
372 case 'd': /* A decl node */
373 kind = d_kind;
374 break;
376 case 't': /* a type node */
377 kind = t_kind;
378 break;
380 case 'b': /* a lexical block */
381 kind = b_kind;
382 break;
384 case 's': /* an expression with side effects */
385 kind = s_kind;
386 break;
388 case 'r': /* a reference */
389 kind = r_kind;
390 break;
392 case 'e': /* an expression */
393 case '<': /* a comparison expression */
394 case '1': /* a unary arithmetic expression */
395 case '2': /* a binary arithmetic expression */
396 kind = e_kind;
397 break;
399 case 'c': /* a constant */
400 kind = c_kind;
401 break;
403 case 'x': /* something random, like an identifier. */
404 if (code == IDENTIFIER_NODE)
405 kind = id_kind;
406 else if (code == OP_IDENTIFIER)
407 kind = op_id_kind;
408 else if (code == TREE_VEC)
409 kind = vec_kind;
410 else
411 kind = x_kind;
412 break;
414 default:
415 abort ();
418 tree_node_counts[(int) kind]++;
419 tree_node_sizes[(int) kind] += length;
420 #endif
422 t = ggc_alloc_tree (length);
424 memset ((PTR) t, 0, length);
426 TREE_SET_CODE (t, code);
428 switch (type)
430 case 's':
431 TREE_SIDE_EFFECTS (t) = 1;
432 TREE_TYPE (t) = void_type_node;
433 break;
435 case 'd':
436 if (code != FUNCTION_DECL)
437 DECL_ALIGN (t) = 1;
438 DECL_USER_ALIGN (t) = 0;
439 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
440 DECL_SOURCE_LINE (t) = lineno;
441 DECL_SOURCE_FILE (t) =
442 (input_filename) ? input_filename : "<built-in>";
443 DECL_UID (t) = next_decl_uid++;
444 /* Note that we have not yet computed the alias set for this
445 declaration. */
446 DECL_POINTER_ALIAS_SET (t) = -1;
447 break;
449 case 't':
450 TYPE_UID (t) = next_type_uid++;
451 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
452 TYPE_USER_ALIGN (t) = 0;
453 TYPE_MAIN_VARIANT (t) = t;
454 TYPE_ATTRIBUTES (t) = NULL_TREE;
455 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
456 SET_DEFAULT_TYPE_ATTRIBUTES (t);
457 #endif
458 /* Note that we have not yet computed the alias set for this
459 type. */
460 TYPE_ALIAS_SET (t) = -1;
461 break;
463 case 'c':
464 TREE_CONSTANT (t) = 1;
465 break;
467 case 'e':
468 switch (code)
470 case INIT_EXPR:
471 case MODIFY_EXPR:
472 case VA_ARG_EXPR:
473 case RTL_EXPR:
474 case PREDECREMENT_EXPR:
475 case PREINCREMENT_EXPR:
476 case POSTDECREMENT_EXPR:
477 case POSTINCREMENT_EXPR:
478 /* All of these have side-effects, no matter what their
479 operands are. */
480 TREE_SIDE_EFFECTS (t) = 1;
481 break;
483 default:
484 break;
486 break;
489 return t;
492 /* A front-end can reset this to an appropriate function if types need
493 special handling. */
495 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
497 /* Return a new type (with the indicated CODE), doing whatever
498 language-specific processing is required. */
500 tree
501 make_lang_type (code)
502 enum tree_code code;
504 return (*make_lang_type_fn) (code);
507 /* Return a new node with the same contents as NODE except that its
508 TREE_CHAIN is zero and it has a fresh uid. */
510 tree
511 copy_node (node)
512 tree node;
514 register tree t;
515 register enum tree_code code = TREE_CODE (node);
516 register size_t length;
518 length = tree_size (node);
519 t = ggc_alloc_tree (length);
520 memcpy (t, node, length);
522 TREE_CHAIN (t) = 0;
523 TREE_ASM_WRITTEN (t) = 0;
525 if (TREE_CODE_CLASS (code) == 'd')
526 DECL_UID (t) = next_decl_uid++;
527 else if (TREE_CODE_CLASS (code) == 't')
529 TYPE_UID (t) = next_type_uid++;
530 /* The following is so that the debug code for
531 the copy is different from the original type.
532 The two statements usually duplicate each other
533 (because they clear fields of the same union),
534 but the optimizer should catch that. */
535 TYPE_SYMTAB_POINTER (t) = 0;
536 TYPE_SYMTAB_ADDRESS (t) = 0;
539 return t;
542 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
543 For example, this can copy a list made of TREE_LIST nodes. */
545 tree
546 copy_list (list)
547 tree list;
549 tree head;
550 register tree prev, next;
552 if (list == 0)
553 return 0;
555 head = prev = copy_node (list);
556 next = TREE_CHAIN (list);
557 while (next)
559 TREE_CHAIN (prev) = copy_node (next);
560 prev = TREE_CHAIN (prev);
561 next = TREE_CHAIN (next);
563 return head;
567 /* Return a newly constructed INTEGER_CST node whose constant value
568 is specified by the two ints LOW and HI.
569 The TREE_TYPE is set to `int'.
571 This function should be used via the `build_int_2' macro. */
573 tree
574 build_int_2_wide (low, hi)
575 unsigned HOST_WIDE_INT low;
576 HOST_WIDE_INT hi;
578 register tree t = make_node (INTEGER_CST);
580 TREE_INT_CST_LOW (t) = low;
581 TREE_INT_CST_HIGH (t) = hi;
582 TREE_TYPE (t) = integer_type_node;
583 return t;
586 /* Return a new REAL_CST node whose type is TYPE and value is D. */
588 tree
589 build_real (type, d)
590 tree type;
591 REAL_VALUE_TYPE d;
593 tree v;
594 int overflow = 0;
596 /* Check for valid float value for this type on this target machine;
597 if not, can print error message and store a valid value in D. */
598 #ifdef CHECK_FLOAT_VALUE
599 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
600 #endif
602 v = make_node (REAL_CST);
603 TREE_TYPE (v) = type;
604 TREE_REAL_CST (v) = d;
605 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
606 return v;
609 /* Return a new REAL_CST node whose type is TYPE
610 and whose value is the integer value of the INTEGER_CST node I. */
612 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
614 REAL_VALUE_TYPE
615 real_value_from_int_cst (type, i)
616 tree type ATTRIBUTE_UNUSED, i;
618 REAL_VALUE_TYPE d;
620 #ifdef REAL_ARITHMETIC
621 /* Clear all bits of the real value type so that we can later do
622 bitwise comparisons to see if two values are the same. */
623 memset ((char *) &d, 0, sizeof d);
625 if (! TREE_UNSIGNED (TREE_TYPE (i)))
626 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
627 TYPE_MODE (type));
628 else
629 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
630 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
631 #else /* not REAL_ARITHMETIC */
632 /* Some 386 compilers mishandle unsigned int to float conversions,
633 so introduce a temporary variable E to avoid those bugs. */
634 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
636 REAL_VALUE_TYPE e;
638 d = (double) (~TREE_INT_CST_HIGH (i));
639 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
640 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
641 d *= e;
642 e = (double) (~TREE_INT_CST_LOW (i));
643 d += e;
644 d = (- d - 1.0);
646 else
648 REAL_VALUE_TYPE e;
650 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
651 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
652 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
653 d *= e;
654 e = (double) TREE_INT_CST_LOW (i);
655 d += e;
657 #endif /* not REAL_ARITHMETIC */
658 return d;
661 /* Args to pass to and from build_real_from_int_cst_1. */
663 struct brfic_args
665 tree type; /* Input: type to conver to. */
666 tree i; /* Input: operand to convert. */
667 REAL_VALUE_TYPE d; /* Output: floating point value. */
670 /* Convert an integer to a floating point value while protected by a floating
671 point exception handler. */
673 static void
674 build_real_from_int_cst_1 (data)
675 PTR data;
677 struct brfic_args *args = (struct brfic_args *) data;
679 #ifdef REAL_ARITHMETIC
680 args->d = real_value_from_int_cst (args->type, args->i);
681 #else
682 args->d
683 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
684 real_value_from_int_cst (args->type, args->i));
685 #endif
688 /* Given a tree representing an integer constant I, return a tree
689 representing the same value as a floating-point constant of type TYPE.
690 We cannot perform this operation if there is no way of doing arithmetic
691 on floating-point values. */
693 tree
694 build_real_from_int_cst (type, i)
695 tree type;
696 tree i;
698 tree v;
699 int overflow = TREE_OVERFLOW (i);
700 REAL_VALUE_TYPE d;
701 struct brfic_args args;
703 v = make_node (REAL_CST);
704 TREE_TYPE (v) = type;
706 /* Setup input for build_real_from_int_cst_1() */
707 args.type = type;
708 args.i = i;
710 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
711 /* Receive output from build_real_from_int_cst_1() */
712 d = args.d;
713 else
715 /* We got an exception from build_real_from_int_cst_1() */
716 d = dconst0;
717 overflow = 1;
720 /* Check for valid float value for this type on this target machine. */
722 #ifdef CHECK_FLOAT_VALUE
723 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
724 #endif
726 TREE_REAL_CST (v) = d;
727 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
728 return v;
731 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
733 /* Return a newly constructed STRING_CST node whose value is
734 the LEN characters at STR.
735 The TREE_TYPE is not initialized. */
737 tree
738 build_string (len, str)
739 int len;
740 const char *str;
742 register tree s = make_node (STRING_CST);
744 TREE_STRING_LENGTH (s) = len;
745 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
747 return s;
750 /* Return a newly constructed COMPLEX_CST node whose value is
751 specified by the real and imaginary parts REAL and IMAG.
752 Both REAL and IMAG should be constant nodes. TYPE, if specified,
753 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
755 tree
756 build_complex (type, real, imag)
757 tree type;
758 tree real, imag;
760 register tree t = make_node (COMPLEX_CST);
762 TREE_REALPART (t) = real;
763 TREE_IMAGPART (t) = imag;
764 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
765 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
766 TREE_CONSTANT_OVERFLOW (t)
767 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
768 return t;
771 /* Build a newly constructed TREE_VEC node of length LEN. */
773 tree
774 make_tree_vec (len)
775 int len;
777 register tree t;
778 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
780 #ifdef GATHER_STATISTICS
781 tree_node_counts[(int)vec_kind]++;
782 tree_node_sizes[(int)vec_kind] += length;
783 #endif
785 t = ggc_alloc_tree (length);
787 memset ((PTR) t, 0, length);
788 TREE_SET_CODE (t, TREE_VEC);
789 TREE_VEC_LENGTH (t) = len;
791 return t;
794 /* Return 1 if EXPR is the integer constant zero or a complex constant
795 of zero. */
798 integer_zerop (expr)
799 tree expr;
801 STRIP_NOPS (expr);
803 return ((TREE_CODE (expr) == INTEGER_CST
804 && ! TREE_CONSTANT_OVERFLOW (expr)
805 && TREE_INT_CST_LOW (expr) == 0
806 && TREE_INT_CST_HIGH (expr) == 0)
807 || (TREE_CODE (expr) == COMPLEX_CST
808 && integer_zerop (TREE_REALPART (expr))
809 && integer_zerop (TREE_IMAGPART (expr))));
812 /* Return 1 if EXPR is the integer constant one or the corresponding
813 complex constant. */
816 integer_onep (expr)
817 tree expr;
819 STRIP_NOPS (expr);
821 return ((TREE_CODE (expr) == INTEGER_CST
822 && ! TREE_CONSTANT_OVERFLOW (expr)
823 && TREE_INT_CST_LOW (expr) == 1
824 && TREE_INT_CST_HIGH (expr) == 0)
825 || (TREE_CODE (expr) == COMPLEX_CST
826 && integer_onep (TREE_REALPART (expr))
827 && integer_zerop (TREE_IMAGPART (expr))));
830 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
831 it contains. Likewise for the corresponding complex constant. */
834 integer_all_onesp (expr)
835 tree expr;
837 register int prec;
838 register int uns;
840 STRIP_NOPS (expr);
842 if (TREE_CODE (expr) == COMPLEX_CST
843 && integer_all_onesp (TREE_REALPART (expr))
844 && integer_zerop (TREE_IMAGPART (expr)))
845 return 1;
847 else if (TREE_CODE (expr) != INTEGER_CST
848 || TREE_CONSTANT_OVERFLOW (expr))
849 return 0;
851 uns = TREE_UNSIGNED (TREE_TYPE (expr));
852 if (!uns)
853 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
854 && TREE_INT_CST_HIGH (expr) == -1);
856 /* Note that using TYPE_PRECISION here is wrong. We care about the
857 actual bits, not the (arbitrary) range of the type. */
858 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
859 if (prec >= HOST_BITS_PER_WIDE_INT)
861 HOST_WIDE_INT high_value;
862 int shift_amount;
864 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
866 if (shift_amount > HOST_BITS_PER_WIDE_INT)
867 /* Can not handle precisions greater than twice the host int size. */
868 abort ();
869 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
870 /* Shifting by the host word size is undefined according to the ANSI
871 standard, so we must handle this as a special case. */
872 high_value = -1;
873 else
874 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
876 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
877 && TREE_INT_CST_HIGH (expr) == high_value);
879 else
880 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
883 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
884 one bit on). */
887 integer_pow2p (expr)
888 tree expr;
890 int prec;
891 HOST_WIDE_INT high, low;
893 STRIP_NOPS (expr);
895 if (TREE_CODE (expr) == COMPLEX_CST
896 && integer_pow2p (TREE_REALPART (expr))
897 && integer_zerop (TREE_IMAGPART (expr)))
898 return 1;
900 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
901 return 0;
903 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
904 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
905 high = TREE_INT_CST_HIGH (expr);
906 low = TREE_INT_CST_LOW (expr);
908 /* First clear all bits that are beyond the type's precision in case
909 we've been sign extended. */
911 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
913 else if (prec > HOST_BITS_PER_WIDE_INT)
914 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
915 else
917 high = 0;
918 if (prec < HOST_BITS_PER_WIDE_INT)
919 low &= ~((HOST_WIDE_INT) (-1) << prec);
922 if (high == 0 && low == 0)
923 return 0;
925 return ((high == 0 && (low & (low - 1)) == 0)
926 || (low == 0 && (high & (high - 1)) == 0));
929 /* Return the power of two represented by a tree node known to be a
930 power of two. */
933 tree_log2 (expr)
934 tree expr;
936 int prec;
937 HOST_WIDE_INT high, low;
939 STRIP_NOPS (expr);
941 if (TREE_CODE (expr) == COMPLEX_CST)
942 return tree_log2 (TREE_REALPART (expr));
944 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
945 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
947 high = TREE_INT_CST_HIGH (expr);
948 low = TREE_INT_CST_LOW (expr);
950 /* First clear all bits that are beyond the type's precision in case
951 we've been sign extended. */
953 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
955 else if (prec > HOST_BITS_PER_WIDE_INT)
956 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
957 else
959 high = 0;
960 if (prec < HOST_BITS_PER_WIDE_INT)
961 low &= ~((HOST_WIDE_INT) (-1) << prec);
964 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
965 : exact_log2 (low));
968 /* Similar, but return the largest integer Y such that 2 ** Y is less
969 than or equal to EXPR. */
972 tree_floor_log2 (expr)
973 tree expr;
975 int prec;
976 HOST_WIDE_INT high, low;
978 STRIP_NOPS (expr);
980 if (TREE_CODE (expr) == COMPLEX_CST)
981 return tree_log2 (TREE_REALPART (expr));
983 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
984 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
986 high = TREE_INT_CST_HIGH (expr);
987 low = TREE_INT_CST_LOW (expr);
989 /* First clear all bits that are beyond the type's precision in case
990 we've been sign extended. Ignore if type's precision hasn't been set
991 since what we are doing is setting it. */
993 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
995 else if (prec > HOST_BITS_PER_WIDE_INT)
996 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
997 else
999 high = 0;
1000 if (prec < HOST_BITS_PER_WIDE_INT)
1001 low &= ~((HOST_WIDE_INT) (-1) << prec);
1004 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1005 : floor_log2 (low));
1008 /* Return 1 if EXPR is the real constant zero. */
1011 real_zerop (expr)
1012 tree expr;
1014 STRIP_NOPS (expr);
1016 return ((TREE_CODE (expr) == REAL_CST
1017 && ! TREE_CONSTANT_OVERFLOW (expr)
1018 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1019 || (TREE_CODE (expr) == COMPLEX_CST
1020 && real_zerop (TREE_REALPART (expr))
1021 && real_zerop (TREE_IMAGPART (expr))));
1024 /* Return 1 if EXPR is the real constant one in real or complex form. */
1027 real_onep (expr)
1028 tree expr;
1030 STRIP_NOPS (expr);
1032 return ((TREE_CODE (expr) == REAL_CST
1033 && ! TREE_CONSTANT_OVERFLOW (expr)
1034 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1035 || (TREE_CODE (expr) == COMPLEX_CST
1036 && real_onep (TREE_REALPART (expr))
1037 && real_zerop (TREE_IMAGPART (expr))));
1040 /* Return 1 if EXPR is the real constant two. */
1043 real_twop (expr)
1044 tree expr;
1046 STRIP_NOPS (expr);
1048 return ((TREE_CODE (expr) == REAL_CST
1049 && ! TREE_CONSTANT_OVERFLOW (expr)
1050 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1051 || (TREE_CODE (expr) == COMPLEX_CST
1052 && real_twop (TREE_REALPART (expr))
1053 && real_zerop (TREE_IMAGPART (expr))));
1056 /* Nonzero if EXP is a constant or a cast of a constant. */
1059 really_constant_p (exp)
1060 tree exp;
1062 /* This is not quite the same as STRIP_NOPS. It does more. */
1063 while (TREE_CODE (exp) == NOP_EXPR
1064 || TREE_CODE (exp) == CONVERT_EXPR
1065 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1066 exp = TREE_OPERAND (exp, 0);
1067 return TREE_CONSTANT (exp);
1070 /* Return first list element whose TREE_VALUE is ELEM.
1071 Return 0 if ELEM is not in LIST. */
1073 tree
1074 value_member (elem, list)
1075 tree elem, list;
1077 while (list)
1079 if (elem == TREE_VALUE (list))
1080 return list;
1081 list = TREE_CHAIN (list);
1083 return NULL_TREE;
1086 /* Return first list element whose TREE_PURPOSE is ELEM.
1087 Return 0 if ELEM is not in LIST. */
1089 tree
1090 purpose_member (elem, list)
1091 tree elem, list;
1093 while (list)
1095 if (elem == TREE_PURPOSE (list))
1096 return list;
1097 list = TREE_CHAIN (list);
1099 return NULL_TREE;
1102 /* Return first list element whose BINFO_TYPE is ELEM.
1103 Return 0 if ELEM is not in LIST. */
1105 tree
1106 binfo_member (elem, list)
1107 tree elem, list;
1109 while (list)
1111 if (elem == BINFO_TYPE (list))
1112 return list;
1113 list = TREE_CHAIN (list);
1115 return NULL_TREE;
1118 /* Return nonzero if ELEM is part of the chain CHAIN. */
1121 chain_member (elem, chain)
1122 tree elem, chain;
1124 while (chain)
1126 if (elem == chain)
1127 return 1;
1128 chain = TREE_CHAIN (chain);
1131 return 0;
1134 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1135 chain CHAIN. This and the next function are currently unused, but
1136 are retained for completeness. */
1139 chain_member_value (elem, chain)
1140 tree elem, chain;
1142 while (chain)
1144 if (elem == TREE_VALUE (chain))
1145 return 1;
1146 chain = TREE_CHAIN (chain);
1149 return 0;
1152 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1153 for any piece of chain CHAIN. */
1156 chain_member_purpose (elem, chain)
1157 tree elem, chain;
1159 while (chain)
1161 if (elem == TREE_PURPOSE (chain))
1162 return 1;
1163 chain = TREE_CHAIN (chain);
1166 return 0;
1169 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1170 We expect a null pointer to mark the end of the chain.
1171 This is the Lisp primitive `length'. */
1174 list_length (t)
1175 tree t;
1177 register tree tail;
1178 register int len = 0;
1180 for (tail = t; tail; tail = TREE_CHAIN (tail))
1181 len++;
1183 return len;
1186 /* Returns the number of FIELD_DECLs in TYPE. */
1189 fields_length (type)
1190 tree type;
1192 tree t = TYPE_FIELDS (type);
1193 int count = 0;
1195 for (; t; t = TREE_CHAIN (t))
1196 if (TREE_CODE (t) == FIELD_DECL)
1197 ++count;
1199 return count;
1202 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1203 by modifying the last node in chain 1 to point to chain 2.
1204 This is the Lisp primitive `nconc'. */
1206 tree
1207 chainon (op1, op2)
1208 tree op1, op2;
1211 if (op1)
1213 register tree t1;
1214 #ifdef ENABLE_TREE_CHECKING
1215 register tree t2;
1216 #endif
1218 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1220 TREE_CHAIN (t1) = op2;
1221 #ifdef ENABLE_TREE_CHECKING
1222 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1223 if (t2 == t1)
1224 abort (); /* Circularity created. */
1225 #endif
1226 return op1;
1228 else
1229 return op2;
1232 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1234 tree
1235 tree_last (chain)
1236 register tree chain;
1238 register tree next;
1239 if (chain)
1240 while ((next = TREE_CHAIN (chain)))
1241 chain = next;
1242 return chain;
1245 /* Reverse the order of elements in the chain T,
1246 and return the new head of the chain (old last element). */
1248 tree
1249 nreverse (t)
1250 tree t;
1252 register tree prev = 0, decl, next;
1253 for (decl = t; decl; decl = next)
1255 next = TREE_CHAIN (decl);
1256 TREE_CHAIN (decl) = prev;
1257 prev = decl;
1259 return prev;
1262 /* Given a chain CHAIN of tree nodes,
1263 construct and return a list of those nodes. */
1265 tree
1266 listify (chain)
1267 tree chain;
1269 tree result = NULL_TREE;
1270 tree in_tail = chain;
1271 tree out_tail = NULL_TREE;
1273 while (in_tail)
1275 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1276 if (out_tail)
1277 TREE_CHAIN (out_tail) = next;
1278 else
1279 result = next;
1280 out_tail = next;
1281 in_tail = TREE_CHAIN (in_tail);
1284 return result;
1287 /* Return a newly created TREE_LIST node whose
1288 purpose and value fields are PARM and VALUE. */
1290 tree
1291 build_tree_list (parm, value)
1292 tree parm, value;
1294 register tree t = make_node (TREE_LIST);
1295 TREE_PURPOSE (t) = parm;
1296 TREE_VALUE (t) = value;
1297 return t;
1300 /* Return a newly created TREE_LIST node whose
1301 purpose and value fields are PARM and VALUE
1302 and whose TREE_CHAIN is CHAIN. */
1304 tree
1305 tree_cons (purpose, value, chain)
1306 tree purpose, value, chain;
1308 register tree node;
1310 node = ggc_alloc_tree (sizeof (struct tree_list));
1312 memset (node, 0, sizeof (struct tree_common));
1314 #ifdef GATHER_STATISTICS
1315 tree_node_counts[(int) x_kind]++;
1316 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1317 #endif
1319 TREE_SET_CODE (node, TREE_LIST);
1320 TREE_CHAIN (node) = chain;
1321 TREE_PURPOSE (node) = purpose;
1322 TREE_VALUE (node) = value;
1323 return node;
1327 /* Return the size nominally occupied by an object of type TYPE
1328 when it resides in memory. The value is measured in units of bytes,
1329 and its data type is that normally used for type sizes
1330 (which is the first type created by make_signed_type or
1331 make_unsigned_type). */
1333 tree
1334 size_in_bytes (type)
1335 tree type;
1337 tree t;
1339 if (type == error_mark_node)
1340 return integer_zero_node;
1342 type = TYPE_MAIN_VARIANT (type);
1343 t = TYPE_SIZE_UNIT (type);
1345 if (t == 0)
1347 incomplete_type_error (NULL_TREE, type);
1348 return size_zero_node;
1351 if (TREE_CODE (t) == INTEGER_CST)
1352 force_fit_type (t, 0);
1354 return t;
1357 /* Return the size of TYPE (in bytes) as a wide integer
1358 or return -1 if the size can vary or is larger than an integer. */
1360 HOST_WIDE_INT
1361 int_size_in_bytes (type)
1362 tree type;
1364 tree t;
1366 if (type == error_mark_node)
1367 return 0;
1369 type = TYPE_MAIN_VARIANT (type);
1370 t = TYPE_SIZE_UNIT (type);
1371 if (t == 0
1372 || TREE_CODE (t) != INTEGER_CST
1373 || TREE_OVERFLOW (t)
1374 || TREE_INT_CST_HIGH (t) != 0
1375 /* If the result would appear negative, it's too big to represent. */
1376 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1377 return -1;
1379 return TREE_INT_CST_LOW (t);
1382 /* Return the bit position of FIELD, in bits from the start of the record.
1383 This is a tree of type bitsizetype. */
1385 tree
1386 bit_position (field)
1387 tree field;
1390 return bit_from_pos (DECL_FIELD_OFFSET (field),
1391 DECL_FIELD_BIT_OFFSET (field));
1394 /* Likewise, but return as an integer. Abort if it cannot be represented
1395 in that way (since it could be a signed value, we don't have the option
1396 of returning -1 like int_size_in_byte can. */
1398 HOST_WIDE_INT
1399 int_bit_position (field)
1400 tree field;
1402 return tree_low_cst (bit_position (field), 0);
1405 /* Return the byte position of FIELD, in bytes from the start of the record.
1406 This is a tree of type sizetype. */
1408 tree
1409 byte_position (field)
1410 tree field;
1412 return byte_from_pos (DECL_FIELD_OFFSET (field),
1413 DECL_FIELD_BIT_OFFSET (field));
1416 /* Likewise, but return as an integer. Abort if it cannot be represented
1417 in that way (since it could be a signed value, we don't have the option
1418 of returning -1 like int_size_in_byte can. */
1420 HOST_WIDE_INT
1421 int_byte_position (field)
1422 tree field;
1424 return tree_low_cst (byte_position (field), 0);
1427 /* Return the strictest alignment, in bits, that T is known to have. */
1429 unsigned int
1430 expr_align (t)
1431 tree t;
1433 unsigned int align0, align1;
1435 switch (TREE_CODE (t))
1437 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1438 /* If we have conversions, we know that the alignment of the
1439 object must meet each of the alignments of the types. */
1440 align0 = expr_align (TREE_OPERAND (t, 0));
1441 align1 = TYPE_ALIGN (TREE_TYPE (t));
1442 return MAX (align0, align1);
1444 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1445 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1446 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1447 /* These don't change the alignment of an object. */
1448 return expr_align (TREE_OPERAND (t, 0));
1450 case COND_EXPR:
1451 /* The best we can do is say that the alignment is the least aligned
1452 of the two arms. */
1453 align0 = expr_align (TREE_OPERAND (t, 1));
1454 align1 = expr_align (TREE_OPERAND (t, 2));
1455 return MIN (align0, align1);
1457 case LABEL_DECL: case CONST_DECL:
1458 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1459 if (DECL_ALIGN (t) != 0)
1460 return DECL_ALIGN (t);
1461 break;
1463 case FUNCTION_DECL:
1464 return FUNCTION_BOUNDARY;
1466 default:
1467 break;
1470 /* Otherwise take the alignment from that of the type. */
1471 return TYPE_ALIGN (TREE_TYPE (t));
1474 /* Return, as a tree node, the number of elements for TYPE (which is an
1475 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1477 tree
1478 array_type_nelts (type)
1479 tree type;
1481 tree index_type, min, max;
1483 /* If they did it with unspecified bounds, then we should have already
1484 given an error about it before we got here. */
1485 if (! TYPE_DOMAIN (type))
1486 return error_mark_node;
1488 index_type = TYPE_DOMAIN (type);
1489 min = TYPE_MIN_VALUE (index_type);
1490 max = TYPE_MAX_VALUE (index_type);
1492 return (integer_zerop (min)
1493 ? max
1494 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1497 /* Return nonzero if arg is static -- a reference to an object in
1498 static storage. This is not the same as the C meaning of `static'. */
1501 staticp (arg)
1502 tree arg;
1504 switch (TREE_CODE (arg))
1506 case FUNCTION_DECL:
1507 /* Nested functions aren't static, since taking their address
1508 involves a trampoline. */
1509 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1510 && ! DECL_NON_ADDR_CONST_P (arg);
1512 case VAR_DECL:
1513 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1514 && ! DECL_NON_ADDR_CONST_P (arg);
1516 case CONSTRUCTOR:
1517 return TREE_STATIC (arg);
1519 case LABEL_DECL:
1520 case STRING_CST:
1521 return 1;
1523 /* If we are referencing a bitfield, we can't evaluate an
1524 ADDR_EXPR at compile time and so it isn't a constant. */
1525 case COMPONENT_REF:
1526 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1527 && staticp (TREE_OPERAND (arg, 0)));
1529 case BIT_FIELD_REF:
1530 return 0;
1532 #if 0
1533 /* This case is technically correct, but results in setting
1534 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1535 compile time. */
1536 case INDIRECT_REF:
1537 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1538 #endif
1540 case ARRAY_REF:
1541 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1542 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1543 return staticp (TREE_OPERAND (arg, 0));
1545 default:
1546 return 0;
1550 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1551 Do this to any expression which may be used in more than one place,
1552 but must be evaluated only once.
1554 Normally, expand_expr would reevaluate the expression each time.
1555 Calling save_expr produces something that is evaluated and recorded
1556 the first time expand_expr is called on it. Subsequent calls to
1557 expand_expr just reuse the recorded value.
1559 The call to expand_expr that generates code that actually computes
1560 the value is the first call *at compile time*. Subsequent calls
1561 *at compile time* generate code to use the saved value.
1562 This produces correct result provided that *at run time* control
1563 always flows through the insns made by the first expand_expr
1564 before reaching the other places where the save_expr was evaluated.
1565 You, the caller of save_expr, must make sure this is so.
1567 Constants, and certain read-only nodes, are returned with no
1568 SAVE_EXPR because that is safe. Expressions containing placeholders
1569 are not touched; see tree.def for an explanation of what these
1570 are used for. */
1572 tree
1573 save_expr (expr)
1574 tree expr;
1576 register tree t = fold (expr);
1578 /* We don't care about whether this can be used as an lvalue in this
1579 context. */
1580 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1581 t = TREE_OPERAND (t, 0);
1583 /* If the tree evaluates to a constant, then we don't want to hide that
1584 fact (i.e. this allows further folding, and direct checks for constants).
1585 However, a read-only object that has side effects cannot be bypassed.
1586 Since it is no problem to reevaluate literals, we just return the
1587 literal node. */
1589 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1590 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
1591 return t;
1593 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1594 it means that the size or offset of some field of an object depends on
1595 the value within another field.
1597 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1598 and some variable since it would then need to be both evaluated once and
1599 evaluated more than once. Front-ends must assure this case cannot
1600 happen by surrounding any such subexpressions in their own SAVE_EXPR
1601 and forcing evaluation at the proper time. */
1602 if (contains_placeholder_p (t))
1603 return t;
1605 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1607 /* This expression might be placed ahead of a jump to ensure that the
1608 value was computed on both sides of the jump. So make sure it isn't
1609 eliminated as dead. */
1610 TREE_SIDE_EFFECTS (t) = 1;
1611 TREE_READONLY (t) = 1;
1612 return t;
1615 /* Arrange for an expression to be expanded multiple independent
1616 times. This is useful for cleanup actions, as the backend can
1617 expand them multiple times in different places. */
1619 tree
1620 unsave_expr (expr)
1621 tree expr;
1623 tree t;
1625 /* If this is already protected, no sense in protecting it again. */
1626 if (TREE_CODE (expr) == UNSAVE_EXPR)
1627 return expr;
1629 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1630 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1631 return t;
1634 /* Returns the index of the first non-tree operand for CODE, or the number
1635 of operands if all are trees. */
1638 first_rtl_op (code)
1639 enum tree_code code;
1641 switch (code)
1643 case SAVE_EXPR:
1644 return 2;
1645 case GOTO_SUBROUTINE_EXPR:
1646 case RTL_EXPR:
1647 return 0;
1648 case WITH_CLEANUP_EXPR:
1649 /* Should be defined to be 2. */
1650 return 1;
1651 case METHOD_CALL_EXPR:
1652 return 3;
1653 default:
1654 return TREE_CODE_LENGTH (code);
1658 /* Perform any modifications to EXPR required when it is unsaved. Does
1659 not recurse into EXPR's subtrees. */
1661 void
1662 unsave_expr_1 (expr)
1663 tree expr;
1665 switch (TREE_CODE (expr))
1667 case SAVE_EXPR:
1668 if (! SAVE_EXPR_PERSISTENT_P (expr))
1669 SAVE_EXPR_RTL (expr) = 0;
1670 break;
1672 case TARGET_EXPR:
1673 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1674 It's OK for this to happen if it was part of a subtree that
1675 isn't immediately expanded, such as operand 2 of another
1676 TARGET_EXPR. */
1677 if (TREE_OPERAND (expr, 1))
1678 break;
1680 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1681 TREE_OPERAND (expr, 3) = NULL_TREE;
1682 break;
1684 case RTL_EXPR:
1685 /* I don't yet know how to emit a sequence multiple times. */
1686 if (RTL_EXPR_SEQUENCE (expr) != 0)
1687 abort ();
1688 break;
1690 default:
1691 if (lang_unsave_expr_now != 0)
1692 (*lang_unsave_expr_now) (expr);
1693 break;
1697 /* Helper function for unsave_expr_now. */
1699 static void
1700 unsave_expr_now_r (expr)
1701 tree expr;
1703 enum tree_code code;
1705 /* There's nothing to do for NULL_TREE. */
1706 if (expr == 0)
1707 return;
1709 unsave_expr_1 (expr);
1711 code = TREE_CODE (expr);
1712 switch (TREE_CODE_CLASS (code))
1714 case 'c': /* a constant */
1715 case 't': /* a type node */
1716 case 'd': /* A decl node */
1717 case 'b': /* A block node */
1718 break;
1720 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1721 if (code == TREE_LIST)
1723 unsave_expr_now_r (TREE_VALUE (expr));
1724 unsave_expr_now_r (TREE_CHAIN (expr));
1726 break;
1728 case 'e': /* an expression */
1729 case 'r': /* a reference */
1730 case 's': /* an expression with side effects */
1731 case '<': /* a comparison expression */
1732 case '2': /* a binary arithmetic expression */
1733 case '1': /* a unary arithmetic expression */
1735 int i;
1737 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1738 unsave_expr_now_r (TREE_OPERAND (expr, i));
1740 break;
1742 default:
1743 abort ();
1747 /* Modify a tree in place so that all the evaluate only once things
1748 are cleared out. Return the EXPR given. */
1750 tree
1751 unsave_expr_now (expr)
1752 tree expr;
1754 if (lang_unsave!= 0)
1755 (*lang_unsave) (&expr);
1756 else
1757 unsave_expr_now_r (expr);
1759 return expr;
1762 /* Return 0 if it is safe to evaluate EXPR multiple times,
1763 return 1 if it is safe if EXPR is unsaved afterward, or
1764 return 2 if it is completely unsafe.
1766 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1767 an expression tree, so that it safe to unsave them and the surrounding
1768 context will be correct.
1770 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1771 occasionally across the whole of a function. It is therefore only
1772 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1773 below the UNSAVE_EXPR.
1775 RTL_EXPRs consume their rtl during evaluation. It is therefore
1776 never possible to unsave them. */
1779 unsafe_for_reeval (expr)
1780 tree expr;
1782 int unsafeness = 0;
1783 enum tree_code code;
1784 int i, tmp;
1785 tree exp;
1786 int first_rtl;
1788 if (expr == NULL_TREE)
1789 return 1;
1791 code = TREE_CODE (expr);
1792 first_rtl = first_rtl_op (code);
1794 switch (code)
1796 case SAVE_EXPR:
1797 case RTL_EXPR:
1798 return 2;
1800 case TREE_LIST:
1801 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1803 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1804 unsafeness = MAX (tmp, unsafeness);
1807 return unsafeness;
1809 case CALL_EXPR:
1810 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1811 return MAX (tmp, 1);
1813 case TARGET_EXPR:
1814 unsafeness = 1;
1815 break;
1817 default:
1818 if (lang_unsafe_for_reeval != 0)
1820 tmp = (*lang_unsafe_for_reeval) (expr);
1821 if (tmp >= 0)
1822 return tmp;
1824 break;
1827 switch (TREE_CODE_CLASS (code))
1829 case 'c': /* a constant */
1830 case 't': /* a type node */
1831 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1832 case 'd': /* A decl node */
1833 case 'b': /* A block node */
1834 return 0;
1836 case 'e': /* an expression */
1837 case 'r': /* a reference */
1838 case 's': /* an expression with side effects */
1839 case '<': /* a comparison expression */
1840 case '2': /* a binary arithmetic expression */
1841 case '1': /* a unary arithmetic expression */
1842 for (i = first_rtl - 1; i >= 0; i--)
1844 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1845 unsafeness = MAX (tmp, unsafeness);
1848 return unsafeness;
1850 default:
1851 return 2;
1855 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1856 or offset that depends on a field within a record. */
1859 contains_placeholder_p (exp)
1860 tree exp;
1862 register enum tree_code code;
1863 int result;
1865 if (!exp)
1866 return 0;
1868 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1869 in it since it is supplying a value for it. */
1870 code = TREE_CODE (exp);
1871 if (code == WITH_RECORD_EXPR)
1872 return 0;
1873 else if (code == PLACEHOLDER_EXPR)
1874 return 1;
1876 switch (TREE_CODE_CLASS (code))
1878 case 'r':
1879 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1880 position computations since they will be converted into a
1881 WITH_RECORD_EXPR involving the reference, which will assume
1882 here will be valid. */
1883 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1885 case 'x':
1886 if (code == TREE_LIST)
1887 return (contains_placeholder_p (TREE_VALUE (exp))
1888 || (TREE_CHAIN (exp) != 0
1889 && contains_placeholder_p (TREE_CHAIN (exp))));
1890 break;
1892 case '1':
1893 case '2': case '<':
1894 case 'e':
1895 switch (code)
1897 case COMPOUND_EXPR:
1898 /* Ignoring the first operand isn't quite right, but works best. */
1899 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1901 case RTL_EXPR:
1902 case CONSTRUCTOR:
1903 return 0;
1905 case COND_EXPR:
1906 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1907 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1908 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1910 case SAVE_EXPR:
1911 /* If we already know this doesn't have a placeholder, don't
1912 check again. */
1913 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1914 return 0;
1916 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1917 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1918 if (result)
1919 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1921 return result;
1923 case CALL_EXPR:
1924 return (TREE_OPERAND (exp, 1) != 0
1925 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1927 default:
1928 break;
1931 switch (TREE_CODE_LENGTH (code))
1933 case 1:
1934 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1935 case 2:
1936 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1937 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1938 default:
1939 return 0;
1942 default:
1943 return 0;
1945 return 0;
1948 /* Return 1 if EXP contains any expressions that produce cleanups for an
1949 outer scope to deal with. Used by fold. */
1952 has_cleanups (exp)
1953 tree exp;
1955 int i, nops, cmp;
1957 if (! TREE_SIDE_EFFECTS (exp))
1958 return 0;
1960 switch (TREE_CODE (exp))
1962 case TARGET_EXPR:
1963 case GOTO_SUBROUTINE_EXPR:
1964 case WITH_CLEANUP_EXPR:
1965 return 1;
1967 case CLEANUP_POINT_EXPR:
1968 return 0;
1970 case CALL_EXPR:
1971 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1973 cmp = has_cleanups (TREE_VALUE (exp));
1974 if (cmp)
1975 return cmp;
1977 return 0;
1979 default:
1980 break;
1983 /* This general rule works for most tree codes. All exceptions should be
1984 handled above. If this is a language-specific tree code, we can't
1985 trust what might be in the operand, so say we don't know
1986 the situation. */
1987 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1988 return -1;
1990 nops = first_rtl_op (TREE_CODE (exp));
1991 for (i = 0; i < nops; i++)
1992 if (TREE_OPERAND (exp, i) != 0)
1994 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1995 if (type == 'e' || type == '<' || type == '1' || type == '2'
1996 || type == 'r' || type == 's')
1998 cmp = has_cleanups (TREE_OPERAND (exp, i));
1999 if (cmp)
2000 return cmp;
2004 return 0;
2007 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2008 return a tree with all occurrences of references to F in a
2009 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2010 contains only arithmetic expressions or a CALL_EXPR with a
2011 PLACEHOLDER_EXPR occurring only in its arglist. */
2013 tree
2014 substitute_in_expr (exp, f, r)
2015 tree exp;
2016 tree f;
2017 tree r;
2019 enum tree_code code = TREE_CODE (exp);
2020 tree op0, op1, op2;
2021 tree new;
2022 tree inner;
2024 switch (TREE_CODE_CLASS (code))
2026 case 'c':
2027 case 'd':
2028 return exp;
2030 case 'x':
2031 if (code == PLACEHOLDER_EXPR)
2032 return exp;
2033 else if (code == TREE_LIST)
2035 op0 = (TREE_CHAIN (exp) == 0
2036 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2037 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2038 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2039 return exp;
2041 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2044 abort ();
2046 case '1':
2047 case '2':
2048 case '<':
2049 case 'e':
2050 switch (TREE_CODE_LENGTH (code))
2052 case 1:
2053 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2054 if (op0 == TREE_OPERAND (exp, 0))
2055 return exp;
2057 if (code == NON_LVALUE_EXPR)
2058 return op0;
2060 new = fold (build1 (code, TREE_TYPE (exp), op0));
2061 break;
2063 case 2:
2064 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2065 could, but we don't support it. */
2066 if (code == RTL_EXPR)
2067 return exp;
2068 else if (code == CONSTRUCTOR)
2069 abort ();
2071 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2072 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2073 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2074 return exp;
2076 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2077 break;
2079 case 3:
2080 /* It cannot be that anything inside a SAVE_EXPR contains a
2081 PLACEHOLDER_EXPR. */
2082 if (code == SAVE_EXPR)
2083 return exp;
2085 else if (code == CALL_EXPR)
2087 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2088 if (op1 == TREE_OPERAND (exp, 1))
2089 return exp;
2091 return build (code, TREE_TYPE (exp),
2092 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2095 else if (code != COND_EXPR)
2096 abort ();
2098 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2099 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2100 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2101 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2102 && op2 == TREE_OPERAND (exp, 2))
2103 return exp;
2105 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2106 break;
2108 default:
2109 abort ();
2112 break;
2114 case 'r':
2115 switch (code)
2117 case COMPONENT_REF:
2118 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2119 and it is the right field, replace it with R. */
2120 for (inner = TREE_OPERAND (exp, 0);
2121 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2122 inner = TREE_OPERAND (inner, 0))
2124 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2125 && TREE_OPERAND (exp, 1) == f)
2126 return r;
2128 /* If this expression hasn't been completed let, leave it
2129 alone. */
2130 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2131 && TREE_TYPE (inner) == 0)
2132 return exp;
2134 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2135 if (op0 == TREE_OPERAND (exp, 0))
2136 return exp;
2138 new = fold (build (code, TREE_TYPE (exp), op0,
2139 TREE_OPERAND (exp, 1)));
2140 break;
2142 case BIT_FIELD_REF:
2143 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2144 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2145 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2146 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2147 && op2 == TREE_OPERAND (exp, 2))
2148 return exp;
2150 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2151 break;
2153 case INDIRECT_REF:
2154 case BUFFER_REF:
2155 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2156 if (op0 == TREE_OPERAND (exp, 0))
2157 return exp;
2159 new = fold (build1 (code, TREE_TYPE (exp), op0));
2160 break;
2162 default:
2163 abort ();
2165 break;
2167 default:
2168 abort ();
2171 TREE_READONLY (new) = TREE_READONLY (exp);
2172 return new;
2175 /* Stabilize a reference so that we can use it any number of times
2176 without causing its operands to be evaluated more than once.
2177 Returns the stabilized reference. This works by means of save_expr,
2178 so see the caveats in the comments about save_expr.
2180 Also allows conversion expressions whose operands are references.
2181 Any other kind of expression is returned unchanged. */
2183 tree
2184 stabilize_reference (ref)
2185 tree ref;
2187 register tree result;
2188 register enum tree_code code = TREE_CODE (ref);
2190 switch (code)
2192 case VAR_DECL:
2193 case PARM_DECL:
2194 case RESULT_DECL:
2195 /* No action is needed in this case. */
2196 return ref;
2198 case NOP_EXPR:
2199 case CONVERT_EXPR:
2200 case FLOAT_EXPR:
2201 case FIX_TRUNC_EXPR:
2202 case FIX_FLOOR_EXPR:
2203 case FIX_ROUND_EXPR:
2204 case FIX_CEIL_EXPR:
2205 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2206 break;
2208 case INDIRECT_REF:
2209 result = build_nt (INDIRECT_REF,
2210 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2211 break;
2213 case COMPONENT_REF:
2214 result = build_nt (COMPONENT_REF,
2215 stabilize_reference (TREE_OPERAND (ref, 0)),
2216 TREE_OPERAND (ref, 1));
2217 break;
2219 case BIT_FIELD_REF:
2220 result = build_nt (BIT_FIELD_REF,
2221 stabilize_reference (TREE_OPERAND (ref, 0)),
2222 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2223 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2224 break;
2226 case ARRAY_REF:
2227 result = build_nt (ARRAY_REF,
2228 stabilize_reference (TREE_OPERAND (ref, 0)),
2229 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2230 break;
2232 case COMPOUND_EXPR:
2233 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2234 it wouldn't be ignored. This matters when dealing with
2235 volatiles. */
2236 return stabilize_reference_1 (ref);
2238 case RTL_EXPR:
2239 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2240 save_expr (build1 (ADDR_EXPR,
2241 build_pointer_type (TREE_TYPE (ref)),
2242 ref)));
2243 break;
2245 /* If arg isn't a kind of lvalue we recognize, make no change.
2246 Caller should recognize the error for an invalid lvalue. */
2247 default:
2248 return ref;
2250 case ERROR_MARK:
2251 return error_mark_node;
2254 TREE_TYPE (result) = TREE_TYPE (ref);
2255 TREE_READONLY (result) = TREE_READONLY (ref);
2256 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2257 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2259 return result;
2262 /* Subroutine of stabilize_reference; this is called for subtrees of
2263 references. Any expression with side-effects must be put in a SAVE_EXPR
2264 to ensure that it is only evaluated once.
2266 We don't put SAVE_EXPR nodes around everything, because assigning very
2267 simple expressions to temporaries causes us to miss good opportunities
2268 for optimizations. Among other things, the opportunity to fold in the
2269 addition of a constant into an addressing mode often gets lost, e.g.
2270 "y[i+1] += x;". In general, we take the approach that we should not make
2271 an assignment unless we are forced into it - i.e., that any non-side effect
2272 operator should be allowed, and that cse should take care of coalescing
2273 multiple utterances of the same expression should that prove fruitful. */
2275 tree
2276 stabilize_reference_1 (e)
2277 tree e;
2279 register tree result;
2280 register enum tree_code code = TREE_CODE (e);
2282 /* We cannot ignore const expressions because it might be a reference
2283 to a const array but whose index contains side-effects. But we can
2284 ignore things that are actual constant or that already have been
2285 handled by this function. */
2287 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2288 return e;
2290 switch (TREE_CODE_CLASS (code))
2292 case 'x':
2293 case 't':
2294 case 'd':
2295 case 'b':
2296 case '<':
2297 case 's':
2298 case 'e':
2299 case 'r':
2300 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2301 so that it will only be evaluated once. */
2302 /* The reference (r) and comparison (<) classes could be handled as
2303 below, but it is generally faster to only evaluate them once. */
2304 if (TREE_SIDE_EFFECTS (e))
2305 return save_expr (e);
2306 return e;
2308 case 'c':
2309 /* Constants need no processing. In fact, we should never reach
2310 here. */
2311 return e;
2313 case '2':
2314 /* Division is slow and tends to be compiled with jumps,
2315 especially the division by powers of 2 that is often
2316 found inside of an array reference. So do it just once. */
2317 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2318 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2319 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2320 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2321 return save_expr (e);
2322 /* Recursively stabilize each operand. */
2323 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2324 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2325 break;
2327 case '1':
2328 /* Recursively stabilize each operand. */
2329 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2330 break;
2332 default:
2333 abort ();
2336 TREE_TYPE (result) = TREE_TYPE (e);
2337 TREE_READONLY (result) = TREE_READONLY (e);
2338 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2339 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2341 return result;
2344 /* Low-level constructors for expressions. */
2346 /* Build an expression of code CODE, data type TYPE,
2347 and operands as specified by the arguments ARG1 and following arguments.
2348 Expressions and reference nodes can be created this way.
2349 Constants, decls, types and misc nodes cannot be. */
2351 tree
2352 build VPARAMS ((enum tree_code code, tree tt, ...))
2354 #ifndef ANSI_PROTOTYPES
2355 enum tree_code code;
2356 tree tt;
2357 #endif
2358 va_list p;
2359 register tree t;
2360 register int length;
2361 register int i;
2362 int fro;
2363 int constant;
2365 VA_START (p, tt);
2367 #ifndef ANSI_PROTOTYPES
2368 code = va_arg (p, enum tree_code);
2369 tt = va_arg (p, tree);
2370 #endif
2372 t = make_node (code);
2373 length = TREE_CODE_LENGTH (code);
2374 TREE_TYPE (t) = tt;
2376 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2377 result based on those same flags for the arguments. But if the
2378 arguments aren't really even `tree' expressions, we shouldn't be trying
2379 to do this. */
2380 fro = first_rtl_op (code);
2382 /* Expressions without side effects may be constant if their
2383 arguments are as well. */
2384 constant = (TREE_CODE_CLASS (code) == '<'
2385 || TREE_CODE_CLASS (code) == '1'
2386 || TREE_CODE_CLASS (code) == '2'
2387 || TREE_CODE_CLASS (code) == 'c');
2389 if (length == 2)
2391 /* This is equivalent to the loop below, but faster. */
2392 register tree arg0 = va_arg (p, tree);
2393 register tree arg1 = va_arg (p, tree);
2395 TREE_OPERAND (t, 0) = arg0;
2396 TREE_OPERAND (t, 1) = arg1;
2397 TREE_READONLY (t) = 1;
2398 if (arg0 && fro > 0)
2400 if (TREE_SIDE_EFFECTS (arg0))
2401 TREE_SIDE_EFFECTS (t) = 1;
2402 if (!TREE_READONLY (arg0))
2403 TREE_READONLY (t) = 0;
2404 if (!TREE_CONSTANT (arg0))
2405 constant = 0;
2408 if (arg1 && fro > 1)
2410 if (TREE_SIDE_EFFECTS (arg1))
2411 TREE_SIDE_EFFECTS (t) = 1;
2412 if (!TREE_READONLY (arg1))
2413 TREE_READONLY (t) = 0;
2414 if (!TREE_CONSTANT (arg1))
2415 constant = 0;
2418 else if (length == 1)
2420 register tree arg0 = va_arg (p, tree);
2422 /* The only one-operand cases we handle here are those with side-effects.
2423 Others are handled with build1. So don't bother checked if the
2424 arg has side-effects since we'll already have set it.
2426 ??? This really should use build1 too. */
2427 if (TREE_CODE_CLASS (code) != 's')
2428 abort ();
2429 TREE_OPERAND (t, 0) = arg0;
2431 else
2433 for (i = 0; i < length; i++)
2435 register tree operand = va_arg (p, tree);
2437 TREE_OPERAND (t, i) = operand;
2438 if (operand && fro > i)
2440 if (TREE_SIDE_EFFECTS (operand))
2441 TREE_SIDE_EFFECTS (t) = 1;
2442 if (!TREE_CONSTANT (operand))
2443 constant = 0;
2447 va_end (p);
2449 TREE_CONSTANT (t) = constant;
2450 return t;
2453 /* Same as above, but only builds for unary operators.
2454 Saves lions share of calls to `build'; cuts down use
2455 of varargs, which is expensive for RISC machines. */
2457 tree
2458 build1 (code, type, node)
2459 enum tree_code code;
2460 tree type;
2461 tree node;
2463 register int length;
2464 #ifdef GATHER_STATISTICS
2465 register tree_node_kind kind;
2466 #endif
2467 register tree t;
2469 #ifdef GATHER_STATISTICS
2470 if (TREE_CODE_CLASS (code) == 'r')
2471 kind = r_kind;
2472 else
2473 kind = e_kind;
2474 #endif
2476 #ifdef ENABLE_CHECKING
2477 if (TREE_CODE_CLASS (code) == '2'
2478 || TREE_CODE_CLASS (code) == '<'
2479 || TREE_CODE_LENGTH (code) != 1)
2480 abort ();
2481 #endif /* ENABLE_CHECKING */
2483 length = sizeof (struct tree_exp);
2485 t = ggc_alloc_tree (length);
2487 memset ((PTR) t, 0, sizeof (struct tree_common));
2489 #ifdef GATHER_STATISTICS
2490 tree_node_counts[(int) kind]++;
2491 tree_node_sizes[(int) kind] += length;
2492 #endif
2494 TREE_SET_CODE (t, code);
2496 TREE_TYPE (t) = type;
2497 TREE_COMPLEXITY (t) = 0;
2498 TREE_OPERAND (t, 0) = node;
2499 if (node && first_rtl_op (code) != 0)
2501 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2502 TREE_READONLY (t) = TREE_READONLY (node);
2505 switch (code)
2507 case INIT_EXPR:
2508 case MODIFY_EXPR:
2509 case VA_ARG_EXPR:
2510 case RTL_EXPR:
2511 case PREDECREMENT_EXPR:
2512 case PREINCREMENT_EXPR:
2513 case POSTDECREMENT_EXPR:
2514 case POSTINCREMENT_EXPR:
2515 /* All of these have side-effects, no matter what their
2516 operands are. */
2517 TREE_SIDE_EFFECTS (t) = 1;
2518 TREE_READONLY (t) = 0;
2519 break;
2521 default:
2522 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2523 TREE_CONSTANT (t) = 1;
2524 break;
2527 return t;
2530 /* Similar except don't specify the TREE_TYPE
2531 and leave the TREE_SIDE_EFFECTS as 0.
2532 It is permissible for arguments to be null,
2533 or even garbage if their values do not matter. */
2535 tree
2536 build_nt VPARAMS ((enum tree_code code, ...))
2538 #ifndef ANSI_PROTOTYPES
2539 enum tree_code code;
2540 #endif
2541 va_list p;
2542 register tree t;
2543 register int length;
2544 register int i;
2546 VA_START (p, code);
2548 #ifndef ANSI_PROTOTYPES
2549 code = va_arg (p, enum tree_code);
2550 #endif
2552 t = make_node (code);
2553 length = TREE_CODE_LENGTH (code);
2555 for (i = 0; i < length; i++)
2556 TREE_OPERAND (t, i) = va_arg (p, tree);
2558 va_end (p);
2559 return t;
2562 #if 0
2563 /* Commented out because this wants to be done very
2564 differently. See cp-lex.c. */
2565 tree
2566 build_op_identifier (op1, op2)
2567 tree op1, op2;
2569 register tree t = make_node (OP_IDENTIFIER);
2570 TREE_PURPOSE (t) = op1;
2571 TREE_VALUE (t) = op2;
2572 return t;
2574 #endif
2576 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2577 We do NOT enter this node in any sort of symbol table.
2579 layout_decl is used to set up the decl's storage layout.
2580 Other slots are initialized to 0 or null pointers. */
2582 tree
2583 build_decl (code, name, type)
2584 enum tree_code code;
2585 tree name, type;
2587 register tree t;
2589 t = make_node (code);
2591 /* if (type == error_mark_node)
2592 type = integer_type_node; */
2593 /* That is not done, deliberately, so that having error_mark_node
2594 as the type can suppress useless errors in the use of this variable. */
2596 DECL_NAME (t) = name;
2597 TREE_TYPE (t) = type;
2599 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2600 layout_decl (t, 0);
2601 else if (code == FUNCTION_DECL)
2602 DECL_MODE (t) = FUNCTION_MODE;
2604 return t;
2607 /* BLOCK nodes are used to represent the structure of binding contours
2608 and declarations, once those contours have been exited and their contents
2609 compiled. This information is used for outputting debugging info. */
2611 tree
2612 build_block (vars, tags, subblocks, supercontext, chain)
2613 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2615 register tree block = make_node (BLOCK);
2617 BLOCK_VARS (block) = vars;
2618 BLOCK_SUBBLOCKS (block) = subblocks;
2619 BLOCK_SUPERCONTEXT (block) = supercontext;
2620 BLOCK_CHAIN (block) = chain;
2621 return block;
2624 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2625 location where an expression or an identifier were encountered. It
2626 is necessary for languages where the frontend parser will handle
2627 recursively more than one file (Java is one of them). */
2629 tree
2630 build_expr_wfl (node, file, line, col)
2631 tree node;
2632 const char *file;
2633 int line, col;
2635 static const char *last_file = 0;
2636 static tree last_filenode = NULL_TREE;
2637 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2639 EXPR_WFL_NODE (wfl) = node;
2640 EXPR_WFL_SET_LINECOL (wfl, line, col);
2641 if (file != last_file)
2643 last_file = file;
2644 last_filenode = file ? get_identifier (file) : NULL_TREE;
2647 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2648 if (node)
2650 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2651 TREE_TYPE (wfl) = TREE_TYPE (node);
2654 return wfl;
2657 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2658 is ATTRIBUTE. */
2660 tree
2661 build_decl_attribute_variant (ddecl, attribute)
2662 tree ddecl, attribute;
2664 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2665 return ddecl;
2668 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2669 is ATTRIBUTE.
2671 Record such modified types already made so we don't make duplicates. */
2673 tree
2674 build_type_attribute_variant (ttype, attribute)
2675 tree ttype, attribute;
2677 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2679 unsigned int hashcode;
2680 tree ntype;
2682 ntype = copy_node (ttype);
2684 TYPE_POINTER_TO (ntype) = 0;
2685 TYPE_REFERENCE_TO (ntype) = 0;
2686 TYPE_ATTRIBUTES (ntype) = attribute;
2688 /* Create a new main variant of TYPE. */
2689 TYPE_MAIN_VARIANT (ntype) = ntype;
2690 TYPE_NEXT_VARIANT (ntype) = 0;
2691 set_type_quals (ntype, TYPE_UNQUALIFIED);
2693 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2694 + TYPE_HASH (TREE_TYPE (ntype))
2695 + attribute_hash_list (attribute));
2697 switch (TREE_CODE (ntype))
2699 case FUNCTION_TYPE:
2700 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2701 break;
2702 case ARRAY_TYPE:
2703 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2704 break;
2705 case INTEGER_TYPE:
2706 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2707 break;
2708 case REAL_TYPE:
2709 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2710 break;
2711 default:
2712 break;
2715 ntype = type_hash_canon (hashcode, ntype);
2716 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2719 return ttype;
2722 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
2723 or type TYPE and 0 otherwise. Validity is determined the configuration
2724 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
2727 valid_machine_attribute (attr_name, attr_args, decl, type)
2728 tree attr_name;
2729 tree attr_args ATTRIBUTE_UNUSED;
2730 tree decl ATTRIBUTE_UNUSED;
2731 tree type ATTRIBUTE_UNUSED;
2733 int validated = 0;
2734 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2735 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
2736 #endif
2737 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2738 tree type_attr_list = TYPE_ATTRIBUTES (type);
2739 #endif
2741 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2742 abort ();
2744 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2745 if (decl != 0
2746 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name,
2747 attr_args))
2749 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2750 decl_attr_list);
2752 if (attr != NULL_TREE)
2754 /* Override existing arguments. Declarations are unique so we can
2755 modify this in place. */
2756 TREE_VALUE (attr) = attr_args;
2758 else
2760 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
2761 decl = build_decl_attribute_variant (decl, decl_attr_list);
2764 validated = 1;
2766 #endif
2768 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2769 if (validated)
2770 /* Don't apply the attribute to both the decl and the type. */
2772 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
2773 attr_args))
2775 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2776 type_attr_list);
2778 if (attr != NULL_TREE)
2780 /* Override existing arguments.
2781 ??? This currently works since attribute arguments are not
2782 included in `attribute_hash_list'. Something more complicated
2783 may be needed in the future. */
2784 TREE_VALUE (attr) = attr_args;
2786 else
2788 /* If this is part of a declaration, create a type variant,
2789 otherwise, this is part of a type definition, so add it
2790 to the base type. */
2791 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
2792 if (decl != 0)
2793 type = build_type_attribute_variant (type, type_attr_list);
2794 else
2795 TYPE_ATTRIBUTES (type) = type_attr_list;
2798 if (decl != 0)
2799 TREE_TYPE (decl) = type;
2801 validated = 1;
2804 /* Handle putting a type attribute on pointer-to-function-type by putting
2805 the attribute on the function type. */
2806 else if (POINTER_TYPE_P (type)
2807 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
2808 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
2809 attr_name, attr_args))
2811 tree inner_type = TREE_TYPE (type);
2812 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
2813 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2814 type_attr_list);
2816 if (attr != NULL_TREE)
2817 TREE_VALUE (attr) = attr_args;
2818 else
2820 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
2821 inner_type = build_type_attribute_variant (inner_type,
2822 inner_attr_list);
2825 if (decl != 0)
2826 TREE_TYPE (decl) = build_pointer_type (inner_type);
2827 else
2829 /* Clear TYPE_POINTER_TO for the old inner type, since
2830 `type' won't be pointing to it anymore. */
2831 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
2832 TREE_TYPE (type) = inner_type;
2835 validated = 1;
2837 #endif
2839 return validated;
2842 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2843 or zero if not.
2845 We try both `text' and `__text__', ATTR may be either one. */
2846 /* ??? It might be a reasonable simplification to require ATTR to be only
2847 `text'. One might then also require attribute lists to be stored in
2848 their canonicalized form. */
2851 is_attribute_p (attr, ident)
2852 const char *attr;
2853 tree ident;
2855 int ident_len, attr_len;
2856 const char *p;
2858 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2859 return 0;
2861 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2862 return 1;
2864 p = IDENTIFIER_POINTER (ident);
2865 ident_len = strlen (p);
2866 attr_len = strlen (attr);
2868 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2869 if (attr[0] == '_')
2871 if (attr[1] != '_'
2872 || attr[attr_len - 2] != '_'
2873 || attr[attr_len - 1] != '_')
2874 abort ();
2875 if (ident_len == attr_len - 4
2876 && strncmp (attr + 2, p, attr_len - 4) == 0)
2877 return 1;
2879 else
2881 if (ident_len == attr_len + 4
2882 && p[0] == '_' && p[1] == '_'
2883 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2884 && strncmp (attr, p + 2, attr_len) == 0)
2885 return 1;
2888 return 0;
2891 /* Given an attribute name and a list of attributes, return a pointer to the
2892 attribute's list element if the attribute is part of the list, or NULL_TREE
2893 if not found. */
2895 tree
2896 lookup_attribute (attr_name, list)
2897 const char *attr_name;
2898 tree list;
2900 tree l;
2902 for (l = list; l; l = TREE_CHAIN (l))
2904 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2905 abort ();
2906 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2907 return l;
2910 return NULL_TREE;
2913 /* Return an attribute list that is the union of a1 and a2. */
2915 tree
2916 merge_attributes (a1, a2)
2917 register tree a1, a2;
2919 tree attributes;
2921 /* Either one unset? Take the set one. */
2923 if ((attributes = a1) == 0)
2924 attributes = a2;
2926 /* One that completely contains the other? Take it. */
2928 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2930 if (attribute_list_contained (a2, a1))
2931 attributes = a2;
2932 else
2934 /* Pick the longest list, and hang on the other list. */
2935 /* ??? For the moment we punt on the issue of attrs with args. */
2937 if (list_length (a1) < list_length (a2))
2938 attributes = a2, a2 = a1;
2940 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2941 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2942 attributes) == NULL_TREE)
2944 a1 = copy_node (a2);
2945 TREE_CHAIN (a1) = attributes;
2946 attributes = a1;
2950 return attributes;
2953 /* Given types T1 and T2, merge their attributes and return
2954 the result. */
2956 tree
2957 merge_machine_type_attributes (t1, t2)
2958 tree t1, t2;
2960 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
2961 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
2962 #else
2963 return merge_attributes (TYPE_ATTRIBUTES (t1),
2964 TYPE_ATTRIBUTES (t2));
2965 #endif
2968 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2969 the result. */
2971 tree
2972 merge_machine_decl_attributes (olddecl, newdecl)
2973 tree olddecl, newdecl;
2975 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
2976 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
2977 #else
2978 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
2979 DECL_MACHINE_ATTRIBUTES (newdecl));
2980 #endif
2983 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2984 of the various TYPE_QUAL values. */
2986 static void
2987 set_type_quals (type, type_quals)
2988 tree type;
2989 int type_quals;
2991 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2992 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2993 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2996 /* Return a version of the TYPE, qualified as indicated by the
2997 TYPE_QUALS, if one exists. If no qualified version exists yet,
2998 return NULL_TREE. */
3000 tree
3001 get_qualified_type (type, type_quals)
3002 tree type;
3003 int type_quals;
3005 tree t;
3007 /* Search the chain of variants to see if there is already one there just
3008 like the one we need to have. If so, use that existing one. We must
3009 preserve the TYPE_NAME, since there is code that depends on this. */
3010 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3011 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3012 return t;
3014 return NULL_TREE;
3017 /* Like get_qualified_type, but creates the type if it does not
3018 exist. This function never returns NULL_TREE. */
3020 tree
3021 build_qualified_type (type, type_quals)
3022 tree type;
3023 int type_quals;
3025 tree t;
3027 /* See if we already have the appropriate qualified variant. */
3028 t = get_qualified_type (type, type_quals);
3030 /* If not, build it. */
3031 if (!t)
3033 t = build_type_copy (type);
3034 set_type_quals (t, type_quals);
3037 return t;
3040 /* Create a new variant of TYPE, equivalent but distinct.
3041 This is so the caller can modify it. */
3043 tree
3044 build_type_copy (type)
3045 tree type;
3047 register tree t, m = TYPE_MAIN_VARIANT (type);
3049 t = copy_node (type);
3051 TYPE_POINTER_TO (t) = 0;
3052 TYPE_REFERENCE_TO (t) = 0;
3054 /* Add this type to the chain of variants of TYPE. */
3055 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3056 TYPE_NEXT_VARIANT (m) = t;
3058 return t;
3061 /* Hashing of types so that we don't make duplicates.
3062 The entry point is `type_hash_canon'. */
3064 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3065 with types in the TREE_VALUE slots), by adding the hash codes
3066 of the individual types. */
3068 unsigned int
3069 type_hash_list (list)
3070 tree list;
3072 unsigned int hashcode;
3073 register tree tail;
3075 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3076 hashcode += TYPE_HASH (TREE_VALUE (tail));
3078 return hashcode;
3081 /* These are the Hashtable callback functions. */
3083 /* Returns true if the types are equal. */
3085 static int
3086 type_hash_eq (va, vb)
3087 const void *va;
3088 const void *vb;
3090 const struct type_hash *a = va, *b = vb;
3091 if (a->hash == b->hash
3092 && TREE_CODE (a->type) == TREE_CODE (b->type)
3093 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3094 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3095 TYPE_ATTRIBUTES (b->type))
3096 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3097 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3098 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3099 TYPE_MAX_VALUE (b->type)))
3100 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3101 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3102 TYPE_MIN_VALUE (b->type)))
3103 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3104 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3105 || (TYPE_DOMAIN (a->type)
3106 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3107 && TYPE_DOMAIN (b->type)
3108 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3109 && type_list_equal (TYPE_DOMAIN (a->type),
3110 TYPE_DOMAIN (b->type)))))
3111 return 1;
3112 return 0;
3115 /* Return the cached hash value. */
3117 static unsigned int
3118 type_hash_hash (item)
3119 const void *item;
3121 return ((const struct type_hash *) item)->hash;
3124 /* Look in the type hash table for a type isomorphic to TYPE.
3125 If one is found, return it. Otherwise return 0. */
3127 tree
3128 type_hash_lookup (hashcode, type)
3129 unsigned int hashcode;
3130 tree type;
3132 struct type_hash *h, in;
3134 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3135 must call that routine before comparing TYPE_ALIGNs. */
3136 layout_type (type);
3138 in.hash = hashcode;
3139 in.type = type;
3141 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3142 if (h)
3143 return h->type;
3144 return NULL_TREE;
3147 /* Add an entry to the type-hash-table
3148 for a type TYPE whose hash code is HASHCODE. */
3150 void
3151 type_hash_add (hashcode, type)
3152 unsigned int hashcode;
3153 tree type;
3155 struct type_hash *h;
3156 void **loc;
3158 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3159 h->hash = hashcode;
3160 h->type = type;
3161 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3162 *(struct type_hash **) loc = h;
3165 /* Given TYPE, and HASHCODE its hash code, return the canonical
3166 object for an identical type if one already exists.
3167 Otherwise, return TYPE, and record it as the canonical object
3168 if it is a permanent object.
3170 To use this function, first create a type of the sort you want.
3171 Then compute its hash code from the fields of the type that
3172 make it different from other similar types.
3173 Then call this function and use the value.
3174 This function frees the type you pass in if it is a duplicate. */
3176 /* Set to 1 to debug without canonicalization. Never set by program. */
3177 int debug_no_type_hash = 0;
3179 tree
3180 type_hash_canon (hashcode, type)
3181 unsigned int hashcode;
3182 tree type;
3184 tree t1;
3186 if (debug_no_type_hash)
3187 return type;
3189 t1 = type_hash_lookup (hashcode, type);
3190 if (t1 != 0)
3192 #ifdef GATHER_STATISTICS
3193 tree_node_counts[(int) t_kind]--;
3194 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3195 #endif
3196 return t1;
3199 /* If this is a permanent type, record it for later reuse. */
3200 type_hash_add (hashcode, type);
3202 return type;
3205 /* Callback function for htab_traverse. */
3207 static int
3208 mark_hash_entry (entry, param)
3209 void **entry;
3210 void *param ATTRIBUTE_UNUSED;
3212 struct type_hash *p = *(struct type_hash **) entry;
3214 ggc_mark_tree (p->type);
3216 /* Continue scan. */
3217 return 1;
3220 /* Mark ARG (which is really a htab_t *) for GC. */
3222 static void
3223 mark_type_hash (arg)
3224 void *arg;
3226 htab_t t = *(htab_t *) arg;
3228 htab_traverse (t, mark_hash_entry, 0);
3231 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3232 `tree**') for GC. */
3234 static int
3235 mark_tree_hashtable_entry (entry, data)
3236 void **entry;
3237 void *data ATTRIBUTE_UNUSED;
3239 ggc_mark_tree ((tree) *entry);
3240 return 1;
3243 /* Mark ARG (which is really a htab_t whose slots are trees) for
3244 GC. */
3246 void
3247 mark_tree_hashtable (arg)
3248 void *arg;
3250 htab_t t = *(htab_t *) arg;
3251 htab_traverse (t, mark_tree_hashtable_entry, 0);
3254 static void
3255 print_type_hash_statistics ()
3257 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3258 (long) htab_size (type_hash_table),
3259 (long) htab_elements (type_hash_table),
3260 htab_collisions (type_hash_table));
3263 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3264 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3265 by adding the hash codes of the individual attributes. */
3267 unsigned int
3268 attribute_hash_list (list)
3269 tree list;
3271 unsigned int hashcode;
3272 register tree tail;
3274 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3275 /* ??? Do we want to add in TREE_VALUE too? */
3276 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3277 return hashcode;
3280 /* Given two lists of attributes, return true if list l2 is
3281 equivalent to l1. */
3284 attribute_list_equal (l1, l2)
3285 tree l1, l2;
3287 return attribute_list_contained (l1, l2)
3288 && attribute_list_contained (l2, l1);
3291 /* Given two lists of attributes, return true if list L2 is
3292 completely contained within L1. */
3293 /* ??? This would be faster if attribute names were stored in a canonicalized
3294 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3295 must be used to show these elements are equivalent (which they are). */
3296 /* ??? It's not clear that attributes with arguments will always be handled
3297 correctly. */
3300 attribute_list_contained (l1, l2)
3301 tree l1, l2;
3303 register tree t1, t2;
3305 /* First check the obvious, maybe the lists are identical. */
3306 if (l1 == l2)
3307 return 1;
3309 /* Maybe the lists are similar. */
3310 for (t1 = l1, t2 = l2;
3311 t1 != 0 && t2 != 0
3312 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3313 && TREE_VALUE (t1) == TREE_VALUE (t2);
3314 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3316 /* Maybe the lists are equal. */
3317 if (t1 == 0 && t2 == 0)
3318 return 1;
3320 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3322 tree attr
3323 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3325 if (attr == 0)
3326 return 0;
3328 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3329 return 0;
3332 return 1;
3335 /* Given two lists of types
3336 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3337 return 1 if the lists contain the same types in the same order.
3338 Also, the TREE_PURPOSEs must match. */
3341 type_list_equal (l1, l2)
3342 tree l1, l2;
3344 register tree t1, t2;
3346 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3347 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3348 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3349 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3350 && (TREE_TYPE (TREE_PURPOSE (t1))
3351 == TREE_TYPE (TREE_PURPOSE (t2))))))
3352 return 0;
3354 return t1 == t2;
3357 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3358 given by TYPE. If the argument list accepts variable arguments,
3359 then this function counts only the ordinary arguments. */
3362 type_num_arguments (type)
3363 tree type;
3365 int i = 0;
3366 tree t;
3368 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3369 /* If the function does not take a variable number of arguments,
3370 the last element in the list will have type `void'. */
3371 if (VOID_TYPE_P (TREE_VALUE (t)))
3372 break;
3373 else
3374 ++i;
3376 return i;
3379 /* Nonzero if integer constants T1 and T2
3380 represent the same constant value. */
3383 tree_int_cst_equal (t1, t2)
3384 tree t1, t2;
3386 if (t1 == t2)
3387 return 1;
3389 if (t1 == 0 || t2 == 0)
3390 return 0;
3392 if (TREE_CODE (t1) == INTEGER_CST
3393 && TREE_CODE (t2) == INTEGER_CST
3394 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3395 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3396 return 1;
3398 return 0;
3401 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3402 The precise way of comparison depends on their data type. */
3405 tree_int_cst_lt (t1, t2)
3406 tree t1, t2;
3408 if (t1 == t2)
3409 return 0;
3411 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3412 return INT_CST_LT (t1, t2);
3414 return INT_CST_LT_UNSIGNED (t1, t2);
3417 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3420 tree_int_cst_compare (t1, t2)
3421 tree t1;
3422 tree t2;
3424 if (tree_int_cst_lt (t1, t2))
3425 return -1;
3426 else if (tree_int_cst_lt (t2, t1))
3427 return 1;
3428 else
3429 return 0;
3432 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3433 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3436 host_integerp (t, pos)
3437 tree t;
3438 int pos;
3440 return (TREE_CODE (t) == INTEGER_CST
3441 && ! TREE_OVERFLOW (t)
3442 && ((TREE_INT_CST_HIGH (t) == 0
3443 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3444 || (! pos && TREE_INT_CST_HIGH (t) == -1
3445 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3446 || (! pos && TREE_INT_CST_HIGH (t) == 0
3447 && TREE_UNSIGNED (TREE_TYPE (t)))));
3450 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3451 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3452 be positive. Abort if we cannot satisfy the above conditions. */
3454 HOST_WIDE_INT
3455 tree_low_cst (t, pos)
3456 tree t;
3457 int pos;
3459 if (host_integerp (t, pos))
3460 return TREE_INT_CST_LOW (t);
3461 else
3462 abort ();
3465 /* Return the most significant bit of the integer constant T. */
3468 tree_int_cst_msb (t)
3469 tree t;
3471 register int prec;
3472 HOST_WIDE_INT h;
3473 unsigned HOST_WIDE_INT l;
3475 /* Note that using TYPE_PRECISION here is wrong. We care about the
3476 actual bits, not the (arbitrary) range of the type. */
3477 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3478 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3479 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3480 return (l & 1) == 1;
3483 /* Return an indication of the sign of the integer constant T.
3484 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3485 Note that -1 will never be returned it T's type is unsigned. */
3488 tree_int_cst_sgn (t)
3489 tree t;
3491 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3492 return 0;
3493 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3494 return 1;
3495 else if (TREE_INT_CST_HIGH (t) < 0)
3496 return -1;
3497 else
3498 return 1;
3501 /* Compare two constructor-element-type constants. Return 1 if the lists
3502 are known to be equal; otherwise return 0. */
3505 simple_cst_list_equal (l1, l2)
3506 tree l1, l2;
3508 while (l1 != NULL_TREE && l2 != NULL_TREE)
3510 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3511 return 0;
3513 l1 = TREE_CHAIN (l1);
3514 l2 = TREE_CHAIN (l2);
3517 return l1 == l2;
3520 /* Return truthvalue of whether T1 is the same tree structure as T2.
3521 Return 1 if they are the same.
3522 Return 0 if they are understandably different.
3523 Return -1 if either contains tree structure not understood by
3524 this function. */
3527 simple_cst_equal (t1, t2)
3528 tree t1, t2;
3530 register enum tree_code code1, code2;
3531 int cmp;
3532 int i;
3534 if (t1 == t2)
3535 return 1;
3536 if (t1 == 0 || t2 == 0)
3537 return 0;
3539 code1 = TREE_CODE (t1);
3540 code2 = TREE_CODE (t2);
3542 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3544 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3545 || code2 == NON_LVALUE_EXPR)
3546 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3547 else
3548 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3551 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3552 || code2 == NON_LVALUE_EXPR)
3553 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3555 if (code1 != code2)
3556 return 0;
3558 switch (code1)
3560 case INTEGER_CST:
3561 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3562 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3564 case REAL_CST:
3565 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3567 case STRING_CST:
3568 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3569 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3570 TREE_STRING_LENGTH (t1)));
3572 case CONSTRUCTOR:
3573 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3574 return 1;
3575 else
3576 abort ();
3578 case SAVE_EXPR:
3579 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3581 case CALL_EXPR:
3582 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3583 if (cmp <= 0)
3584 return cmp;
3585 return
3586 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3588 case TARGET_EXPR:
3589 /* Special case: if either target is an unallocated VAR_DECL,
3590 it means that it's going to be unified with whatever the
3591 TARGET_EXPR is really supposed to initialize, so treat it
3592 as being equivalent to anything. */
3593 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3594 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3595 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3596 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3597 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3598 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3599 cmp = 1;
3600 else
3601 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3603 if (cmp <= 0)
3604 return cmp;
3606 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3608 case WITH_CLEANUP_EXPR:
3609 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3610 if (cmp <= 0)
3611 return cmp;
3613 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3615 case COMPONENT_REF:
3616 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3617 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3619 return 0;
3621 case VAR_DECL:
3622 case PARM_DECL:
3623 case CONST_DECL:
3624 case FUNCTION_DECL:
3625 return 0;
3627 default:
3628 break;
3631 /* This general rule works for most tree codes. All exceptions should be
3632 handled above. If this is a language-specific tree code, we can't
3633 trust what might be in the operand, so say we don't know
3634 the situation. */
3635 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3636 return -1;
3638 switch (TREE_CODE_CLASS (code1))
3640 case '1':
3641 case '2':
3642 case '<':
3643 case 'e':
3644 case 'r':
3645 case 's':
3646 cmp = 1;
3647 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3649 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3650 if (cmp <= 0)
3651 return cmp;
3654 return cmp;
3656 default:
3657 return -1;
3661 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3662 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3663 than U, respectively. */
3666 compare_tree_int (t, u)
3667 tree t;
3668 unsigned int u;
3670 if (tree_int_cst_sgn (t) < 0)
3671 return -1;
3672 else if (TREE_INT_CST_HIGH (t) != 0)
3673 return 1;
3674 else if (TREE_INT_CST_LOW (t) == u)
3675 return 0;
3676 else if (TREE_INT_CST_LOW (t) < u)
3677 return -1;
3678 else
3679 return 1;
3682 /* Constructors for pointer, array and function types.
3683 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3684 constructed by language-dependent code, not here.) */
3686 /* Construct, lay out and return the type of pointers to TO_TYPE.
3687 If such a type has already been constructed, reuse it. */
3689 tree
3690 build_pointer_type (to_type)
3691 tree to_type;
3693 register tree t = TYPE_POINTER_TO (to_type);
3695 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3697 if (t != 0)
3698 return t;
3700 /* We need a new one. */
3701 t = make_node (POINTER_TYPE);
3703 TREE_TYPE (t) = to_type;
3705 /* Record this type as the pointer to TO_TYPE. */
3706 TYPE_POINTER_TO (to_type) = t;
3708 /* Lay out the type. This function has many callers that are concerned
3709 with expression-construction, and this simplifies them all.
3710 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3711 layout_type (t);
3713 return t;
3716 /* Build the node for the type of references-to-TO_TYPE. */
3718 tree
3719 build_reference_type (to_type)
3720 tree to_type;
3722 register tree t = TYPE_REFERENCE_TO (to_type);
3724 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3726 if (t)
3727 return t;
3729 /* We need a new one. */
3730 t = make_node (REFERENCE_TYPE);
3732 TREE_TYPE (t) = to_type;
3734 /* Record this type as the pointer to TO_TYPE. */
3735 TYPE_REFERENCE_TO (to_type) = t;
3737 layout_type (t);
3739 return t;
3742 /* Build a type that is compatible with t but has no cv quals anywhere
3743 in its type, thus
3745 const char *const *const * -> char ***. */
3747 tree
3748 build_type_no_quals (t)
3749 tree t;
3751 switch (TREE_CODE (t))
3753 case POINTER_TYPE:
3754 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3755 case REFERENCE_TYPE:
3756 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3757 default:
3758 return TYPE_MAIN_VARIANT (t);
3762 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3763 MAXVAL should be the maximum value in the domain
3764 (one less than the length of the array).
3766 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3767 We don't enforce this limit, that is up to caller (e.g. language front end).
3768 The limit exists because the result is a signed type and we don't handle
3769 sizes that use more than one HOST_WIDE_INT. */
3771 tree
3772 build_index_type (maxval)
3773 tree maxval;
3775 register tree itype = make_node (INTEGER_TYPE);
3777 TREE_TYPE (itype) = sizetype;
3778 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3779 TYPE_MIN_VALUE (itype) = size_zero_node;
3780 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3781 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3782 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3783 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3784 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3785 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3787 if (host_integerp (maxval, 1))
3788 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3789 else
3790 return itype;
3793 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3794 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3795 low bound LOWVAL and high bound HIGHVAL.
3796 if TYPE==NULL_TREE, sizetype is used. */
3798 tree
3799 build_range_type (type, lowval, highval)
3800 tree type, lowval, highval;
3802 register tree itype = make_node (INTEGER_TYPE);
3804 TREE_TYPE (itype) = type;
3805 if (type == NULL_TREE)
3806 type = sizetype;
3808 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3809 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3811 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3812 TYPE_MODE (itype) = TYPE_MODE (type);
3813 TYPE_SIZE (itype) = TYPE_SIZE (type);
3814 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3815 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3816 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3818 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3819 return type_hash_canon (tree_low_cst (highval, 0)
3820 - tree_low_cst (lowval, 0),
3821 itype);
3822 else
3823 return itype;
3826 /* Just like build_index_type, but takes lowval and highval instead
3827 of just highval (maxval). */
3829 tree
3830 build_index_2_type (lowval,highval)
3831 tree lowval, highval;
3833 return build_range_type (sizetype, lowval, highval);
3836 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3837 Needed because when index types are not hashed, equal index types
3838 built at different times appear distinct, even though structurally,
3839 they are not. */
3842 index_type_equal (itype1, itype2)
3843 tree itype1, itype2;
3845 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3846 return 0;
3848 if (TREE_CODE (itype1) == INTEGER_TYPE)
3850 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3851 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3852 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3853 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3854 return 0;
3856 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3857 TYPE_MIN_VALUE (itype2))
3858 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3859 TYPE_MAX_VALUE (itype2)))
3860 return 1;
3863 return 0;
3866 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3867 and number of elements specified by the range of values of INDEX_TYPE.
3868 If such a type has already been constructed, reuse it. */
3870 tree
3871 build_array_type (elt_type, index_type)
3872 tree elt_type, index_type;
3874 register tree t;
3875 unsigned int hashcode;
3877 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3879 error ("arrays of functions are not meaningful");
3880 elt_type = integer_type_node;
3883 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3884 build_pointer_type (elt_type);
3886 /* Allocate the array after the pointer type,
3887 in case we free it in type_hash_canon. */
3888 t = make_node (ARRAY_TYPE);
3889 TREE_TYPE (t) = elt_type;
3890 TYPE_DOMAIN (t) = index_type;
3892 if (index_type == 0)
3894 return t;
3897 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3898 t = type_hash_canon (hashcode, t);
3900 if (!COMPLETE_TYPE_P (t))
3901 layout_type (t);
3902 return t;
3905 /* Return the TYPE of the elements comprising
3906 the innermost dimension of ARRAY. */
3908 tree
3909 get_inner_array_type (array)
3910 tree array;
3912 tree type = TREE_TYPE (array);
3914 while (TREE_CODE (type) == ARRAY_TYPE)
3915 type = TREE_TYPE (type);
3917 return type;
3920 /* Construct, lay out and return
3921 the type of functions returning type VALUE_TYPE
3922 given arguments of types ARG_TYPES.
3923 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3924 are data type nodes for the arguments of the function.
3925 If such a type has already been constructed, reuse it. */
3927 tree
3928 build_function_type (value_type, arg_types)
3929 tree value_type, arg_types;
3931 register tree t;
3932 unsigned int hashcode;
3934 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3936 error ("function return type cannot be function");
3937 value_type = integer_type_node;
3940 /* Make a node of the sort we want. */
3941 t = make_node (FUNCTION_TYPE);
3942 TREE_TYPE (t) = value_type;
3943 TYPE_ARG_TYPES (t) = arg_types;
3945 /* If we already have such a type, use the old one and free this one. */
3946 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3947 t = type_hash_canon (hashcode, t);
3949 if (!COMPLETE_TYPE_P (t))
3950 layout_type (t);
3951 return t;
3954 /* Construct, lay out and return the type of methods belonging to class
3955 BASETYPE and whose arguments and values are described by TYPE.
3956 If that type exists already, reuse it.
3957 TYPE must be a FUNCTION_TYPE node. */
3959 tree
3960 build_method_type (basetype, type)
3961 tree basetype, type;
3963 register tree t;
3964 unsigned int hashcode;
3966 /* Make a node of the sort we want. */
3967 t = make_node (METHOD_TYPE);
3969 if (TREE_CODE (type) != FUNCTION_TYPE)
3970 abort ();
3972 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3973 TREE_TYPE (t) = TREE_TYPE (type);
3975 /* The actual arglist for this function includes a "hidden" argument
3976 which is "this". Put it into the list of argument types. */
3978 TYPE_ARG_TYPES (t)
3979 = tree_cons (NULL_TREE,
3980 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3982 /* If we already have such a type, use the old one and free this one. */
3983 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3984 t = type_hash_canon (hashcode, t);
3986 if (!COMPLETE_TYPE_P (t))
3987 layout_type (t);
3989 return t;
3992 /* Construct, lay out and return the type of offsets to a value
3993 of type TYPE, within an object of type BASETYPE.
3994 If a suitable offset type exists already, reuse it. */
3996 tree
3997 build_offset_type (basetype, type)
3998 tree basetype, type;
4000 register tree t;
4001 unsigned int hashcode;
4003 /* Make a node of the sort we want. */
4004 t = make_node (OFFSET_TYPE);
4006 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4007 TREE_TYPE (t) = type;
4009 /* If we already have such a type, use the old one and free this one. */
4010 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4011 t = type_hash_canon (hashcode, t);
4013 if (!COMPLETE_TYPE_P (t))
4014 layout_type (t);
4016 return t;
4019 /* Create a complex type whose components are COMPONENT_TYPE. */
4021 tree
4022 build_complex_type (component_type)
4023 tree component_type;
4025 register tree t;
4026 unsigned int hashcode;
4028 /* Make a node of the sort we want. */
4029 t = make_node (COMPLEX_TYPE);
4031 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4032 set_type_quals (t, TYPE_QUALS (component_type));
4034 /* If we already have such a type, use the old one and free this one. */
4035 hashcode = TYPE_HASH (component_type);
4036 t = type_hash_canon (hashcode, t);
4038 if (!COMPLETE_TYPE_P (t))
4039 layout_type (t);
4041 /* If we are writing Dwarf2 output we need to create a name,
4042 since complex is a fundamental type. */
4043 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4045 const char *name;
4046 if (component_type == char_type_node)
4047 name = "complex char";
4048 else if (component_type == signed_char_type_node)
4049 name = "complex signed char";
4050 else if (component_type == unsigned_char_type_node)
4051 name = "complex unsigned char";
4052 else if (component_type == short_integer_type_node)
4053 name = "complex short int";
4054 else if (component_type == short_unsigned_type_node)
4055 name = "complex short unsigned int";
4056 else if (component_type == integer_type_node)
4057 name = "complex int";
4058 else if (component_type == unsigned_type_node)
4059 name = "complex unsigned int";
4060 else if (component_type == long_integer_type_node)
4061 name = "complex long int";
4062 else if (component_type == long_unsigned_type_node)
4063 name = "complex long unsigned int";
4064 else if (component_type == long_long_integer_type_node)
4065 name = "complex long long int";
4066 else if (component_type == long_long_unsigned_type_node)
4067 name = "complex long long unsigned int";
4068 else
4069 name = 0;
4071 if (name != 0)
4072 TYPE_NAME (t) = get_identifier (name);
4075 return t;
4078 /* Return OP, stripped of any conversions to wider types as much as is safe.
4079 Converting the value back to OP's type makes a value equivalent to OP.
4081 If FOR_TYPE is nonzero, we return a value which, if converted to
4082 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4084 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4085 narrowest type that can hold the value, even if they don't exactly fit.
4086 Otherwise, bit-field references are changed to a narrower type
4087 only if they can be fetched directly from memory in that type.
4089 OP must have integer, real or enumeral type. Pointers are not allowed!
4091 There are some cases where the obvious value we could return
4092 would regenerate to OP if converted to OP's type,
4093 but would not extend like OP to wider types.
4094 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4095 For example, if OP is (unsigned short)(signed char)-1,
4096 we avoid returning (signed char)-1 if FOR_TYPE is int,
4097 even though extending that to an unsigned short would regenerate OP,
4098 since the result of extending (signed char)-1 to (int)
4099 is different from (int) OP. */
4101 tree
4102 get_unwidened (op, for_type)
4103 register tree op;
4104 tree for_type;
4106 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4107 register tree type = TREE_TYPE (op);
4108 register unsigned final_prec
4109 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4110 register int uns
4111 = (for_type != 0 && for_type != type
4112 && final_prec > TYPE_PRECISION (type)
4113 && TREE_UNSIGNED (type));
4114 register tree win = op;
4116 while (TREE_CODE (op) == NOP_EXPR)
4118 register int bitschange
4119 = TYPE_PRECISION (TREE_TYPE (op))
4120 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4122 /* Truncations are many-one so cannot be removed.
4123 Unless we are later going to truncate down even farther. */
4124 if (bitschange < 0
4125 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4126 break;
4128 /* See what's inside this conversion. If we decide to strip it,
4129 we will set WIN. */
4130 op = TREE_OPERAND (op, 0);
4132 /* If we have not stripped any zero-extensions (uns is 0),
4133 we can strip any kind of extension.
4134 If we have previously stripped a zero-extension,
4135 only zero-extensions can safely be stripped.
4136 Any extension can be stripped if the bits it would produce
4137 are all going to be discarded later by truncating to FOR_TYPE. */
4139 if (bitschange > 0)
4141 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4142 win = op;
4143 /* TREE_UNSIGNED says whether this is a zero-extension.
4144 Let's avoid computing it if it does not affect WIN
4145 and if UNS will not be needed again. */
4146 if ((uns || TREE_CODE (op) == NOP_EXPR)
4147 && TREE_UNSIGNED (TREE_TYPE (op)))
4149 uns = 1;
4150 win = op;
4155 if (TREE_CODE (op) == COMPONENT_REF
4156 /* Since type_for_size always gives an integer type. */
4157 && TREE_CODE (type) != REAL_TYPE
4158 /* Don't crash if field not laid out yet. */
4159 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4160 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4162 unsigned int innerprec
4163 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4165 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4167 /* We can get this structure field in the narrowest type it fits in.
4168 If FOR_TYPE is 0, do this only for a field that matches the
4169 narrower type exactly and is aligned for it
4170 The resulting extension to its nominal type (a fullword type)
4171 must fit the same conditions as for other extensions. */
4173 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4174 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4175 && (! uns || final_prec <= innerprec
4176 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4177 && type != 0)
4179 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4180 TREE_OPERAND (op, 1));
4181 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4182 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4186 return win;
4189 /* Return OP or a simpler expression for a narrower value
4190 which can be sign-extended or zero-extended to give back OP.
4191 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4192 or 0 if the value should be sign-extended. */
4194 tree
4195 get_narrower (op, unsignedp_ptr)
4196 register tree op;
4197 int *unsignedp_ptr;
4199 register int uns = 0;
4200 int first = 1;
4201 register tree win = op;
4203 while (TREE_CODE (op) == NOP_EXPR)
4205 register int bitschange
4206 = (TYPE_PRECISION (TREE_TYPE (op))
4207 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4209 /* Truncations are many-one so cannot be removed. */
4210 if (bitschange < 0)
4211 break;
4213 /* See what's inside this conversion. If we decide to strip it,
4214 we will set WIN. */
4215 op = TREE_OPERAND (op, 0);
4217 if (bitschange > 0)
4219 /* An extension: the outermost one can be stripped,
4220 but remember whether it is zero or sign extension. */
4221 if (first)
4222 uns = TREE_UNSIGNED (TREE_TYPE (op));
4223 /* Otherwise, if a sign extension has been stripped,
4224 only sign extensions can now be stripped;
4225 if a zero extension has been stripped, only zero-extensions. */
4226 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4227 break;
4228 first = 0;
4230 else /* bitschange == 0 */
4232 /* A change in nominal type can always be stripped, but we must
4233 preserve the unsignedness. */
4234 if (first)
4235 uns = TREE_UNSIGNED (TREE_TYPE (op));
4236 first = 0;
4239 win = op;
4242 if (TREE_CODE (op) == COMPONENT_REF
4243 /* Since type_for_size always gives an integer type. */
4244 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4245 /* Ensure field is laid out already. */
4246 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4248 unsigned HOST_WIDE_INT innerprec
4249 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4250 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4252 /* We can get this structure field in a narrower type that fits it,
4253 but the resulting extension to its nominal type (a fullword type)
4254 must satisfy the same conditions as for other extensions.
4256 Do this only for fields that are aligned (not bit-fields),
4257 because when bit-field insns will be used there is no
4258 advantage in doing this. */
4260 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4261 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4262 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4263 && type != 0)
4265 if (first)
4266 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4267 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4268 TREE_OPERAND (op, 1));
4269 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4270 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4273 *unsignedp_ptr = uns;
4274 return win;
4277 /* Nonzero if integer constant C has a value that is permissible
4278 for type TYPE (an INTEGER_TYPE). */
4281 int_fits_type_p (c, type)
4282 tree c, type;
4284 /* If the bounds of the type are integers, we can check ourselves.
4285 Otherwise,. use force_fit_type, which checks against the precision. */
4286 if (TYPE_MAX_VALUE (type) != NULL_TREE
4287 && TYPE_MIN_VALUE (type) != NULL_TREE
4288 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4289 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4291 if (TREE_UNSIGNED (type))
4292 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4293 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4294 /* Negative ints never fit unsigned types. */
4295 && ! (TREE_INT_CST_HIGH (c) < 0
4296 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4297 else
4298 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4299 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4300 /* Unsigned ints with top bit set never fit signed types. */
4301 && ! (TREE_INT_CST_HIGH (c) < 0
4302 && TREE_UNSIGNED (TREE_TYPE (c))));
4304 else
4306 c = copy_node (c);
4307 TREE_TYPE (c) = type;
4308 return !force_fit_type (c, 0);
4312 /* Given a DECL or TYPE, return the scope in which it was declared, or
4313 NULL_TREE if there is no containing scope. */
4315 tree
4316 get_containing_scope (t)
4317 tree t;
4319 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4322 /* Return the innermost context enclosing DECL that is
4323 a FUNCTION_DECL, or zero if none. */
4325 tree
4326 decl_function_context (decl)
4327 tree decl;
4329 tree context;
4331 if (TREE_CODE (decl) == ERROR_MARK)
4332 return 0;
4334 if (TREE_CODE (decl) == SAVE_EXPR)
4335 context = SAVE_EXPR_CONTEXT (decl);
4337 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4338 where we look up the function at runtime. Such functions always take
4339 a first argument of type 'pointer to real context'.
4341 C++ should really be fixed to use DECL_CONTEXT for the real context,
4342 and use something else for the "virtual context". */
4343 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4344 context
4345 = TYPE_MAIN_VARIANT
4346 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4347 else
4348 context = DECL_CONTEXT (decl);
4350 while (context && TREE_CODE (context) != FUNCTION_DECL)
4352 if (TREE_CODE (context) == BLOCK)
4353 context = BLOCK_SUPERCONTEXT (context);
4354 else
4355 context = get_containing_scope (context);
4358 return context;
4361 /* Return the innermost context enclosing DECL that is
4362 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4363 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4365 tree
4366 decl_type_context (decl)
4367 tree decl;
4369 tree context = DECL_CONTEXT (decl);
4371 while (context)
4373 if (TREE_CODE (context) == RECORD_TYPE
4374 || TREE_CODE (context) == UNION_TYPE
4375 || TREE_CODE (context) == QUAL_UNION_TYPE)
4376 return context;
4378 if (TREE_CODE (context) == TYPE_DECL
4379 || TREE_CODE (context) == FUNCTION_DECL)
4380 context = DECL_CONTEXT (context);
4382 else if (TREE_CODE (context) == BLOCK)
4383 context = BLOCK_SUPERCONTEXT (context);
4385 else
4386 /* Unhandled CONTEXT!? */
4387 abort ();
4389 return NULL_TREE;
4392 /* CALL is a CALL_EXPR. Return the declaration for the function
4393 called, or NULL_TREE if the called function cannot be
4394 determined. */
4396 tree
4397 get_callee_fndecl (call)
4398 tree call;
4400 tree addr;
4402 /* It's invalid to call this function with anything but a
4403 CALL_EXPR. */
4404 if (TREE_CODE (call) != CALL_EXPR)
4405 abort ();
4407 /* The first operand to the CALL is the address of the function
4408 called. */
4409 addr = TREE_OPERAND (call, 0);
4411 STRIP_NOPS (addr);
4413 /* If this is a readonly function pointer, extract its initial value. */
4414 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4415 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4416 && DECL_INITIAL (addr))
4417 addr = DECL_INITIAL (addr);
4419 /* If the address is just `&f' for some function `f', then we know
4420 that `f' is being called. */
4421 if (TREE_CODE (addr) == ADDR_EXPR
4422 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4423 return TREE_OPERAND (addr, 0);
4425 /* We couldn't figure out what was being called. */
4426 return NULL_TREE;
4429 /* Print debugging information about the obstack O, named STR. */
4431 void
4432 print_obstack_statistics (str, o)
4433 const char *str;
4434 struct obstack *o;
4436 struct _obstack_chunk *chunk = o->chunk;
4437 int n_chunks = 1;
4438 int n_alloc = 0;
4440 n_alloc += o->next_free - chunk->contents;
4441 chunk = chunk->prev;
4442 while (chunk)
4444 n_chunks += 1;
4445 n_alloc += chunk->limit - &chunk->contents[0];
4446 chunk = chunk->prev;
4448 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4449 str, n_alloc, n_chunks);
4452 /* Print debugging information about tree nodes generated during the compile,
4453 and any language-specific information. */
4455 void
4456 dump_tree_statistics ()
4458 #ifdef GATHER_STATISTICS
4459 int i;
4460 int total_nodes, total_bytes;
4461 #endif
4463 fprintf (stderr, "\n??? tree nodes created\n\n");
4464 #ifdef GATHER_STATISTICS
4465 fprintf (stderr, "Kind Nodes Bytes\n");
4466 fprintf (stderr, "-------------------------------------\n");
4467 total_nodes = total_bytes = 0;
4468 for (i = 0; i < (int) all_kinds; i++)
4470 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4471 tree_node_counts[i], tree_node_sizes[i]);
4472 total_nodes += tree_node_counts[i];
4473 total_bytes += tree_node_sizes[i];
4475 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4476 fprintf (stderr, "-------------------------------------\n");
4477 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4478 fprintf (stderr, "-------------------------------------\n");
4479 #else
4480 fprintf (stderr, "(No per-node statistics)\n");
4481 #endif
4482 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4483 print_type_hash_statistics ();
4484 print_lang_statistics ();
4487 #define FILE_FUNCTION_PREFIX_LEN 9
4489 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4491 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4492 clashes in cases where we can't reliably choose a unique name.
4494 Derived from mkstemp.c in libiberty. */
4496 static void
4497 append_random_chars (template)
4498 char *template;
4500 static const char letters[]
4501 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4502 static unsigned HOST_WIDE_INT value;
4503 unsigned HOST_WIDE_INT v;
4505 #ifdef HAVE_GETTIMEOFDAY
4506 struct timeval tv;
4507 #endif
4509 template += strlen (template);
4511 #ifdef HAVE_GETTIMEOFDAY
4512 /* Get some more or less random data. */
4513 gettimeofday (&tv, NULL);
4514 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4515 #else
4516 value += getpid ();
4517 #endif
4519 v = value;
4521 /* Fill in the random bits. */
4522 template[0] = letters[v % 62];
4523 v /= 62;
4524 template[1] = letters[v % 62];
4525 v /= 62;
4526 template[2] = letters[v % 62];
4527 v /= 62;
4528 template[3] = letters[v % 62];
4529 v /= 62;
4530 template[4] = letters[v % 62];
4531 v /= 62;
4532 template[5] = letters[v % 62];
4534 template[6] = '\0';
4537 /* P is a string that will be used in a symbol. Mask out any characters
4538 that are not valid in that context. */
4540 void
4541 clean_symbol_name (p)
4542 char *p;
4544 for (; *p; p++)
4545 if (! (ISDIGIT(*p)
4546 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4547 || *p == '$'
4548 #endif
4549 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4550 || *p == '.'
4551 #endif
4552 || ISUPPER (*p)
4553 || ISLOWER (*p)))
4554 *p = '_';
4557 /* Generate a name for a function unique to this translation unit.
4558 TYPE is some string to identify the purpose of this function to the
4559 linker or collect2. */
4561 tree
4562 get_file_function_name_long (type)
4563 const char *type;
4565 char *buf;
4566 const char *p;
4567 char *q;
4569 if (first_global_object_name)
4570 p = first_global_object_name;
4571 else
4573 /* We don't have anything that we know to be unique to this translation
4574 unit, so use what we do have and throw in some randomness. */
4576 const char *name = weak_global_object_name;
4577 const char *file = main_input_filename;
4579 if (! name)
4580 name = "";
4581 if (! file)
4582 file = input_filename;
4584 q = (char *) alloca (7 + strlen (name) + strlen (file));
4586 sprintf (q, "%s%s", name, file);
4587 append_random_chars (q);
4588 p = q;
4591 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4592 + strlen (type));
4594 /* Set up the name of the file-level functions we may need.
4595 Use a global object (which is already required to be unique over
4596 the program) rather than the file name (which imposes extra
4597 constraints). */
4598 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4600 /* Don't need to pull weird characters out of global names. */
4601 if (p != first_global_object_name)
4602 clean_symbol_name (buf + 11);
4604 return get_identifier (buf);
4607 /* If KIND=='I', return a suitable global initializer (constructor) name.
4608 If KIND=='D', return a suitable global clean-up (destructor) name. */
4610 tree
4611 get_file_function_name (kind)
4612 int kind;
4614 char p[2];
4616 p[0] = kind;
4617 p[1] = 0;
4619 return get_file_function_name_long (p);
4622 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4623 The result is placed in BUFFER (which has length BIT_SIZE),
4624 with one bit in each char ('\000' or '\001').
4626 If the constructor is constant, NULL_TREE is returned.
4627 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4629 tree
4630 get_set_constructor_bits (init, buffer, bit_size)
4631 tree init;
4632 char *buffer;
4633 int bit_size;
4635 int i;
4636 tree vals;
4637 HOST_WIDE_INT domain_min
4638 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4639 tree non_const_bits = NULL_TREE;
4641 for (i = 0; i < bit_size; i++)
4642 buffer[i] = 0;
4644 for (vals = TREE_OPERAND (init, 1);
4645 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4647 if (!host_integerp (TREE_VALUE (vals), 0)
4648 || (TREE_PURPOSE (vals) != NULL_TREE
4649 && !host_integerp (TREE_PURPOSE (vals), 0)))
4650 non_const_bits
4651 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4652 else if (TREE_PURPOSE (vals) != NULL_TREE)
4654 /* Set a range of bits to ones. */
4655 HOST_WIDE_INT lo_index
4656 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4657 HOST_WIDE_INT hi_index
4658 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4660 if (lo_index < 0 || lo_index >= bit_size
4661 || hi_index < 0 || hi_index >= bit_size)
4662 abort ();
4663 for (; lo_index <= hi_index; lo_index++)
4664 buffer[lo_index] = 1;
4666 else
4668 /* Set a single bit to one. */
4669 HOST_WIDE_INT index
4670 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4671 if (index < 0 || index >= bit_size)
4673 error ("invalid initializer for bit string");
4674 return NULL_TREE;
4676 buffer[index] = 1;
4679 return non_const_bits;
4682 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4683 The result is placed in BUFFER (which is an array of bytes).
4684 If the constructor is constant, NULL_TREE is returned.
4685 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4687 tree
4688 get_set_constructor_bytes (init, buffer, wd_size)
4689 tree init;
4690 unsigned char *buffer;
4691 int wd_size;
4693 int i;
4694 int set_word_size = BITS_PER_UNIT;
4695 int bit_size = wd_size * set_word_size;
4696 int bit_pos = 0;
4697 unsigned char *bytep = buffer;
4698 char *bit_buffer = (char *) alloca (bit_size);
4699 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4701 for (i = 0; i < wd_size; i++)
4702 buffer[i] = 0;
4704 for (i = 0; i < bit_size; i++)
4706 if (bit_buffer[i])
4708 if (BYTES_BIG_ENDIAN)
4709 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4710 else
4711 *bytep |= 1 << bit_pos;
4713 bit_pos++;
4714 if (bit_pos >= set_word_size)
4715 bit_pos = 0, bytep++;
4717 return non_const_bits;
4720 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4721 /* Complain that the tree code of NODE does not match the expected CODE.
4722 FILE, LINE, and FUNCTION are of the caller. */
4724 void
4725 tree_check_failed (node, code, file, line, function)
4726 const tree node;
4727 enum tree_code code;
4728 const char *file;
4729 int line;
4730 const char *function;
4732 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4733 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4734 function, trim_filename (file), line);
4737 /* Similar to above, except that we check for a class of tree
4738 code, given in CL. */
4740 void
4741 tree_class_check_failed (node, cl, file, line, function)
4742 const tree node;
4743 int cl;
4744 const char *file;
4745 int line;
4746 const char *function;
4748 internal_error
4749 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4750 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4751 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4754 #endif /* ENABLE_TREE_CHECKING */
4756 /* For a new vector type node T, build the information necessary for
4757 debuggint output. */
4759 static void
4760 finish_vector_type (t)
4761 tree t;
4763 layout_type (t);
4766 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4767 tree array = build_array_type (TREE_TYPE (t),
4768 build_index_type (index));
4769 tree rt = make_node (RECORD_TYPE);
4771 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4772 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4773 layout_type (rt);
4774 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4775 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4776 the representation type, and we want to find that die when looking up
4777 the vector type. This is most easily achieved by making the TYPE_UID
4778 numbers equal. */
4779 TYPE_UID (rt) = TYPE_UID (t);
4783 /* Create nodes for all integer types (and error_mark_node) using the sizes
4784 of C datatypes. The caller should call set_sizetype soon after calling
4785 this function to select one of the types as sizetype. */
4787 void
4788 build_common_tree_nodes (signed_char)
4789 int signed_char;
4791 error_mark_node = make_node (ERROR_MARK);
4792 TREE_TYPE (error_mark_node) = error_mark_node;
4794 initialize_sizetypes ();
4796 /* Define both `signed char' and `unsigned char'. */
4797 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4798 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4800 /* Define `char', which is like either `signed char' or `unsigned char'
4801 but not the same as either. */
4802 char_type_node
4803 = (signed_char
4804 ? make_signed_type (CHAR_TYPE_SIZE)
4805 : make_unsigned_type (CHAR_TYPE_SIZE));
4807 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4808 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4809 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4810 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4811 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4812 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4813 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4814 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4816 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4817 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4818 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4819 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4820 #if HOST_BITS_PER_WIDE_INT >= 64
4821 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4822 #endif
4824 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4825 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4826 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4827 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4828 #if HOST_BITS_PER_WIDE_INT >= 64
4829 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4830 #endif
4833 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4834 It will create several other common tree nodes. */
4836 void
4837 build_common_tree_nodes_2 (short_double)
4838 int short_double;
4840 /* Define these next since types below may used them. */
4841 integer_zero_node = build_int_2 (0, 0);
4842 integer_one_node = build_int_2 (1, 0);
4843 integer_minus_one_node = build_int_2 (-1, -1);
4845 size_zero_node = size_int (0);
4846 size_one_node = size_int (1);
4847 bitsize_zero_node = bitsize_int (0);
4848 bitsize_one_node = bitsize_int (1);
4849 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4851 void_type_node = make_node (VOID_TYPE);
4852 layout_type (void_type_node);
4854 /* We are not going to have real types in C with less than byte alignment,
4855 so we might as well not have any types that claim to have it. */
4856 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4857 TYPE_USER_ALIGN (void_type_node) = 0;
4859 null_pointer_node = build_int_2 (0, 0);
4860 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4861 layout_type (TREE_TYPE (null_pointer_node));
4863 ptr_type_node = build_pointer_type (void_type_node);
4864 const_ptr_type_node
4865 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4867 float_type_node = make_node (REAL_TYPE);
4868 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4869 layout_type (float_type_node);
4871 double_type_node = make_node (REAL_TYPE);
4872 if (short_double)
4873 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4874 else
4875 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4876 layout_type (double_type_node);
4878 long_double_type_node = make_node (REAL_TYPE);
4879 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4880 layout_type (long_double_type_node);
4882 complex_integer_type_node = make_node (COMPLEX_TYPE);
4883 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4884 layout_type (complex_integer_type_node);
4886 complex_float_type_node = make_node (COMPLEX_TYPE);
4887 TREE_TYPE (complex_float_type_node) = float_type_node;
4888 layout_type (complex_float_type_node);
4890 complex_double_type_node = make_node (COMPLEX_TYPE);
4891 TREE_TYPE (complex_double_type_node) = double_type_node;
4892 layout_type (complex_double_type_node);
4894 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4895 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4896 layout_type (complex_long_double_type_node);
4899 tree t;
4900 BUILD_VA_LIST_TYPE (t);
4902 /* Many back-ends define record types without seting TYPE_NAME.
4903 If we copied the record type here, we'd keep the original
4904 record type without a name. This breaks name mangling. So,
4905 don't copy record types and let c_common_nodes_and_builtins()
4906 declare the type to be __builtin_va_list. */
4907 if (TREE_CODE (t) != RECORD_TYPE)
4908 t = build_type_copy (t);
4910 va_list_type_node = t;
4913 V4SF_type_node = make_node (VECTOR_TYPE);
4914 TREE_TYPE (V4SF_type_node) = float_type_node;
4915 TYPE_MODE (V4SF_type_node) = V4SFmode;
4916 finish_vector_type (V4SF_type_node);
4918 V4SI_type_node = make_node (VECTOR_TYPE);
4919 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4920 TYPE_MODE (V4SI_type_node) = V4SImode;
4921 finish_vector_type (V4SI_type_node);
4923 V2SI_type_node = make_node (VECTOR_TYPE);
4924 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4925 TYPE_MODE (V2SI_type_node) = V2SImode;
4926 finish_vector_type (V2SI_type_node);
4928 V4HI_type_node = make_node (VECTOR_TYPE);
4929 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4930 TYPE_MODE (V4HI_type_node) = V4HImode;
4931 finish_vector_type (V4HI_type_node);
4933 V8QI_type_node = make_node (VECTOR_TYPE);
4934 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4935 TYPE_MODE (V8QI_type_node) = V8QImode;
4936 finish_vector_type (V8QI_type_node);