1999-12-16 Mark Mitchell <mark@codesourcery.com>
[official-gcc.git] / boehm-gc / os_dep.c
blob362bd933822a73ec9f4a68b07b72137f50a97f41
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
17 # include "gc_priv.h"
19 # if defined(LINUX) && !defined(POWERPC)
20 # include <linux/version.h>
21 # if (LINUX_VERSION_CODE <= 0x10400)
22 /* Ugly hack to get struct sigcontext_struct definition. Required */
23 /* for some early 1.3.X releases. Will hopefully go away soon. */
24 /* in some later Linux releases, asm/sigcontext.h may have to */
25 /* be included instead. */
26 # define __KERNEL__
27 # include <asm/signal.h>
28 # undef __KERNEL__
29 # else
30 /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31 /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
32 /* prototypes, so we have to include the top-level sigcontext.h to */
33 /* make sure the former gets defined to be the latter if appropriate. */
34 # include <features.h>
35 # if 2 <= __GLIBC__
36 # if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 /* glibc 2.1 no longer has sigcontext.h. But signal.h */
38 /* has the right declaration for glibc 2.1. */
39 # include <sigcontext.h>
40 # endif /* 0 == __GLIBC_MINOR__ */
41 # else /* not 2 <= __GLIBC__ */
42 /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
43 /* one. Check LINUX_VERSION_CODE to see which we should reference. */
44 # include <asm/sigcontext.h>
45 # endif /* 2 <= __GLIBC__ */
46 # endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
49 # include <sys/types.h>
50 # if !defined(MSWIN32) && !defined(SUNOS4)
51 # include <unistd.h>
52 # endif
53 # endif
55 # include <stdio.h>
56 # include <signal.h>
58 /* Blatantly OS dependent routines, except for those that are related */
59 /* to dynamic loading. */
61 # if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
62 # define NEED_FIND_LIMIT
63 # endif
65 # if defined(IRIX_THREADS) || defined(HPUX_THREADS)
66 # define NEED_FIND_LIMIT
67 # endif
69 # if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
70 # define NEED_FIND_LIMIT
71 # endif
73 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
74 # define NEED_FIND_LIMIT
75 # endif
77 # if defined(LINUX) && \
78 (defined(SPARC) || defined(ALPHA) || defined(IA64))
79 # define NEED_FIND_LIMIT
80 # endif
82 #ifdef NEED_FIND_LIMIT
83 # include <setjmp.h>
84 #endif
86 #ifdef FREEBSD
87 # include <machine/trap.h>
88 #endif
90 #ifdef AMIGA
91 # include <proto/exec.h>
92 # include <proto/dos.h>
93 # include <dos/dosextens.h>
94 # include <workbench/startup.h>
95 #endif
97 #ifdef MSWIN32
98 # define WIN32_LEAN_AND_MEAN
99 # define NOSERVICE
100 # include <windows.h>
101 #endif
103 #ifdef MACOS
104 # include <Processes.h>
105 #endif
107 #ifdef IRIX5
108 # include <sys/uio.h>
109 # include <malloc.h> /* for locking */
110 #endif
111 #ifdef USE_MMAP
112 # include <sys/types.h>
113 # include <sys/mman.h>
114 # include <sys/stat.h>
115 # include <fcntl.h>
116 #endif
118 #ifdef SUNOS5SIGS
119 # include <sys/siginfo.h>
120 # undef setjmp
121 # undef longjmp
122 # define setjmp(env) sigsetjmp(env, 1)
123 # define longjmp(env, val) siglongjmp(env, val)
124 # define jmp_buf sigjmp_buf
125 #endif
127 #ifdef DJGPP
128 /* Apparently necessary for djgpp 2.01. May casuse problems with */
129 /* other versions. */
130 typedef long unsigned int caddr_t;
131 #endif
133 #ifdef PCR
134 # include "il/PCR_IL.h"
135 # include "th/PCR_ThCtl.h"
136 # include "mm/PCR_MM.h"
137 #endif
139 #if !defined(NO_EXECUTE_PERMISSION)
140 # define OPT_PROT_EXEC PROT_EXEC
141 #else
142 # define OPT_PROT_EXEC 0
143 #endif
145 #if defined(LINUX) && (defined(SPARC) || defined(ALPHA) || defined(IA64))
146 /* The I386 case can be handled without a search. The Alpha case */
147 /* used to be handled differently as well, but the rules changed */
148 /* for recent Linux versions. This seems to be the easiest way to */
149 /* cover all versions. */
150 ptr_t GC_data_start;
152 extern char * GC_copyright[]; /* Any data symbol would do. */
154 void GC_init_linux_data_start()
156 extern ptr_t GC_find_limit();
158 GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
160 #endif
162 # ifdef ECOS
164 # ifndef ECOS_GC_MEMORY_SIZE
165 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
166 # endif /* ECOS_GC_MEMORY_SIZE */
168 // setjmp() function, as described in ANSI para 7.6.1.1
169 #define setjmp( __env__ ) hal_setjmp( __env__ )
171 // FIXME: This is a simple way of allocating memory which is
172 // compatible with ECOS early releases. Later releases use a more
173 // sophisticated means of allocating memory than this simple static
174 // allocator, but this method is at least bound to work.
175 static char memory[ECOS_GC_MEMORY_SIZE];
176 static char *brk = memory;
178 static void *tiny_sbrk(ptrdiff_t increment)
180 void *p = brk;
182 brk += increment;
184 if (brk > memory + sizeof memory)
186 brk -= increment;
187 return NULL;
190 return p;
192 #define sbrk tiny_sbrk
193 # endif /* ECOS */
195 # ifdef OS2
197 # include <stddef.h>
199 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
201 struct exe_hdr {
202 unsigned short magic_number;
203 unsigned short padding[29];
204 long new_exe_offset;
207 #define E_MAGIC(x) (x).magic_number
208 #define EMAGIC 0x5A4D
209 #define E_LFANEW(x) (x).new_exe_offset
211 struct e32_exe {
212 unsigned char magic_number[2];
213 unsigned char byte_order;
214 unsigned char word_order;
215 unsigned long exe_format_level;
216 unsigned short cpu;
217 unsigned short os;
218 unsigned long padding1[13];
219 unsigned long object_table_offset;
220 unsigned long object_count;
221 unsigned long padding2[31];
224 #define E32_MAGIC1(x) (x).magic_number[0]
225 #define E32MAGIC1 'L'
226 #define E32_MAGIC2(x) (x).magic_number[1]
227 #define E32MAGIC2 'X'
228 #define E32_BORDER(x) (x).byte_order
229 #define E32LEBO 0
230 #define E32_WORDER(x) (x).word_order
231 #define E32LEWO 0
232 #define E32_CPU(x) (x).cpu
233 #define E32CPU286 1
234 #define E32_OBJTAB(x) (x).object_table_offset
235 #define E32_OBJCNT(x) (x).object_count
237 struct o32_obj {
238 unsigned long size;
239 unsigned long base;
240 unsigned long flags;
241 unsigned long pagemap;
242 unsigned long mapsize;
243 unsigned long reserved;
246 #define O32_FLAGS(x) (x).flags
247 #define OBJREAD 0x0001L
248 #define OBJWRITE 0x0002L
249 #define OBJINVALID 0x0080L
250 #define O32_SIZE(x) (x).size
251 #define O32_BASE(x) (x).base
253 # else /* IBM's compiler */
255 /* A kludge to get around what appears to be a header file bug */
256 # ifndef WORD
257 # define WORD unsigned short
258 # endif
259 # ifndef DWORD
260 # define DWORD unsigned long
261 # endif
263 # define EXE386 1
264 # include <newexe.h>
265 # include <exe386.h>
267 # endif /* __IBMC__ */
269 # define INCL_DOSEXCEPTIONS
270 # define INCL_DOSPROCESS
271 # define INCL_DOSERRORS
272 # define INCL_DOSMODULEMGR
273 # define INCL_DOSMEMMGR
274 # include <os2.h>
277 /* Disable and enable signals during nontrivial allocations */
279 void GC_disable_signals(void)
281 ULONG nest;
283 DosEnterMustComplete(&nest);
284 if (nest != 1) ABORT("nested GC_disable_signals");
287 void GC_enable_signals(void)
289 ULONG nest;
291 DosExitMustComplete(&nest);
292 if (nest != 0) ABORT("GC_enable_signals");
296 # else
298 # if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
299 && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
300 && !defined(NO_SIGSET)
302 # if defined(sigmask) && !defined(UTS4)
303 /* Use the traditional BSD interface */
304 # define SIGSET_T int
305 # define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
306 # define SIG_FILL(set) (set) = 0x7fffffff
307 /* Setting the leading bit appears to provoke a bug in some */
308 /* longjmp implementations. Most systems appear not to have */
309 /* a signal 32. */
310 # define SIGSETMASK(old, new) (old) = sigsetmask(new)
311 # else
312 /* Use POSIX/SYSV interface */
313 # define SIGSET_T sigset_t
314 # define SIG_DEL(set, signal) sigdelset(&(set), (signal))
315 # define SIG_FILL(set) sigfillset(&set)
316 # define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
317 # endif
319 static GC_bool mask_initialized = FALSE;
321 static SIGSET_T new_mask;
323 static SIGSET_T old_mask;
325 static SIGSET_T dummy;
327 #if defined(PRINTSTATS) && !defined(THREADS)
328 # define CHECK_SIGNALS
329 int GC_sig_disabled = 0;
330 #endif
332 void GC_disable_signals()
334 if (!mask_initialized) {
335 SIG_FILL(new_mask);
337 SIG_DEL(new_mask, SIGSEGV);
338 SIG_DEL(new_mask, SIGILL);
339 SIG_DEL(new_mask, SIGQUIT);
340 # ifdef SIGBUS
341 SIG_DEL(new_mask, SIGBUS);
342 # endif
343 # ifdef SIGIOT
344 SIG_DEL(new_mask, SIGIOT);
345 # endif
346 # ifdef SIGEMT
347 SIG_DEL(new_mask, SIGEMT);
348 # endif
349 # ifdef SIGTRAP
350 SIG_DEL(new_mask, SIGTRAP);
351 # endif
352 mask_initialized = TRUE;
354 # ifdef CHECK_SIGNALS
355 if (GC_sig_disabled != 0) ABORT("Nested disables");
356 GC_sig_disabled++;
357 # endif
358 SIGSETMASK(old_mask,new_mask);
361 void GC_enable_signals()
363 # ifdef CHECK_SIGNALS
364 if (GC_sig_disabled != 1) ABORT("Unmatched enable");
365 GC_sig_disabled--;
366 # endif
367 SIGSETMASK(dummy,old_mask);
370 # endif /* !PCR */
372 # endif /*!OS/2 */
374 /* Ivan Demakov: simplest way (to me) */
375 #if defined (DOS4GW) || defined (NO_SIGSET)
376 void GC_disable_signals() { }
377 void GC_enable_signals() { }
378 #endif
380 /* Find the page size */
381 word GC_page_size;
383 # ifdef MSWIN32
384 void GC_setpagesize()
386 SYSTEM_INFO sysinfo;
388 GetSystemInfo(&sysinfo);
389 GC_page_size = sysinfo.dwPageSize;
392 # else
393 # if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
394 || defined(USE_MUNMAP)
395 void GC_setpagesize()
397 GC_page_size = GETPAGESIZE();
399 # else
400 /* It's acceptable to fake it. */
401 void GC_setpagesize()
403 GC_page_size = HBLKSIZE;
405 # endif
406 # endif
409 * Find the base of the stack.
410 * Used only in single-threaded environment.
411 * With threads, GC_mark_roots needs to know how to do this.
412 * Called with allocator lock held.
414 # ifdef MSWIN32
415 # define is_writable(prot) ((prot) == PAGE_READWRITE \
416 || (prot) == PAGE_WRITECOPY \
417 || (prot) == PAGE_EXECUTE_READWRITE \
418 || (prot) == PAGE_EXECUTE_WRITECOPY)
419 /* Return the number of bytes that are writable starting at p. */
420 /* The pointer p is assumed to be page aligned. */
421 /* If base is not 0, *base becomes the beginning of the */
422 /* allocation region containing p. */
423 word GC_get_writable_length(ptr_t p, ptr_t *base)
425 MEMORY_BASIC_INFORMATION buf;
426 word result;
427 word protect;
429 result = VirtualQuery(p, &buf, sizeof(buf));
430 if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
431 if (base != 0) *base = (ptr_t)(buf.AllocationBase);
432 protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
433 if (!is_writable(protect)) {
434 return(0);
436 if (buf.State != MEM_COMMIT) return(0);
437 return(buf.RegionSize);
440 ptr_t GC_get_stack_base()
442 int dummy;
443 ptr_t sp = (ptr_t)(&dummy);
444 ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
445 word size = GC_get_writable_length(trunc_sp, 0);
447 return(trunc_sp + size);
451 # else
453 # ifdef OS2
455 ptr_t GC_get_stack_base()
457 PTIB ptib;
458 PPIB ppib;
460 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
461 GC_err_printf0("DosGetInfoBlocks failed\n");
462 ABORT("DosGetInfoBlocks failed\n");
464 return((ptr_t)(ptib -> tib_pstacklimit));
467 # else
469 # ifdef AMIGA
471 ptr_t GC_get_stack_base()
473 struct Process *proc = (struct Process*)SysBase->ThisTask;
475 /* Reference: Amiga Guru Book Pages: 42,567,574 */
476 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
477 && proc->pr_CLI != NULL) {
478 /* first ULONG is StackSize */
479 /*longPtr = proc->pr_ReturnAddr;
480 size = longPtr[0];*/
482 return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
483 } else {
484 return (char *)proc->pr_Task.tc_SPUpper;
488 #if 0 /* old version */
489 ptr_t GC_get_stack_base()
491 extern struct WBStartup *_WBenchMsg;
492 extern long __base;
493 extern long __stack;
494 struct Task *task;
495 struct Process *proc;
496 struct CommandLineInterface *cli;
497 long size;
499 if ((task = FindTask(0)) == 0) {
500 GC_err_puts("Cannot find own task structure\n");
501 ABORT("task missing");
503 proc = (struct Process *)task;
504 cli = BADDR(proc->pr_CLI);
506 if (_WBenchMsg != 0 || cli == 0) {
507 size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
508 } else {
509 size = cli->cli_DefaultStack * 4;
511 return (ptr_t)(__base + GC_max(size, __stack));
513 #endif /* 0 */
515 # else /* !AMIGA, !OS2, ... */
517 # ifdef NEED_FIND_LIMIT
518 /* Some tools to implement HEURISTIC2 */
519 # define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
520 /* static */ jmp_buf GC_jmp_buf;
522 /*ARGSUSED*/
523 void GC_fault_handler(sig)
524 int sig;
526 longjmp(GC_jmp_buf, 1);
529 # ifdef __STDC__
530 typedef void (*handler)(int);
531 # else
532 typedef void (*handler)();
533 # endif
535 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
536 static struct sigaction old_segv_act;
537 # if defined(_sigargs) || defined(HPUX) /* !Irix6.x */
538 static struct sigaction old_bus_act;
539 # endif
540 # else
541 static handler old_segv_handler, old_bus_handler;
542 # endif
544 void GC_setup_temporary_fault_handler()
546 # ifndef ECOS
547 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
548 struct sigaction act;
550 act.sa_handler = GC_fault_handler;
551 act.sa_flags = SA_RESTART | SA_NODEFER;
552 /* The presence of SA_NODEFER represents yet another gross */
553 /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
554 /* interact correctly with -lthread. We hide the confusion */
555 /* by making sure that signal handling doesn't affect the */
556 /* signal mask. */
558 (void) sigemptyset(&act.sa_mask);
559 # ifdef IRIX_THREADS
560 /* Older versions have a bug related to retrieving and */
561 /* and setting a handler at the same time. */
562 (void) sigaction(SIGSEGV, 0, &old_segv_act);
563 (void) sigaction(SIGSEGV, &act, 0);
564 # else
565 (void) sigaction(SIGSEGV, &act, &old_segv_act);
566 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
567 || defined(HPUX)
568 /* Under Irix 5.x or HP/UX, we may get SIGBUS. */
569 /* Pthreads doesn't exist under Irix 5.x, so we */
570 /* don't have to worry in the threads case. */
571 (void) sigaction(SIGBUS, &act, &old_bus_act);
572 # endif
573 # endif /* IRIX_THREADS */
574 # else
575 old_segv_handler = signal(SIGSEGV, GC_fault_handler);
576 # ifdef SIGBUS
577 old_bus_handler = signal(SIGBUS, GC_fault_handler);
578 # endif
579 # endif
580 # endif /* ECOS */
583 void GC_reset_fault_handler()
585 # ifndef ECOS
586 # if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
587 (void) sigaction(SIGSEGV, &old_segv_act, 0);
588 # if defined(IRIX5) && defined(_sigargs) /* Irix 5.x, not 6.x */ \
589 || defined(HPUX)
590 (void) sigaction(SIGBUS, &old_bus_act, 0);
591 # endif
592 # else
593 (void) signal(SIGSEGV, old_segv_handler);
594 # ifdef SIGBUS
595 (void) signal(SIGBUS, old_bus_handler);
596 # endif
597 # endif
598 # endif /* ECOS */
601 /* Return the first nonaddressible location > p (up) or */
602 /* the smallest location q s.t. [q,p] is addressible (!up). */
603 ptr_t GC_find_limit(p, up)
604 ptr_t p;
605 GC_bool up;
607 # ifndef ECOS
608 static VOLATILE ptr_t result;
609 /* Needs to be static, since otherwise it may not be */
610 /* preserved across the longjmp. Can safely be */
611 /* static since it's only called once, with the */
612 /* allocation lock held. */
615 GC_setup_temporary_fault_handler();
616 if (setjmp(GC_jmp_buf) == 0) {
617 result = (ptr_t)(((word)(p))
618 & ~(MIN_PAGE_SIZE-1));
619 for (;;) {
620 if (up) {
621 result += MIN_PAGE_SIZE;
622 } else {
623 result -= MIN_PAGE_SIZE;
625 GC_noop1((word)(*result));
628 GC_reset_fault_handler();
629 if (!up) {
630 result += MIN_PAGE_SIZE;
632 return(result);
633 # else /* ECOS */
634 abort();
635 # endif /* ECOS */
637 # endif
639 # ifndef ECOS
641 #ifdef LINUX_STACKBOTTOM
643 # define STAT_SKIP 27 /* Number of fields preceding startstack */
644 /* field in /proc/<pid>/stat */
646 ptr_t GC_linux_stack_base(void)
648 char buf[50];
649 FILE *f;
650 char c;
651 word result = 0;
652 int i;
654 sprintf(buf, "/proc/%d/stat", getpid());
655 f = fopen(buf, "r");
656 if (NULL == f) ABORT("Couldn't open /proc/<pid>/stat");
657 c = getc(f);
658 /* Skip the required number of fields. This number is hopefully */
659 /* constant across all Linux implementations. */
660 for (i = 0; i < STAT_SKIP; ++i) {
661 while (isspace(c)) c = getc(f);
662 while (!isspace(c)) c = getc(f);
664 while (isspace(c)) c = getc(f);
665 while (isdigit(c)) {
666 result *= 10;
667 result += c - '0';
668 c = getc(f);
670 if (result < 0x10000000) ABORT("Absurd stack bottom value");
671 return (ptr_t)result;
674 #endif /* LINUX_STACKBOTTOM */
676 ptr_t GC_get_stack_base()
678 word dummy;
679 ptr_t result;
681 # define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
683 # if defined(STACKBASE)
684 extern ptr_t STACKBASE;
685 return(STACKBASE);
686 # else
687 # ifdef STACKBOTTOM
688 return(STACKBOTTOM);
689 # else
690 # ifdef HEURISTIC1
691 # ifdef STACK_GROWS_DOWN
692 result = (ptr_t)((((word)(&dummy))
693 + STACKBOTTOM_ALIGNMENT_M1)
694 & ~STACKBOTTOM_ALIGNMENT_M1);
695 # else
696 result = (ptr_t)(((word)(&dummy))
697 & ~STACKBOTTOM_ALIGNMENT_M1);
698 # endif
699 # endif /* HEURISTIC1 */
700 # ifdef LINUX_STACKBOTTOM
701 result = GC_linux_stack_base();
702 # endif
703 # ifdef HEURISTIC2
704 # ifdef STACK_GROWS_DOWN
705 result = GC_find_limit((ptr_t)(&dummy), TRUE);
706 # ifdef HEURISTIC2_LIMIT
707 if (result > HEURISTIC2_LIMIT
708 && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
709 result = HEURISTIC2_LIMIT;
711 # endif
712 # else
713 result = GC_find_limit((ptr_t)(&dummy), FALSE);
714 # ifdef HEURISTIC2_LIMIT
715 if (result < HEURISTIC2_LIMIT
716 && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
717 result = HEURISTIC2_LIMIT;
719 # endif
720 # endif
722 # endif /* HEURISTIC2 */
723 # ifdef STACK_GROWS_DOWN
724 if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
725 # endif
726 return(result);
727 # endif /* STACKBOTTOM */
728 # endif /* STACKBASE */
730 # endif /* ECOS */
732 # endif /* ! AMIGA */
733 # endif /* ! OS2 */
734 # endif /* ! MSWIN32 */
737 * Register static data segment(s) as roots.
738 * If more data segments are added later then they need to be registered
739 * add that point (as we do with SunOS dynamic loading),
740 * or GC_mark_roots needs to check for them (as we do with PCR).
741 * Called with allocator lock held.
744 # ifdef OS2
746 void GC_register_data_segments()
748 PTIB ptib;
749 PPIB ppib;
750 HMODULE module_handle;
751 # define PBUFSIZ 512
752 UCHAR path[PBUFSIZ];
753 FILE * myexefile;
754 struct exe_hdr hdrdos; /* MSDOS header. */
755 struct e32_exe hdr386; /* Real header for my executable */
756 struct o32_obj seg; /* Currrent segment */
757 int nsegs;
760 if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
761 GC_err_printf0("DosGetInfoBlocks failed\n");
762 ABORT("DosGetInfoBlocks failed\n");
764 module_handle = ppib -> pib_hmte;
765 if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
766 GC_err_printf0("DosQueryModuleName failed\n");
767 ABORT("DosGetInfoBlocks failed\n");
769 myexefile = fopen(path, "rb");
770 if (myexefile == 0) {
771 GC_err_puts("Couldn't open executable ");
772 GC_err_puts(path); GC_err_puts("\n");
773 ABORT("Failed to open executable\n");
775 if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
776 GC_err_puts("Couldn't read MSDOS header from ");
777 GC_err_puts(path); GC_err_puts("\n");
778 ABORT("Couldn't read MSDOS header");
780 if (E_MAGIC(hdrdos) != EMAGIC) {
781 GC_err_puts("Executable has wrong DOS magic number: ");
782 GC_err_puts(path); GC_err_puts("\n");
783 ABORT("Bad DOS magic number");
785 if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
786 GC_err_puts("Seek to new header failed in ");
787 GC_err_puts(path); GC_err_puts("\n");
788 ABORT("Bad DOS magic number");
790 if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
791 GC_err_puts("Couldn't read MSDOS header from ");
792 GC_err_puts(path); GC_err_puts("\n");
793 ABORT("Couldn't read OS/2 header");
795 if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
796 GC_err_puts("Executable has wrong OS/2 magic number:");
797 GC_err_puts(path); GC_err_puts("\n");
798 ABORT("Bad OS/2 magic number");
800 if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
801 GC_err_puts("Executable %s has wrong byte order: ");
802 GC_err_puts(path); GC_err_puts("\n");
803 ABORT("Bad byte order");
805 if ( E32_CPU(hdr386) == E32CPU286) {
806 GC_err_puts("GC can't handle 80286 executables: ");
807 GC_err_puts(path); GC_err_puts("\n");
808 EXIT();
810 if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
811 SEEK_SET) != 0) {
812 GC_err_puts("Seek to object table failed: ");
813 GC_err_puts(path); GC_err_puts("\n");
814 ABORT("Seek to object table failed");
816 for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
817 int flags;
818 if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
819 GC_err_puts("Couldn't read obj table entry from ");
820 GC_err_puts(path); GC_err_puts("\n");
821 ABORT("Couldn't read obj table entry");
823 flags = O32_FLAGS(seg);
824 if (!(flags & OBJWRITE)) continue;
825 if (!(flags & OBJREAD)) continue;
826 if (flags & OBJINVALID) {
827 GC_err_printf0("Object with invalid pages?\n");
828 continue;
830 GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
834 # else
836 # ifdef MSWIN32
837 /* Unfortunately, we have to handle win32s very differently from NT, */
838 /* Since VirtualQuery has very different semantics. In particular, */
839 /* under win32s a VirtualQuery call on an unmapped page returns an */
840 /* invalid result. Under GC_register_data_segments is a noop and */
841 /* all real work is done by GC_register_dynamic_libraries. Under */
842 /* win32s, we cannot find the data segments associated with dll's. */
843 /* We rgister the main data segment here. */
844 GC_bool GC_win32s = FALSE; /* We're running under win32s. */
846 GC_bool GC_is_win32s()
848 DWORD v = GetVersion();
850 /* Check that this is not NT, and Windows major version <= 3 */
851 return ((v & 0x80000000) && (v & 0xff) <= 3);
854 void GC_init_win32()
856 GC_win32s = GC_is_win32s();
859 /* Return the smallest address a such that VirtualQuery */
860 /* returns correct results for all addresses between a and start. */
861 /* Assumes VirtualQuery returns correct information for start. */
862 ptr_t GC_least_described_address(ptr_t start)
864 MEMORY_BASIC_INFORMATION buf;
865 SYSTEM_INFO sysinfo;
866 DWORD result;
867 LPVOID limit;
868 ptr_t p;
869 LPVOID q;
871 GetSystemInfo(&sysinfo);
872 limit = sysinfo.lpMinimumApplicationAddress;
873 p = (ptr_t)((word)start & ~(GC_page_size - 1));
874 for (;;) {
875 q = (LPVOID)(p - GC_page_size);
876 if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
877 result = VirtualQuery(q, &buf, sizeof(buf));
878 if (result != sizeof(buf) || buf.AllocationBase == 0) break;
879 p = (ptr_t)(buf.AllocationBase);
881 return(p);
884 /* Is p the start of either the malloc heap, or of one of our */
885 /* heap sections? */
886 GC_bool GC_is_heap_base (ptr_t p)
889 register unsigned i;
891 # ifndef REDIRECT_MALLOC
892 static ptr_t malloc_heap_pointer = 0;
894 if (0 == malloc_heap_pointer) {
895 MEMORY_BASIC_INFORMATION buf;
896 register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
898 if (result != sizeof(buf)) {
899 ABORT("Weird VirtualQuery result");
901 malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
903 if (p == malloc_heap_pointer) return(TRUE);
904 # endif
905 for (i = 0; i < GC_n_heap_bases; i++) {
906 if (GC_heap_bases[i] == p) return(TRUE);
908 return(FALSE);
911 void GC_register_root_section(ptr_t static_root)
913 MEMORY_BASIC_INFORMATION buf;
914 SYSTEM_INFO sysinfo;
915 DWORD result;
916 DWORD protect;
917 LPVOID p;
918 char * base;
919 char * limit, * new_limit;
921 if (!GC_win32s) return;
922 p = base = limit = GC_least_described_address(static_root);
923 GetSystemInfo(&sysinfo);
924 while (p < sysinfo.lpMaximumApplicationAddress) {
925 result = VirtualQuery(p, &buf, sizeof(buf));
926 if (result != sizeof(buf) || buf.AllocationBase == 0
927 || GC_is_heap_base(buf.AllocationBase)) break;
928 new_limit = (char *)p + buf.RegionSize;
929 protect = buf.Protect;
930 if (buf.State == MEM_COMMIT
931 && is_writable(protect)) {
932 if ((char *)p == limit) {
933 limit = new_limit;
934 } else {
935 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
936 base = p;
937 limit = new_limit;
940 if (p > (LPVOID)new_limit /* overflow */) break;
941 p = (LPVOID)new_limit;
943 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
946 void GC_register_data_segments()
948 static char dummy;
950 GC_register_root_section((ptr_t)(&dummy));
952 # else
953 # ifdef AMIGA
955 void GC_register_data_segments()
957 struct Process *proc;
958 struct CommandLineInterface *cli;
959 BPTR myseglist;
960 ULONG *data;
962 int num;
965 # ifdef __GNUC__
966 ULONG dataSegSize;
967 GC_bool found_segment = FALSE;
968 extern char __data_size[];
970 dataSegSize=__data_size+8;
971 /* Can`t find the Location of __data_size, because
972 it`s possible that is it, inside the segment. */
974 # endif
976 proc= (struct Process*)SysBase->ThisTask;
978 /* Reference: Amiga Guru Book Pages: 538ff,565,573
979 and XOper.asm */
980 if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
981 if (proc->pr_CLI == NULL) {
982 myseglist = proc->pr_SegList;
983 } else {
984 /* ProcLoaded 'Loaded as a command: '*/
985 cli = BADDR(proc->pr_CLI);
986 myseglist = cli->cli_Module;
988 } else {
989 ABORT("Not a Process.");
992 if (myseglist == NULL) {
993 ABORT("Arrrgh.. can't find segments, aborting");
996 /* xoper hunks Shell Process */
998 num=0;
999 for (data = (ULONG *)BADDR(myseglist); data != NULL;
1000 data = (ULONG *)BADDR(data[0])) {
1001 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1002 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1003 # ifdef __GNUC__
1004 if (dataSegSize == data[-1]) {
1005 found_segment = TRUE;
1007 # endif
1008 GC_add_roots_inner((char *)&data[1],
1009 ((char *)&data[1]) + data[-1], FALSE);
1011 ++num;
1012 } /* for */
1013 # ifdef __GNUC__
1014 if (!found_segment) {
1015 ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
1017 # endif
1020 #if 0 /* old version */
1021 void GC_register_data_segments()
1023 extern struct WBStartup *_WBenchMsg;
1024 struct Process *proc;
1025 struct CommandLineInterface *cli;
1026 BPTR myseglist;
1027 ULONG *data;
1029 if ( _WBenchMsg != 0 ) {
1030 if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
1031 GC_err_puts("No seglist from workbench\n");
1032 return;
1034 } else {
1035 if ((proc = (struct Process *)FindTask(0)) == 0) {
1036 GC_err_puts("Cannot find process structure\n");
1037 return;
1039 if ((cli = BADDR(proc->pr_CLI)) == 0) {
1040 GC_err_puts("No CLI\n");
1041 return;
1043 if ((myseglist = cli->cli_Module) == 0) {
1044 GC_err_puts("No seglist from CLI\n");
1045 return;
1049 for (data = (ULONG *)BADDR(myseglist); data != 0;
1050 data = (ULONG *)BADDR(data[0])) {
1051 # ifdef AMIGA_SKIP_SEG
1052 if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
1053 ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
1054 # else
1056 # endif /* AMIGA_SKIP_SEG */
1057 GC_add_roots_inner((char *)&data[1],
1058 ((char *)&data[1]) + data[-1], FALSE);
1062 #endif /* old version */
1065 # else
1067 # if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
1068 char * GC_SysVGetDataStart(max_page_size, etext_addr)
1069 int max_page_size;
1070 int * etext_addr;
1072 word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1073 & ~(sizeof(word) - 1);
1074 /* etext rounded to word boundary */
1075 word next_page = ((text_end + (word)max_page_size - 1)
1076 & ~((word)max_page_size - 1));
1077 word page_offset = (text_end & ((word)max_page_size - 1));
1078 VOLATILE char * result = (char *)(next_page + page_offset);
1079 /* Note that this isnt equivalent to just adding */
1080 /* max_page_size to &etext if &etext is at a page boundary */
1082 GC_setup_temporary_fault_handler();
1083 if (setjmp(GC_jmp_buf) == 0) {
1084 /* Try writing to the address. */
1085 *result = *result;
1086 GC_reset_fault_handler();
1087 } else {
1088 GC_reset_fault_handler();
1089 /* We got here via a longjmp. The address is not readable. */
1090 /* This is known to happen under Solaris 2.4 + gcc, which place */
1091 /* string constants in the text segment, but after etext. */
1092 /* Use plan B. Note that we now know there is a gap between */
1093 /* text and data segments, so plan A bought us something. */
1094 result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
1096 return((char *)result);
1098 # endif
1101 void GC_register_data_segments()
1103 # if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
1104 && !defined(MACOSX)
1105 # if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
1106 /* As of Solaris 2.3, the Solaris threads implementation */
1107 /* allocates the data structure for the initial thread with */
1108 /* sbrk at process startup. It needs to be scanned, so that */
1109 /* we don't lose some malloc allocated data structures */
1110 /* hanging from it. We're on thin ice here ... */
1111 extern caddr_t sbrk();
1113 GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1114 # else
1115 GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1116 # endif
1117 # endif
1118 # if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
1119 GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
1120 # endif
1121 # if defined(MACOS)
1123 # if defined(THINK_C)
1124 extern void* GC_MacGetDataStart(void);
1125 /* globals begin above stack and end at a5. */
1126 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1127 (ptr_t)LMGetCurrentA5(), FALSE);
1128 # else
1129 # if defined(__MWERKS__)
1130 # if !__POWERPC__
1131 extern void* GC_MacGetDataStart(void);
1132 /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1133 # if __option(far_data)
1134 extern void* GC_MacGetDataEnd(void);
1135 # endif
1136 /* globals begin above stack and end at a5. */
1137 GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1138 (ptr_t)LMGetCurrentA5(), FALSE);
1139 /* MATTHEW: Handle Far Globals */
1140 # if __option(far_data)
1141 /* Far globals follow he QD globals: */
1142 GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1143 (ptr_t)GC_MacGetDataEnd(), FALSE);
1144 # endif
1145 # else
1146 extern char __data_start__[], __data_end__[];
1147 GC_add_roots_inner((ptr_t)&__data_start__,
1148 (ptr_t)&__data_end__, FALSE);
1149 # endif /* __POWERPC__ */
1150 # endif /* __MWERKS__ */
1151 # endif /* !THINK_C */
1153 # endif /* MACOS */
1155 /* Dynamic libraries are added at every collection, since they may */
1156 /* change. */
1159 # endif /* ! AMIGA */
1160 # endif /* ! MSWIN32 */
1161 # endif /* ! OS2 */
1164 * Auxiliary routines for obtaining memory from OS.
1167 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1168 && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
1170 # ifdef SUNOS4
1171 extern caddr_t sbrk();
1172 # endif
1173 # ifdef __STDC__
1174 # define SBRK_ARG_T ptrdiff_t
1175 # else
1176 # define SBRK_ARG_T int
1177 # endif
1179 # ifdef RS6000
1180 /* The compiler seems to generate speculative reads one past the end of */
1181 /* an allocated object. Hence we need to make sure that the page */
1182 /* following the last heap page is also mapped. */
1183 ptr_t GC_unix_get_mem(bytes)
1184 word bytes;
1186 caddr_t cur_brk = (caddr_t)sbrk(0);
1187 caddr_t result;
1188 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1189 static caddr_t my_brk_val = 0;
1191 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1192 if (lsbs != 0) {
1193 if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1195 if (cur_brk == my_brk_val) {
1196 /* Use the extra block we allocated last time. */
1197 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1198 if (result == (caddr_t)(-1)) return(0);
1199 result -= GC_page_size;
1200 } else {
1201 result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1202 if (result == (caddr_t)(-1)) return(0);
1204 my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
1205 return((ptr_t)result);
1208 #else /* Not RS6000 */
1210 #if defined(USE_MMAP)
1211 /* Tested only under IRIX5 and Solaris 2 */
1213 #ifdef USE_MMAP_FIXED
1214 # define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1215 /* Seems to yield better performance on Solaris 2, but can */
1216 /* be unreliable if something is already mapped at the address. */
1217 #else
1218 # define GC_MMAP_FLAGS MAP_PRIVATE
1219 #endif
1221 ptr_t GC_unix_get_mem(bytes)
1222 word bytes;
1224 static GC_bool initialized = FALSE;
1225 static int fd;
1226 void *result;
1227 static ptr_t last_addr = HEAP_START;
1229 if (!initialized) {
1230 fd = open("/dev/zero", O_RDONLY);
1231 initialized = TRUE;
1233 if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1234 result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1235 GC_MMAP_FLAGS, fd, 0/* offset */);
1236 if (result == MAP_FAILED) return(0);
1237 last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1238 last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1239 return((ptr_t)result);
1242 #else /* Not RS6000, not USE_MMAP */
1243 ptr_t GC_unix_get_mem(bytes)
1244 word bytes;
1246 ptr_t result;
1247 # ifdef IRIX5
1248 /* Bare sbrk isn't thread safe. Play by malloc rules. */
1249 /* The equivalent may be needed on other systems as well. */
1250 __LOCK_MALLOC();
1251 # endif
1253 ptr_t cur_brk = (ptr_t)sbrk(0);
1254 SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1256 if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1257 if (lsbs != 0) {
1258 if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1260 result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1261 if (result == (ptr_t)(-1)) result = 0;
1263 # ifdef IRIX5
1264 __UNLOCK_MALLOC();
1265 # endif
1266 return(result);
1269 #endif /* Not USE_MMAP */
1270 #endif /* Not RS6000 */
1272 # endif /* UN*X */
1274 # ifdef OS2
1276 void * os2_alloc(size_t bytes)
1278 void * result;
1280 if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1281 PAG_WRITE | PAG_COMMIT)
1282 != NO_ERROR) {
1283 return(0);
1285 if (result == 0) return(os2_alloc(bytes));
1286 return(result);
1289 # endif /* OS2 */
1292 # ifdef MSWIN32
1293 word GC_n_heap_bases = 0;
1295 ptr_t GC_win32_get_mem(bytes)
1296 word bytes;
1298 ptr_t result;
1300 if (GC_win32s) {
1301 /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
1302 /* There are also unconfirmed rumors of other */
1303 /* problems, so we dodge the issue. */
1304 result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1305 result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1306 } else {
1307 result = (ptr_t) VirtualAlloc(NULL, bytes,
1308 MEM_COMMIT | MEM_RESERVE,
1309 PAGE_EXECUTE_READWRITE);
1311 if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1312 /* If I read the documentation correctly, this can */
1313 /* only happen if HBLKSIZE > 64k or not a power of 2. */
1314 if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1315 GC_heap_bases[GC_n_heap_bases++] = result;
1316 return(result);
1319 void GC_win32_free_heap ()
1321 if (GC_win32s) {
1322 while (GC_n_heap_bases > 0) {
1323 GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1324 GC_heap_bases[GC_n_heap_bases] = 0;
1330 # endif
1332 #ifdef USE_MUNMAP
1334 /* For now, this only works on some Unix-like systems. If you */
1335 /* have something else, don't define USE_MUNMAP. */
1336 /* We assume ANSI C to support this feature. */
1337 #include <unistd.h>
1338 #include <sys/mman.h>
1339 #include <sys/stat.h>
1340 #include <sys/types.h>
1341 #include <fcntl.h>
1343 /* Compute a page aligned starting address for the unmap */
1344 /* operation on a block of size bytes starting at start. */
1345 /* Return 0 if the block is too small to make this feasible. */
1346 ptr_t GC_unmap_start(ptr_t start, word bytes)
1348 ptr_t result = start;
1349 /* Round start to next page boundary. */
1350 result += GC_page_size - 1;
1351 result = (ptr_t)((word)result & ~(GC_page_size - 1));
1352 if (result + GC_page_size > start + bytes) return 0;
1353 return result;
1356 /* Compute end address for an unmap operation on the indicated */
1357 /* block. */
1358 ptr_t GC_unmap_end(ptr_t start, word bytes)
1360 ptr_t end_addr = start + bytes;
1361 end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1362 return end_addr;
1365 /* We assume that GC_remap is called on exactly the same range */
1366 /* as a previous call to GC_unmap. It is safe to consistently */
1367 /* round the endpoints in both places. */
1368 void GC_unmap(ptr_t start, word bytes)
1370 ptr_t start_addr = GC_unmap_start(start, bytes);
1371 ptr_t end_addr = GC_unmap_end(start, bytes);
1372 word len = end_addr - start_addr;
1373 if (0 == start_addr) return;
1374 if (munmap(start_addr, len) != 0) ABORT("munmap failed");
1375 GC_unmapped_bytes += len;
1379 void GC_remap(ptr_t start, word bytes)
1381 static int zero_descr = -1;
1382 ptr_t start_addr = GC_unmap_start(start, bytes);
1383 ptr_t end_addr = GC_unmap_end(start, bytes);
1384 word len = end_addr - start_addr;
1385 ptr_t result;
1387 if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
1388 if (0 == start_addr) return;
1389 result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1390 MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
1391 if (result != start_addr) {
1392 ABORT("mmap remapping failed");
1394 GC_unmapped_bytes -= len;
1397 /* Two adjacent blocks have already been unmapped and are about to */
1398 /* be merged. Unmap the whole block. This typically requires */
1399 /* that we unmap a small section in the middle that was not previously */
1400 /* unmapped due to alignment constraints. */
1401 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
1403 ptr_t start1_addr = GC_unmap_start(start1, bytes1);
1404 ptr_t end1_addr = GC_unmap_end(start1, bytes1);
1405 ptr_t start2_addr = GC_unmap_start(start2, bytes2);
1406 ptr_t end2_addr = GC_unmap_end(start2, bytes2);
1407 ptr_t start_addr = end1_addr;
1408 ptr_t end_addr = start2_addr;
1409 word len;
1410 GC_ASSERT(start1 + bytes1 == start2);
1411 if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
1412 if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
1413 if (0 == start_addr) return;
1414 len = end_addr - start_addr;
1415 if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
1416 GC_unmapped_bytes += len;
1419 #endif /* USE_MUNMAP */
1421 /* Routine for pushing any additional roots. In THREADS */
1422 /* environment, this is also responsible for marking from */
1423 /* thread stacks. In the SRC_M3 case, it also handles */
1424 /* global variables. */
1425 #ifndef THREADS
1426 void (*GC_push_other_roots)() = 0;
1427 #else /* THREADS */
1429 # ifdef PCR
1430 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
1432 struct PCR_ThCtl_TInfoRep info;
1433 PCR_ERes result;
1435 info.ti_stkLow = info.ti_stkHi = 0;
1436 result = PCR_ThCtl_GetInfo(t, &info);
1437 GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
1438 return(result);
1441 /* Push the contents of an old object. We treat this as stack */
1442 /* data only becasue that makes it robust against mark stack */
1443 /* overflow. */
1444 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
1446 GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
1447 return(PCR_ERes_okay);
1451 void GC_default_push_other_roots()
1453 /* Traverse data allocated by previous memory managers. */
1455 extern struct PCR_MM_ProcsRep * GC_old_allocator;
1457 if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
1458 GC_push_old_obj, 0)
1459 != PCR_ERes_okay) {
1460 ABORT("Old object enumeration failed");
1463 /* Traverse all thread stacks. */
1464 if (PCR_ERes_IsErr(
1465 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
1466 || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
1467 ABORT("Thread stack marking failed\n");
1471 # endif /* PCR */
1473 # ifdef SRC_M3
1475 # ifdef ALL_INTERIOR_POINTERS
1476 --> misconfigured
1477 # endif
1480 extern void ThreadF__ProcessStacks();
1482 void GC_push_thread_stack(start, stop)
1483 word start, stop;
1485 GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
1488 /* Push routine with M3 specific calling convention. */
1489 GC_m3_push_root(dummy1, p, dummy2, dummy3)
1490 word *p;
1491 ptr_t dummy1, dummy2;
1492 int dummy3;
1494 word q = *p;
1496 if ((ptr_t)(q) >= GC_least_plausible_heap_addr
1497 && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
1498 GC_push_one_checked(q,FALSE);
1502 /* M3 set equivalent to RTHeap.TracedRefTypes */
1503 typedef struct { int elts[1]; } RefTypeSet;
1504 RefTypeSet GC_TracedRefTypes = {{0x1}};
1506 /* From finalize.c */
1507 extern void GC_push_finalizer_structures();
1509 /* From stubborn.c: */
1510 # ifdef STUBBORN_ALLOC
1511 extern GC_PTR * GC_changing_list_start;
1512 # endif
1515 void GC_default_push_other_roots()
1517 /* Use the M3 provided routine for finding static roots. */
1518 /* This is a bit dubious, since it presumes no C roots. */
1519 /* We handle the collector roots explicitly. */
1521 # ifdef STUBBORN_ALLOC
1522 GC_push_one(GC_changing_list_start);
1523 # endif
1524 GC_push_finalizer_structures();
1525 RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
1527 if (GC_words_allocd > 0) {
1528 ThreadF__ProcessStacks(GC_push_thread_stack);
1530 /* Otherwise this isn't absolutely necessary, and we have */
1531 /* startup ordering problems. */
1534 # endif /* SRC_M3 */
1536 # if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
1537 || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
1538 || defined(IRIX_JDK_THREADS) || defined(HPUX_THREADS)
1540 extern void GC_push_all_stacks();
1542 void GC_default_push_other_roots()
1544 GC_push_all_stacks();
1547 # endif /* SOLARIS_THREADS || ... */
1549 void (*GC_push_other_roots)() = GC_default_push_other_roots;
1551 #endif
1554 * Routines for accessing dirty bits on virtual pages.
1555 * We plan to eventaually implement four strategies for doing so:
1556 * DEFAULT_VDB: A simple dummy implementation that treats every page
1557 * as possibly dirty. This makes incremental collection
1558 * useless, but the implementation is still correct.
1559 * PCR_VDB: Use PPCRs virtual dirty bit facility.
1560 * PROC_VDB: Use the /proc facility for reading dirty bits. Only
1561 * works under some SVR4 variants. Even then, it may be
1562 * too slow to be entirely satisfactory. Requires reading
1563 * dirty bits for entire address space. Implementations tend
1564 * to assume that the client is a (slow) debugger.
1565 * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
1566 * dirtied pages. The implementation (and implementability)
1567 * is highly system dependent. This usually fails when system
1568 * calls write to a protected page. We prevent the read system
1569 * call from doing so. It is the clients responsibility to
1570 * make sure that other system calls are similarly protected
1571 * or write only to the stack.
1574 GC_bool GC_dirty_maintained = FALSE;
1576 # ifdef DEFAULT_VDB
1578 /* All of the following assume the allocation lock is held, and */
1579 /* signals are disabled. */
1581 /* The client asserts that unallocated pages in the heap are never */
1582 /* written. */
1584 /* Initialize virtual dirty bit implementation. */
1585 void GC_dirty_init()
1587 GC_dirty_maintained = TRUE;
1590 /* Retrieve system dirty bits for heap to a local buffer. */
1591 /* Restore the systems notion of which pages are dirty. */
1592 void GC_read_dirty()
1595 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
1596 /* If the actual page size is different, this returns TRUE if any */
1597 /* of the pages overlapping h are dirty. This routine may err on the */
1598 /* side of labelling pages as dirty (and this implementation does). */
1599 /*ARGSUSED*/
1600 GC_bool GC_page_was_dirty(h)
1601 struct hblk *h;
1603 return(TRUE);
1607 * The following two routines are typically less crucial. They matter
1608 * most with large dynamic libraries, or if we can't accurately identify
1609 * stacks, e.g. under Solaris 2.X. Otherwise the following default
1610 * versions are adequate.
1613 /* Could any valid GC heap pointer ever have been written to this page? */
1614 /*ARGSUSED*/
1615 GC_bool GC_page_was_ever_dirty(h)
1616 struct hblk *h;
1618 return(TRUE);
1621 /* Reset the n pages starting at h to "was never dirty" status. */
1622 void GC_is_fresh(h, n)
1623 struct hblk *h;
1624 word n;
1628 /* A call hints that h is about to be written. */
1629 /* May speed up some dirty bit implementations. */
1630 /*ARGSUSED*/
1631 void GC_write_hint(h)
1632 struct hblk *h;
1636 # endif /* DEFAULT_VDB */
1639 # ifdef MPROTECT_VDB
1642 * See DEFAULT_VDB for interface descriptions.
1646 * This implementation maintains dirty bits itself by catching write
1647 * faults and keeping track of them. We assume nobody else catches
1648 * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
1649 * except as a result of a read system call. This means clients must
1650 * either ensure that system calls do not touch the heap, or must
1651 * provide their own wrappers analogous to the one for read.
1652 * We assume the page size is a multiple of HBLKSIZE.
1653 * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
1654 * tried to use portable code where easily possible. It is known
1655 * not to work under a number of other systems.
1658 # ifndef MSWIN32
1660 # include <sys/mman.h>
1661 # include <signal.h>
1662 # include <sys/syscall.h>
1664 # define PROTECT(addr, len) \
1665 if (mprotect((caddr_t)(addr), (size_t)(len), \
1666 PROT_READ | OPT_PROT_EXEC) < 0) { \
1667 ABORT("mprotect failed"); \
1669 # define UNPROTECT(addr, len) \
1670 if (mprotect((caddr_t)(addr), (size_t)(len), \
1671 PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
1672 ABORT("un-mprotect failed"); \
1675 # else
1677 # include <signal.h>
1679 static DWORD protect_junk;
1680 # define PROTECT(addr, len) \
1681 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
1682 &protect_junk)) { \
1683 DWORD last_error = GetLastError(); \
1684 GC_printf1("Last error code: %lx\n", last_error); \
1685 ABORT("VirtualProtect failed"); \
1687 # define UNPROTECT(addr, len) \
1688 if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
1689 &protect_junk)) { \
1690 ABORT("un-VirtualProtect failed"); \
1693 # endif
1695 #if defined(SUNOS4) || defined(FREEBSD)
1696 typedef void (* SIG_PF)();
1697 #endif
1698 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
1699 # ifdef __STDC__
1700 typedef void (* SIG_PF)(int);
1701 # else
1702 typedef void (* SIG_PF)();
1703 # endif
1704 #endif
1705 #if defined(MSWIN32)
1706 typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
1707 # undef SIG_DFL
1708 # define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
1709 #endif
1711 #if defined(IRIX5) || defined(OSF1)
1712 typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
1713 #endif
1714 #if defined(SUNOS5SIGS)
1715 # ifdef HPUX
1716 # define SIGINFO __siginfo
1717 # else
1718 # define SIGINFO siginfo
1719 # endif
1720 # ifdef __STDC__
1721 typedef void (* REAL_SIG_PF)(int, struct SIGINFO *, void *);
1722 # else
1723 typedef void (* REAL_SIG_PF)();
1724 # endif
1725 #endif
1726 #if defined(LINUX)
1727 # include <linux/version.h>
1728 # if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(IA64)
1729 typedef struct sigcontext s_c;
1730 # else
1731 typedef struct sigcontext_struct s_c;
1732 # endif
1733 # if defined(ALPHA) || defined(M68K)
1734 typedef void (* REAL_SIG_PF)(int, int, s_c *);
1735 # else
1736 # if defined(IA64)
1737 typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
1738 # else
1739 typedef void (* REAL_SIG_PF)(int, s_c);
1740 # endif
1741 # endif
1742 # ifdef ALPHA
1743 /* Retrieve fault address from sigcontext structure by decoding */
1744 /* instruction. */
1745 char * get_fault_addr(s_c *sc) {
1746 unsigned instr;
1747 word faultaddr;
1749 instr = *((unsigned *)(sc->sc_pc));
1750 faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
1751 faultaddr += (word) (((int)instr << 16) >> 16);
1752 return (char *)faultaddr;
1754 # endif /* !ALPHA */
1755 # endif
1757 SIG_PF GC_old_bus_handler;
1758 SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
1760 /*ARGSUSED*/
1761 # if defined (SUNOS4) || defined(FREEBSD)
1762 void GC_write_fault_handler(sig, code, scp, addr)
1763 int sig, code;
1764 struct sigcontext *scp;
1765 char * addr;
1766 # ifdef SUNOS4
1767 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1768 # define CODE_OK (FC_CODE(code) == FC_PROT \
1769 || (FC_CODE(code) == FC_OBJERR \
1770 && FC_ERRNO(code) == FC_PROT))
1771 # endif
1772 # ifdef FREEBSD
1773 # define SIG_OK (sig == SIGBUS)
1774 # define CODE_OK (code == BUS_PAGE_FAULT)
1775 # endif
1776 # endif
1777 # if defined(IRIX5) || defined(OSF1)
1778 # include <errno.h>
1779 void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
1780 # define SIG_OK (sig == SIGSEGV)
1781 # ifdef OSF1
1782 # define CODE_OK (code == 2 /* experimentally determined */)
1783 # endif
1784 # ifdef IRIX5
1785 # define CODE_OK (code == EACCES)
1786 # endif
1787 # endif
1788 # if defined(LINUX)
1789 # if defined(ALPHA) || defined(M68K)
1790 void GC_write_fault_handler(int sig, int code, s_c * sc)
1791 # else
1792 # if defined(IA64)
1793 void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
1794 # else
1795 void GC_write_fault_handler(int sig, s_c sc)
1796 # endif
1797 # endif
1798 # define SIG_OK (sig == SIGSEGV)
1799 # define CODE_OK TRUE
1800 /* Empirically c.trapno == 14, on IA32, but is that useful? */
1801 /* Should probably consider alignment issues on other */
1802 /* architectures. */
1803 # endif
1804 # if defined(SUNOS5SIGS)
1805 # ifdef __STDC__
1806 void GC_write_fault_handler(int sig, struct SIGINFO *scp, void * context)
1807 # else
1808 void GC_write_fault_handler(sig, scp, context)
1809 int sig;
1810 struct SIGINFO *scp;
1811 void * context;
1812 # endif
1813 # ifdef HPUX
1814 # define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
1815 # define CODE_OK (scp -> si_code == SEGV_ACCERR) \
1816 || (scp -> si_code == BUS_ADRERR) \
1817 || (scp -> si_code == BUS_UNKNOWN) \
1818 || (scp -> si_code == SEGV_UNKNOWN) \
1819 || (scp -> si_code == BUS_OBJERR)
1820 # else
1821 # define SIG_OK (sig == SIGSEGV)
1822 # define CODE_OK (scp -> si_code == SEGV_ACCERR)
1823 # endif
1824 # endif
1825 # if defined(MSWIN32)
1826 LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
1827 # define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
1828 EXCEPTION_ACCESS_VIOLATION)
1829 # define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
1830 /* Write fault */
1831 # endif
1833 register unsigned i;
1834 # ifdef IRIX5
1835 char * addr = (char *) (size_t) (scp -> sc_badvaddr);
1836 # endif
1837 # if defined(OSF1) && defined(ALPHA)
1838 char * addr = (char *) (scp -> sc_traparg_a0);
1839 # endif
1840 # ifdef SUNOS5SIGS
1841 char * addr = (char *) (scp -> si_addr);
1842 # endif
1843 # ifdef LINUX
1844 # ifdef I386
1845 char * addr = (char *) (sc.cr2);
1846 # else
1847 # if defined(M68K)
1848 char * addr = NULL;
1850 struct sigcontext *scp = (struct sigcontext *)(&sc);
1852 int format = (scp->sc_formatvec >> 12) & 0xf;
1853 unsigned long *framedata = (unsigned long *)(scp + 1);
1854 unsigned long ea;
1856 if (format == 0xa || format == 0xb) {
1857 /* 68020/030 */
1858 ea = framedata[2];
1859 } else if (format == 7) {
1860 /* 68040 */
1861 ea = framedata[3];
1862 } else if (format == 4) {
1863 /* 68060 */
1864 ea = framedata[0];
1865 if (framedata[1] & 0x08000000) {
1866 /* correct addr on misaligned access */
1867 ea = (ea+4095)&(~4095);
1870 addr = (char *)ea;
1871 # else
1872 # ifdef ALPHA
1873 char * addr = get_fault_addr(sc);
1874 # else
1875 # ifdef IA64
1876 char * addr = si -> si_addr;
1877 # else
1878 # if defined(POWERPC)
1879 char * addr = (char *) (sc.regs->dar);
1880 # else
1881 --> architecture not supported
1882 # endif
1883 # endif
1884 # endif
1885 # endif
1886 # endif
1887 # endif
1888 # if defined(MSWIN32)
1889 char * addr = (char *) (exc_info -> ExceptionRecord
1890 -> ExceptionInformation[1]);
1891 # define sig SIGSEGV
1892 # endif
1894 if (SIG_OK && CODE_OK) {
1895 register struct hblk * h =
1896 (struct hblk *)((word)addr & ~(GC_page_size-1));
1897 GC_bool in_allocd_block;
1899 # ifdef SUNOS5SIGS
1900 /* Address is only within the correct physical page. */
1901 in_allocd_block = FALSE;
1902 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1903 if (HDR(h+i) != 0) {
1904 in_allocd_block = TRUE;
1907 # else
1908 in_allocd_block = (HDR(addr) != 0);
1909 # endif
1910 if (!in_allocd_block) {
1911 /* Heap blocks now begin and end on page boundaries */
1912 SIG_PF old_handler;
1914 if (sig == SIGSEGV) {
1915 old_handler = GC_old_segv_handler;
1916 } else {
1917 old_handler = GC_old_bus_handler;
1919 if (old_handler == SIG_DFL) {
1920 # ifndef MSWIN32
1921 GC_err_printf1("Segfault at 0x%lx\n", addr);
1922 ABORT("Unexpected bus error or segmentation fault");
1923 # else
1924 return(EXCEPTION_CONTINUE_SEARCH);
1925 # endif
1926 } else {
1927 # if defined (SUNOS4) || defined(FREEBSD)
1928 (*old_handler) (sig, code, scp, addr);
1929 return;
1930 # endif
1931 # if defined (SUNOS5SIGS)
1932 (*(REAL_SIG_PF)old_handler) (sig, scp, context);
1933 return;
1934 # endif
1935 # if defined (LINUX)
1936 # if defined(ALPHA) || defined(M68K)
1937 (*(REAL_SIG_PF)old_handler) (sig, code, sc);
1938 # else
1939 # if defined(IA64)
1940 (*(REAL_SIG_PF)old_handler) (sig, si, scp);
1941 # else
1942 (*(REAL_SIG_PF)old_handler) (sig, sc);
1943 # endif
1944 # endif
1945 return;
1946 # endif
1947 # if defined (IRIX5) || defined(OSF1)
1948 (*(REAL_SIG_PF)old_handler) (sig, code, scp);
1949 return;
1950 # endif
1951 # ifdef MSWIN32
1952 return((*old_handler)(exc_info));
1953 # endif
1956 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1957 register int index = PHT_HASH(h+i);
1959 set_pht_entry_from_index(GC_dirty_pages, index);
1961 UNPROTECT(h, GC_page_size);
1962 # if defined(OSF1) || defined(LINUX)
1963 /* These reset the signal handler each time by default. */
1964 signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
1965 # endif
1966 /* The write may not take place before dirty bits are read. */
1967 /* But then we'll fault again ... */
1968 # ifdef MSWIN32
1969 return(EXCEPTION_CONTINUE_EXECUTION);
1970 # else
1971 return;
1972 # endif
1974 #ifdef MSWIN32
1975 return EXCEPTION_CONTINUE_SEARCH;
1976 #else
1977 GC_err_printf1("Segfault at 0x%lx\n", addr);
1978 ABORT("Unexpected bus error or segmentation fault");
1979 #endif
1983 * We hold the allocation lock. We expect block h to be written
1984 * shortly.
1986 void GC_write_hint(h)
1987 struct hblk *h;
1989 register struct hblk * h_trunc;
1990 register unsigned i;
1991 register GC_bool found_clean;
1993 if (!GC_dirty_maintained) return;
1994 h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
1995 found_clean = FALSE;
1996 for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
1997 register int index = PHT_HASH(h_trunc+i);
1999 if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
2000 found_clean = TRUE;
2001 set_pht_entry_from_index(GC_dirty_pages, index);
2004 if (found_clean) {
2005 UNPROTECT(h_trunc, GC_page_size);
2009 void GC_dirty_init()
2011 #if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
2012 struct sigaction act, oldact;
2013 # ifdef IRIX5
2014 act.sa_flags = SA_RESTART;
2015 act.sa_handler = GC_write_fault_handler;
2016 # else
2017 act.sa_flags = SA_RESTART | SA_SIGINFO;
2018 act.sa_sigaction = GC_write_fault_handler;
2019 # endif
2020 (void)sigemptyset(&act.sa_mask);
2021 #endif
2022 # ifdef PRINTSTATS
2023 GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2024 # endif
2025 GC_dirty_maintained = TRUE;
2026 if (GC_page_size % HBLKSIZE != 0) {
2027 GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2028 ABORT("Page size not multiple of HBLKSIZE");
2030 # if defined(SUNOS4) || defined(FREEBSD)
2031 GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2032 if (GC_old_bus_handler == SIG_IGN) {
2033 GC_err_printf0("Previously ignored bus error!?");
2034 GC_old_bus_handler = SIG_DFL;
2036 if (GC_old_bus_handler != SIG_DFL) {
2037 # ifdef PRINTSTATS
2038 GC_err_printf0("Replaced other SIGBUS handler\n");
2039 # endif
2041 # endif
2042 # if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
2043 GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2044 if (GC_old_segv_handler == SIG_IGN) {
2045 GC_err_printf0("Previously ignored segmentation violation!?");
2046 GC_old_segv_handler = SIG_DFL;
2048 if (GC_old_segv_handler != SIG_DFL) {
2049 # ifdef PRINTSTATS
2050 GC_err_printf0("Replaced other SIGSEGV handler\n");
2051 # endif
2053 # endif
2054 # if defined(SUNOS5SIGS) || defined(IRIX5)
2055 # if defined(IRIX_THREADS) || defined(IRIX_JDK_THREADS)
2056 sigaction(SIGSEGV, 0, &oldact);
2057 sigaction(SIGSEGV, &act, 0);
2058 # else
2059 sigaction(SIGSEGV, &act, &oldact);
2060 # endif
2061 # if defined(_sigargs)
2062 /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
2063 /* sa_sigaction. */
2064 GC_old_segv_handler = oldact.sa_handler;
2065 # else /* Irix 6.x or SUNOS5SIGS */
2066 if (oldact.sa_flags & SA_SIGINFO) {
2067 GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2068 } else {
2069 GC_old_segv_handler = oldact.sa_handler;
2071 # endif
2072 if (GC_old_segv_handler == SIG_IGN) {
2073 GC_err_printf0("Previously ignored segmentation violation!?");
2074 GC_old_segv_handler = SIG_DFL;
2076 if (GC_old_segv_handler != SIG_DFL) {
2077 # ifdef PRINTSTATS
2078 GC_err_printf0("Replaced other SIGSEGV handler\n");
2079 # endif
2081 # ifdef HPUX
2082 sigaction(SIGBUS, &act, &oldact);
2083 GC_old_bus_handler = oldact.sa_handler;
2084 if (GC_old_segv_handler != SIG_DFL) {
2085 # ifdef PRINTSTATS
2086 GC_err_printf0("Replaced other SIGBUS handler\n");
2087 # endif
2089 # endif
2090 # endif
2091 # if defined(MSWIN32)
2092 GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2093 if (GC_old_segv_handler != NULL) {
2094 # ifdef PRINTSTATS
2095 GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
2096 # endif
2097 } else {
2098 GC_old_segv_handler = SIG_DFL;
2100 # endif
2105 void GC_protect_heap()
2107 ptr_t start;
2108 word len;
2109 unsigned i;
2111 for (i = 0; i < GC_n_heap_sects; i++) {
2112 start = GC_heap_sects[i].hs_start;
2113 len = GC_heap_sects[i].hs_bytes;
2114 PROTECT(start, len);
2118 /* We assume that either the world is stopped or its OK to lose dirty */
2119 /* bits while this is happenning (as in GC_enable_incremental). */
2120 void GC_read_dirty()
2122 BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
2123 (sizeof GC_dirty_pages));
2124 BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
2125 GC_protect_heap();
2128 GC_bool GC_page_was_dirty(h)
2129 struct hblk * h;
2131 register word index = PHT_HASH(h);
2133 return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
2137 * Acquiring the allocation lock here is dangerous, since this
2138 * can be called from within GC_call_with_alloc_lock, and the cord
2139 * package does so. On systems that allow nested lock acquisition, this
2140 * happens to work.
2141 * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
2144 void GC_begin_syscall()
2146 if (!I_HOLD_LOCK()) LOCK();
2149 void GC_end_syscall()
2151 if (!I_HOLD_LOCK()) UNLOCK();
2154 void GC_unprotect_range(addr, len)
2155 ptr_t addr;
2156 word len;
2158 struct hblk * start_block;
2159 struct hblk * end_block;
2160 register struct hblk *h;
2161 ptr_t obj_start;
2163 if (!GC_incremental) return;
2164 obj_start = GC_base(addr);
2165 if (obj_start == 0) return;
2166 if (GC_base(addr + len - 1) != obj_start) {
2167 ABORT("GC_unprotect_range(range bigger than object)");
2169 start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
2170 end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
2171 end_block += GC_page_size/HBLKSIZE - 1;
2172 for (h = start_block; h <= end_block; h++) {
2173 register word index = PHT_HASH(h);
2175 set_pht_entry_from_index(GC_dirty_pages, index);
2177 UNPROTECT(start_block,
2178 ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
2181 #ifndef MSWIN32
2182 /* Replacement for UNIX system call. */
2183 /* Other calls that write to the heap */
2184 /* should be handled similarly. */
2185 # if defined(__STDC__) && !defined(SUNOS4)
2186 # include <unistd.h>
2187 ssize_t read(int fd, void *buf, size_t nbyte)
2188 # else
2189 # ifndef LINT
2190 int read(fd, buf, nbyte)
2191 # else
2192 int GC_read(fd, buf, nbyte)
2193 # endif
2194 int fd;
2195 char *buf;
2196 int nbyte;
2197 # endif
2199 int result;
2201 GC_begin_syscall();
2202 GC_unprotect_range(buf, (word)nbyte);
2203 # ifdef IRIX5
2204 /* Indirect system call may not always be easily available. */
2205 /* We could call _read, but that would interfere with the */
2206 /* libpthread interception of read. */
2208 struct iovec iov;
2210 iov.iov_base = buf;
2211 iov.iov_len = nbyte;
2212 result = readv(fd, &iov, 1);
2214 # else
2215 result = syscall(SYS_read, fd, buf, nbyte);
2216 # endif
2217 GC_end_syscall();
2218 return(result);
2220 #endif /* !MSWIN32 */
2222 /*ARGSUSED*/
2223 GC_bool GC_page_was_ever_dirty(h)
2224 struct hblk *h;
2226 return(TRUE);
2229 /* Reset the n pages starting at h to "was never dirty" status. */
2230 /*ARGSUSED*/
2231 void GC_is_fresh(h, n)
2232 struct hblk *h;
2233 word n;
2237 # endif /* MPROTECT_VDB */
2239 # ifdef PROC_VDB
2242 * See DEFAULT_VDB for interface descriptions.
2246 * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
2247 * from which we can read page modified bits. This facility is far from
2248 * optimal (e.g. we would like to get the info for only some of the
2249 * address space), but it avoids intercepting system calls.
2252 #include <errno.h>
2253 #include <sys/types.h>
2254 #include <sys/signal.h>
2255 #include <sys/fault.h>
2256 #include <sys/syscall.h>
2257 #include <sys/procfs.h>
2258 #include <sys/stat.h>
2259 #include <fcntl.h>
2261 #define INITIAL_BUF_SZ 4096
2262 word GC_proc_buf_size = INITIAL_BUF_SZ;
2263 char *GC_proc_buf;
2265 #ifdef SOLARIS_THREADS
2266 /* We don't have exact sp values for threads. So we count on */
2267 /* occasionally declaring stack pages to be fresh. Thus we */
2268 /* need a real implementation of GC_is_fresh. We can't clear */
2269 /* entries in GC_written_pages, since that would declare all */
2270 /* pages with the given hash address to be fresh. */
2271 # define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
2272 struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
2273 /* Collisions are dropped. */
2275 # define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
2276 # define ADD_FRESH_PAGE(h) \
2277 GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
2278 # define PAGE_IS_FRESH(h) \
2279 (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
2280 #endif
2282 /* Add all pages in pht2 to pht1 */
2283 void GC_or_pages(pht1, pht2)
2284 page_hash_table pht1, pht2;
2286 register int i;
2288 for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
2291 int GC_proc_fd;
2293 void GC_dirty_init()
2295 int fd;
2296 char buf[30];
2298 GC_dirty_maintained = TRUE;
2299 if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
2300 register int i;
2302 for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
2303 # ifdef PRINTSTATS
2304 GC_printf1("Allocated words:%lu:all pages may have been written\n",
2305 (unsigned long)
2306 (GC_words_allocd + GC_words_allocd_before_gc));
2307 # endif
2309 sprintf(buf, "/proc/%d", getpid());
2310 fd = open(buf, O_RDONLY);
2311 if (fd < 0) {
2312 ABORT("/proc open failed");
2314 GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
2315 close(fd);
2316 if (GC_proc_fd < 0) {
2317 ABORT("/proc ioctl failed");
2319 GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
2320 # ifdef SOLARIS_THREADS
2321 GC_fresh_pages = (struct hblk **)
2322 GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
2323 if (GC_fresh_pages == 0) {
2324 GC_err_printf0("No space for fresh pages\n");
2325 EXIT();
2327 BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
2328 # endif
2331 /* Ignore write hints. They don't help us here. */
2332 /*ARGSUSED*/
2333 void GC_write_hint(h)
2334 struct hblk *h;
2338 #ifdef SOLARIS_THREADS
2339 # define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
2340 #else
2341 # define READ(fd,buf,nbytes) read(fd, buf, nbytes)
2342 #endif
2344 void GC_read_dirty()
2346 unsigned long ps, np;
2347 int nmaps;
2348 ptr_t vaddr;
2349 struct prasmap * map;
2350 char * bufp;
2351 ptr_t current_addr, limit;
2352 int i;
2353 int dummy;
2355 BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
2357 bufp = GC_proc_buf;
2358 if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2359 # ifdef PRINTSTATS
2360 GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
2361 GC_proc_buf_size);
2362 # endif
2364 /* Retry with larger buffer. */
2365 word new_size = 2 * GC_proc_buf_size;
2366 char * new_buf = GC_scratch_alloc(new_size);
2368 if (new_buf != 0) {
2369 GC_proc_buf = bufp = new_buf;
2370 GC_proc_buf_size = new_size;
2372 if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
2373 WARN("Insufficient space for /proc read\n", 0);
2374 /* Punt: */
2375 memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
2376 memset(GC_written_pages, 0xff, sizeof(page_hash_table));
2377 # ifdef SOLARIS_THREADS
2378 BZERO(GC_fresh_pages,
2379 MAX_FRESH_PAGES * sizeof (struct hblk *));
2380 # endif
2381 return;
2385 /* Copy dirty bits into GC_grungy_pages */
2386 nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
2387 /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
2388 nmaps, PG_REFERENCED, PG_MODIFIED); */
2389 bufp = bufp + sizeof(struct prpageheader);
2390 for (i = 0; i < nmaps; i++) {
2391 map = (struct prasmap *)bufp;
2392 vaddr = (ptr_t)(map -> pr_vaddr);
2393 ps = map -> pr_pagesize;
2394 np = map -> pr_npage;
2395 /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
2396 limit = vaddr + ps * np;
2397 bufp += sizeof (struct prasmap);
2398 for (current_addr = vaddr;
2399 current_addr < limit; current_addr += ps){
2400 if ((*bufp++) & PG_MODIFIED) {
2401 register struct hblk * h = (struct hblk *) current_addr;
2403 while ((ptr_t)h < current_addr + ps) {
2404 register word index = PHT_HASH(h);
2406 set_pht_entry_from_index(GC_grungy_pages, index);
2407 # ifdef SOLARIS_THREADS
2409 register int slot = FRESH_PAGE_SLOT(h);
2411 if (GC_fresh_pages[slot] == h) {
2412 GC_fresh_pages[slot] = 0;
2415 # endif
2416 h++;
2420 bufp += sizeof(long) - 1;
2421 bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
2423 /* Update GC_written_pages. */
2424 GC_or_pages(GC_written_pages, GC_grungy_pages);
2425 # ifdef SOLARIS_THREADS
2426 /* Make sure that old stacks are considered completely clean */
2427 /* unless written again. */
2428 GC_old_stacks_are_fresh();
2429 # endif
2432 #undef READ
2434 GC_bool GC_page_was_dirty(h)
2435 struct hblk *h;
2437 register word index = PHT_HASH(h);
2438 register GC_bool result;
2440 result = get_pht_entry_from_index(GC_grungy_pages, index);
2441 # ifdef SOLARIS_THREADS
2442 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2443 /* This happens only if page was declared fresh since */
2444 /* the read_dirty call, e.g. because it's in an unused */
2445 /* thread stack. It's OK to treat it as clean, in */
2446 /* that case. And it's consistent with */
2447 /* GC_page_was_ever_dirty. */
2448 # endif
2449 return(result);
2452 GC_bool GC_page_was_ever_dirty(h)
2453 struct hblk *h;
2455 register word index = PHT_HASH(h);
2456 register GC_bool result;
2458 result = get_pht_entry_from_index(GC_written_pages, index);
2459 # ifdef SOLARIS_THREADS
2460 if (result && PAGE_IS_FRESH(h)) result = FALSE;
2461 # endif
2462 return(result);
2465 /* Caller holds allocation lock. */
2466 void GC_is_fresh(h, n)
2467 struct hblk *h;
2468 word n;
2471 register word index;
2473 # ifdef SOLARIS_THREADS
2474 register word i;
2476 if (GC_fresh_pages != 0) {
2477 for (i = 0; i < n; i++) {
2478 ADD_FRESH_PAGE(h + i);
2481 # endif
2484 # endif /* PROC_VDB */
2487 # ifdef PCR_VDB
2489 # include "vd/PCR_VD.h"
2491 # define NPAGES (32*1024) /* 128 MB */
2493 PCR_VD_DB GC_grungy_bits[NPAGES];
2495 ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
2496 /* HBLKSIZE aligned. */
2498 void GC_dirty_init()
2500 GC_dirty_maintained = TRUE;
2501 /* For the time being, we assume the heap generally grows up */
2502 GC_vd_base = GC_heap_sects[0].hs_start;
2503 if (GC_vd_base == 0) {
2504 ABORT("Bad initial heap segment");
2506 if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
2507 != PCR_ERes_okay) {
2508 ABORT("dirty bit initialization failed");
2512 void GC_read_dirty()
2514 /* lazily enable dirty bits on newly added heap sects */
2516 static int onhs = 0;
2517 int nhs = GC_n_heap_sects;
2518 for( ; onhs < nhs; onhs++ ) {
2519 PCR_VD_WriteProtectEnable(
2520 GC_heap_sects[onhs].hs_start,
2521 GC_heap_sects[onhs].hs_bytes );
2526 if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
2527 != PCR_ERes_okay) {
2528 ABORT("dirty bit read failed");
2532 GC_bool GC_page_was_dirty(h)
2533 struct hblk *h;
2535 if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
2536 return(TRUE);
2538 return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
2541 /*ARGSUSED*/
2542 void GC_write_hint(h)
2543 struct hblk *h;
2545 PCR_VD_WriteProtectDisable(h, HBLKSIZE);
2546 PCR_VD_WriteProtectEnable(h, HBLKSIZE);
2549 # endif /* PCR_VDB */
2552 * Call stack save code for debugging.
2553 * Should probably be in mach_dep.c, but that requires reorganization.
2555 #if defined(SPARC) && !defined(LINUX)
2556 # if defined(SUNOS4)
2557 # include <machine/frame.h>
2558 # else
2559 # if defined (DRSNX)
2560 # include <sys/sparc/frame.h>
2561 # else
2562 # if defined(OPENBSD)
2563 # include <frame.h>
2564 # else
2565 # include <sys/frame.h>
2566 # endif
2567 # endif
2568 # endif
2569 # if NARGS > 6
2570 --> We only know how to to get the first 6 arguments
2571 # endif
2573 #ifdef SAVE_CALL_CHAIN
2574 /* Fill in the pc and argument information for up to NFRAMES of my */
2575 /* callers. Ignore my frame and my callers frame. */
2577 #ifdef OPENBSD
2578 # define FR_SAVFP fr_fp
2579 # define FR_SAVPC fr_pc
2580 #else
2581 # define FR_SAVFP fr_savfp
2582 # define FR_SAVPC fr_savpc
2583 #endif
2585 void GC_save_callers (info)
2586 struct callinfo info[NFRAMES];
2588 struct frame *frame;
2589 struct frame *fp;
2590 int nframes = 0;
2591 word GC_save_regs_in_stack();
2593 frame = (struct frame *) GC_save_regs_in_stack ();
2595 for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
2596 fp = fp -> FR_SAVFP, nframes++) {
2597 register int i;
2599 info[nframes].ci_pc = fp->FR_SAVPC;
2600 for (i = 0; i < NARGS; i++) {
2601 info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
2604 if (nframes < NFRAMES) info[nframes].ci_pc = 0;
2607 #endif /* SAVE_CALL_CHAIN */
2608 #endif /* SPARC */