1999-12-16 Mark Mitchell <mark@codesourcery.com>
[official-gcc.git] / boehm-gc / alloc.c
blob3d0ddf05b36112bf6b81f65ed55b65441bda6c3c
1 /*
2 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3 * Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved.
4 * Copyright (c) 1998 by Silicon Graphics. All rights reserved.
5 * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved.
7 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8 * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
10 * Permission is hereby granted to use or copy this program
11 * for any purpose, provided the above notices are retained on all copies.
12 * Permission to modify the code and to distribute modified code is granted,
13 * provided the above notices are retained, and a notice that the code was
14 * modified is included with the above copyright notice.
19 # include "gc_priv.h"
21 # include <stdio.h>
22 # ifndef MACOS
23 # include <signal.h>
24 # include <sys/types.h>
25 # endif
28 * Separate free lists are maintained for different sized objects
29 * up to MAXOBJSZ.
30 * The call GC_allocobj(i,k) ensures that the freelist for
31 * kind k objects of size i points to a non-empty
32 * free list. It returns a pointer to the first entry on the free list.
33 * In a single-threaded world, GC_allocobj may be called to allocate
34 * an object of (small) size i as follows:
36 * opp = &(GC_objfreelist[i]);
37 * if (*opp == 0) GC_allocobj(i, NORMAL);
38 * ptr = *opp;
39 * *opp = obj_link(ptr);
41 * Note that this is very fast if the free list is non-empty; it should
42 * only involve the execution of 4 or 5 simple instructions.
43 * All composite objects on freelists are cleared, except for
44 * their first word.
48 * The allocator uses GC_allochblk to allocate large chunks of objects.
49 * These chunks all start on addresses which are multiples of
50 * HBLKSZ. Each allocated chunk has an associated header,
51 * which can be located quickly based on the address of the chunk.
52 * (See headers.c for details.)
53 * This makes it possible to check quickly whether an
54 * arbitrary address corresponds to an object administered by the
55 * allocator.
58 word GC_non_gc_bytes = 0; /* Number of bytes not intended to be collected */
60 word GC_gc_no = 0;
62 #ifndef SMALL_CONFIG
63 int GC_incremental = 0; /* By default, stop the world. */
64 #endif
66 int GC_full_freq = 19; /* Every 20th collection is a full */
67 /* collection, whether we need it */
68 /* or not. */
70 GC_bool GC_need_full_gc = FALSE;
71 /* Need full GC do to heap growth. */
73 #define USED_HEAP_SIZE (GC_heapsize - GC_large_free_bytes)
75 word GC_used_heap_size_after_full = 0;
77 char * GC_copyright[] =
78 {"Copyright 1988,1989 Hans-J. Boehm and Alan J. Demers ",
79 "Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved. ",
80 "Copyright (c) 1996-1998 by Silicon Graphics. All rights reserved. ",
81 "THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY",
82 " EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.",
83 "See source code for details." };
85 # include "version.h"
87 /* some more variables */
89 extern signed_word GC_mem_found; /* Number of reclaimed longwords */
90 /* after garbage collection */
92 GC_bool GC_dont_expand = 0;
94 word GC_free_space_divisor = 3;
96 extern GC_bool GC_collection_in_progress();
97 /* Collection is in progress, or was abandoned. */
99 int GC_never_stop_func GC_PROTO((void)) { return(0); }
101 CLOCK_TYPE GC_start_time; /* Time at which we stopped world. */
102 /* used only in GC_timeout_stop_func. */
104 int GC_n_attempts = 0; /* Number of attempts at finishing */
105 /* collection within TIME_LIMIT */
107 #ifdef SMALL_CONFIG
108 # define GC_timeout_stop_func GC_never_stop_func
109 #else
110 int GC_timeout_stop_func GC_PROTO((void))
112 CLOCK_TYPE current_time;
113 static unsigned count = 0;
114 unsigned long time_diff;
116 if ((count++ & 3) != 0) return(0);
117 #ifndef NO_CLOCK
118 GET_TIME(current_time);
119 time_diff = MS_TIME_DIFF(current_time,GC_start_time);
120 if (time_diff >= TIME_LIMIT) {
121 # ifdef PRINTSTATS
122 GC_printf0("Abandoning stopped marking after ");
123 GC_printf1("%lu msecs", (unsigned long)time_diff);
124 GC_printf1("(attempt %d)\n", (unsigned long) GC_n_attempts);
125 # endif
126 return(1);
128 #endif
129 return(0);
131 #endif /* !SMALL_CONFIG */
133 /* Return the minimum number of words that must be allocated between */
134 /* collections to amortize the collection cost. */
135 static word min_words_allocd()
137 # ifdef THREADS
138 /* We punt, for now. */
139 register signed_word stack_size = 10000;
140 # else
141 int dummy;
142 register signed_word stack_size = (ptr_t)(&dummy) - GC_stackbottom;
143 # endif
144 word total_root_size; /* includes double stack size, */
145 /* since the stack is expensive */
146 /* to scan. */
147 word scan_size; /* Estimate of memory to be scanned */
148 /* during normal GC. */
150 if (stack_size < 0) stack_size = -stack_size;
151 total_root_size = 2 * stack_size + GC_root_size;
152 scan_size = BYTES_TO_WORDS(GC_heapsize - GC_large_free_bytes
153 + (GC_large_free_bytes >> 2)
154 /* use a bit more of large empty heap */
155 + total_root_size);
156 if (GC_incremental) {
157 return scan_size / (2 * GC_free_space_divisor);
158 } else {
159 return scan_size / GC_free_space_divisor;
163 /* Return the number of words allocated, adjusted for explicit storage */
164 /* management, etc.. This number is used in deciding when to trigger */
165 /* collections. */
166 word GC_adj_words_allocd()
168 register signed_word result;
169 register signed_word expl_managed =
170 BYTES_TO_WORDS((long)GC_non_gc_bytes
171 - (long)GC_non_gc_bytes_at_gc);
173 /* Don't count what was explicitly freed, or newly allocated for */
174 /* explicit management. Note that deallocating an explicitly */
175 /* managed object should not alter result, assuming the client */
176 /* is playing by the rules. */
177 result = (signed_word)GC_words_allocd
178 - (signed_word)GC_mem_freed - expl_managed;
179 if (result > (signed_word)GC_words_allocd) {
180 result = GC_words_allocd;
181 /* probably client bug or unfortunate scheduling */
183 result += GC_words_finalized;
184 /* We count objects enqueued for finalization as though they */
185 /* had been reallocated this round. Finalization is user */
186 /* visible progress. And if we don't count this, we have */
187 /* stability problems for programs that finalize all objects. */
188 result += GC_words_wasted;
189 /* This doesn't reflect useful work. But if there is lots of */
190 /* new fragmentation, the same is probably true of the heap, */
191 /* and the collection will be correspondingly cheaper. */
192 if (result < (signed_word)(GC_words_allocd >> 3)) {
193 /* Always count at least 1/8 of the allocations. We don't want */
194 /* to collect too infrequently, since that would inhibit */
195 /* coalescing of free storage blocks. */
196 /* This also makes us partially robust against client bugs. */
197 return(GC_words_allocd >> 3);
198 } else {
199 return(result);
204 /* Clear up a few frames worth of garbage left at the top of the stack. */
205 /* This is used to prevent us from accidentally treating garbade left */
206 /* on the stack by other parts of the collector as roots. This */
207 /* differs from the code in misc.c, which actually tries to keep the */
208 /* stack clear of long-lived, client-generated garbage. */
209 void GC_clear_a_few_frames()
211 # define NWORDS 64
212 word frames[NWORDS];
213 register int i;
215 for (i = 0; i < NWORDS; i++) frames[i] = 0;
218 /* Have we allocated enough to amortize a collection? */
219 GC_bool GC_should_collect()
221 return(GC_adj_words_allocd() >= min_words_allocd());
225 void GC_notify_full_gc()
227 if (GC_start_call_back != (void (*)())0) {
228 (*GC_start_call_back)();
232 GC_bool GC_is_full_gc = FALSE;
235 * Initiate a garbage collection if appropriate.
236 * Choose judiciously
237 * between partial, full, and stop-world collections.
238 * Assumes lock held, signals disabled.
240 void GC_maybe_gc()
242 static int n_partial_gcs = 0;
244 if (GC_should_collect()) {
245 if (!GC_incremental) {
246 GC_notify_full_gc();
247 GC_gcollect_inner();
248 n_partial_gcs = 0;
249 return;
250 } else if (GC_need_full_gc || n_partial_gcs >= GC_full_freq) {
251 # ifdef PRINTSTATS
252 GC_printf2(
253 "***>Full mark for collection %lu after %ld allocd bytes\n",
254 (unsigned long) GC_gc_no+1,
255 (long)WORDS_TO_BYTES(GC_words_allocd));
256 # endif
257 GC_promote_black_lists();
258 (void)GC_reclaim_all((GC_stop_func)0, TRUE);
259 GC_clear_marks();
260 n_partial_gcs = 0;
261 GC_notify_full_gc();
262 GC_is_full_gc = TRUE;
263 } else {
264 n_partial_gcs++;
266 /* We try to mark with the world stopped. */
267 /* If we run out of time, this turns into */
268 /* incremental marking. */
269 #ifndef NO_CLOCK
270 GET_TIME(GC_start_time);
271 #endif
272 if (GC_stopped_mark(GC_timeout_stop_func)) {
273 # ifdef SAVE_CALL_CHAIN
274 GC_save_callers(GC_last_stack);
275 # endif
276 GC_finish_collection();
277 } else {
278 if (!GC_is_full_gc) {
279 /* Count this as the first attempt */
280 GC_n_attempts++;
288 * Stop the world garbage collection. Assumes lock held, signals disabled.
289 * If stop_func is not GC_never_stop_func, then abort if stop_func returns TRUE.
291 GC_bool GC_try_to_collect_inner(stop_func)
292 GC_stop_func stop_func;
294 if (GC_incremental && GC_collection_in_progress()) {
295 # ifdef PRINTSTATS
296 GC_printf0(
297 "GC_try_to_collect_inner: finishing collection in progress\n");
298 # endif /* PRINTSTATS */
299 /* Just finish collection already in progress. */
300 while(GC_collection_in_progress()) {
301 if (stop_func()) return(FALSE);
302 GC_collect_a_little_inner(1);
305 # ifdef PRINTSTATS
306 GC_printf2(
307 "Initiating full world-stop collection %lu after %ld allocd bytes\n",
308 (unsigned long) GC_gc_no+1,
309 (long)WORDS_TO_BYTES(GC_words_allocd));
310 # endif
311 GC_promote_black_lists();
312 /* Make sure all blocks have been reclaimed, so sweep routines */
313 /* don't see cleared mark bits. */
314 /* If we're guaranteed to finish, then this is unnecessary. */
315 if (stop_func != GC_never_stop_func
316 && !GC_reclaim_all(stop_func, FALSE)) {
317 /* Aborted. So far everything is still consistent. */
318 return(FALSE);
320 GC_invalidate_mark_state(); /* Flush mark stack. */
321 GC_clear_marks();
322 # ifdef SAVE_CALL_CHAIN
323 GC_save_callers(GC_last_stack);
324 # endif
325 GC_is_full_gc = TRUE;
326 if (!GC_stopped_mark(stop_func)) {
327 if (!GC_incremental) {
328 /* We're partially done and have no way to complete or use */
329 /* current work. Reestablish invariants as cheaply as */
330 /* possible. */
331 GC_invalidate_mark_state();
332 GC_unpromote_black_lists();
333 } /* else we claim the world is already still consistent. We'll */
334 /* finish incrementally. */
335 return(FALSE);
337 GC_finish_collection();
338 return(TRUE);
344 * Perform n units of garbage collection work. A unit is intended to touch
345 * roughly GC_RATE pages. Every once in a while, we do more than that.
346 * This needa to be a fairly large number with our current incremental
347 * GC strategy, since otherwise we allocate too much during GC, and the
348 * cleanup gets expensive.
350 # define GC_RATE 10
351 # define MAX_PRIOR_ATTEMPTS 1
352 /* Maximum number of prior attempts at world stop marking */
353 /* A value of 1 means that we finish the seconf time, no matter */
354 /* how long it takes. Doesn't count the initial root scan */
355 /* for a full GC. */
357 int GC_deficit = 0; /* The number of extra calls to GC_mark_some */
358 /* that we have made. */
360 void GC_collect_a_little_inner(n)
361 int n;
363 register int i;
365 if (GC_incremental && GC_collection_in_progress()) {
366 for (i = GC_deficit; i < GC_RATE*n; i++) {
367 if (GC_mark_some((ptr_t)0)) {
368 /* Need to finish a collection */
369 # ifdef SAVE_CALL_CHAIN
370 GC_save_callers(GC_last_stack);
371 # endif
372 if (GC_n_attempts < MAX_PRIOR_ATTEMPTS) {
373 GET_TIME(GC_start_time);
374 if (!GC_stopped_mark(GC_timeout_stop_func)) {
375 GC_n_attempts++;
376 break;
378 } else {
379 (void)GC_stopped_mark(GC_never_stop_func);
381 GC_finish_collection();
382 break;
385 if (GC_deficit > 0) GC_deficit -= GC_RATE*n;
386 if (GC_deficit < 0) GC_deficit = 0;
387 } else {
388 GC_maybe_gc();
392 int GC_collect_a_little GC_PROTO(())
394 int result;
395 DCL_LOCK_STATE;
397 DISABLE_SIGNALS();
398 LOCK();
399 GC_collect_a_little_inner(1);
400 result = (int)GC_collection_in_progress();
401 UNLOCK();
402 ENABLE_SIGNALS();
403 return(result);
407 * Assumes lock is held, signals are disabled.
408 * We stop the world.
409 * If stop_func() ever returns TRUE, we may fail and return FALSE.
410 * Increment GC_gc_no if we succeed.
412 GC_bool GC_stopped_mark(stop_func)
413 GC_stop_func stop_func;
415 register int i;
416 int dummy;
417 # ifdef PRINTSTATS
418 CLOCK_TYPE start_time, current_time;
419 # endif
421 STOP_WORLD();
422 # ifdef PRINTSTATS
423 GET_TIME(start_time);
424 GC_printf1("--> Marking for collection %lu ",
425 (unsigned long) GC_gc_no + 1);
426 GC_printf2("after %lu allocd bytes + %lu wasted bytes\n",
427 (unsigned long) WORDS_TO_BYTES(GC_words_allocd),
428 (unsigned long) WORDS_TO_BYTES(GC_words_wasted));
429 # endif
431 /* Mark from all roots. */
432 /* Minimize junk left in my registers and on the stack */
433 GC_clear_a_few_frames();
434 GC_noop(0,0,0,0,0,0);
435 GC_initiate_gc();
436 for(i = 0;;i++) {
437 if ((*stop_func)()) {
438 # ifdef PRINTSTATS
439 GC_printf0("Abandoned stopped marking after ");
440 GC_printf1("%lu iterations\n",
441 (unsigned long)i);
442 # endif
443 GC_deficit = i; /* Give the mutator a chance. */
444 START_WORLD();
445 return(FALSE);
447 if (GC_mark_some((ptr_t)(&dummy))) break;
450 GC_gc_no++;
451 # ifdef PRINTSTATS
452 GC_printf2("Collection %lu reclaimed %ld bytes",
453 (unsigned long) GC_gc_no - 1,
454 (long)WORDS_TO_BYTES(GC_mem_found));
455 GC_printf1(" ---> heapsize = %lu bytes\n",
456 (unsigned long) GC_heapsize);
457 /* Printf arguments may be pushed in funny places. Clear the */
458 /* space. */
459 GC_printf0("");
460 # endif
462 /* Check all debugged objects for consistency */
463 if (GC_debugging_started) {
464 (*GC_check_heap)();
467 # ifdef PRINTTIMES
468 GET_TIME(current_time);
469 GC_printf1("World-stopped marking took %lu msecs\n",
470 MS_TIME_DIFF(current_time,start_time));
471 # endif
472 START_WORLD();
473 return(TRUE);
477 /* Finish up a collection. Assumes lock is held, signals are disabled, */
478 /* but the world is otherwise running. */
479 void GC_finish_collection()
481 # ifdef PRINTTIMES
482 CLOCK_TYPE start_time;
483 CLOCK_TYPE finalize_time;
484 CLOCK_TYPE done_time;
486 GET_TIME(start_time);
487 finalize_time = start_time;
488 # endif
490 # ifdef GATHERSTATS
491 GC_mem_found = 0;
492 # endif
493 if (GC_find_leak) {
494 /* Mark all objects on the free list. All objects should be */
495 /* marked when we're done. */
497 register word size; /* current object size */
498 register ptr_t p; /* pointer to current object */
499 register struct hblk * h; /* pointer to block containing *p */
500 register hdr * hhdr;
501 register int word_no; /* "index" of *p in *q */
502 int kind;
504 for (kind = 0; kind < GC_n_kinds; kind++) {
505 for (size = 1; size <= MAXOBJSZ; size++) {
506 for (p= GC_obj_kinds[kind].ok_freelist[size];
507 p != 0; p=obj_link(p)){
508 h = HBLKPTR(p);
509 hhdr = HDR(h);
510 word_no = (((word *)p) - ((word *)h));
511 set_mark_bit_from_hdr(hhdr, word_no);
516 GC_start_reclaim(TRUE);
517 /* The above just checks; it doesn't really reclaim anything. */
520 GC_finalize();
521 # ifdef STUBBORN_ALLOC
522 GC_clean_changing_list();
523 # endif
525 # ifdef PRINTTIMES
526 GET_TIME(finalize_time);
527 # endif
529 /* Clear free list mark bits, in case they got accidentally marked */
530 /* Note: HBLKPTR(p) == pointer to head of block containing *p */
531 /* (or GC_find_leak is set and they were intentionally marked.) */
532 /* Also subtract memory remaining from GC_mem_found count. */
533 /* Note that composite objects on free list are cleared. */
534 /* Thus accidentally marking a free list is not a problem; only */
535 /* objects on the list itself will be marked, and that's fixed here. */
537 register word size; /* current object size */
538 register ptr_t p; /* pointer to current object */
539 register struct hblk * h; /* pointer to block containing *p */
540 register hdr * hhdr;
541 register int word_no; /* "index" of *p in *q */
542 int kind;
544 for (kind = 0; kind < GC_n_kinds; kind++) {
545 for (size = 1; size <= MAXOBJSZ; size++) {
546 for (p= GC_obj_kinds[kind].ok_freelist[size];
547 p != 0; p=obj_link(p)){
548 h = HBLKPTR(p);
549 hhdr = HDR(h);
550 word_no = (((word *)p) - ((word *)h));
551 clear_mark_bit_from_hdr(hhdr, word_no);
552 # ifdef GATHERSTATS
553 GC_mem_found -= size;
554 # endif
561 # ifdef PRINTSTATS
562 GC_printf1("Bytes recovered before sweep - f.l. count = %ld\n",
563 (long)WORDS_TO_BYTES(GC_mem_found));
564 # endif
565 /* Reconstruct free lists to contain everything not marked */
566 GC_start_reclaim(FALSE);
567 if (GC_is_full_gc) {
568 GC_used_heap_size_after_full = USED_HEAP_SIZE;
569 GC_need_full_gc = FALSE;
570 } else {
571 GC_need_full_gc =
572 BYTES_TO_WORDS(USED_HEAP_SIZE - GC_used_heap_size_after_full)
573 > min_words_allocd();
576 # ifdef PRINTSTATS
577 GC_printf2(
578 "Immediately reclaimed %ld bytes in heap of size %lu bytes",
579 (long)WORDS_TO_BYTES(GC_mem_found),
580 (unsigned long)GC_heapsize);
581 # ifdef USE_MUNMAP
582 GC_printf1("(%lu unmapped)", GC_unmapped_bytes);
583 # endif
584 GC_printf2(
585 "\n%lu (atomic) + %lu (composite) collectable bytes in use\n",
586 (unsigned long)WORDS_TO_BYTES(GC_atomic_in_use),
587 (unsigned long)WORDS_TO_BYTES(GC_composite_in_use));
588 # endif
590 GC_n_attempts = 0;
591 GC_is_full_gc = FALSE;
592 /* Reset or increment counters for next cycle */
593 GC_words_allocd_before_gc += GC_words_allocd;
594 GC_non_gc_bytes_at_gc = GC_non_gc_bytes;
595 GC_words_allocd = 0;
596 GC_words_wasted = 0;
597 GC_mem_freed = 0;
599 # ifdef USE_MUNMAP
600 GC_unmap_old();
601 # endif
602 # ifdef PRINTTIMES
603 GET_TIME(done_time);
604 GC_printf2("Finalize + initiate sweep took %lu + %lu msecs\n",
605 MS_TIME_DIFF(finalize_time,start_time),
606 MS_TIME_DIFF(done_time,finalize_time));
607 # endif
610 /* Externally callable routine to invoke full, stop-world collection */
611 # if defined(__STDC__) || defined(__cplusplus)
612 int GC_try_to_collect(GC_stop_func stop_func)
613 # else
614 int GC_try_to_collect(stop_func)
615 GC_stop_func stop_func;
616 # endif
618 int result;
619 DCL_LOCK_STATE;
621 GC_INVOKE_FINALIZERS();
622 DISABLE_SIGNALS();
623 LOCK();
624 ENTER_GC();
625 if (!GC_is_initialized) GC_init_inner();
626 /* Minimize junk left in my registers */
627 GC_noop(0,0,0,0,0,0);
628 result = (int)GC_try_to_collect_inner(stop_func);
629 EXIT_GC();
630 UNLOCK();
631 ENABLE_SIGNALS();
632 if(result) GC_INVOKE_FINALIZERS();
633 return(result);
636 void GC_gcollect GC_PROTO(())
638 GC_notify_full_gc();
639 (void)GC_try_to_collect(GC_never_stop_func);
642 word GC_n_heap_sects = 0; /* Number of sections currently in heap. */
645 * Use the chunk of memory starting at p of size bytes as part of the heap.
646 * Assumes p is HBLKSIZE aligned, and bytes is a multiple of HBLKSIZE.
648 void GC_add_to_heap(p, bytes)
649 struct hblk *p;
650 word bytes;
652 word words;
653 hdr * phdr;
655 if (GC_n_heap_sects >= MAX_HEAP_SECTS) {
656 ABORT("Too many heap sections: Increase MAXHINCR or MAX_HEAP_SECTS");
658 if (!GC_install_header(p)) {
659 /* This is extremely unlikely. Can't add it. This will */
660 /* almost certainly result in a 0 return from the allocator, */
661 /* which is entirely appropriate. */
662 return;
664 GC_heap_sects[GC_n_heap_sects].hs_start = (ptr_t)p;
665 GC_heap_sects[GC_n_heap_sects].hs_bytes = bytes;
666 GC_n_heap_sects++;
667 words = BYTES_TO_WORDS(bytes - HDR_BYTES);
668 phdr = HDR(p);
669 phdr -> hb_sz = words;
670 phdr -> hb_map = (char *)1; /* A value != GC_invalid_map */
671 phdr -> hb_flags = 0;
672 GC_freehblk(p);
673 GC_heapsize += bytes;
674 if ((ptr_t)p <= GC_least_plausible_heap_addr
675 || GC_least_plausible_heap_addr == 0) {
676 GC_least_plausible_heap_addr = (ptr_t)p - sizeof(word);
677 /* Making it a little smaller than necessary prevents */
678 /* us from getting a false hit from the variable */
679 /* itself. There's some unintentional reflection */
680 /* here. */
682 if ((ptr_t)p + bytes >= GC_greatest_plausible_heap_addr) {
683 GC_greatest_plausible_heap_addr = (ptr_t)p + bytes;
687 # if !defined(NO_DEBUGGING)
688 void GC_print_heap_sects()
690 register unsigned i;
692 GC_printf1("Total heap size: %lu\n", (unsigned long) GC_heapsize);
693 for (i = 0; i < GC_n_heap_sects; i++) {
694 unsigned long start = (unsigned long) GC_heap_sects[i].hs_start;
695 unsigned long len = (unsigned long) GC_heap_sects[i].hs_bytes;
696 struct hblk *h;
697 unsigned nbl = 0;
699 GC_printf3("Section %ld from 0x%lx to 0x%lx ", (unsigned long)i,
700 start, (unsigned long)(start + len));
701 for (h = (struct hblk *)start; h < (struct hblk *)(start + len); h++) {
702 if (GC_is_black_listed(h, HBLKSIZE)) nbl++;
704 GC_printf2("%lu/%lu blacklisted\n", (unsigned long)nbl,
705 (unsigned long)(len/HBLKSIZE));
708 # endif
710 ptr_t GC_least_plausible_heap_addr = (ptr_t)ONES;
711 ptr_t GC_greatest_plausible_heap_addr = 0;
713 ptr_t GC_max(x,y)
714 ptr_t x, y;
716 return(x > y? x : y);
719 ptr_t GC_min(x,y)
720 ptr_t x, y;
722 return(x < y? x : y);
725 # if defined(__STDC__) || defined(__cplusplus)
726 void GC_set_max_heap_size(GC_word n)
727 # else
728 void GC_set_max_heap_size(n)
729 GC_word n;
730 # endif
732 GC_max_heapsize = n;
735 GC_word GC_max_retries = 0;
738 * this explicitly increases the size of the heap. It is used
739 * internally, but may also be invoked from GC_expand_hp by the user.
740 * The argument is in units of HBLKSIZE.
741 * Tiny values of n are rounded up.
742 * Returns FALSE on failure.
744 GC_bool GC_expand_hp_inner(n)
745 word n;
747 word bytes;
748 struct hblk * space;
749 word expansion_slop; /* Number of bytes by which we expect the */
750 /* heap to expand soon. */
752 if (n < MINHINCR) n = MINHINCR;
753 bytes = n * HBLKSIZE;
754 /* Make sure bytes is a multiple of GC_page_size */
756 word mask = GC_page_size - 1;
757 bytes += mask;
758 bytes &= ~mask;
761 if (GC_max_heapsize != 0 && GC_heapsize + bytes > GC_max_heapsize) {
762 /* Exceeded self-imposed limit */
763 return(FALSE);
765 space = GET_MEM(bytes);
766 if( space == 0 ) {
767 return(FALSE);
769 # ifdef PRINTSTATS
770 GC_printf2("Increasing heap size by %lu after %lu allocated bytes\n",
771 (unsigned long)bytes,
772 (unsigned long)WORDS_TO_BYTES(GC_words_allocd));
773 # ifdef UNDEFINED
774 GC_printf1("Root size = %lu\n", GC_root_size);
775 GC_print_block_list(); GC_print_hblkfreelist();
776 GC_printf0("\n");
777 # endif
778 # endif
779 expansion_slop = 8 * WORDS_TO_BYTES(min_words_allocd());
780 if (5 * HBLKSIZE * MAXHINCR > expansion_slop) {
781 expansion_slop = 5 * HBLKSIZE * MAXHINCR;
783 if (GC_last_heap_addr == 0 && !((word)space & SIGNB)
784 || GC_last_heap_addr != 0 && GC_last_heap_addr < (ptr_t)space) {
785 /* Assume the heap is growing up */
786 GC_greatest_plausible_heap_addr =
787 GC_max(GC_greatest_plausible_heap_addr,
788 (ptr_t)space + bytes + expansion_slop);
789 } else {
790 /* Heap is growing down */
791 GC_least_plausible_heap_addr =
792 GC_min(GC_least_plausible_heap_addr,
793 (ptr_t)space - expansion_slop);
795 GC_prev_heap_addr = GC_last_heap_addr;
796 GC_last_heap_addr = (ptr_t)space;
797 GC_add_to_heap(space, bytes);
798 return(TRUE);
801 /* Really returns a bool, but it's externally visible, so that's clumsy. */
802 /* Arguments is in bytes. */
803 # if defined(__STDC__) || defined(__cplusplus)
804 int GC_expand_hp(size_t bytes)
805 # else
806 int GC_expand_hp(bytes)
807 size_t bytes;
808 # endif
810 int result;
811 DCL_LOCK_STATE;
813 DISABLE_SIGNALS();
814 LOCK();
815 if (!GC_is_initialized) GC_init_inner();
816 result = (int)GC_expand_hp_inner(divHBLKSZ((word)bytes));
817 UNLOCK();
818 ENABLE_SIGNALS();
819 return(result);
822 unsigned GC_fail_count = 0;
823 /* How many consecutive GC/expansion failures? */
824 /* Reset by GC_allochblk. */
826 GC_bool GC_collect_or_expand(needed_blocks, ignore_off_page)
827 word needed_blocks;
828 GC_bool ignore_off_page;
830 if (!GC_incremental && !GC_dont_gc && GC_should_collect()) {
831 GC_notify_full_gc();
832 GC_gcollect_inner();
833 } else {
834 word blocks_to_get = GC_heapsize/(HBLKSIZE*GC_free_space_divisor)
835 + needed_blocks;
837 if (blocks_to_get > MAXHINCR) {
838 word slop;
840 if (ignore_off_page) {
841 slop = 4;
842 } else {
843 slop = 2*divHBLKSZ(BL_LIMIT);
844 if (slop > needed_blocks) slop = needed_blocks;
846 if (needed_blocks + slop > MAXHINCR) {
847 blocks_to_get = needed_blocks + slop;
848 } else {
849 blocks_to_get = MAXHINCR;
852 if (!GC_expand_hp_inner(blocks_to_get)
853 && !GC_expand_hp_inner(needed_blocks)) {
854 if (GC_fail_count++ < GC_max_retries) {
855 WARN("Out of Memory! Trying to continue ...\n", 0);
856 GC_notify_full_gc();
857 GC_gcollect_inner();
858 } else {
859 WARN("Out of Memory! Returning NIL!\n", 0);
860 return(FALSE);
862 } else {
863 # ifdef PRINTSTATS
864 if (GC_fail_count) {
865 GC_printf0("Memory available again ...\n");
867 # endif
870 return(TRUE);
874 * Make sure the object free list for sz is not empty.
875 * Return a pointer to the first object on the free list.
876 * The object MUST BE REMOVED FROM THE FREE LIST BY THE CALLER.
877 * Assumes we hold the allocator lock and signals are disabled.
880 ptr_t GC_allocobj(sz, kind)
881 word sz;
882 int kind;
884 register ptr_t * flh = &(GC_obj_kinds[kind].ok_freelist[sz]);
886 if (sz == 0) return(0);
888 while (*flh == 0) {
889 ENTER_GC();
890 /* Do our share of marking work */
891 if(GC_incremental && !GC_dont_gc) GC_collect_a_little_inner(1);
892 /* Sweep blocks for objects of this size */
893 GC_continue_reclaim(sz, kind);
894 EXIT_GC();
895 if (*flh == 0) {
896 GC_new_hblk(sz, kind);
898 if (*flh == 0) {
899 ENTER_GC();
900 if (!GC_collect_or_expand((word)1,FALSE)) {
901 EXIT_GC();
902 return(0);
904 EXIT_GC();
908 return(*flh);