libgo: Update to Go 1.3 release.
[official-gcc.git] / libgo / go / text / template / exec.go
blob2f323126453fdc1ad6e1b8f03135128b83584e99
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package template
7 import (
8 "bytes"
9 "fmt"
10 "io"
11 "reflect"
12 "runtime"
13 "sort"
14 "strings"
15 "text/template/parse"
18 // state represents the state of an execution. It's not part of the
19 // template so that multiple executions of the same template
20 // can execute in parallel.
21 type state struct {
22 tmpl *Template
23 wr io.Writer
24 node parse.Node // current node, for errors
25 vars []variable // push-down stack of variable values.
28 // variable holds the dynamic value of a variable such as $, $x etc.
29 type variable struct {
30 name string
31 value reflect.Value
34 // push pushes a new variable on the stack.
35 func (s *state) push(name string, value reflect.Value) {
36 s.vars = append(s.vars, variable{name, value})
39 // mark returns the length of the variable stack.
40 func (s *state) mark() int {
41 return len(s.vars)
44 // pop pops the variable stack up to the mark.
45 func (s *state) pop(mark int) {
46 s.vars = s.vars[0:mark]
49 // setVar overwrites the top-nth variable on the stack. Used by range iterations.
50 func (s *state) setVar(n int, value reflect.Value) {
51 s.vars[len(s.vars)-n].value = value
54 // varValue returns the value of the named variable.
55 func (s *state) varValue(name string) reflect.Value {
56 for i := s.mark() - 1; i >= 0; i-- {
57 if s.vars[i].name == name {
58 return s.vars[i].value
61 s.errorf("undefined variable: %s", name)
62 return zero
65 var zero reflect.Value
67 // at marks the state to be on node n, for error reporting.
68 func (s *state) at(node parse.Node) {
69 s.node = node
72 // doublePercent returns the string with %'s replaced by %%, if necessary,
73 // so it can be used safely inside a Printf format string.
74 func doublePercent(str string) string {
75 if strings.Contains(str, "%") {
76 str = strings.Replace(str, "%", "%%", -1)
78 return str
81 // errorf formats the error and terminates processing.
82 func (s *state) errorf(format string, args ...interface{}) {
83 name := doublePercent(s.tmpl.Name())
84 if s.node == nil {
85 format = fmt.Sprintf("template: %s: %s", name, format)
86 } else {
87 location, context := s.tmpl.ErrorContext(s.node)
88 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
90 panic(fmt.Errorf(format, args...))
93 // errRecover is the handler that turns panics into returns from the top
94 // level of Parse.
95 func errRecover(errp *error) {
96 e := recover()
97 if e != nil {
98 switch err := e.(type) {
99 case runtime.Error:
100 panic(e)
101 case error:
102 *errp = err
103 default:
104 panic(e)
109 // ExecuteTemplate applies the template associated with t that has the given name
110 // to the specified data object and writes the output to wr.
111 // If an error occurs executing the template or writing its output,
112 // execution stops, but partial results may already have been written to
113 // the output writer.
114 // A template may be executed safely in parallel.
115 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
116 tmpl := t.tmpl[name]
117 if tmpl == nil {
118 return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
120 return tmpl.Execute(wr, data)
123 // Execute applies a parsed template to the specified data object,
124 // and writes the output to wr.
125 // If an error occurs executing the template or writing its output,
126 // execution stops, but partial results may already have been written to
127 // the output writer.
128 // A template may be executed safely in parallel.
129 func (t *Template) Execute(wr io.Writer, data interface{}) (err error) {
130 defer errRecover(&err)
131 value := reflect.ValueOf(data)
132 state := &state{
133 tmpl: t,
134 wr: wr,
135 vars: []variable{{"$", value}},
137 t.init()
138 if t.Tree == nil || t.Root == nil {
139 var b bytes.Buffer
140 for name, tmpl := range t.tmpl {
141 if tmpl.Tree == nil || tmpl.Root == nil {
142 continue
144 if b.Len() > 0 {
145 b.WriteString(", ")
147 fmt.Fprintf(&b, "%q", name)
149 var s string
150 if b.Len() > 0 {
151 s = "; defined templates are: " + b.String()
153 state.errorf("%q is an incomplete or empty template%s", t.Name(), s)
155 state.walk(value, t.Root)
156 return
159 // Walk functions step through the major pieces of the template structure,
160 // generating output as they go.
161 func (s *state) walk(dot reflect.Value, node parse.Node) {
162 s.at(node)
163 switch node := node.(type) {
164 case *parse.ActionNode:
165 // Do not pop variables so they persist until next end.
166 // Also, if the action declares variables, don't print the result.
167 val := s.evalPipeline(dot, node.Pipe)
168 if len(node.Pipe.Decl) == 0 {
169 s.printValue(node, val)
171 case *parse.IfNode:
172 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
173 case *parse.ListNode:
174 for _, node := range node.Nodes {
175 s.walk(dot, node)
177 case *parse.RangeNode:
178 s.walkRange(dot, node)
179 case *parse.TemplateNode:
180 s.walkTemplate(dot, node)
181 case *parse.TextNode:
182 if _, err := s.wr.Write(node.Text); err != nil {
183 s.errorf("%s", err)
185 case *parse.WithNode:
186 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
187 default:
188 s.errorf("unknown node: %s", node)
192 // walkIfOrWith walks an 'if' or 'with' node. The two control structures
193 // are identical in behavior except that 'with' sets dot.
194 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
195 defer s.pop(s.mark())
196 val := s.evalPipeline(dot, pipe)
197 truth, ok := isTrue(val)
198 if !ok {
199 s.errorf("if/with can't use %v", val)
201 if truth {
202 if typ == parse.NodeWith {
203 s.walk(val, list)
204 } else {
205 s.walk(dot, list)
207 } else if elseList != nil {
208 s.walk(dot, elseList)
212 // isTrue reports whether the value is 'true', in the sense of not the zero of its type,
213 // and whether the value has a meaningful truth value.
214 func isTrue(val reflect.Value) (truth, ok bool) {
215 if !val.IsValid() {
216 // Something like var x interface{}, never set. It's a form of nil.
217 return false, true
219 switch val.Kind() {
220 case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
221 truth = val.Len() > 0
222 case reflect.Bool:
223 truth = val.Bool()
224 case reflect.Complex64, reflect.Complex128:
225 truth = val.Complex() != 0
226 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
227 truth = !val.IsNil()
228 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
229 truth = val.Int() != 0
230 case reflect.Float32, reflect.Float64:
231 truth = val.Float() != 0
232 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
233 truth = val.Uint() != 0
234 case reflect.Struct:
235 truth = true // Struct values are always true.
236 default:
237 return
239 return truth, true
242 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
243 s.at(r)
244 defer s.pop(s.mark())
245 val, _ := indirect(s.evalPipeline(dot, r.Pipe))
246 // mark top of stack before any variables in the body are pushed.
247 mark := s.mark()
248 oneIteration := func(index, elem reflect.Value) {
249 // Set top var (lexically the second if there are two) to the element.
250 if len(r.Pipe.Decl) > 0 {
251 s.setVar(1, elem)
253 // Set next var (lexically the first if there are two) to the index.
254 if len(r.Pipe.Decl) > 1 {
255 s.setVar(2, index)
257 s.walk(elem, r.List)
258 s.pop(mark)
260 switch val.Kind() {
261 case reflect.Array, reflect.Slice:
262 if val.Len() == 0 {
263 break
265 for i := 0; i < val.Len(); i++ {
266 oneIteration(reflect.ValueOf(i), val.Index(i))
268 return
269 case reflect.Map:
270 if val.Len() == 0 {
271 break
273 for _, key := range sortKeys(val.MapKeys()) {
274 oneIteration(key, val.MapIndex(key))
276 return
277 case reflect.Chan:
278 if val.IsNil() {
279 break
281 i := 0
282 for ; ; i++ {
283 elem, ok := val.Recv()
284 if !ok {
285 break
287 oneIteration(reflect.ValueOf(i), elem)
289 if i == 0 {
290 break
292 return
293 case reflect.Invalid:
294 break // An invalid value is likely a nil map, etc. and acts like an empty map.
295 default:
296 s.errorf("range can't iterate over %v", val)
298 if r.ElseList != nil {
299 s.walk(dot, r.ElseList)
303 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
304 s.at(t)
305 tmpl := s.tmpl.tmpl[t.Name]
306 if tmpl == nil {
307 s.errorf("template %q not defined", t.Name)
309 // Variables declared by the pipeline persist.
310 dot = s.evalPipeline(dot, t.Pipe)
311 newState := *s
312 newState.tmpl = tmpl
313 // No dynamic scoping: template invocations inherit no variables.
314 newState.vars = []variable{{"$", dot}}
315 newState.walk(dot, tmpl.Root)
318 // Eval functions evaluate pipelines, commands, and their elements and extract
319 // values from the data structure by examining fields, calling methods, and so on.
320 // The printing of those values happens only through walk functions.
322 // evalPipeline returns the value acquired by evaluating a pipeline. If the
323 // pipeline has a variable declaration, the variable will be pushed on the
324 // stack. Callers should therefore pop the stack after they are finished
325 // executing commands depending on the pipeline value.
326 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
327 if pipe == nil {
328 return
330 s.at(pipe)
331 for _, cmd := range pipe.Cmds {
332 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
333 // If the object has type interface{}, dig down one level to the thing inside.
334 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
335 value = reflect.ValueOf(value.Interface()) // lovely!
338 for _, variable := range pipe.Decl {
339 s.push(variable.Ident[0], value)
341 return value
344 func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
345 if len(args) > 1 || final.IsValid() {
346 s.errorf("can't give argument to non-function %s", args[0])
350 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
351 firstWord := cmd.Args[0]
352 switch n := firstWord.(type) {
353 case *parse.FieldNode:
354 return s.evalFieldNode(dot, n, cmd.Args, final)
355 case *parse.ChainNode:
356 return s.evalChainNode(dot, n, cmd.Args, final)
357 case *parse.IdentifierNode:
358 // Must be a function.
359 return s.evalFunction(dot, n, cmd, cmd.Args, final)
360 case *parse.PipeNode:
361 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
362 return s.evalPipeline(dot, n)
363 case *parse.VariableNode:
364 return s.evalVariableNode(dot, n, cmd.Args, final)
366 s.at(firstWord)
367 s.notAFunction(cmd.Args, final)
368 switch word := firstWord.(type) {
369 case *parse.BoolNode:
370 return reflect.ValueOf(word.True)
371 case *parse.DotNode:
372 return dot
373 case *parse.NilNode:
374 s.errorf("nil is not a command")
375 case *parse.NumberNode:
376 return s.idealConstant(word)
377 case *parse.StringNode:
378 return reflect.ValueOf(word.Text)
380 s.errorf("can't evaluate command %q", firstWord)
381 panic("not reached")
384 // idealConstant is called to return the value of a number in a context where
385 // we don't know the type. In that case, the syntax of the number tells us
386 // its type, and we use Go rules to resolve. Note there is no such thing as
387 // a uint ideal constant in this situation - the value must be of int type.
388 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
389 // These are ideal constants but we don't know the type
390 // and we have no context. (If it was a method argument,
391 // we'd know what we need.) The syntax guides us to some extent.
392 s.at(constant)
393 switch {
394 case constant.IsComplex:
395 return reflect.ValueOf(constant.Complex128) // incontrovertible.
396 case constant.IsFloat && strings.IndexAny(constant.Text, ".eE") >= 0:
397 return reflect.ValueOf(constant.Float64)
398 case constant.IsInt:
399 n := int(constant.Int64)
400 if int64(n) != constant.Int64 {
401 s.errorf("%s overflows int", constant.Text)
403 return reflect.ValueOf(n)
404 case constant.IsUint:
405 s.errorf("%s overflows int", constant.Text)
407 return zero
410 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
411 s.at(field)
412 return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
415 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
416 s.at(chain)
417 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
418 pipe := s.evalArg(dot, nil, chain.Node)
419 if len(chain.Field) == 0 {
420 s.errorf("internal error: no fields in evalChainNode")
422 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
425 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
426 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
427 s.at(variable)
428 value := s.varValue(variable.Ident[0])
429 if len(variable.Ident) == 1 {
430 s.notAFunction(args, final)
431 return value
433 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
436 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
437 // dot is the environment in which to evaluate arguments, while
438 // receiver is the value being walked along the chain.
439 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
440 n := len(ident)
441 for i := 0; i < n-1; i++ {
442 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
444 // Now if it's a method, it gets the arguments.
445 return s.evalField(dot, ident[n-1], node, args, final, receiver)
448 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
449 s.at(node)
450 name := node.Ident
451 function, ok := findFunction(name, s.tmpl)
452 if !ok {
453 s.errorf("%q is not a defined function", name)
455 return s.evalCall(dot, function, cmd, name, args, final)
458 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
459 // The 'final' argument represents the return value from the preceding
460 // value of the pipeline, if any.
461 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
462 if !receiver.IsValid() {
463 return zero
465 typ := receiver.Type()
466 receiver, _ = indirect(receiver)
467 // Unless it's an interface, need to get to a value of type *T to guarantee
468 // we see all methods of T and *T.
469 ptr := receiver
470 if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
471 ptr = ptr.Addr()
473 if method := ptr.MethodByName(fieldName); method.IsValid() {
474 return s.evalCall(dot, method, node, fieldName, args, final)
476 hasArgs := len(args) > 1 || final.IsValid()
477 // It's not a method; must be a field of a struct or an element of a map. The receiver must not be nil.
478 receiver, isNil := indirect(receiver)
479 if isNil {
480 s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
482 switch receiver.Kind() {
483 case reflect.Struct:
484 tField, ok := receiver.Type().FieldByName(fieldName)
485 if ok {
486 field := receiver.FieldByIndex(tField.Index)
487 if tField.PkgPath != "" { // field is unexported
488 s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
490 // If it's a function, we must call it.
491 if hasArgs {
492 s.errorf("%s has arguments but cannot be invoked as function", fieldName)
494 return field
496 s.errorf("%s is not a field of struct type %s", fieldName, typ)
497 case reflect.Map:
498 // If it's a map, attempt to use the field name as a key.
499 nameVal := reflect.ValueOf(fieldName)
500 if nameVal.Type().AssignableTo(receiver.Type().Key()) {
501 if hasArgs {
502 s.errorf("%s is not a method but has arguments", fieldName)
504 return receiver.MapIndex(nameVal)
507 s.errorf("can't evaluate field %s in type %s", fieldName, typ)
508 panic("not reached")
511 var (
512 errorType = reflect.TypeOf((*error)(nil)).Elem()
513 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
516 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
517 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
518 // as the function itself.
519 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
520 if args != nil {
521 args = args[1:] // Zeroth arg is function name/node; not passed to function.
523 typ := fun.Type()
524 numIn := len(args)
525 if final.IsValid() {
526 numIn++
528 numFixed := len(args)
529 if typ.IsVariadic() {
530 numFixed = typ.NumIn() - 1 // last arg is the variadic one.
531 if numIn < numFixed {
532 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
534 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
535 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
537 if !goodFunc(typ) {
538 // TODO: This could still be a confusing error; maybe goodFunc should provide info.
539 s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
541 // Build the arg list.
542 argv := make([]reflect.Value, numIn)
543 // Args must be evaluated. Fixed args first.
544 i := 0
545 for ; i < numFixed; i++ {
546 argv[i] = s.evalArg(dot, typ.In(i), args[i])
548 // Now the ... args.
549 if typ.IsVariadic() {
550 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
551 for ; i < len(args); i++ {
552 argv[i] = s.evalArg(dot, argType, args[i])
555 // Add final value if necessary.
556 if final.IsValid() {
557 t := typ.In(typ.NumIn() - 1)
558 if typ.IsVariadic() {
559 t = t.Elem()
561 argv[i] = s.validateType(final, t)
563 result := fun.Call(argv)
564 // If we have an error that is not nil, stop execution and return that error to the caller.
565 if len(result) == 2 && !result[1].IsNil() {
566 s.at(node)
567 s.errorf("error calling %s: %s", name, result[1].Interface().(error))
569 return result[0]
572 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
573 func canBeNil(typ reflect.Type) bool {
574 switch typ.Kind() {
575 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
576 return true
578 return false
581 // validateType guarantees that the value is valid and assignable to the type.
582 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
583 if !value.IsValid() {
584 if typ == nil || canBeNil(typ) {
585 // An untyped nil interface{}. Accept as a proper nil value.
586 return reflect.Zero(typ)
588 s.errorf("invalid value; expected %s", typ)
590 if typ != nil && !value.Type().AssignableTo(typ) {
591 if value.Kind() == reflect.Interface && !value.IsNil() {
592 value = value.Elem()
593 if value.Type().AssignableTo(typ) {
594 return value
596 // fallthrough
598 // Does one dereference or indirection work? We could do more, as we
599 // do with method receivers, but that gets messy and method receivers
600 // are much more constrained, so it makes more sense there than here.
601 // Besides, one is almost always all you need.
602 switch {
603 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
604 value = value.Elem()
605 if !value.IsValid() {
606 s.errorf("dereference of nil pointer of type %s", typ)
608 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
609 value = value.Addr()
610 default:
611 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
614 return value
617 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
618 s.at(n)
619 switch arg := n.(type) {
620 case *parse.DotNode:
621 return s.validateType(dot, typ)
622 case *parse.NilNode:
623 if canBeNil(typ) {
624 return reflect.Zero(typ)
626 s.errorf("cannot assign nil to %s", typ)
627 case *parse.FieldNode:
628 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
629 case *parse.VariableNode:
630 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
631 case *parse.PipeNode:
632 return s.validateType(s.evalPipeline(dot, arg), typ)
633 case *parse.IdentifierNode:
634 return s.evalFunction(dot, arg, arg, nil, zero)
636 switch typ.Kind() {
637 case reflect.Bool:
638 return s.evalBool(typ, n)
639 case reflect.Complex64, reflect.Complex128:
640 return s.evalComplex(typ, n)
641 case reflect.Float32, reflect.Float64:
642 return s.evalFloat(typ, n)
643 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
644 return s.evalInteger(typ, n)
645 case reflect.Interface:
646 if typ.NumMethod() == 0 {
647 return s.evalEmptyInterface(dot, n)
649 case reflect.String:
650 return s.evalString(typ, n)
651 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
652 return s.evalUnsignedInteger(typ, n)
654 s.errorf("can't handle %s for arg of type %s", n, typ)
655 panic("not reached")
658 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
659 s.at(n)
660 if n, ok := n.(*parse.BoolNode); ok {
661 value := reflect.New(typ).Elem()
662 value.SetBool(n.True)
663 return value
665 s.errorf("expected bool; found %s", n)
666 panic("not reached")
669 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
670 s.at(n)
671 if n, ok := n.(*parse.StringNode); ok {
672 value := reflect.New(typ).Elem()
673 value.SetString(n.Text)
674 return value
676 s.errorf("expected string; found %s", n)
677 panic("not reached")
680 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
681 s.at(n)
682 if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
683 value := reflect.New(typ).Elem()
684 value.SetInt(n.Int64)
685 return value
687 s.errorf("expected integer; found %s", n)
688 panic("not reached")
691 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
692 s.at(n)
693 if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
694 value := reflect.New(typ).Elem()
695 value.SetUint(n.Uint64)
696 return value
698 s.errorf("expected unsigned integer; found %s", n)
699 panic("not reached")
702 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
703 s.at(n)
704 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
705 value := reflect.New(typ).Elem()
706 value.SetFloat(n.Float64)
707 return value
709 s.errorf("expected float; found %s", n)
710 panic("not reached")
713 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
714 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
715 value := reflect.New(typ).Elem()
716 value.SetComplex(n.Complex128)
717 return value
719 s.errorf("expected complex; found %s", n)
720 panic("not reached")
723 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
724 s.at(n)
725 switch n := n.(type) {
726 case *parse.BoolNode:
727 return reflect.ValueOf(n.True)
728 case *parse.DotNode:
729 return dot
730 case *parse.FieldNode:
731 return s.evalFieldNode(dot, n, nil, zero)
732 case *parse.IdentifierNode:
733 return s.evalFunction(dot, n, n, nil, zero)
734 case *parse.NilNode:
735 // NilNode is handled in evalArg, the only place that calls here.
736 s.errorf("evalEmptyInterface: nil (can't happen)")
737 case *parse.NumberNode:
738 return s.idealConstant(n)
739 case *parse.StringNode:
740 return reflect.ValueOf(n.Text)
741 case *parse.VariableNode:
742 return s.evalVariableNode(dot, n, nil, zero)
743 case *parse.PipeNode:
744 return s.evalPipeline(dot, n)
746 s.errorf("can't handle assignment of %s to empty interface argument", n)
747 panic("not reached")
750 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
751 // We indirect through pointers and empty interfaces (only) because
752 // non-empty interfaces have methods we might need.
753 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
754 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
755 if v.IsNil() {
756 return v, true
758 if v.Kind() == reflect.Interface && v.NumMethod() > 0 {
759 break
762 return v, false
765 // printValue writes the textual representation of the value to the output of
766 // the template.
767 func (s *state) printValue(n parse.Node, v reflect.Value) {
768 s.at(n)
769 iface, ok := printableValue(v)
770 if !ok {
771 s.errorf("can't print %s of type %s", n, v.Type())
773 fmt.Fprint(s.wr, iface)
776 // printableValue returns the, possibly indirected, interface value inside v that
777 // is best for a call to formatted printer.
778 func printableValue(v reflect.Value) (interface{}, bool) {
779 if v.Kind() == reflect.Ptr {
780 v, _ = indirect(v) // fmt.Fprint handles nil.
782 if !v.IsValid() {
783 return "<no value>", true
786 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
787 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
788 v = v.Addr()
789 } else {
790 switch v.Kind() {
791 case reflect.Chan, reflect.Func:
792 return nil, false
796 return v.Interface(), true
799 // Types to help sort the keys in a map for reproducible output.
801 type rvs []reflect.Value
803 func (x rvs) Len() int { return len(x) }
804 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
806 type rvInts struct{ rvs }
808 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
810 type rvUints struct{ rvs }
812 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
814 type rvFloats struct{ rvs }
816 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
818 type rvStrings struct{ rvs }
820 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
822 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
823 func sortKeys(v []reflect.Value) []reflect.Value {
824 if len(v) <= 1 {
825 return v
827 switch v[0].Kind() {
828 case reflect.Float32, reflect.Float64:
829 sort.Sort(rvFloats{v})
830 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
831 sort.Sort(rvInts{v})
832 case reflect.String:
833 sort.Sort(rvStrings{v})
834 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
835 sort.Sort(rvUints{v})
837 return v