libgo: Update to Go 1.3 release.
[official-gcc.git] / libgo / go / regexp / exec.go
blobc4cb201f64251402978118a6f1b6d831954fe412
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package regexp
7 import (
8 "io"
9 "regexp/syntax"
12 // A queue is a 'sparse array' holding pending threads of execution.
13 // See http://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
14 type queue struct {
15 sparse []uint32
16 dense []entry
19 // A entry is an entry on a queue.
20 // It holds both the instruction pc and the actual thread.
21 // Some queue entries are just place holders so that the machine
22 // knows it has considered that pc. Such entries have t == nil.
23 type entry struct {
24 pc uint32
25 t *thread
28 // A thread is the state of a single path through the machine:
29 // an instruction and a corresponding capture array.
30 // See http://swtch.com/~rsc/regexp/regexp2.html
31 type thread struct {
32 inst *syntax.Inst
33 cap []int
36 // A machine holds all the state during an NFA simulation for p.
37 type machine struct {
38 re *Regexp // corresponding Regexp
39 p *syntax.Prog // compiled program
40 op *onePassProg // compiled onepass program, or notOnePass
41 q0, q1 queue // two queues for runq, nextq
42 pool []*thread // pool of available threads
43 matched bool // whether a match was found
44 matchcap []int // capture information for the match
46 // cached inputs, to avoid allocation
47 inputBytes inputBytes
48 inputString inputString
49 inputReader inputReader
52 func (m *machine) newInputBytes(b []byte) input {
53 m.inputBytes.str = b
54 return &m.inputBytes
57 func (m *machine) newInputString(s string) input {
58 m.inputString.str = s
59 return &m.inputString
62 func (m *machine) newInputReader(r io.RuneReader) input {
63 m.inputReader.r = r
64 m.inputReader.atEOT = false
65 m.inputReader.pos = 0
66 return &m.inputReader
69 // progMachine returns a new machine running the prog p.
70 func progMachine(p *syntax.Prog, op *onePassProg) *machine {
71 m := &machine{p: p, op: op}
72 n := len(m.p.Inst)
73 m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
74 m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
75 ncap := p.NumCap
76 if ncap < 2 {
77 ncap = 2
79 m.matchcap = make([]int, ncap)
80 return m
83 func (m *machine) init(ncap int) {
84 for _, t := range m.pool {
85 t.cap = t.cap[:ncap]
87 m.matchcap = m.matchcap[:ncap]
90 // alloc allocates a new thread with the given instruction.
91 // It uses the free pool if possible.
92 func (m *machine) alloc(i *syntax.Inst) *thread {
93 var t *thread
94 if n := len(m.pool); n > 0 {
95 t = m.pool[n-1]
96 m.pool = m.pool[:n-1]
97 } else {
98 t = new(thread)
99 t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
101 t.inst = i
102 return t
105 // free returns t to the free pool.
106 func (m *machine) free(t *thread) {
107 m.inputBytes.str = nil
108 m.inputString.str = ""
109 m.inputReader.r = nil
110 m.pool = append(m.pool, t)
113 // match runs the machine over the input starting at pos.
114 // It reports whether a match was found.
115 // If so, m.matchcap holds the submatch information.
116 func (m *machine) match(i input, pos int) bool {
117 startCond := m.re.cond
118 if startCond == ^syntax.EmptyOp(0) { // impossible
119 return false
121 m.matched = false
122 for i := range m.matchcap {
123 m.matchcap[i] = -1
125 runq, nextq := &m.q0, &m.q1
126 r, r1 := endOfText, endOfText
127 width, width1 := 0, 0
128 r, width = i.step(pos)
129 if r != endOfText {
130 r1, width1 = i.step(pos + width)
132 var flag syntax.EmptyOp
133 if pos == 0 {
134 flag = syntax.EmptyOpContext(-1, r)
135 } else {
136 flag = i.context(pos)
138 for {
139 if len(runq.dense) == 0 {
140 if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
141 // Anchored match, past beginning of text.
142 break
144 if m.matched {
145 // Have match; finished exploring alternatives.
146 break
148 if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
149 // Match requires literal prefix; fast search for it.
150 advance := i.index(m.re, pos)
151 if advance < 0 {
152 break
154 pos += advance
155 r, width = i.step(pos)
156 r1, width1 = i.step(pos + width)
159 if !m.matched {
160 if len(m.matchcap) > 0 {
161 m.matchcap[0] = pos
163 m.add(runq, uint32(m.p.Start), pos, m.matchcap, flag, nil)
165 flag = syntax.EmptyOpContext(r, r1)
166 m.step(runq, nextq, pos, pos+width, r, flag)
167 if width == 0 {
168 break
170 if len(m.matchcap) == 0 && m.matched {
171 // Found a match and not paying attention
172 // to where it is, so any match will do.
173 break
175 pos += width
176 r, width = r1, width1
177 if r != endOfText {
178 r1, width1 = i.step(pos + width)
180 runq, nextq = nextq, runq
182 m.clear(nextq)
183 return m.matched
186 // clear frees all threads on the thread queue.
187 func (m *machine) clear(q *queue) {
188 for _, d := range q.dense {
189 if d.t != nil {
190 // m.free(d.t)
191 m.pool = append(m.pool, d.t)
194 q.dense = q.dense[:0]
197 // step executes one step of the machine, running each of the threads
198 // on runq and appending new threads to nextq.
199 // The step processes the rune c (which may be endOfText),
200 // which starts at position pos and ends at nextPos.
201 // nextCond gives the setting for the empty-width flags after c.
202 func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond syntax.EmptyOp) {
203 longest := m.re.longest
204 for j := 0; j < len(runq.dense); j++ {
205 d := &runq.dense[j]
206 t := d.t
207 if t == nil {
208 continue
210 if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
211 // m.free(t)
212 m.pool = append(m.pool, t)
213 continue
215 i := t.inst
216 add := false
217 switch i.Op {
218 default:
219 panic("bad inst")
221 case syntax.InstMatch:
222 if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
223 t.cap[1] = pos
224 copy(m.matchcap, t.cap)
226 if !longest {
227 // First-match mode: cut off all lower-priority threads.
228 for _, d := range runq.dense[j+1:] {
229 if d.t != nil {
230 // m.free(d.t)
231 m.pool = append(m.pool, d.t)
234 runq.dense = runq.dense[:0]
236 m.matched = true
238 case syntax.InstRune:
239 add = i.MatchRune(c)
240 case syntax.InstRune1:
241 add = c == i.Rune[0]
242 case syntax.InstRuneAny:
243 add = true
244 case syntax.InstRuneAnyNotNL:
245 add = c != '\n'
247 if add {
248 t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
250 if t != nil {
251 // m.free(t)
252 m.pool = append(m.pool, t)
255 runq.dense = runq.dense[:0]
258 // add adds an entry to q for pc, unless the q already has such an entry.
259 // It also recursively adds an entry for all instructions reachable from pc by following
260 // empty-width conditions satisfied by cond. pos gives the current position
261 // in the input.
262 func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond syntax.EmptyOp, t *thread) *thread {
263 if pc == 0 {
264 return t
266 if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
267 return t
270 j := len(q.dense)
271 q.dense = q.dense[:j+1]
272 d := &q.dense[j]
273 d.t = nil
274 d.pc = pc
275 q.sparse[pc] = uint32(j)
277 i := &m.p.Inst[pc]
278 switch i.Op {
279 default:
280 panic("unhandled")
281 case syntax.InstFail:
282 // nothing
283 case syntax.InstAlt, syntax.InstAltMatch:
284 t = m.add(q, i.Out, pos, cap, cond, t)
285 t = m.add(q, i.Arg, pos, cap, cond, t)
286 case syntax.InstEmptyWidth:
287 if syntax.EmptyOp(i.Arg)&^cond == 0 {
288 t = m.add(q, i.Out, pos, cap, cond, t)
290 case syntax.InstNop:
291 t = m.add(q, i.Out, pos, cap, cond, t)
292 case syntax.InstCapture:
293 if int(i.Arg) < len(cap) {
294 opos := cap[i.Arg]
295 cap[i.Arg] = pos
296 m.add(q, i.Out, pos, cap, cond, nil)
297 cap[i.Arg] = opos
298 } else {
299 t = m.add(q, i.Out, pos, cap, cond, t)
301 case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
302 if t == nil {
303 t = m.alloc(i)
304 } else {
305 t.inst = i
307 if len(cap) > 0 && &t.cap[0] != &cap[0] {
308 copy(t.cap, cap)
310 d.t = t
311 t = nil
313 return t
316 // onepass runs the machine over the input starting at pos.
317 // It reports whether a match was found.
318 // If so, m.matchcap holds the submatch information.
319 func (m *machine) onepass(i input, pos int) bool {
320 startCond := m.re.cond
321 if startCond == ^syntax.EmptyOp(0) { // impossible
322 return false
324 m.matched = false
325 for i := range m.matchcap {
326 m.matchcap[i] = -1
328 r, r1 := endOfText, endOfText
329 width, width1 := 0, 0
330 r, width = i.step(pos)
331 if r != endOfText {
332 r1, width1 = i.step(pos + width)
334 var flag syntax.EmptyOp
335 if pos == 0 {
336 flag = syntax.EmptyOpContext(-1, r)
337 } else {
338 flag = i.context(pos)
340 pc := m.op.Start
341 inst := m.op.Inst[pc]
342 // If there is a simple literal prefix, skip over it.
343 if pos == 0 && syntax.EmptyOp(inst.Arg)&^flag == 0 &&
344 len(m.re.prefix) > 0 && i.canCheckPrefix() {
345 // Match requires literal prefix; fast search for it.
346 if i.hasPrefix(m.re) {
347 pos += len(m.re.prefix)
348 r, width = i.step(pos)
349 r1, width1 = i.step(pos + width)
350 flag = i.context(pos)
351 pc = int(m.re.prefixEnd)
352 } else {
353 return m.matched
356 for {
357 inst = m.op.Inst[pc]
358 pc = int(inst.Out)
359 switch inst.Op {
360 default:
361 panic("bad inst")
362 case syntax.InstMatch:
363 m.matched = true
364 if len(m.matchcap) > 0 {
365 m.matchcap[0] = 0
366 m.matchcap[1] = pos
368 return m.matched
369 case syntax.InstRune:
370 if !inst.MatchRune(r) {
371 return m.matched
373 case syntax.InstRune1:
374 if r != inst.Rune[0] {
375 return m.matched
377 case syntax.InstRuneAny:
378 // Nothing
379 case syntax.InstRuneAnyNotNL:
380 if r == '\n' {
381 return m.matched
383 // peek at the input rune to see which branch of the Alt to take
384 case syntax.InstAlt, syntax.InstAltMatch:
385 pc = int(onePassNext(&inst, r))
386 continue
387 case syntax.InstFail:
388 return m.matched
389 case syntax.InstNop:
390 continue
391 case syntax.InstEmptyWidth:
392 if syntax.EmptyOp(inst.Arg)&^flag != 0 {
393 return m.matched
395 continue
396 case syntax.InstCapture:
397 if int(inst.Arg) < len(m.matchcap) {
398 m.matchcap[inst.Arg] = pos
400 continue
402 if width == 0 {
403 break
405 flag = syntax.EmptyOpContext(r, r1)
406 pos += width
407 r, width = r1, width1
408 if r != endOfText {
409 r1, width1 = i.step(pos + width)
412 return m.matched
415 // empty is a non-nil 0-element slice,
416 // so doExecute can avoid an allocation
417 // when 0 captures are requested from a successful match.
418 var empty = make([]int, 0)
420 // doExecute finds the leftmost match in the input and returns
421 // the position of its subexpressions.
422 func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int) []int {
423 m := re.get()
424 var i input
425 if r != nil {
426 i = m.newInputReader(r)
427 } else if b != nil {
428 i = m.newInputBytes(b)
429 } else {
430 i = m.newInputString(s)
432 if m.op != notOnePass {
433 if !m.onepass(i, pos) {
434 re.put(m)
435 return nil
437 } else {
438 m.init(ncap)
439 if !m.match(i, pos) {
440 re.put(m)
441 return nil
444 if ncap == 0 {
445 re.put(m)
446 return empty // empty but not nil
448 cap := make([]int, len(m.matchcap))
449 copy(cap, m.matchcap)
450 re.put(m)
451 return cap