libgo: Update to Go 1.3 release.
[official-gcc.git] / libgo / go / fmt / print.go
blob302661f4c85fc46285f7e1ccc5e490b5ea1f3355
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package fmt
7 import (
8 "errors"
9 "io"
10 "os"
11 "reflect"
12 "sync"
13 "unicode/utf8"
16 // Some constants in the form of bytes, to avoid string overhead.
17 // Needlessly fastidious, I suppose.
18 var (
19 commaSpaceBytes = []byte(", ")
20 nilAngleBytes = []byte("<nil>")
21 nilParenBytes = []byte("(nil)")
22 nilBytes = []byte("nil")
23 mapBytes = []byte("map[")
24 percentBangBytes = []byte("%!")
25 missingBytes = []byte("(MISSING)")
26 badIndexBytes = []byte("(BADINDEX)")
27 panicBytes = []byte("(PANIC=")
28 extraBytes = []byte("%!(EXTRA ")
29 irparenBytes = []byte("i)")
30 bytesBytes = []byte("[]byte{")
31 badWidthBytes = []byte("%!(BADWIDTH)")
32 badPrecBytes = []byte("%!(BADPREC)")
33 noVerbBytes = []byte("%!(NOVERB)")
36 // State represents the printer state passed to custom formatters.
37 // It provides access to the io.Writer interface plus information about
38 // the flags and options for the operand's format specifier.
39 type State interface {
40 // Write is the function to call to emit formatted output to be printed.
41 Write(b []byte) (ret int, err error)
42 // Width returns the value of the width option and whether it has been set.
43 Width() (wid int, ok bool)
44 // Precision returns the value of the precision option and whether it has been set.
45 Precision() (prec int, ok bool)
47 // Flag reports whether the flag c, a character, has been set.
48 Flag(c int) bool
51 // Formatter is the interface implemented by values with a custom formatter.
52 // The implementation of Format may call Sprint(f) or Fprint(f) etc.
53 // to generate its output.
54 type Formatter interface {
55 Format(f State, c rune)
58 // Stringer is implemented by any value that has a String method,
59 // which defines the ``native'' format for that value.
60 // The String method is used to print values passed as an operand
61 // to any format that accepts a string or to an unformatted printer
62 // such as Print.
63 type Stringer interface {
64 String() string
67 // GoStringer is implemented by any value that has a GoString method,
68 // which defines the Go syntax for that value.
69 // The GoString method is used to print values passed as an operand
70 // to a %#v format.
71 type GoStringer interface {
72 GoString() string
75 // Use simple []byte instead of bytes.Buffer to avoid large dependency.
76 type buffer []byte
78 func (b *buffer) Write(p []byte) (n int, err error) {
79 *b = append(*b, p...)
80 return len(p), nil
83 func (b *buffer) WriteString(s string) (n int, err error) {
84 *b = append(*b, s...)
85 return len(s), nil
88 func (b *buffer) WriteByte(c byte) error {
89 *b = append(*b, c)
90 return nil
93 func (bp *buffer) WriteRune(r rune) error {
94 if r < utf8.RuneSelf {
95 *bp = append(*bp, byte(r))
96 return nil
99 b := *bp
100 n := len(b)
101 for n+utf8.UTFMax > cap(b) {
102 b = append(b, 0)
104 w := utf8.EncodeRune(b[n:n+utf8.UTFMax], r)
105 *bp = b[:n+w]
106 return nil
109 type pp struct {
110 n int
111 panicking bool
112 erroring bool // printing an error condition
113 buf buffer
114 // arg holds the current item, as an interface{}.
115 arg interface{}
116 // value holds the current item, as a reflect.Value, and will be
117 // the zero Value if the item has not been reflected.
118 value reflect.Value
119 // reordered records whether the format string used argument reordering.
120 reordered bool
121 // goodArgNum records whether the most recent reordering directive was valid.
122 goodArgNum bool
123 runeBuf [utf8.UTFMax]byte
124 fmt fmt
127 var ppFree = sync.Pool{
128 New: func() interface{} { return new(pp) },
131 // newPrinter allocates a new pp struct or grab a cached one.
132 func newPrinter() *pp {
133 p := ppFree.Get().(*pp)
134 p.panicking = false
135 p.erroring = false
136 p.fmt.init(&p.buf)
137 return p
140 // free saves used pp structs in ppFree; avoids an allocation per invocation.
141 func (p *pp) free() {
142 // Don't hold on to pp structs with large buffers.
143 if cap(p.buf) > 1024 {
144 return
146 p.buf = p.buf[:0]
147 p.arg = nil
148 p.value = reflect.Value{}
149 ppFree.Put(p)
152 func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
154 func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
156 func (p *pp) Flag(b int) bool {
157 switch b {
158 case '-':
159 return p.fmt.minus
160 case '+':
161 return p.fmt.plus
162 case '#':
163 return p.fmt.sharp
164 case ' ':
165 return p.fmt.space
166 case '0':
167 return p.fmt.zero
169 return false
172 func (p *pp) add(c rune) {
173 p.buf.WriteRune(c)
176 // Implement Write so we can call Fprintf on a pp (through State), for
177 // recursive use in custom verbs.
178 func (p *pp) Write(b []byte) (ret int, err error) {
179 return p.buf.Write(b)
182 // These routines end in 'f' and take a format string.
184 // Fprintf formats according to a format specifier and writes to w.
185 // It returns the number of bytes written and any write error encountered.
186 func Fprintf(w io.Writer, format string, a ...interface{}) (n int, err error) {
187 p := newPrinter()
188 p.doPrintf(format, a)
189 n, err = w.Write(p.buf)
190 p.free()
191 return
194 // Printf formats according to a format specifier and writes to standard output.
195 // It returns the number of bytes written and any write error encountered.
196 func Printf(format string, a ...interface{}) (n int, err error) {
197 return Fprintf(os.Stdout, format, a...)
200 // Sprintf formats according to a format specifier and returns the resulting string.
201 func Sprintf(format string, a ...interface{}) string {
202 p := newPrinter()
203 p.doPrintf(format, a)
204 s := string(p.buf)
205 p.free()
206 return s
209 // Errorf formats according to a format specifier and returns the string
210 // as a value that satisfies error.
211 func Errorf(format string, a ...interface{}) error {
212 return errors.New(Sprintf(format, a...))
215 // These routines do not take a format string
217 // Fprint formats using the default formats for its operands and writes to w.
218 // Spaces are added between operands when neither is a string.
219 // It returns the number of bytes written and any write error encountered.
220 func Fprint(w io.Writer, a ...interface{}) (n int, err error) {
221 p := newPrinter()
222 p.doPrint(a, false, false)
223 n, err = w.Write(p.buf)
224 p.free()
225 return
228 // Print formats using the default formats for its operands and writes to standard output.
229 // Spaces are added between operands when neither is a string.
230 // It returns the number of bytes written and any write error encountered.
231 func Print(a ...interface{}) (n int, err error) {
232 return Fprint(os.Stdout, a...)
235 // Sprint formats using the default formats for its operands and returns the resulting string.
236 // Spaces are added between operands when neither is a string.
237 func Sprint(a ...interface{}) string {
238 p := newPrinter()
239 p.doPrint(a, false, false)
240 s := string(p.buf)
241 p.free()
242 return s
245 // These routines end in 'ln', do not take a format string,
246 // always add spaces between operands, and add a newline
247 // after the last operand.
249 // Fprintln formats using the default formats for its operands and writes to w.
250 // Spaces are always added between operands and a newline is appended.
251 // It returns the number of bytes written and any write error encountered.
252 func Fprintln(w io.Writer, a ...interface{}) (n int, err error) {
253 p := newPrinter()
254 p.doPrint(a, true, true)
255 n, err = w.Write(p.buf)
256 p.free()
257 return
260 // Println formats using the default formats for its operands and writes to standard output.
261 // Spaces are always added between operands and a newline is appended.
262 // It returns the number of bytes written and any write error encountered.
263 func Println(a ...interface{}) (n int, err error) {
264 return Fprintln(os.Stdout, a...)
267 // Sprintln formats using the default formats for its operands and returns the resulting string.
268 // Spaces are always added between operands and a newline is appended.
269 func Sprintln(a ...interface{}) string {
270 p := newPrinter()
271 p.doPrint(a, true, true)
272 s := string(p.buf)
273 p.free()
274 return s
277 // getField gets the i'th field of the struct value.
278 // If the field is itself is an interface, return a value for
279 // the thing inside the interface, not the interface itself.
280 func getField(v reflect.Value, i int) reflect.Value {
281 val := v.Field(i)
282 if val.Kind() == reflect.Interface && !val.IsNil() {
283 val = val.Elem()
285 return val
288 // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no number present.
289 func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
290 if start >= end {
291 return 0, false, end
293 for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
294 num = num*10 + int(s[newi]-'0')
295 isnum = true
297 return
300 func (p *pp) unknownType(v interface{}) {
301 if v == nil {
302 p.buf.Write(nilAngleBytes)
303 return
305 p.buf.WriteByte('?')
306 p.buf.WriteString(reflect.TypeOf(v).String())
307 p.buf.WriteByte('?')
310 func (p *pp) badVerb(verb rune) {
311 p.erroring = true
312 p.add('%')
313 p.add('!')
314 p.add(verb)
315 p.add('(')
316 switch {
317 case p.arg != nil:
318 p.buf.WriteString(reflect.TypeOf(p.arg).String())
319 p.add('=')
320 p.printArg(p.arg, 'v', false, false, 0)
321 case p.value.IsValid():
322 p.buf.WriteString(p.value.Type().String())
323 p.add('=')
324 p.printValue(p.value, 'v', false, false, 0)
325 default:
326 p.buf.Write(nilAngleBytes)
328 p.add(')')
329 p.erroring = false
332 func (p *pp) fmtBool(v bool, verb rune) {
333 switch verb {
334 case 't', 'v':
335 p.fmt.fmt_boolean(v)
336 default:
337 p.badVerb(verb)
341 // fmtC formats a rune for the 'c' format.
342 func (p *pp) fmtC(c int64) {
343 r := rune(c) // Check for overflow.
344 if int64(r) != c {
345 r = utf8.RuneError
347 w := utf8.EncodeRune(p.runeBuf[0:utf8.UTFMax], r)
348 p.fmt.pad(p.runeBuf[0:w])
351 func (p *pp) fmtInt64(v int64, verb rune) {
352 switch verb {
353 case 'b':
354 p.fmt.integer(v, 2, signed, ldigits)
355 case 'c':
356 p.fmtC(v)
357 case 'd', 'v':
358 p.fmt.integer(v, 10, signed, ldigits)
359 case 'o':
360 p.fmt.integer(v, 8, signed, ldigits)
361 case 'q':
362 if 0 <= v && v <= utf8.MaxRune {
363 p.fmt.fmt_qc(v)
364 } else {
365 p.badVerb(verb)
367 case 'x':
368 p.fmt.integer(v, 16, signed, ldigits)
369 case 'U':
370 p.fmtUnicode(v)
371 case 'X':
372 p.fmt.integer(v, 16, signed, udigits)
373 default:
374 p.badVerb(verb)
378 // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or
379 // not, as requested, by temporarily setting the sharp flag.
380 func (p *pp) fmt0x64(v uint64, leading0x bool) {
381 sharp := p.fmt.sharp
382 p.fmt.sharp = leading0x
383 p.fmt.integer(int64(v), 16, unsigned, ldigits)
384 p.fmt.sharp = sharp
387 // fmtUnicode formats a uint64 in U+1234 form by
388 // temporarily turning on the unicode flag and tweaking the precision.
389 func (p *pp) fmtUnicode(v int64) {
390 precPresent := p.fmt.precPresent
391 sharp := p.fmt.sharp
392 p.fmt.sharp = false
393 prec := p.fmt.prec
394 if !precPresent {
395 // If prec is already set, leave it alone; otherwise 4 is minimum.
396 p.fmt.prec = 4
397 p.fmt.precPresent = true
399 p.fmt.unicode = true // turn on U+
400 p.fmt.uniQuote = sharp
401 p.fmt.integer(int64(v), 16, unsigned, udigits)
402 p.fmt.unicode = false
403 p.fmt.uniQuote = false
404 p.fmt.prec = prec
405 p.fmt.precPresent = precPresent
406 p.fmt.sharp = sharp
409 func (p *pp) fmtUint64(v uint64, verb rune, goSyntax bool) {
410 switch verb {
411 case 'b':
412 p.fmt.integer(int64(v), 2, unsigned, ldigits)
413 case 'c':
414 p.fmtC(int64(v))
415 case 'd':
416 p.fmt.integer(int64(v), 10, unsigned, ldigits)
417 case 'v':
418 if goSyntax {
419 p.fmt0x64(v, true)
420 } else {
421 p.fmt.integer(int64(v), 10, unsigned, ldigits)
423 case 'o':
424 p.fmt.integer(int64(v), 8, unsigned, ldigits)
425 case 'q':
426 if 0 <= v && v <= utf8.MaxRune {
427 p.fmt.fmt_qc(int64(v))
428 } else {
429 p.badVerb(verb)
431 case 'x':
432 p.fmt.integer(int64(v), 16, unsigned, ldigits)
433 case 'X':
434 p.fmt.integer(int64(v), 16, unsigned, udigits)
435 case 'U':
436 p.fmtUnicode(int64(v))
437 default:
438 p.badVerb(verb)
442 func (p *pp) fmtFloat32(v float32, verb rune) {
443 switch verb {
444 case 'b':
445 p.fmt.fmt_fb32(v)
446 case 'e':
447 p.fmt.fmt_e32(v)
448 case 'E':
449 p.fmt.fmt_E32(v)
450 case 'f', 'F':
451 p.fmt.fmt_f32(v)
452 case 'g', 'v':
453 p.fmt.fmt_g32(v)
454 case 'G':
455 p.fmt.fmt_G32(v)
456 default:
457 p.badVerb(verb)
461 func (p *pp) fmtFloat64(v float64, verb rune) {
462 switch verb {
463 case 'b':
464 p.fmt.fmt_fb64(v)
465 case 'e':
466 p.fmt.fmt_e64(v)
467 case 'E':
468 p.fmt.fmt_E64(v)
469 case 'f', 'F':
470 p.fmt.fmt_f64(v)
471 case 'g', 'v':
472 p.fmt.fmt_g64(v)
473 case 'G':
474 p.fmt.fmt_G64(v)
475 default:
476 p.badVerb(verb)
480 func (p *pp) fmtComplex64(v complex64, verb rune) {
481 switch verb {
482 case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
483 p.fmt.fmt_c64(v, verb)
484 case 'v':
485 p.fmt.fmt_c64(v, 'g')
486 default:
487 p.badVerb(verb)
491 func (p *pp) fmtComplex128(v complex128, verb rune) {
492 switch verb {
493 case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
494 p.fmt.fmt_c128(v, verb)
495 case 'v':
496 p.fmt.fmt_c128(v, 'g')
497 default:
498 p.badVerb(verb)
502 func (p *pp) fmtString(v string, verb rune, goSyntax bool) {
503 switch verb {
504 case 'v':
505 if goSyntax {
506 p.fmt.fmt_q(v)
507 } else {
508 p.fmt.fmt_s(v)
510 case 's':
511 p.fmt.fmt_s(v)
512 case 'x':
513 p.fmt.fmt_sx(v, ldigits)
514 case 'X':
515 p.fmt.fmt_sx(v, udigits)
516 case 'q':
517 p.fmt.fmt_q(v)
518 default:
519 p.badVerb(verb)
523 func (p *pp) fmtBytes(v []byte, verb rune, goSyntax bool, typ reflect.Type, depth int) {
524 if verb == 'v' || verb == 'd' {
525 if goSyntax {
526 if v == nil {
527 if typ == nil {
528 p.buf.WriteString("[]byte(nil)")
529 } else {
530 p.buf.WriteString(typ.String())
531 p.buf.Write(nilParenBytes)
533 return
535 if typ == nil {
536 p.buf.Write(bytesBytes)
537 } else {
538 p.buf.WriteString(typ.String())
539 p.buf.WriteByte('{')
541 } else {
542 p.buf.WriteByte('[')
544 for i, c := range v {
545 if i > 0 {
546 if goSyntax {
547 p.buf.Write(commaSpaceBytes)
548 } else {
549 p.buf.WriteByte(' ')
552 p.printArg(c, 'v', p.fmt.plus, goSyntax, depth+1)
554 if goSyntax {
555 p.buf.WriteByte('}')
556 } else {
557 p.buf.WriteByte(']')
559 return
561 switch verb {
562 case 's':
563 p.fmt.fmt_s(string(v))
564 case 'x':
565 p.fmt.fmt_bx(v, ldigits)
566 case 'X':
567 p.fmt.fmt_bx(v, udigits)
568 case 'q':
569 p.fmt.fmt_q(string(v))
570 default:
571 p.badVerb(verb)
575 func (p *pp) fmtPointer(value reflect.Value, verb rune, goSyntax bool) {
576 use0x64 := true
577 switch verb {
578 case 'p', 'v':
579 // ok
580 case 'b', 'd', 'o', 'x', 'X':
581 use0x64 = false
582 // ok
583 default:
584 p.badVerb(verb)
585 return
588 var u uintptr
589 switch value.Kind() {
590 case reflect.Chan, reflect.Func, reflect.Map, reflect.Ptr, reflect.Slice, reflect.UnsafePointer:
591 u = value.Pointer()
592 default:
593 p.badVerb(verb)
594 return
597 if goSyntax {
598 p.add('(')
599 p.buf.WriteString(value.Type().String())
600 p.add(')')
601 p.add('(')
602 if u == 0 {
603 p.buf.Write(nilBytes)
604 } else {
605 p.fmt0x64(uint64(u), true)
607 p.add(')')
608 } else if verb == 'v' && u == 0 {
609 p.buf.Write(nilAngleBytes)
610 } else {
611 if use0x64 {
612 p.fmt0x64(uint64(u), !p.fmt.sharp)
613 } else {
614 p.fmtUint64(uint64(u), verb, false)
619 var (
620 intBits = reflect.TypeOf(0).Bits()
621 uintptrBits = reflect.TypeOf(uintptr(0)).Bits()
624 func (p *pp) catchPanic(arg interface{}, verb rune) {
625 if err := recover(); err != nil {
626 // If it's a nil pointer, just say "<nil>". The likeliest causes are a
627 // Stringer that fails to guard against nil or a nil pointer for a
628 // value receiver, and in either case, "<nil>" is a nice result.
629 if v := reflect.ValueOf(arg); v.Kind() == reflect.Ptr && v.IsNil() {
630 p.buf.Write(nilAngleBytes)
631 return
633 // Otherwise print a concise panic message. Most of the time the panic
634 // value will print itself nicely.
635 if p.panicking {
636 // Nested panics; the recursion in printArg cannot succeed.
637 panic(err)
639 p.buf.Write(percentBangBytes)
640 p.add(verb)
641 p.buf.Write(panicBytes)
642 p.panicking = true
643 p.printArg(err, 'v', false, false, 0)
644 p.panicking = false
645 p.buf.WriteByte(')')
649 func (p *pp) handleMethods(verb rune, plus, goSyntax bool, depth int) (wasString, handled bool) {
650 if p.erroring {
651 return
653 // Is it a Formatter?
654 if formatter, ok := p.arg.(Formatter); ok {
655 handled = true
656 wasString = false
657 defer p.catchPanic(p.arg, verb)
658 formatter.Format(p, verb)
659 return
661 // Must not touch flags before Formatter looks at them.
662 if plus {
663 p.fmt.plus = false
666 // If we're doing Go syntax and the argument knows how to supply it, take care of it now.
667 if goSyntax {
668 p.fmt.sharp = false
669 if stringer, ok := p.arg.(GoStringer); ok {
670 wasString = false
671 handled = true
672 defer p.catchPanic(p.arg, verb)
673 // Print the result of GoString unadorned.
674 p.fmtString(stringer.GoString(), 's', false)
675 return
677 } else {
678 // If a string is acceptable according to the format, see if
679 // the value satisfies one of the string-valued interfaces.
680 // Println etc. set verb to %v, which is "stringable".
681 switch verb {
682 case 'v', 's', 'x', 'X', 'q':
683 // Is it an error or Stringer?
684 // The duplication in the bodies is necessary:
685 // setting wasString and handled, and deferring catchPanic,
686 // must happen before calling the method.
687 switch v := p.arg.(type) {
688 case error:
689 wasString = false
690 handled = true
691 defer p.catchPanic(p.arg, verb)
692 p.printArg(v.Error(), verb, plus, false, depth)
693 return
695 case Stringer:
696 wasString = false
697 handled = true
698 defer p.catchPanic(p.arg, verb)
699 p.printArg(v.String(), verb, plus, false, depth)
700 return
704 handled = false
705 return
708 func (p *pp) printArg(arg interface{}, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
709 p.arg = arg
710 p.value = reflect.Value{}
712 if arg == nil {
713 if verb == 'T' || verb == 'v' {
714 p.fmt.pad(nilAngleBytes)
715 } else {
716 p.badVerb(verb)
718 return false
721 // Special processing considerations.
722 // %T (the value's type) and %p (its address) are special; we always do them first.
723 switch verb {
724 case 'T':
725 p.printArg(reflect.TypeOf(arg).String(), 's', false, false, 0)
726 return false
727 case 'p':
728 p.fmtPointer(reflect.ValueOf(arg), verb, goSyntax)
729 return false
732 // Clear flags for base formatters.
733 // handleMethods needs them, so we must restore them later.
734 // We could call handleMethods here and avoid this work, but
735 // handleMethods is expensive enough to be worth delaying.
736 oldPlus := p.fmt.plus
737 oldSharp := p.fmt.sharp
738 if plus {
739 p.fmt.plus = false
741 if goSyntax {
742 p.fmt.sharp = false
745 // Some types can be done without reflection.
746 switch f := arg.(type) {
747 case bool:
748 p.fmtBool(f, verb)
749 case float32:
750 p.fmtFloat32(f, verb)
751 case float64:
752 p.fmtFloat64(f, verb)
753 case complex64:
754 p.fmtComplex64(f, verb)
755 case complex128:
756 p.fmtComplex128(f, verb)
757 case int:
758 p.fmtInt64(int64(f), verb)
759 case int8:
760 p.fmtInt64(int64(f), verb)
761 case int16:
762 p.fmtInt64(int64(f), verb)
763 case int32:
764 p.fmtInt64(int64(f), verb)
765 case int64:
766 p.fmtInt64(f, verb)
767 case uint:
768 p.fmtUint64(uint64(f), verb, goSyntax)
769 case uint8:
770 p.fmtUint64(uint64(f), verb, goSyntax)
771 case uint16:
772 p.fmtUint64(uint64(f), verb, goSyntax)
773 case uint32:
774 p.fmtUint64(uint64(f), verb, goSyntax)
775 case uint64:
776 p.fmtUint64(f, verb, goSyntax)
777 case uintptr:
778 p.fmtUint64(uint64(f), verb, goSyntax)
779 case string:
780 p.fmtString(f, verb, goSyntax)
781 wasString = verb == 's' || verb == 'v'
782 case []byte:
783 p.fmtBytes(f, verb, goSyntax, nil, depth)
784 wasString = verb == 's'
785 default:
786 // Restore flags in case handleMethods finds a Formatter.
787 p.fmt.plus = oldPlus
788 p.fmt.sharp = oldSharp
789 // If the type is not simple, it might have methods.
790 if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
791 return isString
793 // Need to use reflection
794 return p.printReflectValue(reflect.ValueOf(arg), verb, plus, goSyntax, depth)
796 p.arg = nil
797 return
800 // printValue is like printArg but starts with a reflect value, not an interface{} value.
801 func (p *pp) printValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
802 if !value.IsValid() {
803 if verb == 'T' || verb == 'v' {
804 p.buf.Write(nilAngleBytes)
805 } else {
806 p.badVerb(verb)
808 return false
811 // Special processing considerations.
812 // %T (the value's type) and %p (its address) are special; we always do them first.
813 switch verb {
814 case 'T':
815 p.printArg(value.Type().String(), 's', false, false, 0)
816 return false
817 case 'p':
818 p.fmtPointer(value, verb, goSyntax)
819 return false
822 // Handle values with special methods.
823 // Call always, even when arg == nil, because handleMethods clears p.fmt.plus for us.
824 p.arg = nil // Make sure it's cleared, for safety.
825 if value.CanInterface() {
826 p.arg = value.Interface()
828 if isString, handled := p.handleMethods(verb, plus, goSyntax, depth); handled {
829 return isString
832 return p.printReflectValue(value, verb, plus, goSyntax, depth)
835 // printReflectValue is the fallback for both printArg and printValue.
836 // It uses reflect to print the value.
837 func (p *pp) printReflectValue(value reflect.Value, verb rune, plus, goSyntax bool, depth int) (wasString bool) {
838 oldValue := p.value
839 p.value = value
840 BigSwitch:
841 switch f := value; f.Kind() {
842 case reflect.Bool:
843 p.fmtBool(f.Bool(), verb)
844 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
845 p.fmtInt64(f.Int(), verb)
846 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
847 p.fmtUint64(f.Uint(), verb, goSyntax)
848 case reflect.Float32, reflect.Float64:
849 if f.Type().Size() == 4 {
850 p.fmtFloat32(float32(f.Float()), verb)
851 } else {
852 p.fmtFloat64(f.Float(), verb)
854 case reflect.Complex64, reflect.Complex128:
855 if f.Type().Size() == 8 {
856 p.fmtComplex64(complex64(f.Complex()), verb)
857 } else {
858 p.fmtComplex128(f.Complex(), verb)
860 case reflect.String:
861 p.fmtString(f.String(), verb, goSyntax)
862 case reflect.Map:
863 if goSyntax {
864 p.buf.WriteString(f.Type().String())
865 if f.IsNil() {
866 p.buf.WriteString("(nil)")
867 break
869 p.buf.WriteByte('{')
870 } else {
871 p.buf.Write(mapBytes)
873 keys := f.MapKeys()
874 for i, key := range keys {
875 if i > 0 {
876 if goSyntax {
877 p.buf.Write(commaSpaceBytes)
878 } else {
879 p.buf.WriteByte(' ')
882 p.printValue(key, verb, plus, goSyntax, depth+1)
883 p.buf.WriteByte(':')
884 p.printValue(f.MapIndex(key), verb, plus, goSyntax, depth+1)
886 if goSyntax {
887 p.buf.WriteByte('}')
888 } else {
889 p.buf.WriteByte(']')
891 case reflect.Struct:
892 if goSyntax {
893 p.buf.WriteString(value.Type().String())
895 p.add('{')
896 v := f
897 t := v.Type()
898 for i := 0; i < v.NumField(); i++ {
899 if i > 0 {
900 if goSyntax {
901 p.buf.Write(commaSpaceBytes)
902 } else {
903 p.buf.WriteByte(' ')
906 if plus || goSyntax {
907 if f := t.Field(i); f.Name != "" {
908 p.buf.WriteString(f.Name)
909 p.buf.WriteByte(':')
912 p.printValue(getField(v, i), verb, plus, goSyntax, depth+1)
914 p.buf.WriteByte('}')
915 case reflect.Interface:
916 value := f.Elem()
917 if !value.IsValid() {
918 if goSyntax {
919 p.buf.WriteString(f.Type().String())
920 p.buf.Write(nilParenBytes)
921 } else {
922 p.buf.Write(nilAngleBytes)
924 } else {
925 wasString = p.printValue(value, verb, plus, goSyntax, depth+1)
927 case reflect.Array, reflect.Slice:
928 // Byte slices are special.
929 if typ := f.Type(); typ.Elem().Kind() == reflect.Uint8 {
930 var bytes []byte
931 if f.Kind() == reflect.Slice {
932 bytes = f.Bytes()
933 } else if f.CanAddr() {
934 bytes = f.Slice(0, f.Len()).Bytes()
935 } else {
936 // We have an array, but we cannot Slice() a non-addressable array,
937 // so we build a slice by hand. This is a rare case but it would be nice
938 // if reflection could help a little more.
939 bytes = make([]byte, f.Len())
940 for i := range bytes {
941 bytes[i] = byte(f.Index(i).Uint())
944 p.fmtBytes(bytes, verb, goSyntax, typ, depth)
945 wasString = verb == 's'
946 break
948 if goSyntax {
949 p.buf.WriteString(value.Type().String())
950 if f.Kind() == reflect.Slice && f.IsNil() {
951 p.buf.WriteString("(nil)")
952 break
954 p.buf.WriteByte('{')
955 } else {
956 p.buf.WriteByte('[')
958 for i := 0; i < f.Len(); i++ {
959 if i > 0 {
960 if goSyntax {
961 p.buf.Write(commaSpaceBytes)
962 } else {
963 p.buf.WriteByte(' ')
966 p.printValue(f.Index(i), verb, plus, goSyntax, depth+1)
968 if goSyntax {
969 p.buf.WriteByte('}')
970 } else {
971 p.buf.WriteByte(']')
973 case reflect.Ptr:
974 v := f.Pointer()
975 // pointer to array or slice or struct? ok at top level
976 // but not embedded (avoid loops)
977 if v != 0 && depth == 0 {
978 switch a := f.Elem(); a.Kind() {
979 case reflect.Array, reflect.Slice:
980 p.buf.WriteByte('&')
981 p.printValue(a, verb, plus, goSyntax, depth+1)
982 break BigSwitch
983 case reflect.Struct:
984 p.buf.WriteByte('&')
985 p.printValue(a, verb, plus, goSyntax, depth+1)
986 break BigSwitch
989 fallthrough
990 case reflect.Chan, reflect.Func, reflect.UnsafePointer:
991 p.fmtPointer(value, verb, goSyntax)
992 default:
993 p.unknownType(f)
995 p.value = oldValue
996 return wasString
999 // intFromArg gets the argNumth element of a. On return, isInt reports whether the argument has type int.
1000 func intFromArg(a []interface{}, argNum int) (num int, isInt bool, newArgNum int) {
1001 newArgNum = argNum
1002 if argNum < len(a) {
1003 num, isInt = a[argNum].(int)
1004 newArgNum = argNum + 1
1006 return
1009 // parseArgNumber returns the value of the bracketed number, minus 1
1010 // (explicit argument numbers are one-indexed but we want zero-indexed).
1011 // The opening bracket is known to be present at format[0].
1012 // The returned values are the index, the number of bytes to consume
1013 // up to the closing paren, if present, and whether the number parsed
1014 // ok. The bytes to consume will be 1 if no closing paren is present.
1015 func parseArgNumber(format string) (index int, wid int, ok bool) {
1016 // Find closing bracket.
1017 for i := 1; i < len(format); i++ {
1018 if format[i] == ']' {
1019 width, ok, newi := parsenum(format, 1, i)
1020 if !ok || newi != i {
1021 return 0, i + 1, false
1023 return width - 1, i + 1, true // arg numbers are one-indexed and skip paren.
1026 return 0, 1, false
1029 // argNumber returns the next argument to evaluate, which is either the value of the passed-in
1030 // argNum or the value of the bracketed integer that begins format[i:]. It also returns
1031 // the new value of i, that is, the index of the next byte of the format to process.
1032 func (p *pp) argNumber(argNum int, format string, i int, numArgs int) (newArgNum, newi int, found bool) {
1033 if len(format) <= i || format[i] != '[' {
1034 return argNum, i, false
1036 p.reordered = true
1037 index, wid, ok := parseArgNumber(format[i:])
1038 if ok && 0 <= index && index < numArgs {
1039 return index, i + wid, true
1041 p.goodArgNum = false
1042 return argNum, i + wid, true
1045 func (p *pp) doPrintf(format string, a []interface{}) {
1046 end := len(format)
1047 argNum := 0 // we process one argument per non-trivial format
1048 afterIndex := false // previous item in format was an index like [3].
1049 p.reordered = false
1050 for i := 0; i < end; {
1051 p.goodArgNum = true
1052 lasti := i
1053 for i < end && format[i] != '%' {
1056 if i > lasti {
1057 p.buf.WriteString(format[lasti:i])
1059 if i >= end {
1060 // done processing format string
1061 break
1064 // Process one verb
1067 // Do we have flags?
1068 p.fmt.clearflags()
1070 for ; i < end; i++ {
1071 switch format[i] {
1072 case '#':
1073 p.fmt.sharp = true
1074 case '0':
1075 p.fmt.zero = true
1076 case '+':
1077 p.fmt.plus = true
1078 case '-':
1079 p.fmt.minus = true
1080 case ' ':
1081 p.fmt.space = true
1082 default:
1083 break F
1087 // Do we have an explicit argument index?
1088 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1090 // Do we have width?
1091 if i < end && format[i] == '*' {
1093 p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum)
1094 if !p.fmt.widPresent {
1095 p.buf.Write(badWidthBytes)
1097 afterIndex = false
1098 } else {
1099 p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
1100 if afterIndex && p.fmt.widPresent { // "%[3]2d"
1101 p.goodArgNum = false
1105 // Do we have precision?
1106 if i+1 < end && format[i] == '.' {
1108 if afterIndex { // "%[3].2d"
1109 p.goodArgNum = false
1111 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1112 if format[i] == '*' {
1114 p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum)
1115 if !p.fmt.precPresent {
1116 p.buf.Write(badPrecBytes)
1118 afterIndex = false
1119 } else {
1120 p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end)
1121 if !p.fmt.precPresent {
1122 p.fmt.prec = 0
1123 p.fmt.precPresent = true
1128 if !afterIndex {
1129 argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a))
1132 if i >= end {
1133 p.buf.Write(noVerbBytes)
1134 continue
1136 c, w := utf8.DecodeRuneInString(format[i:])
1137 i += w
1138 // percent is special - absorbs no operand
1139 if c == '%' {
1140 p.buf.WriteByte('%') // We ignore width and prec.
1141 continue
1143 if !p.goodArgNum {
1144 p.buf.Write(percentBangBytes)
1145 p.add(c)
1146 p.buf.Write(badIndexBytes)
1147 continue
1148 } else if argNum >= len(a) { // out of operands
1149 p.buf.Write(percentBangBytes)
1150 p.add(c)
1151 p.buf.Write(missingBytes)
1152 continue
1154 arg := a[argNum]
1155 argNum++
1157 goSyntax := c == 'v' && p.fmt.sharp
1158 plus := c == 'v' && p.fmt.plus
1159 p.printArg(arg, c, plus, goSyntax, 0)
1162 // Check for extra arguments unless the call accessed the arguments
1163 // out of order, in which case it's too expensive to detect if they've all
1164 // been used and arguably OK if they're not.
1165 if !p.reordered && argNum < len(a) {
1166 p.buf.Write(extraBytes)
1167 for ; argNum < len(a); argNum++ {
1168 arg := a[argNum]
1169 if arg != nil {
1170 p.buf.WriteString(reflect.TypeOf(arg).String())
1171 p.buf.WriteByte('=')
1173 p.printArg(arg, 'v', false, false, 0)
1174 if argNum+1 < len(a) {
1175 p.buf.Write(commaSpaceBytes)
1178 p.buf.WriteByte(')')
1182 func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
1183 prevString := false
1184 for argNum := 0; argNum < len(a); argNum++ {
1185 p.fmt.clearflags()
1186 // always add spaces if we're doing Println
1187 arg := a[argNum]
1188 if argNum > 0 {
1189 isString := arg != nil && reflect.TypeOf(arg).Kind() == reflect.String
1190 if addspace || !isString && !prevString {
1191 p.buf.WriteByte(' ')
1194 prevString = p.printArg(arg, 'v', false, false, 0)
1196 if addnewline {
1197 p.buf.WriteByte('\n')