1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
83 /* Nonzero if we are folding constants inside an initializer; zero
85 int folding_initializer
= 0;
87 /* The following constants represent a bit based encoding of GCC's
88 comparison operators. This encoding simplifies transformations
89 on relational comparison operators, such as AND and OR. */
90 enum comparison_code
{
109 static bool negate_expr_p (tree
);
110 static tree
negate_expr (tree
);
111 static tree
split_tree (location_t
, tree
, tree
, enum tree_code
,
112 tree
*, tree
*, tree
*, int);
113 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
114 static enum comparison_code
comparison_to_compcode (enum tree_code
);
115 static enum tree_code
compcode_to_comparison (enum comparison_code
);
116 static int operand_equal_for_comparison_p (tree
, tree
, tree
);
117 static int twoval_comparison_p (tree
, tree
*, tree
*, int *);
118 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
119 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
121 static int simple_operand_p (const_tree
);
122 static bool simple_operand_p_2 (tree
);
123 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
124 static tree
range_predecessor (tree
);
125 static tree
range_successor (tree
);
126 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
127 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
128 static tree
unextend (tree
, int, int, tree
);
129 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
130 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
fold_binary_op_with_conditional_arg (location_t
,
132 enum tree_code
, tree
,
135 static tree
fold_div_compare (location_t
, enum tree_code
, tree
, tree
, tree
);
136 static bool reorder_operands_p (const_tree
, const_tree
);
137 static tree
fold_negate_const (tree
, tree
);
138 static tree
fold_not_const (const_tree
, tree
);
139 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
140 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
141 static tree
fold_view_convert_expr (tree
, tree
);
142 static bool vec_cst_ctor_to_array (tree
, tree
*);
145 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
146 Otherwise, return LOC. */
149 expr_location_or (tree t
, location_t loc
)
151 location_t tloc
= EXPR_LOCATION (t
);
152 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
155 /* Similar to protected_set_expr_location, but never modify x in place,
156 if location can and needs to be set, unshare it. */
159 protected_set_expr_location_unshare (tree x
, location_t loc
)
161 if (CAN_HAVE_LOCATION_P (x
)
162 && EXPR_LOCATION (x
) != loc
163 && !(TREE_CODE (x
) == SAVE_EXPR
164 || TREE_CODE (x
) == TARGET_EXPR
165 || TREE_CODE (x
) == BIND_EXPR
))
168 SET_EXPR_LOCATION (x
, loc
);
173 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
174 division and returns the quotient. Otherwise returns
178 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
182 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
184 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
189 /* This is nonzero if we should defer warnings about undefined
190 overflow. This facility exists because these warnings are a
191 special case. The code to estimate loop iterations does not want
192 to issue any warnings, since it works with expressions which do not
193 occur in user code. Various bits of cleanup code call fold(), but
194 only use the result if it has certain characteristics (e.g., is a
195 constant); that code only wants to issue a warning if the result is
198 static int fold_deferring_overflow_warnings
;
200 /* If a warning about undefined overflow is deferred, this is the
201 warning. Note that this may cause us to turn two warnings into
202 one, but that is fine since it is sufficient to only give one
203 warning per expression. */
205 static const char* fold_deferred_overflow_warning
;
207 /* If a warning about undefined overflow is deferred, this is the
208 level at which the warning should be emitted. */
210 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
212 /* Start deferring overflow warnings. We could use a stack here to
213 permit nested calls, but at present it is not necessary. */
216 fold_defer_overflow_warnings (void)
218 ++fold_deferring_overflow_warnings
;
221 /* Stop deferring overflow warnings. If there is a pending warning,
222 and ISSUE is true, then issue the warning if appropriate. STMT is
223 the statement with which the warning should be associated (used for
224 location information); STMT may be NULL. CODE is the level of the
225 warning--a warn_strict_overflow_code value. This function will use
226 the smaller of CODE and the deferred code when deciding whether to
227 issue the warning. CODE may be zero to mean to always use the
231 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
236 gcc_assert (fold_deferring_overflow_warnings
> 0);
237 --fold_deferring_overflow_warnings
;
238 if (fold_deferring_overflow_warnings
> 0)
240 if (fold_deferred_overflow_warning
!= NULL
242 && code
< (int) fold_deferred_overflow_code
)
243 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
247 warnmsg
= fold_deferred_overflow_warning
;
248 fold_deferred_overflow_warning
= NULL
;
250 if (!issue
|| warnmsg
== NULL
)
253 if (gimple_no_warning_p (stmt
))
256 /* Use the smallest code level when deciding to issue the
258 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
259 code
= fold_deferred_overflow_code
;
261 if (!issue_strict_overflow_warning (code
))
265 locus
= input_location
;
267 locus
= gimple_location (stmt
);
268 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
271 /* Stop deferring overflow warnings, ignoring any deferred
275 fold_undefer_and_ignore_overflow_warnings (void)
277 fold_undefer_overflow_warnings (false, NULL
, 0);
280 /* Whether we are deferring overflow warnings. */
283 fold_deferring_overflow_warnings_p (void)
285 return fold_deferring_overflow_warnings
> 0;
288 /* This is called when we fold something based on the fact that signed
289 overflow is undefined. */
292 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
294 if (fold_deferring_overflow_warnings
> 0)
296 if (fold_deferred_overflow_warning
== NULL
297 || wc
< fold_deferred_overflow_code
)
299 fold_deferred_overflow_warning
= gmsgid
;
300 fold_deferred_overflow_code
= wc
;
303 else if (issue_strict_overflow_warning (wc
))
304 warning (OPT_Wstrict_overflow
, gmsgid
);
307 /* Return true if the built-in mathematical function specified by CODE
308 is odd, i.e. -f(x) == f(-x). */
311 negate_mathfn_p (combined_fn fn
)
344 return !flag_rounding_math
;
352 /* Check whether we may negate an integer constant T without causing
356 may_negate_without_overflow_p (const_tree t
)
360 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
362 type
= TREE_TYPE (t
);
363 if (TYPE_UNSIGNED (type
))
366 return !wi::only_sign_bit_p (t
);
369 /* Determine whether an expression T can be cheaply negated using
370 the function negate_expr without introducing undefined overflow. */
373 negate_expr_p (tree t
)
380 type
= TREE_TYPE (t
);
383 switch (TREE_CODE (t
))
386 if (INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_WRAPS (type
))
389 /* Check that -CST will not overflow type. */
390 return may_negate_without_overflow_p (t
);
392 return (INTEGRAL_TYPE_P (type
)
393 && TYPE_OVERFLOW_WRAPS (type
));
399 return !TYPE_OVERFLOW_SANITIZED (type
);
402 /* We want to canonicalize to positive real constants. Pretend
403 that only negative ones can be easily negated. */
404 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
407 return negate_expr_p (TREE_REALPART (t
))
408 && negate_expr_p (TREE_IMAGPART (t
));
412 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
415 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
417 for (i
= 0; i
< count
; i
++)
418 if (!negate_expr_p (VECTOR_CST_ELT (t
, i
)))
425 return negate_expr_p (TREE_OPERAND (t
, 0))
426 && negate_expr_p (TREE_OPERAND (t
, 1));
429 return negate_expr_p (TREE_OPERAND (t
, 0));
432 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
433 || HONOR_SIGNED_ZEROS (element_mode (type
))
434 || (INTEGRAL_TYPE_P (type
)
435 && ! TYPE_OVERFLOW_WRAPS (type
)))
437 /* -(A + B) -> (-B) - A. */
438 if (negate_expr_p (TREE_OPERAND (t
, 1))
439 && reorder_operands_p (TREE_OPERAND (t
, 0),
440 TREE_OPERAND (t
, 1)))
442 /* -(A + B) -> (-A) - B. */
443 return negate_expr_p (TREE_OPERAND (t
, 0));
446 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
447 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
448 && !HONOR_SIGNED_ZEROS (element_mode (type
))
449 && (! INTEGRAL_TYPE_P (type
)
450 || TYPE_OVERFLOW_WRAPS (type
))
451 && reorder_operands_p (TREE_OPERAND (t
, 0),
452 TREE_OPERAND (t
, 1));
455 if (TYPE_UNSIGNED (type
))
457 /* INT_MIN/n * n doesn't overflow while negating one operand it does
458 if n is a power of two. */
459 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
460 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
461 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
462 && ! integer_pow2p (TREE_OPERAND (t
, 0)))
463 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
464 && ! integer_pow2p (TREE_OPERAND (t
, 1)))))
470 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
471 return negate_expr_p (TREE_OPERAND (t
, 1))
472 || negate_expr_p (TREE_OPERAND (t
, 0));
478 if (TYPE_UNSIGNED (type
))
480 if (negate_expr_p (TREE_OPERAND (t
, 0)))
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! INTEGRAL_TYPE_P (TREE_TYPE (t
))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
487 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t
, 1))))
489 return negate_expr_p (TREE_OPERAND (t
, 1));
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type
) == REAL_TYPE
)
496 tree tem
= strip_float_extensions (t
);
498 return negate_expr_p (tem
);
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t
)))
505 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
512 tree op1
= TREE_OPERAND (t
, 1);
513 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
530 fold_negate_expr (location_t loc
, tree t
)
532 tree type
= TREE_TYPE (t
);
535 switch (TREE_CODE (t
))
537 /* Convert - (~A) to A + 1. */
539 if (INTEGRAL_TYPE_P (type
))
540 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
541 build_one_cst (type
));
545 tem
= fold_negate_const (t
, type
);
546 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
547 || (ANY_INTEGRAL_TYPE_P (type
)
548 && !TYPE_OVERFLOW_TRAPS (type
)
549 && TYPE_OVERFLOW_WRAPS (type
))
550 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
555 tem
= fold_negate_const (t
, type
);
559 tem
= fold_negate_const (t
, type
);
564 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
565 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
567 return build_complex (type
, rpart
, ipart
);
573 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
574 tree
*elts
= XALLOCAVEC (tree
, count
);
576 for (i
= 0; i
< count
; i
++)
578 elts
[i
] = fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
579 if (elts
[i
] == NULL_TREE
)
583 return build_vector (type
, elts
);
587 if (negate_expr_p (t
))
588 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
589 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
590 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
594 if (negate_expr_p (t
))
595 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
596 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
600 if (!TYPE_OVERFLOW_SANITIZED (type
))
601 return TREE_OPERAND (t
, 0);
605 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
606 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
608 /* -(A + B) -> (-B) - A. */
609 if (negate_expr_p (TREE_OPERAND (t
, 1))
610 && reorder_operands_p (TREE_OPERAND (t
, 0),
611 TREE_OPERAND (t
, 1)))
613 tem
= negate_expr (TREE_OPERAND (t
, 1));
614 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
615 tem
, TREE_OPERAND (t
, 0));
618 /* -(A + B) -> (-A) - B. */
619 if (negate_expr_p (TREE_OPERAND (t
, 0)))
621 tem
= negate_expr (TREE_OPERAND (t
, 0));
622 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
623 tem
, TREE_OPERAND (t
, 1));
629 /* - (A - B) -> B - A */
630 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
631 && !HONOR_SIGNED_ZEROS (element_mode (type
))
632 && reorder_operands_p (TREE_OPERAND (t
, 0), TREE_OPERAND (t
, 1)))
633 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
634 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
638 if (TYPE_UNSIGNED (type
))
644 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
646 tem
= TREE_OPERAND (t
, 1);
647 if (negate_expr_p (tem
))
648 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
649 TREE_OPERAND (t
, 0), negate_expr (tem
));
650 tem
= TREE_OPERAND (t
, 0);
651 if (negate_expr_p (tem
))
652 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
653 negate_expr (tem
), TREE_OPERAND (t
, 1));
660 if (TYPE_UNSIGNED (type
))
662 if (negate_expr_p (TREE_OPERAND (t
, 0)))
663 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
664 negate_expr (TREE_OPERAND (t
, 0)),
665 TREE_OPERAND (t
, 1));
666 /* In general we can't negate B in A / B, because if A is INT_MIN and
667 B is 1, we may turn this into INT_MIN / -1 which is undefined
668 and actually traps on some architectures. */
669 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t
))
670 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
671 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
672 && ! integer_onep (TREE_OPERAND (t
, 1))))
673 && negate_expr_p (TREE_OPERAND (t
, 1)))
674 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
676 negate_expr (TREE_OPERAND (t
, 1)));
680 /* Convert -((double)float) into (double)(-float). */
681 if (TREE_CODE (type
) == REAL_TYPE
)
683 tem
= strip_float_extensions (t
);
684 if (tem
!= t
&& negate_expr_p (tem
))
685 return fold_convert_loc (loc
, type
, negate_expr (tem
));
690 /* Negate -f(x) as f(-x). */
691 if (negate_mathfn_p (get_call_combined_fn (t
))
692 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
696 fndecl
= get_callee_fndecl (t
);
697 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
698 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
703 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
704 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
706 tree op1
= TREE_OPERAND (t
, 1);
707 if (wi::eq_p (op1
, TYPE_PRECISION (type
) - 1))
709 tree ntype
= TYPE_UNSIGNED (type
)
710 ? signed_type_for (type
)
711 : unsigned_type_for (type
);
712 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
713 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
714 return fold_convert_loc (loc
, type
, temp
);
726 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
727 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
739 loc
= EXPR_LOCATION (t
);
740 type
= TREE_TYPE (t
);
743 tem
= fold_negate_expr (loc
, t
);
745 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
746 return fold_convert_loc (loc
, type
, tem
);
749 /* Split a tree IN into a constant, literal and variable parts that could be
750 combined with CODE to make IN. "constant" means an expression with
751 TREE_CONSTANT but that isn't an actual constant. CODE must be a
752 commutative arithmetic operation. Store the constant part into *CONP,
753 the literal in *LITP and return the variable part. If a part isn't
754 present, set it to null. If the tree does not decompose in this way,
755 return the entire tree as the variable part and the other parts as null.
757 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
758 case, we negate an operand that was subtracted. Except if it is a
759 literal for which we use *MINUS_LITP instead.
761 If NEGATE_P is true, we are negating all of IN, again except a literal
762 for which we use *MINUS_LITP instead. If a variable part is of pointer
763 type, it is negated after converting to TYPE. This prevents us from
764 generating illegal MINUS pointer expression. LOC is the location of
765 the converted variable part.
767 If IN is itself a literal or constant, return it as appropriate.
769 Note that we do not guarantee that any of the three values will be the
770 same type as IN, but they will have the same signedness and mode. */
773 split_tree (location_t loc
, tree in
, tree type
, enum tree_code code
,
774 tree
*conp
, tree
*litp
, tree
*minus_litp
, int negate_p
)
782 /* Strip any conversions that don't change the machine mode or signedness. */
783 STRIP_SIGN_NOPS (in
);
785 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
786 || TREE_CODE (in
) == FIXED_CST
)
788 else if (TREE_CODE (in
) == code
789 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
790 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
791 /* We can associate addition and subtraction together (even
792 though the C standard doesn't say so) for integers because
793 the value is not affected. For reals, the value might be
794 affected, so we can't. */
795 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
796 || (code
== MINUS_EXPR
&& TREE_CODE (in
) == PLUS_EXPR
))))
798 tree op0
= TREE_OPERAND (in
, 0);
799 tree op1
= TREE_OPERAND (in
, 1);
800 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
801 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
803 /* First see if either of the operands is a literal, then a constant. */
804 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
805 || TREE_CODE (op0
) == FIXED_CST
)
806 *litp
= op0
, op0
= 0;
807 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
808 || TREE_CODE (op1
) == FIXED_CST
)
809 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
811 if (op0
!= 0 && TREE_CONSTANT (op0
))
812 *conp
= op0
, op0
= 0;
813 else if (op1
!= 0 && TREE_CONSTANT (op1
))
814 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
816 /* If we haven't dealt with either operand, this is not a case we can
817 decompose. Otherwise, VAR is either of the ones remaining, if any. */
818 if (op0
!= 0 && op1
!= 0)
823 var
= op1
, neg_var_p
= neg1_p
;
825 /* Now do any needed negations. */
827 *minus_litp
= *litp
, *litp
= 0;
829 *conp
= negate_expr (*conp
);
830 if (neg_var_p
&& var
)
832 /* Convert to TYPE before negating. */
833 var
= fold_convert_loc (loc
, type
, var
);
834 var
= negate_expr (var
);
837 else if (TREE_CONSTANT (in
))
839 else if (TREE_CODE (in
) == BIT_NOT_EXPR
840 && code
== PLUS_EXPR
)
842 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
843 when IN is constant. */
844 *minus_litp
= build_one_cst (TREE_TYPE (in
));
845 var
= negate_expr (TREE_OPERAND (in
, 0));
853 *minus_litp
= *litp
, *litp
= 0;
854 else if (*minus_litp
)
855 *litp
= *minus_litp
, *minus_litp
= 0;
856 *conp
= negate_expr (*conp
);
859 /* Convert to TYPE before negating. */
860 var
= fold_convert_loc (loc
, type
, var
);
861 var
= negate_expr (var
);
868 /* Re-associate trees split by the above function. T1 and T2 are
869 either expressions to associate or null. Return the new
870 expression, if any. LOC is the location of the new expression. If
871 we build an operation, do it in TYPE and with CODE. */
874 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
881 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
882 try to fold this since we will have infinite recursion. But do
883 deal with any NEGATE_EXPRs. */
884 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
885 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
887 if (code
== PLUS_EXPR
)
889 if (TREE_CODE (t1
) == NEGATE_EXPR
)
890 return build2_loc (loc
, MINUS_EXPR
, type
,
891 fold_convert_loc (loc
, type
, t2
),
892 fold_convert_loc (loc
, type
,
893 TREE_OPERAND (t1
, 0)));
894 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
895 return build2_loc (loc
, MINUS_EXPR
, type
,
896 fold_convert_loc (loc
, type
, t1
),
897 fold_convert_loc (loc
, type
,
898 TREE_OPERAND (t2
, 0)));
899 else if (integer_zerop (t2
))
900 return fold_convert_loc (loc
, type
, t1
);
902 else if (code
== MINUS_EXPR
)
904 if (integer_zerop (t2
))
905 return fold_convert_loc (loc
, type
, t1
);
908 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
909 fold_convert_loc (loc
, type
, t2
));
912 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
913 fold_convert_loc (loc
, type
, t2
));
916 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
917 for use in int_const_binop, size_binop and size_diffop. */
920 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
922 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
924 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
939 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
940 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
941 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
945 /* Combine two integer constants ARG1 and ARG2 under operation CODE
946 to produce a new constant. Return NULL_TREE if we don't know how
947 to evaluate CODE at compile-time. */
950 int_const_binop_1 (enum tree_code code
, const_tree arg1
, const_tree parg2
,
955 tree type
= TREE_TYPE (arg1
);
956 signop sign
= TYPE_SIGN (type
);
957 bool overflow
= false;
959 wide_int arg2
= wi::to_wide (parg2
, TYPE_PRECISION (type
));
964 res
= wi::bit_or (arg1
, arg2
);
968 res
= wi::bit_xor (arg1
, arg2
);
972 res
= wi::bit_and (arg1
, arg2
);
977 if (wi::neg_p (arg2
))
980 if (code
== RSHIFT_EXPR
)
986 if (code
== RSHIFT_EXPR
)
987 /* It's unclear from the C standard whether shifts can overflow.
988 The following code ignores overflow; perhaps a C standard
989 interpretation ruling is needed. */
990 res
= wi::rshift (arg1
, arg2
, sign
);
992 res
= wi::lshift (arg1
, arg2
);
997 if (wi::neg_p (arg2
))
1000 if (code
== RROTATE_EXPR
)
1001 code
= LROTATE_EXPR
;
1003 code
= RROTATE_EXPR
;
1006 if (code
== RROTATE_EXPR
)
1007 res
= wi::rrotate (arg1
, arg2
);
1009 res
= wi::lrotate (arg1
, arg2
);
1013 res
= wi::add (arg1
, arg2
, sign
, &overflow
);
1017 res
= wi::sub (arg1
, arg2
, sign
, &overflow
);
1021 res
= wi::mul (arg1
, arg2
, sign
, &overflow
);
1024 case MULT_HIGHPART_EXPR
:
1025 res
= wi::mul_high (arg1
, arg2
, sign
);
1028 case TRUNC_DIV_EXPR
:
1029 case EXACT_DIV_EXPR
:
1032 res
= wi::div_trunc (arg1
, arg2
, sign
, &overflow
);
1035 case FLOOR_DIV_EXPR
:
1038 res
= wi::div_floor (arg1
, arg2
, sign
, &overflow
);
1044 res
= wi::div_ceil (arg1
, arg2
, sign
, &overflow
);
1047 case ROUND_DIV_EXPR
:
1050 res
= wi::div_round (arg1
, arg2
, sign
, &overflow
);
1053 case TRUNC_MOD_EXPR
:
1056 res
= wi::mod_trunc (arg1
, arg2
, sign
, &overflow
);
1059 case FLOOR_MOD_EXPR
:
1062 res
= wi::mod_floor (arg1
, arg2
, sign
, &overflow
);
1068 res
= wi::mod_ceil (arg1
, arg2
, sign
, &overflow
);
1071 case ROUND_MOD_EXPR
:
1074 res
= wi::mod_round (arg1
, arg2
, sign
, &overflow
);
1078 res
= wi::min (arg1
, arg2
, sign
);
1082 res
= wi::max (arg1
, arg2
, sign
);
1089 t
= force_fit_type (type
, res
, overflowable
,
1090 (((sign
== SIGNED
|| overflowable
== -1)
1092 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (parg2
)));
1098 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
)
1100 return int_const_binop_1 (code
, arg1
, arg2
, 1);
1103 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1104 constant. We assume ARG1 and ARG2 have the same data type, or at least
1105 are the same kind of constant and the same machine mode. Return zero if
1106 combining the constants is not allowed in the current operating mode. */
1109 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1111 /* Sanity check for the recursive cases. */
1118 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1120 if (code
== POINTER_PLUS_EXPR
)
1121 return int_const_binop (PLUS_EXPR
,
1122 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1124 return int_const_binop (code
, arg1
, arg2
);
1127 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1132 REAL_VALUE_TYPE value
;
1133 REAL_VALUE_TYPE result
;
1137 /* The following codes are handled by real_arithmetic. */
1152 d1
= TREE_REAL_CST (arg1
);
1153 d2
= TREE_REAL_CST (arg2
);
1155 type
= TREE_TYPE (arg1
);
1156 mode
= TYPE_MODE (type
);
1158 /* Don't perform operation if we honor signaling NaNs and
1159 either operand is a signaling NaN. */
1160 if (HONOR_SNANS (mode
)
1161 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1162 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1165 /* Don't perform operation if it would raise a division
1166 by zero exception. */
1167 if (code
== RDIV_EXPR
1168 && real_equal (&d2
, &dconst0
)
1169 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1172 /* If either operand is a NaN, just return it. Otherwise, set up
1173 for floating-point trap; we return an overflow. */
1174 if (REAL_VALUE_ISNAN (d1
))
1176 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1179 t
= build_real (type
, d1
);
1182 else if (REAL_VALUE_ISNAN (d2
))
1184 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1187 t
= build_real (type
, d2
);
1191 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1192 real_convert (&result
, mode
, &value
);
1194 /* Don't constant fold this floating point operation if
1195 the result has overflowed and flag_trapping_math. */
1196 if (flag_trapping_math
1197 && MODE_HAS_INFINITIES (mode
)
1198 && REAL_VALUE_ISINF (result
)
1199 && !REAL_VALUE_ISINF (d1
)
1200 && !REAL_VALUE_ISINF (d2
))
1203 /* Don't constant fold this floating point operation if the
1204 result may dependent upon the run-time rounding mode and
1205 flag_rounding_math is set, or if GCC's software emulation
1206 is unable to accurately represent the result. */
1207 if ((flag_rounding_math
1208 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1209 && (inexact
|| !real_identical (&result
, &value
)))
1212 t
= build_real (type
, result
);
1214 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1218 if (TREE_CODE (arg1
) == FIXED_CST
)
1220 FIXED_VALUE_TYPE f1
;
1221 FIXED_VALUE_TYPE f2
;
1222 FIXED_VALUE_TYPE result
;
1227 /* The following codes are handled by fixed_arithmetic. */
1233 case TRUNC_DIV_EXPR
:
1234 if (TREE_CODE (arg2
) != FIXED_CST
)
1236 f2
= TREE_FIXED_CST (arg2
);
1242 if (TREE_CODE (arg2
) != INTEGER_CST
)
1245 f2
.data
.high
= w2
.elt (1);
1246 f2
.data
.low
= w2
.elt (0);
1255 f1
= TREE_FIXED_CST (arg1
);
1256 type
= TREE_TYPE (arg1
);
1257 sat_p
= TYPE_SATURATING (type
);
1258 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1259 t
= build_fixed (type
, result
);
1260 /* Propagate overflow flags. */
1261 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1262 TREE_OVERFLOW (t
) = 1;
1266 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1268 tree type
= TREE_TYPE (arg1
);
1269 tree r1
= TREE_REALPART (arg1
);
1270 tree i1
= TREE_IMAGPART (arg1
);
1271 tree r2
= TREE_REALPART (arg2
);
1272 tree i2
= TREE_IMAGPART (arg2
);
1279 real
= const_binop (code
, r1
, r2
);
1280 imag
= const_binop (code
, i1
, i2
);
1284 if (COMPLEX_FLOAT_TYPE_P (type
))
1285 return do_mpc_arg2 (arg1
, arg2
, type
,
1286 /* do_nonfinite= */ folding_initializer
,
1289 real
= const_binop (MINUS_EXPR
,
1290 const_binop (MULT_EXPR
, r1
, r2
),
1291 const_binop (MULT_EXPR
, i1
, i2
));
1292 imag
= const_binop (PLUS_EXPR
,
1293 const_binop (MULT_EXPR
, r1
, i2
),
1294 const_binop (MULT_EXPR
, i1
, r2
));
1298 if (COMPLEX_FLOAT_TYPE_P (type
))
1299 return do_mpc_arg2 (arg1
, arg2
, type
,
1300 /* do_nonfinite= */ folding_initializer
,
1303 case TRUNC_DIV_EXPR
:
1305 case FLOOR_DIV_EXPR
:
1306 case ROUND_DIV_EXPR
:
1307 if (flag_complex_method
== 0)
1309 /* Keep this algorithm in sync with
1310 tree-complex.c:expand_complex_div_straight().
1312 Expand complex division to scalars, straightforward algorithm.
1313 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1317 = const_binop (PLUS_EXPR
,
1318 const_binop (MULT_EXPR
, r2
, r2
),
1319 const_binop (MULT_EXPR
, i2
, i2
));
1321 = const_binop (PLUS_EXPR
,
1322 const_binop (MULT_EXPR
, r1
, r2
),
1323 const_binop (MULT_EXPR
, i1
, i2
));
1325 = const_binop (MINUS_EXPR
,
1326 const_binop (MULT_EXPR
, i1
, r2
),
1327 const_binop (MULT_EXPR
, r1
, i2
));
1329 real
= const_binop (code
, t1
, magsquared
);
1330 imag
= const_binop (code
, t2
, magsquared
);
1334 /* Keep this algorithm in sync with
1335 tree-complex.c:expand_complex_div_wide().
1337 Expand complex division to scalars, modified algorithm to minimize
1338 overflow with wide input ranges. */
1339 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1340 fold_abs_const (r2
, TREE_TYPE (type
)),
1341 fold_abs_const (i2
, TREE_TYPE (type
)));
1343 if (integer_nonzerop (compare
))
1345 /* In the TRUE branch, we compute
1347 div = (br * ratio) + bi;
1348 tr = (ar * ratio) + ai;
1349 ti = (ai * ratio) - ar;
1352 tree ratio
= const_binop (code
, r2
, i2
);
1353 tree div
= const_binop (PLUS_EXPR
, i2
,
1354 const_binop (MULT_EXPR
, r2
, ratio
));
1355 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1356 real
= const_binop (PLUS_EXPR
, real
, i1
);
1357 real
= const_binop (code
, real
, div
);
1359 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1360 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1361 imag
= const_binop (code
, imag
, div
);
1365 /* In the FALSE branch, we compute
1367 divisor = (d * ratio) + c;
1368 tr = (b * ratio) + a;
1369 ti = b - (a * ratio);
1372 tree ratio
= const_binop (code
, i2
, r2
);
1373 tree div
= const_binop (PLUS_EXPR
, r2
,
1374 const_binop (MULT_EXPR
, i2
, ratio
));
1376 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1377 real
= const_binop (PLUS_EXPR
, real
, r1
);
1378 real
= const_binop (code
, real
, div
);
1380 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1381 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1382 imag
= const_binop (code
, imag
, div
);
1392 return build_complex (type
, real
, imag
);
1395 if (TREE_CODE (arg1
) == VECTOR_CST
1396 && TREE_CODE (arg2
) == VECTOR_CST
)
1398 tree type
= TREE_TYPE (arg1
);
1399 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1400 tree
*elts
= XALLOCAVEC (tree
, count
);
1402 for (i
= 0; i
< count
; i
++)
1404 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1405 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1407 elts
[i
] = const_binop (code
, elem1
, elem2
);
1409 /* It is possible that const_binop cannot handle the given
1410 code and return NULL_TREE */
1411 if (elts
[i
] == NULL_TREE
)
1415 return build_vector (type
, elts
);
1418 /* Shifts allow a scalar offset for a vector. */
1419 if (TREE_CODE (arg1
) == VECTOR_CST
1420 && TREE_CODE (arg2
) == INTEGER_CST
)
1422 tree type
= TREE_TYPE (arg1
);
1423 int count
= TYPE_VECTOR_SUBPARTS (type
), i
;
1424 tree
*elts
= XALLOCAVEC (tree
, count
);
1426 for (i
= 0; i
< count
; i
++)
1428 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1430 elts
[i
] = const_binop (code
, elem1
, arg2
);
1432 /* It is possible that const_binop cannot handle the given
1433 code and return NULL_TREE. */
1434 if (elts
[i
] == NULL_TREE
)
1438 return build_vector (type
, elts
);
1443 /* Overload that adds a TYPE parameter to be able to dispatch
1444 to fold_relational_const. */
1447 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1449 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1450 return fold_relational_const (code
, type
, arg1
, arg2
);
1452 /* ??? Until we make the const_binop worker take the type of the
1453 result as argument put those cases that need it here. */
1457 if ((TREE_CODE (arg1
) == REAL_CST
1458 && TREE_CODE (arg2
) == REAL_CST
)
1459 || (TREE_CODE (arg1
) == INTEGER_CST
1460 && TREE_CODE (arg2
) == INTEGER_CST
))
1461 return build_complex (type
, arg1
, arg2
);
1464 case VEC_PACK_TRUNC_EXPR
:
1465 case VEC_PACK_FIX_TRUNC_EXPR
:
1467 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1470 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
/ 2
1471 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
/ 2);
1472 if (TREE_CODE (arg1
) != VECTOR_CST
1473 || TREE_CODE (arg2
) != VECTOR_CST
)
1476 elts
= XALLOCAVEC (tree
, nelts
);
1477 if (!vec_cst_ctor_to_array (arg1
, elts
)
1478 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
/ 2))
1481 for (i
= 0; i
< nelts
; i
++)
1483 elts
[i
] = fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1484 ? NOP_EXPR
: FIX_TRUNC_EXPR
,
1485 TREE_TYPE (type
), elts
[i
]);
1486 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1490 return build_vector (type
, elts
);
1493 case VEC_WIDEN_MULT_LO_EXPR
:
1494 case VEC_WIDEN_MULT_HI_EXPR
:
1495 case VEC_WIDEN_MULT_EVEN_EXPR
:
1496 case VEC_WIDEN_MULT_ODD_EXPR
:
1498 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
);
1499 unsigned int out
, ofs
, scale
;
1502 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
* 2
1503 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
)) == nelts
* 2);
1504 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1507 elts
= XALLOCAVEC (tree
, nelts
* 4);
1508 if (!vec_cst_ctor_to_array (arg1
, elts
)
1509 || !vec_cst_ctor_to_array (arg2
, elts
+ nelts
* 2))
1512 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1513 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? nelts
: 0;
1514 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1515 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : nelts
;
1516 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1518 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1521 for (out
= 0; out
< nelts
; out
++)
1523 unsigned int in1
= (out
<< scale
) + ofs
;
1524 unsigned int in2
= in1
+ nelts
* 2;
1527 t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in1
]);
1528 t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), elts
[in2
]);
1530 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1532 elts
[out
] = const_binop (MULT_EXPR
, t1
, t2
);
1533 if (elts
[out
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[out
]))
1537 return build_vector (type
, elts
);
1543 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1546 /* Make sure type and arg0 have the same saturating flag. */
1547 gcc_checking_assert (TYPE_SATURATING (type
)
1548 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1550 return const_binop (code
, arg1
, arg2
);
1553 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1554 Return zero if computing the constants is not possible. */
1557 const_unop (enum tree_code code
, tree type
, tree arg0
)
1559 /* Don't perform the operation, other than NEGATE and ABS, if
1560 flag_signaling_nans is on and the operand is a signaling NaN. */
1561 if (TREE_CODE (arg0
) == REAL_CST
1562 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1563 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1564 && code
!= NEGATE_EXPR
1565 && code
!= ABS_EXPR
)
1572 case FIX_TRUNC_EXPR
:
1573 case FIXED_CONVERT_EXPR
:
1574 return fold_convert_const (code
, type
, arg0
);
1576 case ADDR_SPACE_CONVERT_EXPR
:
1577 /* If the source address is 0, and the source address space
1578 cannot have a valid object at 0, fold to dest type null. */
1579 if (integer_zerop (arg0
)
1580 && !(targetm
.addr_space
.zero_address_valid
1581 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1582 return fold_convert_const (code
, type
, arg0
);
1585 case VIEW_CONVERT_EXPR
:
1586 return fold_view_convert_expr (type
, arg0
);
1590 /* Can't call fold_negate_const directly here as that doesn't
1591 handle all cases and we might not be able to negate some
1593 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1594 if (tem
&& CONSTANT_CLASS_P (tem
))
1600 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1601 return fold_abs_const (arg0
, type
);
1605 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1607 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1609 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1614 if (TREE_CODE (arg0
) == INTEGER_CST
)
1615 return fold_not_const (arg0
, type
);
1616 /* Perform BIT_NOT_EXPR on each element individually. */
1617 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1621 unsigned count
= VECTOR_CST_NELTS (arg0
), i
;
1623 elements
= XALLOCAVEC (tree
, count
);
1624 for (i
= 0; i
< count
; i
++)
1626 elem
= VECTOR_CST_ELT (arg0
, i
);
1627 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1628 if (elem
== NULL_TREE
)
1633 return build_vector (type
, elements
);
1637 case TRUTH_NOT_EXPR
:
1638 if (TREE_CODE (arg0
) == INTEGER_CST
)
1639 return constant_boolean_node (integer_zerop (arg0
), type
);
1643 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1644 return fold_convert (type
, TREE_REALPART (arg0
));
1648 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1649 return fold_convert (type
, TREE_IMAGPART (arg0
));
1652 case VEC_UNPACK_LO_EXPR
:
1653 case VEC_UNPACK_HI_EXPR
:
1654 case VEC_UNPACK_FLOAT_LO_EXPR
:
1655 case VEC_UNPACK_FLOAT_HI_EXPR
:
1657 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
1659 enum tree_code subcode
;
1661 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
* 2);
1662 if (TREE_CODE (arg0
) != VECTOR_CST
)
1665 elts
= XALLOCAVEC (tree
, nelts
* 2);
1666 if (!vec_cst_ctor_to_array (arg0
, elts
))
1669 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1670 || code
== VEC_UNPACK_FLOAT_LO_EXPR
))
1673 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1676 subcode
= FLOAT_EXPR
;
1678 for (i
= 0; i
< nelts
; i
++)
1680 elts
[i
] = fold_convert_const (subcode
, TREE_TYPE (type
), elts
[i
]);
1681 if (elts
[i
] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[i
]))
1685 return build_vector (type
, elts
);
1688 case REDUC_MIN_EXPR
:
1689 case REDUC_MAX_EXPR
:
1690 case REDUC_PLUS_EXPR
:
1692 unsigned int nelts
, i
;
1694 enum tree_code subcode
;
1696 if (TREE_CODE (arg0
) != VECTOR_CST
)
1698 nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
));
1700 elts
= XALLOCAVEC (tree
, nelts
);
1701 if (!vec_cst_ctor_to_array (arg0
, elts
))
1706 case REDUC_MIN_EXPR
: subcode
= MIN_EXPR
; break;
1707 case REDUC_MAX_EXPR
: subcode
= MAX_EXPR
; break;
1708 case REDUC_PLUS_EXPR
: subcode
= PLUS_EXPR
; break;
1709 default: gcc_unreachable ();
1712 for (i
= 1; i
< nelts
; i
++)
1714 elts
[0] = const_binop (subcode
, elts
[0], elts
[i
]);
1715 if (elts
[0] == NULL_TREE
|| !CONSTANT_CLASS_P (elts
[0]))
1729 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1730 indicates which particular sizetype to create. */
1733 size_int_kind (HOST_WIDE_INT number
, enum size_type_kind kind
)
1735 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1738 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1739 is a tree code. The type of the result is taken from the operands.
1740 Both must be equivalent integer types, ala int_binop_types_match_p.
1741 If the operands are constant, so is the result. */
1744 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1746 tree type
= TREE_TYPE (arg0
);
1748 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1749 return error_mark_node
;
1751 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1754 /* Handle the special case of two integer constants faster. */
1755 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
1757 /* And some specific cases even faster than that. */
1758 if (code
== PLUS_EXPR
)
1760 if (integer_zerop (arg0
) && !TREE_OVERFLOW (arg0
))
1762 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1765 else if (code
== MINUS_EXPR
)
1767 if (integer_zerop (arg1
) && !TREE_OVERFLOW (arg1
))
1770 else if (code
== MULT_EXPR
)
1772 if (integer_onep (arg0
) && !TREE_OVERFLOW (arg0
))
1776 /* Handle general case of two integer constants. For sizetype
1777 constant calculations we always want to know about overflow,
1778 even in the unsigned case. */
1779 return int_const_binop_1 (code
, arg0
, arg1
, -1);
1782 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1785 /* Given two values, either both of sizetype or both of bitsizetype,
1786 compute the difference between the two values. Return the value
1787 in signed type corresponding to the type of the operands. */
1790 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1792 tree type
= TREE_TYPE (arg0
);
1795 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1798 /* If the type is already signed, just do the simple thing. */
1799 if (!TYPE_UNSIGNED (type
))
1800 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1802 if (type
== sizetype
)
1804 else if (type
== bitsizetype
)
1805 ctype
= sbitsizetype
;
1807 ctype
= signed_type_for (type
);
1809 /* If either operand is not a constant, do the conversions to the signed
1810 type and subtract. The hardware will do the right thing with any
1811 overflow in the subtraction. */
1812 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1813 return size_binop_loc (loc
, MINUS_EXPR
,
1814 fold_convert_loc (loc
, ctype
, arg0
),
1815 fold_convert_loc (loc
, ctype
, arg1
));
1817 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1818 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1819 overflow) and negate (which can't either). Special-case a result
1820 of zero while we're here. */
1821 if (tree_int_cst_equal (arg0
, arg1
))
1822 return build_int_cst (ctype
, 0);
1823 else if (tree_int_cst_lt (arg1
, arg0
))
1824 return fold_convert_loc (loc
, ctype
,
1825 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1827 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1828 fold_convert_loc (loc
, ctype
,
1829 size_binop_loc (loc
,
1834 /* A subroutine of fold_convert_const handling conversions of an
1835 INTEGER_CST to another integer type. */
1838 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
1840 /* Given an integer constant, make new constant with new type,
1841 appropriately sign-extended or truncated. Use widest_int
1842 so that any extension is done according ARG1's type. */
1843 return force_fit_type (type
, wi::to_widest (arg1
),
1844 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
1845 TREE_OVERFLOW (arg1
));
1848 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1849 to an integer type. */
1852 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
1854 bool overflow
= false;
1857 /* The following code implements the floating point to integer
1858 conversion rules required by the Java Language Specification,
1859 that IEEE NaNs are mapped to zero and values that overflow
1860 the target precision saturate, i.e. values greater than
1861 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1862 are mapped to INT_MIN. These semantics are allowed by the
1863 C and C++ standards that simply state that the behavior of
1864 FP-to-integer conversion is unspecified upon overflow. */
1868 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
1872 case FIX_TRUNC_EXPR
:
1873 real_trunc (&r
, VOIDmode
, &x
);
1880 /* If R is NaN, return zero and show we have an overflow. */
1881 if (REAL_VALUE_ISNAN (r
))
1884 val
= wi::zero (TYPE_PRECISION (type
));
1887 /* See if R is less than the lower bound or greater than the
1892 tree lt
= TYPE_MIN_VALUE (type
);
1893 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
1894 if (real_less (&r
, &l
))
1903 tree ut
= TYPE_MAX_VALUE (type
);
1906 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
1907 if (real_less (&u
, &r
))
1916 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
1918 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
1922 /* A subroutine of fold_convert_const handling conversions of a
1923 FIXED_CST to an integer type. */
1926 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
1929 double_int temp
, temp_trunc
;
1932 /* Right shift FIXED_CST to temp by fbit. */
1933 temp
= TREE_FIXED_CST (arg1
).data
;
1934 mode
= TREE_FIXED_CST (arg1
).mode
;
1935 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
1937 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
1938 HOST_BITS_PER_DOUBLE_INT
,
1939 SIGNED_FIXED_POINT_MODE_P (mode
));
1941 /* Left shift temp to temp_trunc by fbit. */
1942 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
1943 HOST_BITS_PER_DOUBLE_INT
,
1944 SIGNED_FIXED_POINT_MODE_P (mode
));
1948 temp
= double_int_zero
;
1949 temp_trunc
= double_int_zero
;
1952 /* If FIXED_CST is negative, we need to round the value toward 0.
1953 By checking if the fractional bits are not zero to add 1 to temp. */
1954 if (SIGNED_FIXED_POINT_MODE_P (mode
)
1955 && temp_trunc
.is_negative ()
1956 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
1957 temp
+= double_int_one
;
1959 /* Given a fixed-point constant, make new constant with new type,
1960 appropriately sign-extended or truncated. */
1961 t
= force_fit_type (type
, temp
, -1,
1962 (temp
.is_negative ()
1963 && (TYPE_UNSIGNED (type
)
1964 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
1965 | TREE_OVERFLOW (arg1
));
1970 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1971 to another floating point type. */
1974 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
1976 REAL_VALUE_TYPE value
;
1979 /* Don't perform the operation if flag_signaling_nans is on
1980 and the operand is a signaling NaN. */
1981 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
1982 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
1985 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
1986 t
= build_real (type
, value
);
1988 /* If converting an infinity or NAN to a representation that doesn't
1989 have one, set the overflow bit so that we can produce some kind of
1990 error message at the appropriate point if necessary. It's not the
1991 most user-friendly message, but it's better than nothing. */
1992 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
1993 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
1994 TREE_OVERFLOW (t
) = 1;
1995 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
1996 && !MODE_HAS_NANS (TYPE_MODE (type
)))
1997 TREE_OVERFLOW (t
) = 1;
1998 /* Regular overflow, conversion produced an infinity in a mode that
1999 can't represent them. */
2000 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2001 && REAL_VALUE_ISINF (value
)
2002 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2003 TREE_OVERFLOW (t
) = 1;
2005 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2009 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2010 to a floating point type. */
2013 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2015 REAL_VALUE_TYPE value
;
2018 real_convert_from_fixed (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
));
2019 t
= build_real (type
, value
);
2021 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2025 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2026 to another fixed-point type. */
2029 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2031 FIXED_VALUE_TYPE value
;
2035 overflow_p
= fixed_convert (&value
, TYPE_MODE (type
), &TREE_FIXED_CST (arg1
),
2036 TYPE_SATURATING (type
));
2037 t
= build_fixed (type
, value
);
2039 /* Propagate overflow flags. */
2040 if (overflow_p
| TREE_OVERFLOW (arg1
))
2041 TREE_OVERFLOW (t
) = 1;
2045 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2046 to a fixed-point type. */
2049 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2051 FIXED_VALUE_TYPE value
;
2056 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2058 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2059 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2060 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2062 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2064 overflow_p
= fixed_convert_from_int (&value
, TYPE_MODE (type
), di
,
2065 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2066 TYPE_SATURATING (type
));
2067 t
= build_fixed (type
, value
);
2069 /* Propagate overflow flags. */
2070 if (overflow_p
| TREE_OVERFLOW (arg1
))
2071 TREE_OVERFLOW (t
) = 1;
2075 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2076 to a fixed-point type. */
2079 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2081 FIXED_VALUE_TYPE value
;
2085 overflow_p
= fixed_convert_from_real (&value
, TYPE_MODE (type
),
2086 &TREE_REAL_CST (arg1
),
2087 TYPE_SATURATING (type
));
2088 t
= build_fixed (type
, value
);
2090 /* Propagate overflow flags. */
2091 if (overflow_p
| TREE_OVERFLOW (arg1
))
2092 TREE_OVERFLOW (t
) = 1;
2096 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2097 type TYPE. If no simplification can be done return NULL_TREE. */
2100 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2102 if (TREE_TYPE (arg1
) == type
)
2105 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2106 || TREE_CODE (type
) == OFFSET_TYPE
)
2108 if (TREE_CODE (arg1
) == INTEGER_CST
)
2109 return fold_convert_const_int_from_int (type
, arg1
);
2110 else if (TREE_CODE (arg1
) == REAL_CST
)
2111 return fold_convert_const_int_from_real (code
, type
, arg1
);
2112 else if (TREE_CODE (arg1
) == FIXED_CST
)
2113 return fold_convert_const_int_from_fixed (type
, arg1
);
2115 else if (TREE_CODE (type
) == REAL_TYPE
)
2117 if (TREE_CODE (arg1
) == INTEGER_CST
)
2118 return build_real_from_int_cst (type
, arg1
);
2119 else if (TREE_CODE (arg1
) == REAL_CST
)
2120 return fold_convert_const_real_from_real (type
, arg1
);
2121 else if (TREE_CODE (arg1
) == FIXED_CST
)
2122 return fold_convert_const_real_from_fixed (type
, arg1
);
2124 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2126 if (TREE_CODE (arg1
) == FIXED_CST
)
2127 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2128 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2129 return fold_convert_const_fixed_from_int (type
, arg1
);
2130 else if (TREE_CODE (arg1
) == REAL_CST
)
2131 return fold_convert_const_fixed_from_real (type
, arg1
);
2133 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2135 if (TREE_CODE (arg1
) == VECTOR_CST
2136 && TYPE_VECTOR_SUBPARTS (type
) == VECTOR_CST_NELTS (arg1
))
2138 int len
= TYPE_VECTOR_SUBPARTS (type
);
2139 tree elttype
= TREE_TYPE (type
);
2140 tree
*v
= XALLOCAVEC (tree
, len
);
2141 for (int i
= 0; i
< len
; ++i
)
2143 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2144 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2145 if (cvt
== NULL_TREE
)
2149 return build_vector (type
, v
);
2155 /* Construct a vector of zero elements of vector type TYPE. */
2158 build_zero_vector (tree type
)
2162 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2163 return build_vector_from_val (type
, t
);
2166 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2169 fold_convertible_p (const_tree type
, const_tree arg
)
2171 tree orig
= TREE_TYPE (arg
);
2176 if (TREE_CODE (arg
) == ERROR_MARK
2177 || TREE_CODE (type
) == ERROR_MARK
2178 || TREE_CODE (orig
) == ERROR_MARK
)
2181 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2184 switch (TREE_CODE (type
))
2186 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2187 case POINTER_TYPE
: case REFERENCE_TYPE
:
2189 return (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2190 || TREE_CODE (orig
) == OFFSET_TYPE
);
2193 case FIXED_POINT_TYPE
:
2196 return TREE_CODE (type
) == TREE_CODE (orig
);
2203 /* Convert expression ARG to type TYPE. Used by the middle-end for
2204 simple conversions in preference to calling the front-end's convert. */
2207 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2209 tree orig
= TREE_TYPE (arg
);
2215 if (TREE_CODE (arg
) == ERROR_MARK
2216 || TREE_CODE (type
) == ERROR_MARK
2217 || TREE_CODE (orig
) == ERROR_MARK
)
2218 return error_mark_node
;
2220 switch (TREE_CODE (type
))
2223 case REFERENCE_TYPE
:
2224 /* Handle conversions between pointers to different address spaces. */
2225 if (POINTER_TYPE_P (orig
)
2226 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2227 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2228 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2231 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2233 if (TREE_CODE (arg
) == INTEGER_CST
)
2235 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2236 if (tem
!= NULL_TREE
)
2239 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2240 || TREE_CODE (orig
) == OFFSET_TYPE
)
2241 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2242 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2243 return fold_convert_loc (loc
, type
,
2244 fold_build1_loc (loc
, REALPART_EXPR
,
2245 TREE_TYPE (orig
), arg
));
2246 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2247 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2248 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2251 if (TREE_CODE (arg
) == INTEGER_CST
)
2253 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2254 if (tem
!= NULL_TREE
)
2257 else if (TREE_CODE (arg
) == REAL_CST
)
2259 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2260 if (tem
!= NULL_TREE
)
2263 else if (TREE_CODE (arg
) == FIXED_CST
)
2265 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2266 if (tem
!= NULL_TREE
)
2270 switch (TREE_CODE (orig
))
2273 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2274 case POINTER_TYPE
: case REFERENCE_TYPE
:
2275 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2278 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2280 case FIXED_POINT_TYPE
:
2281 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2284 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2285 return fold_convert_loc (loc
, type
, tem
);
2291 case FIXED_POINT_TYPE
:
2292 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2293 || TREE_CODE (arg
) == REAL_CST
)
2295 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2296 if (tem
!= NULL_TREE
)
2297 goto fold_convert_exit
;
2300 switch (TREE_CODE (orig
))
2302 case FIXED_POINT_TYPE
:
2307 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2310 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2311 return fold_convert_loc (loc
, type
, tem
);
2318 switch (TREE_CODE (orig
))
2321 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2322 case POINTER_TYPE
: case REFERENCE_TYPE
:
2324 case FIXED_POINT_TYPE
:
2325 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2326 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2327 fold_convert_loc (loc
, TREE_TYPE (type
),
2328 integer_zero_node
));
2333 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2335 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2336 TREE_OPERAND (arg
, 0));
2337 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2338 TREE_OPERAND (arg
, 1));
2339 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2342 arg
= save_expr (arg
);
2343 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2344 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2345 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2346 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2347 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2355 if (integer_zerop (arg
))
2356 return build_zero_vector (type
);
2357 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2358 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2359 || TREE_CODE (orig
) == VECTOR_TYPE
);
2360 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2363 tem
= fold_ignored_result (arg
);
2364 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2367 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2368 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2372 protected_set_expr_location_unshare (tem
, loc
);
2376 /* Return false if expr can be assumed not to be an lvalue, true
2380 maybe_lvalue_p (const_tree x
)
2382 /* We only need to wrap lvalue tree codes. */
2383 switch (TREE_CODE (x
))
2396 case ARRAY_RANGE_REF
:
2402 case PREINCREMENT_EXPR
:
2403 case PREDECREMENT_EXPR
:
2405 case TRY_CATCH_EXPR
:
2406 case WITH_CLEANUP_EXPR
:
2415 /* Assume the worst for front-end tree codes. */
2416 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2424 /* Return an expr equal to X but certainly not valid as an lvalue. */
2427 non_lvalue_loc (location_t loc
, tree x
)
2429 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2434 if (! maybe_lvalue_p (x
))
2436 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2439 /* When pedantic, return an expr equal to X but certainly not valid as a
2440 pedantic lvalue. Otherwise, return X. */
2443 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2445 return protected_set_expr_location_unshare (x
, loc
);
2448 /* Given a tree comparison code, return the code that is the logical inverse.
2449 It is generally not safe to do this for floating-point comparisons, except
2450 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2451 ERROR_MARK in this case. */
2454 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2456 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2457 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2467 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2469 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2471 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2473 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2487 return UNORDERED_EXPR
;
2488 case UNORDERED_EXPR
:
2489 return ORDERED_EXPR
;
2495 /* Similar, but return the comparison that results if the operands are
2496 swapped. This is safe for floating-point. */
2499 swap_tree_comparison (enum tree_code code
)
2506 case UNORDERED_EXPR
:
2532 /* Convert a comparison tree code from an enum tree_code representation
2533 into a compcode bit-based encoding. This function is the inverse of
2534 compcode_to_comparison. */
2536 static enum comparison_code
2537 comparison_to_compcode (enum tree_code code
)
2554 return COMPCODE_ORD
;
2555 case UNORDERED_EXPR
:
2556 return COMPCODE_UNORD
;
2558 return COMPCODE_UNLT
;
2560 return COMPCODE_UNEQ
;
2562 return COMPCODE_UNLE
;
2564 return COMPCODE_UNGT
;
2566 return COMPCODE_LTGT
;
2568 return COMPCODE_UNGE
;
2574 /* Convert a compcode bit-based encoding of a comparison operator back
2575 to GCC's enum tree_code representation. This function is the
2576 inverse of comparison_to_compcode. */
2578 static enum tree_code
2579 compcode_to_comparison (enum comparison_code code
)
2596 return ORDERED_EXPR
;
2597 case COMPCODE_UNORD
:
2598 return UNORDERED_EXPR
;
2616 /* Return a tree for the comparison which is the combination of
2617 doing the AND or OR (depending on CODE) of the two operations LCODE
2618 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2619 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2620 if this makes the transformation invalid. */
2623 combine_comparisons (location_t loc
,
2624 enum tree_code code
, enum tree_code lcode
,
2625 enum tree_code rcode
, tree truth_type
,
2626 tree ll_arg
, tree lr_arg
)
2628 bool honor_nans
= HONOR_NANS (ll_arg
);
2629 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2630 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2635 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2636 compcode
= lcompcode
& rcompcode
;
2639 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2640 compcode
= lcompcode
| rcompcode
;
2649 /* Eliminate unordered comparisons, as well as LTGT and ORD
2650 which are not used unless the mode has NaNs. */
2651 compcode
&= ~COMPCODE_UNORD
;
2652 if (compcode
== COMPCODE_LTGT
)
2653 compcode
= COMPCODE_NE
;
2654 else if (compcode
== COMPCODE_ORD
)
2655 compcode
= COMPCODE_TRUE
;
2657 else if (flag_trapping_math
)
2659 /* Check that the original operation and the optimized ones will trap
2660 under the same condition. */
2661 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2662 && (lcompcode
!= COMPCODE_EQ
)
2663 && (lcompcode
!= COMPCODE_ORD
);
2664 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2665 && (rcompcode
!= COMPCODE_EQ
)
2666 && (rcompcode
!= COMPCODE_ORD
);
2667 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2668 && (compcode
!= COMPCODE_EQ
)
2669 && (compcode
!= COMPCODE_ORD
);
2671 /* In a short-circuited boolean expression the LHS might be
2672 such that the RHS, if evaluated, will never trap. For
2673 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2674 if neither x nor y is NaN. (This is a mixed blessing: for
2675 example, the expression above will never trap, hence
2676 optimizing it to x < y would be invalid). */
2677 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2678 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2681 /* If the comparison was short-circuited, and only the RHS
2682 trapped, we may now generate a spurious trap. */
2684 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2687 /* If we changed the conditions that cause a trap, we lose. */
2688 if ((ltrap
|| rtrap
) != trap
)
2692 if (compcode
== COMPCODE_TRUE
)
2693 return constant_boolean_node (true, truth_type
);
2694 else if (compcode
== COMPCODE_FALSE
)
2695 return constant_boolean_node (false, truth_type
);
2698 enum tree_code tcode
;
2700 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2701 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2705 /* Return nonzero if two operands (typically of the same tree node)
2706 are necessarily equal. FLAGS modifies behavior as follows:
2708 If OEP_ONLY_CONST is set, only return nonzero for constants.
2709 This function tests whether the operands are indistinguishable;
2710 it does not test whether they are equal using C's == operation.
2711 The distinction is important for IEEE floating point, because
2712 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2713 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2715 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2716 even though it may hold multiple values during a function.
2717 This is because a GCC tree node guarantees that nothing else is
2718 executed between the evaluation of its "operands" (which may often
2719 be evaluated in arbitrary order). Hence if the operands themselves
2720 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2721 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2722 unset means assuming isochronic (or instantaneous) tree equivalence.
2723 Unless comparing arbitrary expression trees, such as from different
2724 statements, this flag can usually be left unset.
2726 If OEP_PURE_SAME is set, then pure functions with identical arguments
2727 are considered the same. It is used when the caller has other ways
2728 to ensure that global memory is unchanged in between.
2730 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2731 not values of expressions.
2733 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2734 any operand with side effect. This is unnecesarily conservative in the
2735 case we know that arg0 and arg1 are in disjoint code paths (such as in
2736 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2737 addresses with TREE_CONSTANT flag set so we know that &var == &var
2738 even if var is volatile. */
2741 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2743 /* When checking, verify at the outermost operand_equal_p call that
2744 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2746 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2748 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2752 inchash::hash
hstate0 (0), hstate1 (0);
2753 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2754 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2755 hashval_t h0
= hstate0
.end ();
2756 hashval_t h1
= hstate1
.end ();
2757 gcc_assert (h0
== h1
);
2765 /* If either is ERROR_MARK, they aren't equal. */
2766 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2767 || TREE_TYPE (arg0
) == error_mark_node
2768 || TREE_TYPE (arg1
) == error_mark_node
)
2771 /* Similar, if either does not have a type (like a released SSA name),
2772 they aren't equal. */
2773 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2776 /* We cannot consider pointers to different address space equal. */
2777 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2778 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2779 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2780 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2783 /* Check equality of integer constants before bailing out due to
2784 precision differences. */
2785 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2787 /* Address of INTEGER_CST is not defined; check that we did not forget
2788 to drop the OEP_ADDRESS_OF flags. */
2789 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2790 return tree_int_cst_equal (arg0
, arg1
);
2793 if (!(flags
& OEP_ADDRESS_OF
))
2795 /* If both types don't have the same signedness, then we can't consider
2796 them equal. We must check this before the STRIP_NOPS calls
2797 because they may change the signedness of the arguments. As pointers
2798 strictly don't have a signedness, require either two pointers or
2799 two non-pointers as well. */
2800 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
2801 || POINTER_TYPE_P (TREE_TYPE (arg0
))
2802 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
2805 /* If both types don't have the same precision, then it is not safe
2807 if (element_precision (TREE_TYPE (arg0
))
2808 != element_precision (TREE_TYPE (arg1
)))
2815 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2816 sanity check once the issue is solved. */
2818 /* Addresses of conversions and SSA_NAMEs (and many other things)
2819 are not defined. Check that we did not forget to drop the
2820 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2821 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
2822 && TREE_CODE (arg0
) != SSA_NAME
);
2825 /* In case both args are comparisons but with different comparison
2826 code, try to swap the comparison operands of one arg to produce
2827 a match and compare that variant. */
2828 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
2829 && COMPARISON_CLASS_P (arg0
)
2830 && COMPARISON_CLASS_P (arg1
))
2832 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
2834 if (TREE_CODE (arg0
) == swap_code
)
2835 return operand_equal_p (TREE_OPERAND (arg0
, 0),
2836 TREE_OPERAND (arg1
, 1), flags
)
2837 && operand_equal_p (TREE_OPERAND (arg0
, 1),
2838 TREE_OPERAND (arg1
, 0), flags
);
2841 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
2843 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2844 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
2846 else if (flags
& OEP_ADDRESS_OF
)
2848 /* If we are interested in comparing addresses ignore
2849 MEM_REF wrappings of the base that can appear just for
2851 if (TREE_CODE (arg0
) == MEM_REF
2853 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
2854 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
2855 && integer_zerop (TREE_OPERAND (arg0
, 1)))
2857 else if (TREE_CODE (arg1
) == MEM_REF
2859 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
2860 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
2861 && integer_zerop (TREE_OPERAND (arg1
, 1)))
2869 /* When not checking adddresses, this is needed for conversions and for
2870 COMPONENT_REF. Might as well play it safe and always test this. */
2871 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
2872 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
2873 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
2874 && !(flags
& OEP_ADDRESS_OF
)))
2877 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2878 We don't care about side effects in that case because the SAVE_EXPR
2879 takes care of that for us. In all other cases, two expressions are
2880 equal if they have no side effects. If we have two identical
2881 expressions with side effects that should be treated the same due
2882 to the only side effects being identical SAVE_EXPR's, that will
2883 be detected in the recursive calls below.
2884 If we are taking an invariant address of two identical objects
2885 they are necessarily equal as well. */
2886 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
2887 && (TREE_CODE (arg0
) == SAVE_EXPR
2888 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
2889 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
2892 /* Next handle constant cases, those for which we can return 1 even
2893 if ONLY_CONST is set. */
2894 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
2895 switch (TREE_CODE (arg0
))
2898 return tree_int_cst_equal (arg0
, arg1
);
2901 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
2902 TREE_FIXED_CST (arg1
));
2905 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
2909 if (!HONOR_SIGNED_ZEROS (arg0
))
2911 /* If we do not distinguish between signed and unsigned zero,
2912 consider them equal. */
2913 if (real_zerop (arg0
) && real_zerop (arg1
))
2922 if (VECTOR_CST_NELTS (arg0
) != VECTOR_CST_NELTS (arg1
))
2925 for (i
= 0; i
< VECTOR_CST_NELTS (arg0
); ++i
)
2927 if (!operand_equal_p (VECTOR_CST_ELT (arg0
, i
),
2928 VECTOR_CST_ELT (arg1
, i
), flags
))
2935 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
2937 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
2941 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
2942 && ! memcmp (TREE_STRING_POINTER (arg0
),
2943 TREE_STRING_POINTER (arg1
),
2944 TREE_STRING_LENGTH (arg0
)));
2947 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2948 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
2949 flags
| OEP_ADDRESS_OF
2950 | OEP_MATCH_SIDE_EFFECTS
);
2952 /* In GIMPLE empty constructors are allowed in initializers of
2954 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
2959 if (flags
& OEP_ONLY_CONST
)
2962 /* Define macros to test an operand from arg0 and arg1 for equality and a
2963 variant that allows null and views null as being different from any
2964 non-null value. In the latter case, if either is null, the both
2965 must be; otherwise, do the normal comparison. */
2966 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2967 TREE_OPERAND (arg1, N), flags)
2969 #define OP_SAME_WITH_NULL(N) \
2970 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2971 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2973 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
2976 /* Two conversions are equal only if signedness and modes match. */
2977 switch (TREE_CODE (arg0
))
2980 case FIX_TRUNC_EXPR
:
2981 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
2982 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
2992 case tcc_comparison
:
2994 if (OP_SAME (0) && OP_SAME (1))
2997 /* For commutative ops, allow the other order. */
2998 return (commutative_tree_code (TREE_CODE (arg0
))
2999 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3000 TREE_OPERAND (arg1
, 1), flags
)
3001 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3002 TREE_OPERAND (arg1
, 0), flags
));
3005 /* If either of the pointer (or reference) expressions we are
3006 dereferencing contain a side effect, these cannot be equal,
3007 but their addresses can be. */
3008 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3009 && (TREE_SIDE_EFFECTS (arg0
)
3010 || TREE_SIDE_EFFECTS (arg1
)))
3013 switch (TREE_CODE (arg0
))
3016 if (!(flags
& OEP_ADDRESS_OF
)
3017 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3018 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3020 flags
&= ~OEP_ADDRESS_OF
;
3024 /* Require the same offset. */
3025 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3026 TYPE_SIZE (TREE_TYPE (arg1
)),
3027 flags
& ~OEP_ADDRESS_OF
))
3032 case VIEW_CONVERT_EXPR
:
3035 case TARGET_MEM_REF
:
3037 if (!(flags
& OEP_ADDRESS_OF
))
3039 /* Require equal access sizes */
3040 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3041 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3042 || !TYPE_SIZE (TREE_TYPE (arg1
))
3043 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3044 TYPE_SIZE (TREE_TYPE (arg1
)),
3047 /* Verify that access happens in similar types. */
3048 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3050 /* Verify that accesses are TBAA compatible. */
3051 if (!alias_ptr_types_compatible_p
3052 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3053 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3054 || (MR_DEPENDENCE_CLIQUE (arg0
)
3055 != MR_DEPENDENCE_CLIQUE (arg1
))
3056 || (MR_DEPENDENCE_BASE (arg0
)
3057 != MR_DEPENDENCE_BASE (arg1
)))
3059 /* Verify that alignment is compatible. */
3060 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3061 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3064 flags
&= ~OEP_ADDRESS_OF
;
3065 return (OP_SAME (0) && OP_SAME (1)
3066 /* TARGET_MEM_REF require equal extra operands. */
3067 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3068 || (OP_SAME_WITH_NULL (2)
3069 && OP_SAME_WITH_NULL (3)
3070 && OP_SAME_WITH_NULL (4))));
3073 case ARRAY_RANGE_REF
:
3076 flags
&= ~OEP_ADDRESS_OF
;
3077 /* Compare the array index by value if it is constant first as we
3078 may have different types but same value here. */
3079 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3080 TREE_OPERAND (arg1
, 1))
3082 && OP_SAME_WITH_NULL (2)
3083 && OP_SAME_WITH_NULL (3)
3084 /* Compare low bound and element size as with OEP_ADDRESS_OF
3085 we have to account for the offset of the ref. */
3086 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3087 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3088 || (operand_equal_p (array_ref_low_bound
3089 (CONST_CAST_TREE (arg0
)),
3091 (CONST_CAST_TREE (arg1
)), flags
)
3092 && operand_equal_p (array_ref_element_size
3093 (CONST_CAST_TREE (arg0
)),
3094 array_ref_element_size
3095 (CONST_CAST_TREE (arg1
)),
3099 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3100 may be NULL when we're called to compare MEM_EXPRs. */
3101 if (!OP_SAME_WITH_NULL (0)
3104 flags
&= ~OEP_ADDRESS_OF
;
3105 return OP_SAME_WITH_NULL (2);
3110 flags
&= ~OEP_ADDRESS_OF
;
3111 return OP_SAME (1) && OP_SAME (2);
3117 case tcc_expression
:
3118 switch (TREE_CODE (arg0
))
3121 /* Be sure we pass right ADDRESS_OF flag. */
3122 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3123 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3124 TREE_OPERAND (arg1
, 0),
3125 flags
| OEP_ADDRESS_OF
);
3127 case TRUTH_NOT_EXPR
:
3130 case TRUTH_ANDIF_EXPR
:
3131 case TRUTH_ORIF_EXPR
:
3132 return OP_SAME (0) && OP_SAME (1);
3135 case WIDEN_MULT_PLUS_EXPR
:
3136 case WIDEN_MULT_MINUS_EXPR
:
3139 /* The multiplcation operands are commutative. */
3142 case TRUTH_AND_EXPR
:
3144 case TRUTH_XOR_EXPR
:
3145 if (OP_SAME (0) && OP_SAME (1))
3148 /* Otherwise take into account this is a commutative operation. */
3149 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3150 TREE_OPERAND (arg1
, 1), flags
)
3151 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3152 TREE_OPERAND (arg1
, 0), flags
));
3155 if (! OP_SAME (1) || ! OP_SAME (2))
3157 flags
&= ~OEP_ADDRESS_OF
;
3162 case BIT_INSERT_EXPR
:
3163 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3170 switch (TREE_CODE (arg0
))
3173 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3174 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3175 /* If not both CALL_EXPRs are either internal or normal function
3176 functions, then they are not equal. */
3178 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3180 /* If the CALL_EXPRs call different internal functions, then they
3182 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3187 /* If the CALL_EXPRs call different functions, then they are not
3189 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3194 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3196 unsigned int cef
= call_expr_flags (arg0
);
3197 if (flags
& OEP_PURE_SAME
)
3198 cef
&= ECF_CONST
| ECF_PURE
;
3205 /* Now see if all the arguments are the same. */
3207 const_call_expr_arg_iterator iter0
, iter1
;
3209 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3210 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3212 a0
= next_const_call_expr_arg (&iter0
),
3213 a1
= next_const_call_expr_arg (&iter1
))
3214 if (! operand_equal_p (a0
, a1
, flags
))
3217 /* If we get here and both argument lists are exhausted
3218 then the CALL_EXPRs are equal. */
3219 return ! (a0
|| a1
);
3225 case tcc_declaration
:
3226 /* Consider __builtin_sqrt equal to sqrt. */
3227 return (TREE_CODE (arg0
) == FUNCTION_DECL
3228 && DECL_BUILT_IN (arg0
) && DECL_BUILT_IN (arg1
)
3229 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3230 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3232 case tcc_exceptional
:
3233 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3235 /* In GIMPLE constructors are used only to build vectors from
3236 elements. Individual elements in the constructor must be
3237 indexed in increasing order and form an initial sequence.
3239 We make no effort to compare constructors in generic.
3240 (see sem_variable::equals in ipa-icf which can do so for
3242 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3243 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3246 /* Be sure that vectors constructed have the same representation.
3247 We only tested element precision and modes to match.
3248 Vectors may be BLKmode and thus also check that the number of
3250 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))
3251 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)))
3254 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3255 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3256 unsigned int len
= vec_safe_length (v0
);
3258 if (len
!= vec_safe_length (v1
))
3261 for (unsigned int i
= 0; i
< len
; i
++)
3263 constructor_elt
*c0
= &(*v0
)[i
];
3264 constructor_elt
*c1
= &(*v1
)[i
];
3266 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3267 /* In GIMPLE the indexes can be either NULL or matching i.
3268 Double check this so we won't get false
3269 positives for GENERIC. */
3271 && (TREE_CODE (c0
->index
) != INTEGER_CST
3272 || !compare_tree_int (c0
->index
, i
)))
3274 && (TREE_CODE (c1
->index
) != INTEGER_CST
3275 || !compare_tree_int (c1
->index
, i
))))
3287 #undef OP_SAME_WITH_NULL
3290 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3291 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3293 When in doubt, return 0. */
3296 operand_equal_for_comparison_p (tree arg0
, tree arg1
, tree other
)
3298 int unsignedp1
, unsignedpo
;
3299 tree primarg0
, primarg1
, primother
;
3300 unsigned int correct_width
;
3302 if (operand_equal_p (arg0
, arg1
, 0))
3305 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3306 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3309 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3310 and see if the inner values are the same. This removes any
3311 signedness comparison, which doesn't matter here. */
3312 primarg0
= arg0
, primarg1
= arg1
;
3313 STRIP_NOPS (primarg0
);
3314 STRIP_NOPS (primarg1
);
3315 if (operand_equal_p (primarg0
, primarg1
, 0))
3318 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3319 actual comparison operand, ARG0.
3321 First throw away any conversions to wider types
3322 already present in the operands. */
3324 primarg1
= get_narrower (arg1
, &unsignedp1
);
3325 primother
= get_narrower (other
, &unsignedpo
);
3327 correct_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
3328 if (unsignedp1
== unsignedpo
3329 && TYPE_PRECISION (TREE_TYPE (primarg1
)) < correct_width
3330 && TYPE_PRECISION (TREE_TYPE (primother
)) < correct_width
)
3332 tree type
= TREE_TYPE (arg0
);
3334 /* Make sure shorter operand is extended the right way
3335 to match the longer operand. */
3336 primarg1
= fold_convert (signed_or_unsigned_type_for
3337 (unsignedp1
, TREE_TYPE (primarg1
)), primarg1
);
3339 if (operand_equal_p (arg0
, fold_convert (type
, primarg1
), 0))
3346 /* See if ARG is an expression that is either a comparison or is performing
3347 arithmetic on comparisons. The comparisons must only be comparing
3348 two different values, which will be stored in *CVAL1 and *CVAL2; if
3349 they are nonzero it means that some operands have already been found.
3350 No variables may be used anywhere else in the expression except in the
3351 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3352 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3354 If this is true, return 1. Otherwise, return zero. */
3357 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
, int *save_p
)
3359 enum tree_code code
= TREE_CODE (arg
);
3360 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3362 /* We can handle some of the tcc_expression cases here. */
3363 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3365 else if (tclass
== tcc_expression
3366 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3367 || code
== COMPOUND_EXPR
))
3368 tclass
= tcc_binary
;
3370 else if (tclass
== tcc_expression
&& code
== SAVE_EXPR
3371 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg
, 0)))
3373 /* If we've already found a CVAL1 or CVAL2, this expression is
3374 two complex to handle. */
3375 if (*cval1
|| *cval2
)
3385 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
);
3388 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
, save_p
)
3389 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3390 cval1
, cval2
, save_p
));
3395 case tcc_expression
:
3396 if (code
== COND_EXPR
)
3397 return (twoval_comparison_p (TREE_OPERAND (arg
, 0),
3398 cval1
, cval2
, save_p
)
3399 && twoval_comparison_p (TREE_OPERAND (arg
, 1),
3400 cval1
, cval2
, save_p
)
3401 && twoval_comparison_p (TREE_OPERAND (arg
, 2),
3402 cval1
, cval2
, save_p
));
3405 case tcc_comparison
:
3406 /* First see if we can handle the first operand, then the second. For
3407 the second operand, we know *CVAL1 can't be zero. It must be that
3408 one side of the comparison is each of the values; test for the
3409 case where this isn't true by failing if the two operands
3412 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3413 TREE_OPERAND (arg
, 1), 0))
3417 *cval1
= TREE_OPERAND (arg
, 0);
3418 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3420 else if (*cval2
== 0)
3421 *cval2
= TREE_OPERAND (arg
, 0);
3422 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3427 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3429 else if (*cval2
== 0)
3430 *cval2
= TREE_OPERAND (arg
, 1);
3431 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3443 /* ARG is a tree that is known to contain just arithmetic operations and
3444 comparisons. Evaluate the operations in the tree substituting NEW0 for
3445 any occurrence of OLD0 as an operand of a comparison and likewise for
3449 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3450 tree old1
, tree new1
)
3452 tree type
= TREE_TYPE (arg
);
3453 enum tree_code code
= TREE_CODE (arg
);
3454 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3456 /* We can handle some of the tcc_expression cases here. */
3457 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3459 else if (tclass
== tcc_expression
3460 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3461 tclass
= tcc_binary
;
3466 return fold_build1_loc (loc
, code
, type
,
3467 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3468 old0
, new0
, old1
, new1
));
3471 return fold_build2_loc (loc
, code
, type
,
3472 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3473 old0
, new0
, old1
, new1
),
3474 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3475 old0
, new0
, old1
, new1
));
3477 case tcc_expression
:
3481 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3485 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3489 return fold_build3_loc (loc
, code
, type
,
3490 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3491 old0
, new0
, old1
, new1
),
3492 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3493 old0
, new0
, old1
, new1
),
3494 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3495 old0
, new0
, old1
, new1
));
3499 /* Fall through - ??? */
3501 case tcc_comparison
:
3503 tree arg0
= TREE_OPERAND (arg
, 0);
3504 tree arg1
= TREE_OPERAND (arg
, 1);
3506 /* We need to check both for exact equality and tree equality. The
3507 former will be true if the operand has a side-effect. In that
3508 case, we know the operand occurred exactly once. */
3510 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3512 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3515 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3517 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3520 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3528 /* Return a tree for the case when the result of an expression is RESULT
3529 converted to TYPE and OMITTED was previously an operand of the expression
3530 but is now not needed (e.g., we folded OMITTED * 0).
3532 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3533 the conversion of RESULT to TYPE. */
3536 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3538 tree t
= fold_convert_loc (loc
, type
, result
);
3540 /* If the resulting operand is an empty statement, just return the omitted
3541 statement casted to void. */
3542 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3543 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3544 fold_ignored_result (omitted
));
3546 if (TREE_SIDE_EFFECTS (omitted
))
3547 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3548 fold_ignored_result (omitted
), t
);
3550 return non_lvalue_loc (loc
, t
);
3553 /* Return a tree for the case when the result of an expression is RESULT
3554 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3555 of the expression but are now not needed.
3557 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3558 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3559 evaluated before OMITTED2. Otherwise, if neither has side effects,
3560 just do the conversion of RESULT to TYPE. */
3563 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3564 tree omitted1
, tree omitted2
)
3566 tree t
= fold_convert_loc (loc
, type
, result
);
3568 if (TREE_SIDE_EFFECTS (omitted2
))
3569 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3570 if (TREE_SIDE_EFFECTS (omitted1
))
3571 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3573 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3577 /* Return a simplified tree node for the truth-negation of ARG. This
3578 never alters ARG itself. We assume that ARG is an operation that
3579 returns a truth value (0 or 1).
3581 FIXME: one would think we would fold the result, but it causes
3582 problems with the dominator optimizer. */
3585 fold_truth_not_expr (location_t loc
, tree arg
)
3587 tree type
= TREE_TYPE (arg
);
3588 enum tree_code code
= TREE_CODE (arg
);
3589 location_t loc1
, loc2
;
3591 /* If this is a comparison, we can simply invert it, except for
3592 floating-point non-equality comparisons, in which case we just
3593 enclose a TRUTH_NOT_EXPR around what we have. */
3595 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3597 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3598 if (FLOAT_TYPE_P (op_type
)
3599 && flag_trapping_math
3600 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3601 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3604 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3605 if (code
== ERROR_MARK
)
3608 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3609 TREE_OPERAND (arg
, 1));
3610 if (TREE_NO_WARNING (arg
))
3611 TREE_NO_WARNING (ret
) = 1;
3618 return constant_boolean_node (integer_zerop (arg
), type
);
3620 case TRUTH_AND_EXPR
:
3621 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3622 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3623 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3624 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3625 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3628 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3629 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3630 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3631 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3632 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3634 case TRUTH_XOR_EXPR
:
3635 /* Here we can invert either operand. We invert the first operand
3636 unless the second operand is a TRUTH_NOT_EXPR in which case our
3637 result is the XOR of the first operand with the inside of the
3638 negation of the second operand. */
3640 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3641 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3642 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3644 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3645 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3646 TREE_OPERAND (arg
, 1));
3648 case TRUTH_ANDIF_EXPR
:
3649 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3650 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3651 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3652 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3653 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3655 case TRUTH_ORIF_EXPR
:
3656 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3657 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3658 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3659 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3660 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3662 case TRUTH_NOT_EXPR
:
3663 return TREE_OPERAND (arg
, 0);
3667 tree arg1
= TREE_OPERAND (arg
, 1);
3668 tree arg2
= TREE_OPERAND (arg
, 2);
3670 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3671 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3673 /* A COND_EXPR may have a throw as one operand, which
3674 then has void type. Just leave void operands
3676 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3677 VOID_TYPE_P (TREE_TYPE (arg1
))
3678 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3679 VOID_TYPE_P (TREE_TYPE (arg2
))
3680 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3684 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3685 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3686 TREE_OPERAND (arg
, 0),
3687 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3689 case NON_LVALUE_EXPR
:
3690 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3691 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3694 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3695 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3700 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3701 return build1_loc (loc
, TREE_CODE (arg
), type
,
3702 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3705 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3707 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3710 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3712 case CLEANUP_POINT_EXPR
:
3713 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3714 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3715 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3722 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3723 assume that ARG is an operation that returns a truth value (0 or 1
3724 for scalars, 0 or -1 for vectors). Return the folded expression if
3725 folding is successful. Otherwise, return NULL_TREE. */
3728 fold_invert_truthvalue (location_t loc
, tree arg
)
3730 tree type
= TREE_TYPE (arg
);
3731 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3737 /* Return a simplified tree node for the truth-negation of ARG. This
3738 never alters ARG itself. We assume that ARG is an operation that
3739 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3742 invert_truthvalue_loc (location_t loc
, tree arg
)
3744 if (TREE_CODE (arg
) == ERROR_MARK
)
3747 tree type
= TREE_TYPE (arg
);
3748 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3754 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3755 with code CODE. This optimization is unsafe. */
3757 distribute_real_division (location_t loc
, enum tree_code code
, tree type
,
3758 tree arg0
, tree arg1
)
3760 bool mul0
= TREE_CODE (arg0
) == MULT_EXPR
;
3761 bool mul1
= TREE_CODE (arg1
) == MULT_EXPR
;
3763 /* (A / C) +- (B / C) -> (A +- B) / C. */
3765 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3766 TREE_OPERAND (arg1
, 1), 0))
3767 return fold_build2_loc (loc
, mul0
? MULT_EXPR
: RDIV_EXPR
, type
,
3768 fold_build2_loc (loc
, code
, type
,
3769 TREE_OPERAND (arg0
, 0),
3770 TREE_OPERAND (arg1
, 0)),
3771 TREE_OPERAND (arg0
, 1));
3773 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3774 if (operand_equal_p (TREE_OPERAND (arg0
, 0),
3775 TREE_OPERAND (arg1
, 0), 0)
3776 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
3777 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == REAL_CST
)
3779 REAL_VALUE_TYPE r0
, r1
;
3780 r0
= TREE_REAL_CST (TREE_OPERAND (arg0
, 1));
3781 r1
= TREE_REAL_CST (TREE_OPERAND (arg1
, 1));
3783 real_arithmetic (&r0
, RDIV_EXPR
, &dconst1
, &r0
);
3785 real_arithmetic (&r1
, RDIV_EXPR
, &dconst1
, &r1
);
3786 real_arithmetic (&r0
, code
, &r0
, &r1
);
3787 return fold_build2_loc (loc
, MULT_EXPR
, type
,
3788 TREE_OPERAND (arg0
, 0),
3789 build_real (type
, r0
));
3795 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3796 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3797 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3798 is the original memory reference used to preserve the alias set of
3802 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3803 HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
3804 int unsignedp
, int reversep
)
3806 tree result
, bftype
;
3808 alias_set_type iset
= get_alias_set (orig_inner
);
3809 if (iset
== 0 && get_alias_set (inner
) != iset
)
3810 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
3811 build_fold_addr_expr (inner
),
3812 build_int_cst (ptr_type_node
, 0));
3814 if (bitpos
== 0 && !reversep
)
3816 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
3817 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
3818 || POINTER_TYPE_P (TREE_TYPE (inner
)))
3819 && tree_fits_shwi_p (size
)
3820 && tree_to_shwi (size
) == bitsize
)
3821 return fold_convert_loc (loc
, type
, inner
);
3825 if (TYPE_PRECISION (bftype
) != bitsize
3826 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
3827 bftype
= build_nonstandard_integer_type (bitsize
, 0);
3829 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
3830 size_int (bitsize
), bitsize_int (bitpos
));
3831 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
3834 result
= fold_convert_loc (loc
, type
, result
);
3839 /* Optimize a bit-field compare.
3841 There are two cases: First is a compare against a constant and the
3842 second is a comparison of two items where the fields are at the same
3843 bit position relative to the start of a chunk (byte, halfword, word)
3844 large enough to contain it. In these cases we can avoid the shift
3845 implicit in bitfield extractions.
3847 For constants, we emit a compare of the shifted constant with the
3848 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3849 compared. For two fields at the same position, we do the ANDs with the
3850 similar mask and compare the result of the ANDs.
3852 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3853 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3854 are the left and right operands of the comparison, respectively.
3856 If the optimization described above can be done, we return the resulting
3857 tree. Otherwise we return zero. */
3860 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
3861 tree compare_type
, tree lhs
, tree rhs
)
3863 HOST_WIDE_INT lbitpos
, lbitsize
, rbitpos
, rbitsize
, nbitpos
, nbitsize
;
3864 tree type
= TREE_TYPE (lhs
);
3866 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
3867 machine_mode lmode
, rmode
, nmode
;
3868 int lunsignedp
, runsignedp
;
3869 int lreversep
, rreversep
;
3870 int lvolatilep
= 0, rvolatilep
= 0;
3871 tree linner
, rinner
= NULL_TREE
;
3875 /* Get all the information about the extractions being done. If the bit size
3876 if the same as the size of the underlying object, we aren't doing an
3877 extraction at all and so can do nothing. We also don't want to
3878 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3879 then will no longer be able to replace it. */
3880 linner
= get_inner_reference (lhs
, &lbitsize
, &lbitpos
, &offset
, &lmode
,
3881 &lunsignedp
, &lreversep
, &lvolatilep
);
3882 if (linner
== lhs
|| lbitsize
== GET_MODE_BITSIZE (lmode
) || lbitsize
< 0
3883 || offset
!= 0 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
|| lvolatilep
)
3887 rreversep
= lreversep
;
3890 /* If this is not a constant, we can only do something if bit positions,
3891 sizes, signedness and storage order are the same. */
3893 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
3894 &runsignedp
, &rreversep
, &rvolatilep
);
3896 if (rinner
== rhs
|| lbitpos
!= rbitpos
|| lbitsize
!= rbitsize
3897 || lunsignedp
!= runsignedp
|| lreversep
!= rreversep
|| offset
!= 0
3898 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
|| rvolatilep
)
3902 /* Honor the C++ memory model and mimic what RTL expansion does. */
3903 unsigned HOST_WIDE_INT bitstart
= 0;
3904 unsigned HOST_WIDE_INT bitend
= 0;
3905 if (TREE_CODE (lhs
) == COMPONENT_REF
)
3907 get_bit_range (&bitstart
, &bitend
, lhs
, &lbitpos
, &offset
);
3908 if (offset
!= NULL_TREE
)
3912 /* See if we can find a mode to refer to this field. We should be able to,
3913 but fail if we can't. */
3914 nmode
= get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
3915 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
3916 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
3917 TYPE_ALIGN (TREE_TYPE (rinner
))),
3919 if (nmode
== VOIDmode
)
3922 /* Set signed and unsigned types of the precision of this mode for the
3924 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
3926 /* Compute the bit position and size for the new reference and our offset
3927 within it. If the new reference is the same size as the original, we
3928 won't optimize anything, so return zero. */
3929 nbitsize
= GET_MODE_BITSIZE (nmode
);
3930 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
3932 if (nbitsize
== lbitsize
)
3935 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
3936 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
3938 /* Make the mask to be used against the extracted field. */
3939 mask
= build_int_cst_type (unsigned_type
, -1);
3940 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
3941 mask
= const_binop (RSHIFT_EXPR
, mask
,
3942 size_int (nbitsize
- lbitsize
- lbitpos
));
3945 /* If not comparing with constant, just rework the comparison
3947 return fold_build2_loc (loc
, code
, compare_type
,
3948 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3949 make_bit_field_ref (loc
, linner
, lhs
,
3954 fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
3955 make_bit_field_ref (loc
, rinner
, rhs
,
3961 /* Otherwise, we are handling the constant case. See if the constant is too
3962 big for the field. Warn and return a tree for 0 (false) if so. We do
3963 this not only for its own sake, but to avoid having to test for this
3964 error case below. If we didn't, we might generate wrong code.
3966 For unsigned fields, the constant shifted right by the field length should
3967 be all zero. For signed fields, the high-order bits should agree with
3972 if (wi::lrshift (rhs
, lbitsize
) != 0)
3974 warning (0, "comparison is always %d due to width of bit-field",
3976 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3981 wide_int tem
= wi::arshift (rhs
, lbitsize
- 1);
3982 if (tem
!= 0 && tem
!= -1)
3984 warning (0, "comparison is always %d due to width of bit-field",
3986 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
3990 /* Single-bit compares should always be against zero. */
3991 if (lbitsize
== 1 && ! integer_zerop (rhs
))
3993 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
3994 rhs
= build_int_cst (type
, 0);
3997 /* Make a new bitfield reference, shift the constant over the
3998 appropriate number of bits and mask it with the computed mask
3999 (in case this was a signed field). If we changed it, make a new one. */
4000 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4001 nbitsize
, nbitpos
, 1, lreversep
);
4003 rhs
= const_binop (BIT_AND_EXPR
,
4004 const_binop (LSHIFT_EXPR
,
4005 fold_convert_loc (loc
, unsigned_type
, rhs
),
4006 size_int (lbitpos
)),
4009 lhs
= build2_loc (loc
, code
, compare_type
,
4010 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4014 /* Subroutine for fold_truth_andor_1: decode a field reference.
4016 If EXP is a comparison reference, we return the innermost reference.
4018 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4019 set to the starting bit number.
4021 If the innermost field can be completely contained in a mode-sized
4022 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4024 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4025 otherwise it is not changed.
4027 *PUNSIGNEDP is set to the signedness of the field.
4029 *PREVERSEP is set to the storage order of the field.
4031 *PMASK is set to the mask used. This is either contained in a
4032 BIT_AND_EXPR or derived from the width of the field.
4034 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4036 Return 0 if this is not a component reference or is one that we can't
4037 do anything with. */
4040 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4041 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4042 int *punsignedp
, int *preversep
, int *pvolatilep
,
4043 tree
*pmask
, tree
*pand_mask
)
4046 tree outer_type
= 0;
4048 tree mask
, inner
, offset
;
4050 unsigned int precision
;
4052 /* All the optimizations using this function assume integer fields.
4053 There are problems with FP fields since the type_for_size call
4054 below can fail for, e.g., XFmode. */
4055 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4058 /* We are interested in the bare arrangement of bits, so strip everything
4059 that doesn't affect the machine mode. However, record the type of the
4060 outermost expression if it may matter below. */
4061 if (CONVERT_EXPR_P (exp
)
4062 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4063 outer_type
= TREE_TYPE (exp
);
4066 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4068 and_mask
= TREE_OPERAND (exp
, 1);
4069 exp
= TREE_OPERAND (exp
, 0);
4070 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4071 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4075 inner
= get_inner_reference (exp
, pbitsize
, pbitpos
, &offset
, pmode
,
4076 punsignedp
, preversep
, pvolatilep
);
4077 if ((inner
== exp
&& and_mask
== 0)
4078 || *pbitsize
< 0 || offset
!= 0
4079 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
4084 /* If the number of bits in the reference is the same as the bitsize of
4085 the outer type, then the outer type gives the signedness. Otherwise
4086 (in case of a small bitfield) the signedness is unchanged. */
4087 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4088 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4090 /* Compute the mask to access the bitfield. */
4091 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4092 precision
= TYPE_PRECISION (unsigned_type
);
4094 mask
= build_int_cst_type (unsigned_type
, -1);
4096 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4097 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4099 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4101 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4102 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4105 *pand_mask
= and_mask
;
4109 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4110 bit positions and MASK is SIGNED. */
4113 all_ones_mask_p (const_tree mask
, unsigned int size
)
4115 tree type
= TREE_TYPE (mask
);
4116 unsigned int precision
= TYPE_PRECISION (type
);
4118 /* If this function returns true when the type of the mask is
4119 UNSIGNED, then there will be errors. In particular see
4120 gcc.c-torture/execute/990326-1.c. There does not appear to be
4121 any documentation paper trail as to why this is so. But the pre
4122 wide-int worked with that restriction and it has been preserved
4124 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4127 return wi::mask (size
, false, precision
) == mask
;
4130 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4131 represents the sign bit of EXP's type. If EXP represents a sign
4132 or zero extension, also test VAL against the unextended type.
4133 The return value is the (sub)expression whose sign bit is VAL,
4134 or NULL_TREE otherwise. */
4137 sign_bit_p (tree exp
, const_tree val
)
4142 /* Tree EXP must have an integral type. */
4143 t
= TREE_TYPE (exp
);
4144 if (! INTEGRAL_TYPE_P (t
))
4147 /* Tree VAL must be an integer constant. */
4148 if (TREE_CODE (val
) != INTEGER_CST
4149 || TREE_OVERFLOW (val
))
4152 width
= TYPE_PRECISION (t
);
4153 if (wi::only_sign_bit_p (val
, width
))
4156 /* Handle extension from a narrower type. */
4157 if (TREE_CODE (exp
) == NOP_EXPR
4158 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4159 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4164 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4165 to be evaluated unconditionally. */
4168 simple_operand_p (const_tree exp
)
4170 /* Strip any conversions that don't change the machine mode. */
4173 return (CONSTANT_CLASS_P (exp
)
4174 || TREE_CODE (exp
) == SSA_NAME
4176 && ! TREE_ADDRESSABLE (exp
)
4177 && ! TREE_THIS_VOLATILE (exp
)
4178 && ! DECL_NONLOCAL (exp
)
4179 /* Don't regard global variables as simple. They may be
4180 allocated in ways unknown to the compiler (shared memory,
4181 #pragma weak, etc). */
4182 && ! TREE_PUBLIC (exp
)
4183 && ! DECL_EXTERNAL (exp
)
4184 /* Weakrefs are not safe to be read, since they can be NULL.
4185 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4186 have DECL_WEAK flag set. */
4187 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4188 /* Loading a static variable is unduly expensive, but global
4189 registers aren't expensive. */
4190 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4193 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4194 to be evaluated unconditionally.
4195 I addition to simple_operand_p, we assume that comparisons, conversions,
4196 and logic-not operations are simple, if their operands are simple, too. */
4199 simple_operand_p_2 (tree exp
)
4201 enum tree_code code
;
4203 if (TREE_SIDE_EFFECTS (exp
)
4204 || tree_could_trap_p (exp
))
4207 while (CONVERT_EXPR_P (exp
))
4208 exp
= TREE_OPERAND (exp
, 0);
4210 code
= TREE_CODE (exp
);
4212 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4213 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4214 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4216 if (code
== TRUTH_NOT_EXPR
)
4217 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4219 return simple_operand_p (exp
);
4223 /* The following functions are subroutines to fold_range_test and allow it to
4224 try to change a logical combination of comparisons into a range test.
4227 X == 2 || X == 3 || X == 4 || X == 5
4231 (unsigned) (X - 2) <= 3
4233 We describe each set of comparisons as being either inside or outside
4234 a range, using a variable named like IN_P, and then describe the
4235 range with a lower and upper bound. If one of the bounds is omitted,
4236 it represents either the highest or lowest value of the type.
4238 In the comments below, we represent a range by two numbers in brackets
4239 preceded by a "+" to designate being inside that range, or a "-" to
4240 designate being outside that range, so the condition can be inverted by
4241 flipping the prefix. An omitted bound is represented by a "-". For
4242 example, "- [-, 10]" means being outside the range starting at the lowest
4243 possible value and ending at 10, in other words, being greater than 10.
4244 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4247 We set up things so that the missing bounds are handled in a consistent
4248 manner so neither a missing bound nor "true" and "false" need to be
4249 handled using a special case. */
4251 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4252 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4253 and UPPER1_P are nonzero if the respective argument is an upper bound
4254 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4255 must be specified for a comparison. ARG1 will be converted to ARG0's
4256 type if both are specified. */
4259 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4260 tree arg1
, int upper1_p
)
4266 /* If neither arg represents infinity, do the normal operation.
4267 Else, if not a comparison, return infinity. Else handle the special
4268 comparison rules. Note that most of the cases below won't occur, but
4269 are handled for consistency. */
4271 if (arg0
!= 0 && arg1
!= 0)
4273 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4274 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4276 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4279 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4282 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4283 for neither. In real maths, we cannot assume open ended ranges are
4284 the same. But, this is computer arithmetic, where numbers are finite.
4285 We can therefore make the transformation of any unbounded range with
4286 the value Z, Z being greater than any representable number. This permits
4287 us to treat unbounded ranges as equal. */
4288 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4289 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4293 result
= sgn0
== sgn1
;
4296 result
= sgn0
!= sgn1
;
4299 result
= sgn0
< sgn1
;
4302 result
= sgn0
<= sgn1
;
4305 result
= sgn0
> sgn1
;
4308 result
= sgn0
>= sgn1
;
4314 return constant_boolean_node (result
, type
);
4317 /* Helper routine for make_range. Perform one step for it, return
4318 new expression if the loop should continue or NULL_TREE if it should
4322 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4323 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4324 bool *strict_overflow_p
)
4326 tree arg0_type
= TREE_TYPE (arg0
);
4327 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4328 int in_p
= *p_in_p
, n_in_p
;
4332 case TRUTH_NOT_EXPR
:
4333 /* We can only do something if the range is testing for zero. */
4334 if (low
== NULL_TREE
|| high
== NULL_TREE
4335 || ! integer_zerop (low
) || ! integer_zerop (high
))
4340 case EQ_EXPR
: case NE_EXPR
:
4341 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4342 /* We can only do something if the range is testing for zero
4343 and if the second operand is an integer constant. Note that
4344 saying something is "in" the range we make is done by
4345 complementing IN_P since it will set in the initial case of
4346 being not equal to zero; "out" is leaving it alone. */
4347 if (low
== NULL_TREE
|| high
== NULL_TREE
4348 || ! integer_zerop (low
) || ! integer_zerop (high
)
4349 || TREE_CODE (arg1
) != INTEGER_CST
)
4354 case NE_EXPR
: /* - [c, c] */
4357 case EQ_EXPR
: /* + [c, c] */
4358 in_p
= ! in_p
, low
= high
= arg1
;
4360 case GT_EXPR
: /* - [-, c] */
4361 low
= 0, high
= arg1
;
4363 case GE_EXPR
: /* + [c, -] */
4364 in_p
= ! in_p
, low
= arg1
, high
= 0;
4366 case LT_EXPR
: /* - [c, -] */
4367 low
= arg1
, high
= 0;
4369 case LE_EXPR
: /* + [-, c] */
4370 in_p
= ! in_p
, low
= 0, high
= arg1
;
4376 /* If this is an unsigned comparison, we also know that EXP is
4377 greater than or equal to zero. We base the range tests we make
4378 on that fact, so we record it here so we can parse existing
4379 range tests. We test arg0_type since often the return type
4380 of, e.g. EQ_EXPR, is boolean. */
4381 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4383 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4385 build_int_cst (arg0_type
, 0),
4389 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4391 /* If the high bound is missing, but we have a nonzero low
4392 bound, reverse the range so it goes from zero to the low bound
4394 if (high
== 0 && low
&& ! integer_zerop (low
))
4397 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4398 build_int_cst (TREE_TYPE (low
), 1), 0);
4399 low
= build_int_cst (arg0_type
, 0);
4409 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4410 low and high are non-NULL, then normalize will DTRT. */
4411 if (!TYPE_UNSIGNED (arg0_type
)
4412 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4414 if (low
== NULL_TREE
)
4415 low
= TYPE_MIN_VALUE (arg0_type
);
4416 if (high
== NULL_TREE
)
4417 high
= TYPE_MAX_VALUE (arg0_type
);
4420 /* (-x) IN [a,b] -> x in [-b, -a] */
4421 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4422 build_int_cst (exp_type
, 0),
4424 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4425 build_int_cst (exp_type
, 0),
4427 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4433 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4434 build_int_cst (exp_type
, 1));
4438 if (TREE_CODE (arg1
) != INTEGER_CST
)
4441 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4442 move a constant to the other side. */
4443 if (!TYPE_UNSIGNED (arg0_type
)
4444 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4447 /* If EXP is signed, any overflow in the computation is undefined,
4448 so we don't worry about it so long as our computations on
4449 the bounds don't overflow. For unsigned, overflow is defined
4450 and this is exactly the right thing. */
4451 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4452 arg0_type
, low
, 0, arg1
, 0);
4453 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4454 arg0_type
, high
, 1, arg1
, 0);
4455 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4456 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4459 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4460 *strict_overflow_p
= true;
4463 /* Check for an unsigned range which has wrapped around the maximum
4464 value thus making n_high < n_low, and normalize it. */
4465 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4467 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4468 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4469 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4470 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4472 /* If the range is of the form +/- [ x+1, x ], we won't
4473 be able to normalize it. But then, it represents the
4474 whole range or the empty set, so make it
4476 if (tree_int_cst_equal (n_low
, low
)
4477 && tree_int_cst_equal (n_high
, high
))
4483 low
= n_low
, high
= n_high
;
4491 case NON_LVALUE_EXPR
:
4492 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4495 if (! INTEGRAL_TYPE_P (arg0_type
)
4496 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4497 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4500 n_low
= low
, n_high
= high
;
4503 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4506 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4508 /* If we're converting arg0 from an unsigned type, to exp,
4509 a signed type, we will be doing the comparison as unsigned.
4510 The tests above have already verified that LOW and HIGH
4513 So we have to ensure that we will handle large unsigned
4514 values the same way that the current signed bounds treat
4517 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4521 /* For fixed-point modes, we need to pass the saturating flag
4522 as the 2nd parameter. */
4523 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4525 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4526 TYPE_SATURATING (arg0_type
));
4529 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4531 /* A range without an upper bound is, naturally, unbounded.
4532 Since convert would have cropped a very large value, use
4533 the max value for the destination type. */
4535 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4536 : TYPE_MAX_VALUE (arg0_type
);
4538 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4539 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4540 fold_convert_loc (loc
, arg0_type
,
4542 build_int_cst (arg0_type
, 1));
4544 /* If the low bound is specified, "and" the range with the
4545 range for which the original unsigned value will be
4549 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4550 1, fold_convert_loc (loc
, arg0_type
,
4555 in_p
= (n_in_p
== in_p
);
4559 /* Otherwise, "or" the range with the range of the input
4560 that will be interpreted as negative. */
4561 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4562 1, fold_convert_loc (loc
, arg0_type
,
4567 in_p
= (in_p
!= n_in_p
);
4581 /* Given EXP, a logical expression, set the range it is testing into
4582 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4583 actually being tested. *PLOW and *PHIGH will be made of the same
4584 type as the returned expression. If EXP is not a comparison, we
4585 will most likely not be returning a useful value and range. Set
4586 *STRICT_OVERFLOW_P to true if the return value is only valid
4587 because signed overflow is undefined; otherwise, do not change
4588 *STRICT_OVERFLOW_P. */
4591 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4592 bool *strict_overflow_p
)
4594 enum tree_code code
;
4595 tree arg0
, arg1
= NULL_TREE
;
4596 tree exp_type
, nexp
;
4599 location_t loc
= EXPR_LOCATION (exp
);
4601 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4602 and see if we can refine the range. Some of the cases below may not
4603 happen, but it doesn't seem worth worrying about this. We "continue"
4604 the outer loop when we've changed something; otherwise we "break"
4605 the switch, which will "break" the while. */
4608 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4612 code
= TREE_CODE (exp
);
4613 exp_type
= TREE_TYPE (exp
);
4616 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4618 if (TREE_OPERAND_LENGTH (exp
) > 0)
4619 arg0
= TREE_OPERAND (exp
, 0);
4620 if (TREE_CODE_CLASS (code
) == tcc_binary
4621 || TREE_CODE_CLASS (code
) == tcc_comparison
4622 || (TREE_CODE_CLASS (code
) == tcc_expression
4623 && TREE_OPERAND_LENGTH (exp
) > 1))
4624 arg1
= TREE_OPERAND (exp
, 1);
4626 if (arg0
== NULL_TREE
)
4629 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4630 &high
, &in_p
, strict_overflow_p
);
4631 if (nexp
== NULL_TREE
)
4636 /* If EXP is a constant, we can evaluate whether this is true or false. */
4637 if (TREE_CODE (exp
) == INTEGER_CST
)
4639 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4641 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4647 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4651 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4652 type, TYPE, return an expression to test if EXP is in (or out of, depending
4653 on IN_P) the range. Return 0 if the test couldn't be created. */
4656 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4657 tree low
, tree high
)
4659 tree etype
= TREE_TYPE (exp
), value
;
4661 /* Disable this optimization for function pointer expressions
4662 on targets that require function pointer canonicalization. */
4663 if (targetm
.have_canonicalize_funcptr_for_compare ()
4664 && TREE_CODE (etype
) == POINTER_TYPE
4665 && TREE_CODE (TREE_TYPE (etype
)) == FUNCTION_TYPE
)
4670 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4672 return invert_truthvalue_loc (loc
, value
);
4677 if (low
== 0 && high
== 0)
4678 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4681 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4682 fold_convert_loc (loc
, etype
, high
));
4685 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4686 fold_convert_loc (loc
, etype
, low
));
4688 if (operand_equal_p (low
, high
, 0))
4689 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4690 fold_convert_loc (loc
, etype
, low
));
4692 if (integer_zerop (low
))
4694 if (! TYPE_UNSIGNED (etype
))
4696 etype
= unsigned_type_for (etype
);
4697 high
= fold_convert_loc (loc
, etype
, high
);
4698 exp
= fold_convert_loc (loc
, etype
, exp
);
4700 return build_range_check (loc
, type
, exp
, 1, 0, high
);
4703 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4704 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
4706 int prec
= TYPE_PRECISION (etype
);
4708 if (wi::mask (prec
- 1, false, prec
) == high
)
4710 if (TYPE_UNSIGNED (etype
))
4712 tree signed_etype
= signed_type_for (etype
);
4713 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
4715 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
4717 etype
= signed_etype
;
4718 exp
= fold_convert_loc (loc
, etype
, exp
);
4720 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
4721 build_int_cst (etype
, 0));
4725 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4726 This requires wrap-around arithmetics for the type of the expression.
4727 First make sure that arithmetics in this type is valid, then make sure
4728 that it wraps around. */
4729 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4730 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4731 TYPE_UNSIGNED (etype
));
4733 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4735 tree utype
, minv
, maxv
;
4737 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4738 for the type in question, as we rely on this here. */
4739 utype
= unsigned_type_for (etype
);
4740 maxv
= fold_convert_loc (loc
, utype
, TYPE_MAX_VALUE (etype
));
4741 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4742 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4743 minv
= fold_convert_loc (loc
, utype
, TYPE_MIN_VALUE (etype
));
4745 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4752 high
= fold_convert_loc (loc
, etype
, high
);
4753 low
= fold_convert_loc (loc
, etype
, low
);
4754 exp
= fold_convert_loc (loc
, etype
, exp
);
4756 value
= const_binop (MINUS_EXPR
, high
, low
);
4759 if (POINTER_TYPE_P (etype
))
4761 if (value
!= 0 && !TREE_OVERFLOW (value
))
4763 low
= fold_build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (low
), low
);
4764 return build_range_check (loc
, type
,
4765 fold_build_pointer_plus_loc (loc
, exp
, low
),
4766 1, build_int_cst (etype
, 0), value
);
4771 if (value
!= 0 && !TREE_OVERFLOW (value
))
4772 return build_range_check (loc
, type
,
4773 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
4774 1, build_int_cst (etype
, 0), value
);
4779 /* Return the predecessor of VAL in its type, handling the infinite case. */
4782 range_predecessor (tree val
)
4784 tree type
= TREE_TYPE (val
);
4786 if (INTEGRAL_TYPE_P (type
)
4787 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
4790 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
4791 build_int_cst (TREE_TYPE (val
), 1), 0);
4794 /* Return the successor of VAL in its type, handling the infinite case. */
4797 range_successor (tree val
)
4799 tree type
= TREE_TYPE (val
);
4801 if (INTEGRAL_TYPE_P (type
)
4802 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
4805 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
4806 build_int_cst (TREE_TYPE (val
), 1), 0);
4809 /* Given two ranges, see if we can merge them into one. Return 1 if we
4810 can, 0 if we can't. Set the output range into the specified parameters. */
4813 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
4814 tree high0
, int in1_p
, tree low1
, tree high1
)
4822 int lowequal
= ((low0
== 0 && low1
== 0)
4823 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4824 low0
, 0, low1
, 0)));
4825 int highequal
= ((high0
== 0 && high1
== 0)
4826 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4827 high0
, 1, high1
, 1)));
4829 /* Make range 0 be the range that starts first, or ends last if they
4830 start at the same value. Swap them if it isn't. */
4831 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4834 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
4835 high1
, 1, high0
, 1))))
4837 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
4838 tem
= low0
, low0
= low1
, low1
= tem
;
4839 tem
= high0
, high0
= high1
, high1
= tem
;
4842 /* Now flag two cases, whether the ranges are disjoint or whether the
4843 second range is totally subsumed in the first. Note that the tests
4844 below are simplified by the ones above. */
4845 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
4846 high0
, 1, low1
, 0));
4847 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4848 high1
, 1, high0
, 1));
4850 /* We now have four cases, depending on whether we are including or
4851 excluding the two ranges. */
4854 /* If they don't overlap, the result is false. If the second range
4855 is a subset it is the result. Otherwise, the range is from the start
4856 of the second to the end of the first. */
4858 in_p
= 0, low
= high
= 0;
4860 in_p
= 1, low
= low1
, high
= high1
;
4862 in_p
= 1, low
= low1
, high
= high0
;
4865 else if (in0_p
&& ! in1_p
)
4867 /* If they don't overlap, the result is the first range. If they are
4868 equal, the result is false. If the second range is a subset of the
4869 first, and the ranges begin at the same place, we go from just after
4870 the end of the second range to the end of the first. If the second
4871 range is not a subset of the first, or if it is a subset and both
4872 ranges end at the same place, the range starts at the start of the
4873 first range and ends just before the second range.
4874 Otherwise, we can't describe this as a single range. */
4876 in_p
= 1, low
= low0
, high
= high0
;
4877 else if (lowequal
&& highequal
)
4878 in_p
= 0, low
= high
= 0;
4879 else if (subset
&& lowequal
)
4881 low
= range_successor (high1
);
4886 /* We are in the weird situation where high0 > high1 but
4887 high1 has no successor. Punt. */
4891 else if (! subset
|| highequal
)
4894 high
= range_predecessor (low1
);
4898 /* low0 < low1 but low1 has no predecessor. Punt. */
4906 else if (! in0_p
&& in1_p
)
4908 /* If they don't overlap, the result is the second range. If the second
4909 is a subset of the first, the result is false. Otherwise,
4910 the range starts just after the first range and ends at the
4911 end of the second. */
4913 in_p
= 1, low
= low1
, high
= high1
;
4914 else if (subset
|| highequal
)
4915 in_p
= 0, low
= high
= 0;
4918 low
= range_successor (high0
);
4923 /* high1 > high0 but high0 has no successor. Punt. */
4931 /* The case where we are excluding both ranges. Here the complex case
4932 is if they don't overlap. In that case, the only time we have a
4933 range is if they are adjacent. If the second is a subset of the
4934 first, the result is the first. Otherwise, the range to exclude
4935 starts at the beginning of the first range and ends at the end of the
4939 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
4940 range_successor (high0
),
4942 in_p
= 0, low
= low0
, high
= high1
;
4945 /* Canonicalize - [min, x] into - [-, x]. */
4946 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
4947 switch (TREE_CODE (TREE_TYPE (low0
)))
4950 if (TYPE_PRECISION (TREE_TYPE (low0
))
4951 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0
))))
4955 if (tree_int_cst_equal (low0
,
4956 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
4960 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
4961 && integer_zerop (low0
))
4968 /* Canonicalize - [x, max] into - [x, -]. */
4969 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
4970 switch (TREE_CODE (TREE_TYPE (high1
)))
4973 if (TYPE_PRECISION (TREE_TYPE (high1
))
4974 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1
))))
4978 if (tree_int_cst_equal (high1
,
4979 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
4983 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
4984 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
4986 build_int_cst (TREE_TYPE (high1
), 1),
4994 /* The ranges might be also adjacent between the maximum and
4995 minimum values of the given type. For
4996 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4997 return + [x + 1, y - 1]. */
4998 if (low0
== 0 && high1
== 0)
5000 low
= range_successor (high0
);
5001 high
= range_predecessor (low1
);
5002 if (low
== 0 || high
== 0)
5012 in_p
= 0, low
= low0
, high
= high0
;
5014 in_p
= 0, low
= low0
, high
= high1
;
5017 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5022 /* Subroutine of fold, looking inside expressions of the form
5023 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5024 of the COND_EXPR. This function is being used also to optimize
5025 A op B ? C : A, by reversing the comparison first.
5027 Return a folded expression whose code is not a COND_EXPR
5028 anymore, or NULL_TREE if no folding opportunity is found. */
5031 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5032 tree arg0
, tree arg1
, tree arg2
)
5034 enum tree_code comp_code
= TREE_CODE (arg0
);
5035 tree arg00
= TREE_OPERAND (arg0
, 0);
5036 tree arg01
= TREE_OPERAND (arg0
, 1);
5037 tree arg1_type
= TREE_TYPE (arg1
);
5043 /* If we have A op 0 ? A : -A, consider applying the following
5046 A == 0? A : -A same as -A
5047 A != 0? A : -A same as A
5048 A >= 0? A : -A same as abs (A)
5049 A > 0? A : -A same as abs (A)
5050 A <= 0? A : -A same as -abs (A)
5051 A < 0? A : -A same as -abs (A)
5053 None of these transformations work for modes with signed
5054 zeros. If A is +/-0, the first two transformations will
5055 change the sign of the result (from +0 to -0, or vice
5056 versa). The last four will fix the sign of the result,
5057 even though the original expressions could be positive or
5058 negative, depending on the sign of A.
5060 Note that all these transformations are correct if A is
5061 NaN, since the two alternatives (A and -A) are also NaNs. */
5062 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5063 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5064 ? real_zerop (arg01
)
5065 : integer_zerop (arg01
))
5066 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5067 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5068 /* In the case that A is of the form X-Y, '-A' (arg2) may
5069 have already been folded to Y-X, check for that. */
5070 || (TREE_CODE (arg1
) == MINUS_EXPR
5071 && TREE_CODE (arg2
) == MINUS_EXPR
5072 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5073 TREE_OPERAND (arg2
, 1), 0)
5074 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5075 TREE_OPERAND (arg2
, 0), 0))))
5080 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5081 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5084 return fold_convert_loc (loc
, type
, arg1
);
5087 if (flag_trapping_math
)
5092 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5094 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5095 return fold_convert_loc (loc
, type
, tem
);
5098 if (flag_trapping_math
)
5103 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5105 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5106 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5108 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5112 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5113 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5114 both transformations are correct when A is NaN: A != 0
5115 is then true, and A == 0 is false. */
5117 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5118 && integer_zerop (arg01
) && integer_zerop (arg2
))
5120 if (comp_code
== NE_EXPR
)
5121 return fold_convert_loc (loc
, type
, arg1
);
5122 else if (comp_code
== EQ_EXPR
)
5123 return build_zero_cst (type
);
5126 /* Try some transformations of A op B ? A : B.
5128 A == B? A : B same as B
5129 A != B? A : B same as A
5130 A >= B? A : B same as max (A, B)
5131 A > B? A : B same as max (B, A)
5132 A <= B? A : B same as min (A, B)
5133 A < B? A : B same as min (B, A)
5135 As above, these transformations don't work in the presence
5136 of signed zeros. For example, if A and B are zeros of
5137 opposite sign, the first two transformations will change
5138 the sign of the result. In the last four, the original
5139 expressions give different results for (A=+0, B=-0) and
5140 (A=-0, B=+0), but the transformed expressions do not.
5142 The first two transformations are correct if either A or B
5143 is a NaN. In the first transformation, the condition will
5144 be false, and B will indeed be chosen. In the case of the
5145 second transformation, the condition A != B will be true,
5146 and A will be chosen.
5148 The conversions to max() and min() are not correct if B is
5149 a number and A is not. The conditions in the original
5150 expressions will be false, so all four give B. The min()
5151 and max() versions would give a NaN instead. */
5152 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5153 && operand_equal_for_comparison_p (arg01
, arg2
, arg00
)
5154 /* Avoid these transformations if the COND_EXPR may be used
5155 as an lvalue in the C++ front-end. PR c++/19199. */
5157 || VECTOR_TYPE_P (type
)
5158 || (! lang_GNU_CXX ()
5159 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5160 || ! maybe_lvalue_p (arg1
)
5161 || ! maybe_lvalue_p (arg2
)))
5163 tree comp_op0
= arg00
;
5164 tree comp_op1
= arg01
;
5165 tree comp_type
= TREE_TYPE (comp_op0
);
5170 return fold_convert_loc (loc
, type
, arg2
);
5172 return fold_convert_loc (loc
, type
, arg1
);
5177 /* In C++ a ?: expression can be an lvalue, so put the
5178 operand which will be used if they are equal first
5179 so that we can convert this back to the
5180 corresponding COND_EXPR. */
5181 if (!HONOR_NANS (arg1
))
5183 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5184 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5185 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5186 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5187 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5188 comp_op1
, comp_op0
);
5189 return fold_convert_loc (loc
, type
, tem
);
5196 if (!HONOR_NANS (arg1
))
5198 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5199 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5200 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5201 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5202 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5203 comp_op1
, comp_op0
);
5204 return fold_convert_loc (loc
, type
, tem
);
5208 if (!HONOR_NANS (arg1
))
5209 return fold_convert_loc (loc
, type
, arg2
);
5212 if (!HONOR_NANS (arg1
))
5213 return fold_convert_loc (loc
, type
, arg1
);
5216 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5221 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5222 we might still be able to simplify this. For example,
5223 if C1 is one less or one more than C2, this might have started
5224 out as a MIN or MAX and been transformed by this function.
5225 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5227 if (INTEGRAL_TYPE_P (type
)
5228 && TREE_CODE (arg01
) == INTEGER_CST
5229 && TREE_CODE (arg2
) == INTEGER_CST
)
5233 if (TREE_CODE (arg1
) == INTEGER_CST
)
5235 /* We can replace A with C1 in this case. */
5236 arg1
= fold_convert_loc (loc
, type
, arg01
);
5237 return fold_build3_loc (loc
, COND_EXPR
, type
, arg0
, arg1
, arg2
);
5240 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5241 MIN_EXPR, to preserve the signedness of the comparison. */
5242 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5244 && operand_equal_p (arg01
,
5245 const_binop (PLUS_EXPR
, arg2
,
5246 build_int_cst (type
, 1)),
5249 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5250 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5252 return fold_convert_loc (loc
, type
, tem
);
5257 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5259 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5261 && operand_equal_p (arg01
,
5262 const_binop (MINUS_EXPR
, arg2
,
5263 build_int_cst (type
, 1)),
5266 tem
= fold_build2_loc (loc
, MIN_EXPR
, TREE_TYPE (arg00
), arg00
,
5267 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5269 return fold_convert_loc (loc
, type
, tem
);
5274 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5275 MAX_EXPR, to preserve the signedness of the comparison. */
5276 if (! operand_equal_p (arg2
, TYPE_MIN_VALUE (type
),
5278 && operand_equal_p (arg01
,
5279 const_binop (MINUS_EXPR
, arg2
,
5280 build_int_cst (type
, 1)),
5283 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5284 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5286 return fold_convert_loc (loc
, type
, tem
);
5291 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5292 if (! operand_equal_p (arg2
, TYPE_MAX_VALUE (type
),
5294 && operand_equal_p (arg01
,
5295 const_binop (PLUS_EXPR
, arg2
,
5296 build_int_cst (type
, 1)),
5299 tem
= fold_build2_loc (loc
, MAX_EXPR
, TREE_TYPE (arg00
), arg00
,
5300 fold_convert_loc (loc
, TREE_TYPE (arg00
),
5302 return fold_convert_loc (loc
, type
, tem
);
5316 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5317 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5318 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5322 /* EXP is some logical combination of boolean tests. See if we can
5323 merge it into some range test. Return the new tree if so. */
5326 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5329 int or_op
= (code
== TRUTH_ORIF_EXPR
5330 || code
== TRUTH_OR_EXPR
);
5331 int in0_p
, in1_p
, in_p
;
5332 tree low0
, low1
, low
, high0
, high1
, high
;
5333 bool strict_overflow_p
= false;
5335 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5336 "when simplifying range test");
5338 if (!INTEGRAL_TYPE_P (type
))
5341 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5342 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5344 /* If this is an OR operation, invert both sides; we will invert
5345 again at the end. */
5347 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5349 /* If both expressions are the same, if we can merge the ranges, and we
5350 can build the range test, return it or it inverted. If one of the
5351 ranges is always true or always false, consider it to be the same
5352 expression as the other. */
5353 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5354 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5356 && 0 != (tem
= (build_range_check (loc
, type
,
5358 : rhs
!= 0 ? rhs
: integer_zero_node
,
5361 if (strict_overflow_p
)
5362 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5363 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5366 /* On machines where the branch cost is expensive, if this is a
5367 short-circuited branch and the underlying object on both sides
5368 is the same, make a non-short-circuit operation. */
5369 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5370 && lhs
!= 0 && rhs
!= 0
5371 && (code
== TRUTH_ANDIF_EXPR
5372 || code
== TRUTH_ORIF_EXPR
)
5373 && operand_equal_p (lhs
, rhs
, 0))
5375 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5376 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5377 which cases we can't do this. */
5378 if (simple_operand_p (lhs
))
5379 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5380 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5383 else if (!lang_hooks
.decls
.global_bindings_p ()
5384 && !CONTAINS_PLACEHOLDER_P (lhs
))
5386 tree common
= save_expr (lhs
);
5388 if (0 != (lhs
= build_range_check (loc
, type
, common
,
5389 or_op
? ! in0_p
: in0_p
,
5391 && (0 != (rhs
= build_range_check (loc
, type
, common
,
5392 or_op
? ! in1_p
: in1_p
,
5395 if (strict_overflow_p
)
5396 fold_overflow_warning (warnmsg
,
5397 WARN_STRICT_OVERFLOW_COMPARISON
);
5398 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5399 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5408 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5409 bit value. Arrange things so the extra bits will be set to zero if and
5410 only if C is signed-extended to its full width. If MASK is nonzero,
5411 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5414 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5416 tree type
= TREE_TYPE (c
);
5417 int modesize
= GET_MODE_BITSIZE (TYPE_MODE (type
));
5420 if (p
== modesize
|| unsignedp
)
5423 /* We work by getting just the sign bit into the low-order bit, then
5424 into the high-order bit, then sign-extend. We then XOR that value
5426 temp
= build_int_cst (TREE_TYPE (c
), wi::extract_uhwi (c
, p
- 1, 1));
5428 /* We must use a signed type in order to get an arithmetic right shift.
5429 However, we must also avoid introducing accidental overflows, so that
5430 a subsequent call to integer_zerop will work. Hence we must
5431 do the type conversion here. At this point, the constant is either
5432 zero or one, and the conversion to a signed type can never overflow.
5433 We could get an overflow if this conversion is done anywhere else. */
5434 if (TYPE_UNSIGNED (type
))
5435 temp
= fold_convert (signed_type_for (type
), temp
);
5437 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5438 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5440 temp
= const_binop (BIT_AND_EXPR
, temp
,
5441 fold_convert (TREE_TYPE (c
), mask
));
5442 /* If necessary, convert the type back to match the type of C. */
5443 if (TYPE_UNSIGNED (type
))
5444 temp
= fold_convert (type
, temp
);
5446 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5449 /* For an expression that has the form
5453 we can drop one of the inner expressions and simplify to
5457 LOC is the location of the resulting expression. OP is the inner
5458 logical operation; the left-hand side in the examples above, while CMPOP
5459 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5460 removing a condition that guards another, as in
5461 (A != NULL && A->...) || A == NULL
5462 which we must not transform. If RHS_ONLY is true, only eliminate the
5463 right-most operand of the inner logical operation. */
5466 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5469 tree type
= TREE_TYPE (cmpop
);
5470 enum tree_code code
= TREE_CODE (cmpop
);
5471 enum tree_code truthop_code
= TREE_CODE (op
);
5472 tree lhs
= TREE_OPERAND (op
, 0);
5473 tree rhs
= TREE_OPERAND (op
, 1);
5474 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5475 enum tree_code rhs_code
= TREE_CODE (rhs
);
5476 enum tree_code lhs_code
= TREE_CODE (lhs
);
5477 enum tree_code inv_code
;
5479 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5482 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5485 if (rhs_code
== truthop_code
)
5487 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5488 if (newrhs
!= NULL_TREE
)
5491 rhs_code
= TREE_CODE (rhs
);
5494 if (lhs_code
== truthop_code
&& !rhs_only
)
5496 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5497 if (newlhs
!= NULL_TREE
)
5500 lhs_code
= TREE_CODE (lhs
);
5504 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5505 if (inv_code
== rhs_code
5506 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5507 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5509 if (!rhs_only
&& inv_code
== lhs_code
5510 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5511 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5513 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5514 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5519 /* Find ways of folding logical expressions of LHS and RHS:
5520 Try to merge two comparisons to the same innermost item.
5521 Look for range tests like "ch >= '0' && ch <= '9'".
5522 Look for combinations of simple terms on machines with expensive branches
5523 and evaluate the RHS unconditionally.
5525 For example, if we have p->a == 2 && p->b == 4 and we can make an
5526 object large enough to span both A and B, we can do this with a comparison
5527 against the object ANDed with the a mask.
5529 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5530 operations to do this with one comparison.
5532 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5533 function and the one above.
5535 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5536 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5538 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5541 We return the simplified tree or 0 if no optimization is possible. */
5544 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5547 /* If this is the "or" of two comparisons, we can do something if
5548 the comparisons are NE_EXPR. If this is the "and", we can do something
5549 if the comparisons are EQ_EXPR. I.e.,
5550 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5552 WANTED_CODE is this operation code. For single bit fields, we can
5553 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5554 comparison for one-bit fields. */
5556 enum tree_code wanted_code
;
5557 enum tree_code lcode
, rcode
;
5558 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5559 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5560 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5561 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5562 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5563 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5564 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5565 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5566 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5567 machine_mode lnmode
, rnmode
;
5568 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5569 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5570 tree l_const
, r_const
;
5571 tree lntype
, rntype
, result
;
5572 HOST_WIDE_INT first_bit
, end_bit
;
5575 /* Start by getting the comparison codes. Fail if anything is volatile.
5576 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5577 it were surrounded with a NE_EXPR. */
5579 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5582 lcode
= TREE_CODE (lhs
);
5583 rcode
= TREE_CODE (rhs
);
5585 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5587 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5588 build_int_cst (TREE_TYPE (lhs
), 0));
5592 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5594 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5595 build_int_cst (TREE_TYPE (rhs
), 0));
5599 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5600 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5603 ll_arg
= TREE_OPERAND (lhs
, 0);
5604 lr_arg
= TREE_OPERAND (lhs
, 1);
5605 rl_arg
= TREE_OPERAND (rhs
, 0);
5606 rr_arg
= TREE_OPERAND (rhs
, 1);
5608 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5609 if (simple_operand_p (ll_arg
)
5610 && simple_operand_p (lr_arg
))
5612 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5613 && operand_equal_p (lr_arg
, rr_arg
, 0))
5615 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5616 truth_type
, ll_arg
, lr_arg
);
5620 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5621 && operand_equal_p (lr_arg
, rl_arg
, 0))
5623 result
= combine_comparisons (loc
, code
, lcode
,
5624 swap_tree_comparison (rcode
),
5625 truth_type
, ll_arg
, lr_arg
);
5631 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5632 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5634 /* If the RHS can be evaluated unconditionally and its operands are
5635 simple, it wins to evaluate the RHS unconditionally on machines
5636 with expensive branches. In this case, this isn't a comparison
5637 that can be merged. */
5639 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5641 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5642 && simple_operand_p (rl_arg
)
5643 && simple_operand_p (rr_arg
))
5645 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5646 if (code
== TRUTH_OR_EXPR
5647 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5648 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5649 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5650 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5651 return build2_loc (loc
, NE_EXPR
, truth_type
,
5652 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5654 build_int_cst (TREE_TYPE (ll_arg
), 0));
5656 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5657 if (code
== TRUTH_AND_EXPR
5658 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5659 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5660 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5661 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5662 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5663 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5665 build_int_cst (TREE_TYPE (ll_arg
), 0));
5668 /* See if the comparisons can be merged. Then get all the parameters for
5671 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5672 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5675 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5677 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5678 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5679 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5680 &ll_mask
, &ll_and_mask
);
5681 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5682 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5683 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5684 &lr_mask
, &lr_and_mask
);
5685 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5686 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5687 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5688 &rl_mask
, &rl_and_mask
);
5689 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5690 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5691 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5692 &rr_mask
, &rr_and_mask
);
5694 /* It must be true that the inner operation on the lhs of each
5695 comparison must be the same if we are to be able to do anything.
5696 Then see if we have constants. If not, the same must be true for
5699 || ll_reversep
!= rl_reversep
5700 || ll_inner
== 0 || rl_inner
== 0
5701 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5704 if (TREE_CODE (lr_arg
) == INTEGER_CST
5705 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5707 l_const
= lr_arg
, r_const
= rr_arg
;
5708 lr_reversep
= ll_reversep
;
5710 else if (lr_reversep
!= rr_reversep
5711 || lr_inner
== 0 || rr_inner
== 0
5712 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5715 l_const
= r_const
= 0;
5717 /* If either comparison code is not correct for our logical operation,
5718 fail. However, we can convert a one-bit comparison against zero into
5719 the opposite comparison against that bit being set in the field. */
5721 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5722 if (lcode
!= wanted_code
)
5724 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5726 /* Make the left operand unsigned, since we are only interested
5727 in the value of one bit. Otherwise we are doing the wrong
5736 /* This is analogous to the code for l_const above. */
5737 if (rcode
!= wanted_code
)
5739 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5748 /* See if we can find a mode that contains both fields being compared on
5749 the left. If we can't, fail. Otherwise, update all constants and masks
5750 to be relative to a field of that size. */
5751 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5752 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5753 lnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5754 TYPE_ALIGN (TREE_TYPE (ll_inner
)), word_mode
,
5756 if (lnmode
== VOIDmode
)
5759 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5760 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5761 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5762 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5764 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5766 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5767 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5770 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5771 size_int (xll_bitpos
));
5772 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5773 size_int (xrl_bitpos
));
5777 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5778 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5779 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
5780 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
5781 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5784 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5786 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5791 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
5792 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
5793 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
5794 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
5795 fold_build1_loc (loc
, BIT_NOT_EXPR
,
5798 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
5800 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
5804 /* If the right sides are not constant, do the same for it. Also,
5805 disallow this optimization if a size or signedness mismatch occurs
5806 between the left and right sides. */
5809 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
5810 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
5811 /* Make sure the two fields on the right
5812 correspond to the left without being swapped. */
5813 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
5816 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
5817 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
5818 rnmode
= get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5819 TYPE_ALIGN (TREE_TYPE (lr_inner
)), word_mode
,
5821 if (rnmode
== VOIDmode
)
5824 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
5825 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
5826 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
5827 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
5829 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5831 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
5832 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
5835 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5837 size_int (xlr_bitpos
));
5838 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
5840 size_int (xrr_bitpos
));
5842 /* Make a mask that corresponds to both fields being compared.
5843 Do this for both items being compared. If the operands are the
5844 same size and the bits being compared are in the same position
5845 then we can do this by masking both and comparing the masked
5847 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5848 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
5849 if (lnbitsize
== rnbitsize
&& xll_bitpos
== xlr_bitpos
)
5851 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5852 lntype
, lnbitsize
, lnbitpos
,
5853 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5854 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5855 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
5857 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
5858 rntype
, rnbitsize
, rnbitpos
,
5859 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
5860 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
5861 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
5863 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5866 /* There is still another way we can do something: If both pairs of
5867 fields being compared are adjacent, we may be able to make a wider
5868 field containing them both.
5870 Note that we still must mask the lhs/rhs expressions. Furthermore,
5871 the mask must be shifted to account for the shift done by
5872 make_bit_field_ref. */
5873 if ((ll_bitsize
+ ll_bitpos
== rl_bitpos
5874 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
5875 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
5876 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
5880 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
5881 ll_bitsize
+ rl_bitsize
,
5882 MIN (ll_bitpos
, rl_bitpos
),
5883 ll_unsignedp
, ll_reversep
);
5884 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
5885 lr_bitsize
+ rr_bitsize
,
5886 MIN (lr_bitpos
, rr_bitpos
),
5887 lr_unsignedp
, lr_reversep
);
5889 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
5890 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
5891 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
5892 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
5894 /* Convert to the smaller type before masking out unwanted bits. */
5896 if (lntype
!= rntype
)
5898 if (lnbitsize
> rnbitsize
)
5900 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
5901 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
5904 else if (lnbitsize
< rnbitsize
)
5906 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
5907 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
5912 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
5913 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
5915 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
5916 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
5918 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
5924 /* Handle the case of comparisons with constants. If there is something in
5925 common between the masks, those bits of the constants must be the same.
5926 If not, the condition is always false. Test for this to avoid generating
5927 incorrect code below. */
5928 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
5929 if (! integer_zerop (result
)
5930 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
5931 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
5933 if (wanted_code
== NE_EXPR
)
5935 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5936 return constant_boolean_node (true, truth_type
);
5940 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5941 return constant_boolean_node (false, truth_type
);
5945 /* Construct the expression we will return. First get the component
5946 reference we will make. Unless the mask is all ones the width of
5947 that field, perform the mask operation. Then compare with the
5949 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
5950 lntype
, lnbitsize
, lnbitpos
,
5951 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
5953 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
5954 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
5955 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
5957 return build2_loc (loc
, wanted_code
, truth_type
, result
,
5958 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
5961 /* T is an integer expression that is being multiplied, divided, or taken a
5962 modulus (CODE says which and what kind of divide or modulus) by a
5963 constant C. See if we can eliminate that operation by folding it with
5964 other operations already in T. WIDE_TYPE, if non-null, is a type that
5965 should be used for the computation if wider than our type.
5967 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5968 (X * 2) + (Y * 4). We must, however, be assured that either the original
5969 expression would not overflow or that overflow is undefined for the type
5970 in the language in question.
5972 If we return a non-null expression, it is an equivalent form of the
5973 original computation, but need not be in the original type.
5975 We set *STRICT_OVERFLOW_P to true if the return values depends on
5976 signed overflow being undefined. Otherwise we do not change
5977 *STRICT_OVERFLOW_P. */
5980 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
5981 bool *strict_overflow_p
)
5983 /* To avoid exponential search depth, refuse to allow recursion past
5984 three levels. Beyond that (1) it's highly unlikely that we'll find
5985 something interesting and (2) we've probably processed it before
5986 when we built the inner expression. */
5995 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6002 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6003 bool *strict_overflow_p
)
6005 tree type
= TREE_TYPE (t
);
6006 enum tree_code tcode
= TREE_CODE (t
);
6007 tree ctype
= (wide_type
!= 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type
))
6008 > GET_MODE_SIZE (TYPE_MODE (type
)))
6009 ? wide_type
: type
);
6011 int same_p
= tcode
== code
;
6012 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6013 bool sub_strict_overflow_p
;
6015 /* Don't deal with constants of zero here; they confuse the code below. */
6016 if (integer_zerop (c
))
6019 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6020 op0
= TREE_OPERAND (t
, 0);
6022 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6023 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6025 /* Note that we need not handle conditional operations here since fold
6026 already handles those cases. So just do arithmetic here. */
6030 /* For a constant, we can always simplify if we are a multiply
6031 or (for divide and modulus) if it is a multiple of our constant. */
6032 if (code
== MULT_EXPR
6033 || wi::multiple_of_p (t
, c
, TYPE_SIGN (type
)))
6035 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6036 fold_convert (ctype
, c
));
6037 /* If the multiplication overflowed, we lost information on it.
6038 See PR68142 and PR69845. */
6039 if (TREE_OVERFLOW (tem
))
6045 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6046 /* If op0 is an expression ... */
6047 if ((COMPARISON_CLASS_P (op0
)
6048 || UNARY_CLASS_P (op0
)
6049 || BINARY_CLASS_P (op0
)
6050 || VL_EXP_CLASS_P (op0
)
6051 || EXPRESSION_CLASS_P (op0
))
6052 /* ... and has wrapping overflow, and its type is smaller
6053 than ctype, then we cannot pass through as widening. */
6054 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6055 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6056 && (TYPE_PRECISION (ctype
)
6057 > TYPE_PRECISION (TREE_TYPE (op0
))))
6058 /* ... or this is a truncation (t is narrower than op0),
6059 then we cannot pass through this narrowing. */
6060 || (TYPE_PRECISION (type
)
6061 < TYPE_PRECISION (TREE_TYPE (op0
)))
6062 /* ... or signedness changes for division or modulus,
6063 then we cannot pass through this conversion. */
6064 || (code
!= MULT_EXPR
6065 && (TYPE_UNSIGNED (ctype
)
6066 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6067 /* ... or has undefined overflow while the converted to
6068 type has not, we cannot do the operation in the inner type
6069 as that would introduce undefined overflow. */
6070 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6071 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6072 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6075 /* Pass the constant down and see if we can make a simplification. If
6076 we can, replace this expression with the inner simplification for
6077 possible later conversion to our or some other type. */
6078 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6079 && TREE_CODE (t2
) == INTEGER_CST
6080 && !TREE_OVERFLOW (t2
)
6081 && (0 != (t1
= extract_muldiv (op0
, t2
, code
,
6083 ? ctype
: NULL_TREE
,
6084 strict_overflow_p
))))
6089 /* If widening the type changes it from signed to unsigned, then we
6090 must avoid building ABS_EXPR itself as unsigned. */
6091 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6093 tree cstype
= (*signed_type_for
) (ctype
);
6094 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6097 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6098 return fold_convert (ctype
, t1
);
6102 /* If the constant is negative, we cannot simplify this. */
6103 if (tree_int_cst_sgn (c
) == -1)
6107 /* For division and modulus, type can't be unsigned, as e.g.
6108 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6109 For signed types, even with wrapping overflow, this is fine. */
6110 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6112 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6114 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6117 case MIN_EXPR
: case MAX_EXPR
:
6118 /* If widening the type changes the signedness, then we can't perform
6119 this optimization as that changes the result. */
6120 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6123 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6124 sub_strict_overflow_p
= false;
6125 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6126 &sub_strict_overflow_p
)) != 0
6127 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6128 &sub_strict_overflow_p
)) != 0)
6130 if (tree_int_cst_sgn (c
) < 0)
6131 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6132 if (sub_strict_overflow_p
)
6133 *strict_overflow_p
= true;
6134 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6135 fold_convert (ctype
, t2
));
6139 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6140 /* If the second operand is constant, this is a multiplication
6141 or floor division, by a power of two, so we can treat it that
6142 way unless the multiplier or divisor overflows. Signed
6143 left-shift overflow is implementation-defined rather than
6144 undefined in C90, so do not convert signed left shift into
6146 if (TREE_CODE (op1
) == INTEGER_CST
6147 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6148 /* const_binop may not detect overflow correctly,
6149 so check for it explicitly here. */
6150 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
6151 && 0 != (t1
= fold_convert (ctype
,
6152 const_binop (LSHIFT_EXPR
,
6155 && !TREE_OVERFLOW (t1
))
6156 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6157 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6159 fold_convert (ctype
, op0
),
6161 c
, code
, wide_type
, strict_overflow_p
);
6164 case PLUS_EXPR
: case MINUS_EXPR
:
6165 /* See if we can eliminate the operation on both sides. If we can, we
6166 can return a new PLUS or MINUS. If we can't, the only remaining
6167 cases where we can do anything are if the second operand is a
6169 sub_strict_overflow_p
= false;
6170 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6171 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6172 if (t1
!= 0 && t2
!= 0
6173 && (code
== MULT_EXPR
6174 /* If not multiplication, we can only do this if both operands
6175 are divisible by c. */
6176 || (multiple_of_p (ctype
, op0
, c
)
6177 && multiple_of_p (ctype
, op1
, c
))))
6179 if (sub_strict_overflow_p
)
6180 *strict_overflow_p
= true;
6181 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6182 fold_convert (ctype
, t2
));
6185 /* If this was a subtraction, negate OP1 and set it to be an addition.
6186 This simplifies the logic below. */
6187 if (tcode
== MINUS_EXPR
)
6189 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6190 /* If OP1 was not easily negatable, the constant may be OP0. */
6191 if (TREE_CODE (op0
) == INTEGER_CST
)
6193 std::swap (op0
, op1
);
6198 if (TREE_CODE (op1
) != INTEGER_CST
)
6201 /* If either OP1 or C are negative, this optimization is not safe for
6202 some of the division and remainder types while for others we need
6203 to change the code. */
6204 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6206 if (code
== CEIL_DIV_EXPR
)
6207 code
= FLOOR_DIV_EXPR
;
6208 else if (code
== FLOOR_DIV_EXPR
)
6209 code
= CEIL_DIV_EXPR
;
6210 else if (code
!= MULT_EXPR
6211 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6215 /* If it's a multiply or a division/modulus operation of a multiple
6216 of our constant, do the operation and verify it doesn't overflow. */
6217 if (code
== MULT_EXPR
6218 || wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6220 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6221 fold_convert (ctype
, c
));
6222 /* We allow the constant to overflow with wrapping semantics. */
6224 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6230 /* If we have an unsigned type, we cannot widen the operation since it
6231 will change the result if the original computation overflowed. */
6232 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6235 /* If we were able to eliminate our operation from the first side,
6236 apply our operation to the second side and reform the PLUS. */
6237 if (t1
!= 0 && (TREE_CODE (t1
) != code
|| code
== MULT_EXPR
))
6238 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
), op1
);
6240 /* The last case is if we are a multiply. In that case, we can
6241 apply the distributive law to commute the multiply and addition
6242 if the multiplication of the constants doesn't overflow
6243 and overflow is defined. With undefined overflow
6244 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6245 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6246 return fold_build2 (tcode
, ctype
,
6247 fold_build2 (code
, ctype
,
6248 fold_convert (ctype
, op0
),
6249 fold_convert (ctype
, c
)),
6255 /* We have a special case here if we are doing something like
6256 (C * 8) % 4 since we know that's zero. */
6257 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6258 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6259 /* If the multiplication can overflow we cannot optimize this. */
6260 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6261 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6262 && wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6264 *strict_overflow_p
= true;
6265 return omit_one_operand (type
, integer_zero_node
, op0
);
6268 /* ... fall through ... */
6270 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6271 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6272 /* If we can extract our operation from the LHS, do so and return a
6273 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6274 do something only if the second operand is a constant. */
6276 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6277 strict_overflow_p
)) != 0)
6278 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6279 fold_convert (ctype
, op1
));
6280 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6281 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6282 strict_overflow_p
)) != 0)
6283 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6284 fold_convert (ctype
, t1
));
6285 else if (TREE_CODE (op1
) != INTEGER_CST
)
6288 /* If these are the same operation types, we can associate them
6289 assuming no overflow. */
6292 bool overflow_p
= false;
6293 bool overflow_mul_p
;
6294 signop sign
= TYPE_SIGN (ctype
);
6295 unsigned prec
= TYPE_PRECISION (ctype
);
6296 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6297 wi::to_wide (c
, prec
),
6298 sign
, &overflow_mul_p
);
6299 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6301 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6304 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6305 wide_int_to_tree (ctype
, mul
));
6308 /* If these operations "cancel" each other, we have the main
6309 optimizations of this pass, which occur when either constant is a
6310 multiple of the other, in which case we replace this with either an
6311 operation or CODE or TCODE.
6313 If we have an unsigned type, we cannot do this since it will change
6314 the result if the original computation overflowed. */
6315 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6316 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6317 || (tcode
== MULT_EXPR
6318 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6319 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6320 && code
!= MULT_EXPR
)))
6322 if (wi::multiple_of_p (op1
, c
, TYPE_SIGN (type
)))
6324 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6325 *strict_overflow_p
= true;
6326 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6327 fold_convert (ctype
,
6328 const_binop (TRUNC_DIV_EXPR
,
6331 else if (wi::multiple_of_p (c
, op1
, TYPE_SIGN (type
)))
6333 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6334 *strict_overflow_p
= true;
6335 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6336 fold_convert (ctype
,
6337 const_binop (TRUNC_DIV_EXPR
,
6350 /* Return a node which has the indicated constant VALUE (either 0 or
6351 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6352 and is of the indicated TYPE. */
6355 constant_boolean_node (bool value
, tree type
)
6357 if (type
== integer_type_node
)
6358 return value
? integer_one_node
: integer_zero_node
;
6359 else if (type
== boolean_type_node
)
6360 return value
? boolean_true_node
: boolean_false_node
;
6361 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6362 return build_vector_from_val (type
,
6363 build_int_cst (TREE_TYPE (type
),
6366 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6370 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6371 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6372 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6373 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6374 COND is the first argument to CODE; otherwise (as in the example
6375 given here), it is the second argument. TYPE is the type of the
6376 original expression. Return NULL_TREE if no simplification is
6380 fold_binary_op_with_conditional_arg (location_t loc
,
6381 enum tree_code code
,
6382 tree type
, tree op0
, tree op1
,
6383 tree cond
, tree arg
, int cond_first_p
)
6385 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6386 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6387 tree test
, true_value
, false_value
;
6388 tree lhs
= NULL_TREE
;
6389 tree rhs
= NULL_TREE
;
6390 enum tree_code cond_code
= COND_EXPR
;
6392 if (TREE_CODE (cond
) == COND_EXPR
6393 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6395 test
= TREE_OPERAND (cond
, 0);
6396 true_value
= TREE_OPERAND (cond
, 1);
6397 false_value
= TREE_OPERAND (cond
, 2);
6398 /* If this operand throws an expression, then it does not make
6399 sense to try to perform a logical or arithmetic operation
6401 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6403 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6406 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6407 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6409 tree testtype
= TREE_TYPE (cond
);
6411 true_value
= constant_boolean_node (true, testtype
);
6412 false_value
= constant_boolean_node (false, testtype
);
6415 /* Detect the case of mixing vector and scalar types - bail out. */
6418 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6419 cond_code
= VEC_COND_EXPR
;
6421 /* This transformation is only worthwhile if we don't have to wrap ARG
6422 in a SAVE_EXPR and the operation can be simplified without recursing
6423 on at least one of the branches once its pushed inside the COND_EXPR. */
6424 if (!TREE_CONSTANT (arg
)
6425 && (TREE_SIDE_EFFECTS (arg
)
6426 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6427 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6430 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6433 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6435 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6437 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6441 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6443 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6445 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6448 /* Check that we have simplified at least one of the branches. */
6449 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6452 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6456 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6458 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6459 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6460 ADDEND is the same as X.
6462 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6463 and finite. The problematic cases are when X is zero, and its mode
6464 has signed zeros. In the case of rounding towards -infinity,
6465 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6466 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6469 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6471 if (!real_zerop (addend
))
6474 /* Don't allow the fold with -fsignaling-nans. */
6475 if (HONOR_SNANS (element_mode (type
)))
6478 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6479 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6482 /* In a vector or complex, we would need to check the sign of all zeros. */
6483 if (TREE_CODE (addend
) != REAL_CST
)
6486 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6487 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6490 /* The mode has signed zeros, and we have to honor their sign.
6491 In this situation, there is only one case we can return true for.
6492 X - 0 is the same as X unless rounding towards -infinity is
6494 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6497 /* Subroutine of fold() that optimizes comparisons of a division by
6498 a nonzero integer constant against an integer constant, i.e.
6501 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6502 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6503 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6505 The function returns the constant folded tree if a simplification
6506 can be made, and NULL_TREE otherwise. */
6509 fold_div_compare (location_t loc
,
6510 enum tree_code code
, tree type
, tree arg0
, tree arg1
)
6512 tree prod
, tmp
, hi
, lo
;
6513 tree arg00
= TREE_OPERAND (arg0
, 0);
6514 tree arg01
= TREE_OPERAND (arg0
, 1);
6515 signop sign
= TYPE_SIGN (TREE_TYPE (arg0
));
6516 bool neg_overflow
= false;
6519 /* We have to do this the hard way to detect unsigned overflow.
6520 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6521 wide_int val
= wi::mul (arg01
, arg1
, sign
, &overflow
);
6522 prod
= force_fit_type (TREE_TYPE (arg00
), val
, -1, overflow
);
6523 neg_overflow
= false;
6525 if (sign
== UNSIGNED
)
6527 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6528 build_int_cst (TREE_TYPE (arg01
), 1));
6531 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6532 val
= wi::add (prod
, tmp
, sign
, &overflow
);
6533 hi
= force_fit_type (TREE_TYPE (arg00
), val
,
6534 -1, overflow
| TREE_OVERFLOW (prod
));
6536 else if (tree_int_cst_sgn (arg01
) >= 0)
6538 tmp
= int_const_binop (MINUS_EXPR
, arg01
,
6539 build_int_cst (TREE_TYPE (arg01
), 1));
6540 switch (tree_int_cst_sgn (arg1
))
6543 neg_overflow
= true;
6544 lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6549 lo
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6554 hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6564 /* A negative divisor reverses the relational operators. */
6565 code
= swap_tree_comparison (code
);
6567 tmp
= int_const_binop (PLUS_EXPR
, arg01
,
6568 build_int_cst (TREE_TYPE (arg01
), 1));
6569 switch (tree_int_cst_sgn (arg1
))
6572 hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6577 hi
= fold_negate_const (tmp
, TREE_TYPE (arg0
));
6582 neg_overflow
= true;
6583 lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6595 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6596 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg00
);
6597 if (TREE_OVERFLOW (hi
))
6598 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6599 if (TREE_OVERFLOW (lo
))
6600 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6601 return build_range_check (loc
, type
, arg00
, 1, lo
, hi
);
6604 if (TREE_OVERFLOW (lo
) && TREE_OVERFLOW (hi
))
6605 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg00
);
6606 if (TREE_OVERFLOW (hi
))
6607 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6608 if (TREE_OVERFLOW (lo
))
6609 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6610 return build_range_check (loc
, type
, arg00
, 0, lo
, hi
);
6613 if (TREE_OVERFLOW (lo
))
6615 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6616 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6618 return fold_build2_loc (loc
, LT_EXPR
, type
, arg00
, lo
);
6621 if (TREE_OVERFLOW (hi
))
6623 tmp
= neg_overflow
? integer_zero_node
: integer_one_node
;
6624 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6626 return fold_build2_loc (loc
, LE_EXPR
, type
, arg00
, hi
);
6629 if (TREE_OVERFLOW (hi
))
6631 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6632 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6634 return fold_build2_loc (loc
, GT_EXPR
, type
, arg00
, hi
);
6637 if (TREE_OVERFLOW (lo
))
6639 tmp
= neg_overflow
? integer_one_node
: integer_zero_node
;
6640 return omit_one_operand_loc (loc
, type
, tmp
, arg00
);
6642 return fold_build2_loc (loc
, GE_EXPR
, type
, arg00
, lo
);
6652 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6653 equality/inequality test, then return a simplified form of the test
6654 using a sign testing. Otherwise return NULL. TYPE is the desired
6658 fold_single_bit_test_into_sign_test (location_t loc
,
6659 enum tree_code code
, tree arg0
, tree arg1
,
6662 /* If this is testing a single bit, we can optimize the test. */
6663 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6664 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6665 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6667 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6668 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6669 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6671 if (arg00
!= NULL_TREE
6672 /* This is only a win if casting to a signed type is cheap,
6673 i.e. when arg00's type is not a partial mode. */
6674 && TYPE_PRECISION (TREE_TYPE (arg00
))
6675 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00
))))
6677 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6678 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6680 fold_convert_loc (loc
, stype
, arg00
),
6681 build_int_cst (stype
, 0));
6688 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6689 equality/inequality test, then return a simplified form of
6690 the test using shifts and logical operations. Otherwise return
6691 NULL. TYPE is the desired result type. */
6694 fold_single_bit_test (location_t loc
, enum tree_code code
,
6695 tree arg0
, tree arg1
, tree result_type
)
6697 /* If this is testing a single bit, we can optimize the test. */
6698 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6699 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6700 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6702 tree inner
= TREE_OPERAND (arg0
, 0);
6703 tree type
= TREE_TYPE (arg0
);
6704 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6705 machine_mode operand_mode
= TYPE_MODE (type
);
6707 tree signed_type
, unsigned_type
, intermediate_type
;
6710 /* First, see if we can fold the single bit test into a sign-bit
6712 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6717 /* Otherwise we have (A & C) != 0 where C is a single bit,
6718 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6719 Similarly for (A & C) == 0. */
6721 /* If INNER is a right shift of a constant and it plus BITNUM does
6722 not overflow, adjust BITNUM and INNER. */
6723 if (TREE_CODE (inner
) == RSHIFT_EXPR
6724 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6725 && bitnum
< TYPE_PRECISION (type
)
6726 && wi::ltu_p (TREE_OPERAND (inner
, 1),
6727 TYPE_PRECISION (type
) - bitnum
))
6729 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6730 inner
= TREE_OPERAND (inner
, 0);
6733 /* If we are going to be able to omit the AND below, we must do our
6734 operations as unsigned. If we must use the AND, we have a choice.
6735 Normally unsigned is faster, but for some machines signed is. */
6736 ops_unsigned
= (LOAD_EXTEND_OP (operand_mode
) == SIGN_EXTEND
6737 && !flag_syntax_only
) ? 0 : 1;
6739 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6740 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6741 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6742 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6745 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6746 inner
, size_int (bitnum
));
6748 one
= build_int_cst (intermediate_type
, 1);
6750 if (code
== EQ_EXPR
)
6751 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6753 /* Put the AND last so it can combine with more things. */
6754 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6756 /* Make sure to return the proper type. */
6757 inner
= fold_convert_loc (loc
, result_type
, inner
);
6764 /* Check whether we are allowed to reorder operands arg0 and arg1,
6765 such that the evaluation of arg1 occurs before arg0. */
6768 reorder_operands_p (const_tree arg0
, const_tree arg1
)
6770 if (! flag_evaluation_order
)
6772 if (TREE_CONSTANT (arg0
) || TREE_CONSTANT (arg1
))
6774 return ! TREE_SIDE_EFFECTS (arg0
)
6775 && ! TREE_SIDE_EFFECTS (arg1
);
6778 /* Test whether it is preferable two swap two operands, ARG0 and
6779 ARG1, for example because ARG0 is an integer constant and ARG1
6780 isn't. If REORDER is true, only recommend swapping if we can
6781 evaluate the operands in reverse order. */
6784 tree_swap_operands_p (const_tree arg0
, const_tree arg1
, bool reorder
)
6786 if (CONSTANT_CLASS_P (arg1
))
6788 if (CONSTANT_CLASS_P (arg0
))
6794 if (TREE_CONSTANT (arg1
))
6796 if (TREE_CONSTANT (arg0
))
6799 if (reorder
&& flag_evaluation_order
6800 && (TREE_SIDE_EFFECTS (arg0
) || TREE_SIDE_EFFECTS (arg1
)))
6803 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6804 for commutative and comparison operators. Ensuring a canonical
6805 form allows the optimizers to find additional redundancies without
6806 having to explicitly check for both orderings. */
6807 if (TREE_CODE (arg0
) == SSA_NAME
6808 && TREE_CODE (arg1
) == SSA_NAME
6809 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6812 /* Put SSA_NAMEs last. */
6813 if (TREE_CODE (arg1
) == SSA_NAME
)
6815 if (TREE_CODE (arg0
) == SSA_NAME
)
6818 /* Put variables last. */
6828 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6829 means A >= Y && A != MAX, but in this case we know that
6830 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6833 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6835 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
6837 if (TREE_CODE (bound
) == LT_EXPR
)
6838 a
= TREE_OPERAND (bound
, 0);
6839 else if (TREE_CODE (bound
) == GT_EXPR
)
6840 a
= TREE_OPERAND (bound
, 1);
6844 typea
= TREE_TYPE (a
);
6845 if (!INTEGRAL_TYPE_P (typea
)
6846 && !POINTER_TYPE_P (typea
))
6849 if (TREE_CODE (ineq
) == LT_EXPR
)
6851 a1
= TREE_OPERAND (ineq
, 1);
6852 y
= TREE_OPERAND (ineq
, 0);
6854 else if (TREE_CODE (ineq
) == GT_EXPR
)
6856 a1
= TREE_OPERAND (ineq
, 0);
6857 y
= TREE_OPERAND (ineq
, 1);
6862 if (TREE_TYPE (a1
) != typea
)
6865 if (POINTER_TYPE_P (typea
))
6867 /* Convert the pointer types into integer before taking the difference. */
6868 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
6869 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
6870 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
6873 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
6875 if (!diff
|| !integer_onep (diff
))
6878 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
6881 /* Fold a sum or difference of at least one multiplication.
6882 Returns the folded tree or NULL if no simplification could be made. */
6885 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
6886 tree arg0
, tree arg1
)
6888 tree arg00
, arg01
, arg10
, arg11
;
6889 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
6891 /* (A * C) +- (B * C) -> (A+-B) * C.
6892 (A * C) +- A -> A * (C+-1).
6893 We are most concerned about the case where C is a constant,
6894 but other combinations show up during loop reduction. Since
6895 it is not difficult, try all four possibilities. */
6897 if (TREE_CODE (arg0
) == MULT_EXPR
)
6899 arg00
= TREE_OPERAND (arg0
, 0);
6900 arg01
= TREE_OPERAND (arg0
, 1);
6902 else if (TREE_CODE (arg0
) == INTEGER_CST
)
6904 arg00
= build_one_cst (type
);
6909 /* We cannot generate constant 1 for fract. */
6910 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6913 arg01
= build_one_cst (type
);
6915 if (TREE_CODE (arg1
) == MULT_EXPR
)
6917 arg10
= TREE_OPERAND (arg1
, 0);
6918 arg11
= TREE_OPERAND (arg1
, 1);
6920 else if (TREE_CODE (arg1
) == INTEGER_CST
)
6922 arg10
= build_one_cst (type
);
6923 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6924 the purpose of this canonicalization. */
6925 if (wi::neg_p (arg1
, TYPE_SIGN (TREE_TYPE (arg1
)))
6926 && negate_expr_p (arg1
)
6927 && code
== PLUS_EXPR
)
6929 arg11
= negate_expr (arg1
);
6937 /* We cannot generate constant 1 for fract. */
6938 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
6941 arg11
= build_one_cst (type
);
6945 if (operand_equal_p (arg01
, arg11
, 0))
6946 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
6947 else if (operand_equal_p (arg00
, arg10
, 0))
6948 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
6949 else if (operand_equal_p (arg00
, arg11
, 0))
6950 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
6951 else if (operand_equal_p (arg01
, arg10
, 0))
6952 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
6954 /* No identical multiplicands; see if we can find a common
6955 power-of-two factor in non-power-of-two multiplies. This
6956 can help in multi-dimensional array access. */
6957 else if (tree_fits_shwi_p (arg01
)
6958 && tree_fits_shwi_p (arg11
))
6960 HOST_WIDE_INT int01
, int11
, tmp
;
6963 int01
= tree_to_shwi (arg01
);
6964 int11
= tree_to_shwi (arg11
);
6966 /* Move min of absolute values to int11. */
6967 if (absu_hwi (int01
) < absu_hwi (int11
))
6969 tmp
= int01
, int01
= int11
, int11
= tmp
;
6970 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
6977 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
6978 /* The remainder should not be a constant, otherwise we
6979 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6980 increased the number of multiplications necessary. */
6981 && TREE_CODE (arg10
) != INTEGER_CST
)
6983 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
6984 build_int_cst (TREE_TYPE (arg00
),
6989 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
6994 return fold_build2_loc (loc
, MULT_EXPR
, type
,
6995 fold_build2_loc (loc
, code
, type
,
6996 fold_convert_loc (loc
, type
, alt0
),
6997 fold_convert_loc (loc
, type
, alt1
)),
6998 fold_convert_loc (loc
, type
, same
));
7003 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7004 specified by EXPR into the buffer PTR of length LEN bytes.
7005 Return the number of bytes placed in the buffer, or zero
7009 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7011 tree type
= TREE_TYPE (expr
);
7012 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7013 int byte
, offset
, word
, words
;
7014 unsigned char value
;
7016 if ((off
== -1 && total_bytes
> len
)
7017 || off
>= total_bytes
)
7021 words
= total_bytes
/ UNITS_PER_WORD
;
7023 for (byte
= 0; byte
< total_bytes
; byte
++)
7025 int bitpos
= byte
* BITS_PER_UNIT
;
7026 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7028 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7030 if (total_bytes
> UNITS_PER_WORD
)
7032 word
= byte
/ UNITS_PER_WORD
;
7033 if (WORDS_BIG_ENDIAN
)
7034 word
= (words
- 1) - word
;
7035 offset
= word
* UNITS_PER_WORD
;
7036 if (BYTES_BIG_ENDIAN
)
7037 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7039 offset
+= byte
% UNITS_PER_WORD
;
7042 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7044 && offset
- off
< len
)
7045 ptr
[offset
- off
] = value
;
7047 return MIN (len
, total_bytes
- off
);
7051 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7052 specified by EXPR into the buffer PTR of length LEN bytes.
7053 Return the number of bytes placed in the buffer, or zero
7057 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7059 tree type
= TREE_TYPE (expr
);
7060 machine_mode mode
= TYPE_MODE (type
);
7061 int total_bytes
= GET_MODE_SIZE (mode
);
7062 FIXED_VALUE_TYPE value
;
7063 tree i_value
, i_type
;
7065 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7068 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7070 if (NULL_TREE
== i_type
7071 || TYPE_PRECISION (i_type
) != total_bytes
)
7074 value
= TREE_FIXED_CST (expr
);
7075 i_value
= double_int_to_tree (i_type
, value
.data
);
7077 return native_encode_int (i_value
, ptr
, len
, off
);
7081 /* Subroutine of native_encode_expr. Encode the REAL_CST
7082 specified by EXPR into the buffer PTR of length LEN bytes.
7083 Return the number of bytes placed in the buffer, or zero
7087 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7089 tree type
= TREE_TYPE (expr
);
7090 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7091 int byte
, offset
, word
, words
, bitpos
;
7092 unsigned char value
;
7094 /* There are always 32 bits in each long, no matter the size of
7095 the hosts long. We handle floating point representations with
7099 if ((off
== -1 && total_bytes
> len
)
7100 || off
>= total_bytes
)
7104 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7106 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7108 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7109 bitpos
+= BITS_PER_UNIT
)
7111 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7112 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7114 if (UNITS_PER_WORD
< 4)
7116 word
= byte
/ UNITS_PER_WORD
;
7117 if (WORDS_BIG_ENDIAN
)
7118 word
= (words
- 1) - word
;
7119 offset
= word
* UNITS_PER_WORD
;
7120 if (BYTES_BIG_ENDIAN
)
7121 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7123 offset
+= byte
% UNITS_PER_WORD
;
7128 if (BYTES_BIG_ENDIAN
)
7130 /* Reverse bytes within each long, or within the entire float
7131 if it's smaller than a long (for HFmode). */
7132 offset
= MIN (3, total_bytes
- 1) - offset
;
7133 gcc_assert (offset
>= 0);
7136 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7138 && offset
- off
< len
)
7139 ptr
[offset
- off
] = value
;
7141 return MIN (len
, total_bytes
- off
);
7144 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7145 specified by EXPR into the buffer PTR of length LEN bytes.
7146 Return the number of bytes placed in the buffer, or zero
7150 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7155 part
= TREE_REALPART (expr
);
7156 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7160 part
= TREE_IMAGPART (expr
);
7162 off
= MAX (0, off
- GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part
))));
7163 isize
= native_encode_expr (part
, ptr
+rsize
, len
-rsize
, off
);
7167 return rsize
+ isize
;
7171 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7172 specified by EXPR into the buffer PTR of length LEN bytes.
7173 Return the number of bytes placed in the buffer, or zero
7177 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7184 count
= VECTOR_CST_NELTS (expr
);
7185 itype
= TREE_TYPE (TREE_TYPE (expr
));
7186 size
= GET_MODE_SIZE (TYPE_MODE (itype
));
7187 for (i
= 0; i
< count
; i
++)
7194 elem
= VECTOR_CST_ELT (expr
, i
);
7195 int res
= native_encode_expr (elem
, ptr
+offset
, len
-offset
, off
);
7196 if ((off
== -1 && res
!= size
)
7209 /* Subroutine of native_encode_expr. Encode the STRING_CST
7210 specified by EXPR into the buffer PTR of length LEN bytes.
7211 Return the number of bytes placed in the buffer, or zero
7215 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7217 tree type
= TREE_TYPE (expr
);
7218 HOST_WIDE_INT total_bytes
;
7220 if (TREE_CODE (type
) != ARRAY_TYPE
7221 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7222 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type
))) != BITS_PER_UNIT
7223 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7225 total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (type
));
7226 if ((off
== -1 && total_bytes
> len
)
7227 || off
>= total_bytes
)
7231 if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7234 if (off
< TREE_STRING_LENGTH (expr
))
7236 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7237 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7239 memset (ptr
+ written
, 0,
7240 MIN (total_bytes
- written
, len
- written
));
7243 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7244 return MIN (total_bytes
- off
, len
);
7248 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7249 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7250 buffer PTR of length LEN bytes. If OFF is not -1 then start
7251 the encoding at byte offset OFF and encode at most LEN bytes.
7252 Return the number of bytes placed in the buffer, or zero upon failure. */
7255 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7257 /* We don't support starting at negative offset and -1 is special. */
7261 switch (TREE_CODE (expr
))
7264 return native_encode_int (expr
, ptr
, len
, off
);
7267 return native_encode_real (expr
, ptr
, len
, off
);
7270 return native_encode_fixed (expr
, ptr
, len
, off
);
7273 return native_encode_complex (expr
, ptr
, len
, off
);
7276 return native_encode_vector (expr
, ptr
, len
, off
);
7279 return native_encode_string (expr
, ptr
, len
, off
);
7287 /* Subroutine of native_interpret_expr. Interpret the contents of
7288 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7289 If the buffer cannot be interpreted, return NULL_TREE. */
7292 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7294 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7296 if (total_bytes
> len
7297 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7300 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7302 return wide_int_to_tree (type
, result
);
7306 /* Subroutine of native_interpret_expr. Interpret the contents of
7307 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7308 If the buffer cannot be interpreted, return NULL_TREE. */
7311 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7313 int total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7315 FIXED_VALUE_TYPE fixed_value
;
7317 if (total_bytes
> len
7318 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7321 result
= double_int::from_buffer (ptr
, total_bytes
);
7322 fixed_value
= fixed_from_double_int (result
, TYPE_MODE (type
));
7324 return build_fixed (type
, fixed_value
);
7328 /* Subroutine of native_interpret_expr. Interpret the contents of
7329 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7330 If the buffer cannot be interpreted, return NULL_TREE. */
7333 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7335 machine_mode mode
= TYPE_MODE (type
);
7336 int total_bytes
= GET_MODE_SIZE (mode
);
7337 unsigned char value
;
7338 /* There are always 32 bits in each long, no matter the size of
7339 the hosts long. We handle floating point representations with
7344 total_bytes
= GET_MODE_SIZE (TYPE_MODE (type
));
7345 if (total_bytes
> len
|| total_bytes
> 24)
7347 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7349 memset (tmp
, 0, sizeof (tmp
));
7350 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7351 bitpos
+= BITS_PER_UNIT
)
7353 /* Both OFFSET and BYTE index within a long;
7354 bitpos indexes the whole float. */
7355 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7356 if (UNITS_PER_WORD
< 4)
7358 int word
= byte
/ UNITS_PER_WORD
;
7359 if (WORDS_BIG_ENDIAN
)
7360 word
= (words
- 1) - word
;
7361 offset
= word
* UNITS_PER_WORD
;
7362 if (BYTES_BIG_ENDIAN
)
7363 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7365 offset
+= byte
% UNITS_PER_WORD
;
7370 if (BYTES_BIG_ENDIAN
)
7372 /* Reverse bytes within each long, or within the entire float
7373 if it's smaller than a long (for HFmode). */
7374 offset
= MIN (3, total_bytes
- 1) - offset
;
7375 gcc_assert (offset
>= 0);
7378 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7380 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7383 real_from_target (&r
, tmp
, mode
);
7384 return build_real (type
, r
);
7388 /* Subroutine of native_interpret_expr. Interpret the contents of
7389 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7390 If the buffer cannot be interpreted, return NULL_TREE. */
7393 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7395 tree etype
, rpart
, ipart
;
7398 etype
= TREE_TYPE (type
);
7399 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7402 rpart
= native_interpret_expr (etype
, ptr
, size
);
7405 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7408 return build_complex (type
, rpart
, ipart
);
7412 /* Subroutine of native_interpret_expr. Interpret the contents of
7413 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7414 If the buffer cannot be interpreted, return NULL_TREE. */
7417 native_interpret_vector (tree type
, const unsigned char *ptr
, int len
)
7423 etype
= TREE_TYPE (type
);
7424 size
= GET_MODE_SIZE (TYPE_MODE (etype
));
7425 count
= TYPE_VECTOR_SUBPARTS (type
);
7426 if (size
* count
> len
)
7429 elements
= XALLOCAVEC (tree
, count
);
7430 for (i
= count
- 1; i
>= 0; i
--)
7432 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7437 return build_vector (type
, elements
);
7441 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7442 the buffer PTR of length LEN as a constant of type TYPE. For
7443 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7444 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7445 return NULL_TREE. */
7448 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7450 switch (TREE_CODE (type
))
7456 case REFERENCE_TYPE
:
7457 return native_interpret_int (type
, ptr
, len
);
7460 return native_interpret_real (type
, ptr
, len
);
7462 case FIXED_POINT_TYPE
:
7463 return native_interpret_fixed (type
, ptr
, len
);
7466 return native_interpret_complex (type
, ptr
, len
);
7469 return native_interpret_vector (type
, ptr
, len
);
7476 /* Returns true if we can interpret the contents of a native encoding
7480 can_native_interpret_type_p (tree type
)
7482 switch (TREE_CODE (type
))
7488 case REFERENCE_TYPE
:
7489 case FIXED_POINT_TYPE
:
7499 /* Return true iff a constant of type TYPE is accepted by
7500 native_encode_expr. */
7503 can_native_encode_type_p (tree type
)
7505 switch (TREE_CODE (type
))
7509 case FIXED_POINT_TYPE
:
7519 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7520 TYPE at compile-time. If we're unable to perform the conversion
7521 return NULL_TREE. */
7524 fold_view_convert_expr (tree type
, tree expr
)
7526 /* We support up to 512-bit values (for V8DFmode). */
7527 unsigned char buffer
[64];
7530 /* Check that the host and target are sane. */
7531 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7534 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7538 return native_interpret_expr (type
, buffer
, len
);
7541 /* Build an expression for the address of T. Folds away INDIRECT_REF
7542 to avoid confusing the gimplify process. */
7545 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7547 /* The size of the object is not relevant when talking about its address. */
7548 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7549 t
= TREE_OPERAND (t
, 0);
7551 if (TREE_CODE (t
) == INDIRECT_REF
)
7553 t
= TREE_OPERAND (t
, 0);
7555 if (TREE_TYPE (t
) != ptrtype
)
7556 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7558 else if (TREE_CODE (t
) == MEM_REF
7559 && integer_zerop (TREE_OPERAND (t
, 1)))
7560 return TREE_OPERAND (t
, 0);
7561 else if (TREE_CODE (t
) == MEM_REF
7562 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7563 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7564 TREE_OPERAND (t
, 0),
7565 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7566 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7568 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7570 if (TREE_TYPE (t
) != ptrtype
)
7571 t
= fold_convert_loc (loc
, ptrtype
, t
);
7574 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7579 /* Build an expression for the address of T. */
7582 build_fold_addr_expr_loc (location_t loc
, tree t
)
7584 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7586 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7589 /* Fold a unary expression of code CODE and type TYPE with operand
7590 OP0. Return the folded expression if folding is successful.
7591 Otherwise, return NULL_TREE. */
7594 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7598 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7600 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7601 && TREE_CODE_LENGTH (code
) == 1);
7606 if (CONVERT_EXPR_CODE_P (code
)
7607 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7609 /* Don't use STRIP_NOPS, because signedness of argument type
7611 STRIP_SIGN_NOPS (arg0
);
7615 /* Strip any conversions that don't change the mode. This
7616 is safe for every expression, except for a comparison
7617 expression because its signedness is derived from its
7620 Note that this is done as an internal manipulation within
7621 the constant folder, in order to find the simplest
7622 representation of the arguments so that their form can be
7623 studied. In any cases, the appropriate type conversions
7624 should be put back in the tree that will get out of the
7629 if (CONSTANT_CLASS_P (arg0
))
7631 tree tem
= const_unop (code
, type
, arg0
);
7634 if (TREE_TYPE (tem
) != type
)
7635 tem
= fold_convert_loc (loc
, type
, tem
);
7641 tem
= generic_simplify (loc
, code
, type
, op0
);
7645 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7647 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7648 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7649 fold_build1_loc (loc
, code
, type
,
7650 fold_convert_loc (loc
, TREE_TYPE (op0
),
7651 TREE_OPERAND (arg0
, 1))));
7652 else if (TREE_CODE (arg0
) == COND_EXPR
)
7654 tree arg01
= TREE_OPERAND (arg0
, 1);
7655 tree arg02
= TREE_OPERAND (arg0
, 2);
7656 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7657 arg01
= fold_build1_loc (loc
, code
, type
,
7658 fold_convert_loc (loc
,
7659 TREE_TYPE (op0
), arg01
));
7660 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7661 arg02
= fold_build1_loc (loc
, code
, type
,
7662 fold_convert_loc (loc
,
7663 TREE_TYPE (op0
), arg02
));
7664 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7667 /* If this was a conversion, and all we did was to move into
7668 inside the COND_EXPR, bring it back out. But leave it if
7669 it is a conversion from integer to integer and the
7670 result precision is no wider than a word since such a
7671 conversion is cheap and may be optimized away by combine,
7672 while it couldn't if it were outside the COND_EXPR. Then return
7673 so we don't get into an infinite recursion loop taking the
7674 conversion out and then back in. */
7676 if ((CONVERT_EXPR_CODE_P (code
)
7677 || code
== NON_LVALUE_EXPR
)
7678 && TREE_CODE (tem
) == COND_EXPR
7679 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7680 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7681 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7682 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7683 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7684 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7685 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7687 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7688 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7689 || flag_syntax_only
))
7690 tem
= build1_loc (loc
, code
, type
,
7692 TREE_TYPE (TREE_OPERAND
7693 (TREE_OPERAND (tem
, 1), 0)),
7694 TREE_OPERAND (tem
, 0),
7695 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7696 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7704 case NON_LVALUE_EXPR
:
7705 if (!maybe_lvalue_p (op0
))
7706 return fold_convert_loc (loc
, type
, op0
);
7711 case FIX_TRUNC_EXPR
:
7712 if (COMPARISON_CLASS_P (op0
))
7714 /* If we have (type) (a CMP b) and type is an integral type, return
7715 new expression involving the new type. Canonicalize
7716 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7718 Do not fold the result as that would not simplify further, also
7719 folding again results in recursions. */
7720 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7721 return build2_loc (loc
, TREE_CODE (op0
), type
,
7722 TREE_OPERAND (op0
, 0),
7723 TREE_OPERAND (op0
, 1));
7724 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7725 && TREE_CODE (type
) != VECTOR_TYPE
)
7726 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7727 constant_boolean_node (true, type
),
7728 constant_boolean_node (false, type
));
7731 /* Handle (T *)&A.B.C for A being of type T and B and C
7732 living at offset zero. This occurs frequently in
7733 C++ upcasting and then accessing the base. */
7734 if (TREE_CODE (op0
) == ADDR_EXPR
7735 && POINTER_TYPE_P (type
)
7736 && handled_component_p (TREE_OPERAND (op0
, 0)))
7738 HOST_WIDE_INT bitsize
, bitpos
;
7741 int unsignedp
, reversep
, volatilep
;
7743 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7744 &offset
, &mode
, &unsignedp
, &reversep
,
7746 /* If the reference was to a (constant) zero offset, we can use
7747 the address of the base if it has the same base type
7748 as the result type and the pointer type is unqualified. */
7749 if (! offset
&& bitpos
== 0
7750 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7751 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7752 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7753 return fold_convert_loc (loc
, type
,
7754 build_fold_addr_expr_loc (loc
, base
));
7757 if (TREE_CODE (op0
) == MODIFY_EXPR
7758 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7759 /* Detect assigning a bitfield. */
7760 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7762 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7764 /* Don't leave an assignment inside a conversion
7765 unless assigning a bitfield. */
7766 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7767 /* First do the assignment, then return converted constant. */
7768 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7769 TREE_NO_WARNING (tem
) = 1;
7770 TREE_USED (tem
) = 1;
7774 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7775 constants (if x has signed type, the sign bit cannot be set
7776 in c). This folds extension into the BIT_AND_EXPR.
7777 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7778 very likely don't have maximal range for their precision and this
7779 transformation effectively doesn't preserve non-maximal ranges. */
7780 if (TREE_CODE (type
) == INTEGER_TYPE
7781 && TREE_CODE (op0
) == BIT_AND_EXPR
7782 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7784 tree and_expr
= op0
;
7785 tree and0
= TREE_OPERAND (and_expr
, 0);
7786 tree and1
= TREE_OPERAND (and_expr
, 1);
7789 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7790 || (TYPE_PRECISION (type
)
7791 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7793 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7794 <= HOST_BITS_PER_WIDE_INT
7795 && tree_fits_uhwi_p (and1
))
7797 unsigned HOST_WIDE_INT cst
;
7799 cst
= tree_to_uhwi (and1
);
7800 cst
&= HOST_WIDE_INT_M1U
7801 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7802 change
= (cst
== 0);
7804 && !flag_syntax_only
7805 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0
)))
7808 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7809 and0
= fold_convert_loc (loc
, uns
, and0
);
7810 and1
= fold_convert_loc (loc
, uns
, and1
);
7815 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7816 TREE_OVERFLOW (and1
));
7817 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7818 fold_convert_loc (loc
, type
, and0
), tem
);
7822 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7823 cast (T1)X will fold away. We assume that this happens when X itself
7825 if (POINTER_TYPE_P (type
)
7826 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
7827 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
7829 tree arg00
= TREE_OPERAND (arg0
, 0);
7830 tree arg01
= TREE_OPERAND (arg0
, 1);
7832 return fold_build_pointer_plus_loc
7833 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
7836 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7837 of the same precision, and X is an integer type not narrower than
7838 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7839 if (INTEGRAL_TYPE_P (type
)
7840 && TREE_CODE (op0
) == BIT_NOT_EXPR
7841 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7842 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
7843 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
7845 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
7846 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7847 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
7848 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
7849 fold_convert_loc (loc
, type
, tem
));
7852 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7853 type of X and Y (integer types only). */
7854 if (INTEGRAL_TYPE_P (type
)
7855 && TREE_CODE (op0
) == MULT_EXPR
7856 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7857 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7859 /* Be careful not to introduce new overflows. */
7861 if (TYPE_OVERFLOW_WRAPS (type
))
7864 mult_type
= unsigned_type_for (type
);
7866 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
7868 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
7869 fold_convert_loc (loc
, mult_type
,
7870 TREE_OPERAND (op0
, 0)),
7871 fold_convert_loc (loc
, mult_type
,
7872 TREE_OPERAND (op0
, 1)));
7873 return fold_convert_loc (loc
, type
, tem
);
7879 case VIEW_CONVERT_EXPR
:
7880 if (TREE_CODE (op0
) == MEM_REF
)
7882 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
7883 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
7884 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
7885 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
7886 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
7893 tem
= fold_negate_expr (loc
, arg0
);
7895 return fold_convert_loc (loc
, type
, tem
);
7899 /* Convert fabs((double)float) into (double)fabsf(float). */
7900 if (TREE_CODE (arg0
) == NOP_EXPR
7901 && TREE_CODE (type
) == REAL_TYPE
)
7903 tree targ0
= strip_float_extensions (arg0
);
7905 return fold_convert_loc (loc
, type
,
7906 fold_build1_loc (loc
, ABS_EXPR
,
7913 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7914 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7915 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7916 fold_convert_loc (loc
, type
,
7917 TREE_OPERAND (arg0
, 0)))))
7918 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
7919 fold_convert_loc (loc
, type
,
7920 TREE_OPERAND (arg0
, 1)));
7921 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
7922 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
7923 fold_convert_loc (loc
, type
,
7924 TREE_OPERAND (arg0
, 1)))))
7925 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
7926 fold_convert_loc (loc
, type
,
7927 TREE_OPERAND (arg0
, 0)), tem
);
7931 case TRUTH_NOT_EXPR
:
7932 /* Note that the operand of this must be an int
7933 and its values must be 0 or 1.
7934 ("true" is a fixed value perhaps depending on the language,
7935 but we don't handle values other than 1 correctly yet.) */
7936 tem
= fold_truth_not_expr (loc
, arg0
);
7939 return fold_convert_loc (loc
, type
, tem
);
7942 /* Fold *&X to X if X is an lvalue. */
7943 if (TREE_CODE (op0
) == ADDR_EXPR
)
7945 tree op00
= TREE_OPERAND (op0
, 0);
7947 || TREE_CODE (op00
) == PARM_DECL
7948 || TREE_CODE (op00
) == RESULT_DECL
)
7949 && !TREE_READONLY (op00
))
7956 } /* switch (code) */
7960 /* If the operation was a conversion do _not_ mark a resulting constant
7961 with TREE_OVERFLOW if the original constant was not. These conversions
7962 have implementation defined behavior and retaining the TREE_OVERFLOW
7963 flag here would confuse later passes such as VRP. */
7965 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
7966 tree type
, tree op0
)
7968 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
7970 && TREE_CODE (res
) == INTEGER_CST
7971 && TREE_CODE (op0
) == INTEGER_CST
7972 && CONVERT_EXPR_CODE_P (code
))
7973 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
7978 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7979 operands OP0 and OP1. LOC is the location of the resulting expression.
7980 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7981 Return the folded expression if folding is successful. Otherwise,
7982 return NULL_TREE. */
7984 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
7985 tree arg0
, tree arg1
, tree op0
, tree op1
)
7989 /* We only do these simplifications if we are optimizing. */
7993 /* Check for things like (A || B) && (A || C). We can convert this
7994 to A || (B && C). Note that either operator can be any of the four
7995 truth and/or operations and the transformation will still be
7996 valid. Also note that we only care about order for the
7997 ANDIF and ORIF operators. If B contains side effects, this
7998 might change the truth-value of A. */
7999 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8000 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8001 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8002 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8003 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8004 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8006 tree a00
= TREE_OPERAND (arg0
, 0);
8007 tree a01
= TREE_OPERAND (arg0
, 1);
8008 tree a10
= TREE_OPERAND (arg1
, 0);
8009 tree a11
= TREE_OPERAND (arg1
, 1);
8010 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8011 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8012 && (code
== TRUTH_AND_EXPR
8013 || code
== TRUTH_OR_EXPR
));
8015 if (operand_equal_p (a00
, a10
, 0))
8016 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8017 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8018 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8019 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8020 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8021 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8022 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8023 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8025 /* This case if tricky because we must either have commutative
8026 operators or else A10 must not have side-effects. */
8028 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8029 && operand_equal_p (a01
, a11
, 0))
8030 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8031 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8035 /* See if we can build a range comparison. */
8036 if (0 != (tem
= fold_range_test (loc
, code
, type
, op0
, op1
)))
8039 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8040 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8042 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8044 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8047 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8048 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8050 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8052 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8055 /* Check for the possibility of merging component references. If our
8056 lhs is another similar operation, try to merge its rhs with our
8057 rhs. Then try to merge our lhs and rhs. */
8058 if (TREE_CODE (arg0
) == code
8059 && 0 != (tem
= fold_truth_andor_1 (loc
, code
, type
,
8060 TREE_OPERAND (arg0
, 1), arg1
)))
8061 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8063 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8066 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8067 && (code
== TRUTH_AND_EXPR
8068 || code
== TRUTH_ANDIF_EXPR
8069 || code
== TRUTH_OR_EXPR
8070 || code
== TRUTH_ORIF_EXPR
))
8072 enum tree_code ncode
, icode
;
8074 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8075 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8076 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8078 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8079 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8080 We don't want to pack more than two leafs to a non-IF AND/OR
8082 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8083 equal to IF-CODE, then we don't want to add right-hand operand.
8084 If the inner right-hand side of left-hand operand has
8085 side-effects, or isn't simple, then we can't add to it,
8086 as otherwise we might destroy if-sequence. */
8087 if (TREE_CODE (arg0
) == icode
8088 && simple_operand_p_2 (arg1
)
8089 /* Needed for sequence points to handle trappings, and
8091 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8093 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8095 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8098 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8099 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8100 else if (TREE_CODE (arg1
) == icode
8101 && simple_operand_p_2 (arg0
)
8102 /* Needed for sequence points to handle trappings, and
8104 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8106 tem
= fold_build2_loc (loc
, ncode
, type
,
8107 arg0
, TREE_OPERAND (arg1
, 0));
8108 return fold_build2_loc (loc
, icode
, type
, tem
,
8109 TREE_OPERAND (arg1
, 1));
8111 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8113 For sequence point consistancy, we need to check for trapping,
8114 and side-effects. */
8115 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8116 && simple_operand_p_2 (arg1
))
8117 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8123 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8124 by changing CODE to reduce the magnitude of constants involved in
8125 ARG0 of the comparison.
8126 Returns a canonicalized comparison tree if a simplification was
8127 possible, otherwise returns NULL_TREE.
8128 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8129 valid if signed overflow is undefined. */
8132 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8133 tree arg0
, tree arg1
,
8134 bool *strict_overflow_p
)
8136 enum tree_code code0
= TREE_CODE (arg0
);
8137 tree t
, cst0
= NULL_TREE
;
8140 /* Match A +- CST code arg1. We can change this only if overflow
8142 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8143 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8144 /* In principle pointers also have undefined overflow behavior,
8145 but that causes problems elsewhere. */
8146 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8147 && (code0
== MINUS_EXPR
8148 || code0
== PLUS_EXPR
)
8149 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8152 /* Identify the constant in arg0 and its sign. */
8153 cst0
= TREE_OPERAND (arg0
, 1);
8154 sgn0
= tree_int_cst_sgn (cst0
);
8156 /* Overflowed constants and zero will cause problems. */
8157 if (integer_zerop (cst0
)
8158 || TREE_OVERFLOW (cst0
))
8161 /* See if we can reduce the magnitude of the constant in
8162 arg0 by changing the comparison code. */
8163 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8165 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8167 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8168 else if (code
== GT_EXPR
8169 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8171 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8172 else if (code
== LE_EXPR
8173 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8175 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8176 else if (code
== GE_EXPR
8177 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8181 *strict_overflow_p
= true;
8183 /* Now build the constant reduced in magnitude. But not if that
8184 would produce one outside of its types range. */
8185 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8187 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8188 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8190 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8191 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8194 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8195 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8196 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8197 t
= fold_convert (TREE_TYPE (arg1
), t
);
8199 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8202 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8203 overflow further. Try to decrease the magnitude of constants involved
8204 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8205 and put sole constants at the second argument position.
8206 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8209 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8210 tree arg0
, tree arg1
)
8213 bool strict_overflow_p
;
8214 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8215 "when reducing constant in comparison");
8217 /* Try canonicalization by simplifying arg0. */
8218 strict_overflow_p
= false;
8219 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8220 &strict_overflow_p
);
8223 if (strict_overflow_p
)
8224 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8228 /* Try canonicalization by simplifying arg1 using the swapped
8230 code
= swap_tree_comparison (code
);
8231 strict_overflow_p
= false;
8232 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8233 &strict_overflow_p
);
8234 if (t
&& strict_overflow_p
)
8235 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8239 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8240 space. This is used to avoid issuing overflow warnings for
8241 expressions like &p->x which can not wrap. */
8244 pointer_may_wrap_p (tree base
, tree offset
, HOST_WIDE_INT bitpos
)
8246 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8253 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8254 if (offset
== NULL_TREE
)
8255 wi_offset
= wi::zero (precision
);
8256 else if (TREE_CODE (offset
) != INTEGER_CST
|| TREE_OVERFLOW (offset
))
8262 wide_int units
= wi::shwi (bitpos
/ BITS_PER_UNIT
, precision
);
8263 wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8267 if (!wi::fits_uhwi_p (total
))
8270 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (TREE_TYPE (base
)));
8274 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8276 if (TREE_CODE (base
) == ADDR_EXPR
)
8278 HOST_WIDE_INT base_size
;
8280 base_size
= int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base
, 0)));
8281 if (base_size
> 0 && size
< base_size
)
8285 return total
.to_uhwi () > (unsigned HOST_WIDE_INT
) size
;
8288 /* Return a positive integer when the symbol DECL is known to have
8289 a nonzero address, zero when it's known not to (e.g., it's a weak
8290 symbol), and a negative integer when the symbol is not yet in the
8291 symbol table and so whether or not its address is zero is unknown. */
8293 maybe_nonzero_address (tree decl
)
8295 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8296 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8297 return symbol
->nonzero_address ();
8302 /* Subroutine of fold_binary. This routine performs all of the
8303 transformations that are common to the equality/inequality
8304 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8305 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8306 fold_binary should call fold_binary. Fold a comparison with
8307 tree code CODE and type TYPE with operands OP0 and OP1. Return
8308 the folded comparison or NULL_TREE. */
8311 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8314 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8315 tree arg0
, arg1
, tem
;
8320 STRIP_SIGN_NOPS (arg0
);
8321 STRIP_SIGN_NOPS (arg1
);
8323 /* For comparisons of pointers we can decompose it to a compile time
8324 comparison of the base objects and the offsets into the object.
8325 This requires at least one operand being an ADDR_EXPR or a
8326 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8327 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8328 && (TREE_CODE (arg0
) == ADDR_EXPR
8329 || TREE_CODE (arg1
) == ADDR_EXPR
8330 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8331 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8333 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8334 HOST_WIDE_INT bitsize
, bitpos0
= 0, bitpos1
= 0;
8336 int volatilep
, reversep
, unsignedp
;
8337 bool indirect_base0
= false, indirect_base1
= false;
8339 /* Get base and offset for the access. Strip ADDR_EXPR for
8340 get_inner_reference, but put it back by stripping INDIRECT_REF
8341 off the base object if possible. indirect_baseN will be true
8342 if baseN is not an address but refers to the object itself. */
8344 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8347 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8348 &bitsize
, &bitpos0
, &offset0
, &mode
,
8349 &unsignedp
, &reversep
, &volatilep
);
8350 if (TREE_CODE (base0
) == INDIRECT_REF
)
8351 base0
= TREE_OPERAND (base0
, 0);
8353 indirect_base0
= true;
8355 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8357 base0
= TREE_OPERAND (arg0
, 0);
8358 STRIP_SIGN_NOPS (base0
);
8359 if (TREE_CODE (base0
) == ADDR_EXPR
)
8362 = get_inner_reference (TREE_OPERAND (base0
, 0),
8363 &bitsize
, &bitpos0
, &offset0
, &mode
,
8364 &unsignedp
, &reversep
, &volatilep
);
8365 if (TREE_CODE (base0
) == INDIRECT_REF
)
8366 base0
= TREE_OPERAND (base0
, 0);
8368 indirect_base0
= true;
8370 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8371 offset0
= TREE_OPERAND (arg0
, 1);
8373 offset0
= size_binop (PLUS_EXPR
, offset0
,
8374 TREE_OPERAND (arg0
, 1));
8375 if (TREE_CODE (offset0
) == INTEGER_CST
)
8377 offset_int tem
= wi::sext (wi::to_offset (offset0
),
8378 TYPE_PRECISION (sizetype
));
8379 tem
<<= LOG2_BITS_PER_UNIT
;
8381 if (wi::fits_shwi_p (tem
))
8383 bitpos0
= tem
.to_shwi ();
8384 offset0
= NULL_TREE
;
8390 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8393 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8394 &bitsize
, &bitpos1
, &offset1
, &mode
,
8395 &unsignedp
, &reversep
, &volatilep
);
8396 if (TREE_CODE (base1
) == INDIRECT_REF
)
8397 base1
= TREE_OPERAND (base1
, 0);
8399 indirect_base1
= true;
8401 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8403 base1
= TREE_OPERAND (arg1
, 0);
8404 STRIP_SIGN_NOPS (base1
);
8405 if (TREE_CODE (base1
) == ADDR_EXPR
)
8408 = get_inner_reference (TREE_OPERAND (base1
, 0),
8409 &bitsize
, &bitpos1
, &offset1
, &mode
,
8410 &unsignedp
, &reversep
, &volatilep
);
8411 if (TREE_CODE (base1
) == INDIRECT_REF
)
8412 base1
= TREE_OPERAND (base1
, 0);
8414 indirect_base1
= true;
8416 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8417 offset1
= TREE_OPERAND (arg1
, 1);
8419 offset1
= size_binop (PLUS_EXPR
, offset1
,
8420 TREE_OPERAND (arg1
, 1));
8421 if (TREE_CODE (offset1
) == INTEGER_CST
)
8423 offset_int tem
= wi::sext (wi::to_offset (offset1
),
8424 TYPE_PRECISION (sizetype
));
8425 tem
<<= LOG2_BITS_PER_UNIT
;
8427 if (wi::fits_shwi_p (tem
))
8429 bitpos1
= tem
.to_shwi ();
8430 offset1
= NULL_TREE
;
8435 /* If we have equivalent bases we might be able to simplify. */
8436 if (indirect_base0
== indirect_base1
8437 && operand_equal_p (base0
, base1
,
8438 indirect_base0
? OEP_ADDRESS_OF
: 0))
8440 /* We can fold this expression to a constant if the non-constant
8441 offset parts are equal. */
8442 if ((offset0
== offset1
8443 || (offset0
&& offset1
8444 && operand_equal_p (offset0
, offset1
, 0)))
8447 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8448 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8452 && bitpos0
!= bitpos1
8453 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8454 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8455 fold_overflow_warning (("assuming pointer wraparound does not "
8456 "occur when comparing P +- C1 with "
8458 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8463 return constant_boolean_node (bitpos0
== bitpos1
, type
);
8465 return constant_boolean_node (bitpos0
!= bitpos1
, type
);
8467 return constant_boolean_node (bitpos0
< bitpos1
, type
);
8469 return constant_boolean_node (bitpos0
<= bitpos1
, type
);
8471 return constant_boolean_node (bitpos0
>= bitpos1
, type
);
8473 return constant_boolean_node (bitpos0
> bitpos1
, type
);
8477 /* We can simplify the comparison to a comparison of the variable
8478 offset parts if the constant offset parts are equal.
8479 Be careful to use signed sizetype here because otherwise we
8480 mess with array offsets in the wrong way. This is possible
8481 because pointer arithmetic is restricted to retain within an
8482 object and overflow on pointer differences is undefined as of
8483 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8484 else if (bitpos0
== bitpos1
8487 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8488 || POINTER_TYPE_OVERFLOW_UNDEFINED
))
8490 /* By converting to signed sizetype we cover middle-end pointer
8491 arithmetic which operates on unsigned pointer types of size
8492 type size and ARRAY_REF offsets which are properly sign or
8493 zero extended from their type in case it is narrower than
8495 if (offset0
== NULL_TREE
)
8496 offset0
= build_int_cst (ssizetype
, 0);
8498 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8499 if (offset1
== NULL_TREE
)
8500 offset1
= build_int_cst (ssizetype
, 0);
8502 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8505 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8506 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8507 fold_overflow_warning (("assuming pointer wraparound does not "
8508 "occur when comparing P +- C1 with "
8510 WARN_STRICT_OVERFLOW_COMPARISON
);
8512 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8515 /* For equal offsets we can simplify to a comparison of the
8517 else if (bitpos0
== bitpos1
8519 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8521 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8522 && ((offset0
== offset1
)
8523 || (offset0
&& offset1
8524 && operand_equal_p (offset0
, offset1
, 0))))
8527 base0
= build_fold_addr_expr_loc (loc
, base0
);
8529 base1
= build_fold_addr_expr_loc (loc
, base1
);
8530 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8532 /* Comparison between an ordinary (non-weak) symbol and a null
8533 pointer can be eliminated since such symbols must have a non
8534 null address. In C, relational expressions between pointers
8535 to objects and null pointers are undefined. The results
8536 below follow the C++ rules with the additional property that
8537 every object pointer compares greater than a null pointer.
8539 else if (DECL_P (base0
)
8540 && maybe_nonzero_address (base0
) > 0
8541 /* Avoid folding references to struct members at offset 0 to
8542 prevent tests like '&ptr->firstmember == 0' from getting
8543 eliminated. When ptr is null, although the -> expression
8544 is strictly speaking invalid, GCC retains it as a matter
8545 of QoI. See PR c/44555. */
8546 && (offset0
== NULL_TREE
&& bitpos0
!= 0)
8547 /* The caller guarantees that when one of the arguments is
8548 constant (i.e., null in this case) it is second. */
8549 && integer_zerop (arg1
))
8556 return constant_boolean_node (false, type
);
8560 return constant_boolean_node (true, type
);
8567 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8568 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8569 the resulting offset is smaller in absolute value than the
8570 original one and has the same sign. */
8571 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8572 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8573 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8574 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8575 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8576 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8577 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8578 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8580 tree const1
= TREE_OPERAND (arg0
, 1);
8581 tree const2
= TREE_OPERAND (arg1
, 1);
8582 tree variable1
= TREE_OPERAND (arg0
, 0);
8583 tree variable2
= TREE_OPERAND (arg1
, 0);
8585 const char * const warnmsg
= G_("assuming signed overflow does not "
8586 "occur when combining constants around "
8589 /* Put the constant on the side where it doesn't overflow and is
8590 of lower absolute value and of same sign than before. */
8591 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8592 ? MINUS_EXPR
: PLUS_EXPR
,
8594 if (!TREE_OVERFLOW (cst
)
8595 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8596 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8598 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8599 return fold_build2_loc (loc
, code
, type
,
8601 fold_build2_loc (loc
, TREE_CODE (arg1
),
8606 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8607 ? MINUS_EXPR
: PLUS_EXPR
,
8609 if (!TREE_OVERFLOW (cst
)
8610 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8611 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8613 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8614 return fold_build2_loc (loc
, code
, type
,
8615 fold_build2_loc (loc
, TREE_CODE (arg0
),
8622 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8626 /* If we are comparing an expression that just has comparisons
8627 of two integer values, arithmetic expressions of those comparisons,
8628 and constants, we can simplify it. There are only three cases
8629 to check: the two values can either be equal, the first can be
8630 greater, or the second can be greater. Fold the expression for
8631 those three values. Since each value must be 0 or 1, we have
8632 eight possibilities, each of which corresponds to the constant 0
8633 or 1 or one of the six possible comparisons.
8635 This handles common cases like (a > b) == 0 but also handles
8636 expressions like ((x > y) - (y > x)) > 0, which supposedly
8637 occur in macroized code. */
8639 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8641 tree cval1
= 0, cval2
= 0;
8644 if (twoval_comparison_p (arg0
, &cval1
, &cval2
, &save_p
)
8645 /* Don't handle degenerate cases here; they should already
8646 have been handled anyway. */
8647 && cval1
!= 0 && cval2
!= 0
8648 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8649 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8650 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8651 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8652 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8653 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8654 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8656 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8657 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8659 /* We can't just pass T to eval_subst in case cval1 or cval2
8660 was the same as ARG1. */
8663 = fold_build2_loc (loc
, code
, type
,
8664 eval_subst (loc
, arg0
, cval1
, maxval
,
8668 = fold_build2_loc (loc
, code
, type
,
8669 eval_subst (loc
, arg0
, cval1
, maxval
,
8673 = fold_build2_loc (loc
, code
, type
,
8674 eval_subst (loc
, arg0
, cval1
, minval
,
8678 /* All three of these results should be 0 or 1. Confirm they are.
8679 Then use those values to select the proper code to use. */
8681 if (TREE_CODE (high_result
) == INTEGER_CST
8682 && TREE_CODE (equal_result
) == INTEGER_CST
8683 && TREE_CODE (low_result
) == INTEGER_CST
)
8685 /* Make a 3-bit mask with the high-order bit being the
8686 value for `>', the next for '=', and the low for '<'. */
8687 switch ((integer_onep (high_result
) * 4)
8688 + (integer_onep (equal_result
) * 2)
8689 + integer_onep (low_result
))
8693 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8714 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8719 tem
= save_expr (build2 (code
, type
, cval1
, cval2
));
8720 SET_EXPR_LOCATION (tem
, loc
);
8723 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8728 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8729 into a single range test. */
8730 if ((TREE_CODE (arg0
) == TRUNC_DIV_EXPR
8731 || TREE_CODE (arg0
) == EXACT_DIV_EXPR
)
8732 && TREE_CODE (arg1
) == INTEGER_CST
8733 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8734 && !integer_zerop (TREE_OPERAND (arg0
, 1))
8735 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1))
8736 && !TREE_OVERFLOW (arg1
))
8738 tem
= fold_div_compare (loc
, code
, type
, arg0
, arg1
);
8739 if (tem
!= NULL_TREE
)
8747 /* Subroutine of fold_binary. Optimize complex multiplications of the
8748 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8749 argument EXPR represents the expression "z" of type TYPE. */
8752 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8754 tree itype
= TREE_TYPE (type
);
8755 tree rpart
, ipart
, tem
;
8757 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8759 rpart
= TREE_OPERAND (expr
, 0);
8760 ipart
= TREE_OPERAND (expr
, 1);
8762 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8764 rpart
= TREE_REALPART (expr
);
8765 ipart
= TREE_IMAGPART (expr
);
8769 expr
= save_expr (expr
);
8770 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8771 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8774 rpart
= save_expr (rpart
);
8775 ipart
= save_expr (ipart
);
8776 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8777 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8778 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8779 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8780 build_zero_cst (itype
));
8784 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8785 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8788 vec_cst_ctor_to_array (tree arg
, tree
*elts
)
8790 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg
)), i
;
8792 if (TREE_CODE (arg
) == VECTOR_CST
)
8794 for (i
= 0; i
< VECTOR_CST_NELTS (arg
); ++i
)
8795 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8797 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8799 constructor_elt
*elt
;
8801 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8802 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8805 elts
[i
] = elt
->value
;
8809 for (; i
< nelts
; i
++)
8811 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
8815 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8816 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8817 NULL_TREE otherwise. */
8820 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const unsigned char *sel
)
8822 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
8824 bool need_ctor
= false;
8826 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)) == nelts
8827 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)) == nelts
);
8828 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
8829 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
8832 elts
= XALLOCAVEC (tree
, nelts
* 3);
8833 if (!vec_cst_ctor_to_array (arg0
, elts
)
8834 || !vec_cst_ctor_to_array (arg1
, elts
+ nelts
))
8837 for (i
= 0; i
< nelts
; i
++)
8839 if (!CONSTANT_CLASS_P (elts
[sel
[i
]]))
8841 elts
[i
+ 2 * nelts
] = unshare_expr (elts
[sel
[i
]]);
8846 vec
<constructor_elt
, va_gc
> *v
;
8847 vec_alloc (v
, nelts
);
8848 for (i
= 0; i
< nelts
; i
++)
8849 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, elts
[2 * nelts
+ i
]);
8850 return build_constructor (type
, v
);
8853 return build_vector (type
, &elts
[2 * nelts
]);
8856 /* Try to fold a pointer difference of type TYPE two address expressions of
8857 array references AREF0 and AREF1 using location LOC. Return a
8858 simplified expression for the difference or NULL_TREE. */
8861 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
8862 tree aref0
, tree aref1
)
8864 tree base0
= TREE_OPERAND (aref0
, 0);
8865 tree base1
= TREE_OPERAND (aref1
, 0);
8866 tree base_offset
= build_int_cst (type
, 0);
8868 /* If the bases are array references as well, recurse. If the bases
8869 are pointer indirections compute the difference of the pointers.
8870 If the bases are equal, we are set. */
8871 if ((TREE_CODE (base0
) == ARRAY_REF
8872 && TREE_CODE (base1
) == ARRAY_REF
8874 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
)))
8875 || (INDIRECT_REF_P (base0
)
8876 && INDIRECT_REF_P (base1
)
8878 = fold_binary_loc (loc
, MINUS_EXPR
, type
,
8879 fold_convert (type
, TREE_OPERAND (base0
, 0)),
8881 TREE_OPERAND (base1
, 0)))))
8882 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
8884 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
8885 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
8886 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
8887 tree diff
= build2 (MINUS_EXPR
, type
, op0
, op1
);
8888 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
8890 fold_build2_loc (loc
, MULT_EXPR
, type
,
8896 /* If the real or vector real constant CST of type TYPE has an exact
8897 inverse, return it, else return NULL. */
8900 exact_inverse (tree type
, tree cst
)
8903 tree unit_type
, *elts
;
8905 unsigned vec_nelts
, i
;
8907 switch (TREE_CODE (cst
))
8910 r
= TREE_REAL_CST (cst
);
8912 if (exact_real_inverse (TYPE_MODE (type
), &r
))
8913 return build_real (type
, r
);
8918 vec_nelts
= VECTOR_CST_NELTS (cst
);
8919 elts
= XALLOCAVEC (tree
, vec_nelts
);
8920 unit_type
= TREE_TYPE (type
);
8921 mode
= TYPE_MODE (unit_type
);
8923 for (i
= 0; i
< vec_nelts
; i
++)
8925 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
8926 if (!exact_real_inverse (mode
, &r
))
8928 elts
[i
] = build_real (unit_type
, r
);
8931 return build_vector (type
, elts
);
8938 /* Mask out the tz least significant bits of X of type TYPE where
8939 tz is the number of trailing zeroes in Y. */
8941 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
8943 int tz
= wi::ctz (y
);
8945 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
8949 /* Return true when T is an address and is known to be nonzero.
8950 For floating point we further ensure that T is not denormal.
8951 Similar logic is present in nonzero_address in rtlanal.h.
8953 If the return value is based on the assumption that signed overflow
8954 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8955 change *STRICT_OVERFLOW_P. */
8958 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
8960 tree type
= TREE_TYPE (t
);
8961 enum tree_code code
;
8963 /* Doing something useful for floating point would need more work. */
8964 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
8967 code
= TREE_CODE (t
);
8968 switch (TREE_CODE_CLASS (code
))
8971 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8974 case tcc_comparison
:
8975 return tree_binary_nonzero_warnv_p (code
, type
,
8976 TREE_OPERAND (t
, 0),
8977 TREE_OPERAND (t
, 1),
8980 case tcc_declaration
:
8982 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
8990 case TRUTH_NOT_EXPR
:
8991 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
8994 case TRUTH_AND_EXPR
:
8996 case TRUTH_XOR_EXPR
:
8997 return tree_binary_nonzero_warnv_p (code
, type
,
8998 TREE_OPERAND (t
, 0),
8999 TREE_OPERAND (t
, 1),
9007 case WITH_SIZE_EXPR
:
9009 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9014 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9018 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9023 tree fndecl
= get_callee_fndecl (t
);
9024 if (!fndecl
) return false;
9025 if (flag_delete_null_pointer_checks
&& !flag_check_new
9026 && DECL_IS_OPERATOR_NEW (fndecl
)
9027 && !TREE_NOTHROW (fndecl
))
9029 if (flag_delete_null_pointer_checks
9030 && lookup_attribute ("returns_nonnull",
9031 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9033 return alloca_call_p (t
);
9042 /* Return true when T is an address and is known to be nonzero.
9043 Handle warnings about undefined signed overflow. */
9046 tree_expr_nonzero_p (tree t
)
9048 bool ret
, strict_overflow_p
;
9050 strict_overflow_p
= false;
9051 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9052 if (strict_overflow_p
)
9053 fold_overflow_warning (("assuming signed overflow does not occur when "
9054 "determining that expression is always "
9056 WARN_STRICT_OVERFLOW_MISC
);
9060 /* Return true if T is known not to be equal to an integer W. */
9063 expr_not_equal_to (tree t
, const wide_int
&w
)
9065 wide_int min
, max
, nz
;
9066 value_range_type rtype
;
9067 switch (TREE_CODE (t
))
9070 return wi::ne_p (t
, w
);
9073 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9075 rtype
= get_range_info (t
, &min
, &max
);
9076 if (rtype
== VR_RANGE
)
9078 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9080 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9083 else if (rtype
== VR_ANTI_RANGE
9084 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9085 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9087 /* If T has some known zero bits and W has any of those bits set,
9088 then T is known not to be equal to W. */
9089 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9090 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9099 /* Fold a binary expression of code CODE and type TYPE with operands
9100 OP0 and OP1. LOC is the location of the resulting expression.
9101 Return the folded expression if folding is successful. Otherwise,
9102 return NULL_TREE. */
9105 fold_binary_loc (location_t loc
,
9106 enum tree_code code
, tree type
, tree op0
, tree op1
)
9108 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9109 tree arg0
, arg1
, tem
;
9110 tree t1
= NULL_TREE
;
9111 bool strict_overflow_p
;
9114 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9115 && TREE_CODE_LENGTH (code
) == 2
9117 && op1
!= NULL_TREE
);
9122 /* Strip any conversions that don't change the mode. This is
9123 safe for every expression, except for a comparison expression
9124 because its signedness is derived from its operands. So, in
9125 the latter case, only strip conversions that don't change the
9126 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9129 Note that this is done as an internal manipulation within the
9130 constant folder, in order to find the simplest representation
9131 of the arguments so that their form can be studied. In any
9132 cases, the appropriate type conversions should be put back in
9133 the tree that will get out of the constant folder. */
9135 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9137 STRIP_SIGN_NOPS (arg0
);
9138 STRIP_SIGN_NOPS (arg1
);
9146 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9147 constant but we can't do arithmetic on them. */
9148 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9150 tem
= const_binop (code
, type
, arg0
, arg1
);
9151 if (tem
!= NULL_TREE
)
9153 if (TREE_TYPE (tem
) != type
)
9154 tem
= fold_convert_loc (loc
, type
, tem
);
9159 /* If this is a commutative operation, and ARG0 is a constant, move it
9160 to ARG1 to reduce the number of tests below. */
9161 if (commutative_tree_code (code
)
9162 && tree_swap_operands_p (arg0
, arg1
, true))
9163 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9165 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9166 to ARG1 to reduce the number of tests below. */
9167 if (kind
== tcc_comparison
9168 && tree_swap_operands_p (arg0
, arg1
, true))
9169 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9171 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9175 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9177 First check for cases where an arithmetic operation is applied to a
9178 compound, conditional, or comparison operation. Push the arithmetic
9179 operation inside the compound or conditional to see if any folding
9180 can then be done. Convert comparison to conditional for this purpose.
9181 The also optimizes non-constant cases that used to be done in
9184 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9185 one of the operands is a comparison and the other is a comparison, a
9186 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9187 code below would make the expression more complex. Change it to a
9188 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9189 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9191 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9192 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9193 && TREE_CODE (type
) != VECTOR_TYPE
9194 && ((truth_value_p (TREE_CODE (arg0
))
9195 && (truth_value_p (TREE_CODE (arg1
))
9196 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9197 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9198 || (truth_value_p (TREE_CODE (arg1
))
9199 && (truth_value_p (TREE_CODE (arg0
))
9200 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9201 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9203 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9204 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9207 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9208 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9210 if (code
== EQ_EXPR
)
9211 tem
= invert_truthvalue_loc (loc
, tem
);
9213 return fold_convert_loc (loc
, type
, tem
);
9216 if (TREE_CODE_CLASS (code
) == tcc_binary
9217 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9219 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9221 tem
= fold_build2_loc (loc
, code
, type
,
9222 fold_convert_loc (loc
, TREE_TYPE (op0
),
9223 TREE_OPERAND (arg0
, 1)), op1
);
9224 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9227 if (TREE_CODE (arg1
) == COMPOUND_EXPR
9228 && reorder_operands_p (arg0
, TREE_OPERAND (arg1
, 0)))
9230 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9231 fold_convert_loc (loc
, TREE_TYPE (op1
),
9232 TREE_OPERAND (arg1
, 1)));
9233 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9237 if (TREE_CODE (arg0
) == COND_EXPR
9238 || TREE_CODE (arg0
) == VEC_COND_EXPR
9239 || COMPARISON_CLASS_P (arg0
))
9241 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9243 /*cond_first_p=*/1);
9244 if (tem
!= NULL_TREE
)
9248 if (TREE_CODE (arg1
) == COND_EXPR
9249 || TREE_CODE (arg1
) == VEC_COND_EXPR
9250 || COMPARISON_CLASS_P (arg1
))
9252 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9254 /*cond_first_p=*/0);
9255 if (tem
!= NULL_TREE
)
9263 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9264 if (TREE_CODE (arg0
) == ADDR_EXPR
9265 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9267 tree iref
= TREE_OPERAND (arg0
, 0);
9268 return fold_build2 (MEM_REF
, type
,
9269 TREE_OPERAND (iref
, 0),
9270 int_const_binop (PLUS_EXPR
, arg1
,
9271 TREE_OPERAND (iref
, 1)));
9274 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9275 if (TREE_CODE (arg0
) == ADDR_EXPR
9276 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9279 HOST_WIDE_INT coffset
;
9280 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9284 return fold_build2 (MEM_REF
, type
,
9285 build_fold_addr_expr (base
),
9286 int_const_binop (PLUS_EXPR
, arg1
,
9287 size_int (coffset
)));
9292 case POINTER_PLUS_EXPR
:
9293 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9294 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9295 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9296 return fold_convert_loc (loc
, type
,
9297 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9298 fold_convert_loc (loc
, sizetype
,
9300 fold_convert_loc (loc
, sizetype
,
9306 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9308 /* X + (X / CST) * -CST is X % CST. */
9309 if (TREE_CODE (arg1
) == MULT_EXPR
9310 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9311 && operand_equal_p (arg0
,
9312 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9314 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9315 tree cst1
= TREE_OPERAND (arg1
, 1);
9316 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9318 if (sum
&& integer_zerop (sum
))
9319 return fold_convert_loc (loc
, type
,
9320 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9321 TREE_TYPE (arg0
), arg0
,
9326 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9327 one. Make sure the type is not saturating and has the signedness of
9328 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9329 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9330 if ((TREE_CODE (arg0
) == MULT_EXPR
9331 || TREE_CODE (arg1
) == MULT_EXPR
)
9332 && !TYPE_SATURATING (type
)
9333 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9334 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9335 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9337 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9342 if (! FLOAT_TYPE_P (type
))
9344 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9345 (plus (plus (mult) (mult)) (foo)) so that we can
9346 take advantage of the factoring cases below. */
9347 if (ANY_INTEGRAL_TYPE_P (type
)
9348 && TYPE_OVERFLOW_WRAPS (type
)
9349 && (((TREE_CODE (arg0
) == PLUS_EXPR
9350 || TREE_CODE (arg0
) == MINUS_EXPR
)
9351 && TREE_CODE (arg1
) == MULT_EXPR
)
9352 || ((TREE_CODE (arg1
) == PLUS_EXPR
9353 || TREE_CODE (arg1
) == MINUS_EXPR
)
9354 && TREE_CODE (arg0
) == MULT_EXPR
)))
9356 tree parg0
, parg1
, parg
, marg
;
9357 enum tree_code pcode
;
9359 if (TREE_CODE (arg1
) == MULT_EXPR
)
9360 parg
= arg0
, marg
= arg1
;
9362 parg
= arg1
, marg
= arg0
;
9363 pcode
= TREE_CODE (parg
);
9364 parg0
= TREE_OPERAND (parg
, 0);
9365 parg1
= TREE_OPERAND (parg
, 1);
9369 if (TREE_CODE (parg0
) == MULT_EXPR
9370 && TREE_CODE (parg1
) != MULT_EXPR
)
9371 return fold_build2_loc (loc
, pcode
, type
,
9372 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9373 fold_convert_loc (loc
, type
,
9375 fold_convert_loc (loc
, type
,
9377 fold_convert_loc (loc
, type
, parg1
));
9378 if (TREE_CODE (parg0
) != MULT_EXPR
9379 && TREE_CODE (parg1
) == MULT_EXPR
)
9381 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9382 fold_convert_loc (loc
, type
, parg0
),
9383 fold_build2_loc (loc
, pcode
, type
,
9384 fold_convert_loc (loc
, type
, marg
),
9385 fold_convert_loc (loc
, type
,
9391 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9392 to __complex__ ( x, y ). This is not the same for SNaNs or
9393 if signed zeros are involved. */
9394 if (!HONOR_SNANS (element_mode (arg0
))
9395 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9396 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9398 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9399 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9400 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9401 bool arg0rz
= false, arg0iz
= false;
9402 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9403 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9405 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9406 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9407 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9409 tree rp
= arg1r
? arg1r
9410 : build1 (REALPART_EXPR
, rtype
, arg1
);
9411 tree ip
= arg0i
? arg0i
9412 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9413 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9415 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9417 tree rp
= arg0r
? arg0r
9418 : build1 (REALPART_EXPR
, rtype
, arg0
);
9419 tree ip
= arg1i
? arg1i
9420 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9421 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9426 if (flag_unsafe_math_optimizations
9427 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
9428 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
9429 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
9432 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9433 We associate floats only if the user has specified
9434 -fassociative-math. */
9435 if (flag_associative_math
9436 && TREE_CODE (arg1
) == PLUS_EXPR
9437 && TREE_CODE (arg0
) != MULT_EXPR
)
9439 tree tree10
= TREE_OPERAND (arg1
, 0);
9440 tree tree11
= TREE_OPERAND (arg1
, 1);
9441 if (TREE_CODE (tree11
) == MULT_EXPR
9442 && TREE_CODE (tree10
) == MULT_EXPR
)
9445 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9446 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9449 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9450 We associate floats only if the user has specified
9451 -fassociative-math. */
9452 if (flag_associative_math
9453 && TREE_CODE (arg0
) == PLUS_EXPR
9454 && TREE_CODE (arg1
) != MULT_EXPR
)
9456 tree tree00
= TREE_OPERAND (arg0
, 0);
9457 tree tree01
= TREE_OPERAND (arg0
, 1);
9458 if (TREE_CODE (tree01
) == MULT_EXPR
9459 && TREE_CODE (tree00
) == MULT_EXPR
)
9462 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9463 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9469 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9470 is a rotate of A by C1 bits. */
9471 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9472 is a rotate of A by B bits. */
9474 enum tree_code code0
, code1
;
9476 code0
= TREE_CODE (arg0
);
9477 code1
= TREE_CODE (arg1
);
9478 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9479 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9480 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9481 TREE_OPERAND (arg1
, 0), 0)
9482 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9483 TYPE_UNSIGNED (rtype
))
9484 /* Only create rotates in complete modes. Other cases are not
9485 expanded properly. */
9486 && (element_precision (rtype
)
9487 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9489 tree tree01
, tree11
;
9490 enum tree_code code01
, code11
;
9492 tree01
= TREE_OPERAND (arg0
, 1);
9493 tree11
= TREE_OPERAND (arg1
, 1);
9494 STRIP_NOPS (tree01
);
9495 STRIP_NOPS (tree11
);
9496 code01
= TREE_CODE (tree01
);
9497 code11
= TREE_CODE (tree11
);
9498 if (code01
== INTEGER_CST
9499 && code11
== INTEGER_CST
9500 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9501 == element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)))))
9503 tem
= build2_loc (loc
, LROTATE_EXPR
,
9504 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9505 TREE_OPERAND (arg0
, 0),
9506 code0
== LSHIFT_EXPR
9507 ? TREE_OPERAND (arg0
, 1)
9508 : TREE_OPERAND (arg1
, 1));
9509 return fold_convert_loc (loc
, type
, tem
);
9511 else if (code11
== MINUS_EXPR
)
9513 tree tree110
, tree111
;
9514 tree110
= TREE_OPERAND (tree11
, 0);
9515 tree111
= TREE_OPERAND (tree11
, 1);
9516 STRIP_NOPS (tree110
);
9517 STRIP_NOPS (tree111
);
9518 if (TREE_CODE (tree110
) == INTEGER_CST
9519 && 0 == compare_tree_int (tree110
,
9521 (TREE_TYPE (TREE_OPERAND
9523 && operand_equal_p (tree01
, tree111
, 0))
9525 fold_convert_loc (loc
, type
,
9526 build2 ((code0
== LSHIFT_EXPR
9529 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9530 TREE_OPERAND (arg0
, 0),
9531 TREE_OPERAND (arg0
, 1)));
9533 else if (code01
== MINUS_EXPR
)
9535 tree tree010
, tree011
;
9536 tree010
= TREE_OPERAND (tree01
, 0);
9537 tree011
= TREE_OPERAND (tree01
, 1);
9538 STRIP_NOPS (tree010
);
9539 STRIP_NOPS (tree011
);
9540 if (TREE_CODE (tree010
) == INTEGER_CST
9541 && 0 == compare_tree_int (tree010
,
9543 (TREE_TYPE (TREE_OPERAND
9545 && operand_equal_p (tree11
, tree011
, 0))
9546 return fold_convert_loc
9548 build2 ((code0
!= LSHIFT_EXPR
9551 TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9552 TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 1)));
9558 /* In most languages, can't associate operations on floats through
9559 parentheses. Rather than remember where the parentheses were, we
9560 don't associate floats at all, unless the user has specified
9562 And, we need to make sure type is not saturating. */
9564 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9565 && !TYPE_SATURATING (type
))
9567 tree var0
, con0
, lit0
, minus_lit0
;
9568 tree var1
, con1
, lit1
, minus_lit1
;
9572 /* Split both trees into variables, constants, and literals. Then
9573 associate each group together, the constants with literals,
9574 then the result with variables. This increases the chances of
9575 literals being recombined later and of generating relocatable
9576 expressions for the sum of a constant and literal. */
9577 var0
= split_tree (loc
, arg0
, type
, code
,
9578 &con0
, &lit0
, &minus_lit0
, 0);
9579 var1
= split_tree (loc
, arg1
, type
, code
,
9580 &con1
, &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9582 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9583 if (code
== MINUS_EXPR
)
9586 /* With undefined overflow prefer doing association in a type
9587 which wraps on overflow, if that is one of the operand types. */
9588 if ((POINTER_TYPE_P (type
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
9589 || (INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
)))
9591 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9592 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9593 atype
= TREE_TYPE (arg0
);
9594 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9595 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9596 atype
= TREE_TYPE (arg1
);
9597 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9600 /* With undefined overflow we can only associate constants with one
9601 variable, and constants whose association doesn't overflow. */
9602 if ((POINTER_TYPE_P (atype
) && POINTER_TYPE_OVERFLOW_UNDEFINED
)
9603 || (INTEGRAL_TYPE_P (atype
) && !TYPE_OVERFLOW_WRAPS (atype
)))
9609 bool one_neg
= false;
9611 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9613 tmp0
= TREE_OPERAND (tmp0
, 0);
9616 if (CONVERT_EXPR_P (tmp0
)
9617 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9618 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9619 <= TYPE_PRECISION (atype
)))
9620 tmp0
= TREE_OPERAND (tmp0
, 0);
9621 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9623 tmp1
= TREE_OPERAND (tmp1
, 0);
9626 if (CONVERT_EXPR_P (tmp1
)
9627 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9628 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9629 <= TYPE_PRECISION (atype
)))
9630 tmp1
= TREE_OPERAND (tmp1
, 0);
9631 /* The only case we can still associate with two variables
9632 is if they cancel out. */
9634 || !operand_equal_p (tmp0
, tmp1
, 0))
9639 /* Only do something if we found more than two objects. Otherwise,
9640 nothing has changed and we risk infinite recursion. */
9642 && (2 < ((var0
!= 0) + (var1
!= 0)
9643 + (con0
!= 0) + (con1
!= 0)
9644 + (lit0
!= 0) + (lit1
!= 0)
9645 + (minus_lit0
!= 0) + (minus_lit1
!= 0))))
9647 bool any_overflows
= false;
9648 if (lit0
) any_overflows
|= TREE_OVERFLOW (lit0
);
9649 if (lit1
) any_overflows
|= TREE_OVERFLOW (lit1
);
9650 if (minus_lit0
) any_overflows
|= TREE_OVERFLOW (minus_lit0
);
9651 if (minus_lit1
) any_overflows
|= TREE_OVERFLOW (minus_lit1
);
9652 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9653 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9654 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9655 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9658 /* Preserve the MINUS_EXPR if the negative part of the literal is
9659 greater than the positive part. Otherwise, the multiplicative
9660 folding code (i.e extract_muldiv) may be fooled in case
9661 unsigned constants are subtracted, like in the following
9662 example: ((X*2 + 4) - 8U)/2. */
9663 if (minus_lit0
&& lit0
)
9665 if (TREE_CODE (lit0
) == INTEGER_CST
9666 && TREE_CODE (minus_lit0
) == INTEGER_CST
9667 && tree_int_cst_lt (lit0
, minus_lit0
))
9669 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9675 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9681 /* Don't introduce overflows through reassociation. */
9683 && ((lit0
&& TREE_OVERFLOW_P (lit0
))
9684 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
))))
9691 fold_convert_loc (loc
, type
,
9692 associate_trees (loc
, var0
, minus_lit0
,
9693 MINUS_EXPR
, atype
));
9696 con0
= associate_trees (loc
, con0
, minus_lit0
,
9699 fold_convert_loc (loc
, type
,
9700 associate_trees (loc
, var0
, con0
,
9705 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9707 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9715 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9716 if (TREE_CODE (arg0
) == NEGATE_EXPR
9717 && negate_expr_p (op1
)
9718 && reorder_operands_p (arg0
, arg1
))
9719 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
9721 fold_convert_loc (loc
, type
,
9722 TREE_OPERAND (arg0
, 0)));
9724 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9725 __complex__ ( x, -y ). This is not the same for SNaNs or if
9726 signed zeros are involved. */
9727 if (!HONOR_SNANS (element_mode (arg0
))
9728 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9729 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9731 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9732 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9733 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9734 bool arg0rz
= false, arg0iz
= false;
9735 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9736 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9738 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9739 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9740 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9742 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9744 : build1 (REALPART_EXPR
, rtype
, arg1
));
9745 tree ip
= arg0i
? arg0i
9746 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9747 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9749 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9751 tree rp
= arg0r
? arg0r
9752 : build1 (REALPART_EXPR
, rtype
, arg0
);
9753 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
9755 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
9756 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9761 /* A - B -> A + (-B) if B is easily negatable. */
9762 if (negate_expr_p (op1
)
9763 && ! TYPE_OVERFLOW_SANITIZED (type
)
9764 && ((FLOAT_TYPE_P (type
)
9765 /* Avoid this transformation if B is a positive REAL_CST. */
9766 && (TREE_CODE (op1
) != REAL_CST
9767 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
9768 || INTEGRAL_TYPE_P (type
)))
9769 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9770 fold_convert_loc (loc
, type
, arg0
),
9773 /* Fold &a[i] - &a[j] to i-j. */
9774 if (TREE_CODE (arg0
) == ADDR_EXPR
9775 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9776 && TREE_CODE (arg1
) == ADDR_EXPR
9777 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9779 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9780 TREE_OPERAND (arg0
, 0),
9781 TREE_OPERAND (arg1
, 0));
9786 if (FLOAT_TYPE_P (type
)
9787 && flag_unsafe_math_optimizations
9788 && (TREE_CODE (arg0
) == RDIV_EXPR
|| TREE_CODE (arg0
) == MULT_EXPR
)
9789 && (TREE_CODE (arg1
) == RDIV_EXPR
|| TREE_CODE (arg1
) == MULT_EXPR
)
9790 && (tem
= distribute_real_division (loc
, code
, type
, arg0
, arg1
)))
9793 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9794 one. Make sure the type is not saturating and has the signedness of
9795 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9796 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9797 if ((TREE_CODE (arg0
) == MULT_EXPR
9798 || TREE_CODE (arg1
) == MULT_EXPR
)
9799 && !TYPE_SATURATING (type
)
9800 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9801 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9802 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9804 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9812 if (! FLOAT_TYPE_P (type
))
9814 /* Transform x * -C into -x * C if x is easily negatable. */
9815 if (TREE_CODE (op1
) == INTEGER_CST
9816 && tree_int_cst_sgn (op1
) == -1
9817 && negate_expr_p (op0
)
9818 && (tem
= negate_expr (op1
)) != op1
9819 && ! TREE_OVERFLOW (tem
))
9820 return fold_build2_loc (loc
, MULT_EXPR
, type
,
9821 fold_convert_loc (loc
, type
,
9822 negate_expr (op0
)), tem
);
9824 strict_overflow_p
= false;
9825 if (TREE_CODE (arg1
) == INTEGER_CST
9826 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
9827 &strict_overflow_p
)))
9829 if (strict_overflow_p
)
9830 fold_overflow_warning (("assuming signed overflow does not "
9831 "occur when simplifying "
9833 WARN_STRICT_OVERFLOW_MISC
);
9834 return fold_convert_loc (loc
, type
, tem
);
9837 /* Optimize z * conj(z) for integer complex numbers. */
9838 if (TREE_CODE (arg0
) == CONJ_EXPR
9839 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9840 return fold_mult_zconjz (loc
, type
, arg1
);
9841 if (TREE_CODE (arg1
) == CONJ_EXPR
9842 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9843 return fold_mult_zconjz (loc
, type
, arg0
);
9847 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9848 This is not the same for NaNs or if signed zeros are
9850 if (!HONOR_NANS (arg0
)
9851 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9852 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
9853 && TREE_CODE (arg1
) == COMPLEX_CST
9854 && real_zerop (TREE_REALPART (arg1
)))
9856 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9857 if (real_onep (TREE_IMAGPART (arg1
)))
9859 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9860 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
9862 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
9863 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
9865 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
9866 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
9867 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
9871 /* Optimize z * conj(z) for floating point complex numbers.
9872 Guarded by flag_unsafe_math_optimizations as non-finite
9873 imaginary components don't produce scalar results. */
9874 if (flag_unsafe_math_optimizations
9875 && TREE_CODE (arg0
) == CONJ_EXPR
9876 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
9877 return fold_mult_zconjz (loc
, type
, arg1
);
9878 if (flag_unsafe_math_optimizations
9879 && TREE_CODE (arg1
) == CONJ_EXPR
9880 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
9881 return fold_mult_zconjz (loc
, type
, arg0
);
9886 /* Canonicalize (X & C1) | C2. */
9887 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9888 && TREE_CODE (arg1
) == INTEGER_CST
9889 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
9891 int width
= TYPE_PRECISION (type
), w
;
9892 wide_int c1
= TREE_OPERAND (arg0
, 1);
9895 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9896 if ((c1
& c2
) == c1
)
9897 return omit_one_operand_loc (loc
, type
, arg1
,
9898 TREE_OPERAND (arg0
, 0));
9900 wide_int msk
= wi::mask (width
, false,
9901 TYPE_PRECISION (TREE_TYPE (arg1
)));
9903 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9904 if (msk
.and_not (c1
| c2
) == 0)
9905 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
9906 TREE_OPERAND (arg0
, 0), arg1
);
9908 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9909 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9910 mode which allows further optimizations. */
9913 wide_int c3
= c1
.and_not (c2
);
9914 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
9916 wide_int mask
= wi::mask (w
, false,
9917 TYPE_PRECISION (type
));
9918 if (((c1
| c2
) & mask
) == mask
&& c1
.and_not (mask
) == 0)
9926 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
,
9927 fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
9928 TREE_OPERAND (arg0
, 0),
9929 wide_int_to_tree (type
,
9934 /* See if this can be simplified into a rotate first. If that
9935 is unsuccessful continue in the association code. */
9939 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9940 if (TREE_CODE (arg0
) == BIT_AND_EXPR
9941 && INTEGRAL_TYPE_P (type
)
9942 && integer_onep (TREE_OPERAND (arg0
, 1))
9943 && integer_onep (arg1
))
9944 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
9945 build_zero_cst (TREE_TYPE (arg0
)));
9947 /* See if this can be simplified into a rotate first. If that
9948 is unsuccessful continue in the association code. */
9952 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9953 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
9954 && INTEGRAL_TYPE_P (type
)
9955 && integer_onep (TREE_OPERAND (arg0
, 1))
9956 && integer_onep (arg1
))
9959 tem
= TREE_OPERAND (arg0
, 0);
9960 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9961 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9963 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9964 build_zero_cst (TREE_TYPE (tem
)));
9966 /* Fold ~X & 1 as (X & 1) == 0. */
9967 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
9968 && INTEGRAL_TYPE_P (type
)
9969 && integer_onep (arg1
))
9972 tem
= TREE_OPERAND (arg0
, 0);
9973 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
9974 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
9976 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
9977 build_zero_cst (TREE_TYPE (tem
)));
9979 /* Fold !X & 1 as X == 0. */
9980 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
9981 && integer_onep (arg1
))
9983 tem
= TREE_OPERAND (arg0
, 0);
9984 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
9985 build_zero_cst (TREE_TYPE (tem
)));
9988 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9989 multiple of 1 << CST. */
9990 if (TREE_CODE (arg1
) == INTEGER_CST
)
9992 wide_int cst1
= arg1
;
9993 wide_int ncst1
= -cst1
;
9994 if ((cst1
& ncst1
) == ncst1
9995 && multiple_of_p (type
, arg0
,
9996 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
9997 return fold_convert_loc (loc
, type
, arg0
);
10000 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10002 if (TREE_CODE (arg1
) == INTEGER_CST
10003 && TREE_CODE (arg0
) == MULT_EXPR
10004 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10006 wide_int warg1
= arg1
;
10007 wide_int masked
= mask_with_tz (type
, warg1
, TREE_OPERAND (arg0
, 1));
10010 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10012 else if (masked
!= warg1
)
10014 /* Avoid the transform if arg1 is a mask of some
10015 mode which allows further optimizations. */
10016 int pop
= wi::popcount (warg1
);
10017 if (!(pop
>= BITS_PER_UNIT
10019 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10020 return fold_build2_loc (loc
, code
, type
, op0
,
10021 wide_int_to_tree (type
, masked
));
10025 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10026 ((A & N) + B) & M -> (A + B) & M
10027 Similarly if (N & M) == 0,
10028 ((A | N) + B) & M -> (A + B) & M
10029 and for - instead of + (or unary - instead of +)
10030 and/or ^ instead of |.
10031 If B is constant and (B & M) == 0, fold into A & M. */
10032 if (TREE_CODE (arg1
) == INTEGER_CST
)
10034 wide_int cst1
= arg1
;
10035 if ((~cst1
!= 0) && (cst1
& (cst1
+ 1)) == 0
10036 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10037 && (TREE_CODE (arg0
) == PLUS_EXPR
10038 || TREE_CODE (arg0
) == MINUS_EXPR
10039 || TREE_CODE (arg0
) == NEGATE_EXPR
)
10040 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
))
10041 || TREE_CODE (TREE_TYPE (arg0
)) == INTEGER_TYPE
))
10047 /* Now we know that arg0 is (C + D) or (C - D) or
10048 -C and arg1 (M) is == (1LL << cst) - 1.
10049 Store C into PMOP[0] and D into PMOP[1]. */
10050 pmop
[0] = TREE_OPERAND (arg0
, 0);
10052 if (TREE_CODE (arg0
) != NEGATE_EXPR
)
10054 pmop
[1] = TREE_OPERAND (arg0
, 1);
10058 if ((wi::max_value (TREE_TYPE (arg0
)) & cst1
) != cst1
)
10061 for (; which
>= 0; which
--)
10062 switch (TREE_CODE (pmop
[which
]))
10067 if (TREE_CODE (TREE_OPERAND (pmop
[which
], 1))
10070 cst0
= TREE_OPERAND (pmop
[which
], 1);
10072 if (TREE_CODE (pmop
[which
]) == BIT_AND_EXPR
)
10077 else if (cst0
!= 0)
10079 /* If C or D is of the form (A & N) where
10080 (N & M) == M, or of the form (A | N) or
10081 (A ^ N) where (N & M) == 0, replace it with A. */
10082 pmop
[which
] = TREE_OPERAND (pmop
[which
], 0);
10085 /* If C or D is a N where (N & M) == 0, it can be
10086 omitted (assumed 0). */
10087 if ((TREE_CODE (arg0
) == PLUS_EXPR
10088 || (TREE_CODE (arg0
) == MINUS_EXPR
&& which
== 0))
10089 && (cst1
& pmop
[which
]) == 0)
10090 pmop
[which
] = NULL
;
10096 /* Only build anything new if we optimized one or both arguments
10098 if (pmop
[0] != TREE_OPERAND (arg0
, 0)
10099 || (TREE_CODE (arg0
) != NEGATE_EXPR
10100 && pmop
[1] != TREE_OPERAND (arg0
, 1)))
10102 tree utype
= TREE_TYPE (arg0
);
10103 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
10105 /* Perform the operations in a type that has defined
10106 overflow behavior. */
10107 utype
= unsigned_type_for (TREE_TYPE (arg0
));
10108 if (pmop
[0] != NULL
)
10109 pmop
[0] = fold_convert_loc (loc
, utype
, pmop
[0]);
10110 if (pmop
[1] != NULL
)
10111 pmop
[1] = fold_convert_loc (loc
, utype
, pmop
[1]);
10114 if (TREE_CODE (arg0
) == NEGATE_EXPR
)
10115 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[0]);
10116 else if (TREE_CODE (arg0
) == PLUS_EXPR
)
10118 if (pmop
[0] != NULL
&& pmop
[1] != NULL
)
10119 tem
= fold_build2_loc (loc
, PLUS_EXPR
, utype
,
10121 else if (pmop
[0] != NULL
)
10123 else if (pmop
[1] != NULL
)
10126 return build_int_cst (type
, 0);
10128 else if (pmop
[0] == NULL
)
10129 tem
= fold_build1_loc (loc
, NEGATE_EXPR
, utype
, pmop
[1]);
10131 tem
= fold_build2_loc (loc
, MINUS_EXPR
, utype
,
10133 /* TEM is now the new binary +, - or unary - replacement. */
10134 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, utype
, tem
,
10135 fold_convert_loc (loc
, utype
, arg1
));
10136 return fold_convert_loc (loc
, type
, tem
);
10141 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10142 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10143 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10145 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10147 wide_int mask
= wide_int::from (arg1
, prec
, UNSIGNED
);
10150 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10156 /* Don't touch a floating-point divide by zero unless the mode
10157 of the constant can represent infinity. */
10158 if (TREE_CODE (arg1
) == REAL_CST
10159 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10160 && real_zerop (arg1
))
10163 /* (-A) / (-B) -> A / B */
10164 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10165 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10166 TREE_OPERAND (arg0
, 0),
10167 negate_expr (arg1
));
10168 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10169 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10170 negate_expr (arg0
),
10171 TREE_OPERAND (arg1
, 0));
10174 case TRUNC_DIV_EXPR
:
10177 case FLOOR_DIV_EXPR
:
10178 /* Simplify A / (B << N) where A and B are positive and B is
10179 a power of 2, to A >> (N + log2(B)). */
10180 strict_overflow_p
= false;
10181 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10182 && (TYPE_UNSIGNED (type
)
10183 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10185 tree sval
= TREE_OPERAND (arg1
, 0);
10186 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10188 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10189 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10190 wi::exact_log2 (sval
));
10192 if (strict_overflow_p
)
10193 fold_overflow_warning (("assuming signed overflow does not "
10194 "occur when simplifying A / (B << N)"),
10195 WARN_STRICT_OVERFLOW_MISC
);
10197 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10199 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10200 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10206 case ROUND_DIV_EXPR
:
10207 case CEIL_DIV_EXPR
:
10208 case EXACT_DIV_EXPR
:
10209 if (integer_zerop (arg1
))
10212 /* Convert -A / -B to A / B when the type is signed and overflow is
10214 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10215 && TREE_CODE (arg0
) == NEGATE_EXPR
10216 && negate_expr_p (op1
))
10218 if (INTEGRAL_TYPE_P (type
))
10219 fold_overflow_warning (("assuming signed overflow does not occur "
10220 "when distributing negation across "
10222 WARN_STRICT_OVERFLOW_MISC
);
10223 return fold_build2_loc (loc
, code
, type
,
10224 fold_convert_loc (loc
, type
,
10225 TREE_OPERAND (arg0
, 0)),
10226 negate_expr (op1
));
10228 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10229 && TREE_CODE (arg1
) == NEGATE_EXPR
10230 && negate_expr_p (op0
))
10232 if (INTEGRAL_TYPE_P (type
))
10233 fold_overflow_warning (("assuming signed overflow does not occur "
10234 "when distributing negation across "
10236 WARN_STRICT_OVERFLOW_MISC
);
10237 return fold_build2_loc (loc
, code
, type
,
10239 fold_convert_loc (loc
, type
,
10240 TREE_OPERAND (arg1
, 0)));
10243 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10244 operation, EXACT_DIV_EXPR.
10246 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10247 At one time others generated faster code, it's not clear if they do
10248 after the last round to changes to the DIV code in expmed.c. */
10249 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10250 && multiple_of_p (type
, arg0
, arg1
))
10251 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10252 fold_convert (type
, arg0
),
10253 fold_convert (type
, arg1
));
10255 strict_overflow_p
= false;
10256 if (TREE_CODE (arg1
) == INTEGER_CST
10257 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10258 &strict_overflow_p
)))
10260 if (strict_overflow_p
)
10261 fold_overflow_warning (("assuming signed overflow does not occur "
10262 "when simplifying division"),
10263 WARN_STRICT_OVERFLOW_MISC
);
10264 return fold_convert_loc (loc
, type
, tem
);
10269 case CEIL_MOD_EXPR
:
10270 case FLOOR_MOD_EXPR
:
10271 case ROUND_MOD_EXPR
:
10272 case TRUNC_MOD_EXPR
:
10273 strict_overflow_p
= false;
10274 if (TREE_CODE (arg1
) == INTEGER_CST
10275 && 0 != (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10276 &strict_overflow_p
)))
10278 if (strict_overflow_p
)
10279 fold_overflow_warning (("assuming signed overflow does not occur "
10280 "when simplifying modulus"),
10281 WARN_STRICT_OVERFLOW_MISC
);
10282 return fold_convert_loc (loc
, type
, tem
);
10291 /* Since negative shift count is not well-defined,
10292 don't try to compute it in the compiler. */
10293 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10296 prec
= element_precision (type
);
10298 /* If we have a rotate of a bit operation with the rotate count and
10299 the second operand of the bit operation both constant,
10300 permute the two operations. */
10301 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10302 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10303 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10304 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10305 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10307 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10308 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10309 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10310 fold_build2_loc (loc
, code
, type
,
10312 fold_build2_loc (loc
, code
, type
,
10316 /* Two consecutive rotates adding up to the some integer
10317 multiple of the precision of the type can be ignored. */
10318 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10319 && TREE_CODE (arg0
) == RROTATE_EXPR
10320 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10321 && wi::umod_trunc (wi::add (arg1
, TREE_OPERAND (arg0
, 1)),
10323 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10331 case TRUTH_ANDIF_EXPR
:
10332 /* Note that the operands of this must be ints
10333 and their values must be 0 or 1.
10334 ("true" is a fixed value perhaps depending on the language.) */
10335 /* If first arg is constant zero, return it. */
10336 if (integer_zerop (arg0
))
10337 return fold_convert_loc (loc
, type
, arg0
);
10339 case TRUTH_AND_EXPR
:
10340 /* If either arg is constant true, drop it. */
10341 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10342 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10343 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10344 /* Preserve sequence points. */
10345 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10346 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10347 /* If second arg is constant zero, result is zero, but first arg
10348 must be evaluated. */
10349 if (integer_zerop (arg1
))
10350 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10351 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10352 case will be handled here. */
10353 if (integer_zerop (arg0
))
10354 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10356 /* !X && X is always false. */
10357 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10358 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10359 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10360 /* X && !X is always false. */
10361 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10362 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10363 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10365 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10366 means A >= Y && A != MAX, but in this case we know that
10369 if (!TREE_SIDE_EFFECTS (arg0
)
10370 && !TREE_SIDE_EFFECTS (arg1
))
10372 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10373 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10374 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10376 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10377 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10378 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10381 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10387 case TRUTH_ORIF_EXPR
:
10388 /* Note that the operands of this must be ints
10389 and their values must be 0 or true.
10390 ("true" is a fixed value perhaps depending on the language.) */
10391 /* If first arg is constant true, return it. */
10392 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10393 return fold_convert_loc (loc
, type
, arg0
);
10395 case TRUTH_OR_EXPR
:
10396 /* If either arg is constant zero, drop it. */
10397 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10398 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10399 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10400 /* Preserve sequence points. */
10401 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10402 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10403 /* If second arg is constant true, result is true, but we must
10404 evaluate first arg. */
10405 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10406 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10407 /* Likewise for first arg, but note this only occurs here for
10409 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10410 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10412 /* !X || X is always true. */
10413 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10414 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10415 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10416 /* X || !X is always true. */
10417 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10418 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10419 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10421 /* (X && !Y) || (!X && Y) is X ^ Y */
10422 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10423 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10425 tree a0
, a1
, l0
, l1
, n0
, n1
;
10427 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10428 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10430 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10431 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10433 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10434 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10436 if ((operand_equal_p (n0
, a0
, 0)
10437 && operand_equal_p (n1
, a1
, 0))
10438 || (operand_equal_p (n0
, a1
, 0)
10439 && operand_equal_p (n1
, a0
, 0)))
10440 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10443 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10449 case TRUTH_XOR_EXPR
:
10450 /* If the second arg is constant zero, drop it. */
10451 if (integer_zerop (arg1
))
10452 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10453 /* If the second arg is constant true, this is a logical inversion. */
10454 if (integer_onep (arg1
))
10456 tem
= invert_truthvalue_loc (loc
, arg0
);
10457 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10459 /* Identical arguments cancel to zero. */
10460 if (operand_equal_p (arg0
, arg1
, 0))
10461 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10463 /* !X ^ X is always true. */
10464 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10465 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10466 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10468 /* X ^ !X is always true. */
10469 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10470 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10471 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10480 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10481 if (tem
!= NULL_TREE
)
10484 /* bool_var != 1 becomes !bool_var. */
10485 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10486 && code
== NE_EXPR
)
10487 return fold_convert_loc (loc
, type
,
10488 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10489 TREE_TYPE (arg0
), arg0
));
10491 /* bool_var == 0 becomes !bool_var. */
10492 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10493 && code
== EQ_EXPR
)
10494 return fold_convert_loc (loc
, type
,
10495 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10496 TREE_TYPE (arg0
), arg0
));
10498 /* !exp != 0 becomes !exp */
10499 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10500 && code
== NE_EXPR
)
10501 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10503 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10504 if ((TREE_CODE (arg0
) == PLUS_EXPR
10505 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
10506 || TREE_CODE (arg0
) == MINUS_EXPR
)
10507 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
10510 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
10511 || POINTER_TYPE_P (TREE_TYPE (arg0
))))
10513 tree val
= TREE_OPERAND (arg0
, 1);
10514 val
= fold_build2_loc (loc
, code
, type
, val
,
10515 build_int_cst (TREE_TYPE (val
), 0));
10516 return omit_two_operands_loc (loc
, type
, val
,
10517 TREE_OPERAND (arg0
, 0), arg1
);
10520 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10521 if ((TREE_CODE (arg1
) == PLUS_EXPR
10522 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
10523 || TREE_CODE (arg1
) == MINUS_EXPR
)
10524 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1
,
10527 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
10528 || POINTER_TYPE_P (TREE_TYPE (arg1
))))
10530 tree val
= TREE_OPERAND (arg1
, 1);
10531 val
= fold_build2_loc (loc
, code
, type
, val
,
10532 build_int_cst (TREE_TYPE (val
), 0));
10533 return omit_two_operands_loc (loc
, type
, val
,
10534 TREE_OPERAND (arg1
, 0), arg0
);
10537 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10538 if (TREE_CODE (arg0
) == MINUS_EXPR
10539 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == INTEGER_CST
10540 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0
,
10543 && wi::extract_uhwi (TREE_OPERAND (arg0
, 0), 0, 1) == 1)
10544 return omit_two_operands_loc (loc
, type
,
10546 ? boolean_true_node
: boolean_false_node
,
10547 TREE_OPERAND (arg0
, 1), arg1
);
10549 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10550 if (TREE_CODE (arg1
) == MINUS_EXPR
10551 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == INTEGER_CST
10552 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1
,
10555 && wi::extract_uhwi (TREE_OPERAND (arg1
, 0), 0, 1) == 1)
10556 return omit_two_operands_loc (loc
, type
,
10558 ? boolean_true_node
: boolean_false_node
,
10559 TREE_OPERAND (arg1
, 1), arg0
);
10561 /* If this is an EQ or NE comparison with zero and ARG0 is
10562 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10563 two operations, but the latter can be done in one less insn
10564 on machines that have only two-operand insns or on which a
10565 constant cannot be the first operand. */
10566 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10567 && integer_zerop (arg1
))
10569 tree arg00
= TREE_OPERAND (arg0
, 0);
10570 tree arg01
= TREE_OPERAND (arg0
, 1);
10571 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10572 && integer_onep (TREE_OPERAND (arg00
, 0)))
10574 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10575 arg01
, TREE_OPERAND (arg00
, 1));
10576 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10577 build_int_cst (TREE_TYPE (arg0
), 1));
10578 return fold_build2_loc (loc
, code
, type
,
10579 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10582 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10583 && integer_onep (TREE_OPERAND (arg01
, 0)))
10585 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10586 arg00
, TREE_OPERAND (arg01
, 1));
10587 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10588 build_int_cst (TREE_TYPE (arg0
), 1));
10589 return fold_build2_loc (loc
, code
, type
,
10590 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10595 /* If this is an NE or EQ comparison of zero against the result of a
10596 signed MOD operation whose second operand is a power of 2, make
10597 the MOD operation unsigned since it is simpler and equivalent. */
10598 if (integer_zerop (arg1
)
10599 && !TYPE_UNSIGNED (TREE_TYPE (arg0
))
10600 && (TREE_CODE (arg0
) == TRUNC_MOD_EXPR
10601 || TREE_CODE (arg0
) == CEIL_MOD_EXPR
10602 || TREE_CODE (arg0
) == FLOOR_MOD_EXPR
10603 || TREE_CODE (arg0
) == ROUND_MOD_EXPR
)
10604 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10606 tree newtype
= unsigned_type_for (TREE_TYPE (arg0
));
10607 tree newmod
= fold_build2_loc (loc
, TREE_CODE (arg0
), newtype
,
10608 fold_convert_loc (loc
, newtype
,
10609 TREE_OPERAND (arg0
, 0)),
10610 fold_convert_loc (loc
, newtype
,
10611 TREE_OPERAND (arg0
, 1)));
10613 return fold_build2_loc (loc
, code
, type
, newmod
,
10614 fold_convert_loc (loc
, newtype
, arg1
));
10617 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10618 C1 is a valid shift constant, and C2 is a power of two, i.e.
10620 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10621 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10622 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10624 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10625 && integer_zerop (arg1
))
10627 tree itype
= TREE_TYPE (arg0
);
10628 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10629 prec
= TYPE_PRECISION (itype
);
10631 /* Check for a valid shift count. */
10632 if (wi::ltu_p (arg001
, prec
))
10634 tree arg01
= TREE_OPERAND (arg0
, 1);
10635 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10636 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10637 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10638 can be rewritten as (X & (C2 << C1)) != 0. */
10639 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10641 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10642 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10643 return fold_build2_loc (loc
, code
, type
, tem
,
10644 fold_convert_loc (loc
, itype
, arg1
));
10646 /* Otherwise, for signed (arithmetic) shifts,
10647 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10648 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10649 else if (!TYPE_UNSIGNED (itype
))
10650 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10651 arg000
, build_int_cst (itype
, 0));
10652 /* Otherwise, of unsigned (logical) shifts,
10653 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10654 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10656 return omit_one_operand_loc (loc
, type
,
10657 code
== EQ_EXPR
? integer_one_node
10658 : integer_zero_node
,
10663 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10664 Similarly for NE_EXPR. */
10665 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10666 && TREE_CODE (arg1
) == INTEGER_CST
10667 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10669 tree notc
= fold_build1_loc (loc
, BIT_NOT_EXPR
,
10670 TREE_TYPE (TREE_OPERAND (arg0
, 1)),
10671 TREE_OPERAND (arg0
, 1));
10673 = fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10674 fold_convert_loc (loc
, TREE_TYPE (arg0
), arg1
),
10676 tree rslt
= code
== EQ_EXPR
? integer_zero_node
: integer_one_node
;
10677 if (integer_nonzerop (dandnotc
))
10678 return omit_one_operand_loc (loc
, type
, rslt
, arg0
);
10681 /* If this is a comparison of a field, we may be able to simplify it. */
10682 if ((TREE_CODE (arg0
) == COMPONENT_REF
10683 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10684 /* Handle the constant case even without -O
10685 to make sure the warnings are given. */
10686 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10688 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10693 /* Optimize comparisons of strlen vs zero to a compare of the
10694 first character of the string vs zero. To wit,
10695 strlen(ptr) == 0 => *ptr == 0
10696 strlen(ptr) != 0 => *ptr != 0
10697 Other cases should reduce to one of these two (or a constant)
10698 due to the return value of strlen being unsigned. */
10699 if (TREE_CODE (arg0
) == CALL_EXPR
10700 && integer_zerop (arg1
))
10702 tree fndecl
= get_callee_fndecl (arg0
);
10705 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
10706 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_STRLEN
10707 && call_expr_nargs (arg0
) == 1
10708 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0))) == POINTER_TYPE
)
10710 tree iref
= build_fold_indirect_ref_loc (loc
,
10711 CALL_EXPR_ARG (arg0
, 0));
10712 return fold_build2_loc (loc
, code
, type
, iref
,
10713 build_int_cst (TREE_TYPE (iref
), 0));
10717 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10718 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10719 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10720 && integer_zerop (arg1
)
10721 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10723 tree arg00
= TREE_OPERAND (arg0
, 0);
10724 tree arg01
= TREE_OPERAND (arg0
, 1);
10725 tree itype
= TREE_TYPE (arg00
);
10726 if (wi::eq_p (arg01
, element_precision (itype
) - 1))
10728 if (TYPE_UNSIGNED (itype
))
10730 itype
= signed_type_for (itype
);
10731 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10733 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10734 type
, arg00
, build_zero_cst (itype
));
10738 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10739 (X & C) == 0 when C is a single bit. */
10740 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10741 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10742 && integer_zerop (arg1
)
10743 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10745 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10746 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10747 TREE_OPERAND (arg0
, 1));
10748 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10750 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10754 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10755 constant C is a power of two, i.e. a single bit. */
10756 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10757 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10758 && integer_zerop (arg1
)
10759 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10760 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10761 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10763 tree arg00
= TREE_OPERAND (arg0
, 0);
10764 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10765 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10768 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10769 when is C is a power of two, i.e. a single bit. */
10770 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10771 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10772 && integer_zerop (arg1
)
10773 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10774 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10775 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10777 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10778 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10779 arg000
, TREE_OPERAND (arg0
, 1));
10780 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10781 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10784 if (integer_zerop (arg1
)
10785 && tree_expr_nonzero_p (arg0
))
10787 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10788 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10791 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10792 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10793 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10795 tree arg00
= TREE_OPERAND (arg0
, 0);
10796 tree arg01
= TREE_OPERAND (arg0
, 1);
10797 tree arg10
= TREE_OPERAND (arg1
, 0);
10798 tree arg11
= TREE_OPERAND (arg1
, 1);
10799 tree itype
= TREE_TYPE (arg0
);
10801 if (operand_equal_p (arg01
, arg11
, 0))
10802 return fold_build2_loc (loc
, code
, type
,
10803 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10804 fold_build2_loc (loc
,
10805 BIT_XOR_EXPR
, itype
,
10808 build_zero_cst (itype
));
10810 if (operand_equal_p (arg01
, arg10
, 0))
10811 return fold_build2_loc (loc
, code
, type
,
10812 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10813 fold_build2_loc (loc
,
10814 BIT_XOR_EXPR
, itype
,
10817 build_zero_cst (itype
));
10819 if (operand_equal_p (arg00
, arg11
, 0))
10820 return fold_build2_loc (loc
, code
, type
,
10821 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10822 fold_build2_loc (loc
,
10823 BIT_XOR_EXPR
, itype
,
10826 build_zero_cst (itype
));
10828 if (operand_equal_p (arg00
, arg10
, 0))
10829 return fold_build2_loc (loc
, code
, type
,
10830 fold_build2_loc (loc
, BIT_AND_EXPR
, itype
,
10831 fold_build2_loc (loc
,
10832 BIT_XOR_EXPR
, itype
,
10835 build_zero_cst (itype
));
10838 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10839 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10841 tree arg00
= TREE_OPERAND (arg0
, 0);
10842 tree arg01
= TREE_OPERAND (arg0
, 1);
10843 tree arg10
= TREE_OPERAND (arg1
, 0);
10844 tree arg11
= TREE_OPERAND (arg1
, 1);
10845 tree itype
= TREE_TYPE (arg0
);
10847 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10848 operand_equal_p guarantees no side-effects so we don't need
10849 to use omit_one_operand on Z. */
10850 if (operand_equal_p (arg01
, arg11
, 0))
10851 return fold_build2_loc (loc
, code
, type
, arg00
,
10852 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10854 if (operand_equal_p (arg01
, arg10
, 0))
10855 return fold_build2_loc (loc
, code
, type
, arg00
,
10856 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10858 if (operand_equal_p (arg00
, arg11
, 0))
10859 return fold_build2_loc (loc
, code
, type
, arg01
,
10860 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10862 if (operand_equal_p (arg00
, arg10
, 0))
10863 return fold_build2_loc (loc
, code
, type
, arg01
,
10864 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10867 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10868 if (TREE_CODE (arg01
) == INTEGER_CST
10869 && TREE_CODE (arg11
) == INTEGER_CST
)
10871 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10872 fold_convert_loc (loc
, itype
, arg11
));
10873 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10874 return fold_build2_loc (loc
, code
, type
, tem
,
10875 fold_convert_loc (loc
, itype
, arg10
));
10879 /* Attempt to simplify equality/inequality comparisons of complex
10880 values. Only lower the comparison if the result is known or
10881 can be simplified to a single scalar comparison. */
10882 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10883 || TREE_CODE (arg0
) == COMPLEX_CST
)
10884 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10885 || TREE_CODE (arg1
) == COMPLEX_CST
))
10887 tree real0
, imag0
, real1
, imag1
;
10890 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10892 real0
= TREE_OPERAND (arg0
, 0);
10893 imag0
= TREE_OPERAND (arg0
, 1);
10897 real0
= TREE_REALPART (arg0
);
10898 imag0
= TREE_IMAGPART (arg0
);
10901 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10903 real1
= TREE_OPERAND (arg1
, 0);
10904 imag1
= TREE_OPERAND (arg1
, 1);
10908 real1
= TREE_REALPART (arg1
);
10909 imag1
= TREE_IMAGPART (arg1
);
10912 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10913 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10915 if (integer_zerop (rcond
))
10917 if (code
== EQ_EXPR
)
10918 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10920 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10924 if (code
== NE_EXPR
)
10925 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10927 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10931 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10932 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10934 if (integer_zerop (icond
))
10936 if (code
== EQ_EXPR
)
10937 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10939 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10943 if (code
== NE_EXPR
)
10944 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10946 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
10957 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10958 if (tem
!= NULL_TREE
)
10961 /* Transform comparisons of the form X +- C CMP X. */
10962 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
10963 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
10964 && ((TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
10965 && !HONOR_SNANS (arg0
))
10966 || (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10967 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))))
10969 tree arg01
= TREE_OPERAND (arg0
, 1);
10970 enum tree_code code0
= TREE_CODE (arg0
);
10973 if (TREE_CODE (arg01
) == REAL_CST
)
10974 is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
10976 is_positive
= tree_int_cst_sgn (arg01
);
10978 /* (X - c) > X becomes false. */
10979 if (code
== GT_EXPR
10980 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
10981 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
10983 if (TREE_CODE (arg01
) == INTEGER_CST
10984 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
10985 fold_overflow_warning (("assuming signed overflow does not "
10986 "occur when assuming that (X - c) > X "
10987 "is always false"),
10988 WARN_STRICT_OVERFLOW_ALL
);
10989 return constant_boolean_node (0, type
);
10992 /* Likewise (X + c) < X becomes false. */
10993 if (code
== LT_EXPR
10994 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
10995 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
10997 if (TREE_CODE (arg01
) == INTEGER_CST
10998 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
10999 fold_overflow_warning (("assuming signed overflow does not "
11000 "occur when assuming that "
11001 "(X + c) < X is always false"),
11002 WARN_STRICT_OVERFLOW_ALL
);
11003 return constant_boolean_node (0, type
);
11006 /* Convert (X - c) <= X to true. */
11007 if (!HONOR_NANS (arg1
)
11009 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11010 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11012 if (TREE_CODE (arg01
) == INTEGER_CST
11013 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11014 fold_overflow_warning (("assuming signed overflow does not "
11015 "occur when assuming that "
11016 "(X - c) <= X is always true"),
11017 WARN_STRICT_OVERFLOW_ALL
);
11018 return constant_boolean_node (1, type
);
11021 /* Convert (X + c) >= X to true. */
11022 if (!HONOR_NANS (arg1
)
11024 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11025 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11027 if (TREE_CODE (arg01
) == INTEGER_CST
11028 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11029 fold_overflow_warning (("assuming signed overflow does not "
11030 "occur when assuming that "
11031 "(X + c) >= X is always true"),
11032 WARN_STRICT_OVERFLOW_ALL
);
11033 return constant_boolean_node (1, type
);
11036 if (TREE_CODE (arg01
) == INTEGER_CST
)
11038 /* Convert X + c > X and X - c < X to true for integers. */
11039 if (code
== GT_EXPR
11040 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
11041 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
11043 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11044 fold_overflow_warning (("assuming signed overflow does "
11045 "not occur when assuming that "
11046 "(X + c) > X is always true"),
11047 WARN_STRICT_OVERFLOW_ALL
);
11048 return constant_boolean_node (1, type
);
11051 if (code
== LT_EXPR
11052 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
11053 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
11055 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11056 fold_overflow_warning (("assuming signed overflow does "
11057 "not occur when assuming that "
11058 "(X - c) < X is always true"),
11059 WARN_STRICT_OVERFLOW_ALL
);
11060 return constant_boolean_node (1, type
);
11063 /* Convert X + c <= X and X - c >= X to false for integers. */
11064 if (code
== LE_EXPR
11065 && ((code0
== PLUS_EXPR
&& is_positive
> 0)
11066 || (code0
== MINUS_EXPR
&& is_positive
< 0)))
11068 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11069 fold_overflow_warning (("assuming signed overflow does "
11070 "not occur when assuming that "
11071 "(X + c) <= X is always false"),
11072 WARN_STRICT_OVERFLOW_ALL
);
11073 return constant_boolean_node (0, type
);
11076 if (code
== GE_EXPR
11077 && ((code0
== MINUS_EXPR
&& is_positive
> 0)
11078 || (code0
== PLUS_EXPR
&& is_positive
< 0)))
11080 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1
)))
11081 fold_overflow_warning (("assuming signed overflow does "
11082 "not occur when assuming that "
11083 "(X - c) >= X is always false"),
11084 WARN_STRICT_OVERFLOW_ALL
);
11085 return constant_boolean_node (0, type
);
11090 /* If we are comparing an ABS_EXPR with a constant, we can
11091 convert all the cases into explicit comparisons, but they may
11092 well not be faster than doing the ABS and one comparison.
11093 But ABS (X) <= C is a range comparison, which becomes a subtraction
11094 and a comparison, and is probably faster. */
11095 if (code
== LE_EXPR
11096 && TREE_CODE (arg1
) == INTEGER_CST
11097 && TREE_CODE (arg0
) == ABS_EXPR
11098 && ! TREE_SIDE_EFFECTS (arg0
)
11099 && (0 != (tem
= negate_expr (arg1
)))
11100 && TREE_CODE (tem
) == INTEGER_CST
11101 && !TREE_OVERFLOW (tem
))
11102 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11103 build2 (GE_EXPR
, type
,
11104 TREE_OPERAND (arg0
, 0), tem
),
11105 build2 (LE_EXPR
, type
,
11106 TREE_OPERAND (arg0
, 0), arg1
));
11108 /* Convert ABS_EXPR<x> >= 0 to true. */
11109 strict_overflow_p
= false;
11110 if (code
== GE_EXPR
11111 && (integer_zerop (arg1
)
11112 || (! HONOR_NANS (arg0
)
11113 && real_zerop (arg1
)))
11114 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11116 if (strict_overflow_p
)
11117 fold_overflow_warning (("assuming signed overflow does not occur "
11118 "when simplifying comparison of "
11119 "absolute value and zero"),
11120 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11121 return omit_one_operand_loc (loc
, type
,
11122 constant_boolean_node (true, type
),
11126 /* Convert ABS_EXPR<x> < 0 to false. */
11127 strict_overflow_p
= false;
11128 if (code
== LT_EXPR
11129 && (integer_zerop (arg1
) || real_zerop (arg1
))
11130 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11132 if (strict_overflow_p
)
11133 fold_overflow_warning (("assuming signed overflow does not occur "
11134 "when simplifying comparison of "
11135 "absolute value and zero"),
11136 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11137 return omit_one_operand_loc (loc
, type
,
11138 constant_boolean_node (false, type
),
11142 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11143 and similarly for >= into !=. */
11144 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11145 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11146 && TREE_CODE (arg1
) == LSHIFT_EXPR
11147 && integer_onep (TREE_OPERAND (arg1
, 0)))
11148 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11149 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11150 TREE_OPERAND (arg1
, 1)),
11151 build_zero_cst (TREE_TYPE (arg0
)));
11153 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11154 otherwise Y might be >= # of bits in X's type and thus e.g.
11155 (unsigned char) (1 << Y) for Y 15 might be 0.
11156 If the cast is widening, then 1 << Y should have unsigned type,
11157 otherwise if Y is number of bits in the signed shift type minus 1,
11158 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11159 31 might be 0xffffffff80000000. */
11160 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11161 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11162 && CONVERT_EXPR_P (arg1
)
11163 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11164 && (element_precision (TREE_TYPE (arg1
))
11165 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11166 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11167 || (element_precision (TREE_TYPE (arg1
))
11168 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11169 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11171 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11172 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11173 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11174 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11175 build_zero_cst (TREE_TYPE (arg0
)));
11180 case UNORDERED_EXPR
:
11188 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11190 tree targ0
= strip_float_extensions (arg0
);
11191 tree targ1
= strip_float_extensions (arg1
);
11192 tree newtype
= TREE_TYPE (targ0
);
11194 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11195 newtype
= TREE_TYPE (targ1
);
11197 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11198 return fold_build2_loc (loc
, code
, type
,
11199 fold_convert_loc (loc
, newtype
, targ0
),
11200 fold_convert_loc (loc
, newtype
, targ1
));
11205 case COMPOUND_EXPR
:
11206 /* When pedantic, a compound expression can be neither an lvalue
11207 nor an integer constant expression. */
11208 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11210 /* Don't let (0, 0) be null pointer constant. */
11211 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11212 : fold_convert_loc (loc
, type
, arg1
);
11213 return pedantic_non_lvalue_loc (loc
, tem
);
11216 /* An ASSERT_EXPR should never be passed to fold_binary. */
11217 gcc_unreachable ();
11221 } /* switch (code) */
11224 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11225 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11229 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
11231 switch (TREE_CODE (*tp
))
11237 *walk_subtrees
= 0;
11246 /* Return whether the sub-tree ST contains a label which is accessible from
11247 outside the sub-tree. */
11250 contains_label_p (tree st
)
11253 (walk_tree_without_duplicates (&st
, contains_label_1
, NULL
) != NULL_TREE
);
11256 /* Fold a ternary expression of code CODE and type TYPE with operands
11257 OP0, OP1, and OP2. Return the folded expression if folding is
11258 successful. Otherwise, return NULL_TREE. */
11261 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11262 tree op0
, tree op1
, tree op2
)
11265 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11266 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11268 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11269 && TREE_CODE_LENGTH (code
) == 3);
11271 /* If this is a commutative operation, and OP0 is a constant, move it
11272 to OP1 to reduce the number of tests below. */
11273 if (commutative_ternary_tree_code (code
)
11274 && tree_swap_operands_p (op0
, op1
, true))
11275 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11277 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11281 /* Strip any conversions that don't change the mode. This is safe
11282 for every expression, except for a comparison expression because
11283 its signedness is derived from its operands. So, in the latter
11284 case, only strip conversions that don't change the signedness.
11286 Note that this is done as an internal manipulation within the
11287 constant folder, in order to find the simplest representation of
11288 the arguments so that their form can be studied. In any cases,
11289 the appropriate type conversions should be put back in the tree
11290 that will get out of the constant folder. */
11311 case COMPONENT_REF
:
11312 if (TREE_CODE (arg0
) == CONSTRUCTOR
11313 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11315 unsigned HOST_WIDE_INT idx
;
11317 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11324 case VEC_COND_EXPR
:
11325 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11326 so all simple results must be passed through pedantic_non_lvalue. */
11327 if (TREE_CODE (arg0
) == INTEGER_CST
)
11329 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11330 tem
= integer_zerop (arg0
) ? op2
: op1
;
11331 /* Only optimize constant conditions when the selected branch
11332 has the same type as the COND_EXPR. This avoids optimizing
11333 away "c ? x : throw", where the throw has a void type.
11334 Avoid throwing away that operand which contains label. */
11335 if ((!TREE_SIDE_EFFECTS (unused_op
)
11336 || !contains_label_p (unused_op
))
11337 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11338 || VOID_TYPE_P (type
)))
11339 return pedantic_non_lvalue_loc (loc
, tem
);
11342 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11344 if ((TREE_CODE (arg1
) == VECTOR_CST
11345 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11346 && (TREE_CODE (arg2
) == VECTOR_CST
11347 || TREE_CODE (arg2
) == CONSTRUCTOR
))
11349 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
;
11350 unsigned char *sel
= XALLOCAVEC (unsigned char, nelts
);
11351 gcc_assert (nelts
== VECTOR_CST_NELTS (arg0
));
11352 for (i
= 0; i
< nelts
; i
++)
11354 tree val
= VECTOR_CST_ELT (arg0
, i
);
11355 if (integer_all_onesp (val
))
11357 else if (integer_zerop (val
))
11358 sel
[i
] = nelts
+ i
;
11359 else /* Currently unreachable. */
11362 tree t
= fold_vec_perm (type
, arg1
, arg2
, sel
);
11363 if (t
!= NULL_TREE
)
11368 /* If we have A op B ? A : C, we may be able to convert this to a
11369 simpler expression, depending on the operation and the values
11370 of B and C. Signed zeros prevent all of these transformations,
11371 for reasons given above each one.
11373 Also try swapping the arguments and inverting the conditional. */
11374 if (COMPARISON_CLASS_P (arg0
)
11375 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
11376 arg1
, TREE_OPERAND (arg0
, 1))
11377 && !HONOR_SIGNED_ZEROS (element_mode (arg1
)))
11379 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11384 if (COMPARISON_CLASS_P (arg0
)
11385 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0),
11387 TREE_OPERAND (arg0
, 1))
11388 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11390 location_t loc0
= expr_location_or (arg0
, loc
);
11391 tem
= fold_invert_truthvalue (loc0
, arg0
);
11392 if (tem
&& COMPARISON_CLASS_P (tem
))
11394 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11400 /* If the second operand is simpler than the third, swap them
11401 since that produces better jump optimization results. */
11402 if (truth_value_p (TREE_CODE (arg0
))
11403 && tree_swap_operands_p (op1
, op2
, false))
11405 location_t loc0
= expr_location_or (arg0
, loc
);
11406 /* See if this can be inverted. If it can't, possibly because
11407 it was a floating-point inequality comparison, don't do
11409 tem
= fold_invert_truthvalue (loc0
, arg0
);
11411 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11414 /* Convert A ? 1 : 0 to simply A. */
11415 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11416 : (integer_onep (op1
)
11417 && !VECTOR_TYPE_P (type
)))
11418 && integer_zerop (op2
)
11419 /* If we try to convert OP0 to our type, the
11420 call to fold will try to move the conversion inside
11421 a COND, which will recurse. In that case, the COND_EXPR
11422 is probably the best choice, so leave it alone. */
11423 && type
== TREE_TYPE (arg0
))
11424 return pedantic_non_lvalue_loc (loc
, arg0
);
11426 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11427 over COND_EXPR in cases such as floating point comparisons. */
11428 if (integer_zerop (op1
)
11429 && code
== COND_EXPR
11430 && integer_onep (op2
)
11431 && !VECTOR_TYPE_P (type
)
11432 && truth_value_p (TREE_CODE (arg0
)))
11433 return pedantic_non_lvalue_loc (loc
,
11434 fold_convert_loc (loc
, type
,
11435 invert_truthvalue_loc (loc
,
11438 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11439 if (TREE_CODE (arg0
) == LT_EXPR
11440 && integer_zerop (TREE_OPERAND (arg0
, 1))
11441 && integer_zerop (op2
)
11442 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11444 /* sign_bit_p looks through both zero and sign extensions,
11445 but for this optimization only sign extensions are
11447 tree tem2
= TREE_OPERAND (arg0
, 0);
11448 while (tem
!= tem2
)
11450 if (TREE_CODE (tem2
) != NOP_EXPR
11451 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11456 tem2
= TREE_OPERAND (tem2
, 0);
11458 /* sign_bit_p only checks ARG1 bits within A's precision.
11459 If <sign bit of A> has wider type than A, bits outside
11460 of A's precision in <sign bit of A> need to be checked.
11461 If they are all 0, this optimization needs to be done
11462 in unsigned A's type, if they are all 1 in signed A's type,
11463 otherwise this can't be done. */
11465 && TYPE_PRECISION (TREE_TYPE (tem
))
11466 < TYPE_PRECISION (TREE_TYPE (arg1
))
11467 && TYPE_PRECISION (TREE_TYPE (tem
))
11468 < TYPE_PRECISION (type
))
11470 int inner_width
, outer_width
;
11473 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11474 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11475 if (outer_width
> TYPE_PRECISION (type
))
11476 outer_width
= TYPE_PRECISION (type
);
11478 wide_int mask
= wi::shifted_mask
11479 (inner_width
, outer_width
- inner_width
, false,
11480 TYPE_PRECISION (TREE_TYPE (arg1
)));
11482 wide_int common
= mask
& arg1
;
11483 if (common
== mask
)
11485 tem_type
= signed_type_for (TREE_TYPE (tem
));
11486 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11488 else if (common
== 0)
11490 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11491 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11499 fold_convert_loc (loc
, type
,
11500 fold_build2_loc (loc
, BIT_AND_EXPR
,
11501 TREE_TYPE (tem
), tem
,
11502 fold_convert_loc (loc
,
11507 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11508 already handled above. */
11509 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11510 && integer_onep (TREE_OPERAND (arg0
, 1))
11511 && integer_zerop (op2
)
11512 && integer_pow2p (arg1
))
11514 tree tem
= TREE_OPERAND (arg0
, 0);
11516 if (TREE_CODE (tem
) == RSHIFT_EXPR
11517 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11518 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
) ==
11519 tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11520 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11521 TREE_OPERAND (tem
, 0), arg1
);
11524 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11525 is probably obsolete because the first operand should be a
11526 truth value (that's why we have the two cases above), but let's
11527 leave it in until we can confirm this for all front-ends. */
11528 if (integer_zerop (op2
)
11529 && TREE_CODE (arg0
) == NE_EXPR
11530 && integer_zerop (TREE_OPERAND (arg0
, 1))
11531 && integer_pow2p (arg1
)
11532 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11533 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11534 arg1
, OEP_ONLY_CONST
))
11535 return pedantic_non_lvalue_loc (loc
,
11536 fold_convert_loc (loc
, type
,
11537 TREE_OPERAND (arg0
, 0)));
11539 /* Disable the transformations below for vectors, since
11540 fold_binary_op_with_conditional_arg may undo them immediately,
11541 yielding an infinite loop. */
11542 if (code
== VEC_COND_EXPR
)
11545 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11546 if (integer_zerop (op2
)
11547 && truth_value_p (TREE_CODE (arg0
))
11548 && truth_value_p (TREE_CODE (arg1
))
11549 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11550 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11551 : TRUTH_ANDIF_EXPR
,
11552 type
, fold_convert_loc (loc
, type
, arg0
), arg1
);
11554 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11555 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11556 && truth_value_p (TREE_CODE (arg0
))
11557 && truth_value_p (TREE_CODE (arg1
))
11558 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11560 location_t loc0
= expr_location_or (arg0
, loc
);
11561 /* Only perform transformation if ARG0 is easily inverted. */
11562 tem
= fold_invert_truthvalue (loc0
, arg0
);
11564 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11567 type
, fold_convert_loc (loc
, type
, tem
),
11571 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11572 if (integer_zerop (arg1
)
11573 && truth_value_p (TREE_CODE (arg0
))
11574 && truth_value_p (TREE_CODE (op2
))
11575 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11577 location_t loc0
= expr_location_or (arg0
, loc
);
11578 /* Only perform transformation if ARG0 is easily inverted. */
11579 tem
= fold_invert_truthvalue (loc0
, arg0
);
11581 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11582 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11583 type
, fold_convert_loc (loc
, type
, tem
),
11587 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11588 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11589 && truth_value_p (TREE_CODE (arg0
))
11590 && truth_value_p (TREE_CODE (op2
))
11591 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11592 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11593 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11594 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11599 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11600 of fold_ternary on them. */
11601 gcc_unreachable ();
11603 case BIT_FIELD_REF
:
11604 if (TREE_CODE (arg0
) == VECTOR_CST
11605 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11606 || (TREE_CODE (type
) == VECTOR_TYPE
11607 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
)))))
11609 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11610 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11611 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11612 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11615 && (idx
% width
) == 0
11616 && (n
% width
) == 0
11617 && ((idx
+ n
) / width
) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)))
11622 if (TREE_CODE (arg0
) == VECTOR_CST
)
11625 return VECTOR_CST_ELT (arg0
, idx
);
11627 tree
*vals
= XALLOCAVEC (tree
, n
);
11628 for (unsigned i
= 0; i
< n
; ++i
)
11629 vals
[i
] = VECTOR_CST_ELT (arg0
, idx
+ i
);
11630 return build_vector (type
, vals
);
11635 /* On constants we can use native encode/interpret to constant
11636 fold (nearly) all BIT_FIELD_REFs. */
11637 if (CONSTANT_CLASS_P (arg0
)
11638 && can_native_interpret_type_p (type
)
11639 && BITS_PER_UNIT
== 8)
11641 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11642 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11643 /* Limit us to a reasonable amount of work. To relax the
11644 other limitations we need bit-shifting of the buffer
11645 and rounding up the size. */
11646 if (bitpos
% BITS_PER_UNIT
== 0
11647 && bitsize
% BITS_PER_UNIT
== 0
11648 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11650 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11651 unsigned HOST_WIDE_INT len
11652 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11653 bitpos
/ BITS_PER_UNIT
);
11655 && len
* BITS_PER_UNIT
>= bitsize
)
11657 tree v
= native_interpret_expr (type
, b
,
11658 bitsize
/ BITS_PER_UNIT
);
11668 /* For integers we can decompose the FMA if possible. */
11669 if (TREE_CODE (arg0
) == INTEGER_CST
11670 && TREE_CODE (arg1
) == INTEGER_CST
)
11671 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
11672 const_binop (MULT_EXPR
, arg0
, arg1
), arg2
);
11673 if (integer_zerop (arg2
))
11674 return fold_build2_loc (loc
, MULT_EXPR
, type
, arg0
, arg1
);
11676 return fold_fma (loc
, type
, arg0
, arg1
, arg2
);
11678 case VEC_PERM_EXPR
:
11679 if (TREE_CODE (arg2
) == VECTOR_CST
)
11681 unsigned int nelts
= TYPE_VECTOR_SUBPARTS (type
), i
, mask
, mask2
;
11682 unsigned char *sel
= XALLOCAVEC (unsigned char, 2 * nelts
);
11683 unsigned char *sel2
= sel
+ nelts
;
11684 bool need_mask_canon
= false;
11685 bool need_mask_canon2
= false;
11686 bool all_in_vec0
= true;
11687 bool all_in_vec1
= true;
11688 bool maybe_identity
= true;
11689 bool single_arg
= (op0
== op1
);
11690 bool changed
= false;
11692 mask2
= 2 * nelts
- 1;
11693 mask
= single_arg
? (nelts
- 1) : mask2
;
11694 gcc_assert (nelts
== VECTOR_CST_NELTS (arg2
));
11695 for (i
= 0; i
< nelts
; i
++)
11697 tree val
= VECTOR_CST_ELT (arg2
, i
);
11698 if (TREE_CODE (val
) != INTEGER_CST
)
11701 /* Make sure that the perm value is in an acceptable
11704 need_mask_canon
|= wi::gtu_p (t
, mask
);
11705 need_mask_canon2
|= wi::gtu_p (t
, mask2
);
11706 sel
[i
] = t
.to_uhwi () & mask
;
11707 sel2
[i
] = t
.to_uhwi () & mask2
;
11709 if (sel
[i
] < nelts
)
11710 all_in_vec1
= false;
11712 all_in_vec0
= false;
11714 if ((sel
[i
] & (nelts
-1)) != i
)
11715 maybe_identity
= false;
11718 if (maybe_identity
)
11728 else if (all_in_vec1
)
11731 for (i
= 0; i
< nelts
; i
++)
11733 need_mask_canon
= true;
11736 if ((TREE_CODE (op0
) == VECTOR_CST
11737 || TREE_CODE (op0
) == CONSTRUCTOR
)
11738 && (TREE_CODE (op1
) == VECTOR_CST
11739 || TREE_CODE (op1
) == CONSTRUCTOR
))
11741 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11742 if (t
!= NULL_TREE
)
11746 if (op0
== op1
&& !single_arg
)
11749 /* Some targets are deficient and fail to expand a single
11750 argument permutation while still allowing an equivalent
11751 2-argument version. */
11752 if (need_mask_canon
&& arg2
== op2
11753 && !can_vec_perm_p (TYPE_MODE (type
), false, sel
)
11754 && can_vec_perm_p (TYPE_MODE (type
), false, sel2
))
11756 need_mask_canon
= need_mask_canon2
;
11760 if (need_mask_canon
&& arg2
== op2
)
11762 tree
*tsel
= XALLOCAVEC (tree
, nelts
);
11763 tree eltype
= TREE_TYPE (TREE_TYPE (arg2
));
11764 for (i
= 0; i
< nelts
; i
++)
11765 tsel
[i
] = build_int_cst (eltype
, sel
[i
]);
11766 op2
= build_vector (TREE_TYPE (arg2
), tsel
);
11771 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11775 case BIT_INSERT_EXPR
:
11776 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11777 if (TREE_CODE (arg0
) == INTEGER_CST
11778 && TREE_CODE (arg1
) == INTEGER_CST
)
11780 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11781 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11782 wide_int tem
= wi::bit_and (arg0
,
11783 wi::shifted_mask (bitpos
, bitsize
, true,
11784 TYPE_PRECISION (type
)));
11786 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11788 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11790 else if (TREE_CODE (arg0
) == VECTOR_CST
11791 && CONSTANT_CLASS_P (arg1
)
11792 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11795 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11796 unsigned HOST_WIDE_INT elsize
11797 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11798 if (bitpos
% elsize
== 0)
11800 unsigned k
= bitpos
/ elsize
;
11801 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11805 tree
*elts
= XALLOCAVEC (tree
, TYPE_VECTOR_SUBPARTS (type
));
11806 memcpy (elts
, VECTOR_CST_ELTS (arg0
),
11807 sizeof (tree
) * TYPE_VECTOR_SUBPARTS (type
));
11809 return build_vector (type
, elts
);
11817 } /* switch (code) */
11820 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11821 of an array (or vector). */
11824 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11826 tree index_type
= NULL_TREE
;
11827 offset_int low_bound
= 0;
11829 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11831 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11832 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11834 /* Static constructors for variably sized objects makes no sense. */
11835 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11836 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11837 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11842 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11843 TYPE_SIGN (index_type
));
11845 offset_int index
= low_bound
- 1;
11847 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11848 TYPE_SIGN (index_type
));
11850 offset_int max_index
;
11851 unsigned HOST_WIDE_INT cnt
;
11854 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11856 /* Array constructor might explicitly set index, or specify a range,
11857 or leave index NULL meaning that it is next index after previous
11861 if (TREE_CODE (cfield
) == INTEGER_CST
)
11862 max_index
= index
= wi::to_offset (cfield
);
11865 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11866 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11867 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11874 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11875 TYPE_SIGN (index_type
));
11879 /* Do we have match? */
11880 if (wi::cmpu (access_index
, index
) >= 0
11881 && wi::cmpu (access_index
, max_index
) <= 0)
11887 /* Perform constant folding and related simplification of EXPR.
11888 The related simplifications include x*1 => x, x*0 => 0, etc.,
11889 and application of the associative law.
11890 NOP_EXPR conversions may be removed freely (as long as we
11891 are careful not to change the type of the overall expression).
11892 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11893 but we can constant-fold them if they have constant operands. */
11895 #ifdef ENABLE_FOLD_CHECKING
11896 # define fold(x) fold_1 (x)
11897 static tree
fold_1 (tree
);
11903 const tree t
= expr
;
11904 enum tree_code code
= TREE_CODE (t
);
11905 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11907 location_t loc
= EXPR_LOCATION (expr
);
11909 /* Return right away if a constant. */
11910 if (kind
== tcc_constant
)
11913 /* CALL_EXPR-like objects with variable numbers of operands are
11914 treated specially. */
11915 if (kind
== tcc_vl_exp
)
11917 if (code
== CALL_EXPR
)
11919 tem
= fold_call_expr (loc
, expr
, false);
11920 return tem
? tem
: expr
;
11925 if (IS_EXPR_CODE_CLASS (kind
))
11927 tree type
= TREE_TYPE (t
);
11928 tree op0
, op1
, op2
;
11930 switch (TREE_CODE_LENGTH (code
))
11933 op0
= TREE_OPERAND (t
, 0);
11934 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11935 return tem
? tem
: expr
;
11937 op0
= TREE_OPERAND (t
, 0);
11938 op1
= TREE_OPERAND (t
, 1);
11939 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11940 return tem
? tem
: expr
;
11942 op0
= TREE_OPERAND (t
, 0);
11943 op1
= TREE_OPERAND (t
, 1);
11944 op2
= TREE_OPERAND (t
, 2);
11945 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
11946 return tem
? tem
: expr
;
11956 tree op0
= TREE_OPERAND (t
, 0);
11957 tree op1
= TREE_OPERAND (t
, 1);
11959 if (TREE_CODE (op1
) == INTEGER_CST
11960 && TREE_CODE (op0
) == CONSTRUCTOR
11961 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
11963 tree val
= get_array_ctor_element_at_index (op0
,
11964 wi::to_offset (op1
));
11972 /* Return a VECTOR_CST if possible. */
11975 tree type
= TREE_TYPE (t
);
11976 if (TREE_CODE (type
) != VECTOR_TYPE
)
11981 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
11982 if (! CONSTANT_CLASS_P (val
))
11985 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
11989 return fold (DECL_INITIAL (t
));
11993 } /* switch (code) */
11996 #ifdef ENABLE_FOLD_CHECKING
11999 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12000 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12001 static void fold_check_failed (const_tree
, const_tree
);
12002 void print_fold_checksum (const_tree
);
12004 /* When --enable-checking=fold, compute a digest of expr before
12005 and after actual fold call to see if fold did not accidentally
12006 change original expr. */
12012 struct md5_ctx ctx
;
12013 unsigned char checksum_before
[16], checksum_after
[16];
12014 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12016 md5_init_ctx (&ctx
);
12017 fold_checksum_tree (expr
, &ctx
, &ht
);
12018 md5_finish_ctx (&ctx
, checksum_before
);
12021 ret
= fold_1 (expr
);
12023 md5_init_ctx (&ctx
);
12024 fold_checksum_tree (expr
, &ctx
, &ht
);
12025 md5_finish_ctx (&ctx
, checksum_after
);
12027 if (memcmp (checksum_before
, checksum_after
, 16))
12028 fold_check_failed (expr
, ret
);
12034 print_fold_checksum (const_tree expr
)
12036 struct md5_ctx ctx
;
12037 unsigned char checksum
[16], cnt
;
12038 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12040 md5_init_ctx (&ctx
);
12041 fold_checksum_tree (expr
, &ctx
, &ht
);
12042 md5_finish_ctx (&ctx
, checksum
);
12043 for (cnt
= 0; cnt
< 16; ++cnt
)
12044 fprintf (stderr
, "%02x", checksum
[cnt
]);
12045 putc ('\n', stderr
);
12049 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12051 internal_error ("fold check: original tree changed by fold");
12055 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12056 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12058 const tree_node
**slot
;
12059 enum tree_code code
;
12060 union tree_node buf
;
12066 slot
= ht
->find_slot (expr
, INSERT
);
12070 code
= TREE_CODE (expr
);
12071 if (TREE_CODE_CLASS (code
) == tcc_declaration
12072 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12074 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12075 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12076 SET_DECL_ASSEMBLER_NAME ((tree
)&buf
, NULL
);
12077 buf
.decl_with_vis
.symtab_node
= NULL
;
12078 expr
= (tree
) &buf
;
12080 else if (TREE_CODE_CLASS (code
) == tcc_type
12081 && (TYPE_POINTER_TO (expr
)
12082 || TYPE_REFERENCE_TO (expr
)
12083 || TYPE_CACHED_VALUES_P (expr
)
12084 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12085 || TYPE_NEXT_VARIANT (expr
)
12086 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12088 /* Allow these fields to be modified. */
12090 memcpy ((char *) &buf
, expr
, tree_size (expr
));
12091 expr
= tmp
= (tree
) &buf
;
12092 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12093 TYPE_POINTER_TO (tmp
) = NULL
;
12094 TYPE_REFERENCE_TO (tmp
) = NULL
;
12095 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12096 TYPE_ALIAS_SET (tmp
) = -1;
12097 if (TYPE_CACHED_VALUES_P (tmp
))
12099 TYPE_CACHED_VALUES_P (tmp
) = 0;
12100 TYPE_CACHED_VALUES (tmp
) = NULL
;
12103 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12104 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12105 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12106 if (TREE_CODE_CLASS (code
) != tcc_type
12107 && TREE_CODE_CLASS (code
) != tcc_declaration
12108 && code
!= TREE_LIST
12109 && code
!= SSA_NAME
12110 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12111 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12112 switch (TREE_CODE_CLASS (code
))
12118 md5_process_bytes (TREE_STRING_POINTER (expr
),
12119 TREE_STRING_LENGTH (expr
), ctx
);
12122 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12123 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12126 for (i
= 0; i
< (int) VECTOR_CST_NELTS (expr
); ++i
)
12127 fold_checksum_tree (VECTOR_CST_ELT (expr
, i
), ctx
, ht
);
12133 case tcc_exceptional
:
12137 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12138 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12139 expr
= TREE_CHAIN (expr
);
12140 goto recursive_label
;
12143 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12144 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12150 case tcc_expression
:
12151 case tcc_reference
:
12152 case tcc_comparison
:
12155 case tcc_statement
:
12157 len
= TREE_OPERAND_LENGTH (expr
);
12158 for (i
= 0; i
< len
; ++i
)
12159 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12161 case tcc_declaration
:
12162 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12163 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12164 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12166 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12167 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12168 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12169 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12170 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12173 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12175 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12177 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12178 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12180 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12184 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12185 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12186 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12187 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12188 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12189 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12190 if (INTEGRAL_TYPE_P (expr
)
12191 || SCALAR_FLOAT_TYPE_P (expr
))
12193 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12194 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12196 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12197 if (TREE_CODE (expr
) == RECORD_TYPE
12198 || TREE_CODE (expr
) == UNION_TYPE
12199 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12200 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12201 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12208 /* Helper function for outputting the checksum of a tree T. When
12209 debugging with gdb, you can "define mynext" to be "next" followed
12210 by "call debug_fold_checksum (op0)", then just trace down till the
12213 DEBUG_FUNCTION
void
12214 debug_fold_checksum (const_tree t
)
12217 unsigned char checksum
[16];
12218 struct md5_ctx ctx
;
12219 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12221 md5_init_ctx (&ctx
);
12222 fold_checksum_tree (t
, &ctx
, &ht
);
12223 md5_finish_ctx (&ctx
, checksum
);
12226 for (i
= 0; i
< 16; i
++)
12227 fprintf (stderr
, "%d ", checksum
[i
]);
12229 fprintf (stderr
, "\n");
12234 /* Fold a unary tree expression with code CODE of type TYPE with an
12235 operand OP0. LOC is the location of the resulting expression.
12236 Return a folded expression if successful. Otherwise, return a tree
12237 expression with code CODE of type TYPE with an operand OP0. */
12240 fold_build1_stat_loc (location_t loc
,
12241 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12244 #ifdef ENABLE_FOLD_CHECKING
12245 unsigned char checksum_before
[16], checksum_after
[16];
12246 struct md5_ctx ctx
;
12247 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12249 md5_init_ctx (&ctx
);
12250 fold_checksum_tree (op0
, &ctx
, &ht
);
12251 md5_finish_ctx (&ctx
, checksum_before
);
12255 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12257 tem
= build1_stat_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12259 #ifdef ENABLE_FOLD_CHECKING
12260 md5_init_ctx (&ctx
);
12261 fold_checksum_tree (op0
, &ctx
, &ht
);
12262 md5_finish_ctx (&ctx
, checksum_after
);
12264 if (memcmp (checksum_before
, checksum_after
, 16))
12265 fold_check_failed (op0
, tem
);
12270 /* Fold a binary tree expression with code CODE of type TYPE with
12271 operands OP0 and OP1. LOC is the location of the resulting
12272 expression. Return a folded expression if successful. Otherwise,
12273 return a tree expression with code CODE of type TYPE with operands
12277 fold_build2_stat_loc (location_t loc
,
12278 enum tree_code code
, tree type
, tree op0
, tree op1
12282 #ifdef ENABLE_FOLD_CHECKING
12283 unsigned char checksum_before_op0
[16],
12284 checksum_before_op1
[16],
12285 checksum_after_op0
[16],
12286 checksum_after_op1
[16];
12287 struct md5_ctx ctx
;
12288 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12290 md5_init_ctx (&ctx
);
12291 fold_checksum_tree (op0
, &ctx
, &ht
);
12292 md5_finish_ctx (&ctx
, checksum_before_op0
);
12295 md5_init_ctx (&ctx
);
12296 fold_checksum_tree (op1
, &ctx
, &ht
);
12297 md5_finish_ctx (&ctx
, checksum_before_op1
);
12301 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12303 tem
= build2_stat_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12305 #ifdef ENABLE_FOLD_CHECKING
12306 md5_init_ctx (&ctx
);
12307 fold_checksum_tree (op0
, &ctx
, &ht
);
12308 md5_finish_ctx (&ctx
, checksum_after_op0
);
12311 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12312 fold_check_failed (op0
, tem
);
12314 md5_init_ctx (&ctx
);
12315 fold_checksum_tree (op1
, &ctx
, &ht
);
12316 md5_finish_ctx (&ctx
, checksum_after_op1
);
12318 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12319 fold_check_failed (op1
, tem
);
12324 /* Fold a ternary tree expression with code CODE of type TYPE with
12325 operands OP0, OP1, and OP2. Return a folded expression if
12326 successful. Otherwise, return a tree expression with code CODE of
12327 type TYPE with operands OP0, OP1, and OP2. */
12330 fold_build3_stat_loc (location_t loc
, enum tree_code code
, tree type
,
12331 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12334 #ifdef ENABLE_FOLD_CHECKING
12335 unsigned char checksum_before_op0
[16],
12336 checksum_before_op1
[16],
12337 checksum_before_op2
[16],
12338 checksum_after_op0
[16],
12339 checksum_after_op1
[16],
12340 checksum_after_op2
[16];
12341 struct md5_ctx ctx
;
12342 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12344 md5_init_ctx (&ctx
);
12345 fold_checksum_tree (op0
, &ctx
, &ht
);
12346 md5_finish_ctx (&ctx
, checksum_before_op0
);
12349 md5_init_ctx (&ctx
);
12350 fold_checksum_tree (op1
, &ctx
, &ht
);
12351 md5_finish_ctx (&ctx
, checksum_before_op1
);
12354 md5_init_ctx (&ctx
);
12355 fold_checksum_tree (op2
, &ctx
, &ht
);
12356 md5_finish_ctx (&ctx
, checksum_before_op2
);
12360 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12361 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12363 tem
= build3_stat_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12365 #ifdef ENABLE_FOLD_CHECKING
12366 md5_init_ctx (&ctx
);
12367 fold_checksum_tree (op0
, &ctx
, &ht
);
12368 md5_finish_ctx (&ctx
, checksum_after_op0
);
12371 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12372 fold_check_failed (op0
, tem
);
12374 md5_init_ctx (&ctx
);
12375 fold_checksum_tree (op1
, &ctx
, &ht
);
12376 md5_finish_ctx (&ctx
, checksum_after_op1
);
12379 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12380 fold_check_failed (op1
, tem
);
12382 md5_init_ctx (&ctx
);
12383 fold_checksum_tree (op2
, &ctx
, &ht
);
12384 md5_finish_ctx (&ctx
, checksum_after_op2
);
12386 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12387 fold_check_failed (op2
, tem
);
12392 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12393 arguments in ARGARRAY, and a null static chain.
12394 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12395 of type TYPE from the given operands as constructed by build_call_array. */
12398 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12399 int nargs
, tree
*argarray
)
12402 #ifdef ENABLE_FOLD_CHECKING
12403 unsigned char checksum_before_fn
[16],
12404 checksum_before_arglist
[16],
12405 checksum_after_fn
[16],
12406 checksum_after_arglist
[16];
12407 struct md5_ctx ctx
;
12408 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12411 md5_init_ctx (&ctx
);
12412 fold_checksum_tree (fn
, &ctx
, &ht
);
12413 md5_finish_ctx (&ctx
, checksum_before_fn
);
12416 md5_init_ctx (&ctx
);
12417 for (i
= 0; i
< nargs
; i
++)
12418 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12419 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12423 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12425 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12427 #ifdef ENABLE_FOLD_CHECKING
12428 md5_init_ctx (&ctx
);
12429 fold_checksum_tree (fn
, &ctx
, &ht
);
12430 md5_finish_ctx (&ctx
, checksum_after_fn
);
12433 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12434 fold_check_failed (fn
, tem
);
12436 md5_init_ctx (&ctx
);
12437 for (i
= 0; i
< nargs
; i
++)
12438 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12439 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12441 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12442 fold_check_failed (NULL_TREE
, tem
);
12447 /* Perform constant folding and related simplification of initializer
12448 expression EXPR. These behave identically to "fold_buildN" but ignore
12449 potential run-time traps and exceptions that fold must preserve. */
12451 #define START_FOLD_INIT \
12452 int saved_signaling_nans = flag_signaling_nans;\
12453 int saved_trapping_math = flag_trapping_math;\
12454 int saved_rounding_math = flag_rounding_math;\
12455 int saved_trapv = flag_trapv;\
12456 int saved_folding_initializer = folding_initializer;\
12457 flag_signaling_nans = 0;\
12458 flag_trapping_math = 0;\
12459 flag_rounding_math = 0;\
12461 folding_initializer = 1;
12463 #define END_FOLD_INIT \
12464 flag_signaling_nans = saved_signaling_nans;\
12465 flag_trapping_math = saved_trapping_math;\
12466 flag_rounding_math = saved_rounding_math;\
12467 flag_trapv = saved_trapv;\
12468 folding_initializer = saved_folding_initializer;
12471 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12472 tree type
, tree op
)
12477 result
= fold_build1_loc (loc
, code
, type
, op
);
12484 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12485 tree type
, tree op0
, tree op1
)
12490 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12497 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12498 int nargs
, tree
*argarray
)
12503 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12509 #undef START_FOLD_INIT
12510 #undef END_FOLD_INIT
12512 /* Determine if first argument is a multiple of second argument. Return 0 if
12513 it is not, or we cannot easily determined it to be.
12515 An example of the sort of thing we care about (at this point; this routine
12516 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12517 fold cases do now) is discovering that
12519 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12525 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12527 This code also handles discovering that
12529 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12531 is a multiple of 8 so we don't have to worry about dealing with a
12532 possible remainder.
12534 Note that we *look* inside a SAVE_EXPR only to determine how it was
12535 calculated; it is not safe for fold to do much of anything else with the
12536 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12537 at run time. For example, the latter example above *cannot* be implemented
12538 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12539 evaluation time of the original SAVE_EXPR is not necessarily the same at
12540 the time the new expression is evaluated. The only optimization of this
12541 sort that would be valid is changing
12543 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12547 SAVE_EXPR (I) * SAVE_EXPR (J)
12549 (where the same SAVE_EXPR (J) is used in the original and the
12550 transformed version). */
12553 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12558 if (operand_equal_p (top
, bottom
, 0))
12561 if (TREE_CODE (type
) != INTEGER_TYPE
)
12564 switch (TREE_CODE (top
))
12567 /* Bitwise and provides a power of two multiple. If the mask is
12568 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12569 if (!integer_pow2p (bottom
))
12574 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12575 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12578 /* It is impossible to prove if op0 - op1 is multiple of bottom
12579 precisely, so be conservative here checking if both op0 and op1
12580 are multiple of bottom. Note we check the second operand first
12581 since it's usually simpler. */
12582 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12583 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12586 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12587 as op0 - 3 if the expression has unsigned type. For example,
12588 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12589 op1
= TREE_OPERAND (top
, 1);
12590 if (TYPE_UNSIGNED (type
)
12591 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12592 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12593 return (multiple_of_p (type
, op1
, bottom
)
12594 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12597 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12599 op1
= TREE_OPERAND (top
, 1);
12600 /* const_binop may not detect overflow correctly,
12601 so check for it explicitly here. */
12602 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)), op1
)
12603 && 0 != (t1
= fold_convert (type
,
12604 const_binop (LSHIFT_EXPR
,
12607 && !TREE_OVERFLOW (t1
))
12608 return multiple_of_p (type
, t1
, bottom
);
12613 /* Can't handle conversions from non-integral or wider integral type. */
12614 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12615 || (TYPE_PRECISION (type
)
12616 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12622 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12625 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12626 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12629 if (TREE_CODE (bottom
) != INTEGER_CST
12630 || integer_zerop (bottom
)
12631 || (TYPE_UNSIGNED (type
)
12632 && (tree_int_cst_sgn (top
) < 0
12633 || tree_int_cst_sgn (bottom
) < 0)))
12635 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12639 if (TREE_CODE (bottom
) == INTEGER_CST
12640 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12641 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12643 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12645 /* Check for special cases to see if top is defined as multiple
12648 top = (X & ~(bottom - 1) ; bottom is power of 2
12654 if (code
== BIT_AND_EXPR
12655 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12656 && TREE_CODE (op2
) == INTEGER_CST
12657 && integer_pow2p (bottom
)
12658 && wi::multiple_of_p (wi::to_widest (op2
),
12659 wi::to_widest (bottom
), UNSIGNED
))
12662 op1
= gimple_assign_rhs1 (stmt
);
12663 if (code
== MINUS_EXPR
12664 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12665 && TREE_CODE (op2
) == SSA_NAME
12666 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12667 && gimple_code (stmt
) == GIMPLE_ASSIGN
12668 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12669 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12670 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12681 #define tree_expr_nonnegative_warnv_p(X, Y) \
12682 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12684 #define RECURSE(X) \
12685 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12687 /* Return true if CODE or TYPE is known to be non-negative. */
12690 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12692 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12693 && truth_value_p (code
))
12694 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12695 have a signed:1 type (where the value is -1 and 0). */
12700 /* Return true if (CODE OP0) is known to be non-negative. If the return
12701 value is based on the assumption that signed overflow is undefined,
12702 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12703 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12706 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12707 bool *strict_overflow_p
, int depth
)
12709 if (TYPE_UNSIGNED (type
))
12715 /* We can't return 1 if flag_wrapv is set because
12716 ABS_EXPR<INT_MIN> = INT_MIN. */
12717 if (!ANY_INTEGRAL_TYPE_P (type
))
12719 if (TYPE_OVERFLOW_UNDEFINED (type
))
12721 *strict_overflow_p
= true;
12726 case NON_LVALUE_EXPR
:
12728 case FIX_TRUNC_EXPR
:
12729 return RECURSE (op0
);
12733 tree inner_type
= TREE_TYPE (op0
);
12734 tree outer_type
= type
;
12736 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12738 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12739 return RECURSE (op0
);
12740 if (INTEGRAL_TYPE_P (inner_type
))
12742 if (TYPE_UNSIGNED (inner_type
))
12744 return RECURSE (op0
);
12747 else if (INTEGRAL_TYPE_P (outer_type
))
12749 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12750 return RECURSE (op0
);
12751 if (INTEGRAL_TYPE_P (inner_type
))
12752 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12753 && TYPE_UNSIGNED (inner_type
);
12759 return tree_simple_nonnegative_warnv_p (code
, type
);
12762 /* We don't know sign of `t', so be conservative and return false. */
12766 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12767 value is based on the assumption that signed overflow is undefined,
12768 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12769 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12772 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12773 tree op1
, bool *strict_overflow_p
,
12776 if (TYPE_UNSIGNED (type
))
12781 case POINTER_PLUS_EXPR
:
12783 if (FLOAT_TYPE_P (type
))
12784 return RECURSE (op0
) && RECURSE (op1
);
12786 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12787 both unsigned and at least 2 bits shorter than the result. */
12788 if (TREE_CODE (type
) == INTEGER_TYPE
12789 && TREE_CODE (op0
) == NOP_EXPR
12790 && TREE_CODE (op1
) == NOP_EXPR
)
12792 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12793 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12794 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12795 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12797 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12798 TYPE_PRECISION (inner2
)) + 1;
12799 return prec
< TYPE_PRECISION (type
);
12805 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12807 /* x * x is always non-negative for floating point x
12808 or without overflow. */
12809 if (operand_equal_p (op0
, op1
, 0)
12810 || (RECURSE (op0
) && RECURSE (op1
)))
12812 if (ANY_INTEGRAL_TYPE_P (type
)
12813 && TYPE_OVERFLOW_UNDEFINED (type
))
12814 *strict_overflow_p
= true;
12819 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12820 both unsigned and their total bits is shorter than the result. */
12821 if (TREE_CODE (type
) == INTEGER_TYPE
12822 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12823 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12825 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12826 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12828 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12829 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12832 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12833 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12835 if (TREE_CODE (op0
) == INTEGER_CST
)
12836 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12838 if (TREE_CODE (op1
) == INTEGER_CST
)
12839 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12841 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12842 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12844 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12845 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12846 : TYPE_PRECISION (inner0
);
12848 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12849 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12850 : TYPE_PRECISION (inner1
);
12852 return precision0
+ precision1
< TYPE_PRECISION (type
);
12859 return RECURSE (op0
) || RECURSE (op1
);
12865 case TRUNC_DIV_EXPR
:
12866 case CEIL_DIV_EXPR
:
12867 case FLOOR_DIV_EXPR
:
12868 case ROUND_DIV_EXPR
:
12869 return RECURSE (op0
) && RECURSE (op1
);
12871 case TRUNC_MOD_EXPR
:
12872 return RECURSE (op0
);
12874 case FLOOR_MOD_EXPR
:
12875 return RECURSE (op1
);
12877 case CEIL_MOD_EXPR
:
12878 case ROUND_MOD_EXPR
:
12880 return tree_simple_nonnegative_warnv_p (code
, type
);
12883 /* We don't know sign of `t', so be conservative and return false. */
12887 /* Return true if T is known to be non-negative. If the return
12888 value is based on the assumption that signed overflow is undefined,
12889 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12890 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12893 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12895 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12898 switch (TREE_CODE (t
))
12901 return tree_int_cst_sgn (t
) >= 0;
12904 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
12907 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
12910 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
12913 /* Limit the depth of recursion to avoid quadratic behavior.
12914 This is expected to catch almost all occurrences in practice.
12915 If this code misses important cases that unbounded recursion
12916 would not, passes that need this information could be revised
12917 to provide it through dataflow propagation. */
12918 return (!name_registered_for_update_p (t
)
12919 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
12920 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
12921 strict_overflow_p
, depth
));
12924 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
12928 /* Return true if T is known to be non-negative. If the return
12929 value is based on the assumption that signed overflow is undefined,
12930 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12931 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12934 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
12935 bool *strict_overflow_p
, int depth
)
12956 case CFN_BUILT_IN_BSWAP32
:
12957 case CFN_BUILT_IN_BSWAP64
:
12962 /* sqrt(-0.0) is -0.0. */
12963 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
12965 return RECURSE (arg0
);
12991 CASE_CFN_NEARBYINT
:
12998 CASE_CFN_SIGNIFICAND
:
13002 /* True if the 1st argument is nonnegative. */
13003 return RECURSE (arg0
);
13006 /* True if the 1st OR 2nd arguments are nonnegative. */
13007 return RECURSE (arg0
) || RECURSE (arg1
);
13010 /* True if the 1st AND 2nd arguments are nonnegative. */
13011 return RECURSE (arg0
) && RECURSE (arg1
);
13014 /* True if the 2nd argument is nonnegative. */
13015 return RECURSE (arg1
);
13018 /* True if the 1st argument is nonnegative or the second
13019 argument is an even integer. */
13020 if (TREE_CODE (arg1
) == INTEGER_CST
13021 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13023 return RECURSE (arg0
);
13026 /* True if the 1st argument is nonnegative or the second
13027 argument is an even integer valued real. */
13028 if (TREE_CODE (arg1
) == REAL_CST
)
13033 c
= TREE_REAL_CST (arg1
);
13034 n
= real_to_integer (&c
);
13037 REAL_VALUE_TYPE cint
;
13038 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13039 if (real_identical (&c
, &cint
))
13043 return RECURSE (arg0
);
13048 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13051 /* Return true if T is known to be non-negative. If the return
13052 value is based on the assumption that signed overflow is undefined,
13053 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13054 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13057 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13059 enum tree_code code
= TREE_CODE (t
);
13060 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13067 tree temp
= TARGET_EXPR_SLOT (t
);
13068 t
= TARGET_EXPR_INITIAL (t
);
13070 /* If the initializer is non-void, then it's a normal expression
13071 that will be assigned to the slot. */
13072 if (!VOID_TYPE_P (t
))
13073 return RECURSE (t
);
13075 /* Otherwise, the initializer sets the slot in some way. One common
13076 way is an assignment statement at the end of the initializer. */
13079 if (TREE_CODE (t
) == BIND_EXPR
)
13080 t
= expr_last (BIND_EXPR_BODY (t
));
13081 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13082 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13083 t
= expr_last (TREE_OPERAND (t
, 0));
13084 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13089 if (TREE_CODE (t
) == MODIFY_EXPR
13090 && TREE_OPERAND (t
, 0) == temp
)
13091 return RECURSE (TREE_OPERAND (t
, 1));
13098 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13099 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13101 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13102 get_call_combined_fn (t
),
13105 strict_overflow_p
, depth
);
13107 case COMPOUND_EXPR
:
13109 return RECURSE (TREE_OPERAND (t
, 1));
13112 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13115 return RECURSE (TREE_OPERAND (t
, 0));
13118 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13123 #undef tree_expr_nonnegative_warnv_p
13125 /* Return true if T is known to be non-negative. If the return
13126 value is based on the assumption that signed overflow is undefined,
13127 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13128 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13131 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13133 enum tree_code code
;
13134 if (t
== error_mark_node
)
13137 code
= TREE_CODE (t
);
13138 switch (TREE_CODE_CLASS (code
))
13141 case tcc_comparison
:
13142 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13144 TREE_OPERAND (t
, 0),
13145 TREE_OPERAND (t
, 1),
13146 strict_overflow_p
, depth
);
13149 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13151 TREE_OPERAND (t
, 0),
13152 strict_overflow_p
, depth
);
13155 case tcc_declaration
:
13156 case tcc_reference
:
13157 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13165 case TRUTH_AND_EXPR
:
13166 case TRUTH_OR_EXPR
:
13167 case TRUTH_XOR_EXPR
:
13168 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13170 TREE_OPERAND (t
, 0),
13171 TREE_OPERAND (t
, 1),
13172 strict_overflow_p
, depth
);
13173 case TRUTH_NOT_EXPR
:
13174 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13176 TREE_OPERAND (t
, 0),
13177 strict_overflow_p
, depth
);
13184 case WITH_SIZE_EXPR
:
13186 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13189 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13193 /* Return true if `t' is known to be non-negative. Handle warnings
13194 about undefined signed overflow. */
13197 tree_expr_nonnegative_p (tree t
)
13199 bool ret
, strict_overflow_p
;
13201 strict_overflow_p
= false;
13202 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13203 if (strict_overflow_p
)
13204 fold_overflow_warning (("assuming signed overflow does not occur when "
13205 "determining that expression is always "
13207 WARN_STRICT_OVERFLOW_MISC
);
13212 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13213 For floating point we further ensure that T is not denormal.
13214 Similar logic is present in nonzero_address in rtlanal.h.
13216 If the return value is based on the assumption that signed overflow
13217 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13218 change *STRICT_OVERFLOW_P. */
13221 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13222 bool *strict_overflow_p
)
13227 return tree_expr_nonzero_warnv_p (op0
,
13228 strict_overflow_p
);
13232 tree inner_type
= TREE_TYPE (op0
);
13233 tree outer_type
= type
;
13235 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13236 && tree_expr_nonzero_warnv_p (op0
,
13237 strict_overflow_p
));
13241 case NON_LVALUE_EXPR
:
13242 return tree_expr_nonzero_warnv_p (op0
,
13243 strict_overflow_p
);
13252 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13253 For floating point we further ensure that T is not denormal.
13254 Similar logic is present in nonzero_address in rtlanal.h.
13256 If the return value is based on the assumption that signed overflow
13257 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13258 change *STRICT_OVERFLOW_P. */
13261 tree_binary_nonzero_warnv_p (enum tree_code code
,
13264 tree op1
, bool *strict_overflow_p
)
13266 bool sub_strict_overflow_p
;
13269 case POINTER_PLUS_EXPR
:
13271 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13273 /* With the presence of negative values it is hard
13274 to say something. */
13275 sub_strict_overflow_p
= false;
13276 if (!tree_expr_nonnegative_warnv_p (op0
,
13277 &sub_strict_overflow_p
)
13278 || !tree_expr_nonnegative_warnv_p (op1
,
13279 &sub_strict_overflow_p
))
13281 /* One of operands must be positive and the other non-negative. */
13282 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13283 overflows, on a twos-complement machine the sum of two
13284 nonnegative numbers can never be zero. */
13285 return (tree_expr_nonzero_warnv_p (op0
,
13287 || tree_expr_nonzero_warnv_p (op1
,
13288 strict_overflow_p
));
13293 if (TYPE_OVERFLOW_UNDEFINED (type
))
13295 if (tree_expr_nonzero_warnv_p (op0
,
13297 && tree_expr_nonzero_warnv_p (op1
,
13298 strict_overflow_p
))
13300 *strict_overflow_p
= true;
13307 sub_strict_overflow_p
= false;
13308 if (tree_expr_nonzero_warnv_p (op0
,
13309 &sub_strict_overflow_p
)
13310 && tree_expr_nonzero_warnv_p (op1
,
13311 &sub_strict_overflow_p
))
13313 if (sub_strict_overflow_p
)
13314 *strict_overflow_p
= true;
13319 sub_strict_overflow_p
= false;
13320 if (tree_expr_nonzero_warnv_p (op0
,
13321 &sub_strict_overflow_p
))
13323 if (sub_strict_overflow_p
)
13324 *strict_overflow_p
= true;
13326 /* When both operands are nonzero, then MAX must be too. */
13327 if (tree_expr_nonzero_warnv_p (op1
,
13328 strict_overflow_p
))
13331 /* MAX where operand 0 is positive is positive. */
13332 return tree_expr_nonnegative_warnv_p (op0
,
13333 strict_overflow_p
);
13335 /* MAX where operand 1 is positive is positive. */
13336 else if (tree_expr_nonzero_warnv_p (op1
,
13337 &sub_strict_overflow_p
)
13338 && tree_expr_nonnegative_warnv_p (op1
,
13339 &sub_strict_overflow_p
))
13341 if (sub_strict_overflow_p
)
13342 *strict_overflow_p
= true;
13348 return (tree_expr_nonzero_warnv_p (op1
,
13350 || tree_expr_nonzero_warnv_p (op0
,
13351 strict_overflow_p
));
13360 /* Return true when T is an address and is known to be nonzero.
13361 For floating point we further ensure that T is not denormal.
13362 Similar logic is present in nonzero_address in rtlanal.h.
13364 If the return value is based on the assumption that signed overflow
13365 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13366 change *STRICT_OVERFLOW_P. */
13369 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13371 bool sub_strict_overflow_p
;
13372 switch (TREE_CODE (t
))
13375 return !integer_zerop (t
);
13379 tree base
= TREE_OPERAND (t
, 0);
13381 if (!DECL_P (base
))
13382 base
= get_base_address (base
);
13384 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13385 base
= TARGET_EXPR_SLOT (base
);
13390 /* For objects in symbol table check if we know they are non-zero.
13391 Don't do anything for variables and functions before symtab is built;
13392 it is quite possible that they will be declared weak later. */
13393 int nonzero_addr
= maybe_nonzero_address (base
);
13394 if (nonzero_addr
>= 0)
13395 return nonzero_addr
;
13397 /* Function local objects are never NULL. */
13399 && (DECL_CONTEXT (base
)
13400 && TREE_CODE (DECL_CONTEXT (base
)) == FUNCTION_DECL
13401 && auto_var_in_fn_p (base
, DECL_CONTEXT (base
))))
13404 /* Constants are never weak. */
13405 if (CONSTANT_CLASS_P (base
))
13412 sub_strict_overflow_p
= false;
13413 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13414 &sub_strict_overflow_p
)
13415 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13416 &sub_strict_overflow_p
))
13418 if (sub_strict_overflow_p
)
13419 *strict_overflow_p
= true;
13430 #define integer_valued_real_p(X) \
13431 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13433 #define RECURSE(X) \
13434 ((integer_valued_real_p) (X, depth + 1))
13436 /* Return true if the floating point result of (CODE OP0) has an
13437 integer value. We also allow +Inf, -Inf and NaN to be considered
13438 integer values. Return false for signaling NaN.
13440 DEPTH is the current nesting depth of the query. */
13443 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13451 return RECURSE (op0
);
13455 tree type
= TREE_TYPE (op0
);
13456 if (TREE_CODE (type
) == INTEGER_TYPE
)
13458 if (TREE_CODE (type
) == REAL_TYPE
)
13459 return RECURSE (op0
);
13469 /* Return true if the floating point result of (CODE OP0 OP1) has an
13470 integer value. We also allow +Inf, -Inf and NaN to be considered
13471 integer values. Return false for signaling NaN.
13473 DEPTH is the current nesting depth of the query. */
13476 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13485 return RECURSE (op0
) && RECURSE (op1
);
13493 /* Return true if the floating point result of calling FNDECL with arguments
13494 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13495 considered integer values. Return false for signaling NaN. If FNDECL
13496 takes fewer than 2 arguments, the remaining ARGn are null.
13498 DEPTH is the current nesting depth of the query. */
13501 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13507 CASE_CFN_NEARBYINT
:
13515 return RECURSE (arg0
) && RECURSE (arg1
);
13523 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13524 has an integer value. We also allow +Inf, -Inf and NaN to be
13525 considered integer values. Return false for signaling NaN.
13527 DEPTH is the current nesting depth of the query. */
13530 integer_valued_real_single_p (tree t
, int depth
)
13532 switch (TREE_CODE (t
))
13535 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13538 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13541 /* Limit the depth of recursion to avoid quadratic behavior.
13542 This is expected to catch almost all occurrences in practice.
13543 If this code misses important cases that unbounded recursion
13544 would not, passes that need this information could be revised
13545 to provide it through dataflow propagation. */
13546 return (!name_registered_for_update_p (t
)
13547 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13548 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13557 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13558 has an integer value. We also allow +Inf, -Inf and NaN to be
13559 considered integer values. Return false for signaling NaN.
13561 DEPTH is the current nesting depth of the query. */
13564 integer_valued_real_invalid_p (tree t
, int depth
)
13566 switch (TREE_CODE (t
))
13568 case COMPOUND_EXPR
:
13571 return RECURSE (TREE_OPERAND (t
, 1));
13574 return RECURSE (TREE_OPERAND (t
, 0));
13583 #undef integer_valued_real_p
13585 /* Return true if the floating point expression T has an integer value.
13586 We also allow +Inf, -Inf and NaN to be considered integer values.
13587 Return false for signaling NaN.
13589 DEPTH is the current nesting depth of the query. */
13592 integer_valued_real_p (tree t
, int depth
)
13594 if (t
== error_mark_node
)
13597 tree_code code
= TREE_CODE (t
);
13598 switch (TREE_CODE_CLASS (code
))
13601 case tcc_comparison
:
13602 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13603 TREE_OPERAND (t
, 1), depth
);
13606 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13609 case tcc_declaration
:
13610 case tcc_reference
:
13611 return integer_valued_real_single_p (t
, depth
);
13621 return integer_valued_real_single_p (t
, depth
);
13625 tree arg0
= (call_expr_nargs (t
) > 0
13626 ? CALL_EXPR_ARG (t
, 0)
13628 tree arg1
= (call_expr_nargs (t
) > 1
13629 ? CALL_EXPR_ARG (t
, 1)
13631 return integer_valued_real_call_p (get_call_combined_fn (t
),
13632 arg0
, arg1
, depth
);
13636 return integer_valued_real_invalid_p (t
, depth
);
13640 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13641 attempt to fold the expression to a constant without modifying TYPE,
13644 If the expression could be simplified to a constant, then return
13645 the constant. If the expression would not be simplified to a
13646 constant, then return NULL_TREE. */
13649 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13651 tree tem
= fold_binary (code
, type
, op0
, op1
);
13652 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13655 /* Given the components of a unary expression CODE, TYPE and OP0,
13656 attempt to fold the expression to a constant without modifying
13659 If the expression could be simplified to a constant, then return
13660 the constant. If the expression would not be simplified to a
13661 constant, then return NULL_TREE. */
13664 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13666 tree tem
= fold_unary (code
, type
, op0
);
13667 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13670 /* If EXP represents referencing an element in a constant string
13671 (either via pointer arithmetic or array indexing), return the
13672 tree representing the value accessed, otherwise return NULL. */
13675 fold_read_from_constant_string (tree exp
)
13677 if ((TREE_CODE (exp
) == INDIRECT_REF
13678 || TREE_CODE (exp
) == ARRAY_REF
)
13679 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13681 tree exp1
= TREE_OPERAND (exp
, 0);
13684 location_t loc
= EXPR_LOCATION (exp
);
13686 if (TREE_CODE (exp
) == INDIRECT_REF
)
13687 string
= string_constant (exp1
, &index
);
13690 tree low_bound
= array_ref_low_bound (exp
);
13691 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13693 /* Optimize the special-case of a zero lower bound.
13695 We convert the low_bound to sizetype to avoid some problems
13696 with constant folding. (E.g. suppose the lower bound is 1,
13697 and its mode is QI. Without the conversion,l (ARRAY
13698 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13699 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13700 if (! integer_zerop (low_bound
))
13701 index
= size_diffop_loc (loc
, index
,
13702 fold_convert_loc (loc
, sizetype
, low_bound
));
13708 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13709 && TREE_CODE (string
) == STRING_CST
13710 && TREE_CODE (index
) == INTEGER_CST
13711 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13712 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))))
13714 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))) == 1))
13715 return build_int_cst_type (TREE_TYPE (exp
),
13716 (TREE_STRING_POINTER (string
)
13717 [TREE_INT_CST_LOW (index
)]));
13722 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13723 an integer constant, real, or fixed-point constant.
13725 TYPE is the type of the result. */
13728 fold_negate_const (tree arg0
, tree type
)
13730 tree t
= NULL_TREE
;
13732 switch (TREE_CODE (arg0
))
13737 wide_int val
= wi::neg (arg0
, &overflow
);
13738 t
= force_fit_type (type
, val
, 1,
13739 (overflow
| TREE_OVERFLOW (arg0
))
13740 && !TYPE_UNSIGNED (type
));
13745 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13750 FIXED_VALUE_TYPE f
;
13751 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13752 &(TREE_FIXED_CST (arg0
)), NULL
,
13753 TYPE_SATURATING (type
));
13754 t
= build_fixed (type
, f
);
13755 /* Propagate overflow flags. */
13756 if (overflow_p
| TREE_OVERFLOW (arg0
))
13757 TREE_OVERFLOW (t
) = 1;
13762 gcc_unreachable ();
13768 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13769 an integer constant or real constant.
13771 TYPE is the type of the result. */
13774 fold_abs_const (tree arg0
, tree type
)
13776 tree t
= NULL_TREE
;
13778 switch (TREE_CODE (arg0
))
13782 /* If the value is unsigned or non-negative, then the absolute value
13783 is the same as the ordinary value. */
13784 if (!wi::neg_p (arg0
, TYPE_SIGN (type
)))
13787 /* If the value is negative, then the absolute value is
13792 wide_int val
= wi::neg (arg0
, &overflow
);
13793 t
= force_fit_type (type
, val
, -1,
13794 overflow
| TREE_OVERFLOW (arg0
));
13800 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13801 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13807 gcc_unreachable ();
13813 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13814 constant. TYPE is the type of the result. */
13817 fold_not_const (const_tree arg0
, tree type
)
13819 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13821 return force_fit_type (type
, wi::bit_not (arg0
), 0, TREE_OVERFLOW (arg0
));
13824 /* Given CODE, a relational operator, the target type, TYPE and two
13825 constant operands OP0 and OP1, return the result of the
13826 relational operation. If the result is not a compile time
13827 constant, then return NULL_TREE. */
13830 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13832 int result
, invert
;
13834 /* From here on, the only cases we handle are when the result is
13835 known to be a constant. */
13837 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13839 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13840 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13842 /* Handle the cases where either operand is a NaN. */
13843 if (real_isnan (c0
) || real_isnan (c1
))
13853 case UNORDERED_EXPR
:
13867 if (flag_trapping_math
)
13873 gcc_unreachable ();
13876 return constant_boolean_node (result
, type
);
13879 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
13882 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
13884 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
13885 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
13886 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
13889 /* Handle equality/inequality of complex constants. */
13890 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
13892 tree rcond
= fold_relational_const (code
, type
,
13893 TREE_REALPART (op0
),
13894 TREE_REALPART (op1
));
13895 tree icond
= fold_relational_const (code
, type
,
13896 TREE_IMAGPART (op0
),
13897 TREE_IMAGPART (op1
));
13898 if (code
== EQ_EXPR
)
13899 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
13900 else if (code
== NE_EXPR
)
13901 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
13906 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
13908 if (!VECTOR_TYPE_P (type
))
13910 /* Have vector comparison with scalar boolean result. */
13911 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
13912 && VECTOR_CST_NELTS (op0
) == VECTOR_CST_NELTS (op1
));
13913 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (op0
); i
++)
13915 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13916 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13917 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
13918 if (tmp
== NULL_TREE
)
13920 if (integer_zerop (tmp
))
13921 return constant_boolean_node (false, type
);
13923 return constant_boolean_node (true, type
);
13925 unsigned count
= VECTOR_CST_NELTS (op0
);
13926 tree
*elts
= XALLOCAVEC (tree
, count
);
13927 gcc_assert (VECTOR_CST_NELTS (op1
) == count
13928 && TYPE_VECTOR_SUBPARTS (type
) == count
);
13930 for (unsigned i
= 0; i
< count
; i
++)
13932 tree elem_type
= TREE_TYPE (type
);
13933 tree elem0
= VECTOR_CST_ELT (op0
, i
);
13934 tree elem1
= VECTOR_CST_ELT (op1
, i
);
13936 tree tem
= fold_relational_const (code
, elem_type
,
13939 if (tem
== NULL_TREE
)
13942 elts
[i
] = build_int_cst (elem_type
, integer_zerop (tem
) ? 0 : -1);
13945 return build_vector (type
, elts
);
13948 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13950 To compute GT, swap the arguments and do LT.
13951 To compute GE, do LT and invert the result.
13952 To compute LE, swap the arguments, do LT and invert the result.
13953 To compute NE, do EQ and invert the result.
13955 Therefore, the code below must handle only EQ and LT. */
13957 if (code
== LE_EXPR
|| code
== GT_EXPR
)
13959 std::swap (op0
, op1
);
13960 code
= swap_tree_comparison (code
);
13963 /* Note that it is safe to invert for real values here because we
13964 have already handled the one case that it matters. */
13967 if (code
== NE_EXPR
|| code
== GE_EXPR
)
13970 code
= invert_tree_comparison (code
, false);
13973 /* Compute a result for LT or EQ if args permit;
13974 Otherwise return T. */
13975 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
13977 if (code
== EQ_EXPR
)
13978 result
= tree_int_cst_equal (op0
, op1
);
13980 result
= tree_int_cst_lt (op0
, op1
);
13987 return constant_boolean_node (result
, type
);
13990 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13991 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13995 fold_build_cleanup_point_expr (tree type
, tree expr
)
13997 /* If the expression does not have side effects then we don't have to wrap
13998 it with a cleanup point expression. */
13999 if (!TREE_SIDE_EFFECTS (expr
))
14002 /* If the expression is a return, check to see if the expression inside the
14003 return has no side effects or the right hand side of the modify expression
14004 inside the return. If either don't have side effects set we don't need to
14005 wrap the expression in a cleanup point expression. Note we don't check the
14006 left hand side of the modify because it should always be a return decl. */
14007 if (TREE_CODE (expr
) == RETURN_EXPR
)
14009 tree op
= TREE_OPERAND (expr
, 0);
14010 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14012 op
= TREE_OPERAND (op
, 1);
14013 if (!TREE_SIDE_EFFECTS (op
))
14017 return build1 (CLEANUP_POINT_EXPR
, type
, expr
);
14020 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14021 of an indirection through OP0, or NULL_TREE if no simplification is
14025 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14031 subtype
= TREE_TYPE (sub
);
14032 if (!POINTER_TYPE_P (subtype
))
14035 if (TREE_CODE (sub
) == ADDR_EXPR
)
14037 tree op
= TREE_OPERAND (sub
, 0);
14038 tree optype
= TREE_TYPE (op
);
14039 /* *&CONST_DECL -> to the value of the const decl. */
14040 if (TREE_CODE (op
) == CONST_DECL
)
14041 return DECL_INITIAL (op
);
14042 /* *&p => p; make sure to handle *&"str"[cst] here. */
14043 if (type
== optype
)
14045 tree fop
= fold_read_from_constant_string (op
);
14051 /* *(foo *)&fooarray => fooarray[0] */
14052 else if (TREE_CODE (optype
) == ARRAY_TYPE
14053 && type
== TREE_TYPE (optype
)
14054 && (!in_gimple_form
14055 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14057 tree type_domain
= TYPE_DOMAIN (optype
);
14058 tree min_val
= size_zero_node
;
14059 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14060 min_val
= TYPE_MIN_VALUE (type_domain
);
14062 && TREE_CODE (min_val
) != INTEGER_CST
)
14064 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14065 NULL_TREE
, NULL_TREE
);
14067 /* *(foo *)&complexfoo => __real__ complexfoo */
14068 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14069 && type
== TREE_TYPE (optype
))
14070 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14071 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14072 else if (TREE_CODE (optype
) == VECTOR_TYPE
14073 && type
== TREE_TYPE (optype
))
14075 tree part_width
= TYPE_SIZE (type
);
14076 tree index
= bitsize_int (0);
14077 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
, index
);
14081 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14082 && TREE_CODE (TREE_OPERAND (sub
, 1)) == INTEGER_CST
)
14084 tree op00
= TREE_OPERAND (sub
, 0);
14085 tree op01
= TREE_OPERAND (sub
, 1);
14088 if (TREE_CODE (op00
) == ADDR_EXPR
)
14091 op00
= TREE_OPERAND (op00
, 0);
14092 op00type
= TREE_TYPE (op00
);
14094 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14095 if (TREE_CODE (op00type
) == VECTOR_TYPE
14096 && type
== TREE_TYPE (op00type
))
14098 tree part_width
= TYPE_SIZE (type
);
14099 unsigned HOST_WIDE_INT max_offset
14100 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14101 * TYPE_VECTOR_SUBPARTS (op00type
));
14102 if (tree_int_cst_sign_bit (op01
) == 0
14103 && compare_tree_int (op01
, max_offset
) == -1)
14105 unsigned HOST_WIDE_INT offset
= tree_to_uhwi (op01
);
14106 unsigned HOST_WIDE_INT indexi
= offset
* BITS_PER_UNIT
;
14107 tree index
= bitsize_int (indexi
);
14108 return fold_build3_loc (loc
,
14109 BIT_FIELD_REF
, type
, op00
,
14110 part_width
, index
);
14113 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14114 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14115 && type
== TREE_TYPE (op00type
))
14117 tree size
= TYPE_SIZE_UNIT (type
);
14118 if (tree_int_cst_equal (size
, op01
))
14119 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14121 /* ((foo *)&fooarray)[1] => fooarray[1] */
14122 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14123 && type
== TREE_TYPE (op00type
))
14125 tree type_domain
= TYPE_DOMAIN (op00type
);
14126 tree min_val
= size_zero_node
;
14127 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14128 min_val
= TYPE_MIN_VALUE (type_domain
);
14129 op01
= size_binop_loc (loc
, EXACT_DIV_EXPR
, op01
,
14130 TYPE_SIZE_UNIT (type
));
14131 op01
= size_binop_loc (loc
, PLUS_EXPR
, op01
, min_val
);
14132 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14133 NULL_TREE
, NULL_TREE
);
14138 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14139 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14140 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14141 && (!in_gimple_form
14142 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14145 tree min_val
= size_zero_node
;
14146 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14147 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14148 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14149 min_val
= TYPE_MIN_VALUE (type_domain
);
14151 && TREE_CODE (min_val
) != INTEGER_CST
)
14153 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14160 /* Builds an expression for an indirection through T, simplifying some
14164 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14166 tree type
= TREE_TYPE (TREE_TYPE (t
));
14167 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14172 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14175 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14178 fold_indirect_ref_loc (location_t loc
, tree t
)
14180 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14188 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14189 whose result is ignored. The type of the returned tree need not be
14190 the same as the original expression. */
14193 fold_ignored_result (tree t
)
14195 if (!TREE_SIDE_EFFECTS (t
))
14196 return integer_zero_node
;
14199 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14202 t
= TREE_OPERAND (t
, 0);
14206 case tcc_comparison
:
14207 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14208 t
= TREE_OPERAND (t
, 0);
14209 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14210 t
= TREE_OPERAND (t
, 1);
14215 case tcc_expression
:
14216 switch (TREE_CODE (t
))
14218 case COMPOUND_EXPR
:
14219 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14221 t
= TREE_OPERAND (t
, 0);
14225 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14226 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14228 t
= TREE_OPERAND (t
, 0);
14241 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14244 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14246 tree div
= NULL_TREE
;
14251 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14252 have to do anything. Only do this when we are not given a const,
14253 because in that case, this check is more expensive than just
14255 if (TREE_CODE (value
) != INTEGER_CST
)
14257 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14259 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14263 /* If divisor is a power of two, simplify this to bit manipulation. */
14264 if (pow2_or_zerop (divisor
))
14266 if (TREE_CODE (value
) == INTEGER_CST
)
14268 wide_int val
= value
;
14271 if ((val
& (divisor
- 1)) == 0)
14274 overflow_p
= TREE_OVERFLOW (value
);
14275 val
+= divisor
- 1;
14276 val
&= - (int) divisor
;
14280 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14286 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14287 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14288 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14289 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14295 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14296 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14297 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14303 /* Likewise, but round down. */
14306 round_down_loc (location_t loc
, tree value
, int divisor
)
14308 tree div
= NULL_TREE
;
14310 gcc_assert (divisor
> 0);
14314 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14315 have to do anything. Only do this when we are not given a const,
14316 because in that case, this check is more expensive than just
14318 if (TREE_CODE (value
) != INTEGER_CST
)
14320 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14322 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14326 /* If divisor is a power of two, simplify this to bit manipulation. */
14327 if (pow2_or_zerop (divisor
))
14331 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14332 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14337 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14338 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14339 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14345 /* Returns the pointer to the base of the object addressed by EXP and
14346 extracts the information about the offset of the access, storing it
14347 to PBITPOS and POFFSET. */
14350 split_address_to_core_and_offset (tree exp
,
14351 HOST_WIDE_INT
*pbitpos
, tree
*poffset
)
14355 int unsignedp
, reversep
, volatilep
;
14356 HOST_WIDE_INT bitsize
;
14357 location_t loc
= EXPR_LOCATION (exp
);
14359 if (TREE_CODE (exp
) == ADDR_EXPR
)
14361 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14362 poffset
, &mode
, &unsignedp
, &reversep
,
14364 core
= build_fold_addr_expr_loc (loc
, core
);
14370 *poffset
= NULL_TREE
;
14376 /* Returns true if addresses of E1 and E2 differ by a constant, false
14377 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14380 ptr_difference_const (tree e1
, tree e2
, HOST_WIDE_INT
*diff
)
14383 HOST_WIDE_INT bitpos1
, bitpos2
;
14384 tree toffset1
, toffset2
, tdiff
, type
;
14386 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14387 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14389 if (bitpos1
% BITS_PER_UNIT
!= 0
14390 || bitpos2
% BITS_PER_UNIT
!= 0
14391 || !operand_equal_p (core1
, core2
, 0))
14394 if (toffset1
&& toffset2
)
14396 type
= TREE_TYPE (toffset1
);
14397 if (type
!= TREE_TYPE (toffset2
))
14398 toffset2
= fold_convert (type
, toffset2
);
14400 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14401 if (!cst_and_fits_in_hwi (tdiff
))
14404 *diff
= int_cst_value (tdiff
);
14406 else if (toffset1
|| toffset2
)
14408 /* If only one of the offsets is non-constant, the difference cannot
14415 *diff
+= (bitpos1
- bitpos2
) / BITS_PER_UNIT
;
14419 /* Return OFF converted to a pointer offset type suitable as offset for
14420 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14422 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14424 return fold_convert_loc (loc
, sizetype
, off
);
14427 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14429 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14431 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14432 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14435 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14437 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14439 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14440 ptr
, size_int (off
));
14443 /* Return a char pointer for a C string if it is a string constant
14444 or sum of string constant and integer constant. We only support
14445 string constants properly terminated with '\0' character.
14446 If STRLEN is a valid pointer, length (including terminating character)
14447 of returned string is stored to the argument. */
14450 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
)
14457 src
= string_constant (src
, &offset_node
);
14461 unsigned HOST_WIDE_INT offset
= 0;
14462 if (offset_node
!= NULL_TREE
)
14464 if (!tree_fits_uhwi_p (offset_node
))
14467 offset
= tree_to_uhwi (offset_node
);
14470 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14471 const char *string
= TREE_STRING_POINTER (src
);
14473 /* Support only properly null-terminated strings. */
14474 if (string_length
== 0
14475 || string
[string_length
- 1] != '\0'
14476 || offset
>= string_length
)
14480 *strlen
= string_length
- offset
;
14481 return string
+ offset
;
14486 namespace selftest
{
14488 /* Helper functions for writing tests of folding trees. */
14490 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14493 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14496 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14499 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14500 wrapping WRAPPED_EXPR. */
14503 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14506 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14507 ASSERT_NE (wrapped_expr
, result
);
14508 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14509 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14512 /* Verify that various arithmetic binary operations are folded
14516 test_arithmetic_folding ()
14518 tree type
= integer_type_node
;
14519 tree x
= create_tmp_var_raw (type
, "x");
14520 tree zero
= build_zero_cst (type
);
14521 tree one
= build_int_cst (type
, 1);
14524 /* 1 <-- (0 + 1) */
14525 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14527 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14530 /* (nonlvalue)x <-- (x + 0) */
14531 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14535 /* 0 <-- (x - x) */
14536 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14538 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14541 /* Multiplication. */
14542 /* 0 <-- (x * 0) */
14543 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14546 /* (nonlvalue)x <-- (x * 1) */
14547 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14551 /* Verify that various binary operations on vectors are folded
14555 test_vector_folding ()
14557 tree inner_type
= integer_type_node
;
14558 tree type
= build_vector_type (inner_type
, 4);
14559 tree zero
= build_zero_cst (type
);
14560 tree one
= build_one_cst (type
);
14562 /* Verify equality tests that return a scalar boolean result. */
14563 tree res_type
= boolean_type_node
;
14564 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14565 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14566 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14567 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14570 /* Run all of the selftests within this file. */
14573 fold_const_c_tests ()
14575 test_arithmetic_folding ();
14576 test_vector_folding ();
14579 } // namespace selftest
14581 #endif /* CHECKING_P */