1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
26 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
35 #include "insn-config.h"
36 #include "hard-reg-set.h"
46 #include "insn-codes.h"
49 #include "langhooks.h"
51 #include "basic-block.h"
55 struct target_expmed default_target_expmed
;
57 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
60 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
61 unsigned HOST_WIDE_INT
,
62 unsigned HOST_WIDE_INT
,
63 unsigned HOST_WIDE_INT
,
65 static void store_fixed_bit_field_1 (rtx
, unsigned HOST_WIDE_INT
,
66 unsigned HOST_WIDE_INT
,
68 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
69 unsigned HOST_WIDE_INT
,
70 unsigned HOST_WIDE_INT
,
71 unsigned HOST_WIDE_INT
,
73 static rtx
extract_fixed_bit_field (machine_mode
, rtx
,
74 unsigned HOST_WIDE_INT
,
75 unsigned HOST_WIDE_INT
, rtx
, int);
76 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
,
77 unsigned HOST_WIDE_INT
,
78 unsigned HOST_WIDE_INT
, rtx
, int);
79 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
80 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
81 unsigned HOST_WIDE_INT
, int);
82 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
83 static rtx
expand_smod_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
84 static rtx
expand_sdiv_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
86 /* Return a constant integer mask value of mode MODE with BITSIZE ones
87 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
88 The mask is truncated if necessary to the width of mode MODE. The
89 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
92 mask_rtx (machine_mode mode
, int bitpos
, int bitsize
, bool complement
)
94 return immed_wide_int_const
95 (wi::shifted_mask (bitpos
, bitsize
, complement
,
96 GET_MODE_PRECISION (mode
)), mode
);
99 /* Test whether a value is zero of a power of two. */
100 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
101 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
103 struct init_expmed_rtl
124 rtx pow2
[MAX_BITS_PER_WORD
];
125 rtx cint
[MAX_BITS_PER_WORD
];
129 init_expmed_one_conv (struct init_expmed_rtl
*all
, machine_mode to_mode
,
130 machine_mode from_mode
, bool speed
)
132 int to_size
, from_size
;
135 to_size
= GET_MODE_PRECISION (to_mode
);
136 from_size
= GET_MODE_PRECISION (from_mode
);
138 /* Most partial integers have a precision less than the "full"
139 integer it requires for storage. In case one doesn't, for
140 comparison purposes here, reduce the bit size by one in that
142 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
143 && exact_log2 (to_size
) != -1)
145 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
146 && exact_log2 (from_size
) != -1)
149 /* Assume cost of zero-extend and sign-extend is the same. */
150 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
152 PUT_MODE (all
->reg
, from_mode
);
153 set_convert_cost (to_mode
, from_mode
, speed
, set_src_cost (which
, speed
));
157 init_expmed_one_mode (struct init_expmed_rtl
*all
,
158 machine_mode mode
, int speed
)
160 int m
, n
, mode_bitsize
;
161 machine_mode mode_from
;
163 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
165 PUT_MODE (all
->reg
, mode
);
166 PUT_MODE (all
->plus
, mode
);
167 PUT_MODE (all
->neg
, mode
);
168 PUT_MODE (all
->mult
, mode
);
169 PUT_MODE (all
->sdiv
, mode
);
170 PUT_MODE (all
->udiv
, mode
);
171 PUT_MODE (all
->sdiv_32
, mode
);
172 PUT_MODE (all
->smod_32
, mode
);
173 PUT_MODE (all
->wide_trunc
, mode
);
174 PUT_MODE (all
->shift
, mode
);
175 PUT_MODE (all
->shift_mult
, mode
);
176 PUT_MODE (all
->shift_add
, mode
);
177 PUT_MODE (all
->shift_sub0
, mode
);
178 PUT_MODE (all
->shift_sub1
, mode
);
179 PUT_MODE (all
->zext
, mode
);
180 PUT_MODE (all
->trunc
, mode
);
182 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, speed
));
183 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, speed
));
184 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, speed
));
185 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, speed
));
186 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, speed
));
188 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, speed
)
189 <= 2 * add_cost (speed
, mode
)));
190 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, speed
)
191 <= 4 * add_cost (speed
, mode
)));
193 set_shift_cost (speed
, mode
, 0, 0);
195 int cost
= add_cost (speed
, mode
);
196 set_shiftadd_cost (speed
, mode
, 0, cost
);
197 set_shiftsub0_cost (speed
, mode
, 0, cost
);
198 set_shiftsub1_cost (speed
, mode
, 0, cost
);
201 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
202 for (m
= 1; m
< n
; m
++)
204 XEXP (all
->shift
, 1) = all
->cint
[m
];
205 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
207 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, speed
));
208 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, speed
));
209 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, speed
));
210 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, speed
));
213 if (SCALAR_INT_MODE_P (mode
))
215 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
216 mode_from
= (machine_mode
)(mode_from
+ 1))
217 init_expmed_one_conv (all
, mode
, mode_from
, speed
);
219 if (GET_MODE_CLASS (mode
) == MODE_INT
)
221 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
222 if (wider_mode
!= VOIDmode
)
224 PUT_MODE (all
->zext
, wider_mode
);
225 PUT_MODE (all
->wide_mult
, wider_mode
);
226 PUT_MODE (all
->wide_lshr
, wider_mode
);
227 XEXP (all
->wide_lshr
, 1) = GEN_INT (mode_bitsize
);
229 set_mul_widen_cost (speed
, wider_mode
,
230 set_src_cost (all
->wide_mult
, speed
));
231 set_mul_highpart_cost (speed
, mode
,
232 set_src_cost (all
->wide_trunc
, speed
));
240 struct init_expmed_rtl all
;
241 machine_mode mode
= QImode
;
244 memset (&all
, 0, sizeof all
);
245 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
247 all
.pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
248 all
.cint
[m
] = GEN_INT (m
);
251 /* Avoid using hard regs in ways which may be unsupported. */
252 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
253 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
254 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
255 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
256 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
257 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
258 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
259 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
260 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
261 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
262 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
263 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
264 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
265 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
266 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
267 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
268 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
269 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
271 for (speed
= 0; speed
< 2; speed
++)
273 crtl
->maybe_hot_insn_p
= speed
;
274 set_zero_cost (speed
, set_src_cost (const0_rtx
, speed
));
276 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
277 mode
= (machine_mode
)(mode
+ 1))
278 init_expmed_one_mode (&all
, mode
, speed
);
280 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
281 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
282 mode
= (machine_mode
)(mode
+ 1))
283 init_expmed_one_mode (&all
, mode
, speed
);
285 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
286 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
287 mode
= (machine_mode
)(mode
+ 1))
288 init_expmed_one_mode (&all
, mode
, speed
);
291 if (alg_hash_used_p ())
293 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
294 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
297 set_alg_hash_used_p (true);
298 default_rtl_profile ();
300 ggc_free (all
.trunc
);
301 ggc_free (all
.shift_sub1
);
302 ggc_free (all
.shift_sub0
);
303 ggc_free (all
.shift_add
);
304 ggc_free (all
.shift_mult
);
305 ggc_free (all
.shift
);
306 ggc_free (all
.wide_trunc
);
307 ggc_free (all
.wide_lshr
);
308 ggc_free (all
.wide_mult
);
310 ggc_free (all
.smod_32
);
311 ggc_free (all
.sdiv_32
);
320 /* Return an rtx representing minus the value of X.
321 MODE is the intended mode of the result,
322 useful if X is a CONST_INT. */
325 negate_rtx (machine_mode mode
, rtx x
)
327 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
330 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
335 /* Adjust bitfield memory MEM so that it points to the first unit of mode
336 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
337 If MODE is BLKmode, return a reference to every byte in the bitfield.
338 Set *NEW_BITNUM to the bit position of the field within the new memory. */
341 narrow_bit_field_mem (rtx mem
, machine_mode mode
,
342 unsigned HOST_WIDE_INT bitsize
,
343 unsigned HOST_WIDE_INT bitnum
,
344 unsigned HOST_WIDE_INT
*new_bitnum
)
348 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
349 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
350 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
352 return adjust_bitfield_address_size (mem
, mode
, offset
, size
);
356 unsigned int unit
= GET_MODE_BITSIZE (mode
);
357 *new_bitnum
= bitnum
% unit
;
358 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
359 return adjust_bitfield_address (mem
, mode
, offset
);
363 /* The caller wants to perform insertion or extraction PATTERN on a
364 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
365 BITREGION_START and BITREGION_END are as for store_bit_field
366 and FIELDMODE is the natural mode of the field.
368 Search for a mode that is compatible with the memory access
369 restrictions and (where applicable) with a register insertion or
370 extraction. Return the new memory on success, storing the adjusted
371 bit position in *NEW_BITNUM. Return null otherwise. */
374 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
375 rtx op0
, HOST_WIDE_INT bitsize
,
376 HOST_WIDE_INT bitnum
,
377 unsigned HOST_WIDE_INT bitregion_start
,
378 unsigned HOST_WIDE_INT bitregion_end
,
379 machine_mode fieldmode
,
380 unsigned HOST_WIDE_INT
*new_bitnum
)
382 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
383 bitregion_end
, MEM_ALIGN (op0
),
384 MEM_VOLATILE_P (op0
));
385 machine_mode best_mode
;
386 if (iter
.next_mode (&best_mode
))
388 /* We can use a memory in BEST_MODE. See whether this is true for
389 any wider modes. All other things being equal, we prefer to
390 use the widest mode possible because it tends to expose more
391 CSE opportunities. */
392 if (!iter
.prefer_smaller_modes ())
394 /* Limit the search to the mode required by the corresponding
395 register insertion or extraction instruction, if any. */
396 machine_mode limit_mode
= word_mode
;
397 extraction_insn insn
;
398 if (get_best_reg_extraction_insn (&insn
, pattern
,
399 GET_MODE_BITSIZE (best_mode
),
401 limit_mode
= insn
.field_mode
;
403 machine_mode wider_mode
;
404 while (iter
.next_mode (&wider_mode
)
405 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
406 best_mode
= wider_mode
;
408 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
414 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
415 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
416 offset is then BITNUM / BITS_PER_UNIT. */
419 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
420 unsigned HOST_WIDE_INT bitsize
,
421 machine_mode struct_mode
)
423 if (BYTES_BIG_ENDIAN
)
424 return (bitnum
% BITS_PER_UNIT
== 0
425 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
426 || (bitnum
+ bitsize
) % BITS_PER_WORD
== 0));
428 return bitnum
% BITS_PER_WORD
== 0;
431 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
432 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
433 Return false if the access would touch memory outside the range
434 BITREGION_START to BITREGION_END for conformance to the C++ memory
438 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
439 unsigned HOST_WIDE_INT bitnum
,
440 machine_mode fieldmode
,
441 unsigned HOST_WIDE_INT bitregion_start
,
442 unsigned HOST_WIDE_INT bitregion_end
)
444 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
446 /* -fstrict-volatile-bitfields must be enabled and we must have a
449 || !MEM_VOLATILE_P (op0
)
450 || flag_strict_volatile_bitfields
<= 0)
453 /* Non-integral modes likely only happen with packed structures.
455 if (!SCALAR_INT_MODE_P (fieldmode
))
458 /* The bit size must not be larger than the field mode, and
459 the field mode must not be larger than a word. */
460 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
463 /* Check for cases of unaligned fields that must be split. */
464 if (bitnum
% modesize
+ bitsize
> modesize
)
467 /* The memory must be sufficiently aligned for a MODESIZE access.
468 This condition guarantees, that the memory access will not
469 touch anything after the end of the structure. */
470 if (MEM_ALIGN (op0
) < modesize
)
473 /* Check for cases where the C++ memory model applies. */
474 if (bitregion_end
!= 0
475 && (bitnum
- bitnum
% modesize
< bitregion_start
476 || bitnum
- bitnum
% modesize
+ modesize
- 1 > bitregion_end
))
482 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
483 bit number BITNUM can be treated as a simple value of mode MODE. */
486 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
487 unsigned HOST_WIDE_INT bitnum
, machine_mode mode
)
490 && bitnum
% BITS_PER_UNIT
== 0
491 && bitsize
== GET_MODE_BITSIZE (mode
)
492 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
493 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
494 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
497 /* Try to use instruction INSV to store VALUE into a field of OP0.
498 BITSIZE and BITNUM are as for store_bit_field. */
501 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
502 unsigned HOST_WIDE_INT bitsize
,
503 unsigned HOST_WIDE_INT bitnum
,
506 struct expand_operand ops
[4];
509 rtx_insn
*last
= get_last_insn ();
510 bool copy_back
= false;
512 machine_mode op_mode
= insv
->field_mode
;
513 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
514 if (bitsize
== 0 || bitsize
> unit
)
518 /* Get a reference to the first byte of the field. */
519 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
523 /* Convert from counting within OP0 to counting in OP_MODE. */
524 if (BYTES_BIG_ENDIAN
)
525 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
527 /* If xop0 is a register, we need it in OP_MODE
528 to make it acceptable to the format of insv. */
529 if (GET_CODE (xop0
) == SUBREG
)
530 /* We can't just change the mode, because this might clobber op0,
531 and we will need the original value of op0 if insv fails. */
532 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
533 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
534 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
537 /* If the destination is a paradoxical subreg such that we need a
538 truncate to the inner mode, perform the insertion on a temporary and
539 truncate the result to the original destination. Note that we can't
540 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
541 X) 0)) is (reg:N X). */
542 if (GET_CODE (xop0
) == SUBREG
543 && REG_P (SUBREG_REG (xop0
))
544 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
547 rtx tem
= gen_reg_rtx (op_mode
);
548 emit_move_insn (tem
, xop0
);
553 /* There are similar overflow check at the start of store_bit_field_1,
554 but that only check the situation where the field lies completely
555 outside the register, while there do have situation where the field
556 lies partialy in the register, we need to adjust bitsize for this
557 partial overflow situation. Without this fix, pr48335-2.c on big-endian
558 will broken on those arch support bit insert instruction, like arm, aarch64
560 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
562 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
563 "destination object, data truncated into %wu-bit",
564 bitsize
, unit
- bitnum
);
565 bitsize
= unit
- bitnum
;
568 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
569 "backwards" from the size of the unit we are inserting into.
570 Otherwise, we count bits from the most significant on a
571 BYTES/BITS_BIG_ENDIAN machine. */
573 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
574 bitnum
= unit
- bitsize
- bitnum
;
576 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
578 if (GET_MODE (value
) != op_mode
)
580 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
582 /* Optimization: Don't bother really extending VALUE
583 if it has all the bits we will actually use. However,
584 if we must narrow it, be sure we do it correctly. */
586 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
590 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
592 tmp
= simplify_gen_subreg (op_mode
,
593 force_reg (GET_MODE (value
),
595 GET_MODE (value
), 0);
599 value1
= gen_lowpart (op_mode
, value1
);
601 else if (CONST_INT_P (value
))
602 value1
= gen_int_mode (INTVAL (value
), op_mode
);
604 /* Parse phase is supposed to make VALUE's data type
605 match that of the component reference, which is a type
606 at least as wide as the field; so VALUE should have
607 a mode that corresponds to that type. */
608 gcc_assert (CONSTANT_P (value
));
611 create_fixed_operand (&ops
[0], xop0
);
612 create_integer_operand (&ops
[1], bitsize
);
613 create_integer_operand (&ops
[2], bitnum
);
614 create_input_operand (&ops
[3], value1
, op_mode
);
615 if (maybe_expand_insn (insv
->icode
, 4, ops
))
618 convert_move (op0
, xop0
, true);
621 delete_insns_since (last
);
625 /* A subroutine of store_bit_field, with the same arguments. Return true
626 if the operation could be implemented.
628 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
629 no other way of implementing the operation. If FALLBACK_P is false,
630 return false instead. */
633 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
634 unsigned HOST_WIDE_INT bitnum
,
635 unsigned HOST_WIDE_INT bitregion_start
,
636 unsigned HOST_WIDE_INT bitregion_end
,
637 machine_mode fieldmode
,
638 rtx value
, bool fallback_p
)
643 while (GET_CODE (op0
) == SUBREG
)
645 /* The following line once was done only if WORDS_BIG_ENDIAN,
646 but I think that is a mistake. WORDS_BIG_ENDIAN is
647 meaningful at a much higher level; when structures are copied
648 between memory and regs, the higher-numbered regs
649 always get higher addresses. */
650 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
651 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
654 /* Paradoxical subregs need special handling on big endian machines. */
655 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
657 int difference
= inner_mode_size
- outer_mode_size
;
659 if (WORDS_BIG_ENDIAN
)
660 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
661 if (BYTES_BIG_ENDIAN
)
662 byte_offset
+= difference
% UNITS_PER_WORD
;
665 byte_offset
= SUBREG_BYTE (op0
);
667 bitnum
+= byte_offset
* BITS_PER_UNIT
;
668 op0
= SUBREG_REG (op0
);
671 /* No action is needed if the target is a register and if the field
672 lies completely outside that register. This can occur if the source
673 code contains an out-of-bounds access to a small array. */
674 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
677 /* Use vec_set patterns for inserting parts of vectors whenever
679 if (VECTOR_MODE_P (GET_MODE (op0
))
681 && optab_handler (vec_set_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
682 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
683 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
684 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
686 struct expand_operand ops
[3];
687 machine_mode outermode
= GET_MODE (op0
);
688 machine_mode innermode
= GET_MODE_INNER (outermode
);
689 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
690 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
692 create_fixed_operand (&ops
[0], op0
);
693 create_input_operand (&ops
[1], value
, innermode
);
694 create_integer_operand (&ops
[2], pos
);
695 if (maybe_expand_insn (icode
, 3, ops
))
699 /* If the target is a register, overwriting the entire object, or storing
700 a full-word or multi-word field can be done with just a SUBREG. */
702 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
703 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
704 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
706 /* Use the subreg machinery either to narrow OP0 to the required
707 words or to cope with mode punning between equal-sized modes.
708 In the latter case, use subreg on the rhs side, not lhs. */
711 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
713 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
716 emit_move_insn (op0
, sub
);
722 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
723 bitnum
/ BITS_PER_UNIT
);
726 emit_move_insn (sub
, value
);
732 /* If the target is memory, storing any naturally aligned field can be
733 done with a simple store. For targets that support fast unaligned
734 memory, any naturally sized, unit aligned field can be done directly. */
735 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
737 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
738 emit_move_insn (op0
, value
);
742 /* Make sure we are playing with integral modes. Pun with subregs
743 if we aren't. This must come after the entire register case above,
744 since that case is valid for any mode. The following cases are only
745 valid for integral modes. */
747 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
748 if (imode
!= GET_MODE (op0
))
751 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
754 gcc_assert (imode
!= BLKmode
);
755 op0
= gen_lowpart (imode
, op0
);
760 /* Storing an lsb-aligned field in a register
761 can be done with a movstrict instruction. */
764 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
765 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
766 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
768 struct expand_operand ops
[2];
769 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
771 unsigned HOST_WIDE_INT subreg_off
;
773 if (GET_CODE (arg0
) == SUBREG
)
775 /* Else we've got some float mode source being extracted into
776 a different float mode destination -- this combination of
777 subregs results in Severe Tire Damage. */
778 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
779 || GET_MODE_CLASS (fieldmode
) == MODE_INT
780 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
781 arg0
= SUBREG_REG (arg0
);
784 subreg_off
= bitnum
/ BITS_PER_UNIT
;
785 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
787 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
789 create_fixed_operand (&ops
[0], arg0
);
790 /* Shrink the source operand to FIELDMODE. */
791 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
792 if (maybe_expand_insn (icode
, 2, ops
))
797 /* Handle fields bigger than a word. */
799 if (bitsize
> BITS_PER_WORD
)
801 /* Here we transfer the words of the field
802 in the order least significant first.
803 This is because the most significant word is the one which may
805 However, only do that if the value is not BLKmode. */
807 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
808 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
812 /* This is the mode we must force value to, so that there will be enough
813 subwords to extract. Note that fieldmode will often (always?) be
814 VOIDmode, because that is what store_field uses to indicate that this
815 is a bit field, but passing VOIDmode to operand_subword_force
817 fieldmode
= GET_MODE (value
);
818 if (fieldmode
== VOIDmode
)
819 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
821 last
= get_last_insn ();
822 for (i
= 0; i
< nwords
; i
++)
824 /* If I is 0, use the low-order word in both field and target;
825 if I is 1, use the next to lowest word; and so on. */
826 unsigned int wordnum
= (backwards
827 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
830 unsigned int bit_offset
= (backwards
831 ? MAX ((int) bitsize
- ((int) i
+ 1)
834 : (int) i
* BITS_PER_WORD
);
835 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
836 unsigned HOST_WIDE_INT new_bitsize
=
837 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
839 /* If the remaining chunk doesn't have full wordsize we have
840 to make sure that for big endian machines the higher order
842 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
843 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
845 GEN_INT (BITS_PER_WORD
850 if (!store_bit_field_1 (op0
, new_bitsize
,
852 bitregion_start
, bitregion_end
,
854 value_word
, fallback_p
))
856 delete_insns_since (last
);
863 /* If VALUE has a floating-point or complex mode, access it as an
864 integer of the corresponding size. This can occur on a machine
865 with 64 bit registers that uses SFmode for float. It can also
866 occur for unaligned float or complex fields. */
868 if (GET_MODE (value
) != VOIDmode
869 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
870 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
872 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
873 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
876 /* If OP0 is a multi-word register, narrow it to the affected word.
877 If the region spans two words, defer to store_split_bit_field. */
878 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
880 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
881 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
883 bitnum
%= BITS_PER_WORD
;
884 if (bitnum
+ bitsize
> BITS_PER_WORD
)
889 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
890 bitregion_end
, value
);
895 /* From here on we can assume that the field to be stored in fits
896 within a word. If the destination is a register, it too fits
899 extraction_insn insv
;
901 && get_best_reg_extraction_insn (&insv
, EP_insv
,
902 GET_MODE_BITSIZE (GET_MODE (op0
)),
904 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
907 /* If OP0 is a memory, try copying it to a register and seeing if a
908 cheap register alternative is available. */
911 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
913 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
916 rtx_insn
*last
= get_last_insn ();
918 /* Try loading part of OP0 into a register, inserting the bitfield
919 into that, and then copying the result back to OP0. */
920 unsigned HOST_WIDE_INT bitpos
;
921 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
922 bitregion_start
, bitregion_end
,
926 rtx tempreg
= copy_to_reg (xop0
);
927 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
928 bitregion_start
, bitregion_end
,
929 fieldmode
, orig_value
, false))
931 emit_move_insn (xop0
, tempreg
);
934 delete_insns_since (last
);
941 store_fixed_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
942 bitregion_end
, value
);
946 /* Generate code to store value from rtx VALUE
947 into a bit-field within structure STR_RTX
948 containing BITSIZE bits starting at bit BITNUM.
950 BITREGION_START is bitpos of the first bitfield in this region.
951 BITREGION_END is the bitpos of the ending bitfield in this region.
952 These two fields are 0, if the C++ memory model does not apply,
953 or we are not interested in keeping track of bitfield regions.
955 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
958 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
959 unsigned HOST_WIDE_INT bitnum
,
960 unsigned HOST_WIDE_INT bitregion_start
,
961 unsigned HOST_WIDE_INT bitregion_end
,
962 machine_mode fieldmode
,
965 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
966 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, fieldmode
,
967 bitregion_start
, bitregion_end
))
969 /* Storing of a full word can be done with a simple store.
970 We know here that the field can be accessed with one single
971 instruction. For targets that support unaligned memory,
972 an unaligned access may be necessary. */
973 if (bitsize
== GET_MODE_BITSIZE (fieldmode
))
975 str_rtx
= adjust_bitfield_address (str_rtx
, fieldmode
,
976 bitnum
/ BITS_PER_UNIT
);
977 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
978 emit_move_insn (str_rtx
, value
);
984 str_rtx
= narrow_bit_field_mem (str_rtx
, fieldmode
, bitsize
, bitnum
,
986 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (fieldmode
));
987 temp
= copy_to_reg (str_rtx
);
988 if (!store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0,
989 fieldmode
, value
, true))
992 emit_move_insn (str_rtx
, temp
);
998 /* Under the C++0x memory model, we must not touch bits outside the
999 bit region. Adjust the address to start at the beginning of the
1001 if (MEM_P (str_rtx
) && bitregion_start
> 0)
1003 machine_mode bestmode
;
1004 HOST_WIDE_INT offset
, size
;
1006 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
1008 offset
= bitregion_start
/ BITS_PER_UNIT
;
1009 bitnum
-= bitregion_start
;
1010 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
1011 bitregion_end
-= bitregion_start
;
1012 bitregion_start
= 0;
1013 bestmode
= get_best_mode (bitsize
, bitnum
,
1014 bitregion_start
, bitregion_end
,
1015 MEM_ALIGN (str_rtx
), VOIDmode
,
1016 MEM_VOLATILE_P (str_rtx
));
1017 str_rtx
= adjust_bitfield_address_size (str_rtx
, bestmode
, offset
, size
);
1020 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1021 bitregion_start
, bitregion_end
,
1022 fieldmode
, value
, true))
1026 /* Use shifts and boolean operations to store VALUE into a bit field of
1027 width BITSIZE in OP0, starting at bit BITNUM. */
1030 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1031 unsigned HOST_WIDE_INT bitnum
,
1032 unsigned HOST_WIDE_INT bitregion_start
,
1033 unsigned HOST_WIDE_INT bitregion_end
,
1036 /* There is a case not handled here:
1037 a structure with a known alignment of just a halfword
1038 and a field split across two aligned halfwords within the structure.
1039 Or likewise a structure with a known alignment of just a byte
1040 and a field split across two bytes.
1041 Such cases are not supposed to be able to occur. */
1045 machine_mode mode
= GET_MODE (op0
);
1046 if (GET_MODE_BITSIZE (mode
) == 0
1047 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
1049 mode
= get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1050 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
1052 if (mode
== VOIDmode
)
1054 /* The only way this should occur is if the field spans word
1056 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
1057 bitregion_end
, value
);
1061 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1064 store_fixed_bit_field_1 (op0
, bitsize
, bitnum
, value
);
1067 /* Helper function for store_fixed_bit_field, stores
1068 the bit field always using the MODE of OP0. */
1071 store_fixed_bit_field_1 (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1072 unsigned HOST_WIDE_INT bitnum
,
1080 mode
= GET_MODE (op0
);
1081 gcc_assert (SCALAR_INT_MODE_P (mode
));
1083 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1084 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1086 if (BYTES_BIG_ENDIAN
)
1087 /* BITNUM is the distance between our msb
1088 and that of the containing datum.
1089 Convert it to the distance from the lsb. */
1090 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1092 /* Now BITNUM is always the distance between our lsb
1095 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1096 we must first convert its mode to MODE. */
1098 if (CONST_INT_P (value
))
1100 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1102 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1103 v
&= ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1;
1107 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1108 && v
== ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1)
1109 || (bitsize
== HOST_BITS_PER_WIDE_INT
1110 && v
== (unsigned HOST_WIDE_INT
) -1))
1113 value
= lshift_value (mode
, v
, bitnum
);
1117 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
1118 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1120 if (GET_MODE (value
) != mode
)
1121 value
= convert_to_mode (mode
, value
, 1);
1124 value
= expand_binop (mode
, and_optab
, value
,
1125 mask_rtx (mode
, 0, bitsize
, 0),
1126 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1128 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1129 bitnum
, NULL_RTX
, 1);
1132 /* Now clear the chosen bits in OP0,
1133 except that if VALUE is -1 we need not bother. */
1134 /* We keep the intermediates in registers to allow CSE to combine
1135 consecutive bitfield assignments. */
1137 temp
= force_reg (mode
, op0
);
1141 temp
= expand_binop (mode
, and_optab
, temp
,
1142 mask_rtx (mode
, bitnum
, bitsize
, 1),
1143 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1144 temp
= force_reg (mode
, temp
);
1147 /* Now logical-or VALUE into OP0, unless it is zero. */
1151 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1152 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1153 temp
= force_reg (mode
, temp
);
1158 op0
= copy_rtx (op0
);
1159 emit_move_insn (op0
, temp
);
1163 /* Store a bit field that is split across multiple accessible memory objects.
1165 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1166 BITSIZE is the field width; BITPOS the position of its first bit
1168 VALUE is the value to store.
1170 This does not yet handle fields wider than BITS_PER_WORD. */
1173 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1174 unsigned HOST_WIDE_INT bitpos
,
1175 unsigned HOST_WIDE_INT bitregion_start
,
1176 unsigned HOST_WIDE_INT bitregion_end
,
1180 unsigned int bitsdone
= 0;
1182 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1184 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1185 unit
= BITS_PER_WORD
;
1187 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1189 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1190 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1191 again, and we will mutually recurse forever. */
1192 if (MEM_P (op0
) && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0)
1193 unit
= MIN (unit
, GET_MODE_BITSIZE (GET_MODE (op0
)));
1195 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1196 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1197 that VALUE might be a floating-point constant. */
1198 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1200 rtx word
= gen_lowpart_common (word_mode
, value
);
1202 if (word
&& (value
!= word
))
1205 value
= gen_lowpart_common (word_mode
,
1206 force_reg (GET_MODE (value
) != VOIDmode
1208 : word_mode
, value
));
1211 while (bitsdone
< bitsize
)
1213 unsigned HOST_WIDE_INT thissize
;
1215 unsigned HOST_WIDE_INT thispos
;
1216 unsigned HOST_WIDE_INT offset
;
1218 offset
= (bitpos
+ bitsdone
) / unit
;
1219 thispos
= (bitpos
+ bitsdone
) % unit
;
1221 /* When region of bytes we can touch is restricted, decrease
1222 UNIT close to the end of the region as needed. If op0 is a REG
1223 or SUBREG of REG, don't do this, as there can't be data races
1224 on a register and we can expand shorter code in some cases. */
1226 && unit
> BITS_PER_UNIT
1227 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1229 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1235 /* THISSIZE must not overrun a word boundary. Otherwise,
1236 store_fixed_bit_field will call us again, and we will mutually
1238 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1239 thissize
= MIN (thissize
, unit
- thispos
);
1241 if (BYTES_BIG_ENDIAN
)
1243 /* Fetch successively less significant portions. */
1244 if (CONST_INT_P (value
))
1245 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1246 >> (bitsize
- bitsdone
- thissize
))
1247 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1250 int total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1251 /* The args are chosen so that the last part includes the
1252 lsb. Give extract_bit_field the value it needs (with
1253 endianness compensation) to fetch the piece we want. */
1254 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1255 total_bits
- bitsize
+ bitsdone
,
1261 /* Fetch successively more significant portions. */
1262 if (CONST_INT_P (value
))
1263 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1265 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1267 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1268 bitsdone
, NULL_RTX
, 1);
1271 /* If OP0 is a register, then handle OFFSET here.
1273 When handling multiword bitfields, extract_bit_field may pass
1274 down a word_mode SUBREG of a larger REG for a bitfield that actually
1275 crosses a word boundary. Thus, for a SUBREG, we must find
1276 the current word starting from the base register. */
1277 if (GET_CODE (op0
) == SUBREG
)
1279 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
)
1280 + (offset
* unit
/ BITS_PER_WORD
);
1281 machine_mode sub_mode
= GET_MODE (SUBREG_REG (op0
));
1282 if (sub_mode
!= BLKmode
&& GET_MODE_SIZE (sub_mode
) < UNITS_PER_WORD
)
1283 word
= word_offset
? const0_rtx
: op0
;
1285 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1286 GET_MODE (SUBREG_REG (op0
)));
1287 offset
&= BITS_PER_WORD
/ unit
- 1;
1289 else if (REG_P (op0
))
1291 machine_mode op0_mode
= GET_MODE (op0
);
1292 if (op0_mode
!= BLKmode
&& GET_MODE_SIZE (op0_mode
) < UNITS_PER_WORD
)
1293 word
= offset
? const0_rtx
: op0
;
1295 word
= operand_subword_force (op0
, offset
* unit
/ BITS_PER_WORD
,
1297 offset
&= BITS_PER_WORD
/ unit
- 1;
1302 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1303 it is just an out-of-bounds access. Ignore it. */
1304 if (word
!= const0_rtx
)
1305 store_fixed_bit_field (word
, thissize
, offset
* unit
+ thispos
,
1306 bitregion_start
, bitregion_end
, part
);
1307 bitsdone
+= thissize
;
1311 /* A subroutine of extract_bit_field_1 that converts return value X
1312 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1313 to extract_bit_field. */
1316 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1317 machine_mode tmode
, bool unsignedp
)
1319 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1322 /* If the x mode is not a scalar integral, first convert to the
1323 integer mode of that size and then access it as a floating-point
1324 value via a SUBREG. */
1325 if (!SCALAR_INT_MODE_P (tmode
))
1329 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1330 x
= convert_to_mode (smode
, x
, unsignedp
);
1331 x
= force_reg (smode
, x
);
1332 return gen_lowpart (tmode
, x
);
1335 return convert_to_mode (tmode
, x
, unsignedp
);
1338 /* Try to use an ext(z)v pattern to extract a field from OP0.
1339 Return the extracted value on success, otherwise return null.
1340 EXT_MODE is the mode of the extraction and the other arguments
1341 are as for extract_bit_field. */
1344 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1345 unsigned HOST_WIDE_INT bitsize
,
1346 unsigned HOST_WIDE_INT bitnum
,
1347 int unsignedp
, rtx target
,
1348 machine_mode mode
, machine_mode tmode
)
1350 struct expand_operand ops
[4];
1351 rtx spec_target
= target
;
1352 rtx spec_target_subreg
= 0;
1353 machine_mode ext_mode
= extv
->field_mode
;
1354 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1356 if (bitsize
== 0 || unit
< bitsize
)
1360 /* Get a reference to the first byte of the field. */
1361 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1365 /* Convert from counting within OP0 to counting in EXT_MODE. */
1366 if (BYTES_BIG_ENDIAN
)
1367 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1369 /* If op0 is a register, we need it in EXT_MODE to make it
1370 acceptable to the format of ext(z)v. */
1371 if (GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1373 if (REG_P (op0
) && GET_MODE (op0
) != ext_mode
)
1374 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1377 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1378 "backwards" from the size of the unit we are extracting from.
1379 Otherwise, we count bits from the most significant on a
1380 BYTES/BITS_BIG_ENDIAN machine. */
1382 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1383 bitnum
= unit
- bitsize
- bitnum
;
1386 target
= spec_target
= gen_reg_rtx (tmode
);
1388 if (GET_MODE (target
) != ext_mode
)
1390 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1391 between the mode of the extraction (word_mode) and the target
1392 mode. Instead, create a temporary and use convert_move to set
1395 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1397 target
= gen_lowpart (ext_mode
, target
);
1398 if (GET_MODE_PRECISION (ext_mode
)
1399 > GET_MODE_PRECISION (GET_MODE (spec_target
)))
1400 spec_target_subreg
= target
;
1403 target
= gen_reg_rtx (ext_mode
);
1406 create_output_operand (&ops
[0], target
, ext_mode
);
1407 create_fixed_operand (&ops
[1], op0
);
1408 create_integer_operand (&ops
[2], bitsize
);
1409 create_integer_operand (&ops
[3], bitnum
);
1410 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1412 target
= ops
[0].value
;
1413 if (target
== spec_target
)
1415 if (target
== spec_target_subreg
)
1417 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1422 /* A subroutine of extract_bit_field, with the same arguments.
1423 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1424 if we can find no other means of implementing the operation.
1425 if FALLBACK_P is false, return NULL instead. */
1428 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1429 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1430 machine_mode mode
, machine_mode tmode
,
1434 machine_mode int_mode
;
1437 if (tmode
== VOIDmode
)
1440 while (GET_CODE (op0
) == SUBREG
)
1442 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1443 op0
= SUBREG_REG (op0
);
1446 /* If we have an out-of-bounds access to a register, just return an
1447 uninitialized register of the required mode. This can occur if the
1448 source code contains an out-of-bounds access to a small array. */
1449 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1450 return gen_reg_rtx (tmode
);
1453 && mode
== GET_MODE (op0
)
1455 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1457 /* We're trying to extract a full register from itself. */
1461 /* See if we can get a better vector mode before extracting. */
1462 if (VECTOR_MODE_P (GET_MODE (op0
))
1464 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1466 machine_mode new_mode
;
1468 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1469 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1470 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1471 new_mode
= MIN_MODE_VECTOR_FRACT
;
1472 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1473 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1474 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1475 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1476 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1477 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1479 new_mode
= MIN_MODE_VECTOR_INT
;
1481 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1482 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1483 && targetm
.vector_mode_supported_p (new_mode
))
1485 if (new_mode
!= VOIDmode
)
1486 op0
= gen_lowpart (new_mode
, op0
);
1489 /* Use vec_extract patterns for extracting parts of vectors whenever
1491 if (VECTOR_MODE_P (GET_MODE (op0
))
1493 && optab_handler (vec_extract_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
1494 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1495 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1497 struct expand_operand ops
[3];
1498 machine_mode outermode
= GET_MODE (op0
);
1499 machine_mode innermode
= GET_MODE_INNER (outermode
);
1500 enum insn_code icode
= optab_handler (vec_extract_optab
, outermode
);
1501 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1503 create_output_operand (&ops
[0], target
, innermode
);
1504 create_input_operand (&ops
[1], op0
, outermode
);
1505 create_integer_operand (&ops
[2], pos
);
1506 if (maybe_expand_insn (icode
, 3, ops
))
1508 target
= ops
[0].value
;
1509 if (GET_MODE (target
) != mode
)
1510 return gen_lowpart (tmode
, target
);
1515 /* Make sure we are playing with integral modes. Pun with subregs
1518 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1519 if (imode
!= GET_MODE (op0
))
1522 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
1523 else if (imode
!= BLKmode
)
1525 op0
= gen_lowpart (imode
, op0
);
1527 /* If we got a SUBREG, force it into a register since we
1528 aren't going to be able to do another SUBREG on it. */
1529 if (GET_CODE (op0
) == SUBREG
)
1530 op0
= force_reg (imode
, op0
);
1532 else if (REG_P (op0
))
1535 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1537 reg
= gen_reg_rtx (imode
);
1538 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1539 emit_move_insn (subreg
, op0
);
1541 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1545 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1546 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1547 emit_move_insn (mem
, op0
);
1548 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1553 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1554 If that's wrong, the solution is to test for it and set TARGET to 0
1557 /* Get the mode of the field to use for atomic access or subreg
1560 if (SCALAR_INT_MODE_P (tmode
))
1562 machine_mode try_mode
= mode_for_size (bitsize
,
1563 GET_MODE_CLASS (tmode
), 0);
1564 if (try_mode
!= BLKmode
)
1567 gcc_assert (mode1
!= BLKmode
);
1569 /* Extraction of a full MODE1 value can be done with a subreg as long
1570 as the least significant bit of the value is the least significant
1571 bit of either OP0 or a word of OP0. */
1573 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1574 && bitsize
== GET_MODE_BITSIZE (mode1
)
1575 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, GET_MODE (op0
)))
1577 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1578 bitnum
/ BITS_PER_UNIT
);
1580 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1583 /* Extraction of a full MODE1 value can be done with a load as long as
1584 the field is on a byte boundary and is sufficiently aligned. */
1585 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1587 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1588 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1591 /* Handle fields bigger than a word. */
1593 if (bitsize
> BITS_PER_WORD
)
1595 /* Here we transfer the words of the field
1596 in the order least significant first.
1597 This is because the most significant word is the one which may
1598 be less than full. */
1600 unsigned int backwards
= WORDS_BIG_ENDIAN
;
1601 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1605 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1606 target
= gen_reg_rtx (mode
);
1608 /* In case we're about to clobber a base register or something
1609 (see gcc.c-torture/execute/20040625-1.c). */
1610 if (reg_mentioned_p (target
, str_rtx
))
1611 target
= gen_reg_rtx (mode
);
1613 /* Indicate for flow that the entire target reg is being set. */
1614 emit_clobber (target
);
1616 last
= get_last_insn ();
1617 for (i
= 0; i
< nwords
; i
++)
1619 /* If I is 0, use the low-order word in both field and target;
1620 if I is 1, use the next to lowest word; and so on. */
1621 /* Word number in TARGET to use. */
1622 unsigned int wordnum
1624 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1626 /* Offset from start of field in OP0. */
1627 unsigned int bit_offset
= (backwards
1628 ? MAX ((int) bitsize
- ((int) i
+ 1)
1631 : (int) i
* BITS_PER_WORD
);
1632 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1634 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1635 bitsize
- i
* BITS_PER_WORD
),
1636 bitnum
+ bit_offset
, 1, target_part
,
1637 mode
, word_mode
, fallback_p
);
1639 gcc_assert (target_part
);
1642 delete_insns_since (last
);
1646 if (result_part
!= target_part
)
1647 emit_move_insn (target_part
, result_part
);
1652 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1653 need to be zero'd out. */
1654 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1656 unsigned int i
, total_words
;
1658 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1659 for (i
= nwords
; i
< total_words
; i
++)
1661 (operand_subword (target
,
1662 backwards
? total_words
- i
- 1 : i
,
1669 /* Signed bit field: sign-extend with two arithmetic shifts. */
1670 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1671 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1672 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1673 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1676 /* If OP0 is a multi-word register, narrow it to the affected word.
1677 If the region spans two words, defer to extract_split_bit_field. */
1678 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1680 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
1681 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1682 bitnum
%= BITS_PER_WORD
;
1683 if (bitnum
+ bitsize
> BITS_PER_WORD
)
1687 target
= extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1688 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1692 /* From here on we know the desired field is smaller than a word.
1693 If OP0 is a register, it too fits within a word. */
1694 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1695 extraction_insn extv
;
1697 /* ??? We could limit the structure size to the part of OP0 that
1698 contains the field, with appropriate checks for endianness
1699 and TRULY_NOOP_TRUNCATION. */
1700 && get_best_reg_extraction_insn (&extv
, pattern
,
1701 GET_MODE_BITSIZE (GET_MODE (op0
)),
1704 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
, bitnum
,
1705 unsignedp
, target
, mode
,
1711 /* If OP0 is a memory, try copying it to a register and seeing if a
1712 cheap register alternative is available. */
1715 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1718 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
,
1726 rtx_insn
*last
= get_last_insn ();
1728 /* Try loading part of OP0 into a register and extracting the
1729 bitfield from that. */
1730 unsigned HOST_WIDE_INT bitpos
;
1731 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1732 0, 0, tmode
, &bitpos
);
1735 xop0
= copy_to_reg (xop0
);
1736 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1738 mode
, tmode
, false);
1741 delete_insns_since (last
);
1748 /* Find a correspondingly-sized integer field, so we can apply
1749 shifts and masks to it. */
1750 int_mode
= int_mode_for_mode (tmode
);
1751 if (int_mode
== BLKmode
)
1752 int_mode
= int_mode_for_mode (mode
);
1753 /* Should probably push op0 out to memory and then do a load. */
1754 gcc_assert (int_mode
!= BLKmode
);
1756 target
= extract_fixed_bit_field (int_mode
, op0
, bitsize
, bitnum
,
1758 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1761 /* Generate code to extract a byte-field from STR_RTX
1762 containing BITSIZE bits, starting at BITNUM,
1763 and put it in TARGET if possible (if TARGET is nonzero).
1764 Regardless of TARGET, we return the rtx for where the value is placed.
1766 STR_RTX is the structure containing the byte (a REG or MEM).
1767 UNSIGNEDP is nonzero if this is an unsigned bit field.
1768 MODE is the natural mode of the field value once extracted.
1769 TMODE is the mode the caller would like the value to have;
1770 but the value may be returned with type MODE instead.
1772 If a TARGET is specified and we can store in it at no extra cost,
1773 we do so, and return TARGET.
1774 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1775 if they are equally easy. */
1778 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1779 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1780 machine_mode mode
, machine_mode tmode
)
1784 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1785 if (GET_MODE_BITSIZE (GET_MODE (str_rtx
)) > 0)
1786 mode1
= GET_MODE (str_rtx
);
1787 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1788 mode1
= GET_MODE (target
);
1792 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, mode1
, 0, 0))
1794 /* Extraction of a full MODE1 value can be done with a simple load.
1795 We know here that the field can be accessed with one single
1796 instruction. For targets that support unaligned memory,
1797 an unaligned access may be necessary. */
1798 if (bitsize
== GET_MODE_BITSIZE (mode1
))
1800 rtx result
= adjust_bitfield_address (str_rtx
, mode1
,
1801 bitnum
/ BITS_PER_UNIT
);
1802 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1803 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
1806 str_rtx
= narrow_bit_field_mem (str_rtx
, mode1
, bitsize
, bitnum
,
1808 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (mode1
));
1809 str_rtx
= copy_to_reg (str_rtx
);
1812 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1813 target
, mode
, tmode
, true);
1816 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1817 from bit BITNUM of OP0.
1819 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1820 If TARGET is nonzero, attempts to store the value there
1821 and return TARGET, but this is not guaranteed.
1822 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1825 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
1826 unsigned HOST_WIDE_INT bitsize
,
1827 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1833 = get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
), word_mode
,
1834 MEM_VOLATILE_P (op0
));
1836 if (mode
== VOIDmode
)
1837 /* The only way this should occur is if the field spans word
1839 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1841 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1844 return extract_fixed_bit_field_1 (tmode
, op0
, bitsize
, bitnum
,
1848 /* Helper function for extract_fixed_bit_field, extracts
1849 the bit field always using the MODE of OP0. */
1852 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
,
1853 unsigned HOST_WIDE_INT bitsize
,
1854 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1857 machine_mode mode
= GET_MODE (op0
);
1858 gcc_assert (SCALAR_INT_MODE_P (mode
));
1860 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1861 for invalid input, such as extract equivalent of f5 from
1862 gcc.dg/pr48335-2.c. */
1864 if (BYTES_BIG_ENDIAN
)
1865 /* BITNUM is the distance between our msb and that of OP0.
1866 Convert it to the distance from the lsb. */
1867 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1869 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1870 We have reduced the big-endian case to the little-endian case. */
1876 /* If the field does not already start at the lsb,
1877 shift it so it does. */
1878 /* Maybe propagate the target for the shift. */
1879 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1882 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
1884 /* Convert the value to the desired mode. */
1886 op0
= convert_to_mode (tmode
, op0
, 1);
1888 /* Unless the msb of the field used to be the msb when we shifted,
1889 mask out the upper bits. */
1891 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
1892 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1893 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1894 target
, 1, OPTAB_LIB_WIDEN
);
1898 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1899 then arithmetic-shift its lsb to the lsb of the word. */
1900 op0
= force_reg (mode
, op0
);
1902 /* Find the narrowest integer mode that contains the field. */
1904 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1905 mode
= GET_MODE_WIDER_MODE (mode
))
1906 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitnum
)
1908 op0
= convert_to_mode (mode
, op0
, 0);
1915 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
1917 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
1918 /* Maybe propagate the target for the shift. */
1919 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1920 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1923 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1924 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
1927 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1931 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
1934 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
1937 /* Extract a bit field that is split across two words
1938 and return an RTX for the result.
1940 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1941 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1942 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1945 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1946 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1949 unsigned int bitsdone
= 0;
1950 rtx result
= NULL_RTX
;
1953 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1955 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1956 unit
= BITS_PER_WORD
;
1958 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1960 while (bitsdone
< bitsize
)
1962 unsigned HOST_WIDE_INT thissize
;
1964 unsigned HOST_WIDE_INT thispos
;
1965 unsigned HOST_WIDE_INT offset
;
1967 offset
= (bitpos
+ bitsdone
) / unit
;
1968 thispos
= (bitpos
+ bitsdone
) % unit
;
1970 /* THISSIZE must not overrun a word boundary. Otherwise,
1971 extract_fixed_bit_field will call us again, and we will mutually
1973 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1974 thissize
= MIN (thissize
, unit
- thispos
);
1976 /* If OP0 is a register, then handle OFFSET here.
1978 When handling multiword bitfields, extract_bit_field may pass
1979 down a word_mode SUBREG of a larger REG for a bitfield that actually
1980 crosses a word boundary. Thus, for a SUBREG, we must find
1981 the current word starting from the base register. */
1982 if (GET_CODE (op0
) == SUBREG
)
1984 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1985 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1986 GET_MODE (SUBREG_REG (op0
)));
1989 else if (REG_P (op0
))
1991 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1997 /* Extract the parts in bit-counting order,
1998 whose meaning is determined by BYTES_PER_UNIT.
1999 OFFSET is in UNITs, and UNIT is in bits. */
2000 part
= extract_fixed_bit_field (word_mode
, word
, thissize
,
2001 offset
* unit
+ thispos
, 0, 1);
2002 bitsdone
+= thissize
;
2004 /* Shift this part into place for the result. */
2005 if (BYTES_BIG_ENDIAN
)
2007 if (bitsize
!= bitsdone
)
2008 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2009 bitsize
- bitsdone
, 0, 1);
2013 if (bitsdone
!= thissize
)
2014 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2015 bitsdone
- thissize
, 0, 1);
2021 /* Combine the parts with bitwise or. This works
2022 because we extracted each part as an unsigned bit field. */
2023 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2029 /* Unsigned bit field: we are done. */
2032 /* Signed bit field: sign-extend with two arithmetic shifts. */
2033 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2034 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2035 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2036 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2039 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2040 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2041 MODE, fill the upper bits with zeros. Fail if the layout of either
2042 mode is unknown (as for CC modes) or if the extraction would involve
2043 unprofitable mode punning. Return the value on success, otherwise
2046 This is different from gen_lowpart* in these respects:
2048 - the returned value must always be considered an rvalue
2050 - when MODE is wider than SRC_MODE, the extraction involves
2053 - when MODE is smaller than SRC_MODE, the extraction involves
2054 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2056 In other words, this routine performs a computation, whereas the
2057 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2061 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2063 machine_mode int_mode
, src_int_mode
;
2065 if (mode
== src_mode
)
2068 if (CONSTANT_P (src
))
2070 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2071 fails, it will happily create (subreg (symbol_ref)) or similar
2073 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2074 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2078 if (GET_MODE (src
) == VOIDmode
2079 || !validate_subreg (mode
, src_mode
, src
, byte
))
2082 src
= force_reg (GET_MODE (src
), src
);
2083 return gen_rtx_SUBREG (mode
, src
, byte
);
2086 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2089 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2090 && MODES_TIEABLE_P (mode
, src_mode
))
2092 rtx x
= gen_lowpart_common (mode
, src
);
2097 src_int_mode
= int_mode_for_mode (src_mode
);
2098 int_mode
= int_mode_for_mode (mode
);
2099 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2102 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2104 if (!MODES_TIEABLE_P (int_mode
, mode
))
2107 src
= gen_lowpart (src_int_mode
, src
);
2108 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2109 src
= gen_lowpart (mode
, src
);
2113 /* Add INC into TARGET. */
2116 expand_inc (rtx target
, rtx inc
)
2118 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2120 target
, 0, OPTAB_LIB_WIDEN
);
2121 if (value
!= target
)
2122 emit_move_insn (target
, value
);
2125 /* Subtract DEC from TARGET. */
2128 expand_dec (rtx target
, rtx dec
)
2130 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2132 target
, 0, OPTAB_LIB_WIDEN
);
2133 if (value
!= target
)
2134 emit_move_insn (target
, value
);
2137 /* Output a shift instruction for expression code CODE,
2138 with SHIFTED being the rtx for the value to shift,
2139 and AMOUNT the rtx for the amount to shift by.
2140 Store the result in the rtx TARGET, if that is convenient.
2141 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2142 Return the rtx for where the value is. */
2145 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2146 rtx amount
, rtx target
, int unsignedp
)
2149 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2150 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2151 optab lshift_optab
= ashl_optab
;
2152 optab rshift_arith_optab
= ashr_optab
;
2153 optab rshift_uns_optab
= lshr_optab
;
2154 optab lrotate_optab
= rotl_optab
;
2155 optab rrotate_optab
= rotr_optab
;
2156 machine_mode op1_mode
;
2157 machine_mode scalar_mode
= mode
;
2159 bool speed
= optimize_insn_for_speed_p ();
2161 if (VECTOR_MODE_P (mode
))
2162 scalar_mode
= GET_MODE_INNER (mode
);
2164 op1_mode
= GET_MODE (op1
);
2166 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2167 shift amount is a vector, use the vector/vector shift patterns. */
2168 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2170 lshift_optab
= vashl_optab
;
2171 rshift_arith_optab
= vashr_optab
;
2172 rshift_uns_optab
= vlshr_optab
;
2173 lrotate_optab
= vrotl_optab
;
2174 rrotate_optab
= vrotr_optab
;
2177 /* Previously detected shift-counts computed by NEGATE_EXPR
2178 and shifted in the other direction; but that does not work
2181 if (SHIFT_COUNT_TRUNCATED
)
2183 if (CONST_INT_P (op1
)
2184 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2185 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2186 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2187 % GET_MODE_BITSIZE (scalar_mode
));
2188 else if (GET_CODE (op1
) == SUBREG
2189 && subreg_lowpart_p (op1
)
2190 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2191 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2192 op1
= SUBREG_REG (op1
);
2195 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2196 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2197 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2200 && CONST_INT_P (op1
)
2201 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2202 GET_MODE_BITSIZE (scalar_mode
) - 1))
2204 op1
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2206 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2209 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2210 Note that this is not the case for bigger values. For instance a rotation
2211 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2212 0x04030201 (bswapsi). */
2214 && CONST_INT_P (op1
)
2215 && INTVAL (op1
) == BITS_PER_UNIT
2216 && GET_MODE_SIZE (scalar_mode
) == 2
2217 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
)
2218 return expand_unop (HImode
, bswap_optab
, shifted
, NULL_RTX
,
2221 if (op1
== const0_rtx
)
2224 /* Check whether its cheaper to implement a left shift by a constant
2225 bit count by a sequence of additions. */
2226 if (code
== LSHIFT_EXPR
2227 && CONST_INT_P (op1
)
2229 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2230 && INTVAL (op1
) < MAX_BITS_PER_WORD
2231 && (shift_cost (speed
, mode
, INTVAL (op1
))
2232 > INTVAL (op1
) * add_cost (speed
, mode
))
2233 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2236 for (i
= 0; i
< INTVAL (op1
); i
++)
2238 temp
= force_reg (mode
, shifted
);
2239 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2240 unsignedp
, OPTAB_LIB_WIDEN
);
2245 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2247 enum optab_methods methods
;
2250 methods
= OPTAB_DIRECT
;
2251 else if (attempt
== 1)
2252 methods
= OPTAB_WIDEN
;
2254 methods
= OPTAB_LIB_WIDEN
;
2258 /* Widening does not work for rotation. */
2259 if (methods
== OPTAB_WIDEN
)
2261 else if (methods
== OPTAB_LIB_WIDEN
)
2263 /* If we have been unable to open-code this by a rotation,
2264 do it as the IOR of two shifts. I.e., to rotate A
2266 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2267 where C is the bitsize of A.
2269 It is theoretically possible that the target machine might
2270 not be able to perform either shift and hence we would
2271 be making two libcalls rather than just the one for the
2272 shift (similarly if IOR could not be done). We will allow
2273 this extremely unlikely lossage to avoid complicating the
2276 rtx subtarget
= target
== shifted
? 0 : target
;
2277 rtx new_amount
, other_amount
;
2281 if (op1
== const0_rtx
)
2283 else if (CONST_INT_P (op1
))
2284 other_amount
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
)
2289 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2290 op1
, GET_MODE (op1
));
2291 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2293 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2294 gen_int_mode (mask
, GET_MODE (op1
)));
2297 shifted
= force_reg (mode
, shifted
);
2299 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2300 mode
, shifted
, new_amount
, 0, 1);
2301 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2302 mode
, shifted
, other_amount
,
2304 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2305 unsignedp
, methods
);
2308 temp
= expand_binop (mode
,
2309 left
? lrotate_optab
: rrotate_optab
,
2310 shifted
, op1
, target
, unsignedp
, methods
);
2313 temp
= expand_binop (mode
,
2314 left
? lshift_optab
: rshift_uns_optab
,
2315 shifted
, op1
, target
, unsignedp
, methods
);
2317 /* Do arithmetic shifts.
2318 Also, if we are going to widen the operand, we can just as well
2319 use an arithmetic right-shift instead of a logical one. */
2320 if (temp
== 0 && ! rotate
2321 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2323 enum optab_methods methods1
= methods
;
2325 /* If trying to widen a log shift to an arithmetic shift,
2326 don't accept an arithmetic shift of the same size. */
2328 methods1
= OPTAB_MUST_WIDEN
;
2330 /* Arithmetic shift */
2332 temp
= expand_binop (mode
,
2333 left
? lshift_optab
: rshift_arith_optab
,
2334 shifted
, op1
, target
, unsignedp
, methods1
);
2337 /* We used to try extzv here for logical right shifts, but that was
2338 only useful for one machine, the VAX, and caused poor code
2339 generation there for lshrdi3, so the code was deleted and a
2340 define_expand for lshrsi3 was added to vax.md. */
2347 /* Output a shift instruction for expression code CODE,
2348 with SHIFTED being the rtx for the value to shift,
2349 and AMOUNT the amount to shift by.
2350 Store the result in the rtx TARGET, if that is convenient.
2351 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2352 Return the rtx for where the value is. */
2355 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2356 int amount
, rtx target
, int unsignedp
)
2358 return expand_shift_1 (code
, mode
,
2359 shifted
, GEN_INT (amount
), target
, unsignedp
);
2362 /* Output a shift instruction for expression code CODE,
2363 with SHIFTED being the rtx for the value to shift,
2364 and AMOUNT the tree for the amount to shift by.
2365 Store the result in the rtx TARGET, if that is convenient.
2366 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2367 Return the rtx for where the value is. */
2370 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2371 tree amount
, rtx target
, int unsignedp
)
2373 return expand_shift_1 (code
, mode
,
2374 shifted
, expand_normal (amount
), target
, unsignedp
);
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2384 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2385 const struct mult_cost
*, machine_mode mode
);
2386 static bool choose_mult_variant (machine_mode
, HOST_WIDE_INT
,
2387 struct algorithm
*, enum mult_variant
*, int);
2388 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2389 const struct algorithm
*, enum mult_variant
);
2390 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2391 static rtx
extract_high_half (machine_mode
, rtx
);
2392 static rtx
expmed_mult_highpart (machine_mode
, rtx
, rtx
, rtx
, int, int);
2393 static rtx
expmed_mult_highpart_optab (machine_mode
, rtx
, rtx
, rtx
,
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2402 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2403 const struct mult_cost
*cost_limit
, machine_mode mode
)
2406 struct algorithm
*alg_in
, *best_alg
;
2407 struct mult_cost best_cost
;
2408 struct mult_cost new_limit
;
2409 int op_cost
, op_latency
;
2410 unsigned HOST_WIDE_INT orig_t
= t
;
2411 unsigned HOST_WIDE_INT q
;
2412 int maxm
, hash_index
;
2413 bool cache_hit
= false;
2414 enum alg_code cache_alg
= alg_zero
;
2415 bool speed
= optimize_insn_for_speed_p ();
2417 struct alg_hash_entry
*entry_ptr
;
2419 /* Indicate that no algorithm is yet found. If no algorithm
2420 is found, this value will be returned and indicate failure. */
2421 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2422 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2424 if (cost_limit
->cost
< 0
2425 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2428 /* Be prepared for vector modes. */
2429 imode
= GET_MODE_INNER (mode
);
2430 if (imode
== VOIDmode
)
2433 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2435 /* Restrict the bits of "t" to the multiplication's mode. */
2436 t
&= GET_MODE_MASK (imode
);
2438 /* t == 1 can be done in zero cost. */
2442 alg_out
->cost
.cost
= 0;
2443 alg_out
->cost
.latency
= 0;
2444 alg_out
->op
[0] = alg_m
;
2448 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2452 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2457 alg_out
->cost
.cost
= zero_cost (speed
);
2458 alg_out
->cost
.latency
= zero_cost (speed
);
2459 alg_out
->op
[0] = alg_zero
;
2464 /* We'll be needing a couple extra algorithm structures now. */
2466 alg_in
= XALLOCA (struct algorithm
);
2467 best_alg
= XALLOCA (struct algorithm
);
2468 best_cost
= *cost_limit
;
2470 /* Compute the hash index. */
2471 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2473 /* See if we already know what to do for T. */
2474 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2475 if (entry_ptr
->t
== t
2476 && entry_ptr
->mode
== mode
2477 && entry_ptr
->mode
== mode
2478 && entry_ptr
->speed
== speed
2479 && entry_ptr
->alg
!= alg_unknown
)
2481 cache_alg
= entry_ptr
->alg
;
2483 if (cache_alg
== alg_impossible
)
2485 /* The cache tells us that it's impossible to synthesize
2486 multiplication by T within entry_ptr->cost. */
2487 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2488 /* COST_LIMIT is at least as restrictive as the one
2489 recorded in the hash table, in which case we have no
2490 hope of synthesizing a multiplication. Just
2494 /* If we get here, COST_LIMIT is less restrictive than the
2495 one recorded in the hash table, so we may be able to
2496 synthesize a multiplication. Proceed as if we didn't
2497 have the cache entry. */
2501 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2502 /* The cached algorithm shows that this multiplication
2503 requires more cost than COST_LIMIT. Just return. This
2504 way, we don't clobber this cache entry with
2505 alg_impossible but retain useful information. */
2517 goto do_alg_addsub_t_m2
;
2519 case alg_add_factor
:
2520 case alg_sub_factor
:
2521 goto do_alg_addsub_factor
;
2524 goto do_alg_add_t2_m
;
2527 goto do_alg_sub_t2_m
;
2535 /* If we have a group of zero bits at the low-order part of T, try
2536 multiplying by the remaining bits and then doing a shift. */
2541 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2545 /* The function expand_shift will choose between a shift and
2546 a sequence of additions, so the observed cost is given as
2547 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2548 op_cost
= m
* add_cost (speed
, mode
);
2549 if (shift_cost (speed
, mode
, m
) < op_cost
)
2550 op_cost
= shift_cost (speed
, mode
, m
);
2551 new_limit
.cost
= best_cost
.cost
- op_cost
;
2552 new_limit
.latency
= best_cost
.latency
- op_cost
;
2553 synth_mult (alg_in
, q
, &new_limit
, mode
);
2555 alg_in
->cost
.cost
+= op_cost
;
2556 alg_in
->cost
.latency
+= op_cost
;
2557 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2559 best_cost
= alg_in
->cost
;
2560 std::swap (alg_in
, best_alg
);
2561 best_alg
->log
[best_alg
->ops
] = m
;
2562 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2565 /* See if treating ORIG_T as a signed number yields a better
2566 sequence. Try this sequence only for a negative ORIG_T
2567 as it would be useless for a non-negative ORIG_T. */
2568 if ((HOST_WIDE_INT
) orig_t
< 0)
2570 /* Shift ORIG_T as follows because a right shift of a
2571 negative-valued signed type is implementation
2573 q
= ~(~orig_t
>> m
);
2574 /* The function expand_shift will choose between a shift
2575 and a sequence of additions, so the observed cost is
2576 given as MIN (m * add_cost(speed, mode),
2577 shift_cost(speed, mode, m)). */
2578 op_cost
= m
* add_cost (speed
, mode
);
2579 if (shift_cost (speed
, mode
, m
) < op_cost
)
2580 op_cost
= shift_cost (speed
, mode
, m
);
2581 new_limit
.cost
= best_cost
.cost
- op_cost
;
2582 new_limit
.latency
= best_cost
.latency
- op_cost
;
2583 synth_mult (alg_in
, q
, &new_limit
, mode
);
2585 alg_in
->cost
.cost
+= op_cost
;
2586 alg_in
->cost
.latency
+= op_cost
;
2587 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2589 best_cost
= alg_in
->cost
;
2590 std::swap (alg_in
, best_alg
);
2591 best_alg
->log
[best_alg
->ops
] = m
;
2592 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2600 /* If we have an odd number, add or subtract one. */
2603 unsigned HOST_WIDE_INT w
;
2606 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2608 /* If T was -1, then W will be zero after the loop. This is another
2609 case where T ends with ...111. Handling this with (T + 1) and
2610 subtract 1 produces slightly better code and results in algorithm
2611 selection much faster than treating it like the ...0111 case
2615 /* Reject the case where t is 3.
2616 Thus we prefer addition in that case. */
2619 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2621 op_cost
= add_cost (speed
, mode
);
2622 new_limit
.cost
= best_cost
.cost
- op_cost
;
2623 new_limit
.latency
= best_cost
.latency
- op_cost
;
2624 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2626 alg_in
->cost
.cost
+= op_cost
;
2627 alg_in
->cost
.latency
+= op_cost
;
2628 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2630 best_cost
= alg_in
->cost
;
2631 std::swap (alg_in
, best_alg
);
2632 best_alg
->log
[best_alg
->ops
] = 0;
2633 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2638 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2640 op_cost
= add_cost (speed
, mode
);
2641 new_limit
.cost
= best_cost
.cost
- op_cost
;
2642 new_limit
.latency
= best_cost
.latency
- op_cost
;
2643 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2645 alg_in
->cost
.cost
+= op_cost
;
2646 alg_in
->cost
.latency
+= op_cost
;
2647 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2649 best_cost
= alg_in
->cost
;
2650 std::swap (alg_in
, best_alg
);
2651 best_alg
->log
[best_alg
->ops
] = 0;
2652 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2656 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2657 quickly with a - a * n for some appropriate constant n. */
2658 m
= exact_log2 (-orig_t
+ 1);
2659 if (m
>= 0 && m
< maxm
)
2661 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2662 /* If the target has a cheap shift-and-subtract insn use
2663 that in preference to a shift insn followed by a sub insn.
2664 Assume that the shift-and-sub is "atomic" with a latency
2665 equal to it's cost, otherwise assume that on superscalar
2666 hardware the shift may be executed concurrently with the
2667 earlier steps in the algorithm. */
2668 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2670 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2671 op_latency
= op_cost
;
2674 op_latency
= add_cost (speed
, mode
);
2676 new_limit
.cost
= best_cost
.cost
- op_cost
;
2677 new_limit
.latency
= best_cost
.latency
- op_latency
;
2678 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2681 alg_in
->cost
.cost
+= op_cost
;
2682 alg_in
->cost
.latency
+= op_latency
;
2683 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2685 best_cost
= alg_in
->cost
;
2686 std::swap (alg_in
, best_alg
);
2687 best_alg
->log
[best_alg
->ops
] = m
;
2688 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2696 /* Look for factors of t of the form
2697 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2698 If we find such a factor, we can multiply by t using an algorithm that
2699 multiplies by q, shift the result by m and add/subtract it to itself.
2701 We search for large factors first and loop down, even if large factors
2702 are less probable than small; if we find a large factor we will find a
2703 good sequence quickly, and therefore be able to prune (by decreasing
2704 COST_LIMIT) the search. */
2706 do_alg_addsub_factor
:
2707 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2709 unsigned HOST_WIDE_INT d
;
2711 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2712 if (t
% d
== 0 && t
> d
&& m
< maxm
2713 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2715 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2716 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
2717 op_cost
= shiftadd_cost (speed
, mode
, m
);
2719 op_latency
= op_cost
;
2722 new_limit
.cost
= best_cost
.cost
- op_cost
;
2723 new_limit
.latency
= best_cost
.latency
- op_latency
;
2724 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2726 alg_in
->cost
.cost
+= op_cost
;
2727 alg_in
->cost
.latency
+= op_latency
;
2728 if (alg_in
->cost
.latency
< op_cost
)
2729 alg_in
->cost
.latency
= op_cost
;
2730 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2732 best_cost
= alg_in
->cost
;
2733 std::swap (alg_in
, best_alg
);
2734 best_alg
->log
[best_alg
->ops
] = m
;
2735 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2737 /* Other factors will have been taken care of in the recursion. */
2741 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2742 if (t
% d
== 0 && t
> d
&& m
< maxm
2743 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2745 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2746 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
2747 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2749 op_latency
= op_cost
;
2751 new_limit
.cost
= best_cost
.cost
- op_cost
;
2752 new_limit
.latency
= best_cost
.latency
- op_latency
;
2753 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2755 alg_in
->cost
.cost
+= op_cost
;
2756 alg_in
->cost
.latency
+= op_latency
;
2757 if (alg_in
->cost
.latency
< op_cost
)
2758 alg_in
->cost
.latency
= op_cost
;
2759 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2761 best_cost
= alg_in
->cost
;
2762 std::swap (alg_in
, best_alg
);
2763 best_alg
->log
[best_alg
->ops
] = m
;
2764 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2772 /* Try shift-and-add (load effective address) instructions,
2773 i.e. do a*3, a*5, a*9. */
2780 if (m
>= 0 && m
< maxm
)
2782 op_cost
= shiftadd_cost (speed
, mode
, m
);
2783 new_limit
.cost
= best_cost
.cost
- op_cost
;
2784 new_limit
.latency
= best_cost
.latency
- op_cost
;
2785 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2787 alg_in
->cost
.cost
+= op_cost
;
2788 alg_in
->cost
.latency
+= op_cost
;
2789 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2791 best_cost
= alg_in
->cost
;
2792 std::swap (alg_in
, best_alg
);
2793 best_alg
->log
[best_alg
->ops
] = m
;
2794 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2804 if (m
>= 0 && m
< maxm
)
2806 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2807 new_limit
.cost
= best_cost
.cost
- op_cost
;
2808 new_limit
.latency
= best_cost
.latency
- op_cost
;
2809 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2811 alg_in
->cost
.cost
+= op_cost
;
2812 alg_in
->cost
.latency
+= op_cost
;
2813 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2815 best_cost
= alg_in
->cost
;
2816 std::swap (alg_in
, best_alg
);
2817 best_alg
->log
[best_alg
->ops
] = m
;
2818 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2826 /* If best_cost has not decreased, we have not found any algorithm. */
2827 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2829 /* We failed to find an algorithm. Record alg_impossible for
2830 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2831 we are asked to find an algorithm for T within the same or
2832 lower COST_LIMIT, we can immediately return to the
2835 entry_ptr
->mode
= mode
;
2836 entry_ptr
->speed
= speed
;
2837 entry_ptr
->alg
= alg_impossible
;
2838 entry_ptr
->cost
= *cost_limit
;
2842 /* Cache the result. */
2846 entry_ptr
->mode
= mode
;
2847 entry_ptr
->speed
= speed
;
2848 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
2849 entry_ptr
->cost
.cost
= best_cost
.cost
;
2850 entry_ptr
->cost
.latency
= best_cost
.latency
;
2853 /* If we are getting a too long sequence for `struct algorithm'
2854 to record, make this search fail. */
2855 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2858 /* Copy the algorithm from temporary space to the space at alg_out.
2859 We avoid using structure assignment because the majority of
2860 best_alg is normally undefined, and this is a critical function. */
2861 alg_out
->ops
= best_alg
->ops
+ 1;
2862 alg_out
->cost
= best_cost
;
2863 memcpy (alg_out
->op
, best_alg
->op
,
2864 alg_out
->ops
* sizeof *alg_out
->op
);
2865 memcpy (alg_out
->log
, best_alg
->log
,
2866 alg_out
->ops
* sizeof *alg_out
->log
);
2869 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2870 Try three variations:
2872 - a shift/add sequence based on VAL itself
2873 - a shift/add sequence based on -VAL, followed by a negation
2874 - a shift/add sequence based on VAL - 1, followed by an addition.
2876 Return true if the cheapest of these cost less than MULT_COST,
2877 describing the algorithm in *ALG and final fixup in *VARIANT. */
2880 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
2881 struct algorithm
*alg
, enum mult_variant
*variant
,
2884 struct algorithm alg2
;
2885 struct mult_cost limit
;
2887 bool speed
= optimize_insn_for_speed_p ();
2889 /* Fail quickly for impossible bounds. */
2893 /* Ensure that mult_cost provides a reasonable upper bound.
2894 Any constant multiplication can be performed with less
2895 than 2 * bits additions. */
2896 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
2897 if (mult_cost
> op_cost
)
2898 mult_cost
= op_cost
;
2900 *variant
= basic_variant
;
2901 limit
.cost
= mult_cost
;
2902 limit
.latency
= mult_cost
;
2903 synth_mult (alg
, val
, &limit
, mode
);
2905 /* This works only if the inverted value actually fits in an
2907 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
2909 op_cost
= neg_cost (speed
, mode
);
2910 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2912 limit
.cost
= alg
->cost
.cost
- op_cost
;
2913 limit
.latency
= alg
->cost
.latency
- op_cost
;
2917 limit
.cost
= mult_cost
- op_cost
;
2918 limit
.latency
= mult_cost
- op_cost
;
2921 synth_mult (&alg2
, -val
, &limit
, mode
);
2922 alg2
.cost
.cost
+= op_cost
;
2923 alg2
.cost
.latency
+= op_cost
;
2924 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2925 *alg
= alg2
, *variant
= negate_variant
;
2928 /* This proves very useful for division-by-constant. */
2929 op_cost
= add_cost (speed
, mode
);
2930 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2932 limit
.cost
= alg
->cost
.cost
- op_cost
;
2933 limit
.latency
= alg
->cost
.latency
- op_cost
;
2937 limit
.cost
= mult_cost
- op_cost
;
2938 limit
.latency
= mult_cost
- op_cost
;
2941 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2942 alg2
.cost
.cost
+= op_cost
;
2943 alg2
.cost
.latency
+= op_cost
;
2944 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2945 *alg
= alg2
, *variant
= add_variant
;
2947 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2950 /* A subroutine of expand_mult, used for constant multiplications.
2951 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2952 convenient. Use the shift/add sequence described by ALG and apply
2953 the final fixup specified by VARIANT. */
2956 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2957 rtx target
, const struct algorithm
*alg
,
2958 enum mult_variant variant
)
2960 HOST_WIDE_INT val_so_far
;
2966 /* Avoid referencing memory over and over and invalid sharing
2968 op0
= force_reg (mode
, op0
);
2970 /* ACCUM starts out either as OP0 or as a zero, depending on
2971 the first operation. */
2973 if (alg
->op
[0] == alg_zero
)
2975 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
2978 else if (alg
->op
[0] == alg_m
)
2980 accum
= copy_to_mode_reg (mode
, op0
);
2986 for (opno
= 1; opno
< alg
->ops
; opno
++)
2988 int log
= alg
->log
[opno
];
2989 rtx shift_subtarget
= optimize
? 0 : accum
;
2991 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2994 rtx accum_target
= optimize
? 0 : accum
;
2997 switch (alg
->op
[opno
])
3000 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3001 /* REG_EQUAL note will be attached to the following insn. */
3002 emit_move_insn (accum
, tem
);
3007 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3008 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3009 add_target
? add_target
: accum_target
);
3010 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
3014 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3015 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3016 add_target
? add_target
: accum_target
);
3017 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
3021 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3022 log
, shift_subtarget
, 0);
3023 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3024 add_target
? add_target
: accum_target
);
3025 val_so_far
= (val_so_far
<< log
) + 1;
3029 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3030 log
, shift_subtarget
, 0);
3031 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3032 add_target
? add_target
: accum_target
);
3033 val_so_far
= (val_so_far
<< log
) - 1;
3036 case alg_add_factor
:
3037 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3038 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3039 add_target
? add_target
: accum_target
);
3040 val_so_far
+= val_so_far
<< log
;
3043 case alg_sub_factor
:
3044 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3045 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3047 ? add_target
: (optimize
? 0 : tem
)));
3048 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3055 if (SCALAR_INT_MODE_P (mode
))
3057 /* Write a REG_EQUAL note on the last insn so that we can cse
3058 multiplication sequences. Note that if ACCUM is a SUBREG,
3059 we've set the inner register and must properly indicate that. */
3060 tem
= op0
, nmode
= mode
;
3061 accum_inner
= accum
;
3062 if (GET_CODE (accum
) == SUBREG
)
3064 accum_inner
= SUBREG_REG (accum
);
3065 nmode
= GET_MODE (accum_inner
);
3066 tem
= gen_lowpart (nmode
, op0
);
3069 insn
= get_last_insn ();
3070 set_dst_reg_note (insn
, REG_EQUAL
,
3071 gen_rtx_MULT (nmode
, tem
,
3072 gen_int_mode (val_so_far
, nmode
)),
3077 if (variant
== negate_variant
)
3079 val_so_far
= -val_so_far
;
3080 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3082 else if (variant
== add_variant
)
3084 val_so_far
= val_so_far
+ 1;
3085 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3088 /* Compare only the bits of val and val_so_far that are significant
3089 in the result mode, to avoid sign-/zero-extension confusion. */
3090 nmode
= GET_MODE_INNER (mode
);
3091 if (nmode
== VOIDmode
)
3093 val
&= GET_MODE_MASK (nmode
);
3094 val_so_far
&= GET_MODE_MASK (nmode
);
3095 gcc_assert (val
== val_so_far
);
3100 /* Perform a multiplication and return an rtx for the result.
3101 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3102 TARGET is a suggestion for where to store the result (an rtx).
3104 We check specially for a constant integer as OP1.
3105 If you want this check for OP0 as well, then before calling
3106 you should swap the two operands if OP0 would be constant. */
3109 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3112 enum mult_variant variant
;
3113 struct algorithm algorithm
;
3116 bool speed
= optimize_insn_for_speed_p ();
3117 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3119 if (CONSTANT_P (op0
))
3120 std::swap (op0
, op1
);
3122 /* For vectors, there are several simplifications that can be made if
3123 all elements of the vector constant are identical. */
3125 if (GET_CODE (op1
) == CONST_VECTOR
)
3127 int i
, n
= CONST_VECTOR_NUNITS (op1
);
3128 scalar_op1
= CONST_VECTOR_ELT (op1
, 0);
3129 for (i
= 1; i
< n
; ++i
)
3130 if (!rtx_equal_p (scalar_op1
, CONST_VECTOR_ELT (op1
, i
)))
3134 if (INTEGRAL_MODE_P (mode
))
3137 HOST_WIDE_INT coeff
;
3141 if (op1
== CONST0_RTX (mode
))
3143 if (op1
== CONST1_RTX (mode
))
3145 if (op1
== CONSTM1_RTX (mode
))
3146 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3152 /* If mode is integer vector mode, check if the backend supports
3153 vector lshift (by scalar or vector) at all. If not, we can't use
3154 synthetized multiply. */
3155 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3156 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3157 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3160 /* These are the operations that are potentially turned into
3161 a sequence of shifts and additions. */
3162 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3164 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3165 less than or equal in size to `unsigned int' this doesn't matter.
3166 If the mode is larger than `unsigned int', then synth_mult works
3167 only if the constant value exactly fits in an `unsigned int' without
3168 any truncation. This means that multiplying by negative values does
3169 not work; results are off by 2^32 on a 32 bit machine. */
3170 if (CONST_INT_P (scalar_op1
))
3172 coeff
= INTVAL (scalar_op1
);
3175 #if TARGET_SUPPORTS_WIDE_INT
3176 else if (CONST_WIDE_INT_P (scalar_op1
))
3178 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3181 int shift
= wi::exact_log2 (std::make_pair (scalar_op1
, mode
));
3182 /* Perfect power of 2 (other than 1, which is handled above). */
3184 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3185 shift
, target
, unsignedp
);
3192 /* We used to test optimize here, on the grounds that it's better to
3193 produce a smaller program when -O is not used. But this causes
3194 such a terrible slowdown sometimes that it seems better to always
3197 /* Special case powers of two. */
3198 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3199 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3200 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3201 floor_log2 (coeff
), target
, unsignedp
);
3203 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3205 /* Attempt to handle multiplication of DImode values by negative
3206 coefficients, by performing the multiplication by a positive
3207 multiplier and then inverting the result. */
3208 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3210 /* Its safe to use -coeff even for INT_MIN, as the
3211 result is interpreted as an unsigned coefficient.
3212 Exclude cost of op0 from max_cost to match the cost
3213 calculation of the synth_mult. */
3214 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3215 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
)
3216 - neg_cost (speed
, mode
));
3220 /* Special case powers of two. */
3221 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3223 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3224 floor_log2 (coeff
), target
, unsignedp
);
3225 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3228 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3231 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3232 &algorithm
, variant
);
3233 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3238 /* Exclude cost of op0 from max_cost to match the cost
3239 calculation of the synth_mult. */
3240 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), speed
);
3241 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3242 return expand_mult_const (mode
, op0
, coeff
, target
,
3243 &algorithm
, variant
);
3247 /* Expand x*2.0 as x+x. */
3248 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
))
3251 REAL_VALUE_FROM_CONST_DOUBLE (d
, scalar_op1
);
3253 if (REAL_VALUES_EQUAL (d
, dconst2
))
3255 op0
= force_reg (GET_MODE (op0
), op0
);
3256 return expand_binop (mode
, add_optab
, op0
, op0
,
3257 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3262 /* This used to use umul_optab if unsigned, but for non-widening multiply
3263 there is no difference between signed and unsigned. */
3264 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3265 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3270 /* Return a cost estimate for multiplying a register by the given
3271 COEFFicient in the given MODE and SPEED. */
3274 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3277 struct algorithm algorithm
;
3278 enum mult_variant variant
;
3280 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3281 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
), speed
);
3282 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3283 return algorithm
.cost
.cost
;
3288 /* Perform a widening multiplication and return an rtx for the result.
3289 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3290 TARGET is a suggestion for where to store the result (an rtx).
3291 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3292 or smul_widen_optab.
3294 We check specially for a constant integer as OP1, comparing the
3295 cost of a widening multiply against the cost of a sequence of shifts
3299 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3300 int unsignedp
, optab this_optab
)
3302 bool speed
= optimize_insn_for_speed_p ();
3305 if (CONST_INT_P (op1
)
3306 && GET_MODE (op0
) != VOIDmode
3307 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3308 this_optab
== umul_widen_optab
))
3309 && CONST_INT_P (cop1
)
3310 && (INTVAL (cop1
) >= 0
3311 || HWI_COMPUTABLE_MODE_P (mode
)))
3313 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3315 enum mult_variant variant
;
3316 struct algorithm algorithm
;
3319 return CONST0_RTX (mode
);
3321 /* Special case powers of two. */
3322 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3324 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3325 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3326 floor_log2 (coeff
), target
, unsignedp
);
3329 /* Exclude cost of op0 from max_cost to match the cost
3330 calculation of the synth_mult. */
3331 max_cost
= mul_widen_cost (speed
, mode
);
3332 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3335 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3336 return expand_mult_const (mode
, op0
, coeff
, target
,
3337 &algorithm
, variant
);
3340 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3341 unsignedp
, OPTAB_LIB_WIDEN
);
3344 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3345 replace division by D, and put the least significant N bits of the result
3346 in *MULTIPLIER_PTR and return the most significant bit.
3348 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3349 needed precision is in PRECISION (should be <= N).
3351 PRECISION should be as small as possible so this function can choose
3352 multiplier more freely.
3354 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3355 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3357 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3358 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3360 unsigned HOST_WIDE_INT
3361 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3362 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3363 int *post_shift_ptr
, int *lgup_ptr
)
3365 int lgup
, post_shift
;
3368 /* lgup = ceil(log2(divisor)); */
3369 lgup
= ceil_log2 (d
);
3371 gcc_assert (lgup
<= n
);
3374 pow2
= n
+ lgup
- precision
;
3376 /* mlow = 2^(N + lgup)/d */
3377 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3378 wide_int mlow
= wi::udiv_trunc (val
, d
);
3380 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3381 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3382 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3384 /* If precision == N, then mlow, mhigh exceed 2^N
3385 (but they do not exceed 2^(N+1)). */
3387 /* Reduce to lowest terms. */
3388 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3390 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3391 HOST_BITS_PER_WIDE_INT
);
3392 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3393 HOST_BITS_PER_WIDE_INT
);
3397 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3398 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3401 *post_shift_ptr
= post_shift
;
3403 if (n
< HOST_BITS_PER_WIDE_INT
)
3405 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3406 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3407 return mhigh
.to_uhwi () >= mask
;
3411 *multiplier_ptr
= mhigh
.to_uhwi ();
3412 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3416 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3417 congruent to 1 (mod 2**N). */
3419 static unsigned HOST_WIDE_INT
3420 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3422 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3424 /* The algorithm notes that the choice y = x satisfies
3425 x*y == 1 mod 2^3, since x is assumed odd.
3426 Each iteration doubles the number of bits of significance in y. */
3428 unsigned HOST_WIDE_INT mask
;
3429 unsigned HOST_WIDE_INT y
= x
;
3432 mask
= (n
== HOST_BITS_PER_WIDE_INT
3433 ? ~(unsigned HOST_WIDE_INT
) 0
3434 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3438 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3444 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3445 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3446 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3447 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3450 The result is put in TARGET if that is convenient.
3452 MODE is the mode of operation. */
3455 expand_mult_highpart_adjust (machine_mode mode
, rtx adj_operand
, rtx op0
,
3456 rtx op1
, rtx target
, int unsignedp
)
3459 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3461 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3462 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3463 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3465 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3468 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3469 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3470 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3471 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3477 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3480 extract_high_half (machine_mode mode
, rtx op
)
3482 machine_mode wider_mode
;
3484 if (mode
== word_mode
)
3485 return gen_highpart (mode
, op
);
3487 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3489 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3490 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3491 GET_MODE_BITSIZE (mode
), 0, 1);
3492 return convert_modes (mode
, wider_mode
, op
, 0);
3495 /* Like expmed_mult_highpart, but only consider using a multiplication
3496 optab. OP1 is an rtx for the constant operand. */
3499 expmed_mult_highpart_optab (machine_mode mode
, rtx op0
, rtx op1
,
3500 rtx target
, int unsignedp
, int max_cost
)
3502 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3503 machine_mode wider_mode
;
3507 bool speed
= optimize_insn_for_speed_p ();
3509 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3511 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3512 size
= GET_MODE_BITSIZE (mode
);
3514 /* Firstly, try using a multiplication insn that only generates the needed
3515 high part of the product, and in the sign flavor of unsignedp. */
3516 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3518 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3519 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3520 unsignedp
, OPTAB_DIRECT
);
3525 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3526 Need to adjust the result after the multiplication. */
3527 if (size
- 1 < BITS_PER_WORD
3528 && (mul_highpart_cost (speed
, mode
)
3529 + 2 * shift_cost (speed
, mode
, size
-1)
3530 + 4 * add_cost (speed
, mode
) < max_cost
))
3532 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3533 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3534 unsignedp
, OPTAB_DIRECT
);
3536 /* We used the wrong signedness. Adjust the result. */
3537 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3541 /* Try widening multiplication. */
3542 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3543 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3544 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3546 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3547 unsignedp
, OPTAB_WIDEN
);
3549 return extract_high_half (mode
, tem
);
3552 /* Try widening the mode and perform a non-widening multiplication. */
3553 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3554 && size
- 1 < BITS_PER_WORD
3555 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3561 /* We need to widen the operands, for example to ensure the
3562 constant multiplier is correctly sign or zero extended.
3563 Use a sequence to clean-up any instructions emitted by
3564 the conversions if things don't work out. */
3566 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3567 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3568 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3569 unsignedp
, OPTAB_WIDEN
);
3570 insns
= get_insns ();
3576 return extract_high_half (mode
, tem
);
3580 /* Try widening multiplication of opposite signedness, and adjust. */
3581 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3582 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3583 && size
- 1 < BITS_PER_WORD
3584 && (mul_widen_cost (speed
, wider_mode
)
3585 + 2 * shift_cost (speed
, mode
, size
-1)
3586 + 4 * add_cost (speed
, mode
) < max_cost
))
3588 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3589 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3592 tem
= extract_high_half (mode
, tem
);
3593 /* We used the wrong signedness. Adjust the result. */
3594 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3602 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3603 putting the high half of the result in TARGET if that is convenient,
3604 and return where the result is. If the operation can not be performed,
3607 MODE is the mode of operation and result.
3609 UNSIGNEDP nonzero means unsigned multiply.
3611 MAX_COST is the total allowed cost for the expanded RTL. */
3614 expmed_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
3615 rtx target
, int unsignedp
, int max_cost
)
3617 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3618 unsigned HOST_WIDE_INT cnst1
;
3620 bool sign_adjust
= false;
3621 enum mult_variant variant
;
3622 struct algorithm alg
;
3624 bool speed
= optimize_insn_for_speed_p ();
3626 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3627 /* We can't support modes wider than HOST_BITS_PER_INT. */
3628 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3630 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3632 /* We can't optimize modes wider than BITS_PER_WORD.
3633 ??? We might be able to perform double-word arithmetic if
3634 mode == word_mode, however all the cost calculations in
3635 synth_mult etc. assume single-word operations. */
3636 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3637 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3638 unsignedp
, max_cost
);
3640 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3642 /* Check whether we try to multiply by a negative constant. */
3643 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3646 extra_cost
+= add_cost (speed
, mode
);
3649 /* See whether shift/add multiplication is cheap enough. */
3650 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3651 max_cost
- extra_cost
))
3653 /* See whether the specialized multiplication optabs are
3654 cheaper than the shift/add version. */
3655 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3656 alg
.cost
.cost
+ extra_cost
);
3660 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3661 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3662 tem
= extract_high_half (mode
, tem
);
3664 /* Adjust result for signedness. */
3666 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3670 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3671 unsignedp
, max_cost
);
3675 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3678 expand_smod_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3680 rtx result
, temp
, shift
;
3681 rtx_code_label
*label
;
3683 int prec
= GET_MODE_PRECISION (mode
);
3685 logd
= floor_log2 (d
);
3686 result
= gen_reg_rtx (mode
);
3688 /* Avoid conditional branches when they're expensive. */
3689 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3690 && optimize_insn_for_speed_p ())
3692 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3696 HOST_WIDE_INT masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3697 signmask
= force_reg (mode
, signmask
);
3698 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3700 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3701 which instruction sequence to use. If logical right shifts
3702 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3703 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3705 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3706 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3707 || (set_src_cost (temp
, optimize_insn_for_speed_p ())
3708 > COSTS_N_INSNS (2)))
3710 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3711 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3712 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3713 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3714 temp
= expand_binop (mode
, and_optab
, temp
,
3715 gen_int_mode (masklow
, mode
),
3716 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3717 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3718 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3719 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3720 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3724 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3725 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3726 signmask
= force_reg (mode
, signmask
);
3728 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3729 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3730 temp
= expand_binop (mode
, and_optab
, temp
,
3731 gen_int_mode (masklow
, mode
),
3732 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3733 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3734 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3740 /* Mask contains the mode's signbit and the significant bits of the
3741 modulus. By including the signbit in the operation, many targets
3742 can avoid an explicit compare operation in the following comparison
3744 wide_int mask
= wi::mask (logd
, false, prec
);
3745 mask
= wi::set_bit (mask
, prec
- 1);
3747 temp
= expand_binop (mode
, and_optab
, op0
,
3748 immed_wide_int_const (mask
, mode
),
3749 result
, 1, OPTAB_LIB_WIDEN
);
3751 emit_move_insn (result
, temp
);
3753 label
= gen_label_rtx ();
3754 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3756 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3757 0, OPTAB_LIB_WIDEN
);
3759 mask
= wi::mask (logd
, true, prec
);
3760 temp
= expand_binop (mode
, ior_optab
, temp
,
3761 immed_wide_int_const (mask
, mode
),
3762 result
, 1, OPTAB_LIB_WIDEN
);
3763 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3764 0, OPTAB_LIB_WIDEN
);
3766 emit_move_insn (result
, temp
);
3771 /* Expand signed division of OP0 by a power of two D in mode MODE.
3772 This routine is only called for positive values of D. */
3775 expand_sdiv_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3778 rtx_code_label
*label
;
3781 logd
= floor_log2 (d
);
3784 && BRANCH_COST (optimize_insn_for_speed_p (),
3787 temp
= gen_reg_rtx (mode
);
3788 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3789 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3790 0, OPTAB_LIB_WIDEN
);
3791 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3794 if (HAVE_conditional_move
3795 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3800 temp2
= copy_to_mode_reg (mode
, op0
);
3801 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3802 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3803 temp
= force_reg (mode
, temp
);
3805 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3806 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3807 mode
, temp
, temp2
, mode
, 0);
3810 rtx_insn
*seq
= get_insns ();
3813 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3818 if (BRANCH_COST (optimize_insn_for_speed_p (),
3821 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3823 temp
= gen_reg_rtx (mode
);
3824 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3825 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
3826 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3827 > COSTS_N_INSNS (1))
3828 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3829 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3831 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3832 ushift
, NULL_RTX
, 1);
3833 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3834 0, OPTAB_LIB_WIDEN
);
3835 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3838 label
= gen_label_rtx ();
3839 temp
= copy_to_mode_reg (mode
, op0
);
3840 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3841 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
3843 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3846 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3847 if that is convenient, and returning where the result is.
3848 You may request either the quotient or the remainder as the result;
3849 specify REM_FLAG nonzero to get the remainder.
3851 CODE is the expression code for which kind of division this is;
3852 it controls how rounding is done. MODE is the machine mode to use.
3853 UNSIGNEDP nonzero means do unsigned division. */
3855 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3856 and then correct it by or'ing in missing high bits
3857 if result of ANDI is nonzero.
3858 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3859 This could optimize to a bfexts instruction.
3860 But C doesn't use these operations, so their optimizations are
3862 /* ??? For modulo, we don't actually need the highpart of the first product,
3863 the low part will do nicely. And for small divisors, the second multiply
3864 can also be a low-part only multiply or even be completely left out.
3865 E.g. to calculate the remainder of a division by 3 with a 32 bit
3866 multiply, multiply with 0x55555556 and extract the upper two bits;
3867 the result is exact for inputs up to 0x1fffffff.
3868 The input range can be reduced by using cross-sum rules.
3869 For odd divisors >= 3, the following table gives right shift counts
3870 so that if a number is shifted by an integer multiple of the given
3871 amount, the remainder stays the same:
3872 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3873 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3874 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3875 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3876 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3878 Cross-sum rules for even numbers can be derived by leaving as many bits
3879 to the right alone as the divisor has zeros to the right.
3880 E.g. if x is an unsigned 32 bit number:
3881 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3885 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
3886 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3888 machine_mode compute_mode
;
3890 rtx quotient
= 0, remainder
= 0;
3894 optab optab1
, optab2
;
3895 int op1_is_constant
, op1_is_pow2
= 0;
3896 int max_cost
, extra_cost
;
3897 static HOST_WIDE_INT last_div_const
= 0;
3898 bool speed
= optimize_insn_for_speed_p ();
3900 op1_is_constant
= CONST_INT_P (op1
);
3901 if (op1_is_constant
)
3903 unsigned HOST_WIDE_INT ext_op1
= UINTVAL (op1
);
3905 ext_op1
&= GET_MODE_MASK (mode
);
3906 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3907 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3911 This is the structure of expand_divmod:
3913 First comes code to fix up the operands so we can perform the operations
3914 correctly and efficiently.
3916 Second comes a switch statement with code specific for each rounding mode.
3917 For some special operands this code emits all RTL for the desired
3918 operation, for other cases, it generates only a quotient and stores it in
3919 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3920 to indicate that it has not done anything.
3922 Last comes code that finishes the operation. If QUOTIENT is set and
3923 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3924 QUOTIENT is not set, it is computed using trunc rounding.
3926 We try to generate special code for division and remainder when OP1 is a
3927 constant. If |OP1| = 2**n we can use shifts and some other fast
3928 operations. For other values of OP1, we compute a carefully selected
3929 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3932 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3933 half of the product. Different strategies for generating the product are
3934 implemented in expmed_mult_highpart.
3936 If what we actually want is the remainder, we generate that by another
3937 by-constant multiplication and a subtraction. */
3939 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3940 code below will malfunction if we are, so check here and handle
3941 the special case if so. */
3942 if (op1
== const1_rtx
)
3943 return rem_flag
? const0_rtx
: op0
;
3945 /* When dividing by -1, we could get an overflow.
3946 negv_optab can handle overflows. */
3947 if (! unsignedp
&& op1
== constm1_rtx
)
3951 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
3952 ? negv_optab
: neg_optab
, op0
, target
, 0);
3956 /* Don't use the function value register as a target
3957 since we have to read it as well as write it,
3958 and function-inlining gets confused by this. */
3959 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3960 /* Don't clobber an operand while doing a multi-step calculation. */
3961 || ((rem_flag
|| op1_is_constant
)
3962 && (reg_mentioned_p (target
, op0
)
3963 || (MEM_P (op0
) && MEM_P (target
))))
3964 || reg_mentioned_p (target
, op1
)
3965 || (MEM_P (op1
) && MEM_P (target
))))
3968 /* Get the mode in which to perform this computation. Normally it will
3969 be MODE, but sometimes we can't do the desired operation in MODE.
3970 If so, pick a wider mode in which we can do the operation. Convert
3971 to that mode at the start to avoid repeated conversions.
3973 First see what operations we need. These depend on the expression
3974 we are evaluating. (We assume that divxx3 insns exist under the
3975 same conditions that modxx3 insns and that these insns don't normally
3976 fail. If these assumptions are not correct, we may generate less
3977 efficient code in some cases.)
3979 Then see if we find a mode in which we can open-code that operation
3980 (either a division, modulus, or shift). Finally, check for the smallest
3981 mode for which we can do the operation with a library call. */
3983 /* We might want to refine this now that we have division-by-constant
3984 optimization. Since expmed_mult_highpart tries so many variants, it is
3985 not straightforward to generalize this. Maybe we should make an array
3986 of possible modes in init_expmed? Save this for GCC 2.7. */
3988 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3989 ? (unsignedp
? lshr_optab
: ashr_optab
)
3990 : (unsignedp
? udiv_optab
: sdiv_optab
));
3991 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3993 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3995 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3996 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3997 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
3998 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4001 if (compute_mode
== VOIDmode
)
4002 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4003 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4004 if (optab_libfunc (optab1
, compute_mode
)
4005 || optab_libfunc (optab2
, compute_mode
))
4008 /* If we still couldn't find a mode, use MODE, but expand_binop will
4010 if (compute_mode
== VOIDmode
)
4011 compute_mode
= mode
;
4013 if (target
&& GET_MODE (target
) == compute_mode
)
4016 tquotient
= gen_reg_rtx (compute_mode
);
4018 size
= GET_MODE_BITSIZE (compute_mode
);
4020 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4021 (mode), and thereby get better code when OP1 is a constant. Do that
4022 later. It will require going over all usages of SIZE below. */
4023 size
= GET_MODE_BITSIZE (mode
);
4026 /* Only deduct something for a REM if the last divide done was
4027 for a different constant. Then set the constant of the last
4029 max_cost
= (unsignedp
4030 ? udiv_cost (speed
, compute_mode
)
4031 : sdiv_cost (speed
, compute_mode
));
4032 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4033 && INTVAL (op1
) == last_div_const
))
4034 max_cost
-= (mul_cost (speed
, compute_mode
)
4035 + add_cost (speed
, compute_mode
));
4037 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4039 /* Now convert to the best mode to use. */
4040 if (compute_mode
!= mode
)
4042 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4043 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4045 /* convert_modes may have placed op1 into a register, so we
4046 must recompute the following. */
4047 op1_is_constant
= CONST_INT_P (op1
);
4048 op1_is_pow2
= (op1_is_constant
4049 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4051 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1
))))));
4054 /* If one of the operands is a volatile MEM, copy it into a register. */
4056 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4057 op0
= force_reg (compute_mode
, op0
);
4058 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4059 op1
= force_reg (compute_mode
, op1
);
4061 /* If we need the remainder or if OP1 is constant, we need to
4062 put OP0 in a register in case it has any queued subexpressions. */
4063 if (rem_flag
|| op1_is_constant
)
4064 op0
= force_reg (compute_mode
, op0
);
4066 last
= get_last_insn ();
4068 /* Promote floor rounding to trunc rounding for unsigned operations. */
4071 if (code
== FLOOR_DIV_EXPR
)
4072 code
= TRUNC_DIV_EXPR
;
4073 if (code
== FLOOR_MOD_EXPR
)
4074 code
= TRUNC_MOD_EXPR
;
4075 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4076 code
= TRUNC_DIV_EXPR
;
4079 if (op1
!= const0_rtx
)
4082 case TRUNC_MOD_EXPR
:
4083 case TRUNC_DIV_EXPR
:
4084 if (op1_is_constant
)
4088 unsigned HOST_WIDE_INT mh
, ml
;
4089 int pre_shift
, post_shift
;
4091 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4092 & GET_MODE_MASK (compute_mode
));
4094 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4096 pre_shift
= floor_log2 (d
);
4099 unsigned HOST_WIDE_INT mask
4100 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4102 = expand_binop (compute_mode
, and_optab
, op0
,
4103 gen_int_mode (mask
, compute_mode
),
4107 return gen_lowpart (mode
, remainder
);
4109 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4110 pre_shift
, tquotient
, 1);
4112 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4114 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4116 /* Most significant bit of divisor is set; emit an scc
4118 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4119 compute_mode
, 1, 1);
4123 /* Find a suitable multiplier and right shift count
4124 instead of multiplying with D. */
4126 mh
= choose_multiplier (d
, size
, size
,
4127 &ml
, &post_shift
, &dummy
);
4129 /* If the suggested multiplier is more than SIZE bits,
4130 we can do better for even divisors, using an
4131 initial right shift. */
4132 if (mh
!= 0 && (d
& 1) == 0)
4134 pre_shift
= floor_log2 (d
& -d
);
4135 mh
= choose_multiplier (d
>> pre_shift
, size
,
4137 &ml
, &post_shift
, &dummy
);
4147 if (post_shift
- 1 >= BITS_PER_WORD
)
4151 = (shift_cost (speed
, compute_mode
, post_shift
- 1)
4152 + shift_cost (speed
, compute_mode
, 1)
4153 + 2 * add_cost (speed
, compute_mode
));
4154 t1
= expmed_mult_highpart
4156 gen_int_mode (ml
, compute_mode
),
4157 NULL_RTX
, 1, max_cost
- extra_cost
);
4160 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4163 t3
= expand_shift (RSHIFT_EXPR
, compute_mode
,
4164 t2
, 1, NULL_RTX
, 1);
4165 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4168 quotient
= expand_shift
4169 (RSHIFT_EXPR
, compute_mode
, t4
,
4170 post_shift
- 1, tquotient
, 1);
4176 if (pre_shift
>= BITS_PER_WORD
4177 || post_shift
>= BITS_PER_WORD
)
4181 (RSHIFT_EXPR
, compute_mode
, op0
,
4182 pre_shift
, NULL_RTX
, 1);
4184 = (shift_cost (speed
, compute_mode
, pre_shift
)
4185 + shift_cost (speed
, compute_mode
, post_shift
));
4186 t2
= expmed_mult_highpart
4188 gen_int_mode (ml
, compute_mode
),
4189 NULL_RTX
, 1, max_cost
- extra_cost
);
4192 quotient
= expand_shift
4193 (RSHIFT_EXPR
, compute_mode
, t2
,
4194 post_shift
, tquotient
, 1);
4198 else /* Too wide mode to use tricky code */
4201 insn
= get_last_insn ();
4203 set_dst_reg_note (insn
, REG_EQUAL
,
4204 gen_rtx_UDIV (compute_mode
, op0
, op1
),
4207 else /* TRUNC_DIV, signed */
4209 unsigned HOST_WIDE_INT ml
;
4210 int lgup
, post_shift
;
4212 HOST_WIDE_INT d
= INTVAL (op1
);
4213 unsigned HOST_WIDE_INT abs_d
;
4215 /* Since d might be INT_MIN, we have to cast to
4216 unsigned HOST_WIDE_INT before negating to avoid
4217 undefined signed overflow. */
4219 ? (unsigned HOST_WIDE_INT
) d
4220 : - (unsigned HOST_WIDE_INT
) d
);
4222 /* n rem d = n rem -d */
4223 if (rem_flag
&& d
< 0)
4226 op1
= gen_int_mode (abs_d
, compute_mode
);
4232 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4234 else if (HOST_BITS_PER_WIDE_INT
>= size
4235 && abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4237 /* This case is not handled correctly below. */
4238 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4239 compute_mode
, 1, 1);
4243 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4245 ? smod_pow2_cheap (speed
, compute_mode
)
4246 : sdiv_pow2_cheap (speed
, compute_mode
))
4247 /* We assume that cheap metric is true if the
4248 optab has an expander for this mode. */
4249 && ((optab_handler ((rem_flag
? smod_optab
4252 != CODE_FOR_nothing
)
4253 || (optab_handler (sdivmod_optab
,
4255 != CODE_FOR_nothing
)))
4257 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4261 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4263 return gen_lowpart (mode
, remainder
);
4266 if (sdiv_pow2_cheap (speed
, compute_mode
)
4267 && ((optab_handler (sdiv_optab
, compute_mode
)
4268 != CODE_FOR_nothing
)
4269 || (optab_handler (sdivmod_optab
, compute_mode
)
4270 != CODE_FOR_nothing
)))
4271 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4273 gen_int_mode (abs_d
,
4277 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4279 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4280 negate the quotient. */
4283 insn
= get_last_insn ();
4285 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4286 << (HOST_BITS_PER_WIDE_INT
- 1)))
4287 set_dst_reg_note (insn
, REG_EQUAL
,
4288 gen_rtx_DIV (compute_mode
, op0
,
4294 quotient
= expand_unop (compute_mode
, neg_optab
,
4295 quotient
, quotient
, 0);
4298 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4300 choose_multiplier (abs_d
, size
, size
- 1,
4301 &ml
, &post_shift
, &lgup
);
4302 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4306 if (post_shift
>= BITS_PER_WORD
4307 || size
- 1 >= BITS_PER_WORD
)
4310 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4311 + shift_cost (speed
, compute_mode
, size
- 1)
4312 + add_cost (speed
, compute_mode
));
4313 t1
= expmed_mult_highpart
4314 (compute_mode
, op0
, gen_int_mode (ml
, compute_mode
),
4315 NULL_RTX
, 0, max_cost
- extra_cost
);
4319 (RSHIFT_EXPR
, compute_mode
, t1
,
4320 post_shift
, NULL_RTX
, 0);
4322 (RSHIFT_EXPR
, compute_mode
, op0
,
4323 size
- 1, NULL_RTX
, 0);
4326 = force_operand (gen_rtx_MINUS (compute_mode
,
4331 = force_operand (gen_rtx_MINUS (compute_mode
,
4339 if (post_shift
>= BITS_PER_WORD
4340 || size
- 1 >= BITS_PER_WORD
)
4343 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4344 mlr
= gen_int_mode (ml
, compute_mode
);
4345 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4346 + shift_cost (speed
, compute_mode
, size
- 1)
4347 + 2 * add_cost (speed
, compute_mode
));
4348 t1
= expmed_mult_highpart (compute_mode
, op0
, mlr
,
4350 max_cost
- extra_cost
);
4353 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4357 (RSHIFT_EXPR
, compute_mode
, t2
,
4358 post_shift
, NULL_RTX
, 0);
4360 (RSHIFT_EXPR
, compute_mode
, op0
,
4361 size
- 1, NULL_RTX
, 0);
4364 = force_operand (gen_rtx_MINUS (compute_mode
,
4369 = force_operand (gen_rtx_MINUS (compute_mode
,
4374 else /* Too wide mode to use tricky code */
4377 insn
= get_last_insn ();
4379 set_dst_reg_note (insn
, REG_EQUAL
,
4380 gen_rtx_DIV (compute_mode
, op0
, op1
),
4386 delete_insns_since (last
);
4389 case FLOOR_DIV_EXPR
:
4390 case FLOOR_MOD_EXPR
:
4391 /* We will come here only for signed operations. */
4392 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4394 unsigned HOST_WIDE_INT mh
, ml
;
4395 int pre_shift
, lgup
, post_shift
;
4396 HOST_WIDE_INT d
= INTVAL (op1
);
4400 /* We could just as easily deal with negative constants here,
4401 but it does not seem worth the trouble for GCC 2.6. */
4402 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4404 pre_shift
= floor_log2 (d
);
4407 unsigned HOST_WIDE_INT mask
4408 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4409 remainder
= expand_binop
4410 (compute_mode
, and_optab
, op0
,
4411 gen_int_mode (mask
, compute_mode
),
4412 remainder
, 0, OPTAB_LIB_WIDEN
);
4414 return gen_lowpart (mode
, remainder
);
4416 quotient
= expand_shift
4417 (RSHIFT_EXPR
, compute_mode
, op0
,
4418 pre_shift
, tquotient
, 0);
4424 mh
= choose_multiplier (d
, size
, size
- 1,
4425 &ml
, &post_shift
, &lgup
);
4428 if (post_shift
< BITS_PER_WORD
4429 && size
- 1 < BITS_PER_WORD
)
4432 (RSHIFT_EXPR
, compute_mode
, op0
,
4433 size
- 1, NULL_RTX
, 0);
4434 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4435 NULL_RTX
, 0, OPTAB_WIDEN
);
4436 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4437 + shift_cost (speed
, compute_mode
, size
- 1)
4438 + 2 * add_cost (speed
, compute_mode
));
4439 t3
= expmed_mult_highpart
4440 (compute_mode
, t2
, gen_int_mode (ml
, compute_mode
),
4441 NULL_RTX
, 1, max_cost
- extra_cost
);
4445 (RSHIFT_EXPR
, compute_mode
, t3
,
4446 post_shift
, NULL_RTX
, 1);
4447 quotient
= expand_binop (compute_mode
, xor_optab
,
4448 t4
, t1
, tquotient
, 0,
4456 rtx nsign
, t1
, t2
, t3
, t4
;
4457 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4458 op0
, constm1_rtx
), NULL_RTX
);
4459 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4461 nsign
= expand_shift
4462 (RSHIFT_EXPR
, compute_mode
, t2
,
4463 size
- 1, NULL_RTX
, 0);
4464 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4466 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4471 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4473 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4482 delete_insns_since (last
);
4484 /* Try using an instruction that produces both the quotient and
4485 remainder, using truncation. We can easily compensate the quotient
4486 or remainder to get floor rounding, once we have the remainder.
4487 Notice that we compute also the final remainder value here,
4488 and return the result right away. */
4489 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4490 target
= gen_reg_rtx (compute_mode
);
4495 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4496 quotient
= gen_reg_rtx (compute_mode
);
4501 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4502 remainder
= gen_reg_rtx (compute_mode
);
4505 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4506 quotient
, remainder
, 0))
4508 /* This could be computed with a branch-less sequence.
4509 Save that for later. */
4511 rtx_code_label
*label
= gen_label_rtx ();
4512 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4513 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4514 NULL_RTX
, 0, OPTAB_WIDEN
);
4515 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4516 expand_dec (quotient
, const1_rtx
);
4517 expand_inc (remainder
, op1
);
4519 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4522 /* No luck with division elimination or divmod. Have to do it
4523 by conditionally adjusting op0 *and* the result. */
4525 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4529 quotient
= gen_reg_rtx (compute_mode
);
4530 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4531 label1
= gen_label_rtx ();
4532 label2
= gen_label_rtx ();
4533 label3
= gen_label_rtx ();
4534 label4
= gen_label_rtx ();
4535 label5
= gen_label_rtx ();
4536 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4537 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4538 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4539 quotient
, 0, OPTAB_LIB_WIDEN
);
4540 if (tem
!= quotient
)
4541 emit_move_insn (quotient
, tem
);
4542 emit_jump_insn (gen_jump (label5
));
4544 emit_label (label1
);
4545 expand_inc (adjusted_op0
, const1_rtx
);
4546 emit_jump_insn (gen_jump (label4
));
4548 emit_label (label2
);
4549 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4550 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4551 quotient
, 0, OPTAB_LIB_WIDEN
);
4552 if (tem
!= quotient
)
4553 emit_move_insn (quotient
, tem
);
4554 emit_jump_insn (gen_jump (label5
));
4556 emit_label (label3
);
4557 expand_dec (adjusted_op0
, const1_rtx
);
4558 emit_label (label4
);
4559 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4560 quotient
, 0, OPTAB_LIB_WIDEN
);
4561 if (tem
!= quotient
)
4562 emit_move_insn (quotient
, tem
);
4563 expand_dec (quotient
, const1_rtx
);
4564 emit_label (label5
);
4572 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4575 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4576 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4577 floor_log2 (d
), tquotient
, 1);
4578 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4579 gen_int_mode (d
- 1, compute_mode
),
4580 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4581 t3
= gen_reg_rtx (compute_mode
);
4582 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4583 compute_mode
, 1, 1);
4586 rtx_code_label
*lab
;
4587 lab
= gen_label_rtx ();
4588 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4589 expand_inc (t1
, const1_rtx
);
4594 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4600 /* Try using an instruction that produces both the quotient and
4601 remainder, using truncation. We can easily compensate the
4602 quotient or remainder to get ceiling rounding, once we have the
4603 remainder. Notice that we compute also the final remainder
4604 value here, and return the result right away. */
4605 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4606 target
= gen_reg_rtx (compute_mode
);
4610 remainder
= (REG_P (target
)
4611 ? target
: gen_reg_rtx (compute_mode
));
4612 quotient
= gen_reg_rtx (compute_mode
);
4616 quotient
= (REG_P (target
)
4617 ? target
: gen_reg_rtx (compute_mode
));
4618 remainder
= gen_reg_rtx (compute_mode
);
4621 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4624 /* This could be computed with a branch-less sequence.
4625 Save that for later. */
4626 rtx_code_label
*label
= gen_label_rtx ();
4627 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4628 compute_mode
, label
);
4629 expand_inc (quotient
, const1_rtx
);
4630 expand_dec (remainder
, op1
);
4632 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4635 /* No luck with division elimination or divmod. Have to do it
4636 by conditionally adjusting op0 *and* the result. */
4638 rtx_code_label
*label1
, *label2
;
4639 rtx adjusted_op0
, tem
;
4641 quotient
= gen_reg_rtx (compute_mode
);
4642 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4643 label1
= gen_label_rtx ();
4644 label2
= gen_label_rtx ();
4645 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4646 compute_mode
, label1
);
4647 emit_move_insn (quotient
, const0_rtx
);
4648 emit_jump_insn (gen_jump (label2
));
4650 emit_label (label1
);
4651 expand_dec (adjusted_op0
, const1_rtx
);
4652 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4653 quotient
, 1, OPTAB_LIB_WIDEN
);
4654 if (tem
!= quotient
)
4655 emit_move_insn (quotient
, tem
);
4656 expand_inc (quotient
, const1_rtx
);
4657 emit_label (label2
);
4662 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4663 && INTVAL (op1
) >= 0)
4665 /* This is extremely similar to the code for the unsigned case
4666 above. For 2.7 we should merge these variants, but for
4667 2.6.1 I don't want to touch the code for unsigned since that
4668 get used in C. The signed case will only be used by other
4672 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4673 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4674 floor_log2 (d
), tquotient
, 0);
4675 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4676 gen_int_mode (d
- 1, compute_mode
),
4677 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4678 t3
= gen_reg_rtx (compute_mode
);
4679 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4680 compute_mode
, 1, 1);
4683 rtx_code_label
*lab
;
4684 lab
= gen_label_rtx ();
4685 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4686 expand_inc (t1
, const1_rtx
);
4691 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4697 /* Try using an instruction that produces both the quotient and
4698 remainder, using truncation. We can easily compensate the
4699 quotient or remainder to get ceiling rounding, once we have the
4700 remainder. Notice that we compute also the final remainder
4701 value here, and return the result right away. */
4702 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4703 target
= gen_reg_rtx (compute_mode
);
4706 remainder
= (REG_P (target
)
4707 ? target
: gen_reg_rtx (compute_mode
));
4708 quotient
= gen_reg_rtx (compute_mode
);
4712 quotient
= (REG_P (target
)
4713 ? target
: gen_reg_rtx (compute_mode
));
4714 remainder
= gen_reg_rtx (compute_mode
);
4717 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4720 /* This could be computed with a branch-less sequence.
4721 Save that for later. */
4723 rtx_code_label
*label
= gen_label_rtx ();
4724 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4725 compute_mode
, label
);
4726 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4727 NULL_RTX
, 0, OPTAB_WIDEN
);
4728 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4729 expand_inc (quotient
, const1_rtx
);
4730 expand_dec (remainder
, op1
);
4732 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4735 /* No luck with division elimination or divmod. Have to do it
4736 by conditionally adjusting op0 *and* the result. */
4738 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4742 quotient
= gen_reg_rtx (compute_mode
);
4743 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4744 label1
= gen_label_rtx ();
4745 label2
= gen_label_rtx ();
4746 label3
= gen_label_rtx ();
4747 label4
= gen_label_rtx ();
4748 label5
= gen_label_rtx ();
4749 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4750 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4751 compute_mode
, label1
);
4752 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4753 quotient
, 0, OPTAB_LIB_WIDEN
);
4754 if (tem
!= quotient
)
4755 emit_move_insn (quotient
, tem
);
4756 emit_jump_insn (gen_jump (label5
));
4758 emit_label (label1
);
4759 expand_dec (adjusted_op0
, const1_rtx
);
4760 emit_jump_insn (gen_jump (label4
));
4762 emit_label (label2
);
4763 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4764 compute_mode
, label3
);
4765 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4766 quotient
, 0, OPTAB_LIB_WIDEN
);
4767 if (tem
!= quotient
)
4768 emit_move_insn (quotient
, tem
);
4769 emit_jump_insn (gen_jump (label5
));
4771 emit_label (label3
);
4772 expand_inc (adjusted_op0
, const1_rtx
);
4773 emit_label (label4
);
4774 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4775 quotient
, 0, OPTAB_LIB_WIDEN
);
4776 if (tem
!= quotient
)
4777 emit_move_insn (quotient
, tem
);
4778 expand_inc (quotient
, const1_rtx
);
4779 emit_label (label5
);
4784 case EXACT_DIV_EXPR
:
4785 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4787 HOST_WIDE_INT d
= INTVAL (op1
);
4788 unsigned HOST_WIDE_INT ml
;
4792 pre_shift
= floor_log2 (d
& -d
);
4793 ml
= invert_mod2n (d
>> pre_shift
, size
);
4794 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4795 pre_shift
, NULL_RTX
, unsignedp
);
4796 quotient
= expand_mult (compute_mode
, t1
,
4797 gen_int_mode (ml
, compute_mode
),
4800 insn
= get_last_insn ();
4801 set_dst_reg_note (insn
, REG_EQUAL
,
4802 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4803 compute_mode
, op0
, op1
),
4808 case ROUND_DIV_EXPR
:
4809 case ROUND_MOD_EXPR
:
4813 rtx_code_label
*label
;
4814 label
= gen_label_rtx ();
4815 quotient
= gen_reg_rtx (compute_mode
);
4816 remainder
= gen_reg_rtx (compute_mode
);
4817 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4820 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4821 quotient
, 1, OPTAB_LIB_WIDEN
);
4822 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4823 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4824 remainder
, 1, OPTAB_LIB_WIDEN
);
4826 tem
= plus_constant (compute_mode
, op1
, -1);
4827 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
, 1, NULL_RTX
, 1);
4828 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4829 expand_inc (quotient
, const1_rtx
);
4830 expand_dec (remainder
, op1
);
4835 rtx abs_rem
, abs_op1
, tem
, mask
;
4836 rtx_code_label
*label
;
4837 label
= gen_label_rtx ();
4838 quotient
= gen_reg_rtx (compute_mode
);
4839 remainder
= gen_reg_rtx (compute_mode
);
4840 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4843 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4844 quotient
, 0, OPTAB_LIB_WIDEN
);
4845 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4846 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4847 remainder
, 0, OPTAB_LIB_WIDEN
);
4849 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4850 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4851 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4853 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4854 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4855 NULL_RTX
, 0, OPTAB_WIDEN
);
4856 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4857 size
- 1, NULL_RTX
, 0);
4858 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4859 NULL_RTX
, 0, OPTAB_WIDEN
);
4860 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4861 NULL_RTX
, 0, OPTAB_WIDEN
);
4862 expand_inc (quotient
, tem
);
4863 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4864 NULL_RTX
, 0, OPTAB_WIDEN
);
4865 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4866 NULL_RTX
, 0, OPTAB_WIDEN
);
4867 expand_dec (remainder
, tem
);
4870 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4878 if (target
&& GET_MODE (target
) != compute_mode
)
4883 /* Try to produce the remainder without producing the quotient.
4884 If we seem to have a divmod pattern that does not require widening,
4885 don't try widening here. We should really have a WIDEN argument
4886 to expand_twoval_binop, since what we'd really like to do here is
4887 1) try a mod insn in compute_mode
4888 2) try a divmod insn in compute_mode
4889 3) try a div insn in compute_mode and multiply-subtract to get
4891 4) try the same things with widening allowed. */
4893 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4896 ((optab_handler (optab2
, compute_mode
)
4897 != CODE_FOR_nothing
)
4898 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4901 /* No luck there. Can we do remainder and divide at once
4902 without a library call? */
4903 remainder
= gen_reg_rtx (compute_mode
);
4904 if (! expand_twoval_binop ((unsignedp
4908 NULL_RTX
, remainder
, unsignedp
))
4913 return gen_lowpart (mode
, remainder
);
4916 /* Produce the quotient. Try a quotient insn, but not a library call.
4917 If we have a divmod in this mode, use it in preference to widening
4918 the div (for this test we assume it will not fail). Note that optab2
4919 is set to the one of the two optabs that the call below will use. */
4921 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4922 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4924 ((optab_handler (optab2
, compute_mode
)
4925 != CODE_FOR_nothing
)
4926 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4930 /* No luck there. Try a quotient-and-remainder insn,
4931 keeping the quotient alone. */
4932 quotient
= gen_reg_rtx (compute_mode
);
4933 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4935 quotient
, NULL_RTX
, unsignedp
))
4939 /* Still no luck. If we are not computing the remainder,
4940 use a library call for the quotient. */
4941 quotient
= sign_expand_binop (compute_mode
,
4942 udiv_optab
, sdiv_optab
,
4944 unsignedp
, OPTAB_LIB_WIDEN
);
4951 if (target
&& GET_MODE (target
) != compute_mode
)
4956 /* No divide instruction either. Use library for remainder. */
4957 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4959 unsignedp
, OPTAB_LIB_WIDEN
);
4960 /* No remainder function. Try a quotient-and-remainder
4961 function, keeping the remainder. */
4964 remainder
= gen_reg_rtx (compute_mode
);
4965 if (!expand_twoval_binop_libfunc
4966 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4968 NULL_RTX
, remainder
,
4969 unsignedp
? UMOD
: MOD
))
4970 remainder
= NULL_RTX
;
4975 /* We divided. Now finish doing X - Y * (X / Y). */
4976 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4977 NULL_RTX
, unsignedp
);
4978 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4979 remainder
, target
, unsignedp
,
4984 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4987 /* Return a tree node with data type TYPE, describing the value of X.
4988 Usually this is an VAR_DECL, if there is no obvious better choice.
4989 X may be an expression, however we only support those expressions
4990 generated by loop.c. */
4993 make_tree (tree type
, rtx x
)
4997 switch (GET_CODE (x
))
5000 case CONST_WIDE_INT
:
5001 t
= wide_int_to_tree (type
, std::make_pair (x
, TYPE_MODE (type
)));
5005 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5006 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5007 t
= wide_int_to_tree (type
,
5008 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5009 HOST_BITS_PER_WIDE_INT
* 2));
5014 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
5015 t
= build_real (type
, d
);
5022 int units
= CONST_VECTOR_NUNITS (x
);
5023 tree itype
= TREE_TYPE (type
);
5027 /* Build a tree with vector elements. */
5028 elts
= XALLOCAVEC (tree
, units
);
5029 for (i
= units
- 1; i
>= 0; --i
)
5031 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5032 elts
[i
] = make_tree (itype
, elt
);
5035 return build_vector (type
, elts
);
5039 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5040 make_tree (type
, XEXP (x
, 1)));
5043 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5044 make_tree (type
, XEXP (x
, 1)));
5047 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5050 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5051 make_tree (type
, XEXP (x
, 1)));
5054 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5055 make_tree (type
, XEXP (x
, 1)));
5058 t
= unsigned_type_for (type
);
5059 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5060 make_tree (t
, XEXP (x
, 0)),
5061 make_tree (type
, XEXP (x
, 1))));
5064 t
= signed_type_for (type
);
5065 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5066 make_tree (t
, XEXP (x
, 0)),
5067 make_tree (type
, XEXP (x
, 1))));
5070 if (TREE_CODE (type
) != REAL_TYPE
)
5071 t
= signed_type_for (type
);
5075 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5076 make_tree (t
, XEXP (x
, 0)),
5077 make_tree (t
, XEXP (x
, 1))));
5079 t
= unsigned_type_for (type
);
5080 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5081 make_tree (t
, XEXP (x
, 0)),
5082 make_tree (t
, XEXP (x
, 1))));
5086 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5087 GET_CODE (x
) == ZERO_EXTEND
);
5088 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5091 return make_tree (type
, XEXP (x
, 0));
5094 t
= SYMBOL_REF_DECL (x
);
5096 return fold_convert (type
, build_fold_addr_expr (t
));
5097 /* else fall through. */
5100 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5102 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5103 address mode to pointer mode. */
5104 if (POINTER_TYPE_P (type
))
5105 x
= convert_memory_address_addr_space
5106 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5108 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5109 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5110 t
->decl_with_rtl
.rtl
= x
;
5116 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5117 and returning TARGET.
5119 If TARGET is 0, a pseudo-register or constant is returned. */
5122 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5126 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5127 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5129 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5133 else if (tem
!= target
)
5134 emit_move_insn (target
, tem
);
5138 /* Helper function for emit_store_flag. */
5140 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5141 machine_mode mode
, machine_mode compare_mode
,
5142 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5143 machine_mode target_mode
)
5145 struct expand_operand ops
[4];
5146 rtx op0
, comparison
, subtarget
;
5148 machine_mode result_mode
= targetm
.cstore_mode (icode
);
5150 last
= get_last_insn ();
5151 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5152 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5155 delete_insns_since (last
);
5159 if (target_mode
== VOIDmode
)
5160 target_mode
= result_mode
;
5162 target
= gen_reg_rtx (target_mode
);
5164 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5166 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5167 create_fixed_operand (&ops
[1], comparison
);
5168 create_fixed_operand (&ops
[2], x
);
5169 create_fixed_operand (&ops
[3], y
);
5170 if (!maybe_expand_insn (icode
, 4, ops
))
5172 delete_insns_since (last
);
5175 subtarget
= ops
[0].value
;
5177 /* If we are converting to a wider mode, first convert to
5178 TARGET_MODE, then normalize. This produces better combining
5179 opportunities on machines that have a SIGN_EXTRACT when we are
5180 testing a single bit. This mostly benefits the 68k.
5182 If STORE_FLAG_VALUE does not have the sign bit set when
5183 interpreted in MODE, we can do this conversion as unsigned, which
5184 is usually more efficient. */
5185 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5187 convert_move (target
, subtarget
,
5188 val_signbit_known_clear_p (result_mode
,
5191 result_mode
= target_mode
;
5196 /* If we want to keep subexpressions around, don't reuse our last
5201 /* Now normalize to the proper value in MODE. Sometimes we don't
5202 have to do anything. */
5203 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5205 /* STORE_FLAG_VALUE might be the most negative number, so write
5206 the comparison this way to avoid a compiler-time warning. */
5207 else if (- normalizep
== STORE_FLAG_VALUE
)
5208 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5210 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5211 it hard to use a value of just the sign bit due to ANSI integer
5212 constant typing rules. */
5213 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5214 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5215 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5219 gcc_assert (STORE_FLAG_VALUE
& 1);
5221 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5222 if (normalizep
== -1)
5223 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5226 /* If we were converting to a smaller mode, do the conversion now. */
5227 if (target_mode
!= result_mode
)
5229 convert_move (target
, op0
, 0);
5237 /* A subroutine of emit_store_flag only including "tricks" that do not
5238 need a recursive call. These are kept separate to avoid infinite
5242 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5243 machine_mode mode
, int unsignedp
, int normalizep
,
5244 machine_mode target_mode
)
5247 enum insn_code icode
;
5248 machine_mode compare_mode
;
5249 enum mode_class mclass
;
5250 enum rtx_code scode
;
5253 code
= unsigned_condition (code
);
5254 scode
= swap_condition (code
);
5256 /* If one operand is constant, make it the second one. Only do this
5257 if the other operand is not constant as well. */
5259 if (swap_commutative_operands_p (op0
, op1
))
5261 std::swap (op0
, op1
);
5262 code
= swap_condition (code
);
5265 if (mode
== VOIDmode
)
5266 mode
= GET_MODE (op0
);
5268 /* For some comparisons with 1 and -1, we can convert this to
5269 comparisons with zero. This will often produce more opportunities for
5270 store-flag insns. */
5275 if (op1
== const1_rtx
)
5276 op1
= const0_rtx
, code
= LE
;
5279 if (op1
== constm1_rtx
)
5280 op1
= const0_rtx
, code
= LT
;
5283 if (op1
== const1_rtx
)
5284 op1
= const0_rtx
, code
= GT
;
5287 if (op1
== constm1_rtx
)
5288 op1
= const0_rtx
, code
= GE
;
5291 if (op1
== const1_rtx
)
5292 op1
= const0_rtx
, code
= NE
;
5295 if (op1
== const1_rtx
)
5296 op1
= const0_rtx
, code
= EQ
;
5302 /* If we are comparing a double-word integer with zero or -1, we can
5303 convert the comparison into one involving a single word. */
5304 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5305 && GET_MODE_CLASS (mode
) == MODE_INT
5306 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5309 if ((code
== EQ
|| code
== NE
)
5310 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5314 /* Do a logical OR or AND of the two words and compare the
5316 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5317 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5318 tem
= expand_binop (word_mode
,
5319 op1
== const0_rtx
? ior_optab
: and_optab
,
5320 op00
, op01
, NULL_RTX
, unsignedp
,
5324 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5325 unsignedp
, normalizep
);
5327 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5331 /* If testing the sign bit, can just test on high word. */
5332 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5333 subreg_highpart_offset (word_mode
,
5335 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5336 unsignedp
, normalizep
);
5343 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5346 target
= gen_reg_rtx (target_mode
);
5348 convert_move (target
, tem
,
5349 !val_signbit_known_set_p (word_mode
,
5350 (normalizep
? normalizep
5351 : STORE_FLAG_VALUE
)));
5356 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5357 complement of A (for GE) and shifting the sign bit to the low bit. */
5358 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5359 && GET_MODE_CLASS (mode
) == MODE_INT
5360 && (normalizep
|| STORE_FLAG_VALUE
== 1
5361 || val_signbit_p (mode
, STORE_FLAG_VALUE
)))
5368 /* If the result is to be wider than OP0, it is best to convert it
5369 first. If it is to be narrower, it is *incorrect* to convert it
5371 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5373 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5377 if (target_mode
!= mode
)
5381 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5382 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5383 ? 0 : subtarget
), 0);
5385 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5386 /* If we are supposed to produce a 0/1 value, we want to do
5387 a logical shift from the sign bit to the low-order bit; for
5388 a -1/0 value, we do an arithmetic shift. */
5389 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5390 GET_MODE_BITSIZE (mode
) - 1,
5391 subtarget
, normalizep
!= -1);
5393 if (mode
!= target_mode
)
5394 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5399 mclass
= GET_MODE_CLASS (mode
);
5400 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5401 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5403 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5404 icode
= optab_handler (cstore_optab
, optab_mode
);
5405 if (icode
!= CODE_FOR_nothing
)
5407 do_pending_stack_adjust ();
5408 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5409 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5413 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5415 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5416 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5427 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5428 and storing in TARGET. Normally return TARGET.
5429 Return 0 if that cannot be done.
5431 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5432 it is VOIDmode, they cannot both be CONST_INT.
5434 UNSIGNEDP is for the case where we have to widen the operands
5435 to perform the operation. It says to use zero-extension.
5437 NORMALIZEP is 1 if we should convert the result to be either zero
5438 or one. Normalize is -1 if we should convert the result to be
5439 either zero or -1. If NORMALIZEP is zero, the result will be left
5440 "raw" out of the scc insn. */
5443 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5444 machine_mode mode
, int unsignedp
, int normalizep
)
5446 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5447 enum rtx_code rcode
;
5452 /* If we compare constants, we shouldn't use a store-flag operation,
5453 but a constant load. We can get there via the vanilla route that
5454 usually generates a compare-branch sequence, but will in this case
5455 fold the comparison to a constant, and thus elide the branch. */
5456 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5459 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5464 /* If we reached here, we can't do this with a scc insn, however there
5465 are some comparisons that can be done in other ways. Don't do any
5466 of these cases if branches are very cheap. */
5467 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5470 /* See what we need to return. We can only return a 1, -1, or the
5473 if (normalizep
== 0)
5475 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5476 normalizep
= STORE_FLAG_VALUE
;
5478 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5484 last
= get_last_insn ();
5486 /* If optimizing, use different pseudo registers for each insn, instead
5487 of reusing the same pseudo. This leads to better CSE, but slows
5488 down the compiler, since there are more pseudos */
5489 subtarget
= (!optimize
5490 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5491 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5493 /* For floating-point comparisons, try the reverse comparison or try
5494 changing the "orderedness" of the comparison. */
5495 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5497 enum rtx_code first_code
;
5500 rcode
= reverse_condition_maybe_unordered (code
);
5501 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5502 && (code
== ORDERED
|| code
== UNORDERED
5503 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5504 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5506 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5507 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5509 /* For the reverse comparison, use either an addition or a XOR. */
5511 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5512 optimize_insn_for_speed_p ()) == 0)
5514 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5515 STORE_FLAG_VALUE
, target_mode
);
5517 return expand_binop (target_mode
, add_optab
, tem
,
5518 gen_int_mode (normalizep
, target_mode
),
5519 target
, 0, OPTAB_WIDEN
);
5522 && rtx_cost (trueval
, XOR
, 1,
5523 optimize_insn_for_speed_p ()) == 0)
5525 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5526 normalizep
, target_mode
);
5528 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5529 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5533 delete_insns_since (last
);
5535 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5536 if (code
== ORDERED
|| code
== UNORDERED
)
5539 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5541 /* If there are no NaNs, the first comparison should always fall through.
5542 Effectively change the comparison to the other one. */
5543 if (!HONOR_NANS (mode
))
5545 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5546 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5550 if (!HAVE_conditional_move
)
5553 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5554 conditional move. */
5555 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5556 normalizep
, target_mode
);
5561 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5562 tem
, const0_rtx
, GET_MODE (tem
), 0);
5564 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5565 trueval
, tem
, GET_MODE (tem
), 0);
5568 delete_insns_since (last
);
5572 /* The remaining tricks only apply to integer comparisons. */
5574 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5577 /* If this is an equality comparison of integers, we can try to exclusive-or
5578 (or subtract) the two operands and use a recursive call to try the
5579 comparison with zero. Don't do any of these cases if branches are
5582 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5584 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5588 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5591 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5592 mode
, unsignedp
, normalizep
);
5596 delete_insns_since (last
);
5599 /* For integer comparisons, try the reverse comparison. However, for
5600 small X and if we'd have anyway to extend, implementing "X != 0"
5601 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5602 rcode
= reverse_condition (code
);
5603 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5604 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5606 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5607 && op1
== const0_rtx
))
5609 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5610 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5612 /* Again, for the reverse comparison, use either an addition or a XOR. */
5614 && rtx_cost (GEN_INT (normalizep
), PLUS
, 1,
5615 optimize_insn_for_speed_p ()) == 0)
5617 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5618 STORE_FLAG_VALUE
, target_mode
);
5620 tem
= expand_binop (target_mode
, add_optab
, tem
,
5621 gen_int_mode (normalizep
, target_mode
),
5622 target
, 0, OPTAB_WIDEN
);
5625 && rtx_cost (trueval
, XOR
, 1,
5626 optimize_insn_for_speed_p ()) == 0)
5628 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5629 normalizep
, target_mode
);
5631 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5632 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5637 delete_insns_since (last
);
5640 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5641 the constant zero. Reject all other comparisons at this point. Only
5642 do LE and GT if branches are expensive since they are expensive on
5643 2-operand machines. */
5645 if (op1
!= const0_rtx
5646 || (code
!= EQ
&& code
!= NE
5647 && (BRANCH_COST (optimize_insn_for_speed_p (),
5648 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5651 /* Try to put the result of the comparison in the sign bit. Assume we can't
5652 do the necessary operation below. */
5656 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5657 the sign bit set. */
5661 /* This is destructive, so SUBTARGET can't be OP0. */
5662 if (rtx_equal_p (subtarget
, op0
))
5665 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5668 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5672 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5673 number of bits in the mode of OP0, minus one. */
5677 if (rtx_equal_p (subtarget
, op0
))
5680 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5681 GET_MODE_BITSIZE (mode
) - 1,
5683 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5687 if (code
== EQ
|| code
== NE
)
5689 /* For EQ or NE, one way to do the comparison is to apply an operation
5690 that converts the operand into a positive number if it is nonzero
5691 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5692 for NE we negate. This puts the result in the sign bit. Then we
5693 normalize with a shift, if needed.
5695 Two operations that can do the above actions are ABS and FFS, so try
5696 them. If that doesn't work, and MODE is smaller than a full word,
5697 we can use zero-extension to the wider mode (an unsigned conversion)
5698 as the operation. */
5700 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5701 that is compensated by the subsequent overflow when subtracting
5704 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5705 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5706 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5707 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5708 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5710 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5717 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5720 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5723 /* If we couldn't do it that way, for NE we can "or" the two's complement
5724 of the value with itself. For EQ, we take the one's complement of
5725 that "or", which is an extra insn, so we only handle EQ if branches
5730 || BRANCH_COST (optimize_insn_for_speed_p (),
5733 if (rtx_equal_p (subtarget
, op0
))
5736 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5737 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5740 if (tem
&& code
== EQ
)
5741 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5745 if (tem
&& normalizep
)
5746 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5747 GET_MODE_BITSIZE (mode
) - 1,
5748 subtarget
, normalizep
== 1);
5754 else if (GET_MODE (tem
) != target_mode
)
5756 convert_move (target
, tem
, 0);
5759 else if (!subtarget
)
5761 emit_move_insn (target
, tem
);
5766 delete_insns_since (last
);
5771 /* Like emit_store_flag, but always succeeds. */
5774 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5775 machine_mode mode
, int unsignedp
, int normalizep
)
5778 rtx_code_label
*label
;
5779 rtx trueval
, falseval
;
5781 /* First see if emit_store_flag can do the job. */
5782 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5787 target
= gen_reg_rtx (word_mode
);
5789 /* If this failed, we have to do this with set/compare/jump/set code.
5790 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5791 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5793 && GET_MODE_CLASS (mode
) == MODE_INT
5796 && op1
== const0_rtx
)
5798 label
= gen_label_rtx ();
5799 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
5800 NULL_RTX
, NULL
, label
, -1);
5801 emit_move_insn (target
, trueval
);
5807 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5808 target
= gen_reg_rtx (GET_MODE (target
));
5810 /* Jump in the right direction if the target cannot implement CODE
5811 but can jump on its reverse condition. */
5812 falseval
= const0_rtx
;
5813 if (! can_compare_p (code
, mode
, ccp_jump
)
5814 && (! FLOAT_MODE_P (mode
)
5815 || code
== ORDERED
|| code
== UNORDERED
5816 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5817 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5819 enum rtx_code rcode
;
5820 if (FLOAT_MODE_P (mode
))
5821 rcode
= reverse_condition_maybe_unordered (code
);
5823 rcode
= reverse_condition (code
);
5825 /* Canonicalize to UNORDERED for the libcall. */
5826 if (can_compare_p (rcode
, mode
, ccp_jump
)
5827 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5830 trueval
= const0_rtx
;
5835 emit_move_insn (target
, trueval
);
5836 label
= gen_label_rtx ();
5837 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
5840 emit_move_insn (target
, falseval
);
5846 /* Perform possibly multi-word comparison and conditional jump to LABEL
5847 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5848 now a thin wrapper around do_compare_rtx_and_jump. */
5851 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
5852 rtx_code_label
*label
)
5854 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5855 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,