Daily bump.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob7ec6daec0e60e955e877db9d2409a3f99ab19269
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
44 /*************************************************************************
45 Simple Loop Peeling Utilities
47 Utilities to support loop peeling for vectorization purposes.
48 *************************************************************************/
51 /* Renames the use *OP_P. */
53 static void
54 rename_use_op (use_operand_p op_p)
56 tree new_name;
58 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
59 return;
61 new_name = get_current_def (USE_FROM_PTR (op_p));
63 /* Something defined outside of the loop. */
64 if (!new_name)
65 return;
67 /* An ordinary ssa name defined in the loop. */
69 SET_USE (op_p, new_name);
73 /* Renames the variables in basic block BB. Allow renaming of PHI argumnets
74 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
75 true. */
77 static void
78 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
80 gimple *stmt;
81 use_operand_p use_p;
82 ssa_op_iter iter;
83 edge e;
84 edge_iterator ei;
85 struct loop *loop = bb->loop_father;
86 struct loop *outer_loop = NULL;
88 if (rename_from_outer_loop)
90 gcc_assert (loop);
91 outer_loop = loop_outer (loop);
94 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
95 gsi_next (&gsi))
97 stmt = gsi_stmt (gsi);
98 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
99 rename_use_op (use_p);
102 FOR_EACH_EDGE (e, ei, bb->preds)
104 if (!flow_bb_inside_loop_p (loop, e->src)
105 && (!rename_from_outer_loop || e->src != outer_loop->header))
106 continue;
107 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
109 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
114 struct adjust_info
116 tree from, to;
117 basic_block bb;
120 /* A stack of values to be adjusted in debug stmts. We have to
121 process them LIFO, so that the closest substitution applies. If we
122 processed them FIFO, without the stack, we might substitute uses
123 with a PHI DEF that would soon become non-dominant, and when we got
124 to the suitable one, it wouldn't have anything to substitute any
125 more. */
126 static vec<adjust_info, va_heap> adjust_vec;
128 /* Adjust any debug stmts that referenced AI->from values to use the
129 loop-closed AI->to, if the references are dominated by AI->bb and
130 not by the definition of AI->from. */
132 static void
133 adjust_debug_stmts_now (adjust_info *ai)
135 basic_block bbphi = ai->bb;
136 tree orig_def = ai->from;
137 tree new_def = ai->to;
138 imm_use_iterator imm_iter;
139 gimple *stmt;
140 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
142 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
144 /* Adjust any debug stmts that held onto non-loop-closed
145 references. */
146 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
148 use_operand_p use_p;
149 basic_block bbuse;
151 if (!is_gimple_debug (stmt))
152 continue;
154 gcc_assert (gimple_debug_bind_p (stmt));
156 bbuse = gimple_bb (stmt);
158 if ((bbuse == bbphi
159 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
160 && !(bbuse == bbdef
161 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
163 if (new_def)
164 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
165 SET_USE (use_p, new_def);
166 else
168 gimple_debug_bind_reset_value (stmt);
169 update_stmt (stmt);
175 /* Adjust debug stmts as scheduled before. */
177 static void
178 adjust_vec_debug_stmts (void)
180 if (!MAY_HAVE_DEBUG_STMTS)
181 return;
183 gcc_assert (adjust_vec.exists ());
185 while (!adjust_vec.is_empty ())
187 adjust_debug_stmts_now (&adjust_vec.last ());
188 adjust_vec.pop ();
191 adjust_vec.release ();
194 /* Adjust any debug stmts that referenced FROM values to use the
195 loop-closed TO, if the references are dominated by BB and not by
196 the definition of FROM. If adjust_vec is non-NULL, adjustments
197 will be postponed until adjust_vec_debug_stmts is called. */
199 static void
200 adjust_debug_stmts (tree from, tree to, basic_block bb)
202 adjust_info ai;
204 if (MAY_HAVE_DEBUG_STMTS
205 && TREE_CODE (from) == SSA_NAME
206 && ! SSA_NAME_IS_DEFAULT_DEF (from)
207 && ! virtual_operand_p (from))
209 ai.from = from;
210 ai.to = to;
211 ai.bb = bb;
213 if (adjust_vec.exists ())
214 adjust_vec.safe_push (ai);
215 else
216 adjust_debug_stmts_now (&ai);
220 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
221 to adjust any debug stmts that referenced the old phi arg,
222 presumably non-loop-closed references left over from other
223 transformations. */
225 static void
226 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
228 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
230 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
232 if (MAY_HAVE_DEBUG_STMTS)
233 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
234 gimple_bb (update_phi));
238 /* Update PHI nodes for a guard of the LOOP.
240 Input:
241 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
242 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
243 originates from the guard-bb, skips LOOP and reaches the (unique) exit
244 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
245 We denote this bb NEW_MERGE_BB because before the guard code was added
246 it had a single predecessor (the LOOP header), and now it became a merge
247 point of two paths - the path that ends with the LOOP exit-edge, and
248 the path that ends with GUARD_EDGE.
249 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
250 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
252 ===> The CFG before the guard-code was added:
253 LOOP_header_bb:
254 loop_body
255 if (exit_loop) goto update_bb
256 else goto LOOP_header_bb
257 update_bb:
259 ==> The CFG after the guard-code was added:
260 guard_bb:
261 if (LOOP_guard_condition) goto new_merge_bb
262 else goto LOOP_header_bb
263 LOOP_header_bb:
264 loop_body
265 if (exit_loop_condition) goto new_merge_bb
266 else goto LOOP_header_bb
267 new_merge_bb:
268 goto update_bb
269 update_bb:
271 ==> The CFG after this function:
272 guard_bb:
273 if (LOOP_guard_condition) goto new_merge_bb
274 else goto LOOP_header_bb
275 LOOP_header_bb:
276 loop_body
277 if (exit_loop_condition) goto new_exit_bb
278 else goto LOOP_header_bb
279 new_exit_bb:
280 new_merge_bb:
281 goto update_bb
282 update_bb:
284 This function:
285 1. creates and updates the relevant phi nodes to account for the new
286 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
287 1.1. Create phi nodes at NEW_MERGE_BB.
288 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
289 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
290 2. preserves loop-closed-ssa-form by creating the required phi nodes
291 at the exit of LOOP (i.e, in NEW_EXIT_BB).
293 There are two flavors to this function:
295 slpeel_update_phi_nodes_for_guard1:
296 Here the guard controls whether we enter or skip LOOP, where LOOP is a
297 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
298 for variables that have phis in the loop header.
300 slpeel_update_phi_nodes_for_guard2:
301 Here the guard controls whether we enter or skip LOOP, where LOOP is an
302 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
303 for variables that have phis in the loop exit.
305 I.E., the overall structure is:
307 loop1_preheader_bb:
308 guard1 (goto loop1/merge1_bb)
309 loop1
310 loop1_exit_bb:
311 guard2 (goto merge1_bb/merge2_bb)
312 merge1_bb
313 loop2
314 loop2_exit_bb
315 merge2_bb
316 next_bb
318 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
319 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
320 that have phis in loop1->header).
322 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
323 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
324 that have phis in next_bb). It also adds some of these phis to
325 loop1_exit_bb.
327 slpeel_update_phi_nodes_for_guard1 is always called before
328 slpeel_update_phi_nodes_for_guard2. They are both needed in order
329 to create correct data-flow and loop-closed-ssa-form.
331 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
332 that change between iterations of a loop (and therefore have a phi-node
333 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
334 phis for variables that are used out of the loop (and therefore have
335 loop-closed exit phis). Some variables may be both updated between
336 iterations and used after the loop. This is why in loop1_exit_bb we
337 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
338 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
340 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
341 an original loop. i.e., we have:
343 orig_loop
344 guard_bb (goto LOOP/new_merge)
345 new_loop <-- LOOP
346 new_exit
347 new_merge
348 next_bb
350 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
351 have:
353 new_loop
354 guard_bb (goto LOOP/new_merge)
355 orig_loop <-- LOOP
356 new_exit
357 new_merge
358 next_bb
360 The SSA names defined in the original loop have a current
361 reaching definition that records the corresponding new ssa-name
362 used in the new duplicated loop copy.
365 /* Function slpeel_update_phi_nodes_for_guard1
367 Input:
368 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
369 - DEFS - a bitmap of ssa names to mark new names for which we recorded
370 information.
372 In the context of the overall structure, we have:
374 loop1_preheader_bb:
375 guard1 (goto loop1/merge1_bb)
376 LOOP-> loop1
377 loop1_exit_bb:
378 guard2 (goto merge1_bb/merge2_bb)
379 merge1_bb
380 loop2
381 loop2_exit_bb
382 merge2_bb
383 next_bb
385 For each name updated between loop iterations (i.e - for each name that has
386 an entry (loop-header) phi in LOOP) we create a new phi in:
387 1. merge1_bb (to account for the edge from guard1)
388 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
391 static void
392 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
393 bool is_new_loop, basic_block *new_exit_bb)
395 gphi *orig_phi, *new_phi;
396 gphi *update_phi, *update_phi2;
397 tree guard_arg, loop_arg;
398 basic_block new_merge_bb = guard_edge->dest;
399 edge e = EDGE_SUCC (new_merge_bb, 0);
400 basic_block update_bb = e->dest;
401 basic_block orig_bb = loop->header;
402 edge new_exit_e;
403 tree current_new_name;
404 gphi_iterator gsi_orig, gsi_update;
406 /* Create new bb between loop and new_merge_bb. */
407 *new_exit_bb = split_edge (single_exit (loop));
409 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
411 for (gsi_orig = gsi_start_phis (orig_bb),
412 gsi_update = gsi_start_phis (update_bb);
413 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
414 gsi_next (&gsi_orig), gsi_next (&gsi_update))
416 source_location loop_locus, guard_locus;
417 tree new_res;
418 orig_phi = gsi_orig.phi ();
419 update_phi = gsi_update.phi ();
421 /** 1. Handle new-merge-point phis **/
423 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
424 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
425 new_phi = create_phi_node (new_res, new_merge_bb);
427 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
428 of LOOP. Set the two phi args in NEW_PHI for these edges: */
429 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
430 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
431 EDGE_SUCC (loop->latch,
432 0));
433 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
434 guard_locus
435 = gimple_phi_arg_location_from_edge (orig_phi,
436 loop_preheader_edge (loop));
438 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
439 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
441 /* 1.3. Update phi in successor block. */
442 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
443 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
444 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
445 update_phi2 = new_phi;
448 /** 2. Handle loop-closed-ssa-form phis **/
450 if (virtual_operand_p (PHI_RESULT (orig_phi)))
451 continue;
453 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
454 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
455 new_phi = create_phi_node (new_res, *new_exit_bb);
457 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
458 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
460 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
461 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
462 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
463 PHI_RESULT (new_phi));
465 /* 2.4. Record the newly created name with set_current_def.
466 We want to find a name such that
467 name = get_current_def (orig_loop_name)
468 and to set its current definition as follows:
469 set_current_def (name, new_phi_name)
471 If LOOP is a new loop then loop_arg is already the name we're
472 looking for. If LOOP is the original loop, then loop_arg is
473 the orig_loop_name and the relevant name is recorded in its
474 current reaching definition. */
475 if (is_new_loop)
476 current_new_name = loop_arg;
477 else
479 current_new_name = get_current_def (loop_arg);
480 /* current_def is not available only if the variable does not
481 change inside the loop, in which case we also don't care
482 about recording a current_def for it because we won't be
483 trying to create loop-exit-phis for it. */
484 if (!current_new_name)
485 continue;
487 tree new_name = get_current_def (current_new_name);
488 /* Because of peeled_chrec optimization it is possible that we have
489 set this earlier. Verify the PHI has the same value. */
490 if (new_name)
492 gimple *phi = SSA_NAME_DEF_STMT (new_name);
493 gcc_assert (gimple_code (phi) == GIMPLE_PHI
494 && gimple_bb (phi) == *new_exit_bb
495 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
496 == loop_arg));
497 continue;
500 set_current_def (current_new_name, PHI_RESULT (new_phi));
505 /* Function slpeel_update_phi_nodes_for_guard2
507 Input:
508 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
510 In the context of the overall structure, we have:
512 loop1_preheader_bb:
513 guard1 (goto loop1/merge1_bb)
514 loop1
515 loop1_exit_bb:
516 guard2 (goto merge1_bb/merge2_bb)
517 merge1_bb
518 LOOP-> loop2
519 loop2_exit_bb
520 merge2_bb
521 next_bb
523 For each name used out side the loop (i.e - for each name that has an exit
524 phi in next_bb) we create a new phi in:
525 1. merge2_bb (to account for the edge from guard_bb)
526 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
527 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
528 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
531 static void
532 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
533 bool is_new_loop, basic_block *new_exit_bb)
535 gphi *orig_phi, *new_phi;
536 gphi *update_phi, *update_phi2;
537 tree guard_arg, loop_arg;
538 basic_block new_merge_bb = guard_edge->dest;
539 edge e = EDGE_SUCC (new_merge_bb, 0);
540 basic_block update_bb = e->dest;
541 edge new_exit_e;
542 tree orig_def, orig_def_new_name;
543 tree new_name, new_name2;
544 tree arg;
545 gphi_iterator gsi;
547 /* Create new bb between loop and new_merge_bb. */
548 *new_exit_bb = split_edge (single_exit (loop));
550 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
552 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
554 tree new_res;
555 update_phi = gsi.phi ();
556 orig_phi = update_phi;
557 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
558 /* This loop-closed-phi actually doesn't represent a use
559 out of the loop - the phi arg is a constant. */
560 if (TREE_CODE (orig_def) != SSA_NAME)
561 continue;
562 orig_def_new_name = get_current_def (orig_def);
563 arg = NULL_TREE;
565 /** 1. Handle new-merge-point phis **/
567 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
568 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
569 new_phi = create_phi_node (new_res, new_merge_bb);
571 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
572 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
573 new_name = orig_def;
574 new_name2 = NULL_TREE;
575 if (orig_def_new_name)
577 new_name = orig_def_new_name;
578 /* Some variables have both loop-entry-phis and loop-exit-phis.
579 Such variables were given yet newer names by phis placed in
580 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
581 new_name2 = get_current_def (get_current_def (orig_name)). */
582 new_name2 = get_current_def (new_name);
585 if (is_new_loop)
587 guard_arg = orig_def;
588 loop_arg = new_name;
590 else
592 guard_arg = new_name;
593 loop_arg = orig_def;
595 if (new_name2)
596 guard_arg = new_name2;
598 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
599 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
601 /* 1.3. Update phi in successor block. */
602 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
603 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
604 update_phi2 = new_phi;
607 /** 2. Handle loop-closed-ssa-form phis **/
609 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
610 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
611 new_phi = create_phi_node (new_res, *new_exit_bb);
613 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
614 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
616 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
617 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
618 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
619 PHI_RESULT (new_phi));
622 /** 3. Handle loop-closed-ssa-form phis for first loop **/
624 /* 3.1. Find the relevant names that need an exit-phi in
625 GUARD_BB, i.e. names for which
626 slpeel_update_phi_nodes_for_guard1 had not already created a
627 phi node. This is the case for names that are used outside
628 the loop (and therefore need an exit phi) but are not updated
629 across loop iterations (and therefore don't have a
630 loop-header-phi).
632 slpeel_update_phi_nodes_for_guard1 is responsible for
633 creating loop-exit phis in GUARD_BB for names that have a
634 loop-header-phi. When such a phi is created we also record
635 the new name in its current definition. If this new name
636 exists, then guard_arg was set to this new name (see 1.2
637 above). Therefore, if guard_arg is not this new name, this
638 is an indication that an exit-phi in GUARD_BB was not yet
639 created, so we take care of it here. */
640 if (guard_arg == new_name2)
641 continue;
642 arg = guard_arg;
644 /* 3.2. Generate new phi node in GUARD_BB: */
645 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
646 new_phi = create_phi_node (new_res, guard_edge->src);
648 /* 3.3. GUARD_BB has one incoming edge: */
649 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
650 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
651 UNKNOWN_LOCATION);
653 /* 3.4. Update phi in successor of GUARD_BB: */
654 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
655 == guard_arg);
656 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
657 PHI_RESULT (new_phi));
662 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
663 that starts at zero, increases by one and its limit is NITERS.
665 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
667 void
668 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
670 tree indx_before_incr, indx_after_incr;
671 gcond *cond_stmt;
672 gcond *orig_cond;
673 edge exit_edge = single_exit (loop);
674 gimple_stmt_iterator loop_cond_gsi;
675 gimple_stmt_iterator incr_gsi;
676 bool insert_after;
677 tree init = build_int_cst (TREE_TYPE (niters), 0);
678 tree step = build_int_cst (TREE_TYPE (niters), 1);
679 source_location loop_loc;
680 enum tree_code code;
682 orig_cond = get_loop_exit_condition (loop);
683 gcc_assert (orig_cond);
684 loop_cond_gsi = gsi_for_stmt (orig_cond);
686 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
687 create_iv (init, step, NULL_TREE, loop,
688 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
690 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
691 true, NULL_TREE, true,
692 GSI_SAME_STMT);
693 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
694 true, GSI_SAME_STMT);
696 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
697 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
698 NULL_TREE);
700 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
702 /* Remove old loop exit test: */
703 gsi_remove (&loop_cond_gsi, true);
704 free_stmt_vec_info (orig_cond);
706 loop_loc = find_loop_location (loop);
707 if (dump_enabled_p ())
709 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
710 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
711 LOCATION_LINE (loop_loc));
712 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
713 dump_printf (MSG_NOTE, "\n");
715 loop->nb_iterations = niters;
718 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
719 For all PHI arguments in FROM->dest and TO->dest from those
720 edges ensure that TO->dest PHI arguments have current_def
721 to that in from. */
723 static void
724 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
726 gimple_stmt_iterator gsi_from, gsi_to;
728 for (gsi_from = gsi_start_phis (from->dest),
729 gsi_to = gsi_start_phis (to->dest);
730 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
732 gimple *from_phi = gsi_stmt (gsi_from);
733 gimple *to_phi = gsi_stmt (gsi_to);
734 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
735 if (TREE_CODE (from_arg) != SSA_NAME)
737 gsi_next (&gsi_from);
738 continue;
740 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
741 if (TREE_CODE (to_arg) != SSA_NAME)
743 gsi_next (&gsi_to);
744 continue;
746 if (get_current_def (to_arg) == NULL_TREE)
747 set_current_def (to_arg, get_current_def (from_arg));
748 gsi_next (&gsi_from);
749 gsi_next (&gsi_to);
754 /* Given LOOP this function generates a new copy of it and puts it
755 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
756 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
757 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
758 entry or exit of LOOP. */
760 struct loop *
761 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
762 struct loop *scalar_loop, edge e)
764 struct loop *new_loop;
765 basic_block *new_bbs, *bbs;
766 bool at_exit;
767 bool was_imm_dom;
768 basic_block exit_dest;
769 edge exit, new_exit;
770 bool duplicate_outer_loop = false;
772 exit = single_exit (loop);
773 at_exit = (e == exit);
774 if (!at_exit && e != loop_preheader_edge (loop))
775 return NULL;
777 if (scalar_loop == NULL)
778 scalar_loop = loop;
780 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
781 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
782 /* Allow duplication of outer loops. */
783 if (scalar_loop->inner)
784 duplicate_outer_loop = true;
785 /* Check whether duplication is possible. */
786 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
788 free (bbs);
789 return NULL;
792 /* Generate new loop structure. */
793 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
794 duplicate_subloops (scalar_loop, new_loop);
796 exit_dest = exit->dest;
797 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
798 exit_dest) == loop->header ?
799 true : false);
801 /* Also copy the pre-header, this avoids jumping through hoops to
802 duplicate the loop entry PHI arguments. Create an empty
803 pre-header unconditionally for this. */
804 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
805 edge entry_e = single_pred_edge (preheader);
806 bbs[scalar_loop->num_nodes] = preheader;
807 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
809 exit = single_exit (scalar_loop);
810 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
811 &exit, 1, &new_exit, NULL,
812 e->src, true);
813 exit = single_exit (loop);
814 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
816 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
818 if (scalar_loop != loop)
820 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
821 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
822 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
823 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
824 header) to have current_def set, so copy them over. */
825 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
826 exit);
827 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
829 EDGE_SUCC (loop->latch, 0));
832 if (at_exit) /* Add the loop copy at exit. */
834 if (scalar_loop != loop)
836 gphi_iterator gsi;
837 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
839 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
840 gsi_next (&gsi))
842 gphi *phi = gsi.phi ();
843 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
844 location_t orig_locus
845 = gimple_phi_arg_location_from_edge (phi, e);
847 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
850 redirect_edge_and_branch_force (e, new_preheader);
851 flush_pending_stmts (e);
852 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
853 if (was_imm_dom || duplicate_outer_loop)
854 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
856 /* And remove the non-necessary forwarder again. Keep the other
857 one so we have a proper pre-header for the loop at the exit edge. */
858 redirect_edge_pred (single_succ_edge (preheader),
859 single_pred (preheader));
860 delete_basic_block (preheader);
861 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
862 loop_preheader_edge (scalar_loop)->src);
864 else /* Add the copy at entry. */
866 if (scalar_loop != loop)
868 /* Remove the non-necessary forwarder of scalar_loop again. */
869 redirect_edge_pred (single_succ_edge (preheader),
870 single_pred (preheader));
871 delete_basic_block (preheader);
872 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
873 loop_preheader_edge (scalar_loop)->src);
874 preheader = split_edge (loop_preheader_edge (loop));
875 entry_e = single_pred_edge (preheader);
878 redirect_edge_and_branch_force (entry_e, new_preheader);
879 flush_pending_stmts (entry_e);
880 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
882 redirect_edge_and_branch_force (new_exit, preheader);
883 flush_pending_stmts (new_exit);
884 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
886 /* And remove the non-necessary forwarder again. Keep the other
887 one so we have a proper pre-header for the loop at the exit edge. */
888 redirect_edge_pred (single_succ_edge (new_preheader),
889 single_pred (new_preheader));
890 delete_basic_block (new_preheader);
891 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
892 loop_preheader_edge (new_loop)->src);
895 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
896 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
898 if (scalar_loop != loop)
900 /* Update new_loop->header PHIs, so that on the preheader
901 edge they are the ones from loop rather than scalar_loop. */
902 gphi_iterator gsi_orig, gsi_new;
903 edge orig_e = loop_preheader_edge (loop);
904 edge new_e = loop_preheader_edge (new_loop);
906 for (gsi_orig = gsi_start_phis (loop->header),
907 gsi_new = gsi_start_phis (new_loop->header);
908 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
909 gsi_next (&gsi_orig), gsi_next (&gsi_new))
911 gphi *orig_phi = gsi_orig.phi ();
912 gphi *new_phi = gsi_new.phi ();
913 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
914 location_t orig_locus
915 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
917 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
921 free (new_bbs);
922 free (bbs);
924 checking_verify_dominators (CDI_DOMINATORS);
926 return new_loop;
930 /* Given the condition statement COND, put it as the last statement
931 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
932 Assumes that this is the single exit of the guarded loop.
933 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
935 static edge
936 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
937 gimple_seq cond_expr_stmt_list,
938 basic_block exit_bb, basic_block dom_bb,
939 int probability)
941 gimple_stmt_iterator gsi;
942 edge new_e, enter_e;
943 gcond *cond_stmt;
944 gimple_seq gimplify_stmt_list = NULL;
946 enter_e = EDGE_SUCC (guard_bb, 0);
947 enter_e->flags &= ~EDGE_FALLTHRU;
948 enter_e->flags |= EDGE_FALSE_VALUE;
949 gsi = gsi_last_bb (guard_bb);
951 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
952 NULL_TREE);
953 if (gimplify_stmt_list)
954 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
955 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
956 if (cond_expr_stmt_list)
957 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
959 gsi = gsi_last_bb (guard_bb);
960 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
962 /* Add new edge to connect guard block to the merge/loop-exit block. */
963 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
965 new_e->count = guard_bb->count;
966 new_e->probability = probability;
967 new_e->count = apply_probability (enter_e->count, probability);
968 enter_e->count -= new_e->count;
969 enter_e->probability = inverse_probability (probability);
970 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
971 return new_e;
975 /* This function verifies that the following restrictions apply to LOOP:
976 (1) it consists of exactly 2 basic blocks - header, and an empty latch
977 for innermost loop and 5 basic blocks for outer-loop.
978 (2) it is single entry, single exit
979 (3) its exit condition is the last stmt in the header
980 (4) E is the entry/exit edge of LOOP.
983 bool
984 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
986 edge exit_e = single_exit (loop);
987 edge entry_e = loop_preheader_edge (loop);
988 gcond *orig_cond = get_loop_exit_condition (loop);
989 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
990 unsigned int num_bb = loop->inner? 5 : 2;
992 /* All loops have an outer scope; the only case loop->outer is NULL is for
993 the function itself. */
994 if (!loop_outer (loop)
995 || loop->num_nodes != num_bb
996 || !empty_block_p (loop->latch)
997 || !single_exit (loop)
998 /* Verify that new loop exit condition can be trivially modified. */
999 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1000 || (e != exit_e && e != entry_e))
1001 return false;
1003 return true;
1006 static void
1007 slpeel_checking_verify_cfg_after_peeling (struct loop *first_loop,
1008 struct loop *second_loop)
1010 if (!flag_checking)
1011 return;
1013 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1014 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1015 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1017 /* A guard that controls whether the second_loop is to be executed or skipped
1018 is placed in first_loop->exit. first_loop->exit therefore has two
1019 successors - one is the preheader of second_loop, and the other is a bb
1020 after second_loop.
1022 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1024 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1025 of second_loop. */
1027 /* The preheader of new_loop is expected to have two predecessors:
1028 first_loop->exit and the block that precedes first_loop. */
1030 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1031 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1032 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1033 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1034 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1036 /* Verify that the other successor of first_loop->exit is after the
1037 second_loop. */
1038 /* TODO */
1041 /* If the run time cost model check determines that vectorization is
1042 not profitable and hence scalar loop should be generated then set
1043 FIRST_NITERS to prologue peeled iterations. This will allow all the
1044 iterations to be executed in the prologue peeled scalar loop. */
1046 static void
1047 set_prologue_iterations (basic_block bb_before_first_loop,
1048 tree *first_niters,
1049 struct loop *loop,
1050 unsigned int th,
1051 int probability)
1053 edge e;
1054 basic_block cond_bb, then_bb;
1055 tree var, prologue_after_cost_adjust_name;
1056 gimple_stmt_iterator gsi;
1057 gphi *newphi;
1058 edge e_true, e_false, e_fallthru;
1059 gcond *cond_stmt;
1060 gimple_seq stmts = NULL;
1061 tree cost_pre_condition = NULL_TREE;
1062 tree scalar_loop_iters =
1063 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1065 e = single_pred_edge (bb_before_first_loop);
1066 cond_bb = split_edge (e);
1068 e = single_pred_edge (bb_before_first_loop);
1069 then_bb = split_edge (e);
1070 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1072 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1073 EDGE_FALSE_VALUE);
1074 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1076 e_true = EDGE_PRED (then_bb, 0);
1077 e_true->flags &= ~EDGE_FALLTHRU;
1078 e_true->flags |= EDGE_TRUE_VALUE;
1080 e_true->probability = probability;
1081 e_false->probability = inverse_probability (probability);
1082 e_true->count = apply_probability (cond_bb->count, probability);
1083 e_false->count = cond_bb->count - e_true->count;
1084 then_bb->frequency = EDGE_FREQUENCY (e_true);
1085 then_bb->count = e_true->count;
1087 e_fallthru = EDGE_SUCC (then_bb, 0);
1088 e_fallthru->count = then_bb->count;
1090 gsi = gsi_last_bb (cond_bb);
1091 cost_pre_condition =
1092 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1093 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1094 cost_pre_condition =
1095 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1096 NULL_TREE, false, GSI_CONTINUE_LINKING);
1097 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1098 NULL_TREE, NULL_TREE);
1099 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1101 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1102 "prologue_after_cost_adjust");
1103 prologue_after_cost_adjust_name =
1104 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1106 gsi = gsi_last_bb (then_bb);
1107 if (stmts)
1108 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1110 newphi = create_phi_node (var, bb_before_first_loop);
1111 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1112 UNKNOWN_LOCATION);
1113 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1115 *first_niters = PHI_RESULT (newphi);
1118 /* Function slpeel_tree_peel_loop_to_edge.
1120 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1121 that is placed on the entry (exit) edge E of LOOP. After this transformation
1122 we have two loops one after the other - first-loop iterates FIRST_NITERS
1123 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1124 If the cost model indicates that it is profitable to emit a scalar
1125 loop instead of the vector one, then the prolog (epilog) loop will iterate
1126 for the entire unchanged scalar iterations of the loop.
1128 Input:
1129 - LOOP: the loop to be peeled.
1130 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1131 should be copied.
1132 - E: the exit or entry edge of LOOP.
1133 If it is the entry edge, we peel the first iterations of LOOP. In this
1134 case first-loop is LOOP, and second-loop is the newly created loop.
1135 If it is the exit edge, we peel the last iterations of LOOP. In this
1136 case, first-loop is the newly created loop, and second-loop is LOOP.
1137 - NITERS: the number of iterations that LOOP iterates.
1138 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1139 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1140 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1141 is false, the caller of this function may want to take care of this
1142 (this can be useful if we don't want new stmts added to first-loop).
1143 - TH: cost model profitability threshold of iterations for vectorization.
1144 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1145 during versioning and hence needs to occur during
1146 prologue generation or whether cost model check
1147 has not occurred during prologue generation and hence
1148 needs to occur during epilogue generation.
1149 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1150 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1153 Output:
1154 The function returns a pointer to the new loop-copy, or NULL if it failed
1155 to perform the transformation.
1157 The function generates two if-then-else guards: one before the first loop,
1158 and the other before the second loop:
1159 The first guard is:
1160 if (FIRST_NITERS == 0) then skip the first loop,
1161 and go directly to the second loop.
1162 The second guard is:
1163 if (FIRST_NITERS == NITERS) then skip the second loop.
1165 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1166 then the generated condition is combined with COND_EXPR and the
1167 statements in COND_EXPR_STMT_LIST are emitted together with it.
1169 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1170 FORNOW the resulting code will not be in loop-closed-ssa form.
1173 static struct loop *
1174 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1175 edge e, tree *first_niters,
1176 tree niters, bool update_first_loop_count,
1177 unsigned int th, bool check_profitability,
1178 tree cond_expr, gimple_seq cond_expr_stmt_list,
1179 int bound1, int bound2)
1181 struct loop *new_loop = NULL, *first_loop, *second_loop;
1182 edge skip_e;
1183 tree pre_condition = NULL_TREE;
1184 basic_block bb_before_second_loop, bb_after_second_loop;
1185 basic_block bb_before_first_loop;
1186 basic_block bb_between_loops;
1187 basic_block new_exit_bb;
1188 gphi_iterator gsi;
1189 edge exit_e = single_exit (loop);
1190 source_location loop_loc;
1191 /* There are many aspects to how likely the first loop is going to be executed.
1192 Without histogram we can't really do good job. Simply set it to
1193 2/3, so the first loop is not reordered to the end of function and
1194 the hot path through stays short. */
1195 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1197 int probability_of_second_loop;
1199 if (!slpeel_can_duplicate_loop_p (loop, e))
1200 return NULL;
1202 /* We might have a queued need to update virtual SSA form. As we
1203 delete the update SSA machinery below after doing a regular
1204 incremental SSA update during loop copying make sure we don't
1205 lose that fact.
1206 ??? Needing to update virtual SSA form by renaming is unfortunate
1207 but not all of the vectorizer code inserting new loads / stores
1208 properly assigns virtual operands to those statements. */
1209 update_ssa (TODO_update_ssa_only_virtuals);
1211 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1212 in the exit bb and rename all the uses after the loop. This simplifies
1213 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1214 (but normally loop closed SSA form doesn't require virtual PHIs to be
1215 in the same form). Doing this early simplifies the checking what
1216 uses should be renamed. */
1217 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1218 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1220 gphi *phi = gsi.phi ();
1221 for (gsi = gsi_start_phis (exit_e->dest);
1222 !gsi_end_p (gsi); gsi_next (&gsi))
1223 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1224 break;
1225 if (gsi_end_p (gsi))
1227 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1228 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1229 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1230 imm_use_iterator imm_iter;
1231 gimple *stmt;
1232 use_operand_p use_p;
1234 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1235 gimple_phi_set_result (new_phi, new_vop);
1236 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1237 if (stmt != new_phi
1238 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1239 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1240 SET_USE (use_p, new_vop);
1242 break;
1245 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1246 Resulting CFG would be:
1248 first_loop:
1249 do {
1250 } while ...
1252 second_loop:
1253 do {
1254 } while ...
1256 orig_exit_bb:
1259 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1260 e)))
1262 loop_loc = find_loop_location (loop);
1263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1264 "tree_duplicate_loop_to_edge_cfg failed.\n");
1265 return NULL;
1268 if (MAY_HAVE_DEBUG_STMTS)
1270 gcc_assert (!adjust_vec.exists ());
1271 adjust_vec.create (32);
1274 if (e == exit_e)
1276 /* NEW_LOOP was placed after LOOP. */
1277 first_loop = loop;
1278 second_loop = new_loop;
1280 else
1282 /* NEW_LOOP was placed before LOOP. */
1283 first_loop = new_loop;
1284 second_loop = loop;
1287 /* 2. Add the guard code in one of the following ways:
1289 2.a Add the guard that controls whether the first loop is executed.
1290 This occurs when this function is invoked for prologue or epilogue
1291 generation and when the cost model check can be done at compile time.
1293 Resulting CFG would be:
1295 bb_before_first_loop:
1296 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1297 GOTO first-loop
1299 first_loop:
1300 do {
1301 } while ...
1303 bb_before_second_loop:
1305 second_loop:
1306 do {
1307 } while ...
1309 orig_exit_bb:
1311 2.b Add the cost model check that allows the prologue
1312 to iterate for the entire unchanged scalar
1313 iterations of the loop in the event that the cost
1314 model indicates that the scalar loop is more
1315 profitable than the vector one. This occurs when
1316 this function is invoked for prologue generation
1317 and the cost model check needs to be done at run
1318 time.
1320 Resulting CFG after prologue peeling would be:
1322 if (scalar_loop_iterations <= th)
1323 FIRST_NITERS = scalar_loop_iterations
1325 bb_before_first_loop:
1326 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1327 GOTO first-loop
1329 first_loop:
1330 do {
1331 } while ...
1333 bb_before_second_loop:
1335 second_loop:
1336 do {
1337 } while ...
1339 orig_exit_bb:
1341 2.c Add the cost model check that allows the epilogue
1342 to iterate for the entire unchanged scalar
1343 iterations of the loop in the event that the cost
1344 model indicates that the scalar loop is more
1345 profitable than the vector one. This occurs when
1346 this function is invoked for epilogue generation
1347 and the cost model check needs to be done at run
1348 time. This check is combined with any pre-existing
1349 check in COND_EXPR to avoid versioning.
1351 Resulting CFG after prologue peeling would be:
1353 bb_before_first_loop:
1354 if ((scalar_loop_iterations <= th)
1356 FIRST_NITERS == 0) GOTO bb_before_second_loop
1357 GOTO first-loop
1359 first_loop:
1360 do {
1361 } while ...
1363 bb_before_second_loop:
1365 second_loop:
1366 do {
1367 } while ...
1369 orig_exit_bb:
1372 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1373 /* Loop copying insterted a forwarder block for us here. */
1374 bb_before_second_loop = single_exit (first_loop)->dest;
1376 probability_of_second_loop = (inverse_probability (first_guard_probability)
1377 + combine_probabilities (second_guard_probability,
1378 first_guard_probability));
1379 /* Theoretically preheader edge of first loop and exit edge should have
1380 same frequencies. Loop exit probablities are however easy to get wrong.
1381 It is safer to copy value from original loop entry. */
1382 bb_before_second_loop->frequency
1383 = combine_probabilities (bb_before_first_loop->frequency,
1384 probability_of_second_loop);
1385 bb_before_second_loop->count
1386 = apply_probability (bb_before_first_loop->count,
1387 probability_of_second_loop);
1388 single_succ_edge (bb_before_second_loop)->count
1389 = bb_before_second_loop->count;
1391 /* Epilogue peeling. */
1392 if (!update_first_loop_count)
1394 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1395 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1396 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1397 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1398 limit = limit + 1;
1399 if (check_profitability
1400 && th > limit)
1401 limit = th;
1402 pre_condition =
1403 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1404 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1405 if (cond_expr)
1407 pre_condition =
1408 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1409 pre_condition,
1410 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1411 cond_expr));
1415 /* Prologue peeling. */
1416 else
1418 if (check_profitability)
1419 set_prologue_iterations (bb_before_first_loop, first_niters,
1420 loop, th, first_guard_probability);
1422 pre_condition =
1423 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1424 build_int_cst (TREE_TYPE (*first_niters), 0));
1427 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1428 cond_expr_stmt_list,
1429 bb_before_second_loop, bb_before_first_loop,
1430 inverse_probability (first_guard_probability));
1431 scale_loop_profile (first_loop, first_guard_probability,
1432 check_profitability && (int)th > bound1 ? th : bound1);
1433 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1434 first_loop == new_loop,
1435 &new_exit_bb);
1438 /* 3. Add the guard that controls whether the second loop is executed.
1439 Resulting CFG would be:
1441 bb_before_first_loop:
1442 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1443 GOTO first-loop
1445 first_loop:
1446 do {
1447 } while ...
1449 bb_between_loops:
1450 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1451 GOTO bb_before_second_loop
1453 bb_before_second_loop:
1455 second_loop:
1456 do {
1457 } while ...
1459 bb_after_second_loop:
1461 orig_exit_bb:
1464 bb_between_loops = new_exit_bb;
1465 bb_after_second_loop = split_edge (single_exit (second_loop));
1467 pre_condition =
1468 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1469 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1470 bb_after_second_loop, bb_before_first_loop,
1471 inverse_probability (second_guard_probability));
1472 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1473 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1474 second_loop == new_loop, &new_exit_bb);
1476 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1478 if (update_first_loop_count)
1479 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1481 delete_update_ssa ();
1483 adjust_vec_debug_stmts ();
1485 return new_loop;
1488 /* Function vect_get_loop_location.
1490 Extract the location of the loop in the source code.
1491 If the loop is not well formed for vectorization, an estimated
1492 location is calculated.
1493 Return the loop location if succeed and NULL if not. */
1495 source_location
1496 find_loop_location (struct loop *loop)
1498 gimple *stmt = NULL;
1499 basic_block bb;
1500 gimple_stmt_iterator si;
1502 if (!loop)
1503 return UNKNOWN_LOCATION;
1505 stmt = get_loop_exit_condition (loop);
1507 if (stmt
1508 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1509 return gimple_location (stmt);
1511 /* If we got here the loop is probably not "well formed",
1512 try to estimate the loop location */
1514 if (!loop->header)
1515 return UNKNOWN_LOCATION;
1517 bb = loop->header;
1519 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1521 stmt = gsi_stmt (si);
1522 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1523 return gimple_location (stmt);
1526 return UNKNOWN_LOCATION;
1530 /* Function vect_can_advance_ivs_p
1532 In case the number of iterations that LOOP iterates is unknown at compile
1533 time, an epilog loop will be generated, and the loop induction variables
1534 (IVs) will be "advanced" to the value they are supposed to take just before
1535 the epilog loop. Here we check that the access function of the loop IVs
1536 and the expression that represents the loop bound are simple enough.
1537 These restrictions will be relaxed in the future. */
1539 bool
1540 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1542 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1543 basic_block bb = loop->header;
1544 gimple *phi;
1545 gphi_iterator gsi;
1547 /* Analyze phi functions of the loop header. */
1549 if (dump_enabled_p ())
1550 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1551 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1553 tree evolution_part;
1555 phi = gsi.phi ();
1556 if (dump_enabled_p ())
1558 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1559 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1560 dump_printf (MSG_NOTE, "\n");
1563 /* Skip virtual phi's. The data dependences that are associated with
1564 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1566 if (virtual_operand_p (PHI_RESULT (phi)))
1568 if (dump_enabled_p ())
1569 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1570 "virtual phi. skip.\n");
1571 continue;
1574 /* Skip reduction phis. */
1576 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1578 if (dump_enabled_p ())
1579 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1580 "reduc phi. skip.\n");
1581 continue;
1584 /* Analyze the evolution function. */
1586 evolution_part
1587 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1588 if (evolution_part == NULL_TREE)
1590 if (dump_enabled_p ())
1591 dump_printf (MSG_MISSED_OPTIMIZATION,
1592 "No access function or evolution.\n");
1593 return false;
1596 /* FORNOW: We do not transform initial conditions of IVs
1597 which evolution functions are a polynomial of degree >= 2. */
1599 if (tree_is_chrec (evolution_part))
1600 return false;
1603 return true;
1607 /* Function vect_update_ivs_after_vectorizer.
1609 "Advance" the induction variables of LOOP to the value they should take
1610 after the execution of LOOP. This is currently necessary because the
1611 vectorizer does not handle induction variables that are used after the
1612 loop. Such a situation occurs when the last iterations of LOOP are
1613 peeled, because:
1614 1. We introduced new uses after LOOP for IVs that were not originally used
1615 after LOOP: the IVs of LOOP are now used by an epilog loop.
1616 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1617 times, whereas the loop IVs should be bumped N times.
1619 Input:
1620 - LOOP - a loop that is going to be vectorized. The last few iterations
1621 of LOOP were peeled.
1622 - NITERS - the number of iterations that LOOP executes (before it is
1623 vectorized). i.e, the number of times the ivs should be bumped.
1624 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1625 coming out from LOOP on which there are uses of the LOOP ivs
1626 (this is the path from LOOP->exit to epilog_loop->preheader).
1628 The new definitions of the ivs are placed in LOOP->exit.
1629 The phi args associated with the edge UPDATE_E in the bb
1630 UPDATE_E->dest are updated accordingly.
1632 Assumption 1: Like the rest of the vectorizer, this function assumes
1633 a single loop exit that has a single predecessor.
1635 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1636 organized in the same order.
1638 Assumption 3: The access function of the ivs is simple enough (see
1639 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1641 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1642 coming out of LOOP on which the ivs of LOOP are used (this is the path
1643 that leads to the epilog loop; other paths skip the epilog loop). This
1644 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1645 needs to have its phis updated.
1648 static void
1649 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1650 edge update_e)
1652 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1653 basic_block exit_bb = single_exit (loop)->dest;
1654 gphi *phi, *phi1;
1655 gphi_iterator gsi, gsi1;
1656 basic_block update_bb = update_e->dest;
1658 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1660 /* Make sure there exists a single-predecessor exit bb: */
1661 gcc_assert (single_pred_p (exit_bb));
1663 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1664 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1665 gsi_next (&gsi), gsi_next (&gsi1))
1667 tree init_expr;
1668 tree step_expr, off;
1669 tree type;
1670 tree var, ni, ni_name;
1671 gimple_stmt_iterator last_gsi;
1672 stmt_vec_info stmt_info;
1674 phi = gsi.phi ();
1675 phi1 = gsi1.phi ();
1676 if (dump_enabled_p ())
1678 dump_printf_loc (MSG_NOTE, vect_location,
1679 "vect_update_ivs_after_vectorizer: phi: ");
1680 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1681 dump_printf (MSG_NOTE, "\n");
1684 /* Skip virtual phi's. */
1685 if (virtual_operand_p (PHI_RESULT (phi)))
1687 if (dump_enabled_p ())
1688 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1689 "virtual phi. skip.\n");
1690 continue;
1693 /* Skip reduction phis. */
1694 stmt_info = vinfo_for_stmt (phi);
1695 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1696 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1698 if (dump_enabled_p ())
1699 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1700 "reduc phi. skip.\n");
1701 continue;
1704 type = TREE_TYPE (gimple_phi_result (phi));
1705 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1706 step_expr = unshare_expr (step_expr);
1708 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1709 of degree >= 2 or exponential. */
1710 gcc_assert (!tree_is_chrec (step_expr));
1712 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1714 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1715 fold_convert (TREE_TYPE (step_expr), niters),
1716 step_expr);
1717 if (POINTER_TYPE_P (type))
1718 ni = fold_build_pointer_plus (init_expr, off);
1719 else
1720 ni = fold_build2 (PLUS_EXPR, type,
1721 init_expr, fold_convert (type, off));
1723 var = create_tmp_var (type, "tmp");
1725 last_gsi = gsi_last_bb (exit_bb);
1726 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1727 true, GSI_SAME_STMT);
1729 /* Fix phi expressions in the successor bb. */
1730 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1734 /* Function vect_do_peeling_for_loop_bound
1736 Peel the last iterations of the loop represented by LOOP_VINFO.
1737 The peeled iterations form a new epilog loop. Given that the loop now
1738 iterates NITERS times, the new epilog loop iterates
1739 NITERS % VECTORIZATION_FACTOR times.
1741 The original loop will later be made to iterate
1742 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1744 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1745 test. */
1747 void
1748 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1749 tree ni_name, tree ratio_mult_vf_name,
1750 unsigned int th, bool check_profitability)
1752 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1753 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1754 struct loop *new_loop;
1755 edge update_e;
1756 basic_block preheader;
1757 int loop_num;
1758 int max_iter;
1759 tree cond_expr = NULL_TREE;
1760 gimple_seq cond_expr_stmt_list = NULL;
1762 if (dump_enabled_p ())
1763 dump_printf_loc (MSG_NOTE, vect_location,
1764 "=== vect_do_peeling_for_loop_bound ===\n");
1766 initialize_original_copy_tables ();
1768 loop_num = loop->num;
1770 new_loop
1771 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1772 &ratio_mult_vf_name, ni_name, false,
1773 th, check_profitability,
1774 cond_expr, cond_expr_stmt_list,
1775 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1776 gcc_assert (new_loop);
1777 gcc_assert (loop_num == loop->num);
1778 slpeel_checking_verify_cfg_after_peeling (loop, new_loop);
1780 /* A guard that controls whether the new_loop is to be executed or skipped
1781 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1782 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1783 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1784 is on the path where the LOOP IVs are used and need to be updated. */
1786 preheader = loop_preheader_edge (new_loop)->src;
1787 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1788 update_e = EDGE_PRED (preheader, 0);
1789 else
1790 update_e = EDGE_PRED (preheader, 1);
1792 /* Update IVs of original loop as if they were advanced
1793 by ratio_mult_vf_name steps. */
1794 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1796 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1797 and this means N-2 loopback edge executions.
1799 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1800 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1801 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1802 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1803 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1804 if (check_profitability)
1805 max_iter = MAX (max_iter, (int) th - 1);
1806 record_niter_bound (new_loop, max_iter, false, true);
1807 dump_printf (MSG_NOTE,
1808 "Setting upper bound of nb iterations for epilogue "
1809 "loop to %d\n", max_iter);
1811 /* After peeling we have to reset scalar evolution analyzer. */
1812 scev_reset ();
1814 free_original_copy_tables ();
1818 /* Function vect_gen_niters_for_prolog_loop
1820 Set the number of iterations for the loop represented by LOOP_VINFO
1821 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1822 and the misalignment of DR - the data reference recorded in
1823 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1824 this loop, the data reference DR will refer to an aligned location.
1826 The following computation is generated:
1828 If the misalignment of DR is known at compile time:
1829 addr_mis = int mis = DR_MISALIGNMENT (dr);
1830 Else, compute address misalignment in bytes:
1831 addr_mis = addr & (vectype_align - 1)
1833 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1835 (elem_size = element type size; an element is the scalar element whose type
1836 is the inner type of the vectype)
1838 When the step of the data-ref in the loop is not 1 (as in interleaved data
1839 and SLP), the number of iterations of the prolog must be divided by the step
1840 (which is equal to the size of interleaved group).
1842 The above formulas assume that VF == number of elements in the vector. This
1843 may not hold when there are multiple-types in the loop.
1844 In this case, for some data-references in the loop the VF does not represent
1845 the number of elements that fit in the vector. Therefore, instead of VF we
1846 use TYPE_VECTOR_SUBPARTS. */
1848 static tree
1849 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1851 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1852 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1853 tree var;
1854 gimple_seq stmts;
1855 tree iters, iters_name;
1856 edge pe;
1857 basic_block new_bb;
1858 gimple *dr_stmt = DR_STMT (dr);
1859 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1860 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1861 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1862 tree niters_type = TREE_TYPE (loop_niters);
1863 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1865 pe = loop_preheader_edge (loop);
1867 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1869 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1871 if (dump_enabled_p ())
1872 dump_printf_loc (MSG_NOTE, vect_location,
1873 "known peeling = %d.\n", npeel);
1875 iters = build_int_cst (niters_type, npeel);
1876 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1878 else
1880 gimple_seq new_stmts = NULL;
1881 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1882 tree offset = negative
1883 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
1884 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1885 &new_stmts, offset, loop);
1886 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1887 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1888 HOST_WIDE_INT elem_size =
1889 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1890 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1891 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1892 tree nelements_tree = build_int_cst (type, nelements);
1893 tree byte_misalign;
1894 tree elem_misalign;
1896 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1897 gcc_assert (!new_bb);
1899 /* Create: byte_misalign = addr & (vectype_align - 1) */
1900 byte_misalign =
1901 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1902 vectype_align_minus_1);
1904 /* Create: elem_misalign = byte_misalign / element_size */
1905 elem_misalign =
1906 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1908 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1909 if (negative)
1910 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1911 else
1912 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1913 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1914 iters = fold_convert (niters_type, iters);
1915 *bound = nelements;
1918 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1919 /* If the loop bound is known at compile time we already verified that it is
1920 greater than vf; since the misalignment ('iters') is at most vf, there's
1921 no need to generate the MIN_EXPR in this case. */
1922 if (TREE_CODE (loop_niters) != INTEGER_CST)
1923 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1925 if (dump_enabled_p ())
1927 dump_printf_loc (MSG_NOTE, vect_location,
1928 "niters for prolog loop: ");
1929 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1930 dump_printf (MSG_NOTE, "\n");
1933 var = create_tmp_var (niters_type, "prolog_loop_niters");
1934 stmts = NULL;
1935 iters_name = force_gimple_operand (iters, &stmts, false, var);
1937 /* Insert stmt on loop preheader edge. */
1938 if (stmts)
1940 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1941 gcc_assert (!new_bb);
1944 return iters_name;
1948 /* Function vect_update_init_of_dr
1950 NITERS iterations were peeled from LOOP. DR represents a data reference
1951 in LOOP. This function updates the information recorded in DR to
1952 account for the fact that the first NITERS iterations had already been
1953 executed. Specifically, it updates the OFFSET field of DR. */
1955 static void
1956 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1958 tree offset = DR_OFFSET (dr);
1960 niters = fold_build2 (MULT_EXPR, sizetype,
1961 fold_convert (sizetype, niters),
1962 fold_convert (sizetype, DR_STEP (dr)));
1963 offset = fold_build2 (PLUS_EXPR, sizetype,
1964 fold_convert (sizetype, offset), niters);
1965 DR_OFFSET (dr) = offset;
1969 /* Function vect_update_inits_of_drs
1971 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1972 This function updates the information recorded for the data references in
1973 the loop to account for the fact that the first NITERS iterations had
1974 already been executed. Specifically, it updates the initial_condition of
1975 the access_function of all the data_references in the loop. */
1977 static void
1978 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1980 unsigned int i;
1981 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1982 struct data_reference *dr;
1984 if (dump_enabled_p ())
1985 dump_printf_loc (MSG_NOTE, vect_location,
1986 "=== vect_update_inits_of_dr ===\n");
1988 FOR_EACH_VEC_ELT (datarefs, i, dr)
1989 vect_update_init_of_dr (dr, niters);
1993 /* Function vect_do_peeling_for_alignment
1995 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1996 'niters' is set to the misalignment of one of the data references in the
1997 loop, thereby forcing it to refer to an aligned location at the beginning
1998 of the execution of this loop. The data reference for which we are
1999 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2001 void
2002 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2003 unsigned int th, bool check_profitability)
2005 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2006 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2007 tree niters_of_prolog_loop;
2008 tree wide_prolog_niters;
2009 struct loop *new_loop;
2010 int max_iter;
2011 int bound = 0;
2013 if (dump_enabled_p ())
2014 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2015 "loop peeled for vectorization to enhance"
2016 " alignment\n");
2018 initialize_original_copy_tables ();
2020 gimple_seq stmts = NULL;
2021 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2022 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2023 ni_name,
2024 &bound);
2026 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2027 new_loop =
2028 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2029 loop_preheader_edge (loop),
2030 &niters_of_prolog_loop, ni_name, true,
2031 th, check_profitability, NULL_TREE, NULL,
2032 bound, 0);
2034 gcc_assert (new_loop);
2035 slpeel_checking_verify_cfg_after_peeling (new_loop, loop);
2036 /* For vectorization factor N, we need to copy at most N-1 values
2037 for alignment and this means N-2 loopback edge executions. */
2038 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2039 if (check_profitability)
2040 max_iter = MAX (max_iter, (int) th - 1);
2041 record_niter_bound (new_loop, max_iter, false, true);
2042 dump_printf (MSG_NOTE,
2043 "Setting upper bound of nb iterations for prologue "
2044 "loop to %d\n", max_iter);
2046 /* Update number of times loop executes. */
2047 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2048 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2049 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2050 TREE_TYPE (ni_name),
2051 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2053 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2054 wide_prolog_niters = niters_of_prolog_loop;
2055 else
2057 gimple_seq seq = NULL;
2058 edge pe = loop_preheader_edge (loop);
2059 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2060 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2061 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2062 var);
2063 if (seq)
2065 /* Insert stmt on loop preheader edge. */
2066 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2067 gcc_assert (!new_bb);
2071 /* Update the init conditions of the access functions of all data refs. */
2072 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2074 /* After peeling we have to reset scalar evolution analyzer. */
2075 scev_reset ();
2077 free_original_copy_tables ();
2081 /* Function vect_create_cond_for_align_checks.
2083 Create a conditional expression that represents the alignment checks for
2084 all of data references (array element references) whose alignment must be
2085 checked at runtime.
2087 Input:
2088 COND_EXPR - input conditional expression. New conditions will be chained
2089 with logical AND operation.
2090 LOOP_VINFO - two fields of the loop information are used.
2091 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2092 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2094 Output:
2095 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2096 expression.
2097 The returned value is the conditional expression to be used in the if
2098 statement that controls which version of the loop gets executed at runtime.
2100 The algorithm makes two assumptions:
2101 1) The number of bytes "n" in a vector is a power of 2.
2102 2) An address "a" is aligned if a%n is zero and that this
2103 test can be done as a&(n-1) == 0. For example, for 16
2104 byte vectors the test is a&0xf == 0. */
2106 static void
2107 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2108 tree *cond_expr,
2109 gimple_seq *cond_expr_stmt_list)
2111 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2112 vec<gimple *> may_misalign_stmts
2113 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2114 gimple *ref_stmt;
2115 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2116 tree mask_cst;
2117 unsigned int i;
2118 tree int_ptrsize_type;
2119 char tmp_name[20];
2120 tree or_tmp_name = NULL_TREE;
2121 tree and_tmp_name;
2122 gimple *and_stmt;
2123 tree ptrsize_zero;
2124 tree part_cond_expr;
2126 /* Check that mask is one less than a power of 2, i.e., mask is
2127 all zeros followed by all ones. */
2128 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2130 int_ptrsize_type = signed_type_for (ptr_type_node);
2132 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2133 of the first vector of the i'th data reference. */
2135 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2137 gimple_seq new_stmt_list = NULL;
2138 tree addr_base;
2139 tree addr_tmp_name;
2140 tree new_or_tmp_name;
2141 gimple *addr_stmt, *or_stmt;
2142 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2143 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2144 bool negative = tree_int_cst_compare
2145 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2146 tree offset = negative
2147 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2149 /* create: addr_tmp = (int)(address_of_first_vector) */
2150 addr_base =
2151 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2152 offset, loop);
2153 if (new_stmt_list != NULL)
2154 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2156 sprintf (tmp_name, "addr2int%d", i);
2157 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2158 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2159 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2161 /* The addresses are OR together. */
2163 if (or_tmp_name != NULL_TREE)
2165 /* create: or_tmp = or_tmp | addr_tmp */
2166 sprintf (tmp_name, "orptrs%d", i);
2167 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2168 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2169 or_tmp_name, addr_tmp_name);
2170 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2171 or_tmp_name = new_or_tmp_name;
2173 else
2174 or_tmp_name = addr_tmp_name;
2176 } /* end for i */
2178 mask_cst = build_int_cst (int_ptrsize_type, mask);
2180 /* create: and_tmp = or_tmp & mask */
2181 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2183 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2184 or_tmp_name, mask_cst);
2185 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2187 /* Make and_tmp the left operand of the conditional test against zero.
2188 if and_tmp has a nonzero bit then some address is unaligned. */
2189 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2190 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2191 and_tmp_name, ptrsize_zero);
2192 if (*cond_expr)
2193 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2194 *cond_expr, part_cond_expr);
2195 else
2196 *cond_expr = part_cond_expr;
2199 /* Function vect_create_cond_for_alias_checks.
2201 Create a conditional expression that represents the run-time checks for
2202 overlapping of address ranges represented by a list of data references
2203 relations passed as input.
2205 Input:
2206 COND_EXPR - input conditional expression. New conditions will be chained
2207 with logical AND operation. If it is NULL, then the function
2208 is used to return the number of alias checks.
2209 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2210 to be checked.
2212 Output:
2213 COND_EXPR - conditional expression.
2215 The returned COND_EXPR is the conditional expression to be used in the if
2216 statement that controls which version of the loop gets executed at runtime.
2219 void
2220 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2222 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2223 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2224 tree part_cond_expr;
2226 /* Create expression
2227 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2228 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2232 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2233 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2235 if (comp_alias_ddrs.is_empty ())
2236 return;
2238 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2240 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2241 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2242 tree segment_length_a = dr_a.seg_len;
2243 tree segment_length_b = dr_b.seg_len;
2245 tree addr_base_a
2246 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2247 tree addr_base_b
2248 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2250 if (dump_enabled_p ())
2252 dump_printf_loc (MSG_NOTE, vect_location,
2253 "create runtime check for data references ");
2254 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2255 dump_printf (MSG_NOTE, " and ");
2256 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2257 dump_printf (MSG_NOTE, "\n");
2260 tree seg_a_min = addr_base_a;
2261 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2262 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2263 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2264 [a, a+12) */
2265 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2267 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2268 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2269 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2272 tree seg_b_min = addr_base_b;
2273 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2274 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2276 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2277 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2278 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2281 part_cond_expr =
2282 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2283 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2284 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2286 if (*cond_expr)
2287 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2288 *cond_expr, part_cond_expr);
2289 else
2290 *cond_expr = part_cond_expr;
2293 if (dump_enabled_p ())
2294 dump_printf_loc (MSG_NOTE, vect_location,
2295 "created %u versioning for alias checks.\n",
2296 comp_alias_ddrs.length ());
2300 /* Function vect_loop_versioning.
2302 If the loop has data references that may or may not be aligned or/and
2303 has data reference relations whose independence was not proven then
2304 two versions of the loop need to be generated, one which is vectorized
2305 and one which isn't. A test is then generated to control which of the
2306 loops is executed. The test checks for the alignment of all of the
2307 data references that may or may not be aligned. An additional
2308 sequence of runtime tests is generated for each pairs of DDRs whose
2309 independence was not proven. The vectorized version of loop is
2310 executed only if both alias and alignment tests are passed.
2312 The test generated to check which version of loop is executed
2313 is modified to also check for profitability as indicated by the
2314 cost model initially.
2316 The versioning precondition(s) are placed in *COND_EXPR and
2317 *COND_EXPR_STMT_LIST. */
2319 void
2320 vect_loop_versioning (loop_vec_info loop_vinfo,
2321 unsigned int th, bool check_profitability)
2323 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2324 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2325 basic_block condition_bb;
2326 gphi_iterator gsi;
2327 gimple_stmt_iterator cond_exp_gsi;
2328 basic_block merge_bb;
2329 basic_block new_exit_bb;
2330 edge new_exit_e, e;
2331 gphi *orig_phi, *new_phi;
2332 tree cond_expr = NULL_TREE;
2333 gimple_seq cond_expr_stmt_list = NULL;
2334 tree arg;
2335 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2336 gimple_seq gimplify_stmt_list = NULL;
2337 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2338 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2339 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2341 if (check_profitability)
2343 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2344 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2345 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2346 is_gimple_condexpr, NULL_TREE);
2349 if (version_align)
2350 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2351 &cond_expr_stmt_list);
2353 if (version_alias)
2354 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2356 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2357 is_gimple_condexpr, NULL_TREE);
2358 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2360 initialize_original_copy_tables ();
2361 if (scalar_loop)
2363 edge scalar_e;
2364 basic_block preheader, scalar_preheader;
2366 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2367 scale LOOP's frequencies instead. */
2368 loop_version (scalar_loop, cond_expr, &condition_bb,
2369 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2370 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2371 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2372 while we need to move it above LOOP's preheader. */
2373 e = loop_preheader_edge (loop);
2374 scalar_e = loop_preheader_edge (scalar_loop);
2375 gcc_assert (empty_block_p (e->src)
2376 && single_pred_p (e->src));
2377 gcc_assert (empty_block_p (scalar_e->src)
2378 && single_pred_p (scalar_e->src));
2379 gcc_assert (single_pred_p (condition_bb));
2380 preheader = e->src;
2381 scalar_preheader = scalar_e->src;
2382 scalar_e = find_edge (condition_bb, scalar_preheader);
2383 e = single_pred_edge (preheader);
2384 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2385 scalar_preheader);
2386 redirect_edge_and_branch_force (scalar_e, preheader);
2387 redirect_edge_and_branch_force (e, condition_bb);
2388 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2389 single_pred (condition_bb));
2390 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2391 single_pred (scalar_preheader));
2392 set_immediate_dominator (CDI_DOMINATORS, preheader,
2393 condition_bb);
2395 else
2396 loop_version (loop, cond_expr, &condition_bb,
2397 prob, prob, REG_BR_PROB_BASE - prob, true);
2399 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2400 && dump_enabled_p ())
2402 if (version_alias)
2403 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2404 "loop versioned for vectorization because of "
2405 "possible aliasing\n");
2406 if (version_align)
2407 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2408 "loop versioned for vectorization to enhance "
2409 "alignment\n");
2412 free_original_copy_tables ();
2414 /* Loop versioning violates an assumption we try to maintain during
2415 vectorization - that the loop exit block has a single predecessor.
2416 After versioning, the exit block of both loop versions is the same
2417 basic block (i.e. it has two predecessors). Just in order to simplify
2418 following transformations in the vectorizer, we fix this situation
2419 here by adding a new (empty) block on the exit-edge of the loop,
2420 with the proper loop-exit phis to maintain loop-closed-form.
2421 If loop versioning wasn't done from loop, but scalar_loop instead,
2422 merge_bb will have already just a single successor. */
2424 merge_bb = single_exit (loop)->dest;
2425 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2427 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2428 new_exit_bb = split_edge (single_exit (loop));
2429 new_exit_e = single_exit (loop);
2430 e = EDGE_SUCC (new_exit_bb, 0);
2432 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2434 tree new_res;
2435 orig_phi = gsi.phi ();
2436 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2437 new_phi = create_phi_node (new_res, new_exit_bb);
2438 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2439 add_phi_arg (new_phi, arg, new_exit_e,
2440 gimple_phi_arg_location_from_edge (orig_phi, e));
2441 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2445 /* End loop-exit-fixes after versioning. */
2447 if (cond_expr_stmt_list)
2449 cond_exp_gsi = gsi_last_bb (condition_bb);
2450 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2451 GSI_SAME_STMT);
2453 update_ssa (TODO_update_ssa);