Daily bump.
[official-gcc.git] / gcc / tree-ssa-loop-niter.c
blob81689fc1aa432d710dfaa0ca76fc30ab1f09c609
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "params.h"
47 /* The maximum number of dominator BBs we search for conditions
48 of loop header copies we use for simplifying a conditional
49 expression. */
50 #define MAX_DOMINATORS_TO_WALK 8
54 Analysis of number of iterations of an affine exit test.
58 /* Bounds on some value, BELOW <= X <= UP. */
60 struct bounds
62 mpz_t below, up;
66 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
68 static void
69 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
71 tree type = TREE_TYPE (expr);
72 tree op0, op1;
73 bool negate = false;
75 *var = expr;
76 mpz_set_ui (offset, 0);
78 switch (TREE_CODE (expr))
80 case MINUS_EXPR:
81 negate = true;
82 /* Fallthru. */
84 case PLUS_EXPR:
85 case POINTER_PLUS_EXPR:
86 op0 = TREE_OPERAND (expr, 0);
87 op1 = TREE_OPERAND (expr, 1);
89 if (TREE_CODE (op1) != INTEGER_CST)
90 break;
92 *var = op0;
93 /* Always sign extend the offset. */
94 wi::to_mpz (op1, offset, SIGNED);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 wi::to_mpz (expr, offset, TYPE_SIGN (type));
102 break;
104 default:
105 break;
109 /* From condition C0 CMP C1 derives information regarding the value range
110 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
112 static void
113 refine_value_range_using_guard (tree type, tree var,
114 tree c0, enum tree_code cmp, tree c1,
115 mpz_t below, mpz_t up)
117 tree varc0, varc1, ctype;
118 mpz_t offc0, offc1;
119 mpz_t mint, maxt, minc1, maxc1;
120 wide_int minv, maxv;
121 bool no_wrap = nowrap_type_p (type);
122 bool c0_ok, c1_ok;
123 signop sgn = TYPE_SIGN (type);
125 switch (cmp)
127 case LT_EXPR:
128 case LE_EXPR:
129 case GT_EXPR:
130 case GE_EXPR:
131 STRIP_SIGN_NOPS (c0);
132 STRIP_SIGN_NOPS (c1);
133 ctype = TREE_TYPE (c0);
134 if (!useless_type_conversion_p (ctype, type))
135 return;
137 break;
139 case EQ_EXPR:
140 /* We could derive quite precise information from EQ_EXPR, however,
141 such a guard is unlikely to appear, so we do not bother with
142 handling it. */
143 return;
145 case NE_EXPR:
146 /* NE_EXPR comparisons do not contain much of useful information,
147 except for cases of comparing with bounds. */
148 if (TREE_CODE (c1) != INTEGER_CST
149 || !INTEGRAL_TYPE_P (type))
150 return;
152 /* Ensure that the condition speaks about an expression in the same
153 type as X and Y. */
154 ctype = TREE_TYPE (c0);
155 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
156 return;
157 c0 = fold_convert (type, c0);
158 c1 = fold_convert (type, c1);
160 if (operand_equal_p (var, c0, 0))
162 mpz_t valc1;
164 /* Case of comparing VAR with its below/up bounds. */
165 mpz_init (valc1);
166 wi::to_mpz (c1, valc1, TYPE_SIGN (type));
167 if (mpz_cmp (valc1, below) == 0)
168 cmp = GT_EXPR;
169 if (mpz_cmp (valc1, up) == 0)
170 cmp = LT_EXPR;
172 mpz_clear (valc1);
174 else
176 /* Case of comparing with the bounds of the type. */
177 wide_int min = wi::min_value (type);
178 wide_int max = wi::max_value (type);
180 if (wi::eq_p (c1, min))
181 cmp = GT_EXPR;
182 if (wi::eq_p (c1, max))
183 cmp = LT_EXPR;
186 /* Quick return if no useful information. */
187 if (cmp == NE_EXPR)
188 return;
190 break;
192 default:
193 return;
196 mpz_init (offc0);
197 mpz_init (offc1);
198 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
199 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
201 /* We are only interested in comparisons of expressions based on VAR. */
202 if (operand_equal_p (var, varc1, 0))
204 std::swap (varc0, varc1);
205 mpz_swap (offc0, offc1);
206 cmp = swap_tree_comparison (cmp);
208 else if (!operand_equal_p (var, varc0, 0))
210 mpz_clear (offc0);
211 mpz_clear (offc1);
212 return;
215 mpz_init (mint);
216 mpz_init (maxt);
217 get_type_static_bounds (type, mint, maxt);
218 mpz_init (minc1);
219 mpz_init (maxc1);
220 /* Setup range information for varc1. */
221 if (integer_zerop (varc1))
223 wi::to_mpz (integer_zero_node, minc1, TYPE_SIGN (type));
224 wi::to_mpz (integer_zero_node, maxc1, TYPE_SIGN (type));
226 else if (TREE_CODE (varc1) == SSA_NAME
227 && INTEGRAL_TYPE_P (type)
228 && get_range_info (varc1, &minv, &maxv) == VR_RANGE)
230 gcc_assert (wi::le_p (minv, maxv, sgn));
231 wi::to_mpz (minv, minc1, sgn);
232 wi::to_mpz (maxv, maxc1, sgn);
234 else
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
260 if (cmp == LT_EXPR)
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
265 if (cmp == GT_EXPR)
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
274 (varc0) cmp (varc1 + offc1 - offc0)
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
286 2) cmp == LE_EXPR && offc0 < 0
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
294 3) cmp == GE_EXPR && offc0 < 0
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
299 4) cmp == GE_EXPR && offc0 > 0
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
307 Note we only handle case 2 and 4 in below code. */
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
320 if (cmp == LE_EXPR)
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
325 else
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
331 end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
340 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
343 static void
344 determine_value_range (struct loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_type rtype = VR_VARYING;
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
361 get_type_static_bounds (type, min, max);
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
370 /* Either for VAR itself... */
371 rtype = get_range_info (var, &minv, &maxv);
372 /* Or for PHI results in loop->header where VAR is used as
373 PHI argument from the loop preheader edge. */
374 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
376 gphi *phi = gsi.phi ();
377 wide_int minc, maxc;
378 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
379 && (get_range_info (gimple_phi_result (phi), &minc, &maxc)
380 == VR_RANGE))
382 if (rtype != VR_RANGE)
384 rtype = VR_RANGE;
385 minv = minc;
386 maxv = maxc;
388 else
390 minv = wi::max (minv, minc, sgn);
391 maxv = wi::min (maxv, maxc, sgn);
392 /* If the PHI result range are inconsistent with
393 the VAR range, give up on looking at the PHI
394 results. This can happen if VR_UNDEFINED is
395 involved. */
396 if (wi::gt_p (minv, maxv, sgn))
398 rtype = get_range_info (var, &minv, &maxv);
399 break;
404 mpz_init (minm);
405 mpz_init (maxm);
406 if (rtype != VR_RANGE)
408 mpz_set (minm, min);
409 mpz_set (maxm, max);
411 else
413 gcc_assert (wi::le_p (minv, maxv, sgn));
414 wi::to_mpz (minv, minm, sgn);
415 wi::to_mpz (maxv, maxm, sgn);
417 /* Now walk the dominators of the loop header and use the entry
418 guards to refine the estimates. */
419 for (bb = loop->header;
420 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
421 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
423 edge e;
424 tree c0, c1;
425 gimple *cond;
426 enum tree_code cmp;
428 if (!single_pred_p (bb))
429 continue;
430 e = single_pred_edge (bb);
432 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
433 continue;
435 cond = last_stmt (e->src);
436 c0 = gimple_cond_lhs (cond);
437 cmp = gimple_cond_code (cond);
438 c1 = gimple_cond_rhs (cond);
440 if (e->flags & EDGE_FALSE_VALUE)
441 cmp = invert_tree_comparison (cmp, false);
443 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
444 ++cnt;
447 mpz_add (minm, minm, off);
448 mpz_add (maxm, maxm, off);
449 /* If the computation may not wrap or off is zero, then this
450 is always fine. If off is negative and minv + off isn't
451 smaller than type's minimum, or off is positive and
452 maxv + off isn't bigger than type's maximum, use the more
453 precise range too. */
454 if (nowrap_type_p (type)
455 || mpz_sgn (off) == 0
456 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
457 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
459 mpz_set (min, minm);
460 mpz_set (max, maxm);
461 mpz_clear (minm);
462 mpz_clear (maxm);
463 return;
465 mpz_clear (minm);
466 mpz_clear (maxm);
469 /* If the computation may wrap, we know nothing about the value, except for
470 the range of the type. */
471 if (!nowrap_type_p (type))
472 return;
474 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
475 add it to MIN, otherwise to MAX. */
476 if (mpz_sgn (off) < 0)
477 mpz_add (max, max, off);
478 else
479 mpz_add (min, min, off);
482 /* Stores the bounds on the difference of the values of the expressions
483 (var + X) and (var + Y), computed in TYPE, to BNDS. */
485 static void
486 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
487 bounds *bnds)
489 int rel = mpz_cmp (x, y);
490 bool may_wrap = !nowrap_type_p (type);
491 mpz_t m;
493 /* If X == Y, then the expressions are always equal.
494 If X > Y, there are the following possibilities:
495 a) neither of var + X and var + Y overflow or underflow, or both of
496 them do. Then their difference is X - Y.
497 b) var + X overflows, and var + Y does not. Then the values of the
498 expressions are var + X - M and var + Y, where M is the range of
499 the type, and their difference is X - Y - M.
500 c) var + Y underflows and var + X does not. Their difference again
501 is M - X + Y.
502 Therefore, if the arithmetics in type does not overflow, then the
503 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
504 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
505 (X - Y, X - Y + M). */
507 if (rel == 0)
509 mpz_set_ui (bnds->below, 0);
510 mpz_set_ui (bnds->up, 0);
511 return;
514 mpz_init (m);
515 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
516 mpz_add_ui (m, m, 1);
517 mpz_sub (bnds->up, x, y);
518 mpz_set (bnds->below, bnds->up);
520 if (may_wrap)
522 if (rel > 0)
523 mpz_sub (bnds->below, bnds->below, m);
524 else
525 mpz_add (bnds->up, bnds->up, m);
528 mpz_clear (m);
531 /* From condition C0 CMP C1 derives information regarding the
532 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
533 and stores it to BNDS. */
535 static void
536 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
537 tree vary, mpz_t offy,
538 tree c0, enum tree_code cmp, tree c1,
539 bounds *bnds)
541 tree varc0, varc1, ctype;
542 mpz_t offc0, offc1, loffx, loffy, bnd;
543 bool lbound = false;
544 bool no_wrap = nowrap_type_p (type);
545 bool x_ok, y_ok;
547 switch (cmp)
549 case LT_EXPR:
550 case LE_EXPR:
551 case GT_EXPR:
552 case GE_EXPR:
553 STRIP_SIGN_NOPS (c0);
554 STRIP_SIGN_NOPS (c1);
555 ctype = TREE_TYPE (c0);
556 if (!useless_type_conversion_p (ctype, type))
557 return;
559 break;
561 case EQ_EXPR:
562 /* We could derive quite precise information from EQ_EXPR, however, such
563 a guard is unlikely to appear, so we do not bother with handling
564 it. */
565 return;
567 case NE_EXPR:
568 /* NE_EXPR comparisons do not contain much of useful information, except for
569 special case of comparing with the bounds of the type. */
570 if (TREE_CODE (c1) != INTEGER_CST
571 || !INTEGRAL_TYPE_P (type))
572 return;
574 /* Ensure that the condition speaks about an expression in the same type
575 as X and Y. */
576 ctype = TREE_TYPE (c0);
577 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
578 return;
579 c0 = fold_convert (type, c0);
580 c1 = fold_convert (type, c1);
582 if (TYPE_MIN_VALUE (type)
583 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
585 cmp = GT_EXPR;
586 break;
588 if (TYPE_MAX_VALUE (type)
589 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
591 cmp = LT_EXPR;
592 break;
595 return;
596 default:
597 return;
600 mpz_init (offc0);
601 mpz_init (offc1);
602 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
603 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
605 /* We are only interested in comparisons of expressions based on VARX and
606 VARY. TODO -- we might also be able to derive some bounds from
607 expressions containing just one of the variables. */
609 if (operand_equal_p (varx, varc1, 0))
611 std::swap (varc0, varc1);
612 mpz_swap (offc0, offc1);
613 cmp = swap_tree_comparison (cmp);
616 if (!operand_equal_p (varx, varc0, 0)
617 || !operand_equal_p (vary, varc1, 0))
618 goto end;
620 mpz_init_set (loffx, offx);
621 mpz_init_set (loffy, offy);
623 if (cmp == GT_EXPR || cmp == GE_EXPR)
625 std::swap (varx, vary);
626 mpz_swap (offc0, offc1);
627 mpz_swap (loffx, loffy);
628 cmp = swap_tree_comparison (cmp);
629 lbound = true;
632 /* If there is no overflow, the condition implies that
634 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
636 The overflows and underflows may complicate things a bit; each
637 overflow decreases the appropriate offset by M, and underflow
638 increases it by M. The above inequality would not necessarily be
639 true if
641 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
642 VARX + OFFC0 overflows, but VARX + OFFX does not.
643 This may only happen if OFFX < OFFC0.
644 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
645 VARY + OFFC1 underflows and VARY + OFFY does not.
646 This may only happen if OFFY > OFFC1. */
648 if (no_wrap)
650 x_ok = true;
651 y_ok = true;
653 else
655 x_ok = (integer_zerop (varx)
656 || mpz_cmp (loffx, offc0) >= 0);
657 y_ok = (integer_zerop (vary)
658 || mpz_cmp (loffy, offc1) <= 0);
661 if (x_ok && y_ok)
663 mpz_init (bnd);
664 mpz_sub (bnd, loffx, loffy);
665 mpz_add (bnd, bnd, offc1);
666 mpz_sub (bnd, bnd, offc0);
668 if (cmp == LT_EXPR)
669 mpz_sub_ui (bnd, bnd, 1);
671 if (lbound)
673 mpz_neg (bnd, bnd);
674 if (mpz_cmp (bnds->below, bnd) < 0)
675 mpz_set (bnds->below, bnd);
677 else
679 if (mpz_cmp (bnd, bnds->up) < 0)
680 mpz_set (bnds->up, bnd);
682 mpz_clear (bnd);
685 mpz_clear (loffx);
686 mpz_clear (loffy);
687 end:
688 mpz_clear (offc0);
689 mpz_clear (offc1);
692 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
693 The subtraction is considered to be performed in arbitrary precision,
694 without overflows.
696 We do not attempt to be too clever regarding the value ranges of X and
697 Y; most of the time, they are just integers or ssa names offsetted by
698 integer. However, we try to use the information contained in the
699 comparisons before the loop (usually created by loop header copying). */
701 static void
702 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
704 tree type = TREE_TYPE (x);
705 tree varx, vary;
706 mpz_t offx, offy;
707 mpz_t minx, maxx, miny, maxy;
708 int cnt = 0;
709 edge e;
710 basic_block bb;
711 tree c0, c1;
712 gimple *cond;
713 enum tree_code cmp;
715 /* Get rid of unnecessary casts, but preserve the value of
716 the expressions. */
717 STRIP_SIGN_NOPS (x);
718 STRIP_SIGN_NOPS (y);
720 mpz_init (bnds->below);
721 mpz_init (bnds->up);
722 mpz_init (offx);
723 mpz_init (offy);
724 split_to_var_and_offset (x, &varx, offx);
725 split_to_var_and_offset (y, &vary, offy);
727 if (!integer_zerop (varx)
728 && operand_equal_p (varx, vary, 0))
730 /* Special case VARX == VARY -- we just need to compare the
731 offsets. The matters are a bit more complicated in the
732 case addition of offsets may wrap. */
733 bound_difference_of_offsetted_base (type, offx, offy, bnds);
735 else
737 /* Otherwise, use the value ranges to determine the initial
738 estimates on below and up. */
739 mpz_init (minx);
740 mpz_init (maxx);
741 mpz_init (miny);
742 mpz_init (maxy);
743 determine_value_range (loop, type, varx, offx, minx, maxx);
744 determine_value_range (loop, type, vary, offy, miny, maxy);
746 mpz_sub (bnds->below, minx, maxy);
747 mpz_sub (bnds->up, maxx, miny);
748 mpz_clear (minx);
749 mpz_clear (maxx);
750 mpz_clear (miny);
751 mpz_clear (maxy);
754 /* If both X and Y are constants, we cannot get any more precise. */
755 if (integer_zerop (varx) && integer_zerop (vary))
756 goto end;
758 /* Now walk the dominators of the loop header and use the entry
759 guards to refine the estimates. */
760 for (bb = loop->header;
761 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
762 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
764 if (!single_pred_p (bb))
765 continue;
766 e = single_pred_edge (bb);
768 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
769 continue;
771 cond = last_stmt (e->src);
772 c0 = gimple_cond_lhs (cond);
773 cmp = gimple_cond_code (cond);
774 c1 = gimple_cond_rhs (cond);
776 if (e->flags & EDGE_FALSE_VALUE)
777 cmp = invert_tree_comparison (cmp, false);
779 refine_bounds_using_guard (type, varx, offx, vary, offy,
780 c0, cmp, c1, bnds);
781 ++cnt;
784 end:
785 mpz_clear (offx);
786 mpz_clear (offy);
789 /* Update the bounds in BNDS that restrict the value of X to the bounds
790 that restrict the value of X + DELTA. X can be obtained as a
791 difference of two values in TYPE. */
793 static void
794 bounds_add (bounds *bnds, const widest_int &delta, tree type)
796 mpz_t mdelta, max;
798 mpz_init (mdelta);
799 wi::to_mpz (delta, mdelta, SIGNED);
801 mpz_init (max);
802 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
804 mpz_add (bnds->up, bnds->up, mdelta);
805 mpz_add (bnds->below, bnds->below, mdelta);
807 if (mpz_cmp (bnds->up, max) > 0)
808 mpz_set (bnds->up, max);
810 mpz_neg (max, max);
811 if (mpz_cmp (bnds->below, max) < 0)
812 mpz_set (bnds->below, max);
814 mpz_clear (mdelta);
815 mpz_clear (max);
818 /* Update the bounds in BNDS that restrict the value of X to the bounds
819 that restrict the value of -X. */
821 static void
822 bounds_negate (bounds *bnds)
824 mpz_t tmp;
826 mpz_init_set (tmp, bnds->up);
827 mpz_neg (bnds->up, bnds->below);
828 mpz_neg (bnds->below, tmp);
829 mpz_clear (tmp);
832 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
834 static tree
835 inverse (tree x, tree mask)
837 tree type = TREE_TYPE (x);
838 tree rslt;
839 unsigned ctr = tree_floor_log2 (mask);
841 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
843 unsigned HOST_WIDE_INT ix;
844 unsigned HOST_WIDE_INT imask;
845 unsigned HOST_WIDE_INT irslt = 1;
847 gcc_assert (cst_and_fits_in_hwi (x));
848 gcc_assert (cst_and_fits_in_hwi (mask));
850 ix = int_cst_value (x);
851 imask = int_cst_value (mask);
853 for (; ctr; ctr--)
855 irslt *= ix;
856 ix *= ix;
858 irslt &= imask;
860 rslt = build_int_cst_type (type, irslt);
862 else
864 rslt = build_int_cst (type, 1);
865 for (; ctr; ctr--)
867 rslt = int_const_binop (MULT_EXPR, rslt, x);
868 x = int_const_binop (MULT_EXPR, x, x);
870 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
873 return rslt;
876 /* Derives the upper bound BND on the number of executions of loop with exit
877 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
878 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
879 that the loop ends through this exit, i.e., the induction variable ever
880 reaches the value of C.
882 The value C is equal to final - base, where final and base are the final and
883 initial value of the actual induction variable in the analysed loop. BNDS
884 bounds the value of this difference when computed in signed type with
885 unbounded range, while the computation of C is performed in an unsigned
886 type with the range matching the range of the type of the induction variable.
887 In particular, BNDS.up contains an upper bound on C in the following cases:
888 -- if the iv must reach its final value without overflow, i.e., if
889 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
890 -- if final >= base, which we know to hold when BNDS.below >= 0. */
892 static void
893 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
894 bounds *bnds, bool exit_must_be_taken)
896 widest_int max;
897 mpz_t d;
898 tree type = TREE_TYPE (c);
899 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
900 || mpz_sgn (bnds->below) >= 0);
902 if (integer_onep (s)
903 || (TREE_CODE (c) == INTEGER_CST
904 && TREE_CODE (s) == INTEGER_CST
905 && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)
906 || (TYPE_OVERFLOW_UNDEFINED (type)
907 && multiple_of_p (type, c, s)))
909 /* If C is an exact multiple of S, then its value will be reached before
910 the induction variable overflows (unless the loop is exited in some
911 other way before). Note that the actual induction variable in the
912 loop (which ranges from base to final instead of from 0 to C) may
913 overflow, in which case BNDS.up will not be giving a correct upper
914 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
915 no_overflow = true;
916 exit_must_be_taken = true;
919 /* If the induction variable can overflow, the number of iterations is at
920 most the period of the control variable (or infinite, but in that case
921 the whole # of iterations analysis will fail). */
922 if (!no_overflow)
924 max = wi::mask <widest_int> (TYPE_PRECISION (type) - wi::ctz (s), false);
925 wi::to_mpz (max, bnd, UNSIGNED);
926 return;
929 /* Now we know that the induction variable does not overflow, so the loop
930 iterates at most (range of type / S) times. */
931 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
933 /* If the induction variable is guaranteed to reach the value of C before
934 overflow, ... */
935 if (exit_must_be_taken)
937 /* ... then we can strengthen this to C / S, and possibly we can use
938 the upper bound on C given by BNDS. */
939 if (TREE_CODE (c) == INTEGER_CST)
940 wi::to_mpz (c, bnd, UNSIGNED);
941 else if (bnds_u_valid)
942 mpz_set (bnd, bnds->up);
945 mpz_init (d);
946 wi::to_mpz (s, d, UNSIGNED);
947 mpz_fdiv_q (bnd, bnd, d);
948 mpz_clear (d);
951 /* Determines number of iterations of loop whose ending condition
952 is IV <> FINAL. TYPE is the type of the iv. The number of
953 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
954 we know that the exit must be taken eventually, i.e., that the IV
955 ever reaches the value FINAL (we derived this earlier, and possibly set
956 NITER->assumptions to make sure this is the case). BNDS contains the
957 bounds on the difference FINAL - IV->base. */
959 static bool
960 number_of_iterations_ne (struct loop *loop, tree type, affine_iv *iv,
961 tree final, struct tree_niter_desc *niter,
962 bool exit_must_be_taken, bounds *bnds)
964 tree niter_type = unsigned_type_for (type);
965 tree s, c, d, bits, assumption, tmp, bound;
966 mpz_t max;
967 tree e;
969 niter->control = *iv;
970 niter->bound = final;
971 niter->cmp = NE_EXPR;
973 /* Rearrange the terms so that we get inequality S * i <> C, with S
974 positive. Also cast everything to the unsigned type. If IV does
975 not overflow, BNDS bounds the value of C. Also, this is the
976 case if the computation |FINAL - IV->base| does not overflow, i.e.,
977 if BNDS->below in the result is nonnegative. */
978 if (tree_int_cst_sign_bit (iv->step))
980 s = fold_convert (niter_type,
981 fold_build1 (NEGATE_EXPR, type, iv->step));
982 c = fold_build2 (MINUS_EXPR, niter_type,
983 fold_convert (niter_type, iv->base),
984 fold_convert (niter_type, final));
985 bounds_negate (bnds);
987 else
989 s = fold_convert (niter_type, iv->step);
990 c = fold_build2 (MINUS_EXPR, niter_type,
991 fold_convert (niter_type, final),
992 fold_convert (niter_type, iv->base));
995 mpz_init (max);
996 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
997 exit_must_be_taken);
998 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
999 TYPE_SIGN (niter_type));
1000 mpz_clear (max);
1002 /* Compute no-overflow information for the control iv. Note we are
1003 handling NE_EXPR, if iv base equals to final value, the loop exits
1004 immediately, and the iv does not overflow. */
1005 if (tree_int_cst_sign_bit (iv->step))
1006 e = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1007 else
1008 e = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1009 e = simplify_using_initial_conditions (loop, e);
1010 if (integer_onep (e)
1011 && (integer_onep (s)
1012 || (TREE_CODE (c) == INTEGER_CST
1013 && TREE_CODE (s) == INTEGER_CST
1014 && wi::mod_trunc (c, s, TYPE_SIGN (type)) == 0)))
1016 niter->control.no_overflow = true;
1019 /* First the trivial cases -- when the step is 1. */
1020 if (integer_onep (s))
1022 niter->niter = c;
1023 return true;
1026 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1027 is infinite. Otherwise, the number of iterations is
1028 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1029 bits = num_ending_zeros (s);
1030 bound = build_low_bits_mask (niter_type,
1031 (TYPE_PRECISION (niter_type)
1032 - tree_to_uhwi (bits)));
1034 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1035 build_int_cst (niter_type, 1), bits);
1036 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1038 if (!exit_must_be_taken)
1040 /* If we cannot assume that the exit is taken eventually, record the
1041 assumptions for divisibility of c. */
1042 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1043 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1044 assumption, build_int_cst (niter_type, 0));
1045 if (!integer_nonzerop (assumption))
1046 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1047 niter->assumptions, assumption);
1050 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1051 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1052 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1053 return true;
1056 /* Checks whether we can determine the final value of the control variable
1057 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1058 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1059 of the step. The assumptions necessary to ensure that the computation
1060 of the final value does not overflow are recorded in NITER. If we
1061 find the final value, we adjust DELTA and return TRUE. Otherwise
1062 we return false. BNDS bounds the value of IV1->base - IV0->base,
1063 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1064 true if we know that the exit must be taken eventually. */
1066 static bool
1067 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1068 struct tree_niter_desc *niter,
1069 tree *delta, tree step,
1070 bool exit_must_be_taken, bounds *bnds)
1072 tree niter_type = TREE_TYPE (step);
1073 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1074 tree tmod;
1075 mpz_t mmod;
1076 tree assumption = boolean_true_node, bound, noloop;
1077 bool ret = false, fv_comp_no_overflow;
1078 tree type1 = type;
1079 if (POINTER_TYPE_P (type))
1080 type1 = sizetype;
1082 if (TREE_CODE (mod) != INTEGER_CST)
1083 return false;
1084 if (integer_nonzerop (mod))
1085 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1086 tmod = fold_convert (type1, mod);
1088 mpz_init (mmod);
1089 wi::to_mpz (mod, mmod, UNSIGNED);
1090 mpz_neg (mmod, mmod);
1092 /* If the induction variable does not overflow and the exit is taken,
1093 then the computation of the final value does not overflow. This is
1094 also obviously the case if the new final value is equal to the
1095 current one. Finally, we postulate this for pointer type variables,
1096 as the code cannot rely on the object to that the pointer points being
1097 placed at the end of the address space (and more pragmatically,
1098 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1099 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1100 fv_comp_no_overflow = true;
1101 else if (!exit_must_be_taken)
1102 fv_comp_no_overflow = false;
1103 else
1104 fv_comp_no_overflow =
1105 (iv0->no_overflow && integer_nonzerop (iv0->step))
1106 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1108 if (integer_nonzerop (iv0->step))
1110 /* The final value of the iv is iv1->base + MOD, assuming that this
1111 computation does not overflow, and that
1112 iv0->base <= iv1->base + MOD. */
1113 if (!fv_comp_no_overflow)
1115 bound = fold_build2 (MINUS_EXPR, type1,
1116 TYPE_MAX_VALUE (type1), tmod);
1117 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1118 iv1->base, bound);
1119 if (integer_zerop (assumption))
1120 goto end;
1122 if (mpz_cmp (mmod, bnds->below) < 0)
1123 noloop = boolean_false_node;
1124 else if (POINTER_TYPE_P (type))
1125 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1126 iv0->base,
1127 fold_build_pointer_plus (iv1->base, tmod));
1128 else
1129 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1130 iv0->base,
1131 fold_build2 (PLUS_EXPR, type1,
1132 iv1->base, tmod));
1134 else
1136 /* The final value of the iv is iv0->base - MOD, assuming that this
1137 computation does not overflow, and that
1138 iv0->base - MOD <= iv1->base. */
1139 if (!fv_comp_no_overflow)
1141 bound = fold_build2 (PLUS_EXPR, type1,
1142 TYPE_MIN_VALUE (type1), tmod);
1143 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1144 iv0->base, bound);
1145 if (integer_zerop (assumption))
1146 goto end;
1148 if (mpz_cmp (mmod, bnds->below) < 0)
1149 noloop = boolean_false_node;
1150 else if (POINTER_TYPE_P (type))
1151 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1152 fold_build_pointer_plus (iv0->base,
1153 fold_build1 (NEGATE_EXPR,
1154 type1, tmod)),
1155 iv1->base);
1156 else
1157 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1158 fold_build2 (MINUS_EXPR, type1,
1159 iv0->base, tmod),
1160 iv1->base);
1163 if (!integer_nonzerop (assumption))
1164 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1165 niter->assumptions,
1166 assumption);
1167 if (!integer_zerop (noloop))
1168 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1169 niter->may_be_zero,
1170 noloop);
1171 bounds_add (bnds, wi::to_widest (mod), type);
1172 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1174 ret = true;
1175 end:
1176 mpz_clear (mmod);
1177 return ret;
1180 /* Add assertions to NITER that ensure that the control variable of the loop
1181 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1182 are TYPE. Returns false if we can prove that there is an overflow, true
1183 otherwise. STEP is the absolute value of the step. */
1185 static bool
1186 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1187 struct tree_niter_desc *niter, tree step)
1189 tree bound, d, assumption, diff;
1190 tree niter_type = TREE_TYPE (step);
1192 if (integer_nonzerop (iv0->step))
1194 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1195 if (iv0->no_overflow)
1196 return true;
1198 /* If iv0->base is a constant, we can determine the last value before
1199 overflow precisely; otherwise we conservatively assume
1200 MAX - STEP + 1. */
1202 if (TREE_CODE (iv0->base) == INTEGER_CST)
1204 d = fold_build2 (MINUS_EXPR, niter_type,
1205 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1206 fold_convert (niter_type, iv0->base));
1207 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1209 else
1210 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1211 build_int_cst (niter_type, 1));
1212 bound = fold_build2 (MINUS_EXPR, type,
1213 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1214 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1215 iv1->base, bound);
1217 else
1219 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1220 if (iv1->no_overflow)
1221 return true;
1223 if (TREE_CODE (iv1->base) == INTEGER_CST)
1225 d = fold_build2 (MINUS_EXPR, niter_type,
1226 fold_convert (niter_type, iv1->base),
1227 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1228 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1230 else
1231 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1232 build_int_cst (niter_type, 1));
1233 bound = fold_build2 (PLUS_EXPR, type,
1234 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1235 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1236 iv0->base, bound);
1239 if (integer_zerop (assumption))
1240 return false;
1241 if (!integer_nonzerop (assumption))
1242 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1243 niter->assumptions, assumption);
1245 iv0->no_overflow = true;
1246 iv1->no_overflow = true;
1247 return true;
1250 /* Add an assumption to NITER that a loop whose ending condition
1251 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1252 bounds the value of IV1->base - IV0->base. */
1254 static void
1255 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1256 struct tree_niter_desc *niter, bounds *bnds)
1258 tree assumption = boolean_true_node, bound, diff;
1259 tree mbz, mbzl, mbzr, type1;
1260 bool rolls_p, no_overflow_p;
1261 widest_int dstep;
1262 mpz_t mstep, max;
1264 /* We are going to compute the number of iterations as
1265 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1266 variant of TYPE. This formula only works if
1268 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1270 (where MAX is the maximum value of the unsigned variant of TYPE, and
1271 the computations in this formula are performed in full precision,
1272 i.e., without overflows).
1274 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1275 we have a condition of the form iv0->base - step < iv1->base before the loop,
1276 and for loops iv0->base < iv1->base - step * i the condition
1277 iv0->base < iv1->base + step, due to loop header copying, which enable us
1278 to prove the lower bound.
1280 The upper bound is more complicated. Unless the expressions for initial
1281 and final value themselves contain enough information, we usually cannot
1282 derive it from the context. */
1284 /* First check whether the answer does not follow from the bounds we gathered
1285 before. */
1286 if (integer_nonzerop (iv0->step))
1287 dstep = wi::to_widest (iv0->step);
1288 else
1290 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1291 dstep = -dstep;
1294 mpz_init (mstep);
1295 wi::to_mpz (dstep, mstep, UNSIGNED);
1296 mpz_neg (mstep, mstep);
1297 mpz_add_ui (mstep, mstep, 1);
1299 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1301 mpz_init (max);
1302 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1303 mpz_add (max, max, mstep);
1304 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1305 /* For pointers, only values lying inside a single object
1306 can be compared or manipulated by pointer arithmetics.
1307 Gcc in general does not allow or handle objects larger
1308 than half of the address space, hence the upper bound
1309 is satisfied for pointers. */
1310 || POINTER_TYPE_P (type));
1311 mpz_clear (mstep);
1312 mpz_clear (max);
1314 if (rolls_p && no_overflow_p)
1315 return;
1317 type1 = type;
1318 if (POINTER_TYPE_P (type))
1319 type1 = sizetype;
1321 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1322 we must be careful not to introduce overflow. */
1324 if (integer_nonzerop (iv0->step))
1326 diff = fold_build2 (MINUS_EXPR, type1,
1327 iv0->step, build_int_cst (type1, 1));
1329 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1330 0 address never belongs to any object, we can assume this for
1331 pointers. */
1332 if (!POINTER_TYPE_P (type))
1334 bound = fold_build2 (PLUS_EXPR, type1,
1335 TYPE_MIN_VALUE (type), diff);
1336 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1337 iv0->base, bound);
1340 /* And then we can compute iv0->base - diff, and compare it with
1341 iv1->base. */
1342 mbzl = fold_build2 (MINUS_EXPR, type1,
1343 fold_convert (type1, iv0->base), diff);
1344 mbzr = fold_convert (type1, iv1->base);
1346 else
1348 diff = fold_build2 (PLUS_EXPR, type1,
1349 iv1->step, build_int_cst (type1, 1));
1351 if (!POINTER_TYPE_P (type))
1353 bound = fold_build2 (PLUS_EXPR, type1,
1354 TYPE_MAX_VALUE (type), diff);
1355 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1356 iv1->base, bound);
1359 mbzl = fold_convert (type1, iv0->base);
1360 mbzr = fold_build2 (MINUS_EXPR, type1,
1361 fold_convert (type1, iv1->base), diff);
1364 if (!integer_nonzerop (assumption))
1365 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1366 niter->assumptions, assumption);
1367 if (!rolls_p)
1369 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1370 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1371 niter->may_be_zero, mbz);
1375 /* Determines number of iterations of loop whose ending condition
1376 is IV0 < IV1. TYPE is the type of the iv. The number of
1377 iterations is stored to NITER. BNDS bounds the difference
1378 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1379 that the exit must be taken eventually. */
1381 static bool
1382 number_of_iterations_lt (struct loop *loop, tree type, affine_iv *iv0,
1383 affine_iv *iv1, struct tree_niter_desc *niter,
1384 bool exit_must_be_taken, bounds *bnds)
1386 tree niter_type = unsigned_type_for (type);
1387 tree delta, step, s;
1388 mpz_t mstep, tmp;
1390 if (integer_nonzerop (iv0->step))
1392 niter->control = *iv0;
1393 niter->cmp = LT_EXPR;
1394 niter->bound = iv1->base;
1396 else
1398 niter->control = *iv1;
1399 niter->cmp = GT_EXPR;
1400 niter->bound = iv0->base;
1403 delta = fold_build2 (MINUS_EXPR, niter_type,
1404 fold_convert (niter_type, iv1->base),
1405 fold_convert (niter_type, iv0->base));
1407 /* First handle the special case that the step is +-1. */
1408 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1409 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1411 /* for (i = iv0->base; i < iv1->base; i++)
1415 for (i = iv1->base; i > iv0->base; i--).
1417 In both cases # of iterations is iv1->base - iv0->base, assuming that
1418 iv1->base >= iv0->base.
1420 First try to derive a lower bound on the value of
1421 iv1->base - iv0->base, computed in full precision. If the difference
1422 is nonnegative, we are done, otherwise we must record the
1423 condition. */
1425 if (mpz_sgn (bnds->below) < 0)
1426 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1427 iv1->base, iv0->base);
1428 niter->niter = delta;
1429 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1430 TYPE_SIGN (niter_type));
1431 niter->control.no_overflow = true;
1432 return true;
1435 if (integer_nonzerop (iv0->step))
1436 step = fold_convert (niter_type, iv0->step);
1437 else
1438 step = fold_convert (niter_type,
1439 fold_build1 (NEGATE_EXPR, type, iv1->step));
1441 /* If we can determine the final value of the control iv exactly, we can
1442 transform the condition to != comparison. In particular, this will be
1443 the case if DELTA is constant. */
1444 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1445 exit_must_be_taken, bnds))
1447 affine_iv zps;
1449 zps.base = build_int_cst (niter_type, 0);
1450 zps.step = step;
1451 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1452 zps does not overflow. */
1453 zps.no_overflow = true;
1455 return number_of_iterations_ne (loop, type, &zps,
1456 delta, niter, true, bnds);
1459 /* Make sure that the control iv does not overflow. */
1460 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1461 return false;
1463 /* We determine the number of iterations as (delta + step - 1) / step. For
1464 this to work, we must know that iv1->base >= iv0->base - step + 1,
1465 otherwise the loop does not roll. */
1466 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1468 s = fold_build2 (MINUS_EXPR, niter_type,
1469 step, build_int_cst (niter_type, 1));
1470 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1471 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1473 mpz_init (mstep);
1474 mpz_init (tmp);
1475 wi::to_mpz (step, mstep, UNSIGNED);
1476 mpz_add (tmp, bnds->up, mstep);
1477 mpz_sub_ui (tmp, tmp, 1);
1478 mpz_fdiv_q (tmp, tmp, mstep);
1479 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1480 TYPE_SIGN (niter_type));
1481 mpz_clear (mstep);
1482 mpz_clear (tmp);
1484 return true;
1487 /* Determines number of iterations of loop whose ending condition
1488 is IV0 <= IV1. TYPE is the type of the iv. The number of
1489 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1490 we know that this condition must eventually become false (we derived this
1491 earlier, and possibly set NITER->assumptions to make sure this
1492 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1494 static bool
1495 number_of_iterations_le (struct loop *loop, tree type, affine_iv *iv0,
1496 affine_iv *iv1, struct tree_niter_desc *niter,
1497 bool exit_must_be_taken, bounds *bnds)
1499 tree assumption;
1500 tree type1 = type;
1501 if (POINTER_TYPE_P (type))
1502 type1 = sizetype;
1504 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1505 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1506 value of the type. This we must know anyway, since if it is
1507 equal to this value, the loop rolls forever. We do not check
1508 this condition for pointer type ivs, as the code cannot rely on
1509 the object to that the pointer points being placed at the end of
1510 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1511 not defined for pointers). */
1513 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1515 if (integer_nonzerop (iv0->step))
1516 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1517 iv1->base, TYPE_MAX_VALUE (type));
1518 else
1519 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1520 iv0->base, TYPE_MIN_VALUE (type));
1522 if (integer_zerop (assumption))
1523 return false;
1524 if (!integer_nonzerop (assumption))
1525 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1526 niter->assumptions, assumption);
1529 if (integer_nonzerop (iv0->step))
1531 if (POINTER_TYPE_P (type))
1532 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1533 else
1534 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1535 build_int_cst (type1, 1));
1537 else if (POINTER_TYPE_P (type))
1538 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1539 else
1540 iv0->base = fold_build2 (MINUS_EXPR, type1,
1541 iv0->base, build_int_cst (type1, 1));
1543 bounds_add (bnds, 1, type1);
1545 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1546 bnds);
1549 /* Dumps description of affine induction variable IV to FILE. */
1551 static void
1552 dump_affine_iv (FILE *file, affine_iv *iv)
1554 if (!integer_zerop (iv->step))
1555 fprintf (file, "[");
1557 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1559 if (!integer_zerop (iv->step))
1561 fprintf (file, ", + , ");
1562 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1563 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1567 /* Determine the number of iterations according to condition (for staying
1568 inside loop) which compares two induction variables using comparison
1569 operator CODE. The induction variable on left side of the comparison
1570 is IV0, the right-hand side is IV1. Both induction variables must have
1571 type TYPE, which must be an integer or pointer type. The steps of the
1572 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1574 LOOP is the loop whose number of iterations we are determining.
1576 ONLY_EXIT is true if we are sure this is the only way the loop could be
1577 exited (including possibly non-returning function calls, exceptions, etc.)
1578 -- in this case we can use the information whether the control induction
1579 variables can overflow or not in a more efficient way.
1581 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1583 The results (number of iterations and assumptions as described in
1584 comments at struct tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1585 Returns false if it fails to determine number of iterations, true if it
1586 was determined (possibly with some assumptions). */
1588 static bool
1589 number_of_iterations_cond (struct loop *loop,
1590 tree type, affine_iv *iv0, enum tree_code code,
1591 affine_iv *iv1, struct tree_niter_desc *niter,
1592 bool only_exit, bool every_iteration)
1594 bool exit_must_be_taken = false, ret;
1595 bounds bnds;
1597 /* If the test is not executed every iteration, wrapping may make the test
1598 to pass again.
1599 TODO: the overflow case can be still used as unreliable estimate of upper
1600 bound. But we have no API to pass it down to number of iterations code
1601 and, at present, it will not use it anyway. */
1602 if (!every_iteration
1603 && (!iv0->no_overflow || !iv1->no_overflow
1604 || code == NE_EXPR || code == EQ_EXPR))
1605 return false;
1607 /* The meaning of these assumptions is this:
1608 if !assumptions
1609 then the rest of information does not have to be valid
1610 if may_be_zero then the loop does not roll, even if
1611 niter != 0. */
1612 niter->assumptions = boolean_true_node;
1613 niter->may_be_zero = boolean_false_node;
1614 niter->niter = NULL_TREE;
1615 niter->max = 0;
1616 niter->bound = NULL_TREE;
1617 niter->cmp = ERROR_MARK;
1619 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1620 the control variable is on lhs. */
1621 if (code == GE_EXPR || code == GT_EXPR
1622 || (code == NE_EXPR && integer_zerop (iv0->step)))
1624 std::swap (iv0, iv1);
1625 code = swap_tree_comparison (code);
1628 if (POINTER_TYPE_P (type))
1630 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1631 to the same object. If they do, the control variable cannot wrap
1632 (as wrap around the bounds of memory will never return a pointer
1633 that would be guaranteed to point to the same object, even if we
1634 avoid undefined behavior by casting to size_t and back). */
1635 iv0->no_overflow = true;
1636 iv1->no_overflow = true;
1639 /* If the control induction variable does not overflow and the only exit
1640 from the loop is the one that we analyze, we know it must be taken
1641 eventually. */
1642 if (only_exit)
1644 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1645 exit_must_be_taken = true;
1646 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1647 exit_must_be_taken = true;
1650 /* We can handle the case when neither of the sides of the comparison is
1651 invariant, provided that the test is NE_EXPR. This rarely occurs in
1652 practice, but it is simple enough to manage. */
1653 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1655 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1656 if (code != NE_EXPR)
1657 return false;
1659 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1660 iv0->step, iv1->step);
1661 iv0->no_overflow = false;
1662 iv1->step = build_int_cst (step_type, 0);
1663 iv1->no_overflow = true;
1666 /* If the result of the comparison is a constant, the loop is weird. More
1667 precise handling would be possible, but the situation is not common enough
1668 to waste time on it. */
1669 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1670 return false;
1672 /* Ignore loops of while (i-- < 10) type. */
1673 if (code != NE_EXPR)
1675 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1676 return false;
1678 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1679 return false;
1682 /* If the loop exits immediately, there is nothing to do. */
1683 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1684 if (tem && integer_zerop (tem))
1686 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1687 niter->max = 0;
1688 return true;
1691 /* OK, now we know we have a senseful loop. Handle several cases, depending
1692 on what comparison operator is used. */
1693 bound_difference (loop, iv1->base, iv0->base, &bnds);
1695 if (dump_file && (dump_flags & TDF_DETAILS))
1697 fprintf (dump_file,
1698 "Analyzing # of iterations of loop %d\n", loop->num);
1700 fprintf (dump_file, " exit condition ");
1701 dump_affine_iv (dump_file, iv0);
1702 fprintf (dump_file, " %s ",
1703 code == NE_EXPR ? "!="
1704 : code == LT_EXPR ? "<"
1705 : "<=");
1706 dump_affine_iv (dump_file, iv1);
1707 fprintf (dump_file, "\n");
1709 fprintf (dump_file, " bounds on difference of bases: ");
1710 mpz_out_str (dump_file, 10, bnds.below);
1711 fprintf (dump_file, " ... ");
1712 mpz_out_str (dump_file, 10, bnds.up);
1713 fprintf (dump_file, "\n");
1716 switch (code)
1718 case NE_EXPR:
1719 gcc_assert (integer_zerop (iv1->step));
1720 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1721 exit_must_be_taken, &bnds);
1722 break;
1724 case LT_EXPR:
1725 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1726 exit_must_be_taken, &bnds);
1727 break;
1729 case LE_EXPR:
1730 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1731 exit_must_be_taken, &bnds);
1732 break;
1734 default:
1735 gcc_unreachable ();
1738 mpz_clear (bnds.up);
1739 mpz_clear (bnds.below);
1741 if (dump_file && (dump_flags & TDF_DETAILS))
1743 if (ret)
1745 fprintf (dump_file, " result:\n");
1746 if (!integer_nonzerop (niter->assumptions))
1748 fprintf (dump_file, " under assumptions ");
1749 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1750 fprintf (dump_file, "\n");
1753 if (!integer_zerop (niter->may_be_zero))
1755 fprintf (dump_file, " zero if ");
1756 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1757 fprintf (dump_file, "\n");
1760 fprintf (dump_file, " # of iterations ");
1761 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1762 fprintf (dump_file, ", bounded by ");
1763 print_decu (niter->max, dump_file);
1764 fprintf (dump_file, "\n");
1766 else
1767 fprintf (dump_file, " failed\n\n");
1769 return ret;
1772 /* Substitute NEW for OLD in EXPR and fold the result. */
1774 static tree
1775 simplify_replace_tree (tree expr, tree old, tree new_tree)
1777 unsigned i, n;
1778 tree ret = NULL_TREE, e, se;
1780 if (!expr)
1781 return NULL_TREE;
1783 /* Do not bother to replace constants. */
1784 if (CONSTANT_CLASS_P (old))
1785 return expr;
1787 if (expr == old
1788 || operand_equal_p (expr, old, 0))
1789 return unshare_expr (new_tree);
1791 if (!EXPR_P (expr))
1792 return expr;
1794 n = TREE_OPERAND_LENGTH (expr);
1795 for (i = 0; i < n; i++)
1797 e = TREE_OPERAND (expr, i);
1798 se = simplify_replace_tree (e, old, new_tree);
1799 if (e == se)
1800 continue;
1802 if (!ret)
1803 ret = copy_node (expr);
1805 TREE_OPERAND (ret, i) = se;
1808 return (ret ? fold (ret) : expr);
1811 /* Expand definitions of ssa names in EXPR as long as they are simple
1812 enough, and return the new expression. If STOP is specified, stop
1813 expanding if EXPR equals to it. */
1815 tree
1816 expand_simple_operations (tree expr, tree stop)
1818 unsigned i, n;
1819 tree ret = NULL_TREE, e, ee, e1;
1820 enum tree_code code;
1821 gimple *stmt;
1823 if (expr == NULL_TREE)
1824 return expr;
1826 if (is_gimple_min_invariant (expr))
1827 return expr;
1829 code = TREE_CODE (expr);
1830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1832 n = TREE_OPERAND_LENGTH (expr);
1833 for (i = 0; i < n; i++)
1835 e = TREE_OPERAND (expr, i);
1836 ee = expand_simple_operations (e, stop);
1837 if (e == ee)
1838 continue;
1840 if (!ret)
1841 ret = copy_node (expr);
1843 TREE_OPERAND (ret, i) = ee;
1846 if (!ret)
1847 return expr;
1849 fold_defer_overflow_warnings ();
1850 ret = fold (ret);
1851 fold_undefer_and_ignore_overflow_warnings ();
1852 return ret;
1855 /* Stop if it's not ssa name or the one we don't want to expand. */
1856 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
1857 return expr;
1859 stmt = SSA_NAME_DEF_STMT (expr);
1860 if (gimple_code (stmt) == GIMPLE_PHI)
1862 basic_block src, dest;
1864 if (gimple_phi_num_args (stmt) != 1)
1865 return expr;
1866 e = PHI_ARG_DEF (stmt, 0);
1868 /* Avoid propagating through loop exit phi nodes, which
1869 could break loop-closed SSA form restrictions. */
1870 dest = gimple_bb (stmt);
1871 src = single_pred (dest);
1872 if (TREE_CODE (e) == SSA_NAME
1873 && src->loop_father != dest->loop_father)
1874 return expr;
1876 return expand_simple_operations (e, stop);
1878 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1879 return expr;
1881 /* Avoid expanding to expressions that contain SSA names that need
1882 to take part in abnormal coalescing. */
1883 ssa_op_iter iter;
1884 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
1885 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
1886 return expr;
1888 e = gimple_assign_rhs1 (stmt);
1889 code = gimple_assign_rhs_code (stmt);
1890 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1892 if (is_gimple_min_invariant (e))
1893 return e;
1895 if (code == SSA_NAME)
1896 return expand_simple_operations (e, stop);
1898 return expr;
1901 switch (code)
1903 CASE_CONVERT:
1904 /* Casts are simple. */
1905 ee = expand_simple_operations (e, stop);
1906 return fold_build1 (code, TREE_TYPE (expr), ee);
1908 case PLUS_EXPR:
1909 case MINUS_EXPR:
1910 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
1911 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
1912 return expr;
1913 /* Fallthru. */
1914 case POINTER_PLUS_EXPR:
1915 /* And increments and decrements by a constant are simple. */
1916 e1 = gimple_assign_rhs2 (stmt);
1917 if (!is_gimple_min_invariant (e1))
1918 return expr;
1920 ee = expand_simple_operations (e, stop);
1921 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1923 default:
1924 return expr;
1928 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1929 expression (or EXPR unchanged, if no simplification was possible). */
1931 static tree
1932 tree_simplify_using_condition_1 (tree cond, tree expr, tree stop)
1934 bool changed;
1935 tree e, te, e0, e1, e2, notcond;
1936 enum tree_code code = TREE_CODE (expr);
1938 if (code == INTEGER_CST)
1939 return expr;
1941 if (code == TRUTH_OR_EXPR
1942 || code == TRUTH_AND_EXPR
1943 || code == COND_EXPR)
1945 changed = false;
1947 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0), stop);
1948 if (TREE_OPERAND (expr, 0) != e0)
1949 changed = true;
1951 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1), stop);
1952 if (TREE_OPERAND (expr, 1) != e1)
1953 changed = true;
1955 if (code == COND_EXPR)
1957 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2), stop);
1958 if (TREE_OPERAND (expr, 2) != e2)
1959 changed = true;
1961 else
1962 e2 = NULL_TREE;
1964 if (changed)
1966 if (code == COND_EXPR)
1967 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1968 else
1969 expr = fold_build2 (code, boolean_type_node, e0, e1);
1972 return expr;
1975 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1976 propagation, and vice versa. Fold does not handle this, since it is
1977 considered too expensive. */
1978 if (TREE_CODE (cond) == EQ_EXPR)
1980 e0 = TREE_OPERAND (cond, 0);
1981 e1 = TREE_OPERAND (cond, 1);
1983 /* We know that e0 == e1. Check whether we cannot simplify expr
1984 using this fact. */
1985 e = simplify_replace_tree (expr, e0, e1);
1986 if (integer_zerop (e) || integer_nonzerop (e))
1987 return e;
1989 e = simplify_replace_tree (expr, e1, e0);
1990 if (integer_zerop (e) || integer_nonzerop (e))
1991 return e;
1993 if (TREE_CODE (expr) == EQ_EXPR)
1995 e0 = TREE_OPERAND (expr, 0);
1996 e1 = TREE_OPERAND (expr, 1);
1998 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1999 e = simplify_replace_tree (cond, e0, e1);
2000 if (integer_zerop (e))
2001 return e;
2002 e = simplify_replace_tree (cond, e1, e0);
2003 if (integer_zerop (e))
2004 return e;
2006 if (TREE_CODE (expr) == NE_EXPR)
2008 e0 = TREE_OPERAND (expr, 0);
2009 e1 = TREE_OPERAND (expr, 1);
2011 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2012 e = simplify_replace_tree (cond, e0, e1);
2013 if (integer_zerop (e))
2014 return boolean_true_node;
2015 e = simplify_replace_tree (cond, e1, e0);
2016 if (integer_zerop (e))
2017 return boolean_true_node;
2020 te = expand_simple_operations (expr, stop);
2022 /* Check whether COND ==> EXPR. */
2023 notcond = invert_truthvalue (cond);
2024 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
2025 if (e && integer_nonzerop (e))
2026 return e;
2028 /* Check whether COND ==> not EXPR. */
2029 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
2030 if (e && integer_zerop (e))
2031 return e;
2033 return expr;
2036 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2037 expression (or EXPR unchanged, if no simplification was possible).
2038 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2039 of simple operations in definitions of ssa names in COND are expanded,
2040 so that things like casts or incrementing the value of the bound before
2041 the loop do not cause us to fail. */
2043 static tree
2044 tree_simplify_using_condition (tree cond, tree expr, tree stop)
2046 cond = expand_simple_operations (cond, stop);
2048 return tree_simplify_using_condition_1 (cond, expr, stop);
2051 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2052 Returns the simplified expression (or EXPR unchanged, if no
2053 simplification was possible). */
2055 tree
2056 simplify_using_initial_conditions (struct loop *loop, tree expr, tree stop)
2058 edge e;
2059 basic_block bb;
2060 gimple *stmt;
2061 tree cond;
2062 int cnt = 0;
2064 if (TREE_CODE (expr) == INTEGER_CST)
2065 return expr;
2067 /* Limit walking the dominators to avoid quadraticness in
2068 the number of BBs times the number of loops in degenerate
2069 cases. */
2070 for (bb = loop->header;
2071 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2072 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2074 if (!single_pred_p (bb))
2075 continue;
2076 e = single_pred_edge (bb);
2078 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2079 continue;
2081 stmt = last_stmt (e->src);
2082 cond = fold_build2 (gimple_cond_code (stmt),
2083 boolean_type_node,
2084 gimple_cond_lhs (stmt),
2085 gimple_cond_rhs (stmt));
2086 if (e->flags & EDGE_FALSE_VALUE)
2087 cond = invert_truthvalue (cond);
2088 expr = tree_simplify_using_condition (cond, expr, stop);
2089 /* Break if EXPR is simplified to const values. */
2090 if (expr && (integer_zerop (expr) || integer_nonzerop (expr)))
2091 break;
2093 ++cnt;
2096 return expr;
2099 /* Tries to simplify EXPR using the evolutions of the loop invariants
2100 in the superloops of LOOP. Returns the simplified expression
2101 (or EXPR unchanged, if no simplification was possible). */
2103 static tree
2104 simplify_using_outer_evolutions (struct loop *loop, tree expr)
2106 enum tree_code code = TREE_CODE (expr);
2107 bool changed;
2108 tree e, e0, e1, e2;
2110 if (is_gimple_min_invariant (expr))
2111 return expr;
2113 if (code == TRUTH_OR_EXPR
2114 || code == TRUTH_AND_EXPR
2115 || code == COND_EXPR)
2117 changed = false;
2119 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2120 if (TREE_OPERAND (expr, 0) != e0)
2121 changed = true;
2123 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2124 if (TREE_OPERAND (expr, 1) != e1)
2125 changed = true;
2127 if (code == COND_EXPR)
2129 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2130 if (TREE_OPERAND (expr, 2) != e2)
2131 changed = true;
2133 else
2134 e2 = NULL_TREE;
2136 if (changed)
2138 if (code == COND_EXPR)
2139 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2140 else
2141 expr = fold_build2 (code, boolean_type_node, e0, e1);
2144 return expr;
2147 e = instantiate_parameters (loop, expr);
2148 if (is_gimple_min_invariant (e))
2149 return e;
2151 return expr;
2154 /* Returns true if EXIT is the only possible exit from LOOP. */
2156 bool
2157 loop_only_exit_p (const struct loop *loop, const_edge exit)
2159 basic_block *body;
2160 gimple_stmt_iterator bsi;
2161 unsigned i;
2162 gimple *call;
2164 if (exit != single_exit (loop))
2165 return false;
2167 body = get_loop_body (loop);
2168 for (i = 0; i < loop->num_nodes; i++)
2170 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2172 call = gsi_stmt (bsi);
2173 if (gimple_code (call) != GIMPLE_CALL)
2174 continue;
2176 if (gimple_has_side_effects (call))
2178 free (body);
2179 return false;
2184 free (body);
2185 return true;
2188 /* Stores description of number of iterations of LOOP derived from
2189 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
2190 useful information could be derived (and fields of NITER has
2191 meaning described in comments at struct tree_niter_desc
2192 declaration), false otherwise. If WARN is true and
2193 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
2194 potentially unsafe assumptions.
2195 When EVERY_ITERATION is true, only tests that are known to be executed
2196 every iteration are considered (i.e. only test that alone bounds the loop).
2199 bool
2200 number_of_iterations_exit (struct loop *loop, edge exit,
2201 struct tree_niter_desc *niter,
2202 bool warn, bool every_iteration)
2204 gimple *last;
2205 gcond *stmt;
2206 tree type;
2207 tree op0, op1;
2208 enum tree_code code;
2209 affine_iv iv0, iv1;
2210 bool safe;
2212 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2214 if (every_iteration && !safe)
2215 return false;
2217 niter->assumptions = boolean_false_node;
2218 niter->control.base = NULL_TREE;
2219 niter->control.step = NULL_TREE;
2220 niter->control.no_overflow = false;
2221 last = last_stmt (exit->src);
2222 if (!last)
2223 return false;
2224 stmt = dyn_cast <gcond *> (last);
2225 if (!stmt)
2226 return false;
2228 /* We want the condition for staying inside loop. */
2229 code = gimple_cond_code (stmt);
2230 if (exit->flags & EDGE_TRUE_VALUE)
2231 code = invert_tree_comparison (code, false);
2233 switch (code)
2235 case GT_EXPR:
2236 case GE_EXPR:
2237 case LT_EXPR:
2238 case LE_EXPR:
2239 case NE_EXPR:
2240 break;
2242 default:
2243 return false;
2246 op0 = gimple_cond_lhs (stmt);
2247 op1 = gimple_cond_rhs (stmt);
2248 type = TREE_TYPE (op0);
2250 if (TREE_CODE (type) != INTEGER_TYPE
2251 && !POINTER_TYPE_P (type))
2252 return false;
2254 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
2255 return false;
2256 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
2257 return false;
2259 /* We don't want to see undefined signed overflow warnings while
2260 computing the number of iterations. */
2261 fold_defer_overflow_warnings ();
2263 iv0.base = expand_simple_operations (iv0.base);
2264 iv1.base = expand_simple_operations (iv1.base);
2265 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2266 loop_only_exit_p (loop, exit), safe))
2268 fold_undefer_and_ignore_overflow_warnings ();
2269 return false;
2272 if (optimize >= 3)
2274 niter->assumptions = simplify_using_outer_evolutions (loop,
2275 niter->assumptions);
2276 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2277 niter->may_be_zero);
2278 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2281 niter->assumptions
2282 = simplify_using_initial_conditions (loop,
2283 niter->assumptions);
2284 niter->may_be_zero
2285 = simplify_using_initial_conditions (loop,
2286 niter->may_be_zero);
2288 fold_undefer_and_ignore_overflow_warnings ();
2290 /* If NITER has simplified into a constant, update MAX. */
2291 if (TREE_CODE (niter->niter) == INTEGER_CST)
2292 niter->max = wi::to_widest (niter->niter);
2294 if (integer_onep (niter->assumptions))
2295 return true;
2297 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
2298 But if we can prove that there is overflow or some other source of weird
2299 behavior, ignore the loop even with -funsafe-loop-optimizations. */
2300 if (integer_zerop (niter->assumptions) || !single_exit (loop))
2301 return false;
2303 if (flag_unsafe_loop_optimizations)
2304 niter->assumptions = boolean_true_node;
2306 if (warn)
2308 const char *wording;
2309 location_t loc = gimple_location (stmt);
2311 /* We can provide a more specific warning if one of the operator is
2312 constant and the other advances by +1 or -1. */
2313 if (!integer_zerop (iv1.step)
2314 ? (integer_zerop (iv0.step)
2315 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
2316 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
2317 wording =
2318 flag_unsafe_loop_optimizations
2319 ? N_("assuming that the loop is not infinite")
2320 : N_("cannot optimize possibly infinite loops");
2321 else
2322 wording =
2323 flag_unsafe_loop_optimizations
2324 ? N_("assuming that the loop counter does not overflow")
2325 : N_("cannot optimize loop, the loop counter may overflow");
2327 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
2328 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
2331 return flag_unsafe_loop_optimizations;
2334 /* Try to determine the number of iterations of LOOP. If we succeed,
2335 expression giving number of iterations is returned and *EXIT is
2336 set to the edge from that the information is obtained. Otherwise
2337 chrec_dont_know is returned. */
2339 tree
2340 find_loop_niter (struct loop *loop, edge *exit)
2342 unsigned i;
2343 vec<edge> exits = get_loop_exit_edges (loop);
2344 edge ex;
2345 tree niter = NULL_TREE, aniter;
2346 struct tree_niter_desc desc;
2348 *exit = NULL;
2349 FOR_EACH_VEC_ELT (exits, i, ex)
2351 if (!number_of_iterations_exit (loop, ex, &desc, false))
2352 continue;
2354 if (integer_nonzerop (desc.may_be_zero))
2356 /* We exit in the first iteration through this exit.
2357 We won't find anything better. */
2358 niter = build_int_cst (unsigned_type_node, 0);
2359 *exit = ex;
2360 break;
2363 if (!integer_zerop (desc.may_be_zero))
2364 continue;
2366 aniter = desc.niter;
2368 if (!niter)
2370 /* Nothing recorded yet. */
2371 niter = aniter;
2372 *exit = ex;
2373 continue;
2376 /* Prefer constants, the lower the better. */
2377 if (TREE_CODE (aniter) != INTEGER_CST)
2378 continue;
2380 if (TREE_CODE (niter) != INTEGER_CST)
2382 niter = aniter;
2383 *exit = ex;
2384 continue;
2387 if (tree_int_cst_lt (aniter, niter))
2389 niter = aniter;
2390 *exit = ex;
2391 continue;
2394 exits.release ();
2396 return niter ? niter : chrec_dont_know;
2399 /* Return true if loop is known to have bounded number of iterations. */
2401 bool
2402 finite_loop_p (struct loop *loop)
2404 widest_int nit;
2405 int flags;
2407 if (flag_unsafe_loop_optimizations)
2408 return true;
2409 flags = flags_from_decl_or_type (current_function_decl);
2410 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2412 if (dump_file && (dump_flags & TDF_DETAILS))
2413 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2414 loop->num);
2415 return true;
2418 if (loop->any_upper_bound
2419 || max_loop_iterations (loop, &nit))
2421 if (dump_file && (dump_flags & TDF_DETAILS))
2422 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2423 loop->num);
2424 return true;
2426 return false;
2431 Analysis of a number of iterations of a loop by a brute-force evaluation.
2435 /* Bound on the number of iterations we try to evaluate. */
2437 #define MAX_ITERATIONS_TO_TRACK \
2438 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2440 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2441 result by a chain of operations such that all but exactly one of their
2442 operands are constants. */
2444 static gphi *
2445 chain_of_csts_start (struct loop *loop, tree x)
2447 gimple *stmt = SSA_NAME_DEF_STMT (x);
2448 tree use;
2449 basic_block bb = gimple_bb (stmt);
2450 enum tree_code code;
2452 if (!bb
2453 || !flow_bb_inside_loop_p (loop, bb))
2454 return NULL;
2456 if (gimple_code (stmt) == GIMPLE_PHI)
2458 if (bb == loop->header)
2459 return as_a <gphi *> (stmt);
2461 return NULL;
2464 if (gimple_code (stmt) != GIMPLE_ASSIGN
2465 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2466 return NULL;
2468 code = gimple_assign_rhs_code (stmt);
2469 if (gimple_references_memory_p (stmt)
2470 || TREE_CODE_CLASS (code) == tcc_reference
2471 || (code == ADDR_EXPR
2472 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2473 return NULL;
2475 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2476 if (use == NULL_TREE)
2477 return NULL;
2479 return chain_of_csts_start (loop, use);
2482 /* Determines whether the expression X is derived from a result of a phi node
2483 in header of LOOP such that
2485 * the derivation of X consists only from operations with constants
2486 * the initial value of the phi node is constant
2487 * the value of the phi node in the next iteration can be derived from the
2488 value in the current iteration by a chain of operations with constants.
2490 If such phi node exists, it is returned, otherwise NULL is returned. */
2492 static gphi *
2493 get_base_for (struct loop *loop, tree x)
2495 gphi *phi;
2496 tree init, next;
2498 if (is_gimple_min_invariant (x))
2499 return NULL;
2501 phi = chain_of_csts_start (loop, x);
2502 if (!phi)
2503 return NULL;
2505 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2506 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2508 if (TREE_CODE (next) != SSA_NAME)
2509 return NULL;
2511 if (!is_gimple_min_invariant (init))
2512 return NULL;
2514 if (chain_of_csts_start (loop, next) != phi)
2515 return NULL;
2517 return phi;
2520 /* Given an expression X, then
2522 * if X is NULL_TREE, we return the constant BASE.
2523 * otherwise X is a SSA name, whose value in the considered loop is derived
2524 by a chain of operations with constant from a result of a phi node in
2525 the header of the loop. Then we return value of X when the value of the
2526 result of this phi node is given by the constant BASE. */
2528 static tree
2529 get_val_for (tree x, tree base)
2531 gimple *stmt;
2533 gcc_checking_assert (is_gimple_min_invariant (base));
2535 if (!x)
2536 return base;
2538 stmt = SSA_NAME_DEF_STMT (x);
2539 if (gimple_code (stmt) == GIMPLE_PHI)
2540 return base;
2542 gcc_checking_assert (is_gimple_assign (stmt));
2544 /* STMT must be either an assignment of a single SSA name or an
2545 expression involving an SSA name and a constant. Try to fold that
2546 expression using the value for the SSA name. */
2547 if (gimple_assign_ssa_name_copy_p (stmt))
2548 return get_val_for (gimple_assign_rhs1 (stmt), base);
2549 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2550 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2552 return fold_build1 (gimple_assign_rhs_code (stmt),
2553 gimple_expr_type (stmt),
2554 get_val_for (gimple_assign_rhs1 (stmt), base));
2556 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2558 tree rhs1 = gimple_assign_rhs1 (stmt);
2559 tree rhs2 = gimple_assign_rhs2 (stmt);
2560 if (TREE_CODE (rhs1) == SSA_NAME)
2561 rhs1 = get_val_for (rhs1, base);
2562 else if (TREE_CODE (rhs2) == SSA_NAME)
2563 rhs2 = get_val_for (rhs2, base);
2564 else
2565 gcc_unreachable ();
2566 return fold_build2 (gimple_assign_rhs_code (stmt),
2567 gimple_expr_type (stmt), rhs1, rhs2);
2569 else
2570 gcc_unreachable ();
2574 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2575 by brute force -- i.e. by determining the value of the operands of the
2576 condition at EXIT in first few iterations of the loop (assuming that
2577 these values are constant) and determining the first one in that the
2578 condition is not satisfied. Returns the constant giving the number
2579 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2581 tree
2582 loop_niter_by_eval (struct loop *loop, edge exit)
2584 tree acnd;
2585 tree op[2], val[2], next[2], aval[2];
2586 gphi *phi;
2587 gimple *cond;
2588 unsigned i, j;
2589 enum tree_code cmp;
2591 cond = last_stmt (exit->src);
2592 if (!cond || gimple_code (cond) != GIMPLE_COND)
2593 return chrec_dont_know;
2595 cmp = gimple_cond_code (cond);
2596 if (exit->flags & EDGE_TRUE_VALUE)
2597 cmp = invert_tree_comparison (cmp, false);
2599 switch (cmp)
2601 case EQ_EXPR:
2602 case NE_EXPR:
2603 case GT_EXPR:
2604 case GE_EXPR:
2605 case LT_EXPR:
2606 case LE_EXPR:
2607 op[0] = gimple_cond_lhs (cond);
2608 op[1] = gimple_cond_rhs (cond);
2609 break;
2611 default:
2612 return chrec_dont_know;
2615 for (j = 0; j < 2; j++)
2617 if (is_gimple_min_invariant (op[j]))
2619 val[j] = op[j];
2620 next[j] = NULL_TREE;
2621 op[j] = NULL_TREE;
2623 else
2625 phi = get_base_for (loop, op[j]);
2626 if (!phi)
2627 return chrec_dont_know;
2628 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2629 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2633 /* Don't issue signed overflow warnings. */
2634 fold_defer_overflow_warnings ();
2636 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2638 for (j = 0; j < 2; j++)
2639 aval[j] = get_val_for (op[j], val[j]);
2641 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2642 if (acnd && integer_zerop (acnd))
2644 fold_undefer_and_ignore_overflow_warnings ();
2645 if (dump_file && (dump_flags & TDF_DETAILS))
2646 fprintf (dump_file,
2647 "Proved that loop %d iterates %d times using brute force.\n",
2648 loop->num, i);
2649 return build_int_cst (unsigned_type_node, i);
2652 for (j = 0; j < 2; j++)
2654 val[j] = get_val_for (next[j], val[j]);
2655 if (!is_gimple_min_invariant (val[j]))
2657 fold_undefer_and_ignore_overflow_warnings ();
2658 return chrec_dont_know;
2663 fold_undefer_and_ignore_overflow_warnings ();
2665 return chrec_dont_know;
2668 /* Finds the exit of the LOOP by that the loop exits after a constant
2669 number of iterations and stores the exit edge to *EXIT. The constant
2670 giving the number of iterations of LOOP is returned. The number of
2671 iterations is determined using loop_niter_by_eval (i.e. by brute force
2672 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2673 determines the number of iterations, chrec_dont_know is returned. */
2675 tree
2676 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2678 unsigned i;
2679 vec<edge> exits = get_loop_exit_edges (loop);
2680 edge ex;
2681 tree niter = NULL_TREE, aniter;
2683 *exit = NULL;
2685 /* Loops with multiple exits are expensive to handle and less important. */
2686 if (!flag_expensive_optimizations
2687 && exits.length () > 1)
2689 exits.release ();
2690 return chrec_dont_know;
2693 FOR_EACH_VEC_ELT (exits, i, ex)
2695 if (!just_once_each_iteration_p (loop, ex->src))
2696 continue;
2698 aniter = loop_niter_by_eval (loop, ex);
2699 if (chrec_contains_undetermined (aniter))
2700 continue;
2702 if (niter
2703 && !tree_int_cst_lt (aniter, niter))
2704 continue;
2706 niter = aniter;
2707 *exit = ex;
2709 exits.release ();
2711 return niter ? niter : chrec_dont_know;
2716 Analysis of upper bounds on number of iterations of a loop.
2720 static widest_int derive_constant_upper_bound_ops (tree, tree,
2721 enum tree_code, tree);
2723 /* Returns a constant upper bound on the value of the right-hand side of
2724 an assignment statement STMT. */
2726 static widest_int
2727 derive_constant_upper_bound_assign (gimple *stmt)
2729 enum tree_code code = gimple_assign_rhs_code (stmt);
2730 tree op0 = gimple_assign_rhs1 (stmt);
2731 tree op1 = gimple_assign_rhs2 (stmt);
2733 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2734 op0, code, op1);
2737 /* Returns a constant upper bound on the value of expression VAL. VAL
2738 is considered to be unsigned. If its type is signed, its value must
2739 be nonnegative. */
2741 static widest_int
2742 derive_constant_upper_bound (tree val)
2744 enum tree_code code;
2745 tree op0, op1, op2;
2747 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
2748 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2751 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2752 whose type is TYPE. The expression is considered to be unsigned. If
2753 its type is signed, its value must be nonnegative. */
2755 static widest_int
2756 derive_constant_upper_bound_ops (tree type, tree op0,
2757 enum tree_code code, tree op1)
2759 tree subtype, maxt;
2760 widest_int bnd, max, cst;
2761 gimple *stmt;
2763 if (INTEGRAL_TYPE_P (type))
2764 maxt = TYPE_MAX_VALUE (type);
2765 else
2766 maxt = upper_bound_in_type (type, type);
2768 max = wi::to_widest (maxt);
2770 switch (code)
2772 case INTEGER_CST:
2773 return wi::to_widest (op0);
2775 CASE_CONVERT:
2776 subtype = TREE_TYPE (op0);
2777 if (!TYPE_UNSIGNED (subtype)
2778 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2779 that OP0 is nonnegative. */
2780 && TYPE_UNSIGNED (type)
2781 && !tree_expr_nonnegative_p (op0))
2783 /* If we cannot prove that the casted expression is nonnegative,
2784 we cannot establish more useful upper bound than the precision
2785 of the type gives us. */
2786 return max;
2789 /* We now know that op0 is an nonnegative value. Try deriving an upper
2790 bound for it. */
2791 bnd = derive_constant_upper_bound (op0);
2793 /* If the bound does not fit in TYPE, max. value of TYPE could be
2794 attained. */
2795 if (wi::ltu_p (max, bnd))
2796 return max;
2798 return bnd;
2800 case PLUS_EXPR:
2801 case POINTER_PLUS_EXPR:
2802 case MINUS_EXPR:
2803 if (TREE_CODE (op1) != INTEGER_CST
2804 || !tree_expr_nonnegative_p (op0))
2805 return max;
2807 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2808 choose the most logical way how to treat this constant regardless
2809 of the signedness of the type. */
2810 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
2811 if (code != MINUS_EXPR)
2812 cst = -cst;
2814 bnd = derive_constant_upper_bound (op0);
2816 if (wi::neg_p (cst))
2818 cst = -cst;
2819 /* Avoid CST == 0x80000... */
2820 if (wi::neg_p (cst))
2821 return max;
2823 /* OP0 + CST. We need to check that
2824 BND <= MAX (type) - CST. */
2826 widest_int mmax = max - cst;
2827 if (wi::leu_p (bnd, mmax))
2828 return max;
2830 return bnd + cst;
2832 else
2834 /* OP0 - CST, where CST >= 0.
2836 If TYPE is signed, we have already verified that OP0 >= 0, and we
2837 know that the result is nonnegative. This implies that
2838 VAL <= BND - CST.
2840 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2841 otherwise the operation underflows.
2844 /* This should only happen if the type is unsigned; however, for
2845 buggy programs that use overflowing signed arithmetics even with
2846 -fno-wrapv, this condition may also be true for signed values. */
2847 if (wi::ltu_p (bnd, cst))
2848 return max;
2850 if (TYPE_UNSIGNED (type))
2852 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2853 wide_int_to_tree (type, cst));
2854 if (!tem || integer_nonzerop (tem))
2855 return max;
2858 bnd -= cst;
2861 return bnd;
2863 case FLOOR_DIV_EXPR:
2864 case EXACT_DIV_EXPR:
2865 if (TREE_CODE (op1) != INTEGER_CST
2866 || tree_int_cst_sign_bit (op1))
2867 return max;
2869 bnd = derive_constant_upper_bound (op0);
2870 return wi::udiv_floor (bnd, wi::to_widest (op1));
2872 case BIT_AND_EXPR:
2873 if (TREE_CODE (op1) != INTEGER_CST
2874 || tree_int_cst_sign_bit (op1))
2875 return max;
2876 return wi::to_widest (op1);
2878 case SSA_NAME:
2879 stmt = SSA_NAME_DEF_STMT (op0);
2880 if (gimple_code (stmt) != GIMPLE_ASSIGN
2881 || gimple_assign_lhs (stmt) != op0)
2882 return max;
2883 return derive_constant_upper_bound_assign (stmt);
2885 default:
2886 return max;
2890 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2892 static void
2893 do_warn_aggressive_loop_optimizations (struct loop *loop,
2894 widest_int i_bound, gimple *stmt)
2896 /* Don't warn if the loop doesn't have known constant bound. */
2897 if (!loop->nb_iterations
2898 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2899 || !warn_aggressive_loop_optimizations
2900 /* To avoid warning multiple times for the same loop,
2901 only start warning when we preserve loops. */
2902 || (cfun->curr_properties & PROP_loops) == 0
2903 /* Only warn once per loop. */
2904 || loop->warned_aggressive_loop_optimizations
2905 /* Only warn if undefined behavior gives us lower estimate than the
2906 known constant bound. */
2907 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
2908 /* And undefined behavior happens unconditionally. */
2909 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2910 return;
2912 edge e = single_exit (loop);
2913 if (e == NULL)
2914 return;
2916 gimple *estmt = last_stmt (e->src);
2917 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
2918 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
2919 ? UNSIGNED : SIGNED);
2920 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2921 "iteration %s invokes undefined behavior", buf))
2922 inform (gimple_location (estmt), "within this loop");
2923 loop->warned_aggressive_loop_optimizations = true;
2926 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2927 is true if the loop is exited immediately after STMT, and this exit
2928 is taken at last when the STMT is executed BOUND + 1 times.
2929 REALISTIC is true if BOUND is expected to be close to the real number
2930 of iterations. UPPER is true if we are sure the loop iterates at most
2931 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
2933 static void
2934 record_estimate (struct loop *loop, tree bound, const widest_int &i_bound,
2935 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
2937 widest_int delta;
2939 if (dump_file && (dump_flags & TDF_DETAILS))
2941 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2942 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2943 fprintf (dump_file, " is %sexecuted at most ",
2944 upper ? "" : "probably ");
2945 print_generic_expr (dump_file, bound, TDF_SLIM);
2946 fprintf (dump_file, " (bounded by ");
2947 print_decu (i_bound, dump_file);
2948 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2951 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2952 real number of iterations. */
2953 if (TREE_CODE (bound) != INTEGER_CST)
2954 realistic = false;
2955 else
2956 gcc_checking_assert (i_bound == wi::to_widest (bound));
2957 if (!upper && !realistic)
2958 return;
2960 /* If we have a guaranteed upper bound, record it in the appropriate
2961 list, unless this is an !is_exit bound (i.e. undefined behavior in
2962 at_stmt) in a loop with known constant number of iterations. */
2963 if (upper
2964 && (is_exit
2965 || loop->nb_iterations == NULL_TREE
2966 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
2968 struct nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
2970 elt->bound = i_bound;
2971 elt->stmt = at_stmt;
2972 elt->is_exit = is_exit;
2973 elt->next = loop->bounds;
2974 loop->bounds = elt;
2977 /* If statement is executed on every path to the loop latch, we can directly
2978 infer the upper bound on the # of iterations of the loop. */
2979 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2980 return;
2982 /* Update the number of iteration estimates according to the bound.
2983 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2984 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2985 later if such statement must be executed on last iteration */
2986 if (is_exit)
2987 delta = 0;
2988 else
2989 delta = 1;
2990 widest_int new_i_bound = i_bound + delta;
2992 /* If an overflow occurred, ignore the result. */
2993 if (wi::ltu_p (new_i_bound, delta))
2994 return;
2996 if (upper && !is_exit)
2997 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
2998 record_niter_bound (loop, new_i_bound, realistic, upper);
3001 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3002 and doesn't overflow. */
3004 static void
3005 record_control_iv (struct loop *loop, struct tree_niter_desc *niter)
3007 struct control_iv *iv;
3009 if (!niter->control.base || !niter->control.step)
3010 return;
3012 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3013 return;
3015 iv = ggc_alloc<control_iv> ();
3016 iv->base = niter->control.base;
3017 iv->step = niter->control.step;
3018 iv->next = loop->control_ivs;
3019 loop->control_ivs = iv;
3021 return;
3024 /* Record the estimate on number of iterations of LOOP based on the fact that
3025 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3026 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3027 estimated number of iterations is expected to be close to the real one.
3028 UPPER is true if we are sure the induction variable does not wrap. */
3030 static void
3031 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple *stmt,
3032 tree low, tree high, bool realistic, bool upper)
3034 tree niter_bound, extreme, delta;
3035 tree type = TREE_TYPE (base), unsigned_type;
3036 tree orig_base = base;
3038 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3039 return;
3041 if (dump_file && (dump_flags & TDF_DETAILS))
3043 fprintf (dump_file, "Induction variable (");
3044 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3045 fprintf (dump_file, ") ");
3046 print_generic_expr (dump_file, base, TDF_SLIM);
3047 fprintf (dump_file, " + ");
3048 print_generic_expr (dump_file, step, TDF_SLIM);
3049 fprintf (dump_file, " * iteration does not wrap in statement ");
3050 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3051 fprintf (dump_file, " in loop %d.\n", loop->num);
3054 unsigned_type = unsigned_type_for (type);
3055 base = fold_convert (unsigned_type, base);
3056 step = fold_convert (unsigned_type, step);
3058 if (tree_int_cst_sign_bit (step))
3060 wide_int min, max;
3061 extreme = fold_convert (unsigned_type, low);
3062 if (TREE_CODE (orig_base) == SSA_NAME
3063 && TREE_CODE (high) == INTEGER_CST
3064 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3065 && get_range_info (orig_base, &min, &max) == VR_RANGE
3066 && wi::gts_p (high, max))
3067 base = wide_int_to_tree (unsigned_type, max);
3068 else if (TREE_CODE (base) != INTEGER_CST
3069 && dominated_by_p (CDI_DOMINATORS,
3070 loop->latch, gimple_bb (stmt)))
3071 base = fold_convert (unsigned_type, high);
3072 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3073 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3075 else
3077 wide_int min, max;
3078 extreme = fold_convert (unsigned_type, high);
3079 if (TREE_CODE (orig_base) == SSA_NAME
3080 && TREE_CODE (low) == INTEGER_CST
3081 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3082 && get_range_info (orig_base, &min, &max) == VR_RANGE
3083 && wi::gts_p (min, low))
3084 base = wide_int_to_tree (unsigned_type, min);
3085 else if (TREE_CODE (base) != INTEGER_CST
3086 && dominated_by_p (CDI_DOMINATORS,
3087 loop->latch, gimple_bb (stmt)))
3088 base = fold_convert (unsigned_type, low);
3089 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3092 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3093 would get out of the range. */
3094 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3095 widest_int max = derive_constant_upper_bound (niter_bound);
3096 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3099 /* Determine information about number of iterations a LOOP from the index
3100 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3101 guaranteed to be executed in every iteration of LOOP. Callback for
3102 for_each_index. */
3104 struct ilb_data
3106 struct loop *loop;
3107 gimple *stmt;
3110 static bool
3111 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3113 struct ilb_data *data = (struct ilb_data *) dta;
3114 tree ev, init, step;
3115 tree low, high, type, next;
3116 bool sign, upper = true, at_end = false;
3117 struct loop *loop = data->loop;
3118 bool reliable = true;
3120 if (TREE_CODE (base) != ARRAY_REF)
3121 return true;
3123 /* For arrays at the end of the structure, we are not guaranteed that they
3124 do not really extend over their declared size. However, for arrays of
3125 size greater than one, this is unlikely to be intended. */
3126 if (array_at_struct_end_p (base))
3128 at_end = true;
3129 upper = false;
3132 struct loop *dloop = loop_containing_stmt (data->stmt);
3133 if (!dloop)
3134 return true;
3136 ev = analyze_scalar_evolution (dloop, *idx);
3137 ev = instantiate_parameters (loop, ev);
3138 init = initial_condition (ev);
3139 step = evolution_part_in_loop_num (ev, loop->num);
3141 if (!init
3142 || !step
3143 || TREE_CODE (step) != INTEGER_CST
3144 || integer_zerop (step)
3145 || tree_contains_chrecs (init, NULL)
3146 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3147 return true;
3149 low = array_ref_low_bound (base);
3150 high = array_ref_up_bound (base);
3152 /* The case of nonconstant bounds could be handled, but it would be
3153 complicated. */
3154 if (TREE_CODE (low) != INTEGER_CST
3155 || !high
3156 || TREE_CODE (high) != INTEGER_CST)
3157 return true;
3158 sign = tree_int_cst_sign_bit (step);
3159 type = TREE_TYPE (step);
3161 /* The array of length 1 at the end of a structure most likely extends
3162 beyond its bounds. */
3163 if (at_end
3164 && operand_equal_p (low, high, 0))
3165 return true;
3167 /* In case the relevant bound of the array does not fit in type, or
3168 it does, but bound + step (in type) still belongs into the range of the
3169 array, the index may wrap and still stay within the range of the array
3170 (consider e.g. if the array is indexed by the full range of
3171 unsigned char).
3173 To make things simpler, we require both bounds to fit into type, although
3174 there are cases where this would not be strictly necessary. */
3175 if (!int_fits_type_p (high, type)
3176 || !int_fits_type_p (low, type))
3177 return true;
3178 low = fold_convert (type, low);
3179 high = fold_convert (type, high);
3181 if (sign)
3182 next = fold_binary (PLUS_EXPR, type, low, step);
3183 else
3184 next = fold_binary (PLUS_EXPR, type, high, step);
3186 if (tree_int_cst_compare (low, next) <= 0
3187 && tree_int_cst_compare (next, high) <= 0)
3188 return true;
3190 /* If access is not executed on every iteration, we must ensure that overlow may
3191 not make the access valid later. */
3192 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3193 && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
3194 step, data->stmt, loop, true))
3195 reliable = false;
3197 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
3198 return true;
3201 /* Determine information about number of iterations a LOOP from the bounds
3202 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3203 STMT is guaranteed to be executed in every iteration of LOOP.*/
3205 static void
3206 infer_loop_bounds_from_ref (struct loop *loop, gimple *stmt, tree ref)
3208 struct ilb_data data;
3210 data.loop = loop;
3211 data.stmt = stmt;
3212 for_each_index (&ref, idx_infer_loop_bounds, &data);
3215 /* Determine information about number of iterations of a LOOP from the way
3216 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3217 executed in every iteration of LOOP. */
3219 static void
3220 infer_loop_bounds_from_array (struct loop *loop, gimple *stmt)
3222 if (is_gimple_assign (stmt))
3224 tree op0 = gimple_assign_lhs (stmt);
3225 tree op1 = gimple_assign_rhs1 (stmt);
3227 /* For each memory access, analyze its access function
3228 and record a bound on the loop iteration domain. */
3229 if (REFERENCE_CLASS_P (op0))
3230 infer_loop_bounds_from_ref (loop, stmt, op0);
3232 if (REFERENCE_CLASS_P (op1))
3233 infer_loop_bounds_from_ref (loop, stmt, op1);
3235 else if (is_gimple_call (stmt))
3237 tree arg, lhs;
3238 unsigned i, n = gimple_call_num_args (stmt);
3240 lhs = gimple_call_lhs (stmt);
3241 if (lhs && REFERENCE_CLASS_P (lhs))
3242 infer_loop_bounds_from_ref (loop, stmt, lhs);
3244 for (i = 0; i < n; i++)
3246 arg = gimple_call_arg (stmt, i);
3247 if (REFERENCE_CLASS_P (arg))
3248 infer_loop_bounds_from_ref (loop, stmt, arg);
3253 /* Determine information about number of iterations of a LOOP from the fact
3254 that pointer arithmetics in STMT does not overflow. */
3256 static void
3257 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple *stmt)
3259 tree def, base, step, scev, type, low, high;
3260 tree var, ptr;
3262 if (!is_gimple_assign (stmt)
3263 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3264 return;
3266 def = gimple_assign_lhs (stmt);
3267 if (TREE_CODE (def) != SSA_NAME)
3268 return;
3270 type = TREE_TYPE (def);
3271 if (!nowrap_type_p (type))
3272 return;
3274 ptr = gimple_assign_rhs1 (stmt);
3275 if (!expr_invariant_in_loop_p (loop, ptr))
3276 return;
3278 var = gimple_assign_rhs2 (stmt);
3279 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3280 return;
3282 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3283 if (chrec_contains_undetermined (scev))
3284 return;
3286 base = initial_condition_in_loop_num (scev, loop->num);
3287 step = evolution_part_in_loop_num (scev, loop->num);
3289 if (!base || !step
3290 || TREE_CODE (step) != INTEGER_CST
3291 || tree_contains_chrecs (base, NULL)
3292 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3293 return;
3295 low = lower_bound_in_type (type, type);
3296 high = upper_bound_in_type (type, type);
3298 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3299 produce a NULL pointer. The contrary would mean NULL points to an object,
3300 while NULL is supposed to compare unequal with the address of all objects.
3301 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3302 NULL pointer since that would mean wrapping, which we assume here not to
3303 happen. So, we can exclude NULL from the valid range of pointer
3304 arithmetic. */
3305 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3306 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3308 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3311 /* Determine information about number of iterations of a LOOP from the fact
3312 that signed arithmetics in STMT does not overflow. */
3314 static void
3315 infer_loop_bounds_from_signedness (struct loop *loop, gimple *stmt)
3317 tree def, base, step, scev, type, low, high;
3319 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3320 return;
3322 def = gimple_assign_lhs (stmt);
3324 if (TREE_CODE (def) != SSA_NAME)
3325 return;
3327 type = TREE_TYPE (def);
3328 if (!INTEGRAL_TYPE_P (type)
3329 || !TYPE_OVERFLOW_UNDEFINED (type))
3330 return;
3332 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3333 if (chrec_contains_undetermined (scev))
3334 return;
3336 base = initial_condition_in_loop_num (scev, loop->num);
3337 step = evolution_part_in_loop_num (scev, loop->num);
3339 if (!base || !step
3340 || TREE_CODE (step) != INTEGER_CST
3341 || tree_contains_chrecs (base, NULL)
3342 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3343 return;
3345 low = lower_bound_in_type (type, type);
3346 high = upper_bound_in_type (type, type);
3348 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3351 /* The following analyzers are extracting informations on the bounds
3352 of LOOP from the following undefined behaviors:
3354 - data references should not access elements over the statically
3355 allocated size,
3357 - signed variables should not overflow when flag_wrapv is not set.
3360 static void
3361 infer_loop_bounds_from_undefined (struct loop *loop)
3363 unsigned i;
3364 basic_block *bbs;
3365 gimple_stmt_iterator bsi;
3366 basic_block bb;
3367 bool reliable;
3369 bbs = get_loop_body (loop);
3371 for (i = 0; i < loop->num_nodes; i++)
3373 bb = bbs[i];
3375 /* If BB is not executed in each iteration of the loop, we cannot
3376 use the operations in it to infer reliable upper bound on the
3377 # of iterations of the loop. However, we can use it as a guess.
3378 Reliable guesses come only from array bounds. */
3379 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
3381 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3383 gimple *stmt = gsi_stmt (bsi);
3385 infer_loop_bounds_from_array (loop, stmt);
3387 if (reliable)
3389 infer_loop_bounds_from_signedness (loop, stmt);
3390 infer_loop_bounds_from_pointer_arith (loop, stmt);
3396 free (bbs);
3399 /* Compare wide ints, callback for qsort. */
3401 static int
3402 wide_int_cmp (const void *p1, const void *p2)
3404 const widest_int *d1 = (const widest_int *) p1;
3405 const widest_int *d2 = (const widest_int *) p2;
3406 return wi::cmpu (*d1, *d2);
3409 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3410 Lookup by binary search. */
3412 static int
3413 bound_index (vec<widest_int> bounds, const widest_int &bound)
3415 unsigned int end = bounds.length ();
3416 unsigned int begin = 0;
3418 /* Find a matching index by means of a binary search. */
3419 while (begin != end)
3421 unsigned int middle = (begin + end) / 2;
3422 widest_int index = bounds[middle];
3424 if (index == bound)
3425 return middle;
3426 else if (wi::ltu_p (index, bound))
3427 begin = middle + 1;
3428 else
3429 end = middle;
3431 gcc_unreachable ();
3434 /* We recorded loop bounds only for statements dominating loop latch (and thus
3435 executed each loop iteration). If there are any bounds on statements not
3436 dominating the loop latch we can improve the estimate by walking the loop
3437 body and seeing if every path from loop header to loop latch contains
3438 some bounded statement. */
3440 static void
3441 discover_iteration_bound_by_body_walk (struct loop *loop)
3443 struct nb_iter_bound *elt;
3444 vec<widest_int> bounds = vNULL;
3445 vec<vec<basic_block> > queues = vNULL;
3446 vec<basic_block> queue = vNULL;
3447 ptrdiff_t queue_index;
3448 ptrdiff_t latch_index = 0;
3450 /* Discover what bounds may interest us. */
3451 for (elt = loop->bounds; elt; elt = elt->next)
3453 widest_int bound = elt->bound;
3455 /* Exit terminates loop at given iteration, while non-exits produce undefined
3456 effect on the next iteration. */
3457 if (!elt->is_exit)
3459 bound += 1;
3460 /* If an overflow occurred, ignore the result. */
3461 if (bound == 0)
3462 continue;
3465 if (!loop->any_upper_bound
3466 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3467 bounds.safe_push (bound);
3470 /* Exit early if there is nothing to do. */
3471 if (!bounds.exists ())
3472 return;
3474 if (dump_file && (dump_flags & TDF_DETAILS))
3475 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3477 /* Sort the bounds in decreasing order. */
3478 bounds.qsort (wide_int_cmp);
3480 /* For every basic block record the lowest bound that is guaranteed to
3481 terminate the loop. */
3483 hash_map<basic_block, ptrdiff_t> bb_bounds;
3484 for (elt = loop->bounds; elt; elt = elt->next)
3486 widest_int bound = elt->bound;
3487 if (!elt->is_exit)
3489 bound += 1;
3490 /* If an overflow occurred, ignore the result. */
3491 if (bound == 0)
3492 continue;
3495 if (!loop->any_upper_bound
3496 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
3498 ptrdiff_t index = bound_index (bounds, bound);
3499 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
3500 if (!entry)
3501 bb_bounds.put (gimple_bb (elt->stmt), index);
3502 else if ((ptrdiff_t)*entry > index)
3503 *entry = index;
3507 hash_map<basic_block, ptrdiff_t> block_priority;
3509 /* Perform shortest path discovery loop->header ... loop->latch.
3511 The "distance" is given by the smallest loop bound of basic block
3512 present in the path and we look for path with largest smallest bound
3513 on it.
3515 To avoid the need for fibonacci heap on double ints we simply compress
3516 double ints into indexes to BOUNDS array and then represent the queue
3517 as arrays of queues for every index.
3518 Index of BOUNDS.length() means that the execution of given BB has
3519 no bounds determined.
3521 VISITED is a pointer map translating basic block into smallest index
3522 it was inserted into the priority queue with. */
3523 latch_index = -1;
3525 /* Start walk in loop header with index set to infinite bound. */
3526 queue_index = bounds.length ();
3527 queues.safe_grow_cleared (queue_index + 1);
3528 queue.safe_push (loop->header);
3529 queues[queue_index] = queue;
3530 block_priority.put (loop->header, queue_index);
3532 for (; queue_index >= 0; queue_index--)
3534 if (latch_index < queue_index)
3536 while (queues[queue_index].length ())
3538 basic_block bb;
3539 ptrdiff_t bound_index = queue_index;
3540 edge e;
3541 edge_iterator ei;
3543 queue = queues[queue_index];
3544 bb = queue.pop ();
3546 /* OK, we later inserted the BB with lower priority, skip it. */
3547 if (*block_priority.get (bb) > queue_index)
3548 continue;
3550 /* See if we can improve the bound. */
3551 ptrdiff_t *entry = bb_bounds.get (bb);
3552 if (entry && *entry < bound_index)
3553 bound_index = *entry;
3555 /* Insert succesors into the queue, watch for latch edge
3556 and record greatest index we saw. */
3557 FOR_EACH_EDGE (e, ei, bb->succs)
3559 bool insert = false;
3561 if (loop_exit_edge_p (loop, e))
3562 continue;
3564 if (e == loop_latch_edge (loop)
3565 && latch_index < bound_index)
3566 latch_index = bound_index;
3567 else if (!(entry = block_priority.get (e->dest)))
3569 insert = true;
3570 block_priority.put (e->dest, bound_index);
3572 else if (*entry < bound_index)
3574 insert = true;
3575 *entry = bound_index;
3578 if (insert)
3579 queues[bound_index].safe_push (e->dest);
3583 queues[queue_index].release ();
3586 gcc_assert (latch_index >= 0);
3587 if ((unsigned)latch_index < bounds.length ())
3589 if (dump_file && (dump_flags & TDF_DETAILS))
3591 fprintf (dump_file, "Found better loop bound ");
3592 print_decu (bounds[latch_index], dump_file);
3593 fprintf (dump_file, "\n");
3595 record_niter_bound (loop, bounds[latch_index], false, true);
3598 queues.release ();
3599 bounds.release ();
3602 /* See if every path cross the loop goes through a statement that is known
3603 to not execute at the last iteration. In that case we can decrese iteration
3604 count by 1. */
3606 static void
3607 maybe_lower_iteration_bound (struct loop *loop)
3609 hash_set<gimple *> *not_executed_last_iteration = NULL;
3610 struct nb_iter_bound *elt;
3611 bool found_exit = false;
3612 vec<basic_block> queue = vNULL;
3613 bitmap visited;
3615 /* Collect all statements with interesting (i.e. lower than
3616 nb_iterations_upper_bound) bound on them.
3618 TODO: Due to the way record_estimate choose estimates to store, the bounds
3619 will be always nb_iterations_upper_bound-1. We can change this to record
3620 also statements not dominating the loop latch and update the walk bellow
3621 to the shortest path algorthm. */
3622 for (elt = loop->bounds; elt; elt = elt->next)
3624 if (!elt->is_exit
3625 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
3627 if (!not_executed_last_iteration)
3628 not_executed_last_iteration = new hash_set<gimple *>;
3629 not_executed_last_iteration->add (elt->stmt);
3632 if (!not_executed_last_iteration)
3633 return;
3635 /* Start DFS walk in the loop header and see if we can reach the
3636 loop latch or any of the exits (including statements with side
3637 effects that may terminate the loop otherwise) without visiting
3638 any of the statements known to have undefined effect on the last
3639 iteration. */
3640 queue.safe_push (loop->header);
3641 visited = BITMAP_ALLOC (NULL);
3642 bitmap_set_bit (visited, loop->header->index);
3643 found_exit = false;
3647 basic_block bb = queue.pop ();
3648 gimple_stmt_iterator gsi;
3649 bool stmt_found = false;
3651 /* Loop for possible exits and statements bounding the execution. */
3652 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3654 gimple *stmt = gsi_stmt (gsi);
3655 if (not_executed_last_iteration->contains (stmt))
3657 stmt_found = true;
3658 break;
3660 if (gimple_has_side_effects (stmt))
3662 found_exit = true;
3663 break;
3666 if (found_exit)
3667 break;
3669 /* If no bounding statement is found, continue the walk. */
3670 if (!stmt_found)
3672 edge e;
3673 edge_iterator ei;
3675 FOR_EACH_EDGE (e, ei, bb->succs)
3677 if (loop_exit_edge_p (loop, e)
3678 || e == loop_latch_edge (loop))
3680 found_exit = true;
3681 break;
3683 if (bitmap_set_bit (visited, e->dest->index))
3684 queue.safe_push (e->dest);
3688 while (queue.length () && !found_exit);
3690 /* If every path through the loop reach bounding statement before exit,
3691 then we know the last iteration of the loop will have undefined effect
3692 and we can decrease number of iterations. */
3694 if (!found_exit)
3696 if (dump_file && (dump_flags & TDF_DETAILS))
3697 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3698 "undefined statement must be executed at the last iteration.\n");
3699 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
3700 false, true);
3703 BITMAP_FREE (visited);
3704 queue.release ();
3705 delete not_executed_last_iteration;
3708 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3709 is true also use estimates derived from undefined behavior. */
3711 static void
3712 estimate_numbers_of_iterations_loop (struct loop *loop)
3714 vec<edge> exits;
3715 tree niter, type;
3716 unsigned i;
3717 struct tree_niter_desc niter_desc;
3718 edge ex;
3719 widest_int bound;
3720 edge likely_exit;
3722 /* Give up if we already have tried to compute an estimation. */
3723 if (loop->estimate_state != EST_NOT_COMPUTED)
3724 return;
3726 loop->estimate_state = EST_AVAILABLE;
3727 /* Force estimate compuation but leave any existing upper bound in place. */
3728 loop->any_estimate = false;
3730 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3731 to be constant, we avoid undefined behavior implied bounds and instead
3732 diagnose those loops with -Waggressive-loop-optimizations. */
3733 number_of_latch_executions (loop);
3735 exits = get_loop_exit_edges (loop);
3736 likely_exit = single_likely_exit (loop);
3737 FOR_EACH_VEC_ELT (exits, i, ex)
3739 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3740 continue;
3742 niter = niter_desc.niter;
3743 type = TREE_TYPE (niter);
3744 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3745 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3746 build_int_cst (type, 0),
3747 niter);
3748 record_estimate (loop, niter, niter_desc.max,
3749 last_stmt (ex->src),
3750 true, ex == likely_exit, true);
3751 record_control_iv (loop, &niter_desc);
3753 exits.release ();
3755 if (flag_aggressive_loop_optimizations)
3756 infer_loop_bounds_from_undefined (loop);
3758 discover_iteration_bound_by_body_walk (loop);
3760 maybe_lower_iteration_bound (loop);
3762 /* If we have a measured profile, use it to estimate the number of
3763 iterations. */
3764 if (loop->header->count != 0)
3766 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3767 bound = gcov_type_to_wide_int (nit);
3768 record_niter_bound (loop, bound, true, false);
3771 /* If we know the exact number of iterations of this loop, try to
3772 not break code with undefined behavior by not recording smaller
3773 maximum number of iterations. */
3774 if (loop->nb_iterations
3775 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3777 loop->any_upper_bound = true;
3778 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
3782 /* Sets NIT to the estimated number of executions of the latch of the
3783 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3784 large as the number of iterations. If we have no reliable estimate,
3785 the function returns false, otherwise returns true. */
3787 bool
3788 estimated_loop_iterations (struct loop *loop, widest_int *nit)
3790 /* When SCEV information is available, try to update loop iterations
3791 estimate. Otherwise just return whatever we recorded earlier. */
3792 if (scev_initialized_p ())
3793 estimate_numbers_of_iterations_loop (loop);
3795 return (get_estimated_loop_iterations (loop, nit));
3798 /* Similar to estimated_loop_iterations, but returns the estimate only
3799 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3800 on the number of iterations of LOOP could not be derived, returns -1. */
3802 HOST_WIDE_INT
3803 estimated_loop_iterations_int (struct loop *loop)
3805 widest_int nit;
3806 HOST_WIDE_INT hwi_nit;
3808 if (!estimated_loop_iterations (loop, &nit))
3809 return -1;
3811 if (!wi::fits_shwi_p (nit))
3812 return -1;
3813 hwi_nit = nit.to_shwi ();
3815 return hwi_nit < 0 ? -1 : hwi_nit;
3819 /* Sets NIT to an upper bound for the maximum number of executions of the
3820 latch of the LOOP. If we have no reliable estimate, the function returns
3821 false, otherwise returns true. */
3823 bool
3824 max_loop_iterations (struct loop *loop, widest_int *nit)
3826 /* When SCEV information is available, try to update loop iterations
3827 estimate. Otherwise just return whatever we recorded earlier. */
3828 if (scev_initialized_p ())
3829 estimate_numbers_of_iterations_loop (loop);
3831 return get_max_loop_iterations (loop, nit);
3834 /* Similar to max_loop_iterations, but returns the estimate only
3835 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3836 on the number of iterations of LOOP could not be derived, returns -1. */
3838 HOST_WIDE_INT
3839 max_loop_iterations_int (struct loop *loop)
3841 widest_int nit;
3842 HOST_WIDE_INT hwi_nit;
3844 if (!max_loop_iterations (loop, &nit))
3845 return -1;
3847 if (!wi::fits_shwi_p (nit))
3848 return -1;
3849 hwi_nit = nit.to_shwi ();
3851 return hwi_nit < 0 ? -1 : hwi_nit;
3854 /* Returns an estimate for the number of executions of statements
3855 in the LOOP. For statements before the loop exit, this exceeds
3856 the number of execution of the latch by one. */
3858 HOST_WIDE_INT
3859 estimated_stmt_executions_int (struct loop *loop)
3861 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3862 HOST_WIDE_INT snit;
3864 if (nit == -1)
3865 return -1;
3867 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3869 /* If the computation overflows, return -1. */
3870 return snit < 0 ? -1 : snit;
3873 /* Sets NIT to the estimated maximum number of executions of the latch of the
3874 LOOP, plus one. If we have no reliable estimate, the function returns
3875 false, otherwise returns true. */
3877 bool
3878 max_stmt_executions (struct loop *loop, widest_int *nit)
3880 widest_int nit_minus_one;
3882 if (!max_loop_iterations (loop, nit))
3883 return false;
3885 nit_minus_one = *nit;
3887 *nit += 1;
3889 return wi::gtu_p (*nit, nit_minus_one);
3892 /* Sets NIT to the estimated number of executions of the latch of the
3893 LOOP, plus one. If we have no reliable estimate, the function returns
3894 false, otherwise returns true. */
3896 bool
3897 estimated_stmt_executions (struct loop *loop, widest_int *nit)
3899 widest_int nit_minus_one;
3901 if (!estimated_loop_iterations (loop, nit))
3902 return false;
3904 nit_minus_one = *nit;
3906 *nit += 1;
3908 return wi::gtu_p (*nit, nit_minus_one);
3911 /* Records estimates on numbers of iterations of loops. */
3913 void
3914 estimate_numbers_of_iterations (void)
3916 struct loop *loop;
3918 /* We don't want to issue signed overflow warnings while getting
3919 loop iteration estimates. */
3920 fold_defer_overflow_warnings ();
3922 FOR_EACH_LOOP (loop, 0)
3924 estimate_numbers_of_iterations_loop (loop);
3927 fold_undefer_and_ignore_overflow_warnings ();
3930 /* Returns true if statement S1 dominates statement S2. */
3932 bool
3933 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
3935 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3937 if (!bb1
3938 || s1 == s2)
3939 return true;
3941 if (bb1 == bb2)
3943 gimple_stmt_iterator bsi;
3945 if (gimple_code (s2) == GIMPLE_PHI)
3946 return false;
3948 if (gimple_code (s1) == GIMPLE_PHI)
3949 return true;
3951 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3952 if (gsi_stmt (bsi) == s1)
3953 return true;
3955 return false;
3958 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3961 /* Returns true when we can prove that the number of executions of
3962 STMT in the loop is at most NITER, according to the bound on
3963 the number of executions of the statement NITER_BOUND->stmt recorded in
3964 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3966 ??? This code can become quite a CPU hog - we can have many bounds,
3967 and large basic block forcing stmt_dominates_stmt_p to be queried
3968 many times on a large basic blocks, so the whole thing is O(n^2)
3969 for scev_probably_wraps_p invocation (that can be done n times).
3971 It would make more sense (and give better answers) to remember BB
3972 bounds computed by discover_iteration_bound_by_body_walk. */
3974 static bool
3975 n_of_executions_at_most (gimple *stmt,
3976 struct nb_iter_bound *niter_bound,
3977 tree niter)
3979 widest_int bound = niter_bound->bound;
3980 tree nit_type = TREE_TYPE (niter), e;
3981 enum tree_code cmp;
3983 gcc_assert (TYPE_UNSIGNED (nit_type));
3985 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3986 the number of iterations is small. */
3987 if (!wi::fits_to_tree_p (bound, nit_type))
3988 return false;
3990 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3991 times. This means that:
3993 -- if NITER_BOUND->is_exit is true, then everything after
3994 it at most NITER_BOUND->bound times.
3996 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3997 is executed, then NITER_BOUND->stmt is executed as well in the same
3998 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4000 If we can determine that NITER_BOUND->stmt is always executed
4001 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4002 We conclude that if both statements belong to the same
4003 basic block and STMT is before NITER_BOUND->stmt and there are no
4004 statements with side effects in between. */
4006 if (niter_bound->is_exit)
4008 if (stmt == niter_bound->stmt
4009 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4010 return false;
4011 cmp = GE_EXPR;
4013 else
4015 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4017 gimple_stmt_iterator bsi;
4018 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4019 || gimple_code (stmt) == GIMPLE_PHI
4020 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4021 return false;
4023 /* By stmt_dominates_stmt_p we already know that STMT appears
4024 before NITER_BOUND->STMT. Still need to test that the loop
4025 can not be terinated by a side effect in between. */
4026 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4027 gsi_next (&bsi))
4028 if (gimple_has_side_effects (gsi_stmt (bsi)))
4029 return false;
4030 bound += 1;
4031 if (bound == 0
4032 || !wi::fits_to_tree_p (bound, nit_type))
4033 return false;
4035 cmp = GT_EXPR;
4038 e = fold_binary (cmp, boolean_type_node,
4039 niter, wide_int_to_tree (nit_type, bound));
4040 return e && integer_nonzerop (e);
4043 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4045 bool
4046 nowrap_type_p (tree type)
4048 if (INTEGRAL_TYPE_P (type)
4049 && TYPE_OVERFLOW_UNDEFINED (type))
4050 return true;
4052 if (POINTER_TYPE_P (type))
4053 return true;
4055 return false;
4058 /* Return true if we can prove LOOP is exited before evolution of induction
4059 variabled {BASE, STEP} overflows with respect to its type bound. */
4061 static bool
4062 loop_exits_before_overflow (tree base, tree step,
4063 gimple *at_stmt, struct loop *loop)
4065 widest_int niter;
4066 struct control_iv *civ;
4067 struct nb_iter_bound *bound;
4068 tree e, delta, step_abs, unsigned_base;
4069 tree type = TREE_TYPE (step);
4070 tree unsigned_type, valid_niter;
4072 /* Don't issue signed overflow warnings. */
4073 fold_defer_overflow_warnings ();
4075 /* Compute the number of iterations before we reach the bound of the
4076 type, and verify that the loop is exited before this occurs. */
4077 unsigned_type = unsigned_type_for (type);
4078 unsigned_base = fold_convert (unsigned_type, base);
4080 if (tree_int_cst_sign_bit (step))
4082 tree extreme = fold_convert (unsigned_type,
4083 lower_bound_in_type (type, type));
4084 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4085 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4086 fold_convert (unsigned_type, step));
4088 else
4090 tree extreme = fold_convert (unsigned_type,
4091 upper_bound_in_type (type, type));
4092 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4093 step_abs = fold_convert (unsigned_type, step);
4096 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4098 estimate_numbers_of_iterations_loop (loop);
4100 if (max_loop_iterations (loop, &niter)
4101 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4102 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4103 wide_int_to_tree (TREE_TYPE (valid_niter),
4104 niter))) != NULL
4105 && integer_nonzerop (e))
4107 fold_undefer_and_ignore_overflow_warnings ();
4108 return true;
4110 if (at_stmt)
4111 for (bound = loop->bounds; bound; bound = bound->next)
4113 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4115 fold_undefer_and_ignore_overflow_warnings ();
4116 return true;
4119 fold_undefer_and_ignore_overflow_warnings ();
4121 /* Try to prove loop is exited before {base, step} overflows with the
4122 help of analyzed loop control IV. This is done only for IVs with
4123 constant step because otherwise we don't have the information. */
4124 if (TREE_CODE (step) == INTEGER_CST)
4126 tree stop = (TREE_CODE (base) == SSA_NAME) ? base : NULL;
4128 for (civ = loop->control_ivs; civ; civ = civ->next)
4130 enum tree_code code;
4131 tree stepped, extreme, civ_type = TREE_TYPE (civ->step);
4133 /* Have to consider type difference because operand_equal_p ignores
4134 that for constants. */
4135 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4136 || element_precision (type) != element_precision (civ_type))
4137 continue;
4139 /* Only consider control IV with same step. */
4140 if (!operand_equal_p (step, civ->step, 0))
4141 continue;
4143 /* Done proving if this is a no-overflow control IV. */
4144 if (operand_equal_p (base, civ->base, 0))
4145 return true;
4147 /* If this is a before stepping control IV, in other words, we have
4149 {civ_base, step} = {base + step, step}
4151 Because civ {base + step, step} doesn't overflow during loop
4152 iterations, {base, step} will not overflow if we can prove the
4153 operation "base + step" does not overflow. Specifically, we try
4154 to prove below conditions are satisfied:
4156 base <= UPPER_BOUND (type) - step ;;step > 0
4157 base >= LOWER_BOUND (type) - step ;;step < 0
4159 by proving the reverse conditions are false using loop's initial
4160 condition. */
4161 if (POINTER_TYPE_P (TREE_TYPE (base)))
4162 code = POINTER_PLUS_EXPR;
4163 else
4164 code = PLUS_EXPR;
4166 stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4167 if (operand_equal_p (stepped, civ->base, 0))
4169 if (tree_int_cst_sign_bit (step))
4171 code = LT_EXPR;
4172 extreme = lower_bound_in_type (type, type);
4174 else
4176 code = GT_EXPR;
4177 extreme = upper_bound_in_type (type, type);
4179 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4180 e = fold_build2 (code, boolean_type_node, base, extreme);
4181 e = simplify_using_initial_conditions (loop, e, stop);
4182 if (integer_zerop (e))
4183 return true;
4188 return false;
4191 /* Return false only when the induction variable BASE + STEP * I is
4192 known to not overflow: i.e. when the number of iterations is small
4193 enough with respect to the step and initial condition in order to
4194 keep the evolution confined in TYPEs bounds. Return true when the
4195 iv is known to overflow or when the property is not computable.
4197 USE_OVERFLOW_SEMANTICS is true if this function should assume that
4198 the rules for overflow of the given language apply (e.g., that signed
4199 arithmetics in C does not overflow). */
4201 bool
4202 scev_probably_wraps_p (tree base, tree step,
4203 gimple *at_stmt, struct loop *loop,
4204 bool use_overflow_semantics)
4206 /* FIXME: We really need something like
4207 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
4209 We used to test for the following situation that frequently appears
4210 during address arithmetics:
4212 D.1621_13 = (long unsigned intD.4) D.1620_12;
4213 D.1622_14 = D.1621_13 * 8;
4214 D.1623_15 = (doubleD.29 *) D.1622_14;
4216 And derived that the sequence corresponding to D_14
4217 can be proved to not wrap because it is used for computing a
4218 memory access; however, this is not really the case -- for example,
4219 if D_12 = (unsigned char) [254,+,1], then D_14 has values
4220 2032, 2040, 0, 8, ..., but the code is still legal. */
4222 if (chrec_contains_undetermined (base)
4223 || chrec_contains_undetermined (step))
4224 return true;
4226 if (integer_zerop (step))
4227 return false;
4229 /* If we can use the fact that signed and pointer arithmetics does not
4230 wrap, we are done. */
4231 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
4232 return false;
4234 /* To be able to use estimates on number of iterations of the loop,
4235 we must have an upper bound on the absolute value of the step. */
4236 if (TREE_CODE (step) != INTEGER_CST)
4237 return true;
4239 if (loop_exits_before_overflow (base, step, at_stmt, loop))
4240 return false;
4242 /* At this point we still don't have a proof that the iv does not
4243 overflow: give up. */
4244 return true;
4247 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
4249 void
4250 free_numbers_of_iterations_estimates_loop (struct loop *loop)
4252 struct control_iv *civ;
4253 struct nb_iter_bound *bound;
4255 loop->nb_iterations = NULL;
4256 loop->estimate_state = EST_NOT_COMPUTED;
4257 for (bound = loop->bounds; bound;)
4259 struct nb_iter_bound *next = bound->next;
4260 ggc_free (bound);
4261 bound = next;
4263 loop->bounds = NULL;
4265 for (civ = loop->control_ivs; civ;)
4267 struct control_iv *next = civ->next;
4268 ggc_free (civ);
4269 civ = next;
4271 loop->control_ivs = NULL;
4274 /* Frees the information on upper bounds on numbers of iterations of loops. */
4276 void
4277 free_numbers_of_iterations_estimates (function *fn)
4279 struct loop *loop;
4281 FOR_EACH_LOOP_FN (fn, loop, 0)
4283 free_numbers_of_iterations_estimates_loop (loop);
4287 /* Substitute value VAL for ssa name NAME inside expressions held
4288 at LOOP. */
4290 void
4291 substitute_in_loop_info (struct loop *loop, tree name, tree val)
4293 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);