Daily bump.
[official-gcc.git] / gcc / rtlanal.c
blob876b90febbb951db21af1d5d718687c82c57c348
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
85 if (base == array.stack)
87 if (i < LOCAL_ELEMS)
89 base[i] = x;
90 return base;
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
102 unsigned int length = array.heap->length ();
103 if (length > i)
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
109 else
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
154 else if (format[i] == 'E')
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
178 return end - orig_end;
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
185 vec_free (array.heap);
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
201 rtx_unstable_p (const_rtx x)
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
207 switch (code)
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
235 /* Fall through. */
237 default:
238 break;
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
248 else if (fmt[i] == 'E')
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
256 return 0;
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
269 RTX_CODE code;
270 int i;
271 const char *fmt;
273 if (!x)
274 return 0;
276 code = GET_CODE (x);
277 switch (code)
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
317 /* Fall through. */
319 default:
320 break;
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
330 else if (fmt[i] == 'E')
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
338 return 0;
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
348 #ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
357 if (to == from)
358 return 0;
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
380 if (table[i].to == to)
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
386 for (j = 0; j < ARRAY_SIZE (table); j++)
388 if (table[j].to == to
389 && table[j].from == table[i].to)
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
397 if (table[j].from == to
398 && table[j].to == table[i].to)
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
408 else if (table[i].to == from)
410 if (table[i].from == to)
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
416 for (j = 0; j < ARRAY_SIZE (table); j++)
418 if (table[j].to == to
419 && table[j].from == table[i].from)
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
427 if (table[j].from == to
428 && table[j].to == table[i].from)
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
452 #else
453 HOST_WIDE_INT offset;
455 if (to == from)
456 return 0;
458 if (reload_completed)
460 INITIAL_FRAME_POINTER_OFFSET (offset);
462 else
464 offset = crtl->outgoing_args_size + get_frame_size ();
465 #if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467 #endif
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
477 #endif
480 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
485 static int
486 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
487 machine_mode mode, bool unaligned_mems)
489 enum rtx_code code = GET_CODE (x);
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
495 HOST_WIDE_INT actual_offset = offset;
497 #ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504 #endif
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
510 switch (code)
512 case SYMBOL_REF:
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
517 tree decl;
518 HOST_WIDE_INT decl_size;
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
531 /* Else check that the access is in bounds. TODO: restructure
532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
549 return 0;
551 case LABEL_REF:
552 return 0;
554 case REG:
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
562 #ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564 #else
565 HOST_WIDE_INT red_zone_size = 0;
566 #endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
574 if (x == frame_pointer_rtx)
576 if (FRAME_GROWS_DOWNWARD)
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
581 else
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
587 else if (x == hard_frame_pointer_rtx)
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
596 #if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
614 else if (x == stack_pointer_rtx)
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
620 #if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624 #if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626 #endif
627 + stack_boundary;
628 #else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632 #if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634 #endif
635 - stack_boundary;
636 #endif
638 else
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643 #if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648 #else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653 #endif
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
666 case CONST:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
670 case PLUS:
671 /* An address is assumed not to trap if:
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
676 /* - or it is an address that can't trap plus a constant integer. */
677 if (CONST_INT_P (XEXP (x, 1))
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
680 return 0;
682 return 1;
684 case LO_SUM:
685 case PRE_MODIFY:
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
697 default:
698 break;
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
705 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
708 rtx_addr_can_trap_p (const_rtx x)
710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
713 /* Return true if X is an address that is known to not be zero. */
715 bool
716 nonzero_address_p (const_rtx x)
718 const enum rtx_code code = GET_CODE (x);
720 switch (code)
722 case SYMBOL_REF:
723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
725 case LABEL_REF:
726 return true;
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
743 case PLUS:
744 /* Handle PIC references. */
745 if (XEXP (x, 0) == pic_offset_table_rtx
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
754 if (CONST_INT_P (XEXP (x, 1))
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
772 default:
773 break;
776 /* If it isn't one of the case above, might be zero. */
777 return false;
780 /* Return 1 if X refers to a memory location whose address
781 cannot be compared reliably with constant addresses,
782 or if X refers to a BLKmode memory object.
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
786 bool
787 rtx_addr_varies_p (const_rtx x, bool for_alias)
789 enum rtx_code code;
790 int i;
791 const char *fmt;
793 if (x == 0)
794 return 0;
796 code = GET_CODE (x);
797 if (code == MEM)
798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
805 return 1;
807 else if (fmt[i] == 'E')
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
812 return 1;
814 return 0;
817 /* Return the CALL in X if there is one. */
820 get_call_rtx_from (rtx x)
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
833 /* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
836 This is used in cse.c with the `related_value' field. */
838 HOST_WIDE_INT
839 get_integer_term (const_rtx x)
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
844 if (GET_CODE (x) == MINUS
845 && CONST_INT_P (XEXP (x, 1)))
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
848 && CONST_INT_P (XEXP (x, 1)))
849 return INTVAL (XEXP (x, 1));
850 return 0;
853 /* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
858 get_related_value (const_rtx x)
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
864 && CONST_INT_P (XEXP (x, 1)))
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
867 && CONST_INT_P (XEXP (x, 1)))
868 return XEXP (x, 0);
869 return 0;
872 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
875 bool
876 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
878 tree decl;
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
883 if (offset == 0)
884 return true;
886 if (offset > 0)
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
904 return false;
907 /* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
910 void
911 split_const (rtx x, rtx *base_out, rtx *offset_out)
913 if (GET_CODE (x) == CONST)
915 x = XEXP (x, 0);
916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
923 *base_out = x;
924 *offset_out = const0_rtx;
927 /* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
931 count_occurrences (const_rtx x, const_rtx find, int count_dest)
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
938 if (x == find)
939 return 1;
941 code = GET_CODE (x);
943 switch (code)
945 case REG:
946 CASE_CONST_ANY:
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
959 case MEM:
960 if (MEM_P (find) && rtx_equal_p (x, find))
961 return 1;
962 break;
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
969 default:
970 break;
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
978 switch (*format_ptr++)
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
990 return count;
994 /* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
997 bool
998 unsigned_reg_p (rtx op)
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1005 if (GET_CODE (op) == SUBREG
1006 && SUBREG_PROMOTED_SIGN (op))
1007 return true;
1009 return false;
1013 /* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1018 reg_mentioned_p (const_rtx reg, const_rtx in)
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
1024 if (in == 0)
1025 return 0;
1027 if (reg == in)
1028 return 1;
1030 if (GET_CODE (in) == LABEL_REF)
1031 return reg == LABEL_REF_LABEL (in);
1033 code = GET_CODE (in);
1035 switch (code)
1037 /* Compare registers by number. */
1038 case REG:
1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1048 CASE_CONST_ANY:
1049 /* These are kept unique for a given value. */
1050 return 0;
1052 default:
1053 break;
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1059 fmt = GET_RTX_FORMAT (code);
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1063 if (fmt[i] == 'E')
1065 int j;
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1074 return 0;
1077 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1081 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1083 rtx_insn *p;
1084 if (beg == end)
1085 return 0;
1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1087 if (LABEL_P (p))
1088 return 0;
1089 return 1;
1092 /* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1096 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
1099 rtx_insn *insn;
1101 if (from_insn == to_insn)
1102 return 0;
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1105 if (NONDEBUG_INSN_P (insn)
1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1108 return 1;
1109 return 0;
1112 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1117 reg_referenced_p (const_rtx x, const_rtx body)
1119 int i;
1121 switch (GET_CODE (body))
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
1132 && !REG_P (SET_DEST (body))
1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1134 && REG_P (SUBREG_REG (SET_DEST (body)))
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
1141 return 0;
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
1147 return 0;
1149 case CALL:
1150 case USE:
1151 case IF_THEN_ELSE:
1152 return reg_overlap_mentioned_p (x, body);
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
1171 return 0;
1173 case CLOBBER:
1174 if (MEM_P (XEXP (body, 0)))
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1184 default:
1185 return 0;
1189 /* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1193 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
1196 const rtx_insn *insn;
1198 if (from_insn == to_insn)
1199 return 0;
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1202 if (INSN_P (insn) && reg_set_p (reg, insn))
1203 return 1;
1204 return 0;
1207 /* Return true if REG is set or clobbered inside INSN. */
1210 reg_set_p (const_rtx reg, const_rtx insn)
1212 /* After delay slot handling, call and branch insns might be in a
1213 sequence. Check all the elements there. */
1214 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1216 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1217 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1218 return true;
1220 return false;
1223 /* We can be passed an insn or part of one. If we are passed an insn,
1224 check if a side-effect of the insn clobbers REG. */
1225 if (INSN_P (insn)
1226 && (FIND_REG_INC_NOTE (insn, reg)
1227 || (CALL_P (insn)
1228 && ((REG_P (reg)
1229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1230 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1231 GET_MODE (reg), REGNO (reg)))
1232 || MEM_P (reg)
1233 || find_reg_fusage (insn, CLOBBER, reg)))))
1234 return true;
1236 return set_of (reg, insn) != NULL_RTX;
1239 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1240 only if none of them are modified between START and END. Return 1 if
1241 X contains a MEM; this routine does use memory aliasing. */
1244 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1246 const enum rtx_code code = GET_CODE (x);
1247 const char *fmt;
1248 int i, j;
1249 rtx_insn *insn;
1251 if (start == end)
1252 return 0;
1254 switch (code)
1256 CASE_CONST_ANY:
1257 case CONST:
1258 case SYMBOL_REF:
1259 case LABEL_REF:
1260 return 0;
1262 case PC:
1263 case CC0:
1264 return 1;
1266 case MEM:
1267 if (modified_between_p (XEXP (x, 0), start, end))
1268 return 1;
1269 if (MEM_READONLY_P (x))
1270 return 0;
1271 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1272 if (memory_modified_in_insn_p (x, insn))
1273 return 1;
1274 return 0;
1275 break;
1277 case REG:
1278 return reg_set_between_p (x, start, end);
1280 default:
1281 break;
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1287 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1288 return 1;
1290 else if (fmt[i] == 'E')
1291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1292 if (modified_between_p (XVECEXP (x, i, j), start, end))
1293 return 1;
1296 return 0;
1299 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1300 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1301 does use memory aliasing. */
1304 modified_in_p (const_rtx x, const_rtx insn)
1306 const enum rtx_code code = GET_CODE (x);
1307 const char *fmt;
1308 int i, j;
1310 switch (code)
1312 CASE_CONST_ANY:
1313 case CONST:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 return 0;
1318 case PC:
1319 case CC0:
1320 return 1;
1322 case MEM:
1323 if (modified_in_p (XEXP (x, 0), insn))
1324 return 1;
1325 if (MEM_READONLY_P (x))
1326 return 0;
1327 if (memory_modified_in_insn_p (x, insn))
1328 return 1;
1329 return 0;
1330 break;
1332 case REG:
1333 return reg_set_p (x, insn);
1335 default:
1336 break;
1339 fmt = GET_RTX_FORMAT (code);
1340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1342 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1343 return 1;
1345 else if (fmt[i] == 'E')
1346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1347 if (modified_in_p (XVECEXP (x, i, j), insn))
1348 return 1;
1351 return 0;
1354 /* Helper function for set_of. */
1355 struct set_of_data
1357 const_rtx found;
1358 const_rtx pat;
1361 static void
1362 set_of_1 (rtx x, const_rtx pat, void *data1)
1364 struct set_of_data *const data = (struct set_of_data *) (data1);
1365 if (rtx_equal_p (x, data->pat)
1366 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1367 data->found = pat;
1370 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1371 (either directly or via STRICT_LOW_PART and similar modifiers). */
1372 const_rtx
1373 set_of (const_rtx pat, const_rtx insn)
1375 struct set_of_data data;
1376 data.found = NULL_RTX;
1377 data.pat = pat;
1378 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1379 return data.found;
1382 /* Add all hard register in X to *PSET. */
1383 void
1384 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1386 subrtx_iterator::array_type array;
1387 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1389 const_rtx x = *iter;
1390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1391 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1395 /* This function, called through note_stores, collects sets and
1396 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1397 by DATA. */
1398 void
1399 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1401 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1402 if (REG_P (x) && HARD_REGISTER_P (x))
1403 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1406 /* Examine INSN, and compute the set of hard registers written by it.
1407 Store it in *PSET. Should only be called after reload. */
1408 void
1409 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1411 rtx link;
1413 CLEAR_HARD_REG_SET (*pset);
1414 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1415 if (CALL_P (insn))
1417 if (implicit)
1418 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1420 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1421 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1424 if (REG_NOTE_KIND (link) == REG_INC)
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1428 /* Like record_hard_reg_sets, but called through note_uses. */
1429 void
1430 record_hard_reg_uses (rtx *px, void *data)
1432 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1435 /* Given an INSN, return a SET expression if this insn has only a single SET.
1436 It may also have CLOBBERs, USEs, or SET whose output
1437 will not be used, which we ignore. */
1440 single_set_2 (const rtx_insn *insn, const_rtx pat)
1442 rtx set = NULL;
1443 int set_verified = 1;
1444 int i;
1446 if (GET_CODE (pat) == PARALLEL)
1448 for (i = 0; i < XVECLEN (pat, 0); i++)
1450 rtx sub = XVECEXP (pat, 0, i);
1451 switch (GET_CODE (sub))
1453 case USE:
1454 case CLOBBER:
1455 break;
1457 case SET:
1458 /* We can consider insns having multiple sets, where all
1459 but one are dead as single set insns. In common case
1460 only single set is present in the pattern so we want
1461 to avoid checking for REG_UNUSED notes unless necessary.
1463 When we reach set first time, we just expect this is
1464 the single set we are looking for and only when more
1465 sets are found in the insn, we check them. */
1466 if (!set_verified)
1468 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1469 && !side_effects_p (set))
1470 set = NULL;
1471 else
1472 set_verified = 1;
1474 if (!set)
1475 set = sub, set_verified = 0;
1476 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1477 || side_effects_p (sub))
1478 return NULL_RTX;
1479 break;
1481 default:
1482 return NULL_RTX;
1486 return set;
1489 /* Given an INSN, return nonzero if it has more than one SET, else return
1490 zero. */
1493 multiple_sets (const_rtx insn)
1495 int found;
1496 int i;
1498 /* INSN must be an insn. */
1499 if (! INSN_P (insn))
1500 return 0;
1502 /* Only a PARALLEL can have multiple SETs. */
1503 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1505 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1506 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1508 /* If we have already found a SET, then return now. */
1509 if (found)
1510 return 1;
1511 else
1512 found = 1;
1516 /* Either zero or one SET. */
1517 return 0;
1520 /* Return nonzero if the destination of SET equals the source
1521 and there are no side effects. */
1524 set_noop_p (const_rtx set)
1526 rtx src = SET_SRC (set);
1527 rtx dst = SET_DEST (set);
1529 if (dst == pc_rtx && src == pc_rtx)
1530 return 1;
1532 if (MEM_P (dst) && MEM_P (src))
1533 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1535 if (GET_CODE (dst) == ZERO_EXTRACT)
1536 return rtx_equal_p (XEXP (dst, 0), src)
1537 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1538 && !side_effects_p (src);
1540 if (GET_CODE (dst) == STRICT_LOW_PART)
1541 dst = XEXP (dst, 0);
1543 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1545 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1546 return 0;
1547 src = SUBREG_REG (src);
1548 dst = SUBREG_REG (dst);
1551 /* It is a NOOP if destination overlaps with selected src vector
1552 elements. */
1553 if (GET_CODE (src) == VEC_SELECT
1554 && REG_P (XEXP (src, 0)) && REG_P (dst)
1555 && HARD_REGISTER_P (XEXP (src, 0))
1556 && HARD_REGISTER_P (dst))
1558 int i;
1559 rtx par = XEXP (src, 1);
1560 rtx src0 = XEXP (src, 0);
1561 int c0 = INTVAL (XVECEXP (par, 0, 0));
1562 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1564 for (i = 1; i < XVECLEN (par, 0); i++)
1565 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1566 return 0;
1567 return
1568 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1569 offset, GET_MODE (dst)) == (int) REGNO (dst);
1572 return (REG_P (src) && REG_P (dst)
1573 && REGNO (src) == REGNO (dst));
1576 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1577 value to itself. */
1580 noop_move_p (const rtx_insn *insn)
1582 rtx pat = PATTERN (insn);
1584 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1585 return 1;
1587 /* Insns carrying these notes are useful later on. */
1588 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1589 return 0;
1591 /* Check the code to be executed for COND_EXEC. */
1592 if (GET_CODE (pat) == COND_EXEC)
1593 pat = COND_EXEC_CODE (pat);
1595 if (GET_CODE (pat) == SET && set_noop_p (pat))
1596 return 1;
1598 if (GET_CODE (pat) == PARALLEL)
1600 int i;
1601 /* If nothing but SETs of registers to themselves,
1602 this insn can also be deleted. */
1603 for (i = 0; i < XVECLEN (pat, 0); i++)
1605 rtx tem = XVECEXP (pat, 0, i);
1607 if (GET_CODE (tem) == USE
1608 || GET_CODE (tem) == CLOBBER)
1609 continue;
1611 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1612 return 0;
1615 return 1;
1617 return 0;
1621 /* Return nonzero if register in range [REGNO, ENDREGNO)
1622 appears either explicitly or implicitly in X
1623 other than being stored into.
1625 References contained within the substructure at LOC do not count.
1626 LOC may be zero, meaning don't ignore anything. */
1628 bool
1629 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1630 rtx *loc)
1632 int i;
1633 unsigned int x_regno;
1634 RTX_CODE code;
1635 const char *fmt;
1637 repeat:
1638 /* The contents of a REG_NONNEG note is always zero, so we must come here
1639 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1640 if (x == 0)
1641 return false;
1643 code = GET_CODE (x);
1645 switch (code)
1647 case REG:
1648 x_regno = REGNO (x);
1650 /* If we modifying the stack, frame, or argument pointer, it will
1651 clobber a virtual register. In fact, we could be more precise,
1652 but it isn't worth it. */
1653 if ((x_regno == STACK_POINTER_REGNUM
1654 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1655 && x_regno == ARG_POINTER_REGNUM)
1656 || x_regno == FRAME_POINTER_REGNUM)
1657 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1658 return true;
1660 return endregno > x_regno && regno < END_REGNO (x);
1662 case SUBREG:
1663 /* If this is a SUBREG of a hard reg, we can see exactly which
1664 registers are being modified. Otherwise, handle normally. */
1665 if (REG_P (SUBREG_REG (x))
1666 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1668 unsigned int inner_regno = subreg_regno (x);
1669 unsigned int inner_endregno
1670 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1671 ? subreg_nregs (x) : 1);
1673 return endregno > inner_regno && regno < inner_endregno;
1675 break;
1677 case CLOBBER:
1678 case SET:
1679 if (&SET_DEST (x) != loc
1680 /* Note setting a SUBREG counts as referring to the REG it is in for
1681 a pseudo but not for hard registers since we can
1682 treat each word individually. */
1683 && ((GET_CODE (SET_DEST (x)) == SUBREG
1684 && loc != &SUBREG_REG (SET_DEST (x))
1685 && REG_P (SUBREG_REG (SET_DEST (x)))
1686 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1687 && refers_to_regno_p (regno, endregno,
1688 SUBREG_REG (SET_DEST (x)), loc))
1689 || (!REG_P (SET_DEST (x))
1690 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1691 return true;
1693 if (code == CLOBBER || loc == &SET_SRC (x))
1694 return false;
1695 x = SET_SRC (x);
1696 goto repeat;
1698 default:
1699 break;
1702 /* X does not match, so try its subexpressions. */
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1707 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1709 if (i == 0)
1711 x = XEXP (x, 0);
1712 goto repeat;
1714 else
1715 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1716 return true;
1718 else if (fmt[i] == 'E')
1720 int j;
1721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1722 if (loc != &XVECEXP (x, i, j)
1723 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1724 return true;
1727 return false;
1730 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1731 we check if any register number in X conflicts with the relevant register
1732 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1733 contains a MEM (we don't bother checking for memory addresses that can't
1734 conflict because we expect this to be a rare case. */
1737 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1739 unsigned int regno, endregno;
1741 /* If either argument is a constant, then modifying X can not
1742 affect IN. Here we look at IN, we can profitably combine
1743 CONSTANT_P (x) with the switch statement below. */
1744 if (CONSTANT_P (in))
1745 return 0;
1747 recurse:
1748 switch (GET_CODE (x))
1750 case STRICT_LOW_PART:
1751 case ZERO_EXTRACT:
1752 case SIGN_EXTRACT:
1753 /* Overly conservative. */
1754 x = XEXP (x, 0);
1755 goto recurse;
1757 case SUBREG:
1758 regno = REGNO (SUBREG_REG (x));
1759 if (regno < FIRST_PSEUDO_REGISTER)
1760 regno = subreg_regno (x);
1761 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1762 ? subreg_nregs (x) : 1);
1763 goto do_reg;
1765 case REG:
1766 regno = REGNO (x);
1767 endregno = END_REGNO (x);
1768 do_reg:
1769 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1771 case MEM:
1773 const char *fmt;
1774 int i;
1776 if (MEM_P (in))
1777 return 1;
1779 fmt = GET_RTX_FORMAT (GET_CODE (in));
1780 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1781 if (fmt[i] == 'e')
1783 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1784 return 1;
1786 else if (fmt[i] == 'E')
1788 int j;
1789 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1790 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1791 return 1;
1794 return 0;
1797 case SCRATCH:
1798 case PC:
1799 case CC0:
1800 return reg_mentioned_p (x, in);
1802 case PARALLEL:
1804 int i;
1806 /* If any register in here refers to it we return true. */
1807 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1808 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1809 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1810 return 1;
1811 return 0;
1814 default:
1815 gcc_assert (CONSTANT_P (x));
1816 return 0;
1820 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1821 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1822 ignored by note_stores, but passed to FUN.
1824 FUN receives three arguments:
1825 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1826 2. the SET or CLOBBER rtx that does the store,
1827 3. the pointer DATA provided to note_stores.
1829 If the item being stored in or clobbered is a SUBREG of a hard register,
1830 the SUBREG will be passed. */
1832 void
1833 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1835 int i;
1837 if (GET_CODE (x) == COND_EXEC)
1838 x = COND_EXEC_CODE (x);
1840 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1842 rtx dest = SET_DEST (x);
1844 while ((GET_CODE (dest) == SUBREG
1845 && (!REG_P (SUBREG_REG (dest))
1846 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1847 || GET_CODE (dest) == ZERO_EXTRACT
1848 || GET_CODE (dest) == STRICT_LOW_PART)
1849 dest = XEXP (dest, 0);
1851 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1852 each of whose first operand is a register. */
1853 if (GET_CODE (dest) == PARALLEL)
1855 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1856 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1857 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1859 else
1860 (*fun) (dest, x, data);
1863 else if (GET_CODE (x) == PARALLEL)
1864 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1865 note_stores (XVECEXP (x, 0, i), fun, data);
1868 /* Like notes_stores, but call FUN for each expression that is being
1869 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1870 FUN for each expression, not any interior subexpressions. FUN receives a
1871 pointer to the expression and the DATA passed to this function.
1873 Note that this is not quite the same test as that done in reg_referenced_p
1874 since that considers something as being referenced if it is being
1875 partially set, while we do not. */
1877 void
1878 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1880 rtx body = *pbody;
1881 int i;
1883 switch (GET_CODE (body))
1885 case COND_EXEC:
1886 (*fun) (&COND_EXEC_TEST (body), data);
1887 note_uses (&COND_EXEC_CODE (body), fun, data);
1888 return;
1890 case PARALLEL:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 note_uses (&XVECEXP (body, 0, i), fun, data);
1893 return;
1895 case SEQUENCE:
1896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1897 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1898 return;
1900 case USE:
1901 (*fun) (&XEXP (body, 0), data);
1902 return;
1904 case ASM_OPERANDS:
1905 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1906 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1907 return;
1909 case TRAP_IF:
1910 (*fun) (&TRAP_CONDITION (body), data);
1911 return;
1913 case PREFETCH:
1914 (*fun) (&XEXP (body, 0), data);
1915 return;
1917 case UNSPEC:
1918 case UNSPEC_VOLATILE:
1919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1920 (*fun) (&XVECEXP (body, 0, i), data);
1921 return;
1923 case CLOBBER:
1924 if (MEM_P (XEXP (body, 0)))
1925 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1926 return;
1928 case SET:
1930 rtx dest = SET_DEST (body);
1932 /* For sets we replace everything in source plus registers in memory
1933 expression in store and operands of a ZERO_EXTRACT. */
1934 (*fun) (&SET_SRC (body), data);
1936 if (GET_CODE (dest) == ZERO_EXTRACT)
1938 (*fun) (&XEXP (dest, 1), data);
1939 (*fun) (&XEXP (dest, 2), data);
1942 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1943 dest = XEXP (dest, 0);
1945 if (MEM_P (dest))
1946 (*fun) (&XEXP (dest, 0), data);
1948 return;
1950 default:
1951 /* All the other possibilities never store. */
1952 (*fun) (pbody, data);
1953 return;
1957 /* Return nonzero if X's old contents don't survive after INSN.
1958 This will be true if X is (cc0) or if X is a register and
1959 X dies in INSN or because INSN entirely sets X.
1961 "Entirely set" means set directly and not through a SUBREG, or
1962 ZERO_EXTRACT, so no trace of the old contents remains.
1963 Likewise, REG_INC does not count.
1965 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1966 but for this use that makes no difference, since regs don't overlap
1967 during their lifetimes. Therefore, this function may be used
1968 at any time after deaths have been computed.
1970 If REG is a hard reg that occupies multiple machine registers, this
1971 function will only return 1 if each of those registers will be replaced
1972 by INSN. */
1975 dead_or_set_p (const_rtx insn, const_rtx x)
1977 unsigned int regno, end_regno;
1978 unsigned int i;
1980 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1981 if (GET_CODE (x) == CC0)
1982 return 1;
1984 gcc_assert (REG_P (x));
1986 regno = REGNO (x);
1987 end_regno = END_REGNO (x);
1988 for (i = regno; i < end_regno; i++)
1989 if (! dead_or_set_regno_p (insn, i))
1990 return 0;
1992 return 1;
1995 /* Return TRUE iff DEST is a register or subreg of a register and
1996 doesn't change the number of words of the inner register, and any
1997 part of the register is TEST_REGNO. */
1999 static bool
2000 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2002 unsigned int regno, endregno;
2004 if (GET_CODE (dest) == SUBREG
2005 && (((GET_MODE_SIZE (GET_MODE (dest))
2006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2007 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2009 dest = SUBREG_REG (dest);
2011 if (!REG_P (dest))
2012 return false;
2014 regno = REGNO (dest);
2015 endregno = END_REGNO (dest);
2016 return (test_regno >= regno && test_regno < endregno);
2019 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2020 any member matches the covers_regno_no_parallel_p criteria. */
2022 static bool
2023 covers_regno_p (const_rtx dest, unsigned int test_regno)
2025 if (GET_CODE (dest) == PARALLEL)
2027 /* Some targets place small structures in registers for return
2028 values of functions, and those registers are wrapped in
2029 PARALLELs that we may see as the destination of a SET. */
2030 int i;
2032 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2034 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2035 if (inner != NULL_RTX
2036 && covers_regno_no_parallel_p (inner, test_regno))
2037 return true;
2040 return false;
2042 else
2043 return covers_regno_no_parallel_p (dest, test_regno);
2046 /* Utility function for dead_or_set_p to check an individual register. */
2049 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2051 const_rtx pattern;
2053 /* See if there is a death note for something that includes TEST_REGNO. */
2054 if (find_regno_note (insn, REG_DEAD, test_regno))
2055 return 1;
2057 if (CALL_P (insn)
2058 && find_regno_fusage (insn, CLOBBER, test_regno))
2059 return 1;
2061 pattern = PATTERN (insn);
2063 /* If a COND_EXEC is not executed, the value survives. */
2064 if (GET_CODE (pattern) == COND_EXEC)
2065 return 0;
2067 if (GET_CODE (pattern) == SET)
2068 return covers_regno_p (SET_DEST (pattern), test_regno);
2069 else if (GET_CODE (pattern) == PARALLEL)
2071 int i;
2073 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2075 rtx body = XVECEXP (pattern, 0, i);
2077 if (GET_CODE (body) == COND_EXEC)
2078 body = COND_EXEC_CODE (body);
2080 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2081 && covers_regno_p (SET_DEST (body), test_regno))
2082 return 1;
2086 return 0;
2089 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2090 If DATUM is nonzero, look for one whose datum is DATUM. */
2093 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2095 rtx link;
2097 gcc_checking_assert (insn);
2099 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2100 if (! INSN_P (insn))
2101 return 0;
2102 if (datum == 0)
2104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2105 if (REG_NOTE_KIND (link) == kind)
2106 return link;
2107 return 0;
2110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2111 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2112 return link;
2113 return 0;
2116 /* Return the reg-note of kind KIND in insn INSN which applies to register
2117 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2118 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2119 it might be the case that the note overlaps REGNO. */
2122 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2124 rtx link;
2126 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2127 if (! INSN_P (insn))
2128 return 0;
2130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2131 if (REG_NOTE_KIND (link) == kind
2132 /* Verify that it is a register, so that scratch and MEM won't cause a
2133 problem here. */
2134 && REG_P (XEXP (link, 0))
2135 && REGNO (XEXP (link, 0)) <= regno
2136 && END_REGNO (XEXP (link, 0)) > regno)
2137 return link;
2138 return 0;
2141 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2142 has such a note. */
2145 find_reg_equal_equiv_note (const_rtx insn)
2147 rtx link;
2149 if (!INSN_P (insn))
2150 return 0;
2152 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2153 if (REG_NOTE_KIND (link) == REG_EQUAL
2154 || REG_NOTE_KIND (link) == REG_EQUIV)
2156 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2157 insns that have multiple sets. Checking single_set to
2158 make sure of this is not the proper check, as explained
2159 in the comment in set_unique_reg_note.
2161 This should be changed into an assert. */
2162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2163 return 0;
2164 return link;
2166 return NULL;
2169 /* Check whether INSN is a single_set whose source is known to be
2170 equivalent to a constant. Return that constant if so, otherwise
2171 return null. */
2174 find_constant_src (const rtx_insn *insn)
2176 rtx note, set, x;
2178 set = single_set (insn);
2179 if (set)
2181 x = avoid_constant_pool_reference (SET_SRC (set));
2182 if (CONSTANT_P (x))
2183 return x;
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && CONSTANT_P (XEXP (note, 0)))
2188 return XEXP (note, 0);
2190 return NULL_RTX;
2193 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2194 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2197 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2199 /* If it's not a CALL_INSN, it can't possibly have a
2200 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2201 if (!CALL_P (insn))
2202 return 0;
2204 gcc_assert (datum);
2206 if (!REG_P (datum))
2208 rtx link;
2210 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2211 link;
2212 link = XEXP (link, 1))
2213 if (GET_CODE (XEXP (link, 0)) == code
2214 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2215 return 1;
2217 else
2219 unsigned int regno = REGNO (datum);
2221 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2222 to pseudo registers, so don't bother checking. */
2224 if (regno < FIRST_PSEUDO_REGISTER)
2226 unsigned int end_regno = END_REGNO (datum);
2227 unsigned int i;
2229 for (i = regno; i < end_regno; i++)
2230 if (find_regno_fusage (insn, code, i))
2231 return 1;
2235 return 0;
2238 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2239 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2242 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2244 rtx link;
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2249 if (regno >= FIRST_PSEUDO_REGISTER
2250 || !CALL_P (insn) )
2251 return 0;
2253 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2255 rtx op, reg;
2257 if (GET_CODE (op = XEXP (link, 0)) == code
2258 && REG_P (reg = XEXP (op, 0))
2259 && REGNO (reg) <= regno
2260 && END_REGNO (reg) > regno)
2261 return 1;
2264 return 0;
2268 /* Return true if KIND is an integer REG_NOTE. */
2270 static bool
2271 int_reg_note_p (enum reg_note kind)
2273 return kind == REG_BR_PROB;
2276 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2277 stored as the pointer to the next register note. */
2280 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2282 rtx note;
2284 gcc_checking_assert (!int_reg_note_p (kind));
2285 switch (kind)
2287 case REG_CC_SETTER:
2288 case REG_CC_USER:
2289 case REG_LABEL_TARGET:
2290 case REG_LABEL_OPERAND:
2291 case REG_TM:
2292 /* These types of register notes use an INSN_LIST rather than an
2293 EXPR_LIST, so that copying is done right and dumps look
2294 better. */
2295 note = alloc_INSN_LIST (datum, list);
2296 PUT_REG_NOTE_KIND (note, kind);
2297 break;
2299 default:
2300 note = alloc_EXPR_LIST (kind, datum, list);
2301 break;
2304 return note;
2307 /* Add register note with kind KIND and datum DATUM to INSN. */
2309 void
2310 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2312 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2315 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2317 void
2318 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2320 gcc_checking_assert (int_reg_note_p (kind));
2321 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2322 datum, REG_NOTES (insn));
2325 /* Add a register note like NOTE to INSN. */
2327 void
2328 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2330 if (GET_CODE (note) == INT_LIST)
2331 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2332 else
2333 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2338 void
2339 remove_note (rtx insn, const_rtx note)
2341 rtx link;
2343 if (note == NULL_RTX)
2344 return;
2346 if (REG_NOTES (insn) == note)
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2356 switch (REG_NOTE_KIND (note))
2358 case REG_EQUAL:
2359 case REG_EQUIV:
2360 df_notes_rescan (as_a <rtx_insn *> (insn));
2361 break;
2362 default:
2363 break;
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2368 Return true if any note has been removed. */
2370 bool
2371 remove_reg_equal_equiv_notes (rtx_insn *insn)
2373 rtx *loc;
2374 bool ret = false;
2376 loc = &REG_NOTES (insn);
2377 while (*loc)
2379 enum reg_note kind = REG_NOTE_KIND (*loc);
2380 if (kind == REG_EQUAL || kind == REG_EQUIV)
2382 *loc = XEXP (*loc, 1);
2383 ret = true;
2385 else
2386 loc = &XEXP (*loc, 1);
2388 return ret;
2391 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2393 void
2394 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2396 df_ref eq_use;
2398 if (!df)
2399 return;
2401 /* This loop is a little tricky. We cannot just go down the chain because
2402 it is being modified by some actions in the loop. So we just iterate
2403 over the head. We plan to drain the list anyway. */
2404 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2406 rtx_insn *insn = DF_REF_INSN (eq_use);
2407 rtx note = find_reg_equal_equiv_note (insn);
2409 /* This assert is generally triggered when someone deletes a REG_EQUAL
2410 or REG_EQUIV note by hacking the list manually rather than calling
2411 remove_note. */
2412 gcc_assert (note);
2414 remove_note (insn, note);
2418 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2419 return 1 if it is found. A simple equality test is used to determine if
2420 NODE matches. */
2422 bool
2423 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2425 const_rtx x;
2427 for (x = listp; x; x = XEXP (x, 1))
2428 if (node == XEXP (x, 0))
2429 return true;
2431 return false;
2434 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2435 remove that entry from the list if it is found.
2437 A simple equality test is used to determine if NODE matches. */
2439 void
2440 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2442 rtx_expr_list *temp = *listp;
2443 rtx_expr_list *prev = NULL;
2445 while (temp)
2447 if (node == temp->element ())
2449 /* Splice the node out of the list. */
2450 if (prev)
2451 XEXP (prev, 1) = temp->next ();
2452 else
2453 *listp = temp->next ();
2455 return;
2458 prev = temp;
2459 temp = temp->next ();
2463 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2464 remove that entry from the list if it is found.
2466 A simple equality test is used to determine if NODE matches. */
2468 void
2469 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2471 rtx_insn_list *temp = *listp;
2472 rtx_insn_list *prev = NULL;
2474 while (temp)
2476 if (node == temp->insn ())
2478 /* Splice the node out of the list. */
2479 if (prev)
2480 XEXP (prev, 1) = temp->next ();
2481 else
2482 *listp = temp->next ();
2484 return;
2487 prev = temp;
2488 temp = temp->next ();
2492 /* Nonzero if X contains any volatile instructions. These are instructions
2493 which may cause unpredictable machine state instructions, and thus no
2494 instructions or register uses should be moved or combined across them.
2495 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2498 volatile_insn_p (const_rtx x)
2500 const RTX_CODE code = GET_CODE (x);
2501 switch (code)
2503 case LABEL_REF:
2504 case SYMBOL_REF:
2505 case CONST:
2506 CASE_CONST_ANY:
2507 case CC0:
2508 case PC:
2509 case REG:
2510 case SCRATCH:
2511 case CLOBBER:
2512 case ADDR_VEC:
2513 case ADDR_DIFF_VEC:
2514 case CALL:
2515 case MEM:
2516 return 0;
2518 case UNSPEC_VOLATILE:
2519 return 1;
2521 case ASM_INPUT:
2522 case ASM_OPERANDS:
2523 if (MEM_VOLATILE_P (x))
2524 return 1;
2526 default:
2527 break;
2530 /* Recursively scan the operands of this expression. */
2533 const char *const fmt = GET_RTX_FORMAT (code);
2534 int i;
2536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2538 if (fmt[i] == 'e')
2540 if (volatile_insn_p (XEXP (x, i)))
2541 return 1;
2543 else if (fmt[i] == 'E')
2545 int j;
2546 for (j = 0; j < XVECLEN (x, i); j++)
2547 if (volatile_insn_p (XVECEXP (x, i, j)))
2548 return 1;
2552 return 0;
2555 /* Nonzero if X contains any volatile memory references
2556 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2559 volatile_refs_p (const_rtx x)
2561 const RTX_CODE code = GET_CODE (x);
2562 switch (code)
2564 case LABEL_REF:
2565 case SYMBOL_REF:
2566 case CONST:
2567 CASE_CONST_ANY:
2568 case CC0:
2569 case PC:
2570 case REG:
2571 case SCRATCH:
2572 case CLOBBER:
2573 case ADDR_VEC:
2574 case ADDR_DIFF_VEC:
2575 return 0;
2577 case UNSPEC_VOLATILE:
2578 return 1;
2580 case MEM:
2581 case ASM_INPUT:
2582 case ASM_OPERANDS:
2583 if (MEM_VOLATILE_P (x))
2584 return 1;
2586 default:
2587 break;
2590 /* Recursively scan the operands of this expression. */
2593 const char *const fmt = GET_RTX_FORMAT (code);
2594 int i;
2596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2598 if (fmt[i] == 'e')
2600 if (volatile_refs_p (XEXP (x, i)))
2601 return 1;
2603 else if (fmt[i] == 'E')
2605 int j;
2606 for (j = 0; j < XVECLEN (x, i); j++)
2607 if (volatile_refs_p (XVECEXP (x, i, j)))
2608 return 1;
2612 return 0;
2615 /* Similar to above, except that it also rejects register pre- and post-
2616 incrementing. */
2619 side_effects_p (const_rtx x)
2621 const RTX_CODE code = GET_CODE (x);
2622 switch (code)
2624 case LABEL_REF:
2625 case SYMBOL_REF:
2626 case CONST:
2627 CASE_CONST_ANY:
2628 case CC0:
2629 case PC:
2630 case REG:
2631 case SCRATCH:
2632 case ADDR_VEC:
2633 case ADDR_DIFF_VEC:
2634 case VAR_LOCATION:
2635 return 0;
2637 case CLOBBER:
2638 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2639 when some combination can't be done. If we see one, don't think
2640 that we can simplify the expression. */
2641 return (GET_MODE (x) != VOIDmode);
2643 case PRE_INC:
2644 case PRE_DEC:
2645 case POST_INC:
2646 case POST_DEC:
2647 case PRE_MODIFY:
2648 case POST_MODIFY:
2649 case CALL:
2650 case UNSPEC_VOLATILE:
2651 return 1;
2653 case MEM:
2654 case ASM_INPUT:
2655 case ASM_OPERANDS:
2656 if (MEM_VOLATILE_P (x))
2657 return 1;
2659 default:
2660 break;
2663 /* Recursively scan the operands of this expression. */
2666 const char *fmt = GET_RTX_FORMAT (code);
2667 int i;
2669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 if (fmt[i] == 'e')
2673 if (side_effects_p (XEXP (x, i)))
2674 return 1;
2676 else if (fmt[i] == 'E')
2678 int j;
2679 for (j = 0; j < XVECLEN (x, i); j++)
2680 if (side_effects_p (XVECEXP (x, i, j)))
2681 return 1;
2685 return 0;
2688 /* Return nonzero if evaluating rtx X might cause a trap.
2689 FLAGS controls how to consider MEMs. A nonzero means the context
2690 of the access may have changed from the original, such that the
2691 address may have become invalid. */
2694 may_trap_p_1 (const_rtx x, unsigned flags)
2696 int i;
2697 enum rtx_code code;
2698 const char *fmt;
2700 /* We make no distinction currently, but this function is part of
2701 the internal target-hooks ABI so we keep the parameter as
2702 "unsigned flags". */
2703 bool code_changed = flags != 0;
2705 if (x == 0)
2706 return 0;
2707 code = GET_CODE (x);
2708 switch (code)
2710 /* Handle these cases quickly. */
2711 CASE_CONST_ANY:
2712 case SYMBOL_REF:
2713 case LABEL_REF:
2714 case CONST:
2715 case PC:
2716 case CC0:
2717 case REG:
2718 case SCRATCH:
2719 return 0;
2721 case UNSPEC:
2722 return targetm.unspec_may_trap_p (x, flags);
2724 case UNSPEC_VOLATILE:
2725 case ASM_INPUT:
2726 case TRAP_IF:
2727 return 1;
2729 case ASM_OPERANDS:
2730 return MEM_VOLATILE_P (x);
2732 /* Memory ref can trap unless it's a static var or a stack slot. */
2733 case MEM:
2734 /* Recognize specific pattern of stack checking probes. */
2735 if (flag_stack_check
2736 && MEM_VOLATILE_P (x)
2737 && XEXP (x, 0) == stack_pointer_rtx)
2738 return 1;
2739 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2740 reference; moving it out of context such as when moving code
2741 when optimizing, might cause its address to become invalid. */
2742 code_changed
2743 || !MEM_NOTRAP_P (x))
2745 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2746 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2747 GET_MODE (x), code_changed);
2750 return 0;
2752 /* Division by a non-constant might trap. */
2753 case DIV:
2754 case MOD:
2755 case UDIV:
2756 case UMOD:
2757 if (HONOR_SNANS (x))
2758 return 1;
2759 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2760 return flag_trapping_math;
2761 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2762 return 1;
2763 break;
2765 case EXPR_LIST:
2766 /* An EXPR_LIST is used to represent a function call. This
2767 certainly may trap. */
2768 return 1;
2770 case GE:
2771 case GT:
2772 case LE:
2773 case LT:
2774 case LTGT:
2775 case COMPARE:
2776 /* Some floating point comparisons may trap. */
2777 if (!flag_trapping_math)
2778 break;
2779 /* ??? There is no machine independent way to check for tests that trap
2780 when COMPARE is used, though many targets do make this distinction.
2781 For instance, sparc uses CCFPE for compares which generate exceptions
2782 and CCFP for compares which do not generate exceptions. */
2783 if (HONOR_NANS (x))
2784 return 1;
2785 /* But often the compare has some CC mode, so check operand
2786 modes as well. */
2787 if (HONOR_NANS (XEXP (x, 0))
2788 || HONOR_NANS (XEXP (x, 1)))
2789 return 1;
2790 break;
2792 case EQ:
2793 case NE:
2794 if (HONOR_SNANS (x))
2795 return 1;
2796 /* Often comparison is CC mode, so check operand modes. */
2797 if (HONOR_SNANS (XEXP (x, 0))
2798 || HONOR_SNANS (XEXP (x, 1)))
2799 return 1;
2800 break;
2802 case FIX:
2803 /* Conversion of floating point might trap. */
2804 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2805 return 1;
2806 break;
2808 case NEG:
2809 case ABS:
2810 case SUBREG:
2811 /* These operations don't trap even with floating point. */
2812 break;
2814 default:
2815 /* Any floating arithmetic may trap. */
2816 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2817 return 1;
2820 fmt = GET_RTX_FORMAT (code);
2821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2823 if (fmt[i] == 'e')
2825 if (may_trap_p_1 (XEXP (x, i), flags))
2826 return 1;
2828 else if (fmt[i] == 'E')
2830 int j;
2831 for (j = 0; j < XVECLEN (x, i); j++)
2832 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2833 return 1;
2836 return 0;
2839 /* Return nonzero if evaluating rtx X might cause a trap. */
2842 may_trap_p (const_rtx x)
2844 return may_trap_p_1 (x, 0);
2847 /* Same as above, but additionally return nonzero if evaluating rtx X might
2848 cause a fault. We define a fault for the purpose of this function as a
2849 erroneous execution condition that cannot be encountered during the normal
2850 execution of a valid program; the typical example is an unaligned memory
2851 access on a strict alignment machine. The compiler guarantees that it
2852 doesn't generate code that will fault from a valid program, but this
2853 guarantee doesn't mean anything for individual instructions. Consider
2854 the following example:
2856 struct S { int d; union { char *cp; int *ip; }; };
2858 int foo(struct S *s)
2860 if (s->d == 1)
2861 return *s->ip;
2862 else
2863 return *s->cp;
2866 on a strict alignment machine. In a valid program, foo will never be
2867 invoked on a structure for which d is equal to 1 and the underlying
2868 unique field of the union not aligned on a 4-byte boundary, but the
2869 expression *s->ip might cause a fault if considered individually.
2871 At the RTL level, potentially problematic expressions will almost always
2872 verify may_trap_p; for example, the above dereference can be emitted as
2873 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2874 However, suppose that foo is inlined in a caller that causes s->cp to
2875 point to a local character variable and guarantees that s->d is not set
2876 to 1; foo may have been effectively translated into pseudo-RTL as:
2878 if ((reg:SI) == 1)
2879 (set (reg:SI) (mem:SI (%fp - 7)))
2880 else
2881 (set (reg:QI) (mem:QI (%fp - 7)))
2883 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2884 memory reference to a stack slot, but it will certainly cause a fault
2885 on a strict alignment machine. */
2888 may_trap_or_fault_p (const_rtx x)
2890 return may_trap_p_1 (x, 1);
2893 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2894 i.e., an inequality. */
2897 inequality_comparisons_p (const_rtx x)
2899 const char *fmt;
2900 int len, i;
2901 const enum rtx_code code = GET_CODE (x);
2903 switch (code)
2905 case REG:
2906 case SCRATCH:
2907 case PC:
2908 case CC0:
2909 CASE_CONST_ANY:
2910 case CONST:
2911 case LABEL_REF:
2912 case SYMBOL_REF:
2913 return 0;
2915 case LT:
2916 case LTU:
2917 case GT:
2918 case GTU:
2919 case LE:
2920 case LEU:
2921 case GE:
2922 case GEU:
2923 return 1;
2925 default:
2926 break;
2929 len = GET_RTX_LENGTH (code);
2930 fmt = GET_RTX_FORMAT (code);
2932 for (i = 0; i < len; i++)
2934 if (fmt[i] == 'e')
2936 if (inequality_comparisons_p (XEXP (x, i)))
2937 return 1;
2939 else if (fmt[i] == 'E')
2941 int j;
2942 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2943 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2944 return 1;
2948 return 0;
2951 /* Replace any occurrence of FROM in X with TO. The function does
2952 not enter into CONST_DOUBLE for the replace.
2954 Note that copying is not done so X must not be shared unless all copies
2955 are to be modified.
2957 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
2958 those pointer-equal ones. */
2961 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
2963 int i, j;
2964 const char *fmt;
2966 if (x == from)
2967 return to;
2969 /* Allow this function to make replacements in EXPR_LISTs. */
2970 if (x == 0)
2971 return 0;
2973 if (all_regs
2974 && REG_P (x)
2975 && REG_P (from)
2976 && REGNO (x) == REGNO (from))
2978 gcc_assert (GET_MODE (x) == GET_MODE (from));
2979 return to;
2981 else if (GET_CODE (x) == SUBREG)
2983 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
2985 if (CONST_INT_P (new_rtx))
2987 x = simplify_subreg (GET_MODE (x), new_rtx,
2988 GET_MODE (SUBREG_REG (x)),
2989 SUBREG_BYTE (x));
2990 gcc_assert (x);
2992 else
2993 SUBREG_REG (x) = new_rtx;
2995 return x;
2997 else if (GET_CODE (x) == ZERO_EXTEND)
2999 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3001 if (CONST_INT_P (new_rtx))
3003 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3004 new_rtx, GET_MODE (XEXP (x, 0)));
3005 gcc_assert (x);
3007 else
3008 XEXP (x, 0) = new_rtx;
3010 return x;
3013 fmt = GET_RTX_FORMAT (GET_CODE (x));
3014 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3016 if (fmt[i] == 'e')
3017 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3018 else if (fmt[i] == 'E')
3019 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3020 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3021 from, to, all_regs);
3024 return x;
3027 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3028 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3030 void
3031 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3033 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3034 rtx x = *loc;
3035 if (JUMP_TABLE_DATA_P (x))
3037 x = PATTERN (x);
3038 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3039 int len = GET_NUM_ELEM (vec);
3040 for (int i = 0; i < len; ++i)
3042 rtx ref = RTVEC_ELT (vec, i);
3043 if (XEXP (ref, 0) == old_label)
3045 XEXP (ref, 0) = new_label;
3046 if (update_label_nuses)
3048 ++LABEL_NUSES (new_label);
3049 --LABEL_NUSES (old_label);
3053 return;
3056 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3057 field. This is not handled by the iterator because it doesn't
3058 handle unprinted ('0') fields. */
3059 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3060 JUMP_LABEL (x) = new_label;
3062 subrtx_ptr_iterator::array_type array;
3063 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3065 rtx *loc = *iter;
3066 if (rtx x = *loc)
3068 if (GET_CODE (x) == SYMBOL_REF
3069 && CONSTANT_POOL_ADDRESS_P (x))
3071 rtx c = get_pool_constant (x);
3072 if (rtx_referenced_p (old_label, c))
3074 /* Create a copy of constant C; replace the label inside
3075 but do not update LABEL_NUSES because uses in constant pool
3076 are not counted. */
3077 rtx new_c = copy_rtx (c);
3078 replace_label (&new_c, old_label, new_label, false);
3080 /* Add the new constant NEW_C to constant pool and replace
3081 the old reference to constant by new reference. */
3082 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3083 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3087 if ((GET_CODE (x) == LABEL_REF
3088 || GET_CODE (x) == INSN_LIST)
3089 && XEXP (x, 0) == old_label)
3091 XEXP (x, 0) = new_label;
3092 if (update_label_nuses)
3094 ++LABEL_NUSES (new_label);
3095 --LABEL_NUSES (old_label);
3102 void
3103 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3104 bool update_label_nuses)
3106 rtx insn_as_rtx = insn;
3107 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3108 gcc_checking_assert (insn_as_rtx == insn);
3111 /* Return true if X is referenced in BODY. */
3113 bool
3114 rtx_referenced_p (const_rtx x, const_rtx body)
3116 subrtx_iterator::array_type array;
3117 FOR_EACH_SUBRTX (iter, array, body, ALL)
3118 if (const_rtx y = *iter)
3120 /* Check if a label_ref Y refers to label X. */
3121 if (GET_CODE (y) == LABEL_REF
3122 && LABEL_P (x)
3123 && LABEL_REF_LABEL (y) == x)
3124 return true;
3126 if (rtx_equal_p (x, y))
3127 return true;
3129 /* If Y is a reference to pool constant traverse the constant. */
3130 if (GET_CODE (y) == SYMBOL_REF
3131 && CONSTANT_POOL_ADDRESS_P (y))
3132 iter.substitute (get_pool_constant (y));
3134 return false;
3137 /* If INSN is a tablejump return true and store the label (before jump table) to
3138 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3140 bool
3141 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3143 rtx label;
3144 rtx_insn *table;
3146 if (!JUMP_P (insn))
3147 return false;
3149 label = JUMP_LABEL (insn);
3150 if (label != NULL_RTX && !ANY_RETURN_P (label)
3151 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3152 && JUMP_TABLE_DATA_P (table))
3154 if (labelp)
3155 *labelp = label;
3156 if (tablep)
3157 *tablep = as_a <rtx_jump_table_data *> (table);
3158 return true;
3160 return false;
3163 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3164 constant that is not in the constant pool and not in the condition
3165 of an IF_THEN_ELSE. */
3167 static int
3168 computed_jump_p_1 (const_rtx x)
3170 const enum rtx_code code = GET_CODE (x);
3171 int i, j;
3172 const char *fmt;
3174 switch (code)
3176 case LABEL_REF:
3177 case PC:
3178 return 0;
3180 case CONST:
3181 CASE_CONST_ANY:
3182 case SYMBOL_REF:
3183 case REG:
3184 return 1;
3186 case MEM:
3187 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3188 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3190 case IF_THEN_ELSE:
3191 return (computed_jump_p_1 (XEXP (x, 1))
3192 || computed_jump_p_1 (XEXP (x, 2)));
3194 default:
3195 break;
3198 fmt = GET_RTX_FORMAT (code);
3199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3201 if (fmt[i] == 'e'
3202 && computed_jump_p_1 (XEXP (x, i)))
3203 return 1;
3205 else if (fmt[i] == 'E')
3206 for (j = 0; j < XVECLEN (x, i); j++)
3207 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3208 return 1;
3211 return 0;
3214 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3216 Tablejumps and casesi insns are not considered indirect jumps;
3217 we can recognize them by a (use (label_ref)). */
3220 computed_jump_p (const rtx_insn *insn)
3222 int i;
3223 if (JUMP_P (insn))
3225 rtx pat = PATTERN (insn);
3227 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3228 if (JUMP_LABEL (insn) != NULL)
3229 return 0;
3231 if (GET_CODE (pat) == PARALLEL)
3233 int len = XVECLEN (pat, 0);
3234 int has_use_labelref = 0;
3236 for (i = len - 1; i >= 0; i--)
3237 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3238 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3239 == LABEL_REF))
3241 has_use_labelref = 1;
3242 break;
3245 if (! has_use_labelref)
3246 for (i = len - 1; i >= 0; i--)
3247 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3248 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3249 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3250 return 1;
3252 else if (GET_CODE (pat) == SET
3253 && SET_DEST (pat) == pc_rtx
3254 && computed_jump_p_1 (SET_SRC (pat)))
3255 return 1;
3257 return 0;
3262 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3263 the equivalent add insn and pass the result to FN, using DATA as the
3264 final argument. */
3266 static int
3267 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3269 rtx x = XEXP (mem, 0);
3270 switch (GET_CODE (x))
3272 case PRE_INC:
3273 case POST_INC:
3275 int size = GET_MODE_SIZE (GET_MODE (mem));
3276 rtx r1 = XEXP (x, 0);
3277 rtx c = gen_int_mode (size, GET_MODE (r1));
3278 return fn (mem, x, r1, r1, c, data);
3281 case PRE_DEC:
3282 case POST_DEC:
3284 int size = GET_MODE_SIZE (GET_MODE (mem));
3285 rtx r1 = XEXP (x, 0);
3286 rtx c = gen_int_mode (-size, GET_MODE (r1));
3287 return fn (mem, x, r1, r1, c, data);
3290 case PRE_MODIFY:
3291 case POST_MODIFY:
3293 rtx r1 = XEXP (x, 0);
3294 rtx add = XEXP (x, 1);
3295 return fn (mem, x, r1, add, NULL, data);
3298 default:
3299 gcc_unreachable ();
3303 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3304 For each such autoinc operation found, call FN, passing it
3305 the innermost enclosing MEM, the operation itself, the RTX modified
3306 by the operation, two RTXs (the second may be NULL) that, once
3307 added, represent the value to be held by the modified RTX
3308 afterwards, and DATA. FN is to return 0 to continue the
3309 traversal or any other value to have it returned to the caller of
3310 for_each_inc_dec. */
3313 for_each_inc_dec (rtx x,
3314 for_each_inc_dec_fn fn,
3315 void *data)
3317 subrtx_var_iterator::array_type array;
3318 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3320 rtx mem = *iter;
3321 if (mem
3322 && MEM_P (mem)
3323 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3325 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3326 if (res != 0)
3327 return res;
3328 iter.skip_subrtxes ();
3331 return 0;
3335 /* Searches X for any reference to REGNO, returning the rtx of the
3336 reference found if any. Otherwise, returns NULL_RTX. */
3339 regno_use_in (unsigned int regno, rtx x)
3341 const char *fmt;
3342 int i, j;
3343 rtx tem;
3345 if (REG_P (x) && REGNO (x) == regno)
3346 return x;
3348 fmt = GET_RTX_FORMAT (GET_CODE (x));
3349 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3351 if (fmt[i] == 'e')
3353 if ((tem = regno_use_in (regno, XEXP (x, i))))
3354 return tem;
3356 else if (fmt[i] == 'E')
3357 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3358 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3359 return tem;
3362 return NULL_RTX;
3365 /* Return a value indicating whether OP, an operand of a commutative
3366 operation, is preferred as the first or second operand. The more
3367 positive the value, the stronger the preference for being the first
3368 operand. */
3371 commutative_operand_precedence (rtx op)
3373 enum rtx_code code = GET_CODE (op);
3375 /* Constants always become the second operand. Prefer "nice" constants. */
3376 if (code == CONST_INT)
3377 return -8;
3378 if (code == CONST_WIDE_INT)
3379 return -7;
3380 if (code == CONST_DOUBLE)
3381 return -7;
3382 if (code == CONST_FIXED)
3383 return -7;
3384 op = avoid_constant_pool_reference (op);
3385 code = GET_CODE (op);
3387 switch (GET_RTX_CLASS (code))
3389 case RTX_CONST_OBJ:
3390 if (code == CONST_INT)
3391 return -6;
3392 if (code == CONST_WIDE_INT)
3393 return -6;
3394 if (code == CONST_DOUBLE)
3395 return -5;
3396 if (code == CONST_FIXED)
3397 return -5;
3398 return -4;
3400 case RTX_EXTRA:
3401 /* SUBREGs of objects should come second. */
3402 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3403 return -3;
3404 return 0;
3406 case RTX_OBJ:
3407 /* Complex expressions should be the first, so decrease priority
3408 of objects. Prefer pointer objects over non pointer objects. */
3409 if ((REG_P (op) && REG_POINTER (op))
3410 || (MEM_P (op) && MEM_POINTER (op)))
3411 return -1;
3412 return -2;
3414 case RTX_COMM_ARITH:
3415 /* Prefer operands that are themselves commutative to be first.
3416 This helps to make things linear. In particular,
3417 (and (and (reg) (reg)) (not (reg))) is canonical. */
3418 return 4;
3420 case RTX_BIN_ARITH:
3421 /* If only one operand is a binary expression, it will be the first
3422 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3423 is canonical, although it will usually be further simplified. */
3424 return 2;
3426 case RTX_UNARY:
3427 /* Then prefer NEG and NOT. */
3428 if (code == NEG || code == NOT)
3429 return 1;
3431 default:
3432 return 0;
3436 /* Return 1 iff it is necessary to swap operands of commutative operation
3437 in order to canonicalize expression. */
3439 bool
3440 swap_commutative_operands_p (rtx x, rtx y)
3442 return (commutative_operand_precedence (x)
3443 < commutative_operand_precedence (y));
3446 /* Return 1 if X is an autoincrement side effect and the register is
3447 not the stack pointer. */
3449 auto_inc_p (const_rtx x)
3451 switch (GET_CODE (x))
3453 case PRE_INC:
3454 case POST_INC:
3455 case PRE_DEC:
3456 case POST_DEC:
3457 case PRE_MODIFY:
3458 case POST_MODIFY:
3459 /* There are no REG_INC notes for SP. */
3460 if (XEXP (x, 0) != stack_pointer_rtx)
3461 return 1;
3462 default:
3463 break;
3465 return 0;
3468 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3470 loc_mentioned_in_p (rtx *loc, const_rtx in)
3472 enum rtx_code code;
3473 const char *fmt;
3474 int i, j;
3476 if (!in)
3477 return 0;
3479 code = GET_CODE (in);
3480 fmt = GET_RTX_FORMAT (code);
3481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3483 if (fmt[i] == 'e')
3485 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3486 return 1;
3488 else if (fmt[i] == 'E')
3489 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3490 if (loc == &XVECEXP (in, i, j)
3491 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3492 return 1;
3494 return 0;
3497 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3498 and SUBREG_BYTE, return the bit offset where the subreg begins
3499 (counting from the least significant bit of the operand). */
3501 unsigned int
3502 subreg_lsb_1 (machine_mode outer_mode,
3503 machine_mode inner_mode,
3504 unsigned int subreg_byte)
3506 unsigned int bitpos;
3507 unsigned int byte;
3508 unsigned int word;
3510 /* A paradoxical subreg begins at bit position 0. */
3511 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3512 return 0;
3514 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3515 /* If the subreg crosses a word boundary ensure that
3516 it also begins and ends on a word boundary. */
3517 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3518 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3519 && (subreg_byte % UNITS_PER_WORD
3520 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3522 if (WORDS_BIG_ENDIAN)
3523 word = (GET_MODE_SIZE (inner_mode)
3524 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3525 else
3526 word = subreg_byte / UNITS_PER_WORD;
3527 bitpos = word * BITS_PER_WORD;
3529 if (BYTES_BIG_ENDIAN)
3530 byte = (GET_MODE_SIZE (inner_mode)
3531 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3532 else
3533 byte = subreg_byte % UNITS_PER_WORD;
3534 bitpos += byte * BITS_PER_UNIT;
3536 return bitpos;
3539 /* Given a subreg X, return the bit offset where the subreg begins
3540 (counting from the least significant bit of the reg). */
3542 unsigned int
3543 subreg_lsb (const_rtx x)
3545 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3546 SUBREG_BYTE (x));
3549 /* Fill in information about a subreg of a hard register.
3550 xregno - A regno of an inner hard subreg_reg (or what will become one).
3551 xmode - The mode of xregno.
3552 offset - The byte offset.
3553 ymode - The mode of a top level SUBREG (or what may become one).
3554 info - Pointer to structure to fill in.
3556 Rather than considering one particular inner register (and thus one
3557 particular "outer" register) in isolation, this function really uses
3558 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3559 function does not check whether adding INFO->offset to XREGNO gives
3560 a valid hard register; even if INFO->offset + XREGNO is out of range,
3561 there might be another register of the same type that is in range.
3562 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3563 register, since that can depend on things like whether the final
3564 register number is even or odd. Callers that want to check whether
3565 this particular subreg can be replaced by a simple (reg ...) should
3566 use simplify_subreg_regno. */
3568 void
3569 subreg_get_info (unsigned int xregno, machine_mode xmode,
3570 unsigned int offset, machine_mode ymode,
3571 struct subreg_info *info)
3573 int nregs_xmode, nregs_ymode;
3574 int mode_multiple, nregs_multiple;
3575 int offset_adj, y_offset, y_offset_adj;
3576 int regsize_xmode, regsize_ymode;
3577 bool rknown;
3579 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3581 rknown = false;
3583 /* If there are holes in a non-scalar mode in registers, we expect
3584 that it is made up of its units concatenated together. */
3585 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3587 machine_mode xmode_unit;
3589 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3590 xmode_unit = GET_MODE_INNER (xmode);
3591 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3592 gcc_assert (nregs_xmode
3593 == (GET_MODE_NUNITS (xmode)
3594 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3595 gcc_assert (hard_regno_nregs[xregno][xmode]
3596 == (hard_regno_nregs[xregno][xmode_unit]
3597 * GET_MODE_NUNITS (xmode)));
3599 /* You can only ask for a SUBREG of a value with holes in the middle
3600 if you don't cross the holes. (Such a SUBREG should be done by
3601 picking a different register class, or doing it in memory if
3602 necessary.) An example of a value with holes is XCmode on 32-bit
3603 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3604 3 for each part, but in memory it's two 128-bit parts.
3605 Padding is assumed to be at the end (not necessarily the 'high part')
3606 of each unit. */
3607 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3608 < GET_MODE_NUNITS (xmode))
3609 && (offset / GET_MODE_SIZE (xmode_unit)
3610 != ((offset + GET_MODE_SIZE (ymode) - 1)
3611 / GET_MODE_SIZE (xmode_unit))))
3613 info->representable_p = false;
3614 rknown = true;
3617 else
3618 nregs_xmode = hard_regno_nregs[xregno][xmode];
3620 nregs_ymode = hard_regno_nregs[xregno][ymode];
3622 /* Paradoxical subregs are otherwise valid. */
3623 if (!rknown
3624 && offset == 0
3625 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3627 info->representable_p = true;
3628 /* If this is a big endian paradoxical subreg, which uses more
3629 actual hard registers than the original register, we must
3630 return a negative offset so that we find the proper highpart
3631 of the register. */
3632 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3633 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3634 info->offset = nregs_xmode - nregs_ymode;
3635 else
3636 info->offset = 0;
3637 info->nregs = nregs_ymode;
3638 return;
3641 /* If registers store different numbers of bits in the different
3642 modes, we cannot generally form this subreg. */
3643 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3644 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3645 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3646 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3648 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3649 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3650 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3652 info->representable_p = false;
3653 info->nregs
3654 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3655 info->offset = offset / regsize_xmode;
3656 return;
3658 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3660 info->representable_p = false;
3661 info->nregs
3662 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3663 info->offset = offset / regsize_xmode;
3664 return;
3666 /* Quick exit for the simple and common case of extracting whole
3667 subregisters from a multiregister value. */
3668 /* ??? It would be better to integrate this into the code below,
3669 if we can generalize the concept enough and figure out how
3670 odd-sized modes can coexist with the other weird cases we support. */
3671 if (!rknown
3672 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3673 && regsize_xmode == regsize_ymode
3674 && (offset % regsize_ymode) == 0)
3676 info->representable_p = true;
3677 info->nregs = nregs_ymode;
3678 info->offset = offset / regsize_ymode;
3679 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3680 return;
3684 /* Lowpart subregs are otherwise valid. */
3685 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3687 info->representable_p = true;
3688 rknown = true;
3690 if (offset == 0 || nregs_xmode == nregs_ymode)
3692 info->offset = 0;
3693 info->nregs = nregs_ymode;
3694 return;
3698 /* This should always pass, otherwise we don't know how to verify
3699 the constraint. These conditions may be relaxed but
3700 subreg_regno_offset would need to be redesigned. */
3701 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3702 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3704 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3705 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3707 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3708 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3709 HOST_WIDE_INT off_low = offset & (ysize - 1);
3710 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3711 offset = (xsize - ysize - off_high) | off_low;
3713 /* The XMODE value can be seen as a vector of NREGS_XMODE
3714 values. The subreg must represent a lowpart of given field.
3715 Compute what field it is. */
3716 offset_adj = offset;
3717 offset_adj -= subreg_lowpart_offset (ymode,
3718 mode_for_size (GET_MODE_BITSIZE (xmode)
3719 / nregs_xmode,
3720 MODE_INT, 0));
3722 /* Size of ymode must not be greater than the size of xmode. */
3723 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3724 gcc_assert (mode_multiple != 0);
3726 y_offset = offset / GET_MODE_SIZE (ymode);
3727 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3728 nregs_multiple = nregs_xmode / nregs_ymode;
3730 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3731 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3733 if (!rknown)
3735 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3736 rknown = true;
3738 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3739 info->nregs = nregs_ymode;
3742 /* This function returns the regno offset of a subreg expression.
3743 xregno - A regno of an inner hard subreg_reg (or what will become one).
3744 xmode - The mode of xregno.
3745 offset - The byte offset.
3746 ymode - The mode of a top level SUBREG (or what may become one).
3747 RETURN - The regno offset which would be used. */
3748 unsigned int
3749 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3750 unsigned int offset, machine_mode ymode)
3752 struct subreg_info info;
3753 subreg_get_info (xregno, xmode, offset, ymode, &info);
3754 return info.offset;
3757 /* This function returns true when the offset is representable via
3758 subreg_offset in the given regno.
3759 xregno - A regno of an inner hard subreg_reg (or what will become one).
3760 xmode - The mode of xregno.
3761 offset - The byte offset.
3762 ymode - The mode of a top level SUBREG (or what may become one).
3763 RETURN - Whether the offset is representable. */
3764 bool
3765 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3766 unsigned int offset, machine_mode ymode)
3768 struct subreg_info info;
3769 subreg_get_info (xregno, xmode, offset, ymode, &info);
3770 return info.representable_p;
3773 /* Return the number of a YMODE register to which
3775 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3777 can be simplified. Return -1 if the subreg can't be simplified.
3779 XREGNO is a hard register number. */
3782 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3783 unsigned int offset, machine_mode ymode)
3785 struct subreg_info info;
3786 unsigned int yregno;
3788 #ifdef CANNOT_CHANGE_MODE_CLASS
3789 /* Give the backend a chance to disallow the mode change. */
3790 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3791 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3792 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3793 /* We can use mode change in LRA for some transformations. */
3794 && ! lra_in_progress)
3795 return -1;
3796 #endif
3798 /* We shouldn't simplify stack-related registers. */
3799 if ((!reload_completed || frame_pointer_needed)
3800 && xregno == FRAME_POINTER_REGNUM)
3801 return -1;
3803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3804 && xregno == ARG_POINTER_REGNUM)
3805 return -1;
3807 if (xregno == STACK_POINTER_REGNUM
3808 /* We should convert hard stack register in LRA if it is
3809 possible. */
3810 && ! lra_in_progress)
3811 return -1;
3813 /* Try to get the register offset. */
3814 subreg_get_info (xregno, xmode, offset, ymode, &info);
3815 if (!info.representable_p)
3816 return -1;
3818 /* Make sure that the offsetted register value is in range. */
3819 yregno = xregno + info.offset;
3820 if (!HARD_REGISTER_NUM_P (yregno))
3821 return -1;
3823 /* See whether (reg:YMODE YREGNO) is valid.
3825 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3826 This is a kludge to work around how complex FP arguments are passed
3827 on IA-64 and should be fixed. See PR target/49226. */
3828 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3829 && HARD_REGNO_MODE_OK (xregno, xmode))
3830 return -1;
3832 return (int) yregno;
3835 /* Return the final regno that a subreg expression refers to. */
3836 unsigned int
3837 subreg_regno (const_rtx x)
3839 unsigned int ret;
3840 rtx subreg = SUBREG_REG (x);
3841 int regno = REGNO (subreg);
3843 ret = regno + subreg_regno_offset (regno,
3844 GET_MODE (subreg),
3845 SUBREG_BYTE (x),
3846 GET_MODE (x));
3847 return ret;
3851 /* Return the number of registers that a subreg expression refers
3852 to. */
3853 unsigned int
3854 subreg_nregs (const_rtx x)
3856 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3859 /* Return the number of registers that a subreg REG with REGNO
3860 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3861 changed so that the regno can be passed in. */
3863 unsigned int
3864 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3866 struct subreg_info info;
3867 rtx subreg = SUBREG_REG (x);
3869 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3870 &info);
3871 return info.nregs;
3875 struct parms_set_data
3877 int nregs;
3878 HARD_REG_SET regs;
3881 /* Helper function for noticing stores to parameter registers. */
3882 static void
3883 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3885 struct parms_set_data *const d = (struct parms_set_data *) data;
3886 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3887 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3889 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3890 d->nregs--;
3894 /* Look backward for first parameter to be loaded.
3895 Note that loads of all parameters will not necessarily be
3896 found if CSE has eliminated some of them (e.g., an argument
3897 to the outer function is passed down as a parameter).
3898 Do not skip BOUNDARY. */
3899 rtx_insn *
3900 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3902 struct parms_set_data parm;
3903 rtx p;
3904 rtx_insn *before, *first_set;
3906 /* Since different machines initialize their parameter registers
3907 in different orders, assume nothing. Collect the set of all
3908 parameter registers. */
3909 CLEAR_HARD_REG_SET (parm.regs);
3910 parm.nregs = 0;
3911 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3912 if (GET_CODE (XEXP (p, 0)) == USE
3913 && REG_P (XEXP (XEXP (p, 0), 0)))
3915 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3917 /* We only care about registers which can hold function
3918 arguments. */
3919 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3920 continue;
3922 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3923 parm.nregs++;
3925 before = call_insn;
3926 first_set = call_insn;
3928 /* Search backward for the first set of a register in this set. */
3929 while (parm.nregs && before != boundary)
3931 before = PREV_INSN (before);
3933 /* It is possible that some loads got CSEed from one call to
3934 another. Stop in that case. */
3935 if (CALL_P (before))
3936 break;
3938 /* Our caller needs either ensure that we will find all sets
3939 (in case code has not been optimized yet), or take care
3940 for possible labels in a way by setting boundary to preceding
3941 CODE_LABEL. */
3942 if (LABEL_P (before))
3944 gcc_assert (before == boundary);
3945 break;
3948 if (INSN_P (before))
3950 int nregs_old = parm.nregs;
3951 note_stores (PATTERN (before), parms_set, &parm);
3952 /* If we found something that did not set a parameter reg,
3953 we're done. Do not keep going, as that might result
3954 in hoisting an insn before the setting of a pseudo
3955 that is used by the hoisted insn. */
3956 if (nregs_old != parm.nregs)
3957 first_set = before;
3958 else
3959 break;
3962 return first_set;
3965 /* Return true if we should avoid inserting code between INSN and preceding
3966 call instruction. */
3968 bool
3969 keep_with_call_p (const rtx_insn *insn)
3971 rtx set;
3973 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3975 if (REG_P (SET_DEST (set))
3976 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3977 && fixed_regs[REGNO (SET_DEST (set))]
3978 && general_operand (SET_SRC (set), VOIDmode))
3979 return true;
3980 if (REG_P (SET_SRC (set))
3981 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3982 && REG_P (SET_DEST (set))
3983 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3984 return true;
3985 /* There may be a stack pop just after the call and before the store
3986 of the return register. Search for the actual store when deciding
3987 if we can break or not. */
3988 if (SET_DEST (set) == stack_pointer_rtx)
3990 /* This CONST_CAST is okay because next_nonnote_insn just
3991 returns its argument and we assign it to a const_rtx
3992 variable. */
3993 const rtx_insn *i2
3994 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3995 if (i2 && keep_with_call_p (i2))
3996 return true;
3999 return false;
4002 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4003 to non-complex jumps. That is, direct unconditional, conditional,
4004 and tablejumps, but not computed jumps or returns. It also does
4005 not apply to the fallthru case of a conditional jump. */
4007 bool
4008 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4010 rtx tmp = JUMP_LABEL (jump_insn);
4011 rtx_jump_table_data *table;
4013 if (label == tmp)
4014 return true;
4016 if (tablejump_p (jump_insn, NULL, &table))
4018 rtvec vec = table->get_labels ();
4019 int i, veclen = GET_NUM_ELEM (vec);
4021 for (i = 0; i < veclen; ++i)
4022 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4023 return true;
4026 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4027 return true;
4029 return false;
4033 /* Return an estimate of the cost of computing rtx X.
4034 One use is in cse, to decide which expression to keep in the hash table.
4035 Another is in rtl generation, to pick the cheapest way to multiply.
4036 Other uses like the latter are expected in the future.
4038 X appears as operand OPNO in an expression with code OUTER_CODE.
4039 SPEED specifies whether costs optimized for speed or size should
4040 be returned. */
4043 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4044 int opno, bool speed)
4046 int i, j;
4047 enum rtx_code code;
4048 const char *fmt;
4049 int total;
4050 int factor;
4052 if (x == 0)
4053 return 0;
4055 if (GET_MODE (x) != VOIDmode)
4056 mode = GET_MODE (x);
4058 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4059 many insns, taking N times as long. */
4060 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4061 if (factor == 0)
4062 factor = 1;
4064 /* Compute the default costs of certain things.
4065 Note that targetm.rtx_costs can override the defaults. */
4067 code = GET_CODE (x);
4068 switch (code)
4070 case MULT:
4071 /* Multiplication has time-complexity O(N*N), where N is the
4072 number of units (translated from digits) when using
4073 schoolbook long multiplication. */
4074 total = factor * factor * COSTS_N_INSNS (5);
4075 break;
4076 case DIV:
4077 case UDIV:
4078 case MOD:
4079 case UMOD:
4080 /* Similarly, complexity for schoolbook long division. */
4081 total = factor * factor * COSTS_N_INSNS (7);
4082 break;
4083 case USE:
4084 /* Used in combine.c as a marker. */
4085 total = 0;
4086 break;
4087 case SET:
4088 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4089 the mode for the factor. */
4090 mode = GET_MODE (SET_DEST (x));
4091 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4092 if (factor == 0)
4093 factor = 1;
4094 /* Pass through. */
4095 default:
4096 total = factor * COSTS_N_INSNS (1);
4099 switch (code)
4101 case REG:
4102 return 0;
4104 case SUBREG:
4105 total = 0;
4106 /* If we can't tie these modes, make this expensive. The larger
4107 the mode, the more expensive it is. */
4108 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4109 return COSTS_N_INSNS (2 + factor);
4110 break;
4112 default:
4113 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4114 return total;
4115 break;
4118 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4119 which is already in total. */
4121 fmt = GET_RTX_FORMAT (code);
4122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4123 if (fmt[i] == 'e')
4124 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4125 else if (fmt[i] == 'E')
4126 for (j = 0; j < XVECLEN (x, i); j++)
4127 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4129 return total;
4132 /* Fill in the structure C with information about both speed and size rtx
4133 costs for X, which is operand OPNO in an expression with code OUTER. */
4135 void
4136 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4137 struct full_rtx_costs *c)
4139 c->speed = rtx_cost (x, mode, outer, opno, true);
4140 c->size = rtx_cost (x, mode, outer, opno, false);
4144 /* Return cost of address expression X.
4145 Expect that X is properly formed address reference.
4147 SPEED parameter specify whether costs optimized for speed or size should
4148 be returned. */
4151 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4153 /* We may be asked for cost of various unusual addresses, such as operands
4154 of push instruction. It is not worthwhile to complicate writing
4155 of the target hook by such cases. */
4157 if (!memory_address_addr_space_p (mode, x, as))
4158 return 1000;
4160 return targetm.address_cost (x, mode, as, speed);
4163 /* If the target doesn't override, compute the cost as with arithmetic. */
4166 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4168 return rtx_cost (x, Pmode, MEM, 0, speed);
4172 unsigned HOST_WIDE_INT
4173 nonzero_bits (const_rtx x, machine_mode mode)
4175 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4178 unsigned int
4179 num_sign_bit_copies (const_rtx x, machine_mode mode)
4181 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4184 /* Return true if nonzero_bits1 might recurse into both operands
4185 of X. */
4187 static inline bool
4188 nonzero_bits_binary_arith_p (const_rtx x)
4190 if (!ARITHMETIC_P (x))
4191 return false;
4192 switch (GET_CODE (x))
4194 case AND:
4195 case XOR:
4196 case IOR:
4197 case UMIN:
4198 case UMAX:
4199 case SMIN:
4200 case SMAX:
4201 case PLUS:
4202 case MINUS:
4203 case MULT:
4204 case DIV:
4205 case UDIV:
4206 case MOD:
4207 case UMOD:
4208 return true;
4209 default:
4210 return false;
4214 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4215 It avoids exponential behavior in nonzero_bits1 when X has
4216 identical subexpressions on the first or the second level. */
4218 static unsigned HOST_WIDE_INT
4219 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4220 machine_mode known_mode,
4221 unsigned HOST_WIDE_INT known_ret)
4223 if (x == known_x && mode == known_mode)
4224 return known_ret;
4226 /* Try to find identical subexpressions. If found call
4227 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4228 precomputed value for the subexpression as KNOWN_RET. */
4230 if (nonzero_bits_binary_arith_p (x))
4232 rtx x0 = XEXP (x, 0);
4233 rtx x1 = XEXP (x, 1);
4235 /* Check the first level. */
4236 if (x0 == x1)
4237 return nonzero_bits1 (x, mode, x0, mode,
4238 cached_nonzero_bits (x0, mode, known_x,
4239 known_mode, known_ret));
4241 /* Check the second level. */
4242 if (nonzero_bits_binary_arith_p (x0)
4243 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4244 return nonzero_bits1 (x, mode, x1, mode,
4245 cached_nonzero_bits (x1, mode, known_x,
4246 known_mode, known_ret));
4248 if (nonzero_bits_binary_arith_p (x1)
4249 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4250 return nonzero_bits1 (x, mode, x0, mode,
4251 cached_nonzero_bits (x0, mode, known_x,
4252 known_mode, known_ret));
4255 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4258 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4259 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4260 is less useful. We can't allow both, because that results in exponential
4261 run time recursion. There is a nullstone testcase that triggered
4262 this. This macro avoids accidental uses of num_sign_bit_copies. */
4263 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4265 /* Given an expression, X, compute which bits in X can be nonzero.
4266 We don't care about bits outside of those defined in MODE.
4268 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4269 an arithmetic operation, we can do better. */
4271 static unsigned HOST_WIDE_INT
4272 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4273 machine_mode known_mode,
4274 unsigned HOST_WIDE_INT known_ret)
4276 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4277 unsigned HOST_WIDE_INT inner_nz;
4278 enum rtx_code code;
4279 machine_mode inner_mode;
4280 unsigned int mode_width = GET_MODE_PRECISION (mode);
4282 /* For floating-point and vector values, assume all bits are needed. */
4283 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4284 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4285 return nonzero;
4287 /* If X is wider than MODE, use its mode instead. */
4288 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4290 mode = GET_MODE (x);
4291 nonzero = GET_MODE_MASK (mode);
4292 mode_width = GET_MODE_PRECISION (mode);
4295 if (mode_width > HOST_BITS_PER_WIDE_INT)
4296 /* Our only callers in this case look for single bit values. So
4297 just return the mode mask. Those tests will then be false. */
4298 return nonzero;
4300 /* If MODE is wider than X, but both are a single word for both the host
4301 and target machines, we can compute this from which bits of the
4302 object might be nonzero in its own mode, taking into account the fact
4303 that on many CISC machines, accessing an object in a wider mode
4304 causes the high-order bits to become undefined. So they are
4305 not known to be zero. */
4307 if (!WORD_REGISTER_OPERATIONS
4308 && GET_MODE (x) != VOIDmode
4309 && GET_MODE (x) != mode
4310 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4311 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4312 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4314 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4315 known_x, known_mode, known_ret);
4316 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4317 return nonzero;
4320 /* Please keep nonzero_bits_binary_arith_p above in sync with
4321 the code in the switch below. */
4322 code = GET_CODE (x);
4323 switch (code)
4325 case REG:
4326 #if defined(POINTERS_EXTEND_UNSIGNED)
4327 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4328 all the bits above ptr_mode are known to be zero. */
4329 /* As we do not know which address space the pointer is referring to,
4330 we can do this only if the target does not support different pointer
4331 or address modes depending on the address space. */
4332 if (target_default_pointer_address_modes_p ()
4333 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4334 && REG_POINTER (x)
4335 && !targetm.have_ptr_extend ())
4336 nonzero &= GET_MODE_MASK (ptr_mode);
4337 #endif
4339 /* Include declared information about alignment of pointers. */
4340 /* ??? We don't properly preserve REG_POINTER changes across
4341 pointer-to-integer casts, so we can't trust it except for
4342 things that we know must be pointers. See execute/960116-1.c. */
4343 if ((x == stack_pointer_rtx
4344 || x == frame_pointer_rtx
4345 || x == arg_pointer_rtx)
4346 && REGNO_POINTER_ALIGN (REGNO (x)))
4348 unsigned HOST_WIDE_INT alignment
4349 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4351 #ifdef PUSH_ROUNDING
4352 /* If PUSH_ROUNDING is defined, it is possible for the
4353 stack to be momentarily aligned only to that amount,
4354 so we pick the least alignment. */
4355 if (x == stack_pointer_rtx && PUSH_ARGS)
4356 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4357 alignment);
4358 #endif
4360 nonzero &= ~(alignment - 1);
4364 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4365 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4366 known_mode, known_ret,
4367 &nonzero_for_hook);
4369 if (new_rtx)
4370 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4371 known_mode, known_ret);
4373 return nonzero_for_hook;
4376 case CONST_INT:
4377 /* If X is negative in MODE, sign-extend the value. */
4378 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4379 && mode_width < BITS_PER_WORD
4380 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4381 != 0)
4382 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4384 return UINTVAL (x);
4386 case MEM:
4387 #ifdef LOAD_EXTEND_OP
4388 /* In many, if not most, RISC machines, reading a byte from memory
4389 zeros the rest of the register. Noticing that fact saves a lot
4390 of extra zero-extends. */
4391 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4392 nonzero &= GET_MODE_MASK (GET_MODE (x));
4393 #endif
4394 break;
4396 case EQ: case NE:
4397 case UNEQ: case LTGT:
4398 case GT: case GTU: case UNGT:
4399 case LT: case LTU: case UNLT:
4400 case GE: case GEU: case UNGE:
4401 case LE: case LEU: case UNLE:
4402 case UNORDERED: case ORDERED:
4403 /* If this produces an integer result, we know which bits are set.
4404 Code here used to clear bits outside the mode of X, but that is
4405 now done above. */
4406 /* Mind that MODE is the mode the caller wants to look at this
4407 operation in, and not the actual operation mode. We can wind
4408 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4409 that describes the results of a vector compare. */
4410 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4411 && mode_width <= HOST_BITS_PER_WIDE_INT)
4412 nonzero = STORE_FLAG_VALUE;
4413 break;
4415 case NEG:
4416 #if 0
4417 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4418 and num_sign_bit_copies. */
4419 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4420 == GET_MODE_PRECISION (GET_MODE (x)))
4421 nonzero = 1;
4422 #endif
4424 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4425 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4426 break;
4428 case ABS:
4429 #if 0
4430 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4431 and num_sign_bit_copies. */
4432 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4433 == GET_MODE_PRECISION (GET_MODE (x)))
4434 nonzero = 1;
4435 #endif
4436 break;
4438 case TRUNCATE:
4439 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4440 known_x, known_mode, known_ret)
4441 & GET_MODE_MASK (mode));
4442 break;
4444 case ZERO_EXTEND:
4445 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4446 known_x, known_mode, known_ret);
4447 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4448 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4449 break;
4451 case SIGN_EXTEND:
4452 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4453 Otherwise, show all the bits in the outer mode but not the inner
4454 may be nonzero. */
4455 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4456 known_x, known_mode, known_ret);
4457 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4459 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4460 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4461 inner_nz |= (GET_MODE_MASK (mode)
4462 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4465 nonzero &= inner_nz;
4466 break;
4468 case AND:
4469 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4470 known_x, known_mode, known_ret)
4471 & cached_nonzero_bits (XEXP (x, 1), mode,
4472 known_x, known_mode, known_ret);
4473 break;
4475 case XOR: case IOR:
4476 case UMIN: case UMAX: case SMIN: case SMAX:
4478 unsigned HOST_WIDE_INT nonzero0
4479 = cached_nonzero_bits (XEXP (x, 0), mode,
4480 known_x, known_mode, known_ret);
4482 /* Don't call nonzero_bits for the second time if it cannot change
4483 anything. */
4484 if ((nonzero & nonzero0) != nonzero)
4485 nonzero &= nonzero0
4486 | cached_nonzero_bits (XEXP (x, 1), mode,
4487 known_x, known_mode, known_ret);
4489 break;
4491 case PLUS: case MINUS:
4492 case MULT:
4493 case DIV: case UDIV:
4494 case MOD: case UMOD:
4495 /* We can apply the rules of arithmetic to compute the number of
4496 high- and low-order zero bits of these operations. We start by
4497 computing the width (position of the highest-order nonzero bit)
4498 and the number of low-order zero bits for each value. */
4500 unsigned HOST_WIDE_INT nz0
4501 = cached_nonzero_bits (XEXP (x, 0), mode,
4502 known_x, known_mode, known_ret);
4503 unsigned HOST_WIDE_INT nz1
4504 = cached_nonzero_bits (XEXP (x, 1), mode,
4505 known_x, known_mode, known_ret);
4506 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4507 int width0 = floor_log2 (nz0) + 1;
4508 int width1 = floor_log2 (nz1) + 1;
4509 int low0 = floor_log2 (nz0 & -nz0);
4510 int low1 = floor_log2 (nz1 & -nz1);
4511 unsigned HOST_WIDE_INT op0_maybe_minusp
4512 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4513 unsigned HOST_WIDE_INT op1_maybe_minusp
4514 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4515 unsigned int result_width = mode_width;
4516 int result_low = 0;
4518 switch (code)
4520 case PLUS:
4521 result_width = MAX (width0, width1) + 1;
4522 result_low = MIN (low0, low1);
4523 break;
4524 case MINUS:
4525 result_low = MIN (low0, low1);
4526 break;
4527 case MULT:
4528 result_width = width0 + width1;
4529 result_low = low0 + low1;
4530 break;
4531 case DIV:
4532 if (width1 == 0)
4533 break;
4534 if (!op0_maybe_minusp && !op1_maybe_minusp)
4535 result_width = width0;
4536 break;
4537 case UDIV:
4538 if (width1 == 0)
4539 break;
4540 result_width = width0;
4541 break;
4542 case MOD:
4543 if (width1 == 0)
4544 break;
4545 if (!op0_maybe_minusp && !op1_maybe_minusp)
4546 result_width = MIN (width0, width1);
4547 result_low = MIN (low0, low1);
4548 break;
4549 case UMOD:
4550 if (width1 == 0)
4551 break;
4552 result_width = MIN (width0, width1);
4553 result_low = MIN (low0, low1);
4554 break;
4555 default:
4556 gcc_unreachable ();
4559 if (result_width < mode_width)
4560 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4562 if (result_low > 0)
4563 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4565 break;
4567 case ZERO_EXTRACT:
4568 if (CONST_INT_P (XEXP (x, 1))
4569 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4570 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4571 break;
4573 case SUBREG:
4574 /* If this is a SUBREG formed for a promoted variable that has
4575 been zero-extended, we know that at least the high-order bits
4576 are zero, though others might be too. */
4578 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4579 nonzero = GET_MODE_MASK (GET_MODE (x))
4580 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4581 known_x, known_mode, known_ret);
4583 inner_mode = GET_MODE (SUBREG_REG (x));
4584 /* If the inner mode is a single word for both the host and target
4585 machines, we can compute this from which bits of the inner
4586 object might be nonzero. */
4587 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4588 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4590 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4591 known_x, known_mode, known_ret);
4593 #if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
4594 /* If this is a typical RISC machine, we only have to worry
4595 about the way loads are extended. */
4596 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4597 ? val_signbit_known_set_p (inner_mode, nonzero)
4598 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4599 || !MEM_P (SUBREG_REG (x)))
4600 #endif
4602 /* On many CISC machines, accessing an object in a wider mode
4603 causes the high-order bits to become undefined. So they are
4604 not known to be zero. */
4605 if (GET_MODE_PRECISION (GET_MODE (x))
4606 > GET_MODE_PRECISION (inner_mode))
4607 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4608 & ~GET_MODE_MASK (inner_mode));
4611 break;
4613 case ASHIFTRT:
4614 case LSHIFTRT:
4615 case ASHIFT:
4616 case ROTATE:
4617 /* The nonzero bits are in two classes: any bits within MODE
4618 that aren't in GET_MODE (x) are always significant. The rest of the
4619 nonzero bits are those that are significant in the operand of
4620 the shift when shifted the appropriate number of bits. This
4621 shows that high-order bits are cleared by the right shift and
4622 low-order bits by left shifts. */
4623 if (CONST_INT_P (XEXP (x, 1))
4624 && INTVAL (XEXP (x, 1)) >= 0
4625 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4626 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4628 machine_mode inner_mode = GET_MODE (x);
4629 unsigned int width = GET_MODE_PRECISION (inner_mode);
4630 int count = INTVAL (XEXP (x, 1));
4631 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4632 unsigned HOST_WIDE_INT op_nonzero
4633 = cached_nonzero_bits (XEXP (x, 0), mode,
4634 known_x, known_mode, known_ret);
4635 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4636 unsigned HOST_WIDE_INT outer = 0;
4638 if (mode_width > width)
4639 outer = (op_nonzero & nonzero & ~mode_mask);
4641 if (code == LSHIFTRT)
4642 inner >>= count;
4643 else if (code == ASHIFTRT)
4645 inner >>= count;
4647 /* If the sign bit may have been nonzero before the shift, we
4648 need to mark all the places it could have been copied to
4649 by the shift as possibly nonzero. */
4650 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4651 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4652 << (width - count);
4654 else if (code == ASHIFT)
4655 inner <<= count;
4656 else
4657 inner = ((inner << (count % width)
4658 | (inner >> (width - (count % width)))) & mode_mask);
4660 nonzero &= (outer | inner);
4662 break;
4664 case FFS:
4665 case POPCOUNT:
4666 /* This is at most the number of bits in the mode. */
4667 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4668 break;
4670 case CLZ:
4671 /* If CLZ has a known value at zero, then the nonzero bits are
4672 that value, plus the number of bits in the mode minus one. */
4673 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4674 nonzero
4675 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4676 else
4677 nonzero = -1;
4678 break;
4680 case CTZ:
4681 /* If CTZ has a known value at zero, then the nonzero bits are
4682 that value, plus the number of bits in the mode minus one. */
4683 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4684 nonzero
4685 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4686 else
4687 nonzero = -1;
4688 break;
4690 case CLRSB:
4691 /* This is at most the number of bits in the mode minus 1. */
4692 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4693 break;
4695 case PARITY:
4696 nonzero = 1;
4697 break;
4699 case IF_THEN_ELSE:
4701 unsigned HOST_WIDE_INT nonzero_true
4702 = cached_nonzero_bits (XEXP (x, 1), mode,
4703 known_x, known_mode, known_ret);
4705 /* Don't call nonzero_bits for the second time if it cannot change
4706 anything. */
4707 if ((nonzero & nonzero_true) != nonzero)
4708 nonzero &= nonzero_true
4709 | cached_nonzero_bits (XEXP (x, 2), mode,
4710 known_x, known_mode, known_ret);
4712 break;
4714 default:
4715 break;
4718 return nonzero;
4721 /* See the macro definition above. */
4722 #undef cached_num_sign_bit_copies
4725 /* Return true if num_sign_bit_copies1 might recurse into both operands
4726 of X. */
4728 static inline bool
4729 num_sign_bit_copies_binary_arith_p (const_rtx x)
4731 if (!ARITHMETIC_P (x))
4732 return false;
4733 switch (GET_CODE (x))
4735 case IOR:
4736 case AND:
4737 case XOR:
4738 case SMIN:
4739 case SMAX:
4740 case UMIN:
4741 case UMAX:
4742 case PLUS:
4743 case MINUS:
4744 case MULT:
4745 return true;
4746 default:
4747 return false;
4751 /* The function cached_num_sign_bit_copies is a wrapper around
4752 num_sign_bit_copies1. It avoids exponential behavior in
4753 num_sign_bit_copies1 when X has identical subexpressions on the
4754 first or the second level. */
4756 static unsigned int
4757 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4758 machine_mode known_mode,
4759 unsigned int known_ret)
4761 if (x == known_x && mode == known_mode)
4762 return known_ret;
4764 /* Try to find identical subexpressions. If found call
4765 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4766 the precomputed value for the subexpression as KNOWN_RET. */
4768 if (num_sign_bit_copies_binary_arith_p (x))
4770 rtx x0 = XEXP (x, 0);
4771 rtx x1 = XEXP (x, 1);
4773 /* Check the first level. */
4774 if (x0 == x1)
4775 return
4776 num_sign_bit_copies1 (x, mode, x0, mode,
4777 cached_num_sign_bit_copies (x0, mode, known_x,
4778 known_mode,
4779 known_ret));
4781 /* Check the second level. */
4782 if (num_sign_bit_copies_binary_arith_p (x0)
4783 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4784 return
4785 num_sign_bit_copies1 (x, mode, x1, mode,
4786 cached_num_sign_bit_copies (x1, mode, known_x,
4787 known_mode,
4788 known_ret));
4790 if (num_sign_bit_copies_binary_arith_p (x1)
4791 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4792 return
4793 num_sign_bit_copies1 (x, mode, x0, mode,
4794 cached_num_sign_bit_copies (x0, mode, known_x,
4795 known_mode,
4796 known_ret));
4799 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4802 /* Return the number of bits at the high-order end of X that are known to
4803 be equal to the sign bit. X will be used in mode MODE; if MODE is
4804 VOIDmode, X will be used in its own mode. The returned value will always
4805 be between 1 and the number of bits in MODE. */
4807 static unsigned int
4808 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4809 machine_mode known_mode,
4810 unsigned int known_ret)
4812 enum rtx_code code = GET_CODE (x);
4813 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4814 int num0, num1, result;
4815 unsigned HOST_WIDE_INT nonzero;
4817 /* If we weren't given a mode, use the mode of X. If the mode is still
4818 VOIDmode, we don't know anything. Likewise if one of the modes is
4819 floating-point. */
4821 if (mode == VOIDmode)
4822 mode = GET_MODE (x);
4824 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4825 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4826 return 1;
4828 /* For a smaller object, just ignore the high bits. */
4829 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4831 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4832 known_x, known_mode, known_ret);
4833 return MAX (1,
4834 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4837 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4839 /* If this machine does not do all register operations on the entire
4840 register and MODE is wider than the mode of X, we can say nothing
4841 at all about the high-order bits. */
4842 if (!WORD_REGISTER_OPERATIONS)
4843 return 1;
4845 /* Likewise on machines that do, if the mode of the object is smaller
4846 than a word and loads of that size don't sign extend, we can say
4847 nothing about the high order bits. */
4848 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4849 #ifdef LOAD_EXTEND_OP
4850 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4851 #endif
4853 return 1;
4856 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4857 the code in the switch below. */
4858 switch (code)
4860 case REG:
4862 #if defined(POINTERS_EXTEND_UNSIGNED)
4863 /* If pointers extend signed and this is a pointer in Pmode, say that
4864 all the bits above ptr_mode are known to be sign bit copies. */
4865 /* As we do not know which address space the pointer is referring to,
4866 we can do this only if the target does not support different pointer
4867 or address modes depending on the address space. */
4868 if (target_default_pointer_address_modes_p ()
4869 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4870 && mode == Pmode && REG_POINTER (x)
4871 && !targetm.have_ptr_extend ())
4872 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4873 #endif
4876 unsigned int copies_for_hook = 1, copies = 1;
4877 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4878 known_mode, known_ret,
4879 &copies_for_hook);
4881 if (new_rtx)
4882 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4883 known_mode, known_ret);
4885 if (copies > 1 || copies_for_hook > 1)
4886 return MAX (copies, copies_for_hook);
4888 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4890 break;
4892 case MEM:
4893 #ifdef LOAD_EXTEND_OP
4894 /* Some RISC machines sign-extend all loads of smaller than a word. */
4895 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4896 return MAX (1, ((int) bitwidth
4897 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4898 #endif
4899 break;
4901 case CONST_INT:
4902 /* If the constant is negative, take its 1's complement and remask.
4903 Then see how many zero bits we have. */
4904 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4905 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4906 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4907 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4909 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4911 case SUBREG:
4912 /* If this is a SUBREG for a promoted object that is sign-extended
4913 and we are looking at it in a wider mode, we know that at least the
4914 high-order bits are known to be sign bit copies. */
4916 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4918 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4919 known_x, known_mode, known_ret);
4920 return MAX ((int) bitwidth
4921 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4922 num0);
4925 /* For a smaller object, just ignore the high bits. */
4926 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4928 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4929 known_x, known_mode, known_ret);
4930 return MAX (1, (num0
4931 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4932 - bitwidth)));
4935 #ifdef LOAD_EXTEND_OP
4936 /* For paradoxical SUBREGs on machines where all register operations
4937 affect the entire register, just look inside. Note that we are
4938 passing MODE to the recursive call, so the number of sign bit copies
4939 will remain relative to that mode, not the inner mode. */
4941 /* This works only if loads sign extend. Otherwise, if we get a
4942 reload for the inner part, it may be loaded from the stack, and
4943 then we lose all sign bit copies that existed before the store
4944 to the stack. */
4946 if (WORD_REGISTER_OPERATIONS
4947 && paradoxical_subreg_p (x)
4948 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4949 && MEM_P (SUBREG_REG (x)))
4950 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4951 known_x, known_mode, known_ret);
4952 #endif
4953 break;
4955 case SIGN_EXTRACT:
4956 if (CONST_INT_P (XEXP (x, 1)))
4957 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4958 break;
4960 case SIGN_EXTEND:
4961 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4962 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4963 known_x, known_mode, known_ret));
4965 case TRUNCATE:
4966 /* For a smaller object, just ignore the high bits. */
4967 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4968 known_x, known_mode, known_ret);
4969 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4970 - bitwidth)));
4972 case NOT:
4973 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4974 known_x, known_mode, known_ret);
4976 case ROTATE: case ROTATERT:
4977 /* If we are rotating left by a number of bits less than the number
4978 of sign bit copies, we can just subtract that amount from the
4979 number. */
4980 if (CONST_INT_P (XEXP (x, 1))
4981 && INTVAL (XEXP (x, 1)) >= 0
4982 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4984 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4985 known_x, known_mode, known_ret);
4986 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4987 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4989 break;
4991 case NEG:
4992 /* In general, this subtracts one sign bit copy. But if the value
4993 is known to be positive, the number of sign bit copies is the
4994 same as that of the input. Finally, if the input has just one bit
4995 that might be nonzero, all the bits are copies of the sign bit. */
4996 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4997 known_x, known_mode, known_ret);
4998 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4999 return num0 > 1 ? num0 - 1 : 1;
5001 nonzero = nonzero_bits (XEXP (x, 0), mode);
5002 if (nonzero == 1)
5003 return bitwidth;
5005 if (num0 > 1
5006 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
5007 num0--;
5009 return num0;
5011 case IOR: case AND: case XOR:
5012 case SMIN: case SMAX: case UMIN: case UMAX:
5013 /* Logical operations will preserve the number of sign-bit copies.
5014 MIN and MAX operations always return one of the operands. */
5015 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5016 known_x, known_mode, known_ret);
5017 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5018 known_x, known_mode, known_ret);
5020 /* If num1 is clearing some of the top bits then regardless of
5021 the other term, we are guaranteed to have at least that many
5022 high-order zero bits. */
5023 if (code == AND
5024 && num1 > 1
5025 && bitwidth <= HOST_BITS_PER_WIDE_INT
5026 && CONST_INT_P (XEXP (x, 1))
5027 && (UINTVAL (XEXP (x, 1))
5028 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
5029 return num1;
5031 /* Similarly for IOR when setting high-order bits. */
5032 if (code == IOR
5033 && num1 > 1
5034 && bitwidth <= HOST_BITS_PER_WIDE_INT
5035 && CONST_INT_P (XEXP (x, 1))
5036 && (UINTVAL (XEXP (x, 1))
5037 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5038 return num1;
5040 return MIN (num0, num1);
5042 case PLUS: case MINUS:
5043 /* For addition and subtraction, we can have a 1-bit carry. However,
5044 if we are subtracting 1 from a positive number, there will not
5045 be such a carry. Furthermore, if the positive number is known to
5046 be 0 or 1, we know the result is either -1 or 0. */
5048 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5049 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5051 nonzero = nonzero_bits (XEXP (x, 0), mode);
5052 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
5053 return (nonzero == 1 || nonzero == 0 ? bitwidth
5054 : bitwidth - floor_log2 (nonzero) - 1);
5057 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5058 known_x, known_mode, known_ret);
5059 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5060 known_x, known_mode, known_ret);
5061 result = MAX (1, MIN (num0, num1) - 1);
5063 return result;
5065 case MULT:
5066 /* The number of bits of the product is the sum of the number of
5067 bits of both terms. However, unless one of the terms if known
5068 to be positive, we must allow for an additional bit since negating
5069 a negative number can remove one sign bit copy. */
5071 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5072 known_x, known_mode, known_ret);
5073 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5074 known_x, known_mode, known_ret);
5076 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5077 if (result > 0
5078 && (bitwidth > HOST_BITS_PER_WIDE_INT
5079 || (((nonzero_bits (XEXP (x, 0), mode)
5080 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5081 && ((nonzero_bits (XEXP (x, 1), mode)
5082 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5083 != 0))))
5084 result--;
5086 return MAX (1, result);
5088 case UDIV:
5089 /* The result must be <= the first operand. If the first operand
5090 has the high bit set, we know nothing about the number of sign
5091 bit copies. */
5092 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5093 return 1;
5094 else if ((nonzero_bits (XEXP (x, 0), mode)
5095 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5096 return 1;
5097 else
5098 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5099 known_x, known_mode, known_ret);
5101 case UMOD:
5102 /* The result must be <= the second operand. If the second operand
5103 has (or just might have) the high bit set, we know nothing about
5104 the number of sign bit copies. */
5105 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5106 return 1;
5107 else if ((nonzero_bits (XEXP (x, 1), mode)
5108 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5109 return 1;
5110 else
5111 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5112 known_x, known_mode, known_ret);
5114 case DIV:
5115 /* Similar to unsigned division, except that we have to worry about
5116 the case where the divisor is negative, in which case we have
5117 to add 1. */
5118 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5119 known_x, known_mode, known_ret);
5120 if (result > 1
5121 && (bitwidth > HOST_BITS_PER_WIDE_INT
5122 || (nonzero_bits (XEXP (x, 1), mode)
5123 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5124 result--;
5126 return result;
5128 case MOD:
5129 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5130 known_x, known_mode, known_ret);
5131 if (result > 1
5132 && (bitwidth > HOST_BITS_PER_WIDE_INT
5133 || (nonzero_bits (XEXP (x, 1), mode)
5134 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5135 result--;
5137 return result;
5139 case ASHIFTRT:
5140 /* Shifts by a constant add to the number of bits equal to the
5141 sign bit. */
5142 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5143 known_x, known_mode, known_ret);
5144 if (CONST_INT_P (XEXP (x, 1))
5145 && INTVAL (XEXP (x, 1)) > 0
5146 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5147 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5149 return num0;
5151 case ASHIFT:
5152 /* Left shifts destroy copies. */
5153 if (!CONST_INT_P (XEXP (x, 1))
5154 || INTVAL (XEXP (x, 1)) < 0
5155 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5156 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5157 return 1;
5159 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5160 known_x, known_mode, known_ret);
5161 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5163 case IF_THEN_ELSE:
5164 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5165 known_x, known_mode, known_ret);
5166 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5167 known_x, known_mode, known_ret);
5168 return MIN (num0, num1);
5170 case EQ: case NE: case GE: case GT: case LE: case LT:
5171 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5172 case GEU: case GTU: case LEU: case LTU:
5173 case UNORDERED: case ORDERED:
5174 /* If the constant is negative, take its 1's complement and remask.
5175 Then see how many zero bits we have. */
5176 nonzero = STORE_FLAG_VALUE;
5177 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5178 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5179 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5181 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5183 default:
5184 break;
5187 /* If we haven't been able to figure it out by one of the above rules,
5188 see if some of the high-order bits are known to be zero. If so,
5189 count those bits and return one less than that amount. If we can't
5190 safely compute the mask for this mode, always return BITWIDTH. */
5192 bitwidth = GET_MODE_PRECISION (mode);
5193 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5194 return 1;
5196 nonzero = nonzero_bits (x, mode);
5197 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5198 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5201 /* Calculate the rtx_cost of a single instruction. A return value of
5202 zero indicates an instruction pattern without a known cost. */
5205 insn_rtx_cost (rtx pat, bool speed)
5207 int i, cost;
5208 rtx set;
5210 /* Extract the single set rtx from the instruction pattern.
5211 We can't use single_set since we only have the pattern. */
5212 if (GET_CODE (pat) == SET)
5213 set = pat;
5214 else if (GET_CODE (pat) == PARALLEL)
5216 set = NULL_RTX;
5217 for (i = 0; i < XVECLEN (pat, 0); i++)
5219 rtx x = XVECEXP (pat, 0, i);
5220 if (GET_CODE (x) == SET)
5222 if (set)
5223 return 0;
5224 set = x;
5227 if (!set)
5228 return 0;
5230 else
5231 return 0;
5233 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5234 return cost > 0 ? cost : COSTS_N_INSNS (1);
5237 /* Returns estimate on cost of computing SEQ. */
5239 unsigned
5240 seq_cost (const rtx_insn *seq, bool speed)
5242 unsigned cost = 0;
5243 rtx set;
5245 for (; seq; seq = NEXT_INSN (seq))
5247 set = single_set (seq);
5248 if (set)
5249 cost += set_rtx_cost (set, speed);
5250 else
5251 cost++;
5254 return cost;
5257 /* Given an insn INSN and condition COND, return the condition in a
5258 canonical form to simplify testing by callers. Specifically:
5260 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5261 (2) Both operands will be machine operands; (cc0) will have been replaced.
5262 (3) If an operand is a constant, it will be the second operand.
5263 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5264 for GE, GEU, and LEU.
5266 If the condition cannot be understood, or is an inequality floating-point
5267 comparison which needs to be reversed, 0 will be returned.
5269 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5271 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5272 insn used in locating the condition was found. If a replacement test
5273 of the condition is desired, it should be placed in front of that
5274 insn and we will be sure that the inputs are still valid.
5276 If WANT_REG is nonzero, we wish the condition to be relative to that
5277 register, if possible. Therefore, do not canonicalize the condition
5278 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5279 to be a compare to a CC mode register.
5281 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5282 and at INSN. */
5285 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5286 rtx_insn **earliest,
5287 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5289 enum rtx_code code;
5290 rtx_insn *prev = insn;
5291 const_rtx set;
5292 rtx tem;
5293 rtx op0, op1;
5294 int reverse_code = 0;
5295 machine_mode mode;
5296 basic_block bb = BLOCK_FOR_INSN (insn);
5298 code = GET_CODE (cond);
5299 mode = GET_MODE (cond);
5300 op0 = XEXP (cond, 0);
5301 op1 = XEXP (cond, 1);
5303 if (reverse)
5304 code = reversed_comparison_code (cond, insn);
5305 if (code == UNKNOWN)
5306 return 0;
5308 if (earliest)
5309 *earliest = insn;
5311 /* If we are comparing a register with zero, see if the register is set
5312 in the previous insn to a COMPARE or a comparison operation. Perform
5313 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5314 in cse.c */
5316 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5317 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5318 && op1 == CONST0_RTX (GET_MODE (op0))
5319 && op0 != want_reg)
5321 /* Set nonzero when we find something of interest. */
5322 rtx x = 0;
5324 /* If comparison with cc0, import actual comparison from compare
5325 insn. */
5326 if (op0 == cc0_rtx)
5328 if ((prev = prev_nonnote_insn (prev)) == 0
5329 || !NONJUMP_INSN_P (prev)
5330 || (set = single_set (prev)) == 0
5331 || SET_DEST (set) != cc0_rtx)
5332 return 0;
5334 op0 = SET_SRC (set);
5335 op1 = CONST0_RTX (GET_MODE (op0));
5336 if (earliest)
5337 *earliest = prev;
5340 /* If this is a COMPARE, pick up the two things being compared. */
5341 if (GET_CODE (op0) == COMPARE)
5343 op1 = XEXP (op0, 1);
5344 op0 = XEXP (op0, 0);
5345 continue;
5347 else if (!REG_P (op0))
5348 break;
5350 /* Go back to the previous insn. Stop if it is not an INSN. We also
5351 stop if it isn't a single set or if it has a REG_INC note because
5352 we don't want to bother dealing with it. */
5354 prev = prev_nonnote_nondebug_insn (prev);
5356 if (prev == 0
5357 || !NONJUMP_INSN_P (prev)
5358 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5359 /* In cfglayout mode, there do not have to be labels at the
5360 beginning of a block, or jumps at the end, so the previous
5361 conditions would not stop us when we reach bb boundary. */
5362 || BLOCK_FOR_INSN (prev) != bb)
5363 break;
5365 set = set_of (op0, prev);
5367 if (set
5368 && (GET_CODE (set) != SET
5369 || !rtx_equal_p (SET_DEST (set), op0)))
5370 break;
5372 /* If this is setting OP0, get what it sets it to if it looks
5373 relevant. */
5374 if (set)
5376 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5377 #ifdef FLOAT_STORE_FLAG_VALUE
5378 REAL_VALUE_TYPE fsfv;
5379 #endif
5381 /* ??? We may not combine comparisons done in a CCmode with
5382 comparisons not done in a CCmode. This is to aid targets
5383 like Alpha that have an IEEE compliant EQ instruction, and
5384 a non-IEEE compliant BEQ instruction. The use of CCmode is
5385 actually artificial, simply to prevent the combination, but
5386 should not affect other platforms.
5388 However, we must allow VOIDmode comparisons to match either
5389 CCmode or non-CCmode comparison, because some ports have
5390 modeless comparisons inside branch patterns.
5392 ??? This mode check should perhaps look more like the mode check
5393 in simplify_comparison in combine. */
5394 if (((GET_MODE_CLASS (mode) == MODE_CC)
5395 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5396 && mode != VOIDmode
5397 && inner_mode != VOIDmode)
5398 break;
5399 if (GET_CODE (SET_SRC (set)) == COMPARE
5400 || (((code == NE
5401 || (code == LT
5402 && val_signbit_known_set_p (inner_mode,
5403 STORE_FLAG_VALUE))
5404 #ifdef FLOAT_STORE_FLAG_VALUE
5405 || (code == LT
5406 && SCALAR_FLOAT_MODE_P (inner_mode)
5407 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5408 REAL_VALUE_NEGATIVE (fsfv)))
5409 #endif
5411 && COMPARISON_P (SET_SRC (set))))
5412 x = SET_SRC (set);
5413 else if (((code == EQ
5414 || (code == GE
5415 && val_signbit_known_set_p (inner_mode,
5416 STORE_FLAG_VALUE))
5417 #ifdef FLOAT_STORE_FLAG_VALUE
5418 || (code == GE
5419 && SCALAR_FLOAT_MODE_P (inner_mode)
5420 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5421 REAL_VALUE_NEGATIVE (fsfv)))
5422 #endif
5424 && COMPARISON_P (SET_SRC (set)))
5426 reverse_code = 1;
5427 x = SET_SRC (set);
5429 else if ((code == EQ || code == NE)
5430 && GET_CODE (SET_SRC (set)) == XOR)
5431 /* Handle sequences like:
5433 (set op0 (xor X Y))
5434 ...(eq|ne op0 (const_int 0))...
5436 in which case:
5438 (eq op0 (const_int 0)) reduces to (eq X Y)
5439 (ne op0 (const_int 0)) reduces to (ne X Y)
5441 This is the form used by MIPS16, for example. */
5442 x = SET_SRC (set);
5443 else
5444 break;
5447 else if (reg_set_p (op0, prev))
5448 /* If this sets OP0, but not directly, we have to give up. */
5449 break;
5451 if (x)
5453 /* If the caller is expecting the condition to be valid at INSN,
5454 make sure X doesn't change before INSN. */
5455 if (valid_at_insn_p)
5456 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5457 break;
5458 if (COMPARISON_P (x))
5459 code = GET_CODE (x);
5460 if (reverse_code)
5462 code = reversed_comparison_code (x, prev);
5463 if (code == UNKNOWN)
5464 return 0;
5465 reverse_code = 0;
5468 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5469 if (earliest)
5470 *earliest = prev;
5474 /* If constant is first, put it last. */
5475 if (CONSTANT_P (op0))
5476 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5478 /* If OP0 is the result of a comparison, we weren't able to find what
5479 was really being compared, so fail. */
5480 if (!allow_cc_mode
5481 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5482 return 0;
5484 /* Canonicalize any ordered comparison with integers involving equality
5485 if we can do computations in the relevant mode and we do not
5486 overflow. */
5488 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5489 && CONST_INT_P (op1)
5490 && GET_MODE (op0) != VOIDmode
5491 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5493 HOST_WIDE_INT const_val = INTVAL (op1);
5494 unsigned HOST_WIDE_INT uconst_val = const_val;
5495 unsigned HOST_WIDE_INT max_val
5496 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5498 switch (code)
5500 case LE:
5501 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5502 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5503 break;
5505 /* When cross-compiling, const_val might be sign-extended from
5506 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5507 case GE:
5508 if ((const_val & max_val)
5509 != ((unsigned HOST_WIDE_INT) 1
5510 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5511 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5512 break;
5514 case LEU:
5515 if (uconst_val < max_val)
5516 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5517 break;
5519 case GEU:
5520 if (uconst_val != 0)
5521 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5522 break;
5524 default:
5525 break;
5529 /* Never return CC0; return zero instead. */
5530 if (CC0_P (op0))
5531 return 0;
5533 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5536 /* Given a jump insn JUMP, return the condition that will cause it to branch
5537 to its JUMP_LABEL. If the condition cannot be understood, or is an
5538 inequality floating-point comparison which needs to be reversed, 0 will
5539 be returned.
5541 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5542 insn used in locating the condition was found. If a replacement test
5543 of the condition is desired, it should be placed in front of that
5544 insn and we will be sure that the inputs are still valid. If EARLIEST
5545 is null, the returned condition will be valid at INSN.
5547 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5548 compare CC mode register.
5550 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5553 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5554 int valid_at_insn_p)
5556 rtx cond;
5557 int reverse;
5558 rtx set;
5560 /* If this is not a standard conditional jump, we can't parse it. */
5561 if (!JUMP_P (jump)
5562 || ! any_condjump_p (jump))
5563 return 0;
5564 set = pc_set (jump);
5566 cond = XEXP (SET_SRC (set), 0);
5568 /* If this branches to JUMP_LABEL when the condition is false, reverse
5569 the condition. */
5570 reverse
5571 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5572 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5574 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5575 allow_cc_mode, valid_at_insn_p);
5578 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5579 TARGET_MODE_REP_EXTENDED.
5581 Note that we assume that the property of
5582 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5583 narrower than mode B. I.e., if A is a mode narrower than B then in
5584 order to be able to operate on it in mode B, mode A needs to
5585 satisfy the requirements set by the representation of mode B. */
5587 static void
5588 init_num_sign_bit_copies_in_rep (void)
5590 machine_mode mode, in_mode;
5592 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5593 in_mode = GET_MODE_WIDER_MODE (mode))
5594 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5595 mode = GET_MODE_WIDER_MODE (mode))
5597 machine_mode i;
5599 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5600 extends to the next widest mode. */
5601 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5602 || GET_MODE_WIDER_MODE (mode) == in_mode);
5604 /* We are in in_mode. Count how many bits outside of mode
5605 have to be copies of the sign-bit. */
5606 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5608 machine_mode wider = GET_MODE_WIDER_MODE (i);
5610 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5611 /* We can only check sign-bit copies starting from the
5612 top-bit. In order to be able to check the bits we
5613 have already seen we pretend that subsequent bits
5614 have to be sign-bit copies too. */
5615 || num_sign_bit_copies_in_rep [in_mode][mode])
5616 num_sign_bit_copies_in_rep [in_mode][mode]
5617 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5622 /* Suppose that truncation from the machine mode of X to MODE is not a
5623 no-op. See if there is anything special about X so that we can
5624 assume it already contains a truncated value of MODE. */
5626 bool
5627 truncated_to_mode (machine_mode mode, const_rtx x)
5629 /* This register has already been used in MODE without explicit
5630 truncation. */
5631 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5632 return true;
5634 /* See if we already satisfy the requirements of MODE. If yes we
5635 can just switch to MODE. */
5636 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5637 && (num_sign_bit_copies (x, GET_MODE (x))
5638 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5639 return true;
5641 return false;
5644 /* Return true if RTX code CODE has a single sequence of zero or more
5645 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5646 entry in that case. */
5648 static bool
5649 setup_reg_subrtx_bounds (unsigned int code)
5651 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5652 unsigned int i = 0;
5653 for (; format[i] != 'e'; ++i)
5655 if (!format[i])
5656 /* No subrtxes. Leave start and count as 0. */
5657 return true;
5658 if (format[i] == 'E' || format[i] == 'V')
5659 return false;
5662 /* Record the sequence of 'e's. */
5663 rtx_all_subrtx_bounds[code].start = i;
5665 ++i;
5666 while (format[i] == 'e');
5667 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5668 /* rtl-iter.h relies on this. */
5669 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5671 for (; format[i]; ++i)
5672 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5673 return false;
5675 return true;
5678 /* Initialize rtx_all_subrtx_bounds. */
5679 void
5680 init_rtlanal (void)
5682 int i;
5683 for (i = 0; i < NUM_RTX_CODE; i++)
5685 if (!setup_reg_subrtx_bounds (i))
5686 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5687 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5688 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5691 init_num_sign_bit_copies_in_rep ();
5694 /* Check whether this is a constant pool constant. */
5695 bool
5696 constant_pool_constant_p (rtx x)
5698 x = avoid_constant_pool_reference (x);
5699 return CONST_DOUBLE_P (x);
5702 /* If M is a bitmask that selects a field of low-order bits within an item but
5703 not the entire word, return the length of the field. Return -1 otherwise.
5704 M is used in machine mode MODE. */
5707 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5709 if (mode != VOIDmode)
5711 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5712 return -1;
5713 m &= GET_MODE_MASK (mode);
5716 return exact_log2 (m + 1);
5719 /* Return the mode of MEM's address. */
5721 machine_mode
5722 get_address_mode (rtx mem)
5724 machine_mode mode;
5726 gcc_assert (MEM_P (mem));
5727 mode = GET_MODE (XEXP (mem, 0));
5728 if (mode != VOIDmode)
5729 return mode;
5730 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5733 /* Split up a CONST_DOUBLE or integer constant rtx
5734 into two rtx's for single words,
5735 storing in *FIRST the word that comes first in memory in the target
5736 and in *SECOND the other.
5738 TODO: This function needs to be rewritten to work on any size
5739 integer. */
5741 void
5742 split_double (rtx value, rtx *first, rtx *second)
5744 if (CONST_INT_P (value))
5746 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5748 /* In this case the CONST_INT holds both target words.
5749 Extract the bits from it into two word-sized pieces.
5750 Sign extend each half to HOST_WIDE_INT. */
5751 unsigned HOST_WIDE_INT low, high;
5752 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5753 unsigned bits_per_word = BITS_PER_WORD;
5755 /* Set sign_bit to the most significant bit of a word. */
5756 sign_bit = 1;
5757 sign_bit <<= bits_per_word - 1;
5759 /* Set mask so that all bits of the word are set. We could
5760 have used 1 << BITS_PER_WORD instead of basing the
5761 calculation on sign_bit. However, on machines where
5762 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5763 compiler warning, even though the code would never be
5764 executed. */
5765 mask = sign_bit << 1;
5766 mask--;
5768 /* Set sign_extend as any remaining bits. */
5769 sign_extend = ~mask;
5771 /* Pick the lower word and sign-extend it. */
5772 low = INTVAL (value);
5773 low &= mask;
5774 if (low & sign_bit)
5775 low |= sign_extend;
5777 /* Pick the higher word, shifted to the least significant
5778 bits, and sign-extend it. */
5779 high = INTVAL (value);
5780 high >>= bits_per_word - 1;
5781 high >>= 1;
5782 high &= mask;
5783 if (high & sign_bit)
5784 high |= sign_extend;
5786 /* Store the words in the target machine order. */
5787 if (WORDS_BIG_ENDIAN)
5789 *first = GEN_INT (high);
5790 *second = GEN_INT (low);
5792 else
5794 *first = GEN_INT (low);
5795 *second = GEN_INT (high);
5798 else
5800 /* The rule for using CONST_INT for a wider mode
5801 is that we regard the value as signed.
5802 So sign-extend it. */
5803 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5804 if (WORDS_BIG_ENDIAN)
5806 *first = high;
5807 *second = value;
5809 else
5811 *first = value;
5812 *second = high;
5816 else if (GET_CODE (value) == CONST_WIDE_INT)
5818 /* All of this is scary code and needs to be converted to
5819 properly work with any size integer. */
5820 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5821 if (WORDS_BIG_ENDIAN)
5823 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5824 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5826 else
5828 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5829 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5832 else if (!CONST_DOUBLE_P (value))
5834 if (WORDS_BIG_ENDIAN)
5836 *first = const0_rtx;
5837 *second = value;
5839 else
5841 *first = value;
5842 *second = const0_rtx;
5845 else if (GET_MODE (value) == VOIDmode
5846 /* This is the old way we did CONST_DOUBLE integers. */
5847 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5849 /* In an integer, the words are defined as most and least significant.
5850 So order them by the target's convention. */
5851 if (WORDS_BIG_ENDIAN)
5853 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5854 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5856 else
5858 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5859 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5862 else
5864 long l[2];
5866 /* Note, this converts the REAL_VALUE_TYPE to the target's
5867 format, splits up the floating point double and outputs
5868 exactly 32 bits of it into each of l[0] and l[1] --
5869 not necessarily BITS_PER_WORD bits. */
5870 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5872 /* If 32 bits is an entire word for the target, but not for the host,
5873 then sign-extend on the host so that the number will look the same
5874 way on the host that it would on the target. See for instance
5875 simplify_unary_operation. The #if is needed to avoid compiler
5876 warnings. */
5878 #if HOST_BITS_PER_LONG > 32
5879 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5881 if (l[0] & ((long) 1 << 31))
5882 l[0] |= ((unsigned long) (-1) << 32);
5883 if (l[1] & ((long) 1 << 31))
5884 l[1] |= ((unsigned long) (-1) << 32);
5886 #endif
5888 *first = GEN_INT (l[0]);
5889 *second = GEN_INT (l[1]);
5893 /* Return true if X is a sign_extract or zero_extract from the least
5894 significant bit. */
5896 static bool
5897 lsb_bitfield_op_p (rtx x)
5899 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5901 machine_mode mode = GET_MODE (XEXP (x, 0));
5902 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5903 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5905 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5907 return false;
5910 /* Strip outer address "mutations" from LOC and return a pointer to the
5911 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5912 stripped expression there.
5914 "Mutations" either convert between modes or apply some kind of
5915 extension, truncation or alignment. */
5917 rtx *
5918 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5920 for (;;)
5922 enum rtx_code code = GET_CODE (*loc);
5923 if (GET_RTX_CLASS (code) == RTX_UNARY)
5924 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5925 used to convert between pointer sizes. */
5926 loc = &XEXP (*loc, 0);
5927 else if (lsb_bitfield_op_p (*loc))
5928 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5929 acts as a combined truncation and extension. */
5930 loc = &XEXP (*loc, 0);
5931 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5932 /* (and ... (const_int -X)) is used to align to X bytes. */
5933 loc = &XEXP (*loc, 0);
5934 else if (code == SUBREG
5935 && !OBJECT_P (SUBREG_REG (*loc))
5936 && subreg_lowpart_p (*loc))
5937 /* (subreg (operator ...) ...) inside and is used for mode
5938 conversion too. */
5939 loc = &SUBREG_REG (*loc);
5940 else
5941 return loc;
5942 if (outer_code)
5943 *outer_code = code;
5947 /* Return true if CODE applies some kind of scale. The scaled value is
5948 is the first operand and the scale is the second. */
5950 static bool
5951 binary_scale_code_p (enum rtx_code code)
5953 return (code == MULT
5954 || code == ASHIFT
5955 /* Needed by ARM targets. */
5956 || code == ASHIFTRT
5957 || code == LSHIFTRT
5958 || code == ROTATE
5959 || code == ROTATERT);
5962 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5963 (see address_info). Return null otherwise. */
5965 static rtx *
5966 get_base_term (rtx *inner)
5968 if (GET_CODE (*inner) == LO_SUM)
5969 inner = strip_address_mutations (&XEXP (*inner, 0));
5970 if (REG_P (*inner)
5971 || MEM_P (*inner)
5972 || GET_CODE (*inner) == SUBREG
5973 || GET_CODE (*inner) == SCRATCH)
5974 return inner;
5975 return 0;
5978 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5979 (see address_info). Return null otherwise. */
5981 static rtx *
5982 get_index_term (rtx *inner)
5984 /* At present, only constant scales are allowed. */
5985 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5986 inner = strip_address_mutations (&XEXP (*inner, 0));
5987 if (REG_P (*inner)
5988 || MEM_P (*inner)
5989 || GET_CODE (*inner) == SUBREG
5990 || GET_CODE (*inner) == SCRATCH)
5991 return inner;
5992 return 0;
5995 /* Set the segment part of address INFO to LOC, given that INNER is the
5996 unmutated value. */
5998 static void
5999 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6001 gcc_assert (!info->segment);
6002 info->segment = loc;
6003 info->segment_term = inner;
6006 /* Set the base part of address INFO to LOC, given that INNER is the
6007 unmutated value. */
6009 static void
6010 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6012 gcc_assert (!info->base);
6013 info->base = loc;
6014 info->base_term = inner;
6017 /* Set the index part of address INFO to LOC, given that INNER is the
6018 unmutated value. */
6020 static void
6021 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6023 gcc_assert (!info->index);
6024 info->index = loc;
6025 info->index_term = inner;
6028 /* Set the displacement part of address INFO to LOC, given that INNER
6029 is the constant term. */
6031 static void
6032 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6034 gcc_assert (!info->disp);
6035 info->disp = loc;
6036 info->disp_term = inner;
6039 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6040 rest of INFO accordingly. */
6042 static void
6043 decompose_incdec_address (struct address_info *info)
6045 info->autoinc_p = true;
6047 rtx *base = &XEXP (*info->inner, 0);
6048 set_address_base (info, base, base);
6049 gcc_checking_assert (info->base == info->base_term);
6051 /* These addresses are only valid when the size of the addressed
6052 value is known. */
6053 gcc_checking_assert (info->mode != VOIDmode);
6056 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6057 of INFO accordingly. */
6059 static void
6060 decompose_automod_address (struct address_info *info)
6062 info->autoinc_p = true;
6064 rtx *base = &XEXP (*info->inner, 0);
6065 set_address_base (info, base, base);
6066 gcc_checking_assert (info->base == info->base_term);
6068 rtx plus = XEXP (*info->inner, 1);
6069 gcc_assert (GET_CODE (plus) == PLUS);
6071 info->base_term2 = &XEXP (plus, 0);
6072 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6074 rtx *step = &XEXP (plus, 1);
6075 rtx *inner_step = strip_address_mutations (step);
6076 if (CONSTANT_P (*inner_step))
6077 set_address_disp (info, step, inner_step);
6078 else
6079 set_address_index (info, step, inner_step);
6082 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6083 values in [PTR, END). Return a pointer to the end of the used array. */
6085 static rtx **
6086 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6088 rtx x = *loc;
6089 if (GET_CODE (x) == PLUS)
6091 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6092 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6094 else
6096 gcc_assert (ptr != end);
6097 *ptr++ = loc;
6099 return ptr;
6102 /* Evaluate the likelihood of X being a base or index value, returning
6103 positive if it is likely to be a base, negative if it is likely to be
6104 an index, and 0 if we can't tell. Make the magnitude of the return
6105 value reflect the amount of confidence we have in the answer.
6107 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6109 static int
6110 baseness (rtx x, machine_mode mode, addr_space_t as,
6111 enum rtx_code outer_code, enum rtx_code index_code)
6113 /* Believe *_POINTER unless the address shape requires otherwise. */
6114 if (REG_P (x) && REG_POINTER (x))
6115 return 2;
6116 if (MEM_P (x) && MEM_POINTER (x))
6117 return 2;
6119 if (REG_P (x) && HARD_REGISTER_P (x))
6121 /* X is a hard register. If it only fits one of the base
6122 or index classes, choose that interpretation. */
6123 int regno = REGNO (x);
6124 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6125 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6126 if (base_p != index_p)
6127 return base_p ? 1 : -1;
6129 return 0;
6132 /* INFO->INNER describes a normal, non-automodified address.
6133 Fill in the rest of INFO accordingly. */
6135 static void
6136 decompose_normal_address (struct address_info *info)
6138 /* Treat the address as the sum of up to four values. */
6139 rtx *ops[4];
6140 size_t n_ops = extract_plus_operands (info->inner, ops,
6141 ops + ARRAY_SIZE (ops)) - ops;
6143 /* If there is more than one component, any base component is in a PLUS. */
6144 if (n_ops > 1)
6145 info->base_outer_code = PLUS;
6147 /* Try to classify each sum operand now. Leave those that could be
6148 either a base or an index in OPS. */
6149 rtx *inner_ops[4];
6150 size_t out = 0;
6151 for (size_t in = 0; in < n_ops; ++in)
6153 rtx *loc = ops[in];
6154 rtx *inner = strip_address_mutations (loc);
6155 if (CONSTANT_P (*inner))
6156 set_address_disp (info, loc, inner);
6157 else if (GET_CODE (*inner) == UNSPEC)
6158 set_address_segment (info, loc, inner);
6159 else
6161 /* The only other possibilities are a base or an index. */
6162 rtx *base_term = get_base_term (inner);
6163 rtx *index_term = get_index_term (inner);
6164 gcc_assert (base_term || index_term);
6165 if (!base_term)
6166 set_address_index (info, loc, index_term);
6167 else if (!index_term)
6168 set_address_base (info, loc, base_term);
6169 else
6171 gcc_assert (base_term == index_term);
6172 ops[out] = loc;
6173 inner_ops[out] = base_term;
6174 ++out;
6179 /* Classify the remaining OPS members as bases and indexes. */
6180 if (out == 1)
6182 /* If we haven't seen a base or an index yet, assume that this is
6183 the base. If we were confident that another term was the base
6184 or index, treat the remaining operand as the other kind. */
6185 if (!info->base)
6186 set_address_base (info, ops[0], inner_ops[0]);
6187 else
6188 set_address_index (info, ops[0], inner_ops[0]);
6190 else if (out == 2)
6192 /* In the event of a tie, assume the base comes first. */
6193 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6194 GET_CODE (*ops[1]))
6195 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6196 GET_CODE (*ops[0])))
6198 set_address_base (info, ops[0], inner_ops[0]);
6199 set_address_index (info, ops[1], inner_ops[1]);
6201 else
6203 set_address_base (info, ops[1], inner_ops[1]);
6204 set_address_index (info, ops[0], inner_ops[0]);
6207 else
6208 gcc_assert (out == 0);
6211 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6212 or VOIDmode if not known. AS is the address space associated with LOC.
6213 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6215 void
6216 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6217 addr_space_t as, enum rtx_code outer_code)
6219 memset (info, 0, sizeof (*info));
6220 info->mode = mode;
6221 info->as = as;
6222 info->addr_outer_code = outer_code;
6223 info->outer = loc;
6224 info->inner = strip_address_mutations (loc, &outer_code);
6225 info->base_outer_code = outer_code;
6226 switch (GET_CODE (*info->inner))
6228 case PRE_DEC:
6229 case PRE_INC:
6230 case POST_DEC:
6231 case POST_INC:
6232 decompose_incdec_address (info);
6233 break;
6235 case PRE_MODIFY:
6236 case POST_MODIFY:
6237 decompose_automod_address (info);
6238 break;
6240 default:
6241 decompose_normal_address (info);
6242 break;
6246 /* Describe address operand LOC in INFO. */
6248 void
6249 decompose_lea_address (struct address_info *info, rtx *loc)
6251 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6254 /* Describe the address of MEM X in INFO. */
6256 void
6257 decompose_mem_address (struct address_info *info, rtx x)
6259 gcc_assert (MEM_P (x));
6260 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6261 MEM_ADDR_SPACE (x), MEM);
6264 /* Update INFO after a change to the address it describes. */
6266 void
6267 update_address (struct address_info *info)
6269 decompose_address (info, info->outer, info->mode, info->as,
6270 info->addr_outer_code);
6273 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6274 more complicated than that. */
6276 HOST_WIDE_INT
6277 get_index_scale (const struct address_info *info)
6279 rtx index = *info->index;
6280 if (GET_CODE (index) == MULT
6281 && CONST_INT_P (XEXP (index, 1))
6282 && info->index_term == &XEXP (index, 0))
6283 return INTVAL (XEXP (index, 1));
6285 if (GET_CODE (index) == ASHIFT
6286 && CONST_INT_P (XEXP (index, 1))
6287 && info->index_term == &XEXP (index, 0))
6288 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6290 if (info->index == info->index_term)
6291 return 1;
6293 return 0;
6296 /* Return the "index code" of INFO, in the form required by
6297 ok_for_base_p_1. */
6299 enum rtx_code
6300 get_index_code (const struct address_info *info)
6302 if (info->index)
6303 return GET_CODE (*info->index);
6305 if (info->disp)
6306 return GET_CODE (*info->disp);
6308 return SCRATCH;
6311 /* Return true if RTL X contains a SYMBOL_REF. */
6313 bool
6314 contains_symbol_ref_p (const_rtx x)
6316 subrtx_iterator::array_type array;
6317 FOR_EACH_SUBRTX (iter, array, x, ALL)
6318 if (SYMBOL_REF_P (*iter))
6319 return true;
6321 return false;
6324 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6326 bool
6327 contains_symbolic_reference_p (const_rtx x)
6329 subrtx_iterator::array_type array;
6330 FOR_EACH_SUBRTX (iter, array, x, ALL)
6331 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6332 return true;
6334 return false;
6337 /* Return true if X contains a thread-local symbol. */
6339 bool
6340 tls_referenced_p (const_rtx x)
6342 if (!targetm.have_tls)
6343 return false;
6345 subrtx_iterator::array_type array;
6346 FOR_EACH_SUBRTX (iter, array, x, ALL)
6347 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6348 return true;
6349 return false;