Daily bump.
[official-gcc.git] / gcc / function.c
blob401f8f90160df42b84228eed471112d6d53e8305
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "tm_p.h"
45 #include "stringpool.h"
46 #include "expmed.h"
47 #include "optabs.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "rtl-error.h"
52 #include "alias.h"
53 #include "fold-const.h"
54 #include "stor-layout.h"
55 #include "varasm.h"
56 #include "except.h"
57 #include "dojump.h"
58 #include "explow.h"
59 #include "calls.h"
60 #include "expr.h"
61 #include "optabs-tree.h"
62 #include "output.h"
63 #include "langhooks.h"
64 #include "common/common-target.h"
65 #include "gimplify.h"
66 #include "tree-pass.h"
67 #include "cfgrtl.h"
68 #include "cfganal.h"
69 #include "cfgbuild.h"
70 #include "cfgcleanup.h"
71 #include "cfgexpand.h"
72 #include "shrink-wrap.h"
73 #include "toplev.h"
74 #include "rtl-iter.h"
75 #include "tree-chkp.h"
76 #include "rtl-chkp.h"
77 #include "tree-dfa.h"
78 #include "tree-ssa.h"
80 /* So we can assign to cfun in this file. */
81 #undef cfun
83 #ifndef STACK_ALIGNMENT_NEEDED
84 #define STACK_ALIGNMENT_NEEDED 1
85 #endif
87 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
89 /* Round a value to the lowest integer less than it that is a multiple of
90 the required alignment. Avoid using division in case the value is
91 negative. Assume the alignment is a power of two. */
92 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94 /* Similar, but round to the next highest integer that meets the
95 alignment. */
96 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98 /* Nonzero once virtual register instantiation has been done.
99 assign_stack_local uses frame_pointer_rtx when this is nonzero.
100 calls.c:emit_library_call_value_1 uses it to set up
101 post-instantiation libcalls. */
102 int virtuals_instantiated;
104 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
105 static GTY(()) int funcdef_no;
107 /* These variables hold pointers to functions to create and destroy
108 target specific, per-function data structures. */
109 struct machine_function * (*init_machine_status) (void);
111 /* The currently compiled function. */
112 struct function *cfun = 0;
114 /* These hashes record the prologue and epilogue insns. */
116 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
118 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
119 static bool equal (rtx a, rtx b) { return a == b; }
122 static GTY((cache))
123 hash_table<insn_cache_hasher> *prologue_insn_hash;
124 static GTY((cache))
125 hash_table<insn_cache_hasher> *epilogue_insn_hash;
128 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
129 vec<tree, va_gc> *types_used_by_cur_var_decl;
131 /* Forward declarations. */
133 static struct temp_slot *find_temp_slot_from_address (rtx);
134 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
135 static void pad_below (struct args_size *, machine_mode, tree);
136 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
137 static int all_blocks (tree, tree *);
138 static tree *get_block_vector (tree, int *);
139 extern tree debug_find_var_in_block_tree (tree, tree);
140 /* We always define `record_insns' even if it's not used so that we
141 can always export `prologue_epilogue_contains'. */
142 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
143 ATTRIBUTE_UNUSED;
144 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
145 static void prepare_function_start (void);
146 static void do_clobber_return_reg (rtx, void *);
147 static void do_use_return_reg (rtx, void *);
150 /* Stack of nested functions. */
151 /* Keep track of the cfun stack. */
153 static vec<function *> function_context_stack;
155 /* Save the current context for compilation of a nested function.
156 This is called from language-specific code. */
158 void
159 push_function_context (void)
161 if (cfun == 0)
162 allocate_struct_function (NULL, false);
164 function_context_stack.safe_push (cfun);
165 set_cfun (NULL);
168 /* Restore the last saved context, at the end of a nested function.
169 This function is called from language-specific code. */
171 void
172 pop_function_context (void)
174 struct function *p = function_context_stack.pop ();
175 set_cfun (p);
176 current_function_decl = p->decl;
178 /* Reset variables that have known state during rtx generation. */
179 virtuals_instantiated = 0;
180 generating_concat_p = 1;
183 /* Clear out all parts of the state in F that can safely be discarded
184 after the function has been parsed, but not compiled, to let
185 garbage collection reclaim the memory. */
187 void
188 free_after_parsing (struct function *f)
190 f->language = 0;
193 /* Clear out all parts of the state in F that can safely be discarded
194 after the function has been compiled, to let garbage collection
195 reclaim the memory. */
197 void
198 free_after_compilation (struct function *f)
200 prologue_insn_hash = NULL;
201 epilogue_insn_hash = NULL;
203 free (crtl->emit.regno_pointer_align);
205 memset (crtl, 0, sizeof (struct rtl_data));
206 f->eh = NULL;
207 f->machine = NULL;
208 f->cfg = NULL;
209 f->curr_properties &= ~PROP_cfg;
211 regno_reg_rtx = NULL;
214 /* Return size needed for stack frame based on slots so far allocated.
215 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
216 the caller may have to do that. */
218 HOST_WIDE_INT
219 get_frame_size (void)
221 if (FRAME_GROWS_DOWNWARD)
222 return -frame_offset;
223 else
224 return frame_offset;
227 /* Issue an error message and return TRUE if frame OFFSET overflows in
228 the signed target pointer arithmetics for function FUNC. Otherwise
229 return FALSE. */
231 bool
232 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
234 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
236 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
237 /* Leave room for the fixed part of the frame. */
238 - 64 * UNITS_PER_WORD)
240 error_at (DECL_SOURCE_LOCATION (func),
241 "total size of local objects too large");
242 return TRUE;
245 return FALSE;
248 /* Return stack slot alignment in bits for TYPE and MODE. */
250 static unsigned int
251 get_stack_local_alignment (tree type, machine_mode mode)
253 unsigned int alignment;
255 if (mode == BLKmode)
256 alignment = BIGGEST_ALIGNMENT;
257 else
258 alignment = GET_MODE_ALIGNMENT (mode);
260 /* Allow the frond-end to (possibly) increase the alignment of this
261 stack slot. */
262 if (! type)
263 type = lang_hooks.types.type_for_mode (mode, 0);
265 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
268 /* Determine whether it is possible to fit a stack slot of size SIZE and
269 alignment ALIGNMENT into an area in the stack frame that starts at
270 frame offset START and has a length of LENGTH. If so, store the frame
271 offset to be used for the stack slot in *POFFSET and return true;
272 return false otherwise. This function will extend the frame size when
273 given a start/length pair that lies at the end of the frame. */
275 static bool
276 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
277 HOST_WIDE_INT size, unsigned int alignment,
278 HOST_WIDE_INT *poffset)
280 HOST_WIDE_INT this_frame_offset;
281 int frame_off, frame_alignment, frame_phase;
283 /* Calculate how many bytes the start of local variables is off from
284 stack alignment. */
285 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
286 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
287 frame_phase = frame_off ? frame_alignment - frame_off : 0;
289 /* Round the frame offset to the specified alignment. */
291 /* We must be careful here, since FRAME_OFFSET might be negative and
292 division with a negative dividend isn't as well defined as we might
293 like. So we instead assume that ALIGNMENT is a power of two and
294 use logical operations which are unambiguous. */
295 if (FRAME_GROWS_DOWNWARD)
296 this_frame_offset
297 = (FLOOR_ROUND (start + length - size - frame_phase,
298 (unsigned HOST_WIDE_INT) alignment)
299 + frame_phase);
300 else
301 this_frame_offset
302 = (CEIL_ROUND (start - frame_phase,
303 (unsigned HOST_WIDE_INT) alignment)
304 + frame_phase);
306 /* See if it fits. If this space is at the edge of the frame,
307 consider extending the frame to make it fit. Our caller relies on
308 this when allocating a new slot. */
309 if (frame_offset == start && this_frame_offset < frame_offset)
310 frame_offset = this_frame_offset;
311 else if (this_frame_offset < start)
312 return false;
313 else if (start + length == frame_offset
314 && this_frame_offset + size > start + length)
315 frame_offset = this_frame_offset + size;
316 else if (this_frame_offset + size > start + length)
317 return false;
319 *poffset = this_frame_offset;
320 return true;
323 /* Create a new frame_space structure describing free space in the stack
324 frame beginning at START and ending at END, and chain it into the
325 function's frame_space_list. */
327 static void
328 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
330 struct frame_space *space = ggc_alloc<frame_space> ();
331 space->next = crtl->frame_space_list;
332 crtl->frame_space_list = space;
333 space->start = start;
334 space->length = end - start;
337 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
338 with machine mode MODE.
340 ALIGN controls the amount of alignment for the address of the slot:
341 0 means according to MODE,
342 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
343 -2 means use BITS_PER_UNIT,
344 positive specifies alignment boundary in bits.
346 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
347 alignment and ASLK_RECORD_PAD bit set if we should remember
348 extra space we allocated for alignment purposes. When we are
349 called from assign_stack_temp_for_type, it is not set so we don't
350 track the same stack slot in two independent lists.
352 We do not round to stack_boundary here. */
355 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
356 int align, int kind)
358 rtx x, addr;
359 int bigend_correction = 0;
360 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
361 unsigned int alignment, alignment_in_bits;
363 if (align == 0)
365 alignment = get_stack_local_alignment (NULL, mode);
366 alignment /= BITS_PER_UNIT;
368 else if (align == -1)
370 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
371 size = CEIL_ROUND (size, alignment);
373 else if (align == -2)
374 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
375 else
376 alignment = align / BITS_PER_UNIT;
378 alignment_in_bits = alignment * BITS_PER_UNIT;
380 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
381 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
383 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
384 alignment = alignment_in_bits / BITS_PER_UNIT;
387 if (SUPPORTS_STACK_ALIGNMENT)
389 if (crtl->stack_alignment_estimated < alignment_in_bits)
391 if (!crtl->stack_realign_processed)
392 crtl->stack_alignment_estimated = alignment_in_bits;
393 else
395 /* If stack is realigned and stack alignment value
396 hasn't been finalized, it is OK not to increase
397 stack_alignment_estimated. The bigger alignment
398 requirement is recorded in stack_alignment_needed
399 below. */
400 gcc_assert (!crtl->stack_realign_finalized);
401 if (!crtl->stack_realign_needed)
403 /* It is OK to reduce the alignment as long as the
404 requested size is 0 or the estimated stack
405 alignment >= mode alignment. */
406 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
407 || size == 0
408 || (crtl->stack_alignment_estimated
409 >= GET_MODE_ALIGNMENT (mode)));
410 alignment_in_bits = crtl->stack_alignment_estimated;
411 alignment = alignment_in_bits / BITS_PER_UNIT;
417 if (crtl->stack_alignment_needed < alignment_in_bits)
418 crtl->stack_alignment_needed = alignment_in_bits;
419 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
420 crtl->max_used_stack_slot_alignment = alignment_in_bits;
422 if (mode != BLKmode || size != 0)
424 if (kind & ASLK_RECORD_PAD)
426 struct frame_space **psp;
428 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
430 struct frame_space *space = *psp;
431 if (!try_fit_stack_local (space->start, space->length, size,
432 alignment, &slot_offset))
433 continue;
434 *psp = space->next;
435 if (slot_offset > space->start)
436 add_frame_space (space->start, slot_offset);
437 if (slot_offset + size < space->start + space->length)
438 add_frame_space (slot_offset + size,
439 space->start + space->length);
440 goto found_space;
444 else if (!STACK_ALIGNMENT_NEEDED)
446 slot_offset = frame_offset;
447 goto found_space;
450 old_frame_offset = frame_offset;
452 if (FRAME_GROWS_DOWNWARD)
454 frame_offset -= size;
455 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
457 if (kind & ASLK_RECORD_PAD)
459 if (slot_offset > frame_offset)
460 add_frame_space (frame_offset, slot_offset);
461 if (slot_offset + size < old_frame_offset)
462 add_frame_space (slot_offset + size, old_frame_offset);
465 else
467 frame_offset += size;
468 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
470 if (kind & ASLK_RECORD_PAD)
472 if (slot_offset > old_frame_offset)
473 add_frame_space (old_frame_offset, slot_offset);
474 if (slot_offset + size < frame_offset)
475 add_frame_space (slot_offset + size, frame_offset);
479 found_space:
480 /* On a big-endian machine, if we are allocating more space than we will use,
481 use the least significant bytes of those that are allocated. */
482 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
483 bigend_correction = size - GET_MODE_SIZE (mode);
485 /* If we have already instantiated virtual registers, return the actual
486 address relative to the frame pointer. */
487 if (virtuals_instantiated)
488 addr = plus_constant (Pmode, frame_pointer_rtx,
489 trunc_int_for_mode
490 (slot_offset + bigend_correction
491 + STARTING_FRAME_OFFSET, Pmode));
492 else
493 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
494 trunc_int_for_mode
495 (slot_offset + bigend_correction,
496 Pmode));
498 x = gen_rtx_MEM (mode, addr);
499 set_mem_align (x, alignment_in_bits);
500 MEM_NOTRAP_P (x) = 1;
502 stack_slot_list
503 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
505 if (frame_offset_overflow (frame_offset, current_function_decl))
506 frame_offset = 0;
508 return x;
511 /* Wrap up assign_stack_local_1 with last parameter as false. */
514 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
516 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
519 /* In order to evaluate some expressions, such as function calls returning
520 structures in memory, we need to temporarily allocate stack locations.
521 We record each allocated temporary in the following structure.
523 Associated with each temporary slot is a nesting level. When we pop up
524 one level, all temporaries associated with the previous level are freed.
525 Normally, all temporaries are freed after the execution of the statement
526 in which they were created. However, if we are inside a ({...}) grouping,
527 the result may be in a temporary and hence must be preserved. If the
528 result could be in a temporary, we preserve it if we can determine which
529 one it is in. If we cannot determine which temporary may contain the
530 result, all temporaries are preserved. A temporary is preserved by
531 pretending it was allocated at the previous nesting level. */
533 struct GTY(()) temp_slot {
534 /* Points to next temporary slot. */
535 struct temp_slot *next;
536 /* Points to previous temporary slot. */
537 struct temp_slot *prev;
538 /* The rtx to used to reference the slot. */
539 rtx slot;
540 /* The size, in units, of the slot. */
541 HOST_WIDE_INT size;
542 /* The type of the object in the slot, or zero if it doesn't correspond
543 to a type. We use this to determine whether a slot can be reused.
544 It can be reused if objects of the type of the new slot will always
545 conflict with objects of the type of the old slot. */
546 tree type;
547 /* The alignment (in bits) of the slot. */
548 unsigned int align;
549 /* Nonzero if this temporary is currently in use. */
550 char in_use;
551 /* Nesting level at which this slot is being used. */
552 int level;
553 /* The offset of the slot from the frame_pointer, including extra space
554 for alignment. This info is for combine_temp_slots. */
555 HOST_WIDE_INT base_offset;
556 /* The size of the slot, including extra space for alignment. This
557 info is for combine_temp_slots. */
558 HOST_WIDE_INT full_size;
561 /* Entry for the below hash table. */
562 struct GTY((for_user)) temp_slot_address_entry {
563 hashval_t hash;
564 rtx address;
565 struct temp_slot *temp_slot;
568 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
570 static hashval_t hash (temp_slot_address_entry *);
571 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
574 /* A table of addresses that represent a stack slot. The table is a mapping
575 from address RTXen to a temp slot. */
576 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
577 static size_t n_temp_slots_in_use;
579 /* Removes temporary slot TEMP from LIST. */
581 static void
582 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
584 if (temp->next)
585 temp->next->prev = temp->prev;
586 if (temp->prev)
587 temp->prev->next = temp->next;
588 else
589 *list = temp->next;
591 temp->prev = temp->next = NULL;
594 /* Inserts temporary slot TEMP to LIST. */
596 static void
597 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
599 temp->next = *list;
600 if (*list)
601 (*list)->prev = temp;
602 temp->prev = NULL;
603 *list = temp;
606 /* Returns the list of used temp slots at LEVEL. */
608 static struct temp_slot **
609 temp_slots_at_level (int level)
611 if (level >= (int) vec_safe_length (used_temp_slots))
612 vec_safe_grow_cleared (used_temp_slots, level + 1);
614 return &(*used_temp_slots)[level];
617 /* Returns the maximal temporary slot level. */
619 static int
620 max_slot_level (void)
622 if (!used_temp_slots)
623 return -1;
625 return used_temp_slots->length () - 1;
628 /* Moves temporary slot TEMP to LEVEL. */
630 static void
631 move_slot_to_level (struct temp_slot *temp, int level)
633 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
634 insert_slot_to_list (temp, temp_slots_at_level (level));
635 temp->level = level;
638 /* Make temporary slot TEMP available. */
640 static void
641 make_slot_available (struct temp_slot *temp)
643 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
644 insert_slot_to_list (temp, &avail_temp_slots);
645 temp->in_use = 0;
646 temp->level = -1;
647 n_temp_slots_in_use--;
650 /* Compute the hash value for an address -> temp slot mapping.
651 The value is cached on the mapping entry. */
652 static hashval_t
653 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
655 int do_not_record = 0;
656 return hash_rtx (t->address, GET_MODE (t->address),
657 &do_not_record, NULL, false);
660 /* Return the hash value for an address -> temp slot mapping. */
661 hashval_t
662 temp_address_hasher::hash (temp_slot_address_entry *t)
664 return t->hash;
667 /* Compare two address -> temp slot mapping entries. */
668 bool
669 temp_address_hasher::equal (temp_slot_address_entry *t1,
670 temp_slot_address_entry *t2)
672 return exp_equiv_p (t1->address, t2->address, 0, true);
675 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
676 static void
677 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
679 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
680 t->address = address;
681 t->temp_slot = temp_slot;
682 t->hash = temp_slot_address_compute_hash (t);
683 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
686 /* Remove an address -> temp slot mapping entry if the temp slot is
687 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
689 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
691 const struct temp_slot_address_entry *t = *slot;
692 if (! t->temp_slot->in_use)
693 temp_slot_address_table->clear_slot (slot);
694 return 1;
697 /* Remove all mappings of addresses to unused temp slots. */
698 static void
699 remove_unused_temp_slot_addresses (void)
701 /* Use quicker clearing if there aren't any active temp slots. */
702 if (n_temp_slots_in_use)
703 temp_slot_address_table->traverse
704 <void *, remove_unused_temp_slot_addresses_1> (NULL);
705 else
706 temp_slot_address_table->empty ();
709 /* Find the temp slot corresponding to the object at address X. */
711 static struct temp_slot *
712 find_temp_slot_from_address (rtx x)
714 struct temp_slot *p;
715 struct temp_slot_address_entry tmp, *t;
717 /* First try the easy way:
718 See if X exists in the address -> temp slot mapping. */
719 tmp.address = x;
720 tmp.temp_slot = NULL;
721 tmp.hash = temp_slot_address_compute_hash (&tmp);
722 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
723 if (t)
724 return t->temp_slot;
726 /* If we have a sum involving a register, see if it points to a temp
727 slot. */
728 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
729 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
730 return p;
731 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
732 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
733 return p;
735 /* Last resort: Address is a virtual stack var address. */
736 if (GET_CODE (x) == PLUS
737 && XEXP (x, 0) == virtual_stack_vars_rtx
738 && CONST_INT_P (XEXP (x, 1)))
740 int i;
741 for (i = max_slot_level (); i >= 0; i--)
742 for (p = *temp_slots_at_level (i); p; p = p->next)
744 if (INTVAL (XEXP (x, 1)) >= p->base_offset
745 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
746 return p;
750 return NULL;
753 /* Allocate a temporary stack slot and record it for possible later
754 reuse.
756 MODE is the machine mode to be given to the returned rtx.
758 SIZE is the size in units of the space required. We do no rounding here
759 since assign_stack_local will do any required rounding.
761 TYPE is the type that will be used for the stack slot. */
764 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
765 tree type)
767 unsigned int align;
768 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
769 rtx slot;
771 /* If SIZE is -1 it means that somebody tried to allocate a temporary
772 of a variable size. */
773 gcc_assert (size != -1);
775 align = get_stack_local_alignment (type, mode);
777 /* Try to find an available, already-allocated temporary of the proper
778 mode which meets the size and alignment requirements. Choose the
779 smallest one with the closest alignment.
781 If assign_stack_temp is called outside of the tree->rtl expansion,
782 we cannot reuse the stack slots (that may still refer to
783 VIRTUAL_STACK_VARS_REGNUM). */
784 if (!virtuals_instantiated)
786 for (p = avail_temp_slots; p; p = p->next)
788 if (p->align >= align && p->size >= size
789 && GET_MODE (p->slot) == mode
790 && objects_must_conflict_p (p->type, type)
791 && (best_p == 0 || best_p->size > p->size
792 || (best_p->size == p->size && best_p->align > p->align)))
794 if (p->align == align && p->size == size)
796 selected = p;
797 cut_slot_from_list (selected, &avail_temp_slots);
798 best_p = 0;
799 break;
801 best_p = p;
806 /* Make our best, if any, the one to use. */
807 if (best_p)
809 selected = best_p;
810 cut_slot_from_list (selected, &avail_temp_slots);
812 /* If there are enough aligned bytes left over, make them into a new
813 temp_slot so that the extra bytes don't get wasted. Do this only
814 for BLKmode slots, so that we can be sure of the alignment. */
815 if (GET_MODE (best_p->slot) == BLKmode)
817 int alignment = best_p->align / BITS_PER_UNIT;
818 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
820 if (best_p->size - rounded_size >= alignment)
822 p = ggc_alloc<temp_slot> ();
823 p->in_use = 0;
824 p->size = best_p->size - rounded_size;
825 p->base_offset = best_p->base_offset + rounded_size;
826 p->full_size = best_p->full_size - rounded_size;
827 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
828 p->align = best_p->align;
829 p->type = best_p->type;
830 insert_slot_to_list (p, &avail_temp_slots);
832 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
833 stack_slot_list);
835 best_p->size = rounded_size;
836 best_p->full_size = rounded_size;
841 /* If we still didn't find one, make a new temporary. */
842 if (selected == 0)
844 HOST_WIDE_INT frame_offset_old = frame_offset;
846 p = ggc_alloc<temp_slot> ();
848 /* We are passing an explicit alignment request to assign_stack_local.
849 One side effect of that is assign_stack_local will not round SIZE
850 to ensure the frame offset remains suitably aligned.
852 So for requests which depended on the rounding of SIZE, we go ahead
853 and round it now. We also make sure ALIGNMENT is at least
854 BIGGEST_ALIGNMENT. */
855 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
856 p->slot = assign_stack_local_1 (mode,
857 (mode == BLKmode
858 ? CEIL_ROUND (size,
859 (int) align
860 / BITS_PER_UNIT)
861 : size),
862 align, 0);
864 p->align = align;
866 /* The following slot size computation is necessary because we don't
867 know the actual size of the temporary slot until assign_stack_local
868 has performed all the frame alignment and size rounding for the
869 requested temporary. Note that extra space added for alignment
870 can be either above or below this stack slot depending on which
871 way the frame grows. We include the extra space if and only if it
872 is above this slot. */
873 if (FRAME_GROWS_DOWNWARD)
874 p->size = frame_offset_old - frame_offset;
875 else
876 p->size = size;
878 /* Now define the fields used by combine_temp_slots. */
879 if (FRAME_GROWS_DOWNWARD)
881 p->base_offset = frame_offset;
882 p->full_size = frame_offset_old - frame_offset;
884 else
886 p->base_offset = frame_offset_old;
887 p->full_size = frame_offset - frame_offset_old;
890 selected = p;
893 p = selected;
894 p->in_use = 1;
895 p->type = type;
896 p->level = temp_slot_level;
897 n_temp_slots_in_use++;
899 pp = temp_slots_at_level (p->level);
900 insert_slot_to_list (p, pp);
901 insert_temp_slot_address (XEXP (p->slot, 0), p);
903 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
904 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
905 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
907 /* If we know the alias set for the memory that will be used, use
908 it. If there's no TYPE, then we don't know anything about the
909 alias set for the memory. */
910 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
911 set_mem_align (slot, align);
913 /* If a type is specified, set the relevant flags. */
914 if (type != 0)
915 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
916 MEM_NOTRAP_P (slot) = 1;
918 return slot;
921 /* Allocate a temporary stack slot and record it for possible later
922 reuse. First two arguments are same as in preceding function. */
925 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
927 return assign_stack_temp_for_type (mode, size, NULL_TREE);
930 /* Assign a temporary.
931 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
932 and so that should be used in error messages. In either case, we
933 allocate of the given type.
934 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
935 it is 0 if a register is OK.
936 DONT_PROMOTE is 1 if we should not promote values in register
937 to wider modes. */
940 assign_temp (tree type_or_decl, int memory_required,
941 int dont_promote ATTRIBUTE_UNUSED)
943 tree type, decl;
944 machine_mode mode;
945 #ifdef PROMOTE_MODE
946 int unsignedp;
947 #endif
949 if (DECL_P (type_or_decl))
950 decl = type_or_decl, type = TREE_TYPE (decl);
951 else
952 decl = NULL, type = type_or_decl;
954 mode = TYPE_MODE (type);
955 #ifdef PROMOTE_MODE
956 unsignedp = TYPE_UNSIGNED (type);
957 #endif
959 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
960 end. See also create_tmp_var for the gimplification-time check. */
961 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
963 if (mode == BLKmode || memory_required)
965 HOST_WIDE_INT size = int_size_in_bytes (type);
966 rtx tmp;
968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
969 problems with allocating the stack space. */
970 if (size == 0)
971 size = 1;
973 /* Unfortunately, we don't yet know how to allocate variable-sized
974 temporaries. However, sometimes we can find a fixed upper limit on
975 the size, so try that instead. */
976 else if (size == -1)
977 size = max_int_size_in_bytes (type);
979 /* The size of the temporary may be too large to fit into an integer. */
980 /* ??? Not sure this should happen except for user silliness, so limit
981 this to things that aren't compiler-generated temporaries. The
982 rest of the time we'll die in assign_stack_temp_for_type. */
983 if (decl && size == -1
984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
986 error ("size of variable %q+D is too large", decl);
987 size = 1;
990 tmp = assign_stack_temp_for_type (mode, size, type);
991 return tmp;
994 #ifdef PROMOTE_MODE
995 if (! dont_promote)
996 mode = promote_mode (type, mode, &unsignedp);
997 #endif
999 return gen_reg_rtx (mode);
1002 /* Combine temporary stack slots which are adjacent on the stack.
1004 This allows for better use of already allocated stack space. This is only
1005 done for BLKmode slots because we can be sure that we won't have alignment
1006 problems in this case. */
1008 static void
1009 combine_temp_slots (void)
1011 struct temp_slot *p, *q, *next, *next_q;
1012 int num_slots;
1014 /* We can't combine slots, because the information about which slot
1015 is in which alias set will be lost. */
1016 if (flag_strict_aliasing)
1017 return;
1019 /* If there are a lot of temp slots, don't do anything unless
1020 high levels of optimization. */
1021 if (! flag_expensive_optimizations)
1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1024 return;
1026 for (p = avail_temp_slots; p; p = next)
1028 int delete_p = 0;
1030 next = p->next;
1032 if (GET_MODE (p->slot) != BLKmode)
1033 continue;
1035 for (q = p->next; q; q = next_q)
1037 int delete_q = 0;
1039 next_q = q->next;
1041 if (GET_MODE (q->slot) != BLKmode)
1042 continue;
1044 if (p->base_offset + p->full_size == q->base_offset)
1046 /* Q comes after P; combine Q into P. */
1047 p->size += q->size;
1048 p->full_size += q->full_size;
1049 delete_q = 1;
1051 else if (q->base_offset + q->full_size == p->base_offset)
1053 /* P comes after Q; combine P into Q. */
1054 q->size += p->size;
1055 q->full_size += p->full_size;
1056 delete_p = 1;
1057 break;
1059 if (delete_q)
1060 cut_slot_from_list (q, &avail_temp_slots);
1063 /* Either delete P or advance past it. */
1064 if (delete_p)
1065 cut_slot_from_list (p, &avail_temp_slots);
1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1070 slot that previously was known by OLD_RTX. */
1072 void
1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1075 struct temp_slot *p;
1077 if (rtx_equal_p (old_rtx, new_rtx))
1078 return;
1080 p = find_temp_slot_from_address (old_rtx);
1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1083 NEW_RTX is a register, see if one operand of the PLUS is a
1084 temporary location. If so, NEW_RTX points into it. Otherwise,
1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1086 in common between them. If so, try a recursive call on those
1087 values. */
1088 if (p == 0)
1090 if (GET_CODE (old_rtx) != PLUS)
1091 return;
1093 if (REG_P (new_rtx))
1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1097 return;
1099 else if (GET_CODE (new_rtx) != PLUS)
1100 return;
1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1111 return;
1114 /* Otherwise add an alias for the temp's address. */
1115 insert_temp_slot_address (new_rtx, p);
1118 /* If X could be a reference to a temporary slot, mark that slot as
1119 belonging to the to one level higher than the current level. If X
1120 matched one of our slots, just mark that one. Otherwise, we can't
1121 easily predict which it is, so upgrade all of them.
1123 This is called when an ({...}) construct occurs and a statement
1124 returns a value in memory. */
1126 void
1127 preserve_temp_slots (rtx x)
1129 struct temp_slot *p = 0, *next;
1131 if (x == 0)
1132 return;
1134 /* If X is a register that is being used as a pointer, see if we have
1135 a temporary slot we know it points to. */
1136 if (REG_P (x) && REG_POINTER (x))
1137 p = find_temp_slot_from_address (x);
1139 /* If X is not in memory or is at a constant address, it cannot be in
1140 a temporary slot. */
1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1142 return;
1144 /* First see if we can find a match. */
1145 if (p == 0)
1146 p = find_temp_slot_from_address (XEXP (x, 0));
1148 if (p != 0)
1150 if (p->level == temp_slot_level)
1151 move_slot_to_level (p, temp_slot_level - 1);
1152 return;
1155 /* Otherwise, preserve all non-kept slots at this level. */
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 next = p->next;
1159 move_slot_to_level (p, temp_slot_level - 1);
1163 /* Free all temporaries used so far. This is normally called at the
1164 end of generating code for a statement. */
1166 void
1167 free_temp_slots (void)
1169 struct temp_slot *p, *next;
1170 bool some_available = false;
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 make_slot_available (p);
1176 some_available = true;
1179 if (some_available)
1181 remove_unused_temp_slot_addresses ();
1182 combine_temp_slots ();
1186 /* Push deeper into the nesting level for stack temporaries. */
1188 void
1189 push_temp_slots (void)
1191 temp_slot_level++;
1194 /* Pop a temporary nesting level. All slots in use in the current level
1195 are freed. */
1197 void
1198 pop_temp_slots (void)
1200 free_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 vec_alloc (used_temp_slots, 0);
1212 temp_slot_level = 0;
1213 n_temp_slots_in_use = 0;
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1218 else
1219 temp_slot_address_table->empty ();
1222 /* Functions and data structures to keep track of the values hard regs
1223 had at the start of the function. */
1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1226 and has_hard_reg_initial_val.. */
1227 struct GTY(()) initial_value_pair {
1228 rtx hard_reg;
1229 rtx pseudo;
1231 /* ??? This could be a VEC but there is currently no way to define an
1232 opaque VEC type. This could be worked around by defining struct
1233 initial_value_pair in function.h. */
1234 struct GTY(()) initial_value_struct {
1235 int num_entries;
1236 int max_entries;
1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1240 /* If a pseudo represents an initial hard reg (or expression), return
1241 it, else return NULL_RTX. */
1244 get_hard_reg_initial_reg (rtx reg)
1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1247 int i;
1249 if (ivs == 0)
1250 return NULL_RTX;
1252 for (i = 0; i < ivs->num_entries; i++)
1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1254 return ivs->entries[i].hard_reg;
1256 return NULL_RTX;
1259 /* Make sure that there's a pseudo register of mode MODE that stores the
1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1265 struct initial_value_struct *ivs;
1266 rtx rv;
1268 rv = has_hard_reg_initial_val (mode, regno);
1269 if (rv)
1270 return rv;
1272 ivs = crtl->hard_reg_initial_vals;
1273 if (ivs == 0)
1275 ivs = ggc_alloc<initial_value_struct> ();
1276 ivs->num_entries = 0;
1277 ivs->max_entries = 5;
1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1279 crtl->hard_reg_initial_vals = ivs;
1282 if (ivs->num_entries >= ivs->max_entries)
1284 ivs->max_entries += 5;
1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1286 ivs->max_entries);
1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1292 return ivs->entries[ivs->num_entries++].pseudo;
1295 /* See if get_hard_reg_initial_val has been used to create a pseudo
1296 for the initial value of hard register REGNO in mode MODE. Return
1297 the associated pseudo if so, otherwise return NULL. */
1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1302 struct initial_value_struct *ivs;
1303 int i;
1305 ivs = crtl->hard_reg_initial_vals;
1306 if (ivs != 0)
1307 for (i = 0; i < ivs->num_entries; i++)
1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1309 && REGNO (ivs->entries[i].hard_reg) == regno)
1310 return ivs->entries[i].pseudo;
1312 return NULL_RTX;
1315 unsigned int
1316 emit_initial_value_sets (void)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 int i;
1320 rtx_insn *seq;
1322 if (ivs == 0)
1323 return 0;
1325 start_sequence ();
1326 for (i = 0; i < ivs->num_entries; i++)
1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1328 seq = get_insns ();
1329 end_sequence ();
1331 emit_insn_at_entry (seq);
1332 return 0;
1335 /* Return the hardreg-pseudoreg initial values pair entry I and
1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1337 bool
1338 initial_value_entry (int i, rtx *hreg, rtx *preg)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 if (!ivs || i >= ivs->num_entries)
1342 return false;
1344 *hreg = ivs->entries[i].hard_reg;
1345 *preg = ivs->entries[i].pseudo;
1346 return true;
1349 /* These routines are responsible for converting virtual register references
1350 to the actual hard register references once RTL generation is complete.
1352 The following four variables are used for communication between the
1353 routines. They contain the offsets of the virtual registers from their
1354 respective hard registers. */
1356 static int in_arg_offset;
1357 static int var_offset;
1358 static int dynamic_offset;
1359 static int out_arg_offset;
1360 static int cfa_offset;
1362 /* In most machines, the stack pointer register is equivalent to the bottom
1363 of the stack. */
1365 #ifndef STACK_POINTER_OFFSET
1366 #define STACK_POINTER_OFFSET 0
1367 #endif
1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 #endif
1373 /* If not defined, pick an appropriate default for the offset of dynamically
1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1377 #ifndef STACK_DYNAMIC_OFFSET
1379 /* The bottom of the stack points to the actual arguments. If
1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1382 stack space for register parameters is not pushed by the caller, but
1383 rather part of the fixed stack areas and hence not included in
1384 `crtl->outgoing_args_size'. Nevertheless, we must allow
1385 for it when allocating stack dynamic objects. */
1387 #ifdef INCOMING_REG_PARM_STACK_SPACE
1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1389 ((ACCUMULATE_OUTGOING_ARGS \
1390 ? (crtl->outgoing_args_size \
1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1393 : 0) + (STACK_POINTER_OFFSET))
1394 #else
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1397 + (STACK_POINTER_OFFSET))
1398 #endif
1399 #endif
1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1403 is a virtual register, return the equivalent hard register and set the
1404 offset indirectly through the pointer. Otherwise, return 0. */
1406 static rtx
1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 rtx new_rtx;
1410 HOST_WIDE_INT offset;
1412 if (x == virtual_incoming_args_rtx)
1414 if (stack_realign_drap)
1416 /* Replace virtual_incoming_args_rtx with internal arg
1417 pointer if DRAP is used to realign stack. */
1418 new_rtx = crtl->args.internal_arg_pointer;
1419 offset = 0;
1421 else
1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1424 else if (x == virtual_stack_vars_rtx)
1425 new_rtx = frame_pointer_rtx, offset = var_offset;
1426 else if (x == virtual_stack_dynamic_rtx)
1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1428 else if (x == virtual_outgoing_args_rtx)
1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1430 else if (x == virtual_cfa_rtx)
1432 #ifdef FRAME_POINTER_CFA_OFFSET
1433 new_rtx = frame_pointer_rtx;
1434 #else
1435 new_rtx = arg_pointer_rtx;
1436 #endif
1437 offset = cfa_offset;
1439 else if (x == virtual_preferred_stack_boundary_rtx)
1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1442 offset = 0;
1444 else
1445 return NULL_RTX;
1447 *poffset = offset;
1448 return new_rtx;
1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1452 registers present inside of *LOC. The expression is simplified,
1453 as much as possible, but is not to be considered "valid" in any sense
1454 implied by the target. Return true if any change is made. */
1456 static bool
1457 instantiate_virtual_regs_in_rtx (rtx *loc)
1459 if (!*loc)
1460 return false;
1461 bool changed = false;
1462 subrtx_ptr_iterator::array_type array;
1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1465 rtx *loc = *iter;
1466 if (rtx x = *loc)
1468 rtx new_rtx;
1469 HOST_WIDE_INT offset;
1470 switch (GET_CODE (x))
1472 case REG:
1473 new_rtx = instantiate_new_reg (x, &offset);
1474 if (new_rtx)
1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1477 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1482 case PLUS:
1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1484 if (new_rtx)
1486 XEXP (x, 0) = new_rtx;
1487 *loc = plus_constant (GET_MODE (x), x, offset, true);
1488 changed = true;
1489 iter.skip_subrtxes ();
1490 break;
1493 /* FIXME -- from old code */
1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1495 we can commute the PLUS and SUBREG because pointers into the
1496 frame are well-behaved. */
1497 break;
1499 default:
1500 break;
1504 return changed;
1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1508 matches the predicate for insn CODE operand OPERAND. */
1510 static int
1511 safe_insn_predicate (int code, int operand, rtx x)
1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1517 registers present inside of insn. The result will be a valid insn. */
1519 static void
1520 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1522 HOST_WIDE_INT offset;
1523 int insn_code, i;
1524 bool any_change = false;
1525 rtx set, new_rtx, x;
1526 rtx_insn *seq;
1528 /* There are some special cases to be handled first. */
1529 set = single_set (insn);
1530 if (set)
1532 /* We're allowed to assign to a virtual register. This is interpreted
1533 to mean that the underlying register gets assigned the inverse
1534 transformation. This is used, for example, in the handling of
1535 non-local gotos. */
1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1537 if (new_rtx)
1539 start_sequence ();
1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1543 gen_int_mode (-offset, GET_MODE (new_rtx)));
1544 x = force_operand (x, new_rtx);
1545 if (x != new_rtx)
1546 emit_move_insn (new_rtx, x);
1548 seq = get_insns ();
1549 end_sequence ();
1551 emit_insn_before (seq, insn);
1552 delete_insn (insn);
1553 return;
1556 /* Handle a straight copy from a virtual register by generating a
1557 new add insn. The difference between this and falling through
1558 to the generic case is avoiding a new pseudo and eliminating a
1559 move insn in the initial rtl stream. */
1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1561 if (new_rtx && offset != 0
1562 && REG_P (SET_DEST (set))
1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1565 start_sequence ();
1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1568 gen_int_mode (offset,
1569 GET_MODE (SET_DEST (set))),
1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1571 if (x != SET_DEST (set))
1572 emit_move_insn (SET_DEST (set), x);
1574 seq = get_insns ();
1575 end_sequence ();
1577 emit_insn_before (seq, insn);
1578 delete_insn (insn);
1579 return;
1582 extract_insn (insn);
1583 insn_code = INSN_CODE (insn);
1585 /* Handle a plus involving a virtual register by determining if the
1586 operands remain valid if they're modified in place. */
1587 if (GET_CODE (SET_SRC (set)) == PLUS
1588 && recog_data.n_operands >= 3
1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1591 && CONST_INT_P (recog_data.operand[2])
1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1594 offset += INTVAL (recog_data.operand[2]);
1596 /* If the sum is zero, then replace with a plain move. */
1597 if (offset == 0
1598 && REG_P (SET_DEST (set))
1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1601 start_sequence ();
1602 emit_move_insn (SET_DEST (set), new_rtx);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1613 /* Using validate_change and apply_change_group here leaves
1614 recog_data in an invalid state. Since we know exactly what
1615 we want to check, do those two by hand. */
1616 if (safe_insn_predicate (insn_code, 1, new_rtx)
1617 && safe_insn_predicate (insn_code, 2, x))
1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1621 any_change = true;
1623 /* Fall through into the regular operand fixup loop in
1624 order to take care of operands other than 1 and 2. */
1628 else
1630 extract_insn (insn);
1631 insn_code = INSN_CODE (insn);
1634 /* In the general case, we expect virtual registers to appear only in
1635 operands, and then only as either bare registers or inside memories. */
1636 for (i = 0; i < recog_data.n_operands; ++i)
1638 x = recog_data.operand[i];
1639 switch (GET_CODE (x))
1641 case MEM:
1643 rtx addr = XEXP (x, 0);
1645 if (!instantiate_virtual_regs_in_rtx (&addr))
1646 continue;
1648 start_sequence ();
1649 x = replace_equiv_address (x, addr, true);
1650 /* It may happen that the address with the virtual reg
1651 was valid (e.g. based on the virtual stack reg, which might
1652 be acceptable to the predicates with all offsets), whereas
1653 the address now isn't anymore, for instance when the address
1654 is still offsetted, but the base reg isn't virtual-stack-reg
1655 anymore. Below we would do a force_reg on the whole operand,
1656 but this insn might actually only accept memory. Hence,
1657 before doing that last resort, try to reload the address into
1658 a register, so this operand stays a MEM. */
1659 if (!safe_insn_predicate (insn_code, i, x))
1661 addr = force_reg (GET_MODE (addr), addr);
1662 x = replace_equiv_address (x, addr, true);
1664 seq = get_insns ();
1665 end_sequence ();
1666 if (seq)
1667 emit_insn_before (seq, insn);
1669 break;
1671 case REG:
1672 new_rtx = instantiate_new_reg (x, &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset == 0)
1676 x = new_rtx;
1677 else
1679 start_sequence ();
1681 /* Careful, special mode predicates may have stuff in
1682 insn_data[insn_code].operand[i].mode that isn't useful
1683 to us for computing a new value. */
1684 /* ??? Recognize address_operand and/or "p" constraints
1685 to see if (plus new offset) is a valid before we put
1686 this through expand_simple_binop. */
1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1688 gen_int_mode (offset, GET_MODE (x)),
1689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1690 seq = get_insns ();
1691 end_sequence ();
1692 emit_insn_before (seq, insn);
1694 break;
1696 case SUBREG:
1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (offset != 0)
1702 start_sequence ();
1703 new_rtx = expand_simple_binop
1704 (GET_MODE (new_rtx), PLUS, new_rtx,
1705 gen_int_mode (offset, GET_MODE (new_rtx)),
1706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1707 seq = get_insns ();
1708 end_sequence ();
1709 emit_insn_before (seq, insn);
1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1712 GET_MODE (new_rtx), SUBREG_BYTE (x));
1713 gcc_assert (x);
1714 break;
1716 default:
1717 continue;
1720 /* At this point, X contains the new value for the operand.
1721 Validate the new value vs the insn predicate. Note that
1722 asm insns will have insn_code -1 here. */
1723 if (!safe_insn_predicate (insn_code, i, x))
1725 start_sequence ();
1726 if (REG_P (x))
1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1729 x = copy_to_reg (x);
1731 else
1732 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1733 seq = get_insns ();
1734 end_sequence ();
1735 if (seq)
1736 emit_insn_before (seq, insn);
1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1740 any_change = true;
1743 if (any_change)
1745 /* Propagate operand changes into the duplicates. */
1746 for (i = 0; i < recog_data.n_dups; ++i)
1747 *recog_data.dup_loc[i]
1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1750 /* Force re-recognition of the instruction for validation. */
1751 INSN_CODE (insn) = -1;
1754 if (asm_noperands (PATTERN (insn)) >= 0)
1756 if (!check_asm_operands (PATTERN (insn)))
1758 error_for_asm (insn, "impossible constraint in %<asm%>");
1759 /* For asm goto, instead of fixing up all the edges
1760 just clear the template and clear input operands
1761 (asm goto doesn't have any output operands). */
1762 if (JUMP_P (insn))
1764 rtx asm_op = extract_asm_operands (PATTERN (insn));
1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1769 else
1770 delete_insn (insn);
1773 else
1775 if (recog_memoized (insn) < 0)
1776 fatal_insn_not_found (insn);
1780 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1781 do any instantiation required. */
1783 void
1784 instantiate_decl_rtl (rtx x)
1786 rtx addr;
1788 if (x == 0)
1789 return;
1791 /* If this is a CONCAT, recurse for the pieces. */
1792 if (GET_CODE (x) == CONCAT)
1794 instantiate_decl_rtl (XEXP (x, 0));
1795 instantiate_decl_rtl (XEXP (x, 1));
1796 return;
1799 /* If this is not a MEM, no need to do anything. Similarly if the
1800 address is a constant or a register that is not a virtual register. */
1801 if (!MEM_P (x))
1802 return;
1804 addr = XEXP (x, 0);
1805 if (CONSTANT_P (addr)
1806 || (REG_P (addr)
1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1809 return;
1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1814 /* Helper for instantiate_decls called via walk_tree: Process all decls
1815 in the given DECL_VALUE_EXPR. */
1817 static tree
1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1820 tree t = *tp;
1821 if (! EXPR_P (t))
1823 *walk_subtrees = 0;
1824 if (DECL_P (t))
1826 if (DECL_RTL_SET_P (t))
1827 instantiate_decl_rtl (DECL_RTL (t));
1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1829 && DECL_INCOMING_RTL (t))
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1831 if ((TREE_CODE (t) == VAR_DECL
1832 || TREE_CODE (t) == RESULT_DECL)
1833 && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 return NULL;
1843 /* Subroutine of instantiate_decls: Process all decls in the given
1844 BLOCK node and all its subblocks. */
1846 static void
1847 instantiate_decls_1 (tree let)
1849 tree t;
1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1853 if (DECL_RTL_SET_P (t))
1854 instantiate_decl_rtl (DECL_RTL (t));
1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1857 tree v = DECL_VALUE_EXPR (t);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 /* Process all subblocks. */
1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1864 instantiate_decls_1 (t);
1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1868 all virtual registers in their DECL_RTL's. */
1870 static void
1871 instantiate_decls (tree fndecl)
1873 tree decl;
1874 unsigned ix;
1876 /* Process all parameters of the function. */
1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1881 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 tree v = DECL_VALUE_EXPR (decl);
1884 walk_tree (&v, instantiate_expr, NULL, NULL);
1888 if ((decl = DECL_RESULT (fndecl))
1889 && TREE_CODE (decl) == RESULT_DECL)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 if (DECL_HAS_VALUE_EXPR_P (decl))
1895 tree v = DECL_VALUE_EXPR (decl);
1896 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 /* Process the saved static chain if it exists. */
1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1905 /* Now process all variables defined in the function or its subblocks. */
1906 instantiate_decls_1 (DECL_INITIAL (fndecl));
1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1909 if (DECL_RTL_SET_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 vec_free (cfun->local_decls);
1914 /* Pass through the INSNS of function FNDECL and convert virtual register
1915 references to hard register references. */
1917 static unsigned int
1918 instantiate_virtual_regs (void)
1920 rtx_insn *insn;
1922 /* Compute the offsets to use for this function. */
1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1924 var_offset = STARTING_FRAME_OFFSET;
1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1926 out_arg_offset = STACK_POINTER_OFFSET;
1927 #ifdef FRAME_POINTER_CFA_OFFSET
1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1929 #else
1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1931 #endif
1933 /* Initialize recognition, indicating that volatile is OK. */
1934 init_recog ();
1936 /* Scan through all the insns, instantiating every virtual register still
1937 present. */
1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1939 if (INSN_P (insn))
1941 /* These patterns in the instruction stream can never be recognized.
1942 Fortunately, they shouldn't contain virtual registers either. */
1943 if (GET_CODE (PATTERN (insn)) == USE
1944 || GET_CODE (PATTERN (insn)) == CLOBBER
1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1946 continue;
1947 else if (DEBUG_INSN_P (insn))
1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1949 else
1950 instantiate_virtual_regs_in_insn (insn);
1952 if (insn->deleted ())
1953 continue;
1955 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1958 if (CALL_P (insn))
1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1963 instantiate_decls (current_function_decl);
1965 targetm.instantiate_decls ();
1967 /* Indicate that, from now on, assign_stack_local should use
1968 frame_pointer_rtx. */
1969 virtuals_instantiated = 1;
1971 return 0;
1974 namespace {
1976 const pass_data pass_data_instantiate_virtual_regs =
1978 RTL_PASS, /* type */
1979 "vregs", /* name */
1980 OPTGROUP_NONE, /* optinfo_flags */
1981 TV_NONE, /* tv_id */
1982 0, /* properties_required */
1983 0, /* properties_provided */
1984 0, /* properties_destroyed */
1985 0, /* todo_flags_start */
1986 0, /* todo_flags_finish */
1989 class pass_instantiate_virtual_regs : public rtl_opt_pass
1991 public:
1992 pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1996 /* opt_pass methods: */
1997 virtual unsigned int execute (function *)
1999 return instantiate_virtual_regs ();
2002 }; // class pass_instantiate_virtual_regs
2004 } // anon namespace
2006 rtl_opt_pass *
2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 return new pass_instantiate_virtual_regs (ctxt);
2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2014 This means a type for which function calls must pass an address to the
2015 function or get an address back from the function.
2016 EXP may be a type node or an expression (whose type is tested). */
2019 aggregate_value_p (const_tree exp, const_tree fntype)
2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2022 int i, regno, nregs;
2023 rtx reg;
2025 if (fntype)
2026 switch (TREE_CODE (fntype))
2028 case CALL_EXPR:
2030 tree fndecl = get_callee_fndecl (fntype);
2031 if (fndecl)
2032 fntype = TREE_TYPE (fndecl);
2033 else if (CALL_EXPR_FN (fntype))
2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2035 else
2036 /* For internal functions, assume nothing needs to be
2037 returned in memory. */
2038 return 0;
2040 break;
2041 case FUNCTION_DECL:
2042 fntype = TREE_TYPE (fntype);
2043 break;
2044 case FUNCTION_TYPE:
2045 case METHOD_TYPE:
2046 break;
2047 case IDENTIFIER_NODE:
2048 fntype = NULL_TREE;
2049 break;
2050 default:
2051 /* We don't expect other tree types here. */
2052 gcc_unreachable ();
2055 if (VOID_TYPE_P (type))
2056 return 0;
2058 /* If a record should be passed the same as its first (and only) member
2059 don't pass it as an aggregate. */
2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2061 return aggregate_value_p (first_field (type), fntype);
2063 /* If the front end has decided that this needs to be passed by
2064 reference, do so. */
2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2066 && DECL_BY_REFERENCE (exp))
2067 return 1;
2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2070 if (fntype && TREE_ADDRESSABLE (fntype))
2071 return 1;
2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2074 and thus can't be returned in registers. */
2075 if (TREE_ADDRESSABLE (type))
2076 return 1;
2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2079 return 1;
2081 if (targetm.calls.return_in_memory (type, fntype))
2082 return 1;
2084 /* Make sure we have suitable call-clobbered regs to return
2085 the value in; if not, we must return it in memory. */
2086 reg = hard_function_value (type, 0, fntype, 0);
2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2089 it is OK. */
2090 if (!REG_P (reg))
2091 return 0;
2093 regno = REGNO (reg);
2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2095 for (i = 0; i < nregs; i++)
2096 if (! call_used_regs[regno + i])
2097 return 1;
2099 return 0;
2102 /* Return true if we should assign DECL a pseudo register; false if it
2103 should live on the local stack. */
2105 bool
2106 use_register_for_decl (const_tree decl)
2108 if (TREE_CODE (decl) == SSA_NAME)
2110 /* We often try to use the SSA_NAME, instead of its underlying
2111 decl, to get type information and guide decisions, to avoid
2112 differences of behavior between anonymous and named
2113 variables, but in this one case we have to go for the actual
2114 variable if there is one. The main reason is that, at least
2115 at -O0, we want to place user variables on the stack, but we
2116 don't mind using pseudos for anonymous or ignored temps.
2117 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2118 should go in pseudos, whereas their corresponding variables
2119 might have to go on the stack. So, disregarding the decl
2120 here would negatively impact debug info at -O0, enable
2121 coalescing between SSA_NAMEs that ought to get different
2122 stack/pseudo assignments, and get the incoming argument
2123 processing thoroughly confused by PARM_DECLs expected to live
2124 in stack slots but assigned to pseudos. */
2125 if (!SSA_NAME_VAR (decl))
2126 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2127 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2129 decl = SSA_NAME_VAR (decl);
2132 /* Honor volatile. */
2133 if (TREE_SIDE_EFFECTS (decl))
2134 return false;
2136 /* Honor addressability. */
2137 if (TREE_ADDRESSABLE (decl))
2138 return false;
2140 /* RESULT_DECLs are a bit special in that they're assigned without
2141 regard to use_register_for_decl, but we generally only store in
2142 them. If we coalesce their SSA NAMEs, we'd better return a
2143 result that matches the assignment in expand_function_start. */
2144 if (TREE_CODE (decl) == RESULT_DECL)
2146 /* If it's not an aggregate, we're going to use a REG or a
2147 PARALLEL containing a REG. */
2148 if (!aggregate_value_p (decl, current_function_decl))
2149 return true;
2151 /* If expand_function_start determines the return value, we'll
2152 use MEM if it's not by reference. */
2153 if (cfun->returns_pcc_struct
2154 || (targetm.calls.struct_value_rtx
2155 (TREE_TYPE (current_function_decl), 1)))
2156 return DECL_BY_REFERENCE (decl);
2158 /* Otherwise, we're taking an extra all.function_result_decl
2159 argument. It's set up in assign_parms_augmented_arg_list,
2160 under the (negated) conditions above, and then it's used to
2161 set up the RESULT_DECL rtl in assign_params, after looping
2162 over all parameters. Now, if the RESULT_DECL is not by
2163 reference, we'll use a MEM either way. */
2164 if (!DECL_BY_REFERENCE (decl))
2165 return false;
2167 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2168 the function_result_decl's assignment. Since it's a pointer,
2169 we can short-circuit a number of the tests below, and we must
2170 duplicat e them because we don't have the
2171 function_result_decl to test. */
2172 if (!targetm.calls.allocate_stack_slots_for_args ())
2173 return true;
2174 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2175 if (optimize)
2176 return true;
2177 /* We don't set DECL_REGISTER for the function_result_decl. */
2178 return false;
2181 /* Decl is implicitly addressible by bound stores and loads
2182 if it is an aggregate holding bounds. */
2183 if (chkp_function_instrumented_p (current_function_decl)
2184 && TREE_TYPE (decl)
2185 && !BOUNDED_P (decl)
2186 && chkp_type_has_pointer (TREE_TYPE (decl)))
2187 return false;
2189 /* Only register-like things go in registers. */
2190 if (DECL_MODE (decl) == BLKmode)
2191 return false;
2193 /* If -ffloat-store specified, don't put explicit float variables
2194 into registers. */
2195 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2196 propagates values across these stores, and it probably shouldn't. */
2197 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2198 return false;
2200 if (!targetm.calls.allocate_stack_slots_for_args ())
2201 return true;
2203 /* If we're not interested in tracking debugging information for
2204 this decl, then we can certainly put it in a register. */
2205 if (DECL_IGNORED_P (decl))
2206 return true;
2208 if (optimize)
2209 return true;
2211 if (!DECL_REGISTER (decl))
2212 return false;
2214 switch (TREE_CODE (TREE_TYPE (decl)))
2216 case RECORD_TYPE:
2217 case UNION_TYPE:
2218 case QUAL_UNION_TYPE:
2219 /* When not optimizing, disregard register keyword for variables with
2220 types containing methods, otherwise the methods won't be callable
2221 from the debugger. */
2222 if (TYPE_METHODS (TYPE_MAIN_VARIANT (TREE_TYPE (decl))))
2223 return false;
2224 break;
2225 default:
2226 break;
2229 return true;
2232 /* Structures to communicate between the subroutines of assign_parms.
2233 The first holds data persistent across all parameters, the second
2234 is cleared out for each parameter. */
2236 struct assign_parm_data_all
2238 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2239 should become a job of the target or otherwise encapsulated. */
2240 CUMULATIVE_ARGS args_so_far_v;
2241 cumulative_args_t args_so_far;
2242 struct args_size stack_args_size;
2243 tree function_result_decl;
2244 tree orig_fnargs;
2245 rtx_insn *first_conversion_insn;
2246 rtx_insn *last_conversion_insn;
2247 HOST_WIDE_INT pretend_args_size;
2248 HOST_WIDE_INT extra_pretend_bytes;
2249 int reg_parm_stack_space;
2252 struct assign_parm_data_one
2254 tree nominal_type;
2255 tree passed_type;
2256 rtx entry_parm;
2257 rtx stack_parm;
2258 machine_mode nominal_mode;
2259 machine_mode passed_mode;
2260 machine_mode promoted_mode;
2261 struct locate_and_pad_arg_data locate;
2262 int partial;
2263 BOOL_BITFIELD named_arg : 1;
2264 BOOL_BITFIELD passed_pointer : 1;
2265 BOOL_BITFIELD on_stack : 1;
2266 BOOL_BITFIELD loaded_in_reg : 1;
2269 struct bounds_parm_data
2271 assign_parm_data_one parm_data;
2272 tree bounds_parm;
2273 tree ptr_parm;
2274 rtx ptr_entry;
2275 int bound_no;
2278 /* A subroutine of assign_parms. Initialize ALL. */
2280 static void
2281 assign_parms_initialize_all (struct assign_parm_data_all *all)
2283 tree fntype ATTRIBUTE_UNUSED;
2285 memset (all, 0, sizeof (*all));
2287 fntype = TREE_TYPE (current_function_decl);
2289 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2290 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2291 #else
2292 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2293 current_function_decl, -1);
2294 #endif
2295 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2297 #ifdef INCOMING_REG_PARM_STACK_SPACE
2298 all->reg_parm_stack_space
2299 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2300 #endif
2303 /* If ARGS contains entries with complex types, split the entry into two
2304 entries of the component type. Return a new list of substitutions are
2305 needed, else the old list. */
2307 static void
2308 split_complex_args (vec<tree> *args)
2310 unsigned i;
2311 tree p;
2313 FOR_EACH_VEC_ELT (*args, i, p)
2315 tree type = TREE_TYPE (p);
2316 if (TREE_CODE (type) == COMPLEX_TYPE
2317 && targetm.calls.split_complex_arg (type))
2319 tree decl;
2320 tree subtype = TREE_TYPE (type);
2321 bool addressable = TREE_ADDRESSABLE (p);
2323 /* Rewrite the PARM_DECL's type with its component. */
2324 p = copy_node (p);
2325 TREE_TYPE (p) = subtype;
2326 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2327 DECL_MODE (p) = VOIDmode;
2328 DECL_SIZE (p) = NULL;
2329 DECL_SIZE_UNIT (p) = NULL;
2330 /* If this arg must go in memory, put it in a pseudo here.
2331 We can't allow it to go in memory as per normal parms,
2332 because the usual place might not have the imag part
2333 adjacent to the real part. */
2334 DECL_ARTIFICIAL (p) = addressable;
2335 DECL_IGNORED_P (p) = addressable;
2336 TREE_ADDRESSABLE (p) = 0;
2337 layout_decl (p, 0);
2338 (*args)[i] = p;
2340 /* Build a second synthetic decl. */
2341 decl = build_decl (EXPR_LOCATION (p),
2342 PARM_DECL, NULL_TREE, subtype);
2343 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2344 DECL_ARTIFICIAL (decl) = addressable;
2345 DECL_IGNORED_P (decl) = addressable;
2346 layout_decl (decl, 0);
2347 args->safe_insert (++i, decl);
2352 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2353 the hidden struct return argument, and (abi willing) complex args.
2354 Return the new parameter list. */
2356 static vec<tree>
2357 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2359 tree fndecl = current_function_decl;
2360 tree fntype = TREE_TYPE (fndecl);
2361 vec<tree> fnargs = vNULL;
2362 tree arg;
2364 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2365 fnargs.safe_push (arg);
2367 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2369 /* If struct value address is treated as the first argument, make it so. */
2370 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2371 && ! cfun->returns_pcc_struct
2372 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2374 tree type = build_pointer_type (TREE_TYPE (fntype));
2375 tree decl;
2377 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2378 PARM_DECL, get_identifier (".result_ptr"), type);
2379 DECL_ARG_TYPE (decl) = type;
2380 DECL_ARTIFICIAL (decl) = 1;
2381 DECL_NAMELESS (decl) = 1;
2382 TREE_CONSTANT (decl) = 1;
2383 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2384 changes, the end of the RESULT_DECL handling block in
2385 use_register_for_decl must be adjusted to match. */
2387 DECL_CHAIN (decl) = all->orig_fnargs;
2388 all->orig_fnargs = decl;
2389 fnargs.safe_insert (0, decl);
2391 all->function_result_decl = decl;
2393 /* If function is instrumented then bounds of the
2394 passed structure address is the second argument. */
2395 if (chkp_function_instrumented_p (fndecl))
2397 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2398 PARM_DECL, get_identifier (".result_bnd"),
2399 pointer_bounds_type_node);
2400 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2405 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2406 DECL_CHAIN (all->orig_fnargs) = decl;
2407 fnargs.safe_insert (1, decl);
2411 /* If the target wants to split complex arguments into scalars, do so. */
2412 if (targetm.calls.split_complex_arg)
2413 split_complex_args (&fnargs);
2415 return fnargs;
2418 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2419 data for the parameter. Incorporate ABI specifics such as pass-by-
2420 reference and type promotion. */
2422 static void
2423 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2424 struct assign_parm_data_one *data)
2426 tree nominal_type, passed_type;
2427 machine_mode nominal_mode, passed_mode, promoted_mode;
2428 int unsignedp;
2430 memset (data, 0, sizeof (*data));
2432 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2433 if (!cfun->stdarg)
2434 data->named_arg = 1; /* No variadic parms. */
2435 else if (DECL_CHAIN (parm))
2436 data->named_arg = 1; /* Not the last non-variadic parm. */
2437 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2438 data->named_arg = 1; /* Only variadic ones are unnamed. */
2439 else
2440 data->named_arg = 0; /* Treat as variadic. */
2442 nominal_type = TREE_TYPE (parm);
2443 passed_type = DECL_ARG_TYPE (parm);
2445 /* Look out for errors propagating this far. Also, if the parameter's
2446 type is void then its value doesn't matter. */
2447 if (TREE_TYPE (parm) == error_mark_node
2448 /* This can happen after weird syntax errors
2449 or if an enum type is defined among the parms. */
2450 || TREE_CODE (parm) != PARM_DECL
2451 || passed_type == NULL
2452 || VOID_TYPE_P (nominal_type))
2454 nominal_type = passed_type = void_type_node;
2455 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2456 goto egress;
2459 /* Find mode of arg as it is passed, and mode of arg as it should be
2460 during execution of this function. */
2461 passed_mode = TYPE_MODE (passed_type);
2462 nominal_mode = TYPE_MODE (nominal_type);
2464 /* If the parm is to be passed as a transparent union or record, use the
2465 type of the first field for the tests below. We have already verified
2466 that the modes are the same. */
2467 if ((TREE_CODE (passed_type) == UNION_TYPE
2468 || TREE_CODE (passed_type) == RECORD_TYPE)
2469 && TYPE_TRANSPARENT_AGGR (passed_type))
2470 passed_type = TREE_TYPE (first_field (passed_type));
2472 /* See if this arg was passed by invisible reference. */
2473 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2474 passed_type, data->named_arg))
2476 passed_type = nominal_type = build_pointer_type (passed_type);
2477 data->passed_pointer = true;
2478 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2481 /* Find mode as it is passed by the ABI. */
2482 unsignedp = TYPE_UNSIGNED (passed_type);
2483 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2484 TREE_TYPE (current_function_decl), 0);
2486 egress:
2487 data->nominal_type = nominal_type;
2488 data->passed_type = passed_type;
2489 data->nominal_mode = nominal_mode;
2490 data->passed_mode = passed_mode;
2491 data->promoted_mode = promoted_mode;
2494 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2496 static void
2497 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2498 struct assign_parm_data_one *data, bool no_rtl)
2500 int varargs_pretend_bytes = 0;
2502 targetm.calls.setup_incoming_varargs (all->args_so_far,
2503 data->promoted_mode,
2504 data->passed_type,
2505 &varargs_pretend_bytes, no_rtl);
2507 /* If the back-end has requested extra stack space, record how much is
2508 needed. Do not change pretend_args_size otherwise since it may be
2509 nonzero from an earlier partial argument. */
2510 if (varargs_pretend_bytes > 0)
2511 all->pretend_args_size = varargs_pretend_bytes;
2514 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2515 the incoming location of the current parameter. */
2517 static void
2518 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2519 struct assign_parm_data_one *data)
2521 HOST_WIDE_INT pretend_bytes = 0;
2522 rtx entry_parm;
2523 bool in_regs;
2525 if (data->promoted_mode == VOIDmode)
2527 data->entry_parm = data->stack_parm = const0_rtx;
2528 return;
2531 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2532 data->promoted_mode,
2533 data->passed_type,
2534 data->named_arg);
2536 if (entry_parm == 0)
2537 data->promoted_mode = data->passed_mode;
2539 /* Determine parm's home in the stack, in case it arrives in the stack
2540 or we should pretend it did. Compute the stack position and rtx where
2541 the argument arrives and its size.
2543 There is one complexity here: If this was a parameter that would
2544 have been passed in registers, but wasn't only because it is
2545 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2546 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2547 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2548 as it was the previous time. */
2549 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2550 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2551 in_regs = true;
2552 #endif
2553 if (!in_regs && !data->named_arg)
2555 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2557 rtx tem;
2558 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2559 data->promoted_mode,
2560 data->passed_type, true);
2561 in_regs = tem != NULL;
2565 /* If this parameter was passed both in registers and in the stack, use
2566 the copy on the stack. */
2567 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2568 data->passed_type))
2569 entry_parm = 0;
2571 if (entry_parm)
2573 int partial;
2575 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2576 data->promoted_mode,
2577 data->passed_type,
2578 data->named_arg);
2579 data->partial = partial;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2613 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2628 data->entry_parm = entry_parm;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2634 static bool
2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2638 /* Bounds are never passed on the stack to keep compatibility
2639 with not instrumented code. */
2640 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2641 return false;
2642 /* Trivially true if we've no incoming register. */
2643 else if (data->entry_parm == NULL)
2645 /* Also true if we're partially in registers and partially not,
2646 since we've arranged to drop the entire argument on the stack. */
2647 else if (data->partial != 0)
2649 /* Also true if the target says that it's passed in both registers
2650 and on the stack. */
2651 else if (GET_CODE (data->entry_parm) == PARALLEL
2652 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2654 /* Also true if the target says that there's stack allocated for
2655 all register parameters. */
2656 else if (all->reg_parm_stack_space > 0)
2658 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2659 else
2660 return false;
2662 all->stack_args_size.constant += data->locate.size.constant;
2663 if (data->locate.size.var)
2664 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2666 return true;
2669 /* A subroutine of assign_parms. Given that this parameter is allocated
2670 stack space by the ABI, find it. */
2672 static void
2673 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2675 rtx offset_rtx, stack_parm;
2676 unsigned int align, boundary;
2678 /* If we're passing this arg using a reg, make its stack home the
2679 aligned stack slot. */
2680 if (data->entry_parm)
2681 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2682 else
2683 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2685 stack_parm = crtl->args.internal_arg_pointer;
2686 if (offset_rtx != const0_rtx)
2687 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2688 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2690 if (!data->passed_pointer)
2692 set_mem_attributes (stack_parm, parm, 1);
2693 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2694 while promoted mode's size is needed. */
2695 if (data->promoted_mode != BLKmode
2696 && data->promoted_mode != DECL_MODE (parm))
2698 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2699 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2701 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2702 data->promoted_mode);
2703 if (offset)
2704 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2709 boundary = data->locate.boundary;
2710 align = BITS_PER_UNIT;
2712 /* If we're padding upward, we know that the alignment of the slot
2713 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2714 intentionally forcing upward padding. Otherwise we have to come
2715 up with a guess at the alignment based on OFFSET_RTX. */
2716 if (data->locate.where_pad != downward || data->entry_parm)
2717 align = boundary;
2718 else if (CONST_INT_P (offset_rtx))
2720 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2721 align = align & -align;
2723 set_mem_align (stack_parm, align);
2725 if (data->entry_parm)
2726 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2728 data->stack_parm = stack_parm;
2731 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2732 always valid and contiguous. */
2734 static void
2735 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2737 rtx entry_parm = data->entry_parm;
2738 rtx stack_parm = data->stack_parm;
2740 /* If this parm was passed part in regs and part in memory, pretend it
2741 arrived entirely in memory by pushing the register-part onto the stack.
2742 In the special case of a DImode or DFmode that is split, we could put
2743 it together in a pseudoreg directly, but for now that's not worth
2744 bothering with. */
2745 if (data->partial != 0)
2747 /* Handle calls that pass values in multiple non-contiguous
2748 locations. The Irix 6 ABI has examples of this. */
2749 if (GET_CODE (entry_parm) == PARALLEL)
2750 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2751 data->passed_type,
2752 int_size_in_bytes (data->passed_type));
2753 else
2755 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2756 move_block_from_reg (REGNO (entry_parm),
2757 validize_mem (copy_rtx (stack_parm)),
2758 data->partial / UNITS_PER_WORD);
2761 entry_parm = stack_parm;
2764 /* If we didn't decide this parm came in a register, by default it came
2765 on the stack. */
2766 else if (entry_parm == NULL)
2767 entry_parm = stack_parm;
2769 /* When an argument is passed in multiple locations, we can't make use
2770 of this information, but we can save some copying if the whole argument
2771 is passed in a single register. */
2772 else if (GET_CODE (entry_parm) == PARALLEL
2773 && data->nominal_mode != BLKmode
2774 && data->passed_mode != BLKmode)
2776 size_t i, len = XVECLEN (entry_parm, 0);
2778 for (i = 0; i < len; i++)
2779 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2780 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2781 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2782 == data->passed_mode)
2783 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2785 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2786 break;
2790 data->entry_parm = entry_parm;
2793 /* A subroutine of assign_parms. Reconstitute any values which were
2794 passed in multiple registers and would fit in a single register. */
2796 static void
2797 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2799 rtx entry_parm = data->entry_parm;
2801 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2802 This can be done with register operations rather than on the
2803 stack, even if we will store the reconstituted parameter on the
2804 stack later. */
2805 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2807 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2808 emit_group_store (parmreg, entry_parm, data->passed_type,
2809 GET_MODE_SIZE (GET_MODE (entry_parm)));
2810 entry_parm = parmreg;
2813 data->entry_parm = entry_parm;
2816 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2817 always valid and properly aligned. */
2819 static void
2820 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2822 rtx stack_parm = data->stack_parm;
2824 /* If we can't trust the parm stack slot to be aligned enough for its
2825 ultimate type, don't use that slot after entry. We'll make another
2826 stack slot, if we need one. */
2827 if (stack_parm
2828 && ((STRICT_ALIGNMENT
2829 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2830 || (data->nominal_type
2831 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2832 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2833 stack_parm = NULL;
2835 /* If parm was passed in memory, and we need to convert it on entry,
2836 don't store it back in that same slot. */
2837 else if (data->entry_parm == stack_parm
2838 && data->nominal_mode != BLKmode
2839 && data->nominal_mode != data->passed_mode)
2840 stack_parm = NULL;
2842 /* If stack protection is in effect for this function, don't leave any
2843 pointers in their passed stack slots. */
2844 else if (crtl->stack_protect_guard
2845 && (flag_stack_protect == 2
2846 || data->passed_pointer
2847 || POINTER_TYPE_P (data->nominal_type)))
2848 stack_parm = NULL;
2850 data->stack_parm = stack_parm;
2853 /* A subroutine of assign_parms. Return true if the current parameter
2854 should be stored as a BLKmode in the current frame. */
2856 static bool
2857 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2859 if (data->nominal_mode == BLKmode)
2860 return true;
2861 if (GET_MODE (data->entry_parm) == BLKmode)
2862 return true;
2864 #ifdef BLOCK_REG_PADDING
2865 /* Only assign_parm_setup_block knows how to deal with register arguments
2866 that are padded at the least significant end. */
2867 if (REG_P (data->entry_parm)
2868 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2869 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2870 == (BYTES_BIG_ENDIAN ? upward : downward)))
2871 return true;
2872 #endif
2874 return false;
2877 /* A subroutine of assign_parms. Arrange for the parameter to be
2878 present and valid in DATA->STACK_RTL. */
2880 static void
2881 assign_parm_setup_block (struct assign_parm_data_all *all,
2882 tree parm, struct assign_parm_data_one *data)
2884 rtx entry_parm = data->entry_parm;
2885 rtx stack_parm = data->stack_parm;
2886 rtx target_reg = NULL_RTX;
2887 bool in_conversion_seq = false;
2888 HOST_WIDE_INT size;
2889 HOST_WIDE_INT size_stored;
2891 if (GET_CODE (entry_parm) == PARALLEL)
2892 entry_parm = emit_group_move_into_temps (entry_parm);
2894 /* If we want the parameter in a pseudo, don't use a stack slot. */
2895 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2897 tree def = ssa_default_def (cfun, parm);
2898 gcc_assert (def);
2899 machine_mode mode = promote_ssa_mode (def, NULL);
2900 rtx reg = gen_reg_rtx (mode);
2901 if (GET_CODE (reg) != CONCAT)
2902 stack_parm = reg;
2903 else
2905 target_reg = reg;
2906 /* Avoid allocating a stack slot, if there isn't one
2907 preallocated by the ABI. It might seem like we should
2908 always prefer a pseudo, but converting between
2909 floating-point and integer modes goes through the stack
2910 on various machines, so it's better to use the reserved
2911 stack slot than to risk wasting it and allocating more
2912 for the conversion. */
2913 if (stack_parm == NULL_RTX)
2915 int save = generating_concat_p;
2916 generating_concat_p = 0;
2917 stack_parm = gen_reg_rtx (mode);
2918 generating_concat_p = save;
2921 data->stack_parm = NULL;
2924 size = int_size_in_bytes (data->passed_type);
2925 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2926 if (stack_parm == 0)
2928 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2929 stack_parm = assign_stack_local (BLKmode, size_stored,
2930 DECL_ALIGN (parm));
2931 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2932 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2933 set_mem_attributes (stack_parm, parm, 1);
2936 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2937 calls that pass values in multiple non-contiguous locations. */
2938 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2940 rtx mem;
2942 /* Note that we will be storing an integral number of words.
2943 So we have to be careful to ensure that we allocate an
2944 integral number of words. We do this above when we call
2945 assign_stack_local if space was not allocated in the argument
2946 list. If it was, this will not work if PARM_BOUNDARY is not
2947 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2948 if it becomes a problem. Exception is when BLKmode arrives
2949 with arguments not conforming to word_mode. */
2951 if (data->stack_parm == 0)
2953 else if (GET_CODE (entry_parm) == PARALLEL)
2955 else
2956 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2958 mem = validize_mem (copy_rtx (stack_parm));
2960 /* Handle values in multiple non-contiguous locations. */
2961 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2962 emit_group_store (mem, entry_parm, data->passed_type, size);
2963 else if (GET_CODE (entry_parm) == PARALLEL)
2965 push_to_sequence2 (all->first_conversion_insn,
2966 all->last_conversion_insn);
2967 emit_group_store (mem, entry_parm, data->passed_type, size);
2968 all->first_conversion_insn = get_insns ();
2969 all->last_conversion_insn = get_last_insn ();
2970 end_sequence ();
2971 in_conversion_seq = true;
2974 else if (size == 0)
2977 /* If SIZE is that of a mode no bigger than a word, just use
2978 that mode's store operation. */
2979 else if (size <= UNITS_PER_WORD)
2981 machine_mode mode
2982 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2984 if (mode != BLKmode
2985 #ifdef BLOCK_REG_PADDING
2986 && (size == UNITS_PER_WORD
2987 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2988 != (BYTES_BIG_ENDIAN ? upward : downward)))
2989 #endif
2992 rtx reg;
2994 /* We are really truncating a word_mode value containing
2995 SIZE bytes into a value of mode MODE. If such an
2996 operation requires no actual instructions, we can refer
2997 to the value directly in mode MODE, otherwise we must
2998 start with the register in word_mode and explicitly
2999 convert it. */
3000 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
3001 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3002 else
3004 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3005 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3007 emit_move_insn (change_address (mem, mode, 0), reg);
3010 #ifdef BLOCK_REG_PADDING
3011 /* Storing the register in memory as a full word, as
3012 move_block_from_reg below would do, and then using the
3013 MEM in a smaller mode, has the effect of shifting right
3014 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3015 shifting must be explicit. */
3016 else if (!MEM_P (mem))
3018 rtx x;
3020 /* If the assert below fails, we should have taken the
3021 mode != BLKmode path above, unless we have downward
3022 padding of smaller-than-word arguments on a machine
3023 with little-endian bytes, which would likely require
3024 additional changes to work correctly. */
3025 gcc_checking_assert (BYTES_BIG_ENDIAN
3026 && (BLOCK_REG_PADDING (mode,
3027 data->passed_type, 1)
3028 == upward));
3030 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3032 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3033 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3034 NULL_RTX, 1);
3035 x = force_reg (word_mode, x);
3036 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3038 emit_move_insn (mem, x);
3040 #endif
3042 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3043 machine must be aligned to the left before storing
3044 to memory. Note that the previous test doesn't
3045 handle all cases (e.g. SIZE == 3). */
3046 else if (size != UNITS_PER_WORD
3047 #ifdef BLOCK_REG_PADDING
3048 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3049 == downward)
3050 #else
3051 && BYTES_BIG_ENDIAN
3052 #endif
3055 rtx tem, x;
3056 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3057 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3059 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3060 tem = change_address (mem, word_mode, 0);
3061 emit_move_insn (tem, x);
3063 else
3064 move_block_from_reg (REGNO (entry_parm), mem,
3065 size_stored / UNITS_PER_WORD);
3067 else if (!MEM_P (mem))
3069 gcc_checking_assert (size > UNITS_PER_WORD);
3070 #ifdef BLOCK_REG_PADDING
3071 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3072 data->passed_type, 0)
3073 == upward);
3074 #endif
3075 emit_move_insn (mem, entry_parm);
3077 else
3078 move_block_from_reg (REGNO (entry_parm), mem,
3079 size_stored / UNITS_PER_WORD);
3081 else if (data->stack_parm == 0)
3083 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3084 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3085 BLOCK_OP_NORMAL);
3086 all->first_conversion_insn = get_insns ();
3087 all->last_conversion_insn = get_last_insn ();
3088 end_sequence ();
3089 in_conversion_seq = true;
3092 if (target_reg)
3094 if (!in_conversion_seq)
3095 emit_move_insn (target_reg, stack_parm);
3096 else
3098 push_to_sequence2 (all->first_conversion_insn,
3099 all->last_conversion_insn);
3100 emit_move_insn (target_reg, stack_parm);
3101 all->first_conversion_insn = get_insns ();
3102 all->last_conversion_insn = get_last_insn ();
3103 end_sequence ();
3105 stack_parm = target_reg;
3108 data->stack_parm = stack_parm;
3109 set_parm_rtl (parm, stack_parm);
3112 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3113 parameter. Get it there. Perform all ABI specified conversions. */
3115 static void
3116 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3117 struct assign_parm_data_one *data)
3119 rtx parmreg, validated_mem;
3120 rtx equiv_stack_parm;
3121 machine_mode promoted_nominal_mode;
3122 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3123 bool did_conversion = false;
3124 bool need_conversion, moved;
3125 rtx rtl;
3127 /* Store the parm in a pseudoregister during the function, but we may
3128 need to do it in a wider mode. Using 2 here makes the result
3129 consistent with promote_decl_mode and thus expand_expr_real_1. */
3130 promoted_nominal_mode
3131 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3132 TREE_TYPE (current_function_decl), 2);
3134 parmreg = gen_reg_rtx (promoted_nominal_mode);
3135 if (!DECL_ARTIFICIAL (parm))
3136 mark_user_reg (parmreg);
3138 /* If this was an item that we received a pointer to,
3139 set rtl appropriately. */
3140 if (data->passed_pointer)
3142 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3143 set_mem_attributes (rtl, parm, 1);
3145 else
3146 rtl = parmreg;
3148 assign_parm_remove_parallels (data);
3150 /* Copy the value into the register, thus bridging between
3151 assign_parm_find_data_types and expand_expr_real_1. */
3153 equiv_stack_parm = data->stack_parm;
3154 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3156 need_conversion = (data->nominal_mode != data->passed_mode
3157 || promoted_nominal_mode != data->promoted_mode);
3158 moved = false;
3160 if (need_conversion
3161 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3162 && data->nominal_mode == data->passed_mode
3163 && data->nominal_mode == GET_MODE (data->entry_parm))
3165 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3166 mode, by the caller. We now have to convert it to
3167 NOMINAL_MODE, if different. However, PARMREG may be in
3168 a different mode than NOMINAL_MODE if it is being stored
3169 promoted.
3171 If ENTRY_PARM is a hard register, it might be in a register
3172 not valid for operating in its mode (e.g., an odd-numbered
3173 register for a DFmode). In that case, moves are the only
3174 thing valid, so we can't do a convert from there. This
3175 occurs when the calling sequence allow such misaligned
3176 usages.
3178 In addition, the conversion may involve a call, which could
3179 clobber parameters which haven't been copied to pseudo
3180 registers yet.
3182 First, we try to emit an insn which performs the necessary
3183 conversion. We verify that this insn does not clobber any
3184 hard registers. */
3186 enum insn_code icode;
3187 rtx op0, op1;
3189 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3190 unsignedp);
3192 op0 = parmreg;
3193 op1 = validated_mem;
3194 if (icode != CODE_FOR_nothing
3195 && insn_operand_matches (icode, 0, op0)
3196 && insn_operand_matches (icode, 1, op1))
3198 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3199 rtx_insn *insn, *insns;
3200 rtx t = op1;
3201 HARD_REG_SET hardregs;
3203 start_sequence ();
3204 /* If op1 is a hard register that is likely spilled, first
3205 force it into a pseudo, otherwise combiner might extend
3206 its lifetime too much. */
3207 if (GET_CODE (t) == SUBREG)
3208 t = SUBREG_REG (t);
3209 if (REG_P (t)
3210 && HARD_REGISTER_P (t)
3211 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3212 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3214 t = gen_reg_rtx (GET_MODE (op1));
3215 emit_move_insn (t, op1);
3217 else
3218 t = op1;
3219 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3220 data->passed_mode, unsignedp);
3221 emit_insn (pat);
3222 insns = get_insns ();
3224 moved = true;
3225 CLEAR_HARD_REG_SET (hardregs);
3226 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3228 if (INSN_P (insn))
3229 note_stores (PATTERN (insn), record_hard_reg_sets,
3230 &hardregs);
3231 if (!hard_reg_set_empty_p (hardregs))
3232 moved = false;
3235 end_sequence ();
3237 if (moved)
3239 emit_insn (insns);
3240 if (equiv_stack_parm != NULL_RTX)
3241 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3242 equiv_stack_parm);
3247 if (moved)
3248 /* Nothing to do. */
3250 else if (need_conversion)
3252 /* We did not have an insn to convert directly, or the sequence
3253 generated appeared unsafe. We must first copy the parm to a
3254 pseudo reg, and save the conversion until after all
3255 parameters have been moved. */
3257 int save_tree_used;
3258 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3260 emit_move_insn (tempreg, validated_mem);
3262 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3263 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3265 if (GET_CODE (tempreg) == SUBREG
3266 && GET_MODE (tempreg) == data->nominal_mode
3267 && REG_P (SUBREG_REG (tempreg))
3268 && data->nominal_mode == data->passed_mode
3269 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3270 && GET_MODE_SIZE (GET_MODE (tempreg))
3271 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3273 /* The argument is already sign/zero extended, so note it
3274 into the subreg. */
3275 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3276 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3279 /* TREE_USED gets set erroneously during expand_assignment. */
3280 save_tree_used = TREE_USED (parm);
3281 SET_DECL_RTL (parm, rtl);
3282 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3283 SET_DECL_RTL (parm, NULL_RTX);
3284 TREE_USED (parm) = save_tree_used;
3285 all->first_conversion_insn = get_insns ();
3286 all->last_conversion_insn = get_last_insn ();
3287 end_sequence ();
3289 did_conversion = true;
3291 else
3292 emit_move_insn (parmreg, validated_mem);
3294 /* If we were passed a pointer but the actual value can safely live
3295 in a register, retrieve it and use it directly. */
3296 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3298 /* We can't use nominal_mode, because it will have been set to
3299 Pmode above. We must use the actual mode of the parm. */
3300 if (use_register_for_decl (parm))
3302 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3303 mark_user_reg (parmreg);
3305 else
3307 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3308 TYPE_MODE (TREE_TYPE (parm)),
3309 TYPE_ALIGN (TREE_TYPE (parm)));
3310 parmreg
3311 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3312 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3313 align);
3314 set_mem_attributes (parmreg, parm, 1);
3317 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3318 the debug info in case it is not legitimate. */
3319 if (GET_MODE (parmreg) != GET_MODE (rtl))
3321 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3322 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3324 push_to_sequence2 (all->first_conversion_insn,
3325 all->last_conversion_insn);
3326 emit_move_insn (tempreg, rtl);
3327 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3328 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3329 tempreg);
3330 all->first_conversion_insn = get_insns ();
3331 all->last_conversion_insn = get_last_insn ();
3332 end_sequence ();
3334 did_conversion = true;
3336 else
3337 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3339 rtl = parmreg;
3341 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3342 now the parm. */
3343 data->stack_parm = NULL;
3346 set_parm_rtl (parm, rtl);
3348 /* Mark the register as eliminable if we did no conversion and it was
3349 copied from memory at a fixed offset, and the arg pointer was not
3350 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3351 offset formed an invalid address, such memory-equivalences as we
3352 make here would screw up life analysis for it. */
3353 if (data->nominal_mode == data->passed_mode
3354 && !did_conversion
3355 && data->stack_parm != 0
3356 && MEM_P (data->stack_parm)
3357 && data->locate.offset.var == 0
3358 && reg_mentioned_p (virtual_incoming_args_rtx,
3359 XEXP (data->stack_parm, 0)))
3361 rtx_insn *linsn = get_last_insn ();
3362 rtx_insn *sinsn;
3363 rtx set;
3365 /* Mark complex types separately. */
3366 if (GET_CODE (parmreg) == CONCAT)
3368 machine_mode submode
3369 = GET_MODE_INNER (GET_MODE (parmreg));
3370 int regnor = REGNO (XEXP (parmreg, 0));
3371 int regnoi = REGNO (XEXP (parmreg, 1));
3372 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3373 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3374 GET_MODE_SIZE (submode));
3376 /* Scan backwards for the set of the real and
3377 imaginary parts. */
3378 for (sinsn = linsn; sinsn != 0;
3379 sinsn = prev_nonnote_insn (sinsn))
3381 set = single_set (sinsn);
3382 if (set == 0)
3383 continue;
3385 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3386 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3387 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3388 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3391 else
3392 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3395 /* For pointer data type, suggest pointer register. */
3396 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3397 mark_reg_pointer (parmreg,
3398 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3401 /* A subroutine of assign_parms. Allocate stack space to hold the current
3402 parameter. Get it there. Perform all ABI specified conversions. */
3404 static void
3405 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3406 struct assign_parm_data_one *data)
3408 /* Value must be stored in the stack slot STACK_PARM during function
3409 execution. */
3410 bool to_conversion = false;
3412 assign_parm_remove_parallels (data);
3414 if (data->promoted_mode != data->nominal_mode)
3416 /* Conversion is required. */
3417 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3419 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3421 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3422 to_conversion = true;
3424 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3425 TYPE_UNSIGNED (TREE_TYPE (parm)));
3427 if (data->stack_parm)
3429 int offset = subreg_lowpart_offset (data->nominal_mode,
3430 GET_MODE (data->stack_parm));
3431 /* ??? This may need a big-endian conversion on sparc64. */
3432 data->stack_parm
3433 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3434 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3435 set_mem_offset (data->stack_parm,
3436 MEM_OFFSET (data->stack_parm) + offset);
3440 if (data->entry_parm != data->stack_parm)
3442 rtx src, dest;
3444 if (data->stack_parm == 0)
3446 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3447 GET_MODE (data->entry_parm),
3448 TYPE_ALIGN (data->passed_type));
3449 data->stack_parm
3450 = assign_stack_local (GET_MODE (data->entry_parm),
3451 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3452 align);
3453 set_mem_attributes (data->stack_parm, parm, 1);
3456 dest = validize_mem (copy_rtx (data->stack_parm));
3457 src = validize_mem (copy_rtx (data->entry_parm));
3459 if (MEM_P (src))
3461 /* Use a block move to handle potentially misaligned entry_parm. */
3462 if (!to_conversion)
3463 push_to_sequence2 (all->first_conversion_insn,
3464 all->last_conversion_insn);
3465 to_conversion = true;
3467 emit_block_move (dest, src,
3468 GEN_INT (int_size_in_bytes (data->passed_type)),
3469 BLOCK_OP_NORMAL);
3471 else
3472 emit_move_insn (dest, src);
3475 if (to_conversion)
3477 all->first_conversion_insn = get_insns ();
3478 all->last_conversion_insn = get_last_insn ();
3479 end_sequence ();
3482 set_parm_rtl (parm, data->stack_parm);
3485 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3486 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3488 static void
3489 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3490 vec<tree> fnargs)
3492 tree parm;
3493 tree orig_fnargs = all->orig_fnargs;
3494 unsigned i = 0;
3496 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3498 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3499 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3501 rtx tmp, real, imag;
3502 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3504 real = DECL_RTL (fnargs[i]);
3505 imag = DECL_RTL (fnargs[i + 1]);
3506 if (inner != GET_MODE (real))
3508 real = gen_lowpart_SUBREG (inner, real);
3509 imag = gen_lowpart_SUBREG (inner, imag);
3512 if (TREE_ADDRESSABLE (parm))
3514 rtx rmem, imem;
3515 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3516 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3517 DECL_MODE (parm),
3518 TYPE_ALIGN (TREE_TYPE (parm)));
3520 /* split_complex_arg put the real and imag parts in
3521 pseudos. Move them to memory. */
3522 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3523 set_mem_attributes (tmp, parm, 1);
3524 rmem = adjust_address_nv (tmp, inner, 0);
3525 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3526 push_to_sequence2 (all->first_conversion_insn,
3527 all->last_conversion_insn);
3528 emit_move_insn (rmem, real);
3529 emit_move_insn (imem, imag);
3530 all->first_conversion_insn = get_insns ();
3531 all->last_conversion_insn = get_last_insn ();
3532 end_sequence ();
3534 else
3535 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3536 set_parm_rtl (parm, tmp);
3538 real = DECL_INCOMING_RTL (fnargs[i]);
3539 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3540 if (inner != GET_MODE (real))
3542 real = gen_lowpart_SUBREG (inner, real);
3543 imag = gen_lowpart_SUBREG (inner, imag);
3545 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3546 set_decl_incoming_rtl (parm, tmp, false);
3547 i++;
3552 /* Load bounds of PARM from bounds table. */
3553 static void
3554 assign_parm_load_bounds (struct assign_parm_data_one *data,
3555 tree parm,
3556 rtx entry,
3557 unsigned bound_no)
3559 bitmap_iterator bi;
3560 unsigned i, offs = 0;
3561 int bnd_no = -1;
3562 rtx slot = NULL, ptr = NULL;
3564 if (parm)
3566 bitmap slots;
3567 bitmap_obstack_initialize (NULL);
3568 slots = BITMAP_ALLOC (NULL);
3569 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3570 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3572 if (bound_no)
3573 bound_no--;
3574 else
3576 bnd_no = i;
3577 break;
3580 BITMAP_FREE (slots);
3581 bitmap_obstack_release (NULL);
3584 /* We may have bounds not associated with any pointer. */
3585 if (bnd_no != -1)
3586 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3588 /* Find associated pointer. */
3589 if (bnd_no == -1)
3591 /* If bounds are not associated with any bounds,
3592 then it is passed in a register or special slot. */
3593 gcc_assert (data->entry_parm);
3594 ptr = const0_rtx;
3596 else if (MEM_P (entry))
3597 slot = adjust_address (entry, Pmode, offs);
3598 else if (REG_P (entry))
3599 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3600 else if (GET_CODE (entry) == PARALLEL)
3601 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3602 else
3603 gcc_unreachable ();
3604 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3605 data->entry_parm);
3608 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3610 static void
3611 assign_bounds (vec<bounds_parm_data> &bndargs,
3612 struct assign_parm_data_all &all,
3613 bool assign_regs, bool assign_special,
3614 bool assign_bt)
3616 unsigned i, pass;
3617 bounds_parm_data *pbdata;
3619 if (!bndargs.exists ())
3620 return;
3622 /* We make few passes to store input bounds. Firstly handle bounds
3623 passed in registers. After that we load bounds passed in special
3624 slots. Finally we load bounds from Bounds Table. */
3625 for (pass = 0; pass < 3; pass++)
3626 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3628 /* Pass 0 => regs only. */
3629 if (pass == 0
3630 && (!assign_regs
3631 ||(!pbdata->parm_data.entry_parm
3632 || GET_CODE (pbdata->parm_data.entry_parm) != REG)))
3633 continue;
3634 /* Pass 1 => slots only. */
3635 else if (pass == 1
3636 && (!assign_special
3637 || (!pbdata->parm_data.entry_parm
3638 || GET_CODE (pbdata->parm_data.entry_parm) == REG)))
3639 continue;
3640 /* Pass 2 => BT only. */
3641 else if (pass == 2
3642 && (!assign_bt
3643 || pbdata->parm_data.entry_parm))
3644 continue;
3646 if (!pbdata->parm_data.entry_parm
3647 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3648 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3649 pbdata->ptr_entry, pbdata->bound_no);
3651 set_decl_incoming_rtl (pbdata->bounds_parm,
3652 pbdata->parm_data.entry_parm, false);
3654 if (assign_parm_setup_block_p (&pbdata->parm_data))
3655 assign_parm_setup_block (&all, pbdata->bounds_parm,
3656 &pbdata->parm_data);
3657 else if (pbdata->parm_data.passed_pointer
3658 || use_register_for_decl (pbdata->bounds_parm))
3659 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3660 &pbdata->parm_data);
3661 else
3662 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3663 &pbdata->parm_data);
3667 /* Assign RTL expressions to the function's parameters. This may involve
3668 copying them into registers and using those registers as the DECL_RTL. */
3670 static void
3671 assign_parms (tree fndecl)
3673 struct assign_parm_data_all all;
3674 tree parm;
3675 vec<tree> fnargs;
3676 unsigned i, bound_no = 0;
3677 tree last_arg = NULL;
3678 rtx last_arg_entry = NULL;
3679 vec<bounds_parm_data> bndargs = vNULL;
3680 bounds_parm_data bdata;
3682 crtl->args.internal_arg_pointer
3683 = targetm.calls.internal_arg_pointer ();
3685 assign_parms_initialize_all (&all);
3686 fnargs = assign_parms_augmented_arg_list (&all);
3688 FOR_EACH_VEC_ELT (fnargs, i, parm)
3690 struct assign_parm_data_one data;
3692 /* Extract the type of PARM; adjust it according to ABI. */
3693 assign_parm_find_data_types (&all, parm, &data);
3695 /* Early out for errors and void parameters. */
3696 if (data.passed_mode == VOIDmode)
3698 SET_DECL_RTL (parm, const0_rtx);
3699 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3700 continue;
3703 /* Estimate stack alignment from parameter alignment. */
3704 if (SUPPORTS_STACK_ALIGNMENT)
3706 unsigned int align
3707 = targetm.calls.function_arg_boundary (data.promoted_mode,
3708 data.passed_type);
3709 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3710 align);
3711 if (TYPE_ALIGN (data.nominal_type) > align)
3712 align = MINIMUM_ALIGNMENT (data.nominal_type,
3713 TYPE_MODE (data.nominal_type),
3714 TYPE_ALIGN (data.nominal_type));
3715 if (crtl->stack_alignment_estimated < align)
3717 gcc_assert (!crtl->stack_realign_processed);
3718 crtl->stack_alignment_estimated = align;
3722 /* Find out where the parameter arrives in this function. */
3723 assign_parm_find_entry_rtl (&all, &data);
3725 /* Find out where stack space for this parameter might be. */
3726 if (assign_parm_is_stack_parm (&all, &data))
3728 assign_parm_find_stack_rtl (parm, &data);
3729 assign_parm_adjust_entry_rtl (&data);
3731 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3733 /* Remember where last non bounds arg was passed in case
3734 we have to load associated bounds for it from Bounds
3735 Table. */
3736 last_arg = parm;
3737 last_arg_entry = data.entry_parm;
3738 bound_no = 0;
3740 /* Record permanently how this parm was passed. */
3741 if (data.passed_pointer)
3743 rtx incoming_rtl
3744 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3745 data.entry_parm);
3746 set_decl_incoming_rtl (parm, incoming_rtl, true);
3748 else
3749 set_decl_incoming_rtl (parm, data.entry_parm, false);
3751 assign_parm_adjust_stack_rtl (&data);
3753 /* Bounds should be loaded in the particular order to
3754 have registers allocated correctly. Collect info about
3755 input bounds and load them later. */
3756 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3758 /* Expect bounds in instrumented functions only. */
3759 gcc_assert (chkp_function_instrumented_p (fndecl));
3761 bdata.parm_data = data;
3762 bdata.bounds_parm = parm;
3763 bdata.ptr_parm = last_arg;
3764 bdata.ptr_entry = last_arg_entry;
3765 bdata.bound_no = bound_no;
3766 bndargs.safe_push (bdata);
3768 else
3770 if (assign_parm_setup_block_p (&data))
3771 assign_parm_setup_block (&all, parm, &data);
3772 else if (data.passed_pointer || use_register_for_decl (parm))
3773 assign_parm_setup_reg (&all, parm, &data);
3774 else
3775 assign_parm_setup_stack (&all, parm, &data);
3778 if (cfun->stdarg && !DECL_CHAIN (parm))
3780 int pretend_bytes = 0;
3782 assign_parms_setup_varargs (&all, &data, false);
3784 if (chkp_function_instrumented_p (fndecl))
3786 /* We expect this is the last parm. Otherwise it is wrong
3787 to assign bounds right now. */
3788 gcc_assert (i == (fnargs.length () - 1));
3789 assign_bounds (bndargs, all, true, false, false);
3790 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3791 data.promoted_mode,
3792 data.passed_type,
3793 &pretend_bytes,
3794 false);
3795 assign_bounds (bndargs, all, false, true, true);
3796 bndargs.release ();
3800 /* Update info on where next arg arrives in registers. */
3801 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3802 data.passed_type, data.named_arg);
3804 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3805 bound_no++;
3808 assign_bounds (bndargs, all, true, true, true);
3809 bndargs.release ();
3811 if (targetm.calls.split_complex_arg)
3812 assign_parms_unsplit_complex (&all, fnargs);
3814 fnargs.release ();
3816 /* Output all parameter conversion instructions (possibly including calls)
3817 now that all parameters have been copied out of hard registers. */
3818 emit_insn (all.first_conversion_insn);
3820 /* Estimate reload stack alignment from scalar return mode. */
3821 if (SUPPORTS_STACK_ALIGNMENT)
3823 if (DECL_RESULT (fndecl))
3825 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3826 machine_mode mode = TYPE_MODE (type);
3828 if (mode != BLKmode
3829 && mode != VOIDmode
3830 && !AGGREGATE_TYPE_P (type))
3832 unsigned int align = GET_MODE_ALIGNMENT (mode);
3833 if (crtl->stack_alignment_estimated < align)
3835 gcc_assert (!crtl->stack_realign_processed);
3836 crtl->stack_alignment_estimated = align;
3842 /* If we are receiving a struct value address as the first argument, set up
3843 the RTL for the function result. As this might require code to convert
3844 the transmitted address to Pmode, we do this here to ensure that possible
3845 preliminary conversions of the address have been emitted already. */
3846 if (all.function_result_decl)
3848 tree result = DECL_RESULT (current_function_decl);
3849 rtx addr = DECL_RTL (all.function_result_decl);
3850 rtx x;
3852 if (DECL_BY_REFERENCE (result))
3854 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3855 x = addr;
3857 else
3859 SET_DECL_VALUE_EXPR (result,
3860 build1 (INDIRECT_REF, TREE_TYPE (result),
3861 all.function_result_decl));
3862 addr = convert_memory_address (Pmode, addr);
3863 x = gen_rtx_MEM (DECL_MODE (result), addr);
3864 set_mem_attributes (x, result, 1);
3867 DECL_HAS_VALUE_EXPR_P (result) = 1;
3869 set_parm_rtl (result, x);
3872 /* We have aligned all the args, so add space for the pretend args. */
3873 crtl->args.pretend_args_size = all.pretend_args_size;
3874 all.stack_args_size.constant += all.extra_pretend_bytes;
3875 crtl->args.size = all.stack_args_size.constant;
3877 /* Adjust function incoming argument size for alignment and
3878 minimum length. */
3880 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3881 crtl->args.size = CEIL_ROUND (crtl->args.size,
3882 PARM_BOUNDARY / BITS_PER_UNIT);
3884 if (ARGS_GROW_DOWNWARD)
3886 crtl->args.arg_offset_rtx
3887 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3888 : expand_expr (size_diffop (all.stack_args_size.var,
3889 size_int (-all.stack_args_size.constant)),
3890 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3892 else
3893 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3895 /* See how many bytes, if any, of its args a function should try to pop
3896 on return. */
3898 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3899 TREE_TYPE (fndecl),
3900 crtl->args.size);
3902 /* For stdarg.h function, save info about
3903 regs and stack space used by the named args. */
3905 crtl->args.info = all.args_so_far_v;
3907 /* Set the rtx used for the function return value. Put this in its
3908 own variable so any optimizers that need this information don't have
3909 to include tree.h. Do this here so it gets done when an inlined
3910 function gets output. */
3912 crtl->return_rtx
3913 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3914 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3916 /* If scalar return value was computed in a pseudo-reg, or was a named
3917 return value that got dumped to the stack, copy that to the hard
3918 return register. */
3919 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3921 tree decl_result = DECL_RESULT (fndecl);
3922 rtx decl_rtl = DECL_RTL (decl_result);
3924 if (REG_P (decl_rtl)
3925 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3926 : DECL_REGISTER (decl_result))
3928 rtx real_decl_rtl;
3930 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3931 fndecl, true);
3932 if (chkp_function_instrumented_p (fndecl))
3933 crtl->return_bnd
3934 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3935 fndecl, true);
3936 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3937 /* The delay slot scheduler assumes that crtl->return_rtx
3938 holds the hard register containing the return value, not a
3939 temporary pseudo. */
3940 crtl->return_rtx = real_decl_rtl;
3945 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3946 For all seen types, gimplify their sizes. */
3948 static tree
3949 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3951 tree t = *tp;
3953 *walk_subtrees = 0;
3954 if (TYPE_P (t))
3956 if (POINTER_TYPE_P (t))
3957 *walk_subtrees = 1;
3958 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3959 && !TYPE_SIZES_GIMPLIFIED (t))
3961 gimplify_type_sizes (t, (gimple_seq *) data);
3962 *walk_subtrees = 1;
3966 return NULL;
3969 /* Gimplify the parameter list for current_function_decl. This involves
3970 evaluating SAVE_EXPRs of variable sized parameters and generating code
3971 to implement callee-copies reference parameters. Returns a sequence of
3972 statements to add to the beginning of the function. */
3974 gimple_seq
3975 gimplify_parameters (void)
3977 struct assign_parm_data_all all;
3978 tree parm;
3979 gimple_seq stmts = NULL;
3980 vec<tree> fnargs;
3981 unsigned i;
3983 assign_parms_initialize_all (&all);
3984 fnargs = assign_parms_augmented_arg_list (&all);
3986 FOR_EACH_VEC_ELT (fnargs, i, parm)
3988 struct assign_parm_data_one data;
3990 /* Extract the type of PARM; adjust it according to ABI. */
3991 assign_parm_find_data_types (&all, parm, &data);
3993 /* Early out for errors and void parameters. */
3994 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3995 continue;
3997 /* Update info on where next arg arrives in registers. */
3998 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3999 data.passed_type, data.named_arg);
4001 /* ??? Once upon a time variable_size stuffed parameter list
4002 SAVE_EXPRs (amongst others) onto a pending sizes list. This
4003 turned out to be less than manageable in the gimple world.
4004 Now we have to hunt them down ourselves. */
4005 walk_tree_without_duplicates (&data.passed_type,
4006 gimplify_parm_type, &stmts);
4008 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
4010 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
4011 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
4014 if (data.passed_pointer)
4016 tree type = TREE_TYPE (data.passed_type);
4017 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
4018 type, data.named_arg))
4020 tree local, t;
4022 /* For constant-sized objects, this is trivial; for
4023 variable-sized objects, we have to play games. */
4024 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
4025 && !(flag_stack_check == GENERIC_STACK_CHECK
4026 && compare_tree_int (DECL_SIZE_UNIT (parm),
4027 STACK_CHECK_MAX_VAR_SIZE) > 0))
4029 local = create_tmp_var (type, get_name (parm));
4030 DECL_IGNORED_P (local) = 0;
4031 /* If PARM was addressable, move that flag over
4032 to the local copy, as its address will be taken,
4033 not the PARMs. Keep the parms address taken
4034 as we'll query that flag during gimplification. */
4035 if (TREE_ADDRESSABLE (parm))
4036 TREE_ADDRESSABLE (local) = 1;
4037 else if (TREE_CODE (type) == COMPLEX_TYPE
4038 || TREE_CODE (type) == VECTOR_TYPE)
4039 DECL_GIMPLE_REG_P (local) = 1;
4041 else
4043 tree ptr_type, addr;
4045 ptr_type = build_pointer_type (type);
4046 addr = create_tmp_reg (ptr_type, get_name (parm));
4047 DECL_IGNORED_P (addr) = 0;
4048 local = build_fold_indirect_ref (addr);
4050 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4051 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
4052 size_int (DECL_ALIGN (parm)));
4054 /* The call has been built for a variable-sized object. */
4055 CALL_ALLOCA_FOR_VAR_P (t) = 1;
4056 t = fold_convert (ptr_type, t);
4057 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
4058 gimplify_and_add (t, &stmts);
4061 gimplify_assign (local, parm, &stmts);
4063 SET_DECL_VALUE_EXPR (parm, local);
4064 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4069 fnargs.release ();
4071 return stmts;
4074 /* Compute the size and offset from the start of the stacked arguments for a
4075 parm passed in mode PASSED_MODE and with type TYPE.
4077 INITIAL_OFFSET_PTR points to the current offset into the stacked
4078 arguments.
4080 The starting offset and size for this parm are returned in
4081 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4082 nonzero, the offset is that of stack slot, which is returned in
4083 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4084 padding required from the initial offset ptr to the stack slot.
4086 IN_REGS is nonzero if the argument will be passed in registers. It will
4087 never be set if REG_PARM_STACK_SPACE is not defined.
4089 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4090 for arguments which are passed in registers.
4092 FNDECL is the function in which the argument was defined.
4094 There are two types of rounding that are done. The first, controlled by
4095 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4096 argument list to be aligned to the specific boundary (in bits). This
4097 rounding affects the initial and starting offsets, but not the argument
4098 size.
4100 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4101 optionally rounds the size of the parm to PARM_BOUNDARY. The
4102 initial offset is not affected by this rounding, while the size always
4103 is and the starting offset may be. */
4105 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4106 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4107 callers pass in the total size of args so far as
4108 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4110 void
4111 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4112 int reg_parm_stack_space, int partial,
4113 tree fndecl ATTRIBUTE_UNUSED,
4114 struct args_size *initial_offset_ptr,
4115 struct locate_and_pad_arg_data *locate)
4117 tree sizetree;
4118 enum direction where_pad;
4119 unsigned int boundary, round_boundary;
4120 int part_size_in_regs;
4122 /* If we have found a stack parm before we reach the end of the
4123 area reserved for registers, skip that area. */
4124 if (! in_regs)
4126 if (reg_parm_stack_space > 0)
4128 if (initial_offset_ptr->var)
4130 initial_offset_ptr->var
4131 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4132 ssize_int (reg_parm_stack_space));
4133 initial_offset_ptr->constant = 0;
4135 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4136 initial_offset_ptr->constant = reg_parm_stack_space;
4140 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4142 sizetree
4143 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4144 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4145 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4146 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4147 type);
4148 locate->where_pad = where_pad;
4150 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4151 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4152 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4154 locate->boundary = boundary;
4156 if (SUPPORTS_STACK_ALIGNMENT)
4158 /* stack_alignment_estimated can't change after stack has been
4159 realigned. */
4160 if (crtl->stack_alignment_estimated < boundary)
4162 if (!crtl->stack_realign_processed)
4163 crtl->stack_alignment_estimated = boundary;
4164 else
4166 /* If stack is realigned and stack alignment value
4167 hasn't been finalized, it is OK not to increase
4168 stack_alignment_estimated. The bigger alignment
4169 requirement is recorded in stack_alignment_needed
4170 below. */
4171 gcc_assert (!crtl->stack_realign_finalized
4172 && crtl->stack_realign_needed);
4177 /* Remember if the outgoing parameter requires extra alignment on the
4178 calling function side. */
4179 if (crtl->stack_alignment_needed < boundary)
4180 crtl->stack_alignment_needed = boundary;
4181 if (crtl->preferred_stack_boundary < boundary)
4182 crtl->preferred_stack_boundary = boundary;
4184 if (ARGS_GROW_DOWNWARD)
4186 locate->slot_offset.constant = -initial_offset_ptr->constant;
4187 if (initial_offset_ptr->var)
4188 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4189 initial_offset_ptr->var);
4192 tree s2 = sizetree;
4193 if (where_pad != none
4194 && (!tree_fits_uhwi_p (sizetree)
4195 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4196 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4197 SUB_PARM_SIZE (locate->slot_offset, s2);
4200 locate->slot_offset.constant += part_size_in_regs;
4202 if (!in_regs || reg_parm_stack_space > 0)
4203 pad_to_arg_alignment (&locate->slot_offset, boundary,
4204 &locate->alignment_pad);
4206 locate->size.constant = (-initial_offset_ptr->constant
4207 - locate->slot_offset.constant);
4208 if (initial_offset_ptr->var)
4209 locate->size.var = size_binop (MINUS_EXPR,
4210 size_binop (MINUS_EXPR,
4211 ssize_int (0),
4212 initial_offset_ptr->var),
4213 locate->slot_offset.var);
4215 /* Pad_below needs the pre-rounded size to know how much to pad
4216 below. */
4217 locate->offset = locate->slot_offset;
4218 if (where_pad == downward)
4219 pad_below (&locate->offset, passed_mode, sizetree);
4222 else
4224 if (!in_regs || reg_parm_stack_space > 0)
4225 pad_to_arg_alignment (initial_offset_ptr, boundary,
4226 &locate->alignment_pad);
4227 locate->slot_offset = *initial_offset_ptr;
4229 #ifdef PUSH_ROUNDING
4230 if (passed_mode != BLKmode)
4231 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4232 #endif
4234 /* Pad_below needs the pre-rounded size to know how much to pad below
4235 so this must be done before rounding up. */
4236 locate->offset = locate->slot_offset;
4237 if (where_pad == downward)
4238 pad_below (&locate->offset, passed_mode, sizetree);
4240 if (where_pad != none
4241 && (!tree_fits_uhwi_p (sizetree)
4242 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4243 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4245 ADD_PARM_SIZE (locate->size, sizetree);
4247 locate->size.constant -= part_size_in_regs;
4250 #ifdef FUNCTION_ARG_OFFSET
4251 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4252 #endif
4255 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4256 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4258 static void
4259 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4260 struct args_size *alignment_pad)
4262 tree save_var = NULL_TREE;
4263 HOST_WIDE_INT save_constant = 0;
4264 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4265 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4267 #ifdef SPARC_STACK_BOUNDARY_HACK
4268 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4269 the real alignment of %sp. However, when it does this, the
4270 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4271 if (SPARC_STACK_BOUNDARY_HACK)
4272 sp_offset = 0;
4273 #endif
4275 if (boundary > PARM_BOUNDARY)
4277 save_var = offset_ptr->var;
4278 save_constant = offset_ptr->constant;
4281 alignment_pad->var = NULL_TREE;
4282 alignment_pad->constant = 0;
4284 if (boundary > BITS_PER_UNIT)
4286 if (offset_ptr->var)
4288 tree sp_offset_tree = ssize_int (sp_offset);
4289 tree offset = size_binop (PLUS_EXPR,
4290 ARGS_SIZE_TREE (*offset_ptr),
4291 sp_offset_tree);
4292 tree rounded;
4293 if (ARGS_GROW_DOWNWARD)
4294 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4295 else
4296 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4298 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4299 /* ARGS_SIZE_TREE includes constant term. */
4300 offset_ptr->constant = 0;
4301 if (boundary > PARM_BOUNDARY)
4302 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4303 save_var);
4305 else
4307 offset_ptr->constant = -sp_offset +
4308 (ARGS_GROW_DOWNWARD
4309 ? FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes)
4310 : CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes));
4312 if (boundary > PARM_BOUNDARY)
4313 alignment_pad->constant = offset_ptr->constant - save_constant;
4318 static void
4319 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4321 if (passed_mode != BLKmode)
4323 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4324 offset_ptr->constant
4325 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4326 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4327 - GET_MODE_SIZE (passed_mode));
4329 else
4331 if (TREE_CODE (sizetree) != INTEGER_CST
4332 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4334 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4335 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4336 /* Add it in. */
4337 ADD_PARM_SIZE (*offset_ptr, s2);
4338 SUB_PARM_SIZE (*offset_ptr, sizetree);
4344 /* True if register REGNO was alive at a place where `setjmp' was
4345 called and was set more than once or is an argument. Such regs may
4346 be clobbered by `longjmp'. */
4348 static bool
4349 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4351 /* There appear to be cases where some local vars never reach the
4352 backend but have bogus regnos. */
4353 if (regno >= max_reg_num ())
4354 return false;
4356 return ((REG_N_SETS (regno) > 1
4357 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4358 regno))
4359 && REGNO_REG_SET_P (setjmp_crosses, regno));
4362 /* Walk the tree of blocks describing the binding levels within a
4363 function and warn about variables the might be killed by setjmp or
4364 vfork. This is done after calling flow_analysis before register
4365 allocation since that will clobber the pseudo-regs to hard
4366 regs. */
4368 static void
4369 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4371 tree decl, sub;
4373 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4375 if (TREE_CODE (decl) == VAR_DECL
4376 && DECL_RTL_SET_P (decl)
4377 && REG_P (DECL_RTL (decl))
4378 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4379 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4380 " %<longjmp%> or %<vfork%>", decl);
4383 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4384 setjmp_vars_warning (setjmp_crosses, sub);
4387 /* Do the appropriate part of setjmp_vars_warning
4388 but for arguments instead of local variables. */
4390 static void
4391 setjmp_args_warning (bitmap setjmp_crosses)
4393 tree decl;
4394 for (decl = DECL_ARGUMENTS (current_function_decl);
4395 decl; decl = DECL_CHAIN (decl))
4396 if (DECL_RTL (decl) != 0
4397 && REG_P (DECL_RTL (decl))
4398 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4399 warning (OPT_Wclobbered,
4400 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4401 decl);
4404 /* Generate warning messages for variables live across setjmp. */
4406 void
4407 generate_setjmp_warnings (void)
4409 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4411 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4412 || bitmap_empty_p (setjmp_crosses))
4413 return;
4415 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4416 setjmp_args_warning (setjmp_crosses);
4420 /* Reverse the order of elements in the fragment chain T of blocks,
4421 and return the new head of the chain (old last element).
4422 In addition to that clear BLOCK_SAME_RANGE flags when needed
4423 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4424 its super fragment origin. */
4426 static tree
4427 block_fragments_nreverse (tree t)
4429 tree prev = 0, block, next, prev_super = 0;
4430 tree super = BLOCK_SUPERCONTEXT (t);
4431 if (BLOCK_FRAGMENT_ORIGIN (super))
4432 super = BLOCK_FRAGMENT_ORIGIN (super);
4433 for (block = t; block; block = next)
4435 next = BLOCK_FRAGMENT_CHAIN (block);
4436 BLOCK_FRAGMENT_CHAIN (block) = prev;
4437 if ((prev && !BLOCK_SAME_RANGE (prev))
4438 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4439 != prev_super))
4440 BLOCK_SAME_RANGE (block) = 0;
4441 prev_super = BLOCK_SUPERCONTEXT (block);
4442 BLOCK_SUPERCONTEXT (block) = super;
4443 prev = block;
4445 t = BLOCK_FRAGMENT_ORIGIN (t);
4446 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4447 != prev_super)
4448 BLOCK_SAME_RANGE (t) = 0;
4449 BLOCK_SUPERCONTEXT (t) = super;
4450 return prev;
4453 /* Reverse the order of elements in the chain T of blocks,
4454 and return the new head of the chain (old last element).
4455 Also do the same on subblocks and reverse the order of elements
4456 in BLOCK_FRAGMENT_CHAIN as well. */
4458 static tree
4459 blocks_nreverse_all (tree t)
4461 tree prev = 0, block, next;
4462 for (block = t; block; block = next)
4464 next = BLOCK_CHAIN (block);
4465 BLOCK_CHAIN (block) = prev;
4466 if (BLOCK_FRAGMENT_CHAIN (block)
4467 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4469 BLOCK_FRAGMENT_CHAIN (block)
4470 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4471 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4472 BLOCK_SAME_RANGE (block) = 0;
4474 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4475 prev = block;
4477 return prev;
4481 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4482 and create duplicate blocks. */
4483 /* ??? Need an option to either create block fragments or to create
4484 abstract origin duplicates of a source block. It really depends
4485 on what optimization has been performed. */
4487 void
4488 reorder_blocks (void)
4490 tree block = DECL_INITIAL (current_function_decl);
4492 if (block == NULL_TREE)
4493 return;
4495 auto_vec<tree, 10> block_stack;
4497 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4498 clear_block_marks (block);
4500 /* Prune the old trees away, so that they don't get in the way. */
4501 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4502 BLOCK_CHAIN (block) = NULL_TREE;
4504 /* Recreate the block tree from the note nesting. */
4505 reorder_blocks_1 (get_insns (), block, &block_stack);
4506 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4509 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4511 void
4512 clear_block_marks (tree block)
4514 while (block)
4516 TREE_ASM_WRITTEN (block) = 0;
4517 clear_block_marks (BLOCK_SUBBLOCKS (block));
4518 block = BLOCK_CHAIN (block);
4522 static void
4523 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4524 vec<tree> *p_block_stack)
4526 rtx_insn *insn;
4527 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4529 for (insn = insns; insn; insn = NEXT_INSN (insn))
4531 if (NOTE_P (insn))
4533 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4535 tree block = NOTE_BLOCK (insn);
4536 tree origin;
4538 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4539 origin = block;
4541 if (prev_end)
4542 BLOCK_SAME_RANGE (prev_end) = 0;
4543 prev_end = NULL_TREE;
4545 /* If we have seen this block before, that means it now
4546 spans multiple address regions. Create a new fragment. */
4547 if (TREE_ASM_WRITTEN (block))
4549 tree new_block = copy_node (block);
4551 BLOCK_SAME_RANGE (new_block) = 0;
4552 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4553 BLOCK_FRAGMENT_CHAIN (new_block)
4554 = BLOCK_FRAGMENT_CHAIN (origin);
4555 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4557 NOTE_BLOCK (insn) = new_block;
4558 block = new_block;
4561 if (prev_beg == current_block && prev_beg)
4562 BLOCK_SAME_RANGE (block) = 1;
4564 prev_beg = origin;
4566 BLOCK_SUBBLOCKS (block) = 0;
4567 TREE_ASM_WRITTEN (block) = 1;
4568 /* When there's only one block for the entire function,
4569 current_block == block and we mustn't do this, it
4570 will cause infinite recursion. */
4571 if (block != current_block)
4573 tree super;
4574 if (block != origin)
4575 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4576 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4577 (origin))
4578 == current_block);
4579 if (p_block_stack->is_empty ())
4580 super = current_block;
4581 else
4583 super = p_block_stack->last ();
4584 gcc_assert (super == current_block
4585 || BLOCK_FRAGMENT_ORIGIN (super)
4586 == current_block);
4588 BLOCK_SUPERCONTEXT (block) = super;
4589 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4590 BLOCK_SUBBLOCKS (current_block) = block;
4591 current_block = origin;
4593 p_block_stack->safe_push (block);
4595 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4597 NOTE_BLOCK (insn) = p_block_stack->pop ();
4598 current_block = BLOCK_SUPERCONTEXT (current_block);
4599 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4600 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4601 prev_beg = NULL_TREE;
4602 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4603 ? NOTE_BLOCK (insn) : NULL_TREE;
4606 else
4608 prev_beg = NULL_TREE;
4609 if (prev_end)
4610 BLOCK_SAME_RANGE (prev_end) = 0;
4611 prev_end = NULL_TREE;
4616 /* Reverse the order of elements in the chain T of blocks,
4617 and return the new head of the chain (old last element). */
4619 tree
4620 blocks_nreverse (tree t)
4622 tree prev = 0, block, next;
4623 for (block = t; block; block = next)
4625 next = BLOCK_CHAIN (block);
4626 BLOCK_CHAIN (block) = prev;
4627 prev = block;
4629 return prev;
4632 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4633 by modifying the last node in chain 1 to point to chain 2. */
4635 tree
4636 block_chainon (tree op1, tree op2)
4638 tree t1;
4640 if (!op1)
4641 return op2;
4642 if (!op2)
4643 return op1;
4645 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4646 continue;
4647 BLOCK_CHAIN (t1) = op2;
4649 #ifdef ENABLE_TREE_CHECKING
4651 tree t2;
4652 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4653 gcc_assert (t2 != t1);
4655 #endif
4657 return op1;
4660 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4661 non-NULL, list them all into VECTOR, in a depth-first preorder
4662 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4663 blocks. */
4665 static int
4666 all_blocks (tree block, tree *vector)
4668 int n_blocks = 0;
4670 while (block)
4672 TREE_ASM_WRITTEN (block) = 0;
4674 /* Record this block. */
4675 if (vector)
4676 vector[n_blocks] = block;
4678 ++n_blocks;
4680 /* Record the subblocks, and their subblocks... */
4681 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4682 vector ? vector + n_blocks : 0);
4683 block = BLOCK_CHAIN (block);
4686 return n_blocks;
4689 /* Return a vector containing all the blocks rooted at BLOCK. The
4690 number of elements in the vector is stored in N_BLOCKS_P. The
4691 vector is dynamically allocated; it is the caller's responsibility
4692 to call `free' on the pointer returned. */
4694 static tree *
4695 get_block_vector (tree block, int *n_blocks_p)
4697 tree *block_vector;
4699 *n_blocks_p = all_blocks (block, NULL);
4700 block_vector = XNEWVEC (tree, *n_blocks_p);
4701 all_blocks (block, block_vector);
4703 return block_vector;
4706 static GTY(()) int next_block_index = 2;
4708 /* Set BLOCK_NUMBER for all the blocks in FN. */
4710 void
4711 number_blocks (tree fn)
4713 int i;
4714 int n_blocks;
4715 tree *block_vector;
4717 /* For SDB and XCOFF debugging output, we start numbering the blocks
4718 from 1 within each function, rather than keeping a running
4719 count. */
4720 #if SDB_DEBUGGING_INFO || defined (XCOFF_DEBUGGING_INFO)
4721 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4722 next_block_index = 1;
4723 #endif
4725 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4727 /* The top-level BLOCK isn't numbered at all. */
4728 for (i = 1; i < n_blocks; ++i)
4729 /* We number the blocks from two. */
4730 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4732 free (block_vector);
4734 return;
4737 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4739 DEBUG_FUNCTION tree
4740 debug_find_var_in_block_tree (tree var, tree block)
4742 tree t;
4744 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4745 if (t == var)
4746 return block;
4748 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4750 tree ret = debug_find_var_in_block_tree (var, t);
4751 if (ret)
4752 return ret;
4755 return NULL_TREE;
4758 /* Keep track of whether we're in a dummy function context. If we are,
4759 we don't want to invoke the set_current_function hook, because we'll
4760 get into trouble if the hook calls target_reinit () recursively or
4761 when the initial initialization is not yet complete. */
4763 static bool in_dummy_function;
4765 /* Invoke the target hook when setting cfun. Update the optimization options
4766 if the function uses different options than the default. */
4768 static void
4769 invoke_set_current_function_hook (tree fndecl)
4771 if (!in_dummy_function)
4773 tree opts = ((fndecl)
4774 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4775 : optimization_default_node);
4777 if (!opts)
4778 opts = optimization_default_node;
4780 /* Change optimization options if needed. */
4781 if (optimization_current_node != opts)
4783 optimization_current_node = opts;
4784 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4787 targetm.set_current_function (fndecl);
4788 this_fn_optabs = this_target_optabs;
4790 if (opts != optimization_default_node)
4792 init_tree_optimization_optabs (opts);
4793 if (TREE_OPTIMIZATION_OPTABS (opts))
4794 this_fn_optabs = (struct target_optabs *)
4795 TREE_OPTIMIZATION_OPTABS (opts);
4800 /* cfun should never be set directly; use this function. */
4802 void
4803 set_cfun (struct function *new_cfun)
4805 if (cfun != new_cfun)
4807 cfun = new_cfun;
4808 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4809 redirect_edge_var_map_empty ();
4813 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4815 static vec<function *> cfun_stack;
4817 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4818 current_function_decl accordingly. */
4820 void
4821 push_cfun (struct function *new_cfun)
4823 gcc_assert ((!cfun && !current_function_decl)
4824 || (cfun && current_function_decl == cfun->decl));
4825 cfun_stack.safe_push (cfun);
4826 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4827 set_cfun (new_cfun);
4830 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4832 void
4833 pop_cfun (void)
4835 struct function *new_cfun = cfun_stack.pop ();
4836 /* When in_dummy_function, we do have a cfun but current_function_decl is
4837 NULL. We also allow pushing NULL cfun and subsequently changing
4838 current_function_decl to something else and have both restored by
4839 pop_cfun. */
4840 gcc_checking_assert (in_dummy_function
4841 || !cfun
4842 || current_function_decl == cfun->decl);
4843 set_cfun (new_cfun);
4844 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4847 /* Return value of funcdef and increase it. */
4849 get_next_funcdef_no (void)
4851 return funcdef_no++;
4854 /* Return value of funcdef. */
4856 get_last_funcdef_no (void)
4858 return funcdef_no;
4861 /* Allocate a function structure for FNDECL and set its contents
4862 to the defaults. Set cfun to the newly-allocated object.
4863 Some of the helper functions invoked during initialization assume
4864 that cfun has already been set. Therefore, assign the new object
4865 directly into cfun and invoke the back end hook explicitly at the
4866 very end, rather than initializing a temporary and calling set_cfun
4867 on it.
4869 ABSTRACT_P is true if this is a function that will never be seen by
4870 the middle-end. Such functions are front-end concepts (like C++
4871 function templates) that do not correspond directly to functions
4872 placed in object files. */
4874 void
4875 allocate_struct_function (tree fndecl, bool abstract_p)
4877 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4879 cfun = ggc_cleared_alloc<function> ();
4881 init_eh_for_function ();
4883 if (init_machine_status)
4884 cfun->machine = (*init_machine_status) ();
4886 #ifdef OVERRIDE_ABI_FORMAT
4887 OVERRIDE_ABI_FORMAT (fndecl);
4888 #endif
4890 if (fndecl != NULL_TREE)
4892 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4893 cfun->decl = fndecl;
4894 current_function_funcdef_no = get_next_funcdef_no ();
4897 invoke_set_current_function_hook (fndecl);
4899 if (fndecl != NULL_TREE)
4901 tree result = DECL_RESULT (fndecl);
4903 if (!abstract_p)
4905 /* Now that we have activated any function-specific attributes
4906 that might affect layout, particularly vector modes, relayout
4907 each of the parameters and the result. */
4908 relayout_decl (result);
4909 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4910 parm = DECL_CHAIN (parm))
4911 relayout_decl (parm);
4913 /* Similarly relayout the function decl. */
4914 targetm.target_option.relayout_function (fndecl);
4917 if (!abstract_p && aggregate_value_p (result, fndecl))
4919 #ifdef PCC_STATIC_STRUCT_RETURN
4920 cfun->returns_pcc_struct = 1;
4921 #endif
4922 cfun->returns_struct = 1;
4925 cfun->stdarg = stdarg_p (fntype);
4927 /* Assume all registers in stdarg functions need to be saved. */
4928 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4929 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4931 /* ??? This could be set on a per-function basis by the front-end
4932 but is this worth the hassle? */
4933 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4934 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4936 if (!profile_flag && !flag_instrument_function_entry_exit)
4937 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4941 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4942 instead of just setting it. */
4944 void
4945 push_struct_function (tree fndecl)
4947 /* When in_dummy_function we might be in the middle of a pop_cfun and
4948 current_function_decl and cfun may not match. */
4949 gcc_assert (in_dummy_function
4950 || (!cfun && !current_function_decl)
4951 || (cfun && current_function_decl == cfun->decl));
4952 cfun_stack.safe_push (cfun);
4953 current_function_decl = fndecl;
4954 allocate_struct_function (fndecl, false);
4957 /* Reset crtl and other non-struct-function variables to defaults as
4958 appropriate for emitting rtl at the start of a function. */
4960 static void
4961 prepare_function_start (void)
4963 gcc_assert (!get_last_insn ());
4964 init_temp_slots ();
4965 init_emit ();
4966 init_varasm_status ();
4967 init_expr ();
4968 default_rtl_profile ();
4970 if (flag_stack_usage_info)
4972 cfun->su = ggc_cleared_alloc<stack_usage> ();
4973 cfun->su->static_stack_size = -1;
4976 cse_not_expected = ! optimize;
4978 /* Caller save not needed yet. */
4979 caller_save_needed = 0;
4981 /* We haven't done register allocation yet. */
4982 reg_renumber = 0;
4984 /* Indicate that we have not instantiated virtual registers yet. */
4985 virtuals_instantiated = 0;
4987 /* Indicate that we want CONCATs now. */
4988 generating_concat_p = 1;
4990 /* Indicate we have no need of a frame pointer yet. */
4991 frame_pointer_needed = 0;
4994 void
4995 push_dummy_function (bool with_decl)
4997 tree fn_decl, fn_type, fn_result_decl;
4999 gcc_assert (!in_dummy_function);
5000 in_dummy_function = true;
5002 if (with_decl)
5004 fn_type = build_function_type_list (void_type_node, NULL_TREE);
5005 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
5006 fn_type);
5007 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
5008 NULL_TREE, void_type_node);
5009 DECL_RESULT (fn_decl) = fn_result_decl;
5011 else
5012 fn_decl = NULL_TREE;
5014 push_struct_function (fn_decl);
5017 /* Initialize the rtl expansion mechanism so that we can do simple things
5018 like generate sequences. This is used to provide a context during global
5019 initialization of some passes. You must call expand_dummy_function_end
5020 to exit this context. */
5022 void
5023 init_dummy_function_start (void)
5025 push_dummy_function (false);
5026 prepare_function_start ();
5029 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
5030 and initialize static variables for generating RTL for the statements
5031 of the function. */
5033 void
5034 init_function_start (tree subr)
5036 /* Initialize backend, if needed. */
5037 initialize_rtl ();
5039 prepare_function_start ();
5040 decide_function_section (subr);
5042 /* Warn if this value is an aggregate type,
5043 regardless of which calling convention we are using for it. */
5044 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5045 warning (OPT_Waggregate_return, "function returns an aggregate");
5048 /* Expand code to verify the stack_protect_guard. This is invoked at
5049 the end of a function to be protected. */
5051 void
5052 stack_protect_epilogue (void)
5054 tree guard_decl = targetm.stack_protect_guard ();
5055 rtx_code_label *label = gen_label_rtx ();
5056 rtx x, y;
5057 rtx_insn *seq;
5059 x = expand_normal (crtl->stack_protect_guard);
5060 y = expand_normal (guard_decl);
5062 /* Allow the target to compare Y with X without leaking either into
5063 a register. */
5064 if (targetm.have_stack_protect_test ()
5065 && ((seq = targetm.gen_stack_protect_test (x, y, label)) != NULL_RTX))
5066 emit_insn (seq);
5067 else
5068 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5070 /* The noreturn predictor has been moved to the tree level. The rtl-level
5071 predictors estimate this branch about 20%, which isn't enough to get
5072 things moved out of line. Since this is the only extant case of adding
5073 a noreturn function at the rtl level, it doesn't seem worth doing ought
5074 except adding the prediction by hand. */
5075 rtx_insn *tmp = get_last_insn ();
5076 if (JUMP_P (tmp))
5077 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5079 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5080 free_temp_slots ();
5081 emit_label (label);
5084 /* Start the RTL for a new function, and set variables used for
5085 emitting RTL.
5086 SUBR is the FUNCTION_DECL node.
5087 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5088 the function's parameters, which must be run at any return statement. */
5090 void
5091 expand_function_start (tree subr)
5093 /* Make sure volatile mem refs aren't considered
5094 valid operands of arithmetic insns. */
5095 init_recog_no_volatile ();
5097 crtl->profile
5098 = (profile_flag
5099 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5101 crtl->limit_stack
5102 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5104 /* Make the label for return statements to jump to. Do not special
5105 case machines with special return instructions -- they will be
5106 handled later during jump, ifcvt, or epilogue creation. */
5107 return_label = gen_label_rtx ();
5109 /* Initialize rtx used to return the value. */
5110 /* Do this before assign_parms so that we copy the struct value address
5111 before any library calls that assign parms might generate. */
5113 /* Decide whether to return the value in memory or in a register. */
5114 tree res = DECL_RESULT (subr);
5115 if (aggregate_value_p (res, subr))
5117 /* Returning something that won't go in a register. */
5118 rtx value_address = 0;
5120 #ifdef PCC_STATIC_STRUCT_RETURN
5121 if (cfun->returns_pcc_struct)
5123 int size = int_size_in_bytes (TREE_TYPE (res));
5124 value_address = assemble_static_space (size);
5126 else
5127 #endif
5129 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5130 /* Expect to be passed the address of a place to store the value.
5131 If it is passed as an argument, assign_parms will take care of
5132 it. */
5133 if (sv)
5135 value_address = gen_reg_rtx (Pmode);
5136 emit_move_insn (value_address, sv);
5139 if (value_address)
5141 rtx x = value_address;
5142 if (!DECL_BY_REFERENCE (res))
5144 x = gen_rtx_MEM (DECL_MODE (res), x);
5145 set_mem_attributes (x, res, 1);
5147 set_parm_rtl (res, x);
5150 else if (DECL_MODE (res) == VOIDmode)
5151 /* If return mode is void, this decl rtl should not be used. */
5152 set_parm_rtl (res, NULL_RTX);
5153 else
5155 /* Compute the return values into a pseudo reg, which we will copy
5156 into the true return register after the cleanups are done. */
5157 tree return_type = TREE_TYPE (res);
5159 /* If we may coalesce this result, make sure it has the expected mode
5160 in case it was promoted. But we need not bother about BLKmode. */
5161 machine_mode promoted_mode
5162 = flag_tree_coalesce_vars && is_gimple_reg (res)
5163 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5164 : BLKmode;
5166 if (promoted_mode != BLKmode)
5167 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5168 else if (TYPE_MODE (return_type) != BLKmode
5169 && targetm.calls.return_in_msb (return_type))
5170 /* expand_function_end will insert the appropriate padding in
5171 this case. Use the return value's natural (unpadded) mode
5172 within the function proper. */
5173 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5174 else
5176 /* In order to figure out what mode to use for the pseudo, we
5177 figure out what the mode of the eventual return register will
5178 actually be, and use that. */
5179 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5181 /* Structures that are returned in registers are not
5182 aggregate_value_p, so we may see a PARALLEL or a REG. */
5183 if (REG_P (hard_reg))
5184 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5185 else
5187 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5188 set_parm_rtl (res, gen_group_rtx (hard_reg));
5192 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5193 result to the real return register(s). */
5194 DECL_REGISTER (res) = 1;
5196 if (chkp_function_instrumented_p (current_function_decl))
5198 tree return_type = TREE_TYPE (res);
5199 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5200 subr, 1);
5201 SET_DECL_BOUNDS_RTL (res, bounds);
5205 /* Initialize rtx for parameters and local variables.
5206 In some cases this requires emitting insns. */
5207 assign_parms (subr);
5209 /* If function gets a static chain arg, store it. */
5210 if (cfun->static_chain_decl)
5212 tree parm = cfun->static_chain_decl;
5213 rtx local, chain;
5214 rtx_insn *insn;
5215 int unsignedp;
5217 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5218 chain = targetm.calls.static_chain (current_function_decl, true);
5220 set_decl_incoming_rtl (parm, chain, false);
5221 set_parm_rtl (parm, local);
5222 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5224 if (GET_MODE (local) != GET_MODE (chain))
5226 convert_move (local, chain, unsignedp);
5227 insn = get_last_insn ();
5229 else
5230 insn = emit_move_insn (local, chain);
5232 /* Mark the register as eliminable, similar to parameters. */
5233 if (MEM_P (chain)
5234 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5235 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5237 /* If we aren't optimizing, save the static chain onto the stack. */
5238 if (!optimize)
5240 tree saved_static_chain_decl
5241 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5242 DECL_NAME (parm), TREE_TYPE (parm));
5243 rtx saved_static_chain_rtx
5244 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5245 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5246 emit_move_insn (saved_static_chain_rtx, chain);
5247 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5248 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5252 /* If the function receives a non-local goto, then store the
5253 bits we need to restore the frame pointer. */
5254 if (cfun->nonlocal_goto_save_area)
5256 tree t_save;
5257 rtx r_save;
5259 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5260 gcc_assert (DECL_RTL_SET_P (var));
5262 t_save = build4 (ARRAY_REF,
5263 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5264 cfun->nonlocal_goto_save_area,
5265 integer_zero_node, NULL_TREE, NULL_TREE);
5266 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5267 gcc_assert (GET_MODE (r_save) == Pmode);
5269 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5270 update_nonlocal_goto_save_area ();
5273 /* The following was moved from init_function_start.
5274 The move is supposed to make sdb output more accurate. */
5275 /* Indicate the beginning of the function body,
5276 as opposed to parm setup. */
5277 emit_note (NOTE_INSN_FUNCTION_BEG);
5279 gcc_assert (NOTE_P (get_last_insn ()));
5281 parm_birth_insn = get_last_insn ();
5283 if (crtl->profile)
5285 #ifdef PROFILE_HOOK
5286 PROFILE_HOOK (current_function_funcdef_no);
5287 #endif
5290 /* If we are doing generic stack checking, the probe should go here. */
5291 if (flag_stack_check == GENERIC_STACK_CHECK)
5292 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5295 void
5296 pop_dummy_function (void)
5298 pop_cfun ();
5299 in_dummy_function = false;
5302 /* Undo the effects of init_dummy_function_start. */
5303 void
5304 expand_dummy_function_end (void)
5306 gcc_assert (in_dummy_function);
5308 /* End any sequences that failed to be closed due to syntax errors. */
5309 while (in_sequence_p ())
5310 end_sequence ();
5312 /* Outside function body, can't compute type's actual size
5313 until next function's body starts. */
5315 free_after_parsing (cfun);
5316 free_after_compilation (cfun);
5317 pop_dummy_function ();
5320 /* Helper for diddle_return_value. */
5322 void
5323 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5325 if (! outgoing)
5326 return;
5328 if (REG_P (outgoing))
5329 (*doit) (outgoing, arg);
5330 else if (GET_CODE (outgoing) == PARALLEL)
5332 int i;
5334 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5336 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5338 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5339 (*doit) (x, arg);
5344 /* Call DOIT for each hard register used as a return value from
5345 the current function. */
5347 void
5348 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5350 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5351 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5354 static void
5355 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5357 emit_clobber (reg);
5360 void
5361 clobber_return_register (void)
5363 diddle_return_value (do_clobber_return_reg, NULL);
5365 /* In case we do use pseudo to return value, clobber it too. */
5366 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5368 tree decl_result = DECL_RESULT (current_function_decl);
5369 rtx decl_rtl = DECL_RTL (decl_result);
5370 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5372 do_clobber_return_reg (decl_rtl, NULL);
5377 static void
5378 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5380 emit_use (reg);
5383 static void
5384 use_return_register (void)
5386 diddle_return_value (do_use_return_reg, NULL);
5389 /* Set the location of the insn chain starting at INSN to LOC. */
5391 static void
5392 set_insn_locations (rtx_insn *insn, int loc)
5394 while (insn != NULL)
5396 if (INSN_P (insn))
5397 INSN_LOCATION (insn) = loc;
5398 insn = NEXT_INSN (insn);
5402 /* Generate RTL for the end of the current function. */
5404 void
5405 expand_function_end (void)
5407 /* If arg_pointer_save_area was referenced only from a nested
5408 function, we will not have initialized it yet. Do that now. */
5409 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5410 get_arg_pointer_save_area ();
5412 /* If we are doing generic stack checking and this function makes calls,
5413 do a stack probe at the start of the function to ensure we have enough
5414 space for another stack frame. */
5415 if (flag_stack_check == GENERIC_STACK_CHECK)
5417 rtx_insn *insn, *seq;
5419 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5420 if (CALL_P (insn))
5422 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5423 start_sequence ();
5424 if (STACK_CHECK_MOVING_SP)
5425 anti_adjust_stack_and_probe (max_frame_size, true);
5426 else
5427 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5428 seq = get_insns ();
5429 end_sequence ();
5430 set_insn_locations (seq, prologue_location);
5431 emit_insn_before (seq, stack_check_probe_note);
5432 break;
5436 /* End any sequences that failed to be closed due to syntax errors. */
5437 while (in_sequence_p ())
5438 end_sequence ();
5440 clear_pending_stack_adjust ();
5441 do_pending_stack_adjust ();
5443 /* Output a linenumber for the end of the function.
5444 SDB depends on this. */
5445 set_curr_insn_location (input_location);
5447 /* Before the return label (if any), clobber the return
5448 registers so that they are not propagated live to the rest of
5449 the function. This can only happen with functions that drop
5450 through; if there had been a return statement, there would
5451 have either been a return rtx, or a jump to the return label.
5453 We delay actual code generation after the current_function_value_rtx
5454 is computed. */
5455 rtx_insn *clobber_after = get_last_insn ();
5457 /* Output the label for the actual return from the function. */
5458 emit_label (return_label);
5460 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5462 /* Let except.c know where it should emit the call to unregister
5463 the function context for sjlj exceptions. */
5464 if (flag_exceptions)
5465 sjlj_emit_function_exit_after (get_last_insn ());
5467 else
5469 /* We want to ensure that instructions that may trap are not
5470 moved into the epilogue by scheduling, because we don't
5471 always emit unwind information for the epilogue. */
5472 if (cfun->can_throw_non_call_exceptions)
5473 emit_insn (gen_blockage ());
5476 /* If this is an implementation of throw, do what's necessary to
5477 communicate between __builtin_eh_return and the epilogue. */
5478 expand_eh_return ();
5480 /* If scalar return value was computed in a pseudo-reg, or was a named
5481 return value that got dumped to the stack, copy that to the hard
5482 return register. */
5483 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5485 tree decl_result = DECL_RESULT (current_function_decl);
5486 rtx decl_rtl = DECL_RTL (decl_result);
5488 if (REG_P (decl_rtl)
5489 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5490 : DECL_REGISTER (decl_result))
5492 rtx real_decl_rtl = crtl->return_rtx;
5494 /* This should be set in assign_parms. */
5495 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5497 /* If this is a BLKmode structure being returned in registers,
5498 then use the mode computed in expand_return. Note that if
5499 decl_rtl is memory, then its mode may have been changed,
5500 but that crtl->return_rtx has not. */
5501 if (GET_MODE (real_decl_rtl) == BLKmode)
5502 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5504 /* If a non-BLKmode return value should be padded at the least
5505 significant end of the register, shift it left by the appropriate
5506 amount. BLKmode results are handled using the group load/store
5507 machinery. */
5508 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5509 && REG_P (real_decl_rtl)
5510 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5512 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5513 REGNO (real_decl_rtl)),
5514 decl_rtl);
5515 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5517 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5519 /* If expand_function_start has created a PARALLEL for decl_rtl,
5520 move the result to the real return registers. Otherwise, do
5521 a group load from decl_rtl for a named return. */
5522 if (GET_CODE (decl_rtl) == PARALLEL)
5523 emit_group_move (real_decl_rtl, decl_rtl);
5524 else
5525 emit_group_load (real_decl_rtl, decl_rtl,
5526 TREE_TYPE (decl_result),
5527 int_size_in_bytes (TREE_TYPE (decl_result)));
5529 /* In the case of complex integer modes smaller than a word, we'll
5530 need to generate some non-trivial bitfield insertions. Do that
5531 on a pseudo and not the hard register. */
5532 else if (GET_CODE (decl_rtl) == CONCAT
5533 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5534 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5536 int old_generating_concat_p;
5537 rtx tmp;
5539 old_generating_concat_p = generating_concat_p;
5540 generating_concat_p = 0;
5541 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5542 generating_concat_p = old_generating_concat_p;
5544 emit_move_insn (tmp, decl_rtl);
5545 emit_move_insn (real_decl_rtl, tmp);
5547 /* If a named return value dumped decl_return to memory, then
5548 we may need to re-do the PROMOTE_MODE signed/unsigned
5549 extension. */
5550 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5552 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5553 promote_function_mode (TREE_TYPE (decl_result),
5554 GET_MODE (decl_rtl), &unsignedp,
5555 TREE_TYPE (current_function_decl), 1);
5557 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5559 else
5560 emit_move_insn (real_decl_rtl, decl_rtl);
5564 /* If returning a structure, arrange to return the address of the value
5565 in a place where debuggers expect to find it.
5567 If returning a structure PCC style,
5568 the caller also depends on this value.
5569 And cfun->returns_pcc_struct is not necessarily set. */
5570 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5571 && !targetm.calls.omit_struct_return_reg)
5573 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5574 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5575 rtx outgoing;
5577 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5578 type = TREE_TYPE (type);
5579 else
5580 value_address = XEXP (value_address, 0);
5582 outgoing = targetm.calls.function_value (build_pointer_type (type),
5583 current_function_decl, true);
5585 /* Mark this as a function return value so integrate will delete the
5586 assignment and USE below when inlining this function. */
5587 REG_FUNCTION_VALUE_P (outgoing) = 1;
5589 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5590 value_address = convert_memory_address (GET_MODE (outgoing),
5591 value_address);
5593 emit_move_insn (outgoing, value_address);
5595 /* Show return register used to hold result (in this case the address
5596 of the result. */
5597 crtl->return_rtx = outgoing;
5600 /* Emit the actual code to clobber return register. Don't emit
5601 it if clobber_after is a barrier, then the previous basic block
5602 certainly doesn't fall thru into the exit block. */
5603 if (!BARRIER_P (clobber_after))
5605 start_sequence ();
5606 clobber_return_register ();
5607 rtx_insn *seq = get_insns ();
5608 end_sequence ();
5610 emit_insn_after (seq, clobber_after);
5613 /* Output the label for the naked return from the function. */
5614 if (naked_return_label)
5615 emit_label (naked_return_label);
5617 /* @@@ This is a kludge. We want to ensure that instructions that
5618 may trap are not moved into the epilogue by scheduling, because
5619 we don't always emit unwind information for the epilogue. */
5620 if (cfun->can_throw_non_call_exceptions
5621 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5622 emit_insn (gen_blockage ());
5624 /* If stack protection is enabled for this function, check the guard. */
5625 if (crtl->stack_protect_guard)
5626 stack_protect_epilogue ();
5628 /* If we had calls to alloca, and this machine needs
5629 an accurate stack pointer to exit the function,
5630 insert some code to save and restore the stack pointer. */
5631 if (! EXIT_IGNORE_STACK
5632 && cfun->calls_alloca)
5634 rtx tem = 0;
5636 start_sequence ();
5637 emit_stack_save (SAVE_FUNCTION, &tem);
5638 rtx_insn *seq = get_insns ();
5639 end_sequence ();
5640 emit_insn_before (seq, parm_birth_insn);
5642 emit_stack_restore (SAVE_FUNCTION, tem);
5645 /* ??? This should no longer be necessary since stupid is no longer with
5646 us, but there are some parts of the compiler (eg reload_combine, and
5647 sh mach_dep_reorg) that still try and compute their own lifetime info
5648 instead of using the general framework. */
5649 use_return_register ();
5653 get_arg_pointer_save_area (void)
5655 rtx ret = arg_pointer_save_area;
5657 if (! ret)
5659 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5660 arg_pointer_save_area = ret;
5663 if (! crtl->arg_pointer_save_area_init)
5665 /* Save the arg pointer at the beginning of the function. The
5666 generated stack slot may not be a valid memory address, so we
5667 have to check it and fix it if necessary. */
5668 start_sequence ();
5669 emit_move_insn (validize_mem (copy_rtx (ret)),
5670 crtl->args.internal_arg_pointer);
5671 rtx_insn *seq = get_insns ();
5672 end_sequence ();
5674 push_topmost_sequence ();
5675 emit_insn_after (seq, entry_of_function ());
5676 pop_topmost_sequence ();
5678 crtl->arg_pointer_save_area_init = true;
5681 return ret;
5684 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5685 for the first time. */
5687 static void
5688 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5690 rtx_insn *tmp;
5691 hash_table<insn_cache_hasher> *hash = *hashp;
5693 if (hash == NULL)
5694 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5696 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5698 rtx *slot = hash->find_slot (tmp, INSERT);
5699 gcc_assert (*slot == NULL);
5700 *slot = tmp;
5704 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5705 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5706 insn, then record COPY as well. */
5708 void
5709 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5711 hash_table<insn_cache_hasher> *hash;
5712 rtx *slot;
5714 hash = epilogue_insn_hash;
5715 if (!hash || !hash->find (insn))
5717 hash = prologue_insn_hash;
5718 if (!hash || !hash->find (insn))
5719 return;
5722 slot = hash->find_slot (copy, INSERT);
5723 gcc_assert (*slot == NULL);
5724 *slot = copy;
5727 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5728 we can be running after reorg, SEQUENCE rtl is possible. */
5730 static bool
5731 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5733 if (hash == NULL)
5734 return false;
5736 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5738 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5739 int i;
5740 for (i = seq->len () - 1; i >= 0; i--)
5741 if (hash->find (seq->element (i)))
5742 return true;
5743 return false;
5746 return hash->find (const_cast<rtx> (insn)) != NULL;
5750 prologue_epilogue_contains (const_rtx insn)
5752 if (contains (insn, prologue_insn_hash))
5753 return 1;
5754 if (contains (insn, epilogue_insn_hash))
5755 return 1;
5756 return 0;
5759 /* Insert use of return register before the end of BB. */
5761 static void
5762 emit_use_return_register_into_block (basic_block bb)
5764 start_sequence ();
5765 use_return_register ();
5766 rtx_insn *seq = get_insns ();
5767 end_sequence ();
5768 rtx_insn *insn = BB_END (bb);
5769 if (HAVE_cc0 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5770 insn = prev_cc0_setter (insn);
5772 emit_insn_before (seq, insn);
5776 /* Create a return pattern, either simple_return or return, depending on
5777 simple_p. */
5779 static rtx_insn *
5780 gen_return_pattern (bool simple_p)
5782 return (simple_p
5783 ? targetm.gen_simple_return ()
5784 : targetm.gen_return ());
5787 /* Insert an appropriate return pattern at the end of block BB. This
5788 also means updating block_for_insn appropriately. SIMPLE_P is
5789 the same as in gen_return_pattern and passed to it. */
5791 void
5792 emit_return_into_block (bool simple_p, basic_block bb)
5794 rtx_jump_insn *jump = emit_jump_insn_after (gen_return_pattern (simple_p),
5795 BB_END (bb));
5796 rtx pat = PATTERN (jump);
5797 if (GET_CODE (pat) == PARALLEL)
5798 pat = XVECEXP (pat, 0, 0);
5799 gcc_assert (ANY_RETURN_P (pat));
5800 JUMP_LABEL (jump) = pat;
5803 /* Set JUMP_LABEL for a return insn. */
5805 void
5806 set_return_jump_label (rtx_insn *returnjump)
5808 rtx pat = PATTERN (returnjump);
5809 if (GET_CODE (pat) == PARALLEL)
5810 pat = XVECEXP (pat, 0, 0);
5811 if (ANY_RETURN_P (pat))
5812 JUMP_LABEL (returnjump) = pat;
5813 else
5814 JUMP_LABEL (returnjump) = ret_rtx;
5817 /* Return true if there are any active insns between HEAD and TAIL. */
5818 bool
5819 active_insn_between (rtx_insn *head, rtx_insn *tail)
5821 while (tail)
5823 if (active_insn_p (tail))
5824 return true;
5825 if (tail == head)
5826 return false;
5827 tail = PREV_INSN (tail);
5829 return false;
5832 /* LAST_BB is a block that exits, and empty of active instructions.
5833 Examine its predecessors for jumps that can be converted to
5834 (conditional) returns. */
5835 vec<edge>
5836 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5837 vec<edge> unconverted ATTRIBUTE_UNUSED)
5839 int i;
5840 basic_block bb;
5841 edge_iterator ei;
5842 edge e;
5843 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5845 FOR_EACH_EDGE (e, ei, last_bb->preds)
5846 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5847 src_bbs.quick_push (e->src);
5849 rtx_insn *label = BB_HEAD (last_bb);
5851 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5853 rtx_insn *jump = BB_END (bb);
5855 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5856 continue;
5858 e = find_edge (bb, last_bb);
5860 /* If we have an unconditional jump, we can replace that
5861 with a simple return instruction. */
5862 if (simplejump_p (jump))
5864 /* The use of the return register might be present in the exit
5865 fallthru block. Either:
5866 - removing the use is safe, and we should remove the use in
5867 the exit fallthru block, or
5868 - removing the use is not safe, and we should add it here.
5869 For now, we conservatively choose the latter. Either of the
5870 2 helps in crossjumping. */
5871 emit_use_return_register_into_block (bb);
5873 emit_return_into_block (simple_p, bb);
5874 delete_insn (jump);
5877 /* If we have a conditional jump branching to the last
5878 block, we can try to replace that with a conditional
5879 return instruction. */
5880 else if (condjump_p (jump))
5882 rtx dest;
5884 if (simple_p)
5885 dest = simple_return_rtx;
5886 else
5887 dest = ret_rtx;
5888 if (!redirect_jump (as_a <rtx_jump_insn *> (jump), dest, 0))
5890 if (targetm.have_simple_return () && simple_p)
5892 if (dump_file)
5893 fprintf (dump_file,
5894 "Failed to redirect bb %d branch.\n", bb->index);
5895 unconverted.safe_push (e);
5897 continue;
5900 /* See comment in simplejump_p case above. */
5901 emit_use_return_register_into_block (bb);
5903 /* If this block has only one successor, it both jumps
5904 and falls through to the fallthru block, so we can't
5905 delete the edge. */
5906 if (single_succ_p (bb))
5907 continue;
5909 else
5911 if (targetm.have_simple_return () && simple_p)
5913 if (dump_file)
5914 fprintf (dump_file,
5915 "Failed to redirect bb %d branch.\n", bb->index);
5916 unconverted.safe_push (e);
5918 continue;
5921 /* Fix up the CFG for the successful change we just made. */
5922 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5923 e->flags &= ~EDGE_CROSSING;
5925 src_bbs.release ();
5926 return unconverted;
5929 /* Emit a return insn for the exit fallthru block. */
5930 basic_block
5931 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5933 basic_block last_bb = exit_fallthru_edge->src;
5935 if (JUMP_P (BB_END (last_bb)))
5937 last_bb = split_edge (exit_fallthru_edge);
5938 exit_fallthru_edge = single_succ_edge (last_bb);
5940 emit_barrier_after (BB_END (last_bb));
5941 emit_return_into_block (simple_p, last_bb);
5942 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5943 return last_bb;
5947 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5948 this into place with notes indicating where the prologue ends and where
5949 the epilogue begins. Update the basic block information when possible.
5951 Notes on epilogue placement:
5952 There are several kinds of edges to the exit block:
5953 * a single fallthru edge from LAST_BB
5954 * possibly, edges from blocks containing sibcalls
5955 * possibly, fake edges from infinite loops
5957 The epilogue is always emitted on the fallthru edge from the last basic
5958 block in the function, LAST_BB, into the exit block.
5960 If LAST_BB is empty except for a label, it is the target of every
5961 other basic block in the function that ends in a return. If a
5962 target has a return or simple_return pattern (possibly with
5963 conditional variants), these basic blocks can be changed so that a
5964 return insn is emitted into them, and their target is adjusted to
5965 the real exit block.
5967 Notes on shrink wrapping: We implement a fairly conservative
5968 version of shrink-wrapping rather than the textbook one. We only
5969 generate a single prologue and a single epilogue. This is
5970 sufficient to catch a number of interesting cases involving early
5971 exits.
5973 First, we identify the blocks that require the prologue to occur before
5974 them. These are the ones that modify a call-saved register, or reference
5975 any of the stack or frame pointer registers. To simplify things, we then
5976 mark everything reachable from these blocks as also requiring a prologue.
5977 This takes care of loops automatically, and avoids the need to examine
5978 whether MEMs reference the frame, since it is sufficient to check for
5979 occurrences of the stack or frame pointer.
5981 We then compute the set of blocks for which the need for a prologue
5982 is anticipatable (borrowing terminology from the shrink-wrapping
5983 description in Muchnick's book). These are the blocks which either
5984 require a prologue themselves, or those that have only successors
5985 where the prologue is anticipatable. The prologue needs to be
5986 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5987 is not. For the moment, we ensure that only one such edge exists.
5989 The epilogue is placed as described above, but we make a
5990 distinction between inserting return and simple_return patterns
5991 when modifying other blocks that end in a return. Blocks that end
5992 in a sibcall omit the sibcall_epilogue if the block is not in
5993 ANTIC. */
5995 void
5996 thread_prologue_and_epilogue_insns (void)
5998 bool inserted;
5999 vec<edge> unconverted_simple_returns = vNULL;
6000 bitmap_head bb_flags;
6001 rtx_insn *returnjump;
6002 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
6003 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
6004 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
6005 edge_iterator ei;
6007 df_analyze ();
6009 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6011 inserted = false;
6012 epilogue_end = NULL;
6013 returnjump = NULL;
6015 /* Can't deal with multiple successors of the entry block at the
6016 moment. Function should always have at least one entry
6017 point. */
6018 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6019 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6020 orig_entry_edge = entry_edge;
6022 split_prologue_seq = NULL;
6023 if (flag_split_stack
6024 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
6025 == NULL))
6027 start_sequence ();
6028 emit_insn (targetm.gen_split_stack_prologue ());
6029 split_prologue_seq = get_insns ();
6030 end_sequence ();
6032 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
6033 set_insn_locations (split_prologue_seq, prologue_location);
6036 prologue_seq = NULL;
6037 if (targetm.have_prologue ())
6039 start_sequence ();
6040 rtx_insn *seq = targetm.gen_prologue ();
6041 emit_insn (seq);
6043 /* Insert an explicit USE for the frame pointer
6044 if the profiling is on and the frame pointer is required. */
6045 if (crtl->profile && frame_pointer_needed)
6046 emit_use (hard_frame_pointer_rtx);
6048 /* Retain a map of the prologue insns. */
6049 record_insns (seq, NULL, &prologue_insn_hash);
6050 emit_note (NOTE_INSN_PROLOGUE_END);
6052 /* Ensure that instructions are not moved into the prologue when
6053 profiling is on. The call to the profiling routine can be
6054 emitted within the live range of a call-clobbered register. */
6055 if (!targetm.profile_before_prologue () && crtl->profile)
6056 emit_insn (gen_blockage ());
6058 prologue_seq = get_insns ();
6059 end_sequence ();
6060 set_insn_locations (prologue_seq, prologue_location);
6063 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6065 /* Try to perform a kind of shrink-wrapping, making sure the
6066 prologue/epilogue is emitted only around those parts of the
6067 function that require it. */
6069 try_shrink_wrapping (&entry_edge, &bb_flags, prologue_seq);
6071 if (split_prologue_seq != NULL_RTX)
6073 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6074 inserted = true;
6076 if (prologue_seq != NULL_RTX)
6078 insert_insn_on_edge (prologue_seq, entry_edge);
6079 inserted = true;
6082 /* If the exit block has no non-fake predecessors, we don't need
6083 an epilogue. */
6084 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6085 if ((e->flags & EDGE_FAKE) == 0)
6086 break;
6087 if (e == NULL)
6088 goto epilogue_done;
6090 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6092 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6094 if (targetm.have_simple_return () && entry_edge != orig_entry_edge)
6095 exit_fallthru_edge
6096 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
6097 &unconverted_simple_returns,
6098 &returnjump);
6099 if (targetm.have_return ())
6101 if (exit_fallthru_edge == NULL)
6102 goto epilogue_done;
6104 if (optimize)
6106 basic_block last_bb = exit_fallthru_edge->src;
6108 if (LABEL_P (BB_HEAD (last_bb))
6109 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6110 convert_jumps_to_returns (last_bb, false, vNULL);
6112 if (EDGE_COUNT (last_bb->preds) != 0
6113 && single_succ_p (last_bb))
6115 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6116 epilogue_end = returnjump = BB_END (last_bb);
6118 /* Emitting the return may add a basic block.
6119 Fix bb_flags for the added block. */
6120 if (targetm.have_simple_return ()
6121 && last_bb != exit_fallthru_edge->src)
6122 bitmap_set_bit (&bb_flags, last_bb->index);
6124 goto epilogue_done;
6129 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6130 this marker for the splits of EH_RETURN patterns, and nothing else
6131 uses the flag in the meantime. */
6132 epilogue_completed = 1;
6134 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6135 some targets, these get split to a special version of the epilogue
6136 code. In order to be able to properly annotate these with unwind
6137 info, try to split them now. If we get a valid split, drop an
6138 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6139 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6141 rtx_insn *prev, *last, *trial;
6143 if (e->flags & EDGE_FALLTHRU)
6144 continue;
6145 last = BB_END (e->src);
6146 if (!eh_returnjump_p (last))
6147 continue;
6149 prev = PREV_INSN (last);
6150 trial = try_split (PATTERN (last), last, 1);
6151 if (trial == last)
6152 continue;
6154 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6155 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6158 /* If nothing falls through into the exit block, we don't need an
6159 epilogue. */
6161 if (exit_fallthru_edge == NULL)
6162 goto epilogue_done;
6164 if (targetm.have_epilogue ())
6166 start_sequence ();
6167 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6168 rtx_insn *seq = targetm.gen_epilogue ();
6169 if (seq)
6170 emit_jump_insn (seq);
6172 /* Retain a map of the epilogue insns. */
6173 record_insns (seq, NULL, &epilogue_insn_hash);
6174 set_insn_locations (seq, epilogue_location);
6176 seq = get_insns ();
6177 returnjump = get_last_insn ();
6178 end_sequence ();
6180 insert_insn_on_edge (seq, exit_fallthru_edge);
6181 inserted = true;
6183 if (JUMP_P (returnjump))
6184 set_return_jump_label (returnjump);
6186 else
6188 basic_block cur_bb;
6190 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6191 goto epilogue_done;
6192 /* We have a fall-through edge to the exit block, the source is not
6193 at the end of the function, and there will be an assembler epilogue
6194 at the end of the function.
6195 We can't use force_nonfallthru here, because that would try to
6196 use return. Inserting a jump 'by hand' is extremely messy, so
6197 we take advantage of cfg_layout_finalize using
6198 fixup_fallthru_exit_predecessor. */
6199 cfg_layout_initialize (0);
6200 FOR_EACH_BB_FN (cur_bb, cfun)
6201 if (cur_bb->index >= NUM_FIXED_BLOCKS
6202 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6203 cur_bb->aux = cur_bb->next_bb;
6204 cfg_layout_finalize ();
6207 epilogue_done:
6209 default_rtl_profile ();
6211 if (inserted)
6213 sbitmap blocks;
6215 commit_edge_insertions ();
6217 /* Look for basic blocks within the prologue insns. */
6218 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6219 bitmap_clear (blocks);
6220 bitmap_set_bit (blocks, entry_edge->dest->index);
6221 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6222 find_many_sub_basic_blocks (blocks);
6223 sbitmap_free (blocks);
6225 /* The epilogue insns we inserted may cause the exit edge to no longer
6226 be fallthru. */
6227 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6229 if (((e->flags & EDGE_FALLTHRU) != 0)
6230 && returnjump_p (BB_END (e->src)))
6231 e->flags &= ~EDGE_FALLTHRU;
6235 if (targetm.have_simple_return ())
6236 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags,
6237 returnjump, unconverted_simple_returns);
6239 /* Emit sibling epilogues before any sibling call sites. */
6240 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6241 ei_safe_edge (ei));
6244 basic_block bb = e->src;
6245 rtx_insn *insn = BB_END (bb);
6247 if (!CALL_P (insn)
6248 || ! SIBLING_CALL_P (insn)
6249 || (targetm.have_simple_return ()
6250 && entry_edge != orig_entry_edge
6251 && !bitmap_bit_p (&bb_flags, bb->index)))
6253 ei_next (&ei);
6254 continue;
6257 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6259 start_sequence ();
6260 emit_note (NOTE_INSN_EPILOGUE_BEG);
6261 emit_insn (ep_seq);
6262 rtx_insn *seq = get_insns ();
6263 end_sequence ();
6265 /* Retain a map of the epilogue insns. Used in life analysis to
6266 avoid getting rid of sibcall epilogue insns. Do this before we
6267 actually emit the sequence. */
6268 record_insns (seq, NULL, &epilogue_insn_hash);
6269 set_insn_locations (seq, epilogue_location);
6271 emit_insn_before (seq, insn);
6273 ei_next (&ei);
6276 if (epilogue_end)
6278 rtx_insn *insn, *next;
6280 /* Similarly, move any line notes that appear after the epilogue.
6281 There is no need, however, to be quite so anal about the existence
6282 of such a note. Also possibly move
6283 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6284 info generation. */
6285 for (insn = epilogue_end; insn; insn = next)
6287 next = NEXT_INSN (insn);
6288 if (NOTE_P (insn)
6289 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6290 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6294 bitmap_clear (&bb_flags);
6296 /* Threading the prologue and epilogue changes the artificial refs
6297 in the entry and exit blocks. */
6298 epilogue_completed = 1;
6299 df_update_entry_exit_and_calls ();
6302 /* Reposition the prologue-end and epilogue-begin notes after
6303 instruction scheduling. */
6305 void
6306 reposition_prologue_and_epilogue_notes (void)
6308 if (!targetm.have_prologue ()
6309 && !targetm.have_epilogue ()
6310 && !targetm.have_sibcall_epilogue ())
6311 return;
6313 /* Since the hash table is created on demand, the fact that it is
6314 non-null is a signal that it is non-empty. */
6315 if (prologue_insn_hash != NULL)
6317 size_t len = prologue_insn_hash->elements ();
6318 rtx_insn *insn, *last = NULL, *note = NULL;
6320 /* Scan from the beginning until we reach the last prologue insn. */
6321 /* ??? While we do have the CFG intact, there are two problems:
6322 (1) The prologue can contain loops (typically probing the stack),
6323 which means that the end of the prologue isn't in the first bb.
6324 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6325 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6327 if (NOTE_P (insn))
6329 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6330 note = insn;
6332 else if (contains (insn, prologue_insn_hash))
6334 last = insn;
6335 if (--len == 0)
6336 break;
6340 if (last)
6342 if (note == NULL)
6344 /* Scan forward looking for the PROLOGUE_END note. It should
6345 be right at the beginning of the block, possibly with other
6346 insn notes that got moved there. */
6347 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6349 if (NOTE_P (note)
6350 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6351 break;
6355 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6356 if (LABEL_P (last))
6357 last = NEXT_INSN (last);
6358 reorder_insns (note, note, last);
6362 if (epilogue_insn_hash != NULL)
6364 edge_iterator ei;
6365 edge e;
6367 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6369 rtx_insn *insn, *first = NULL, *note = NULL;
6370 basic_block bb = e->src;
6372 /* Scan from the beginning until we reach the first epilogue insn. */
6373 FOR_BB_INSNS (bb, insn)
6375 if (NOTE_P (insn))
6377 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6379 note = insn;
6380 if (first != NULL)
6381 break;
6384 else if (first == NULL && contains (insn, epilogue_insn_hash))
6386 first = insn;
6387 if (note != NULL)
6388 break;
6392 if (note)
6394 /* If the function has a single basic block, and no real
6395 epilogue insns (e.g. sibcall with no cleanup), the
6396 epilogue note can get scheduled before the prologue
6397 note. If we have frame related prologue insns, having
6398 them scanned during the epilogue will result in a crash.
6399 In this case re-order the epilogue note to just before
6400 the last insn in the block. */
6401 if (first == NULL)
6402 first = BB_END (bb);
6404 if (PREV_INSN (first) != note)
6405 reorder_insns (note, note, PREV_INSN (first));
6411 /* Returns the name of function declared by FNDECL. */
6412 const char *
6413 fndecl_name (tree fndecl)
6415 if (fndecl == NULL)
6416 return "(nofn)";
6417 return lang_hooks.decl_printable_name (fndecl, 2);
6420 /* Returns the name of function FN. */
6421 const char *
6422 function_name (struct function *fn)
6424 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6425 return fndecl_name (fndecl);
6428 /* Returns the name of the current function. */
6429 const char *
6430 current_function_name (void)
6432 return function_name (cfun);
6436 static unsigned int
6437 rest_of_handle_check_leaf_regs (void)
6439 #ifdef LEAF_REGISTERS
6440 crtl->uses_only_leaf_regs
6441 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6442 #endif
6443 return 0;
6446 /* Insert a TYPE into the used types hash table of CFUN. */
6448 static void
6449 used_types_insert_helper (tree type, struct function *func)
6451 if (type != NULL && func != NULL)
6453 if (func->used_types_hash == NULL)
6454 func->used_types_hash = hash_set<tree>::create_ggc (37);
6456 func->used_types_hash->add (type);
6460 /* Given a type, insert it into the used hash table in cfun. */
6461 void
6462 used_types_insert (tree t)
6464 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6465 if (TYPE_NAME (t))
6466 break;
6467 else
6468 t = TREE_TYPE (t);
6469 if (TREE_CODE (t) == ERROR_MARK)
6470 return;
6471 if (TYPE_NAME (t) == NULL_TREE
6472 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6473 t = TYPE_MAIN_VARIANT (t);
6474 if (debug_info_level > DINFO_LEVEL_NONE)
6476 if (cfun)
6477 used_types_insert_helper (t, cfun);
6478 else
6480 /* So this might be a type referenced by a global variable.
6481 Record that type so that we can later decide to emit its
6482 debug information. */
6483 vec_safe_push (types_used_by_cur_var_decl, t);
6488 /* Helper to Hash a struct types_used_by_vars_entry. */
6490 static hashval_t
6491 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6493 gcc_assert (entry && entry->var_decl && entry->type);
6495 return iterative_hash_object (entry->type,
6496 iterative_hash_object (entry->var_decl, 0));
6499 /* Hash function of the types_used_by_vars_entry hash table. */
6501 hashval_t
6502 used_type_hasher::hash (types_used_by_vars_entry *entry)
6504 return hash_types_used_by_vars_entry (entry);
6507 /*Equality function of the types_used_by_vars_entry hash table. */
6509 bool
6510 used_type_hasher::equal (types_used_by_vars_entry *e1,
6511 types_used_by_vars_entry *e2)
6513 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6516 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6518 void
6519 types_used_by_var_decl_insert (tree type, tree var_decl)
6521 if (type != NULL && var_decl != NULL)
6523 types_used_by_vars_entry **slot;
6524 struct types_used_by_vars_entry e;
6525 e.var_decl = var_decl;
6526 e.type = type;
6527 if (types_used_by_vars_hash == NULL)
6528 types_used_by_vars_hash
6529 = hash_table<used_type_hasher>::create_ggc (37);
6531 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6532 if (*slot == NULL)
6534 struct types_used_by_vars_entry *entry;
6535 entry = ggc_alloc<types_used_by_vars_entry> ();
6536 entry->type = type;
6537 entry->var_decl = var_decl;
6538 *slot = entry;
6543 namespace {
6545 const pass_data pass_data_leaf_regs =
6547 RTL_PASS, /* type */
6548 "*leaf_regs", /* name */
6549 OPTGROUP_NONE, /* optinfo_flags */
6550 TV_NONE, /* tv_id */
6551 0, /* properties_required */
6552 0, /* properties_provided */
6553 0, /* properties_destroyed */
6554 0, /* todo_flags_start */
6555 0, /* todo_flags_finish */
6558 class pass_leaf_regs : public rtl_opt_pass
6560 public:
6561 pass_leaf_regs (gcc::context *ctxt)
6562 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6565 /* opt_pass methods: */
6566 virtual unsigned int execute (function *)
6568 return rest_of_handle_check_leaf_regs ();
6571 }; // class pass_leaf_regs
6573 } // anon namespace
6575 rtl_opt_pass *
6576 make_pass_leaf_regs (gcc::context *ctxt)
6578 return new pass_leaf_regs (ctxt);
6581 static unsigned int
6582 rest_of_handle_thread_prologue_and_epilogue (void)
6584 if (optimize)
6585 cleanup_cfg (CLEANUP_EXPENSIVE);
6587 /* On some machines, the prologue and epilogue code, or parts thereof,
6588 can be represented as RTL. Doing so lets us schedule insns between
6589 it and the rest of the code and also allows delayed branch
6590 scheduling to operate in the epilogue. */
6591 thread_prologue_and_epilogue_insns ();
6593 /* Some non-cold blocks may now be only reachable from cold blocks.
6594 Fix that up. */
6595 fixup_partitions ();
6597 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6598 see PR57320. */
6599 cleanup_cfg (0);
6601 /* The stack usage info is finalized during prologue expansion. */
6602 if (flag_stack_usage_info)
6603 output_stack_usage ();
6605 return 0;
6608 namespace {
6610 const pass_data pass_data_thread_prologue_and_epilogue =
6612 RTL_PASS, /* type */
6613 "pro_and_epilogue", /* name */
6614 OPTGROUP_NONE, /* optinfo_flags */
6615 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6616 0, /* properties_required */
6617 0, /* properties_provided */
6618 0, /* properties_destroyed */
6619 0, /* todo_flags_start */
6620 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6623 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6625 public:
6626 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6627 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6630 /* opt_pass methods: */
6631 virtual unsigned int execute (function *)
6633 return rest_of_handle_thread_prologue_and_epilogue ();
6636 }; // class pass_thread_prologue_and_epilogue
6638 } // anon namespace
6640 rtl_opt_pass *
6641 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6643 return new pass_thread_prologue_and_epilogue (ctxt);
6647 /* This mini-pass fixes fall-out from SSA in asm statements that have
6648 in-out constraints. Say you start with
6650 orig = inout;
6651 asm ("": "+mr" (inout));
6652 use (orig);
6654 which is transformed very early to use explicit output and match operands:
6656 orig = inout;
6657 asm ("": "=mr" (inout) : "0" (inout));
6658 use (orig);
6660 Or, after SSA and copyprop,
6662 asm ("": "=mr" (inout_2) : "0" (inout_1));
6663 use (inout_1);
6665 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6666 they represent two separate values, so they will get different pseudo
6667 registers during expansion. Then, since the two operands need to match
6668 per the constraints, but use different pseudo registers, reload can
6669 only register a reload for these operands. But reloads can only be
6670 satisfied by hardregs, not by memory, so we need a register for this
6671 reload, just because we are presented with non-matching operands.
6672 So, even though we allow memory for this operand, no memory can be
6673 used for it, just because the two operands don't match. This can
6674 cause reload failures on register-starved targets.
6676 So it's a symptom of reload not being able to use memory for reloads
6677 or, alternatively it's also a symptom of both operands not coming into
6678 reload as matching (in which case the pseudo could go to memory just
6679 fine, as the alternative allows it, and no reload would be necessary).
6680 We fix the latter problem here, by transforming
6682 asm ("": "=mr" (inout_2) : "0" (inout_1));
6684 back to
6686 inout_2 = inout_1;
6687 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6689 static void
6690 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6692 int i;
6693 bool changed = false;
6694 rtx op = SET_SRC (p_sets[0]);
6695 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6696 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6697 bool *output_matched = XALLOCAVEC (bool, noutputs);
6699 memset (output_matched, 0, noutputs * sizeof (bool));
6700 for (i = 0; i < ninputs; i++)
6702 rtx input, output;
6703 rtx_insn *insns;
6704 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6705 char *end;
6706 int match, j;
6708 if (*constraint == '%')
6709 constraint++;
6711 match = strtoul (constraint, &end, 10);
6712 if (end == constraint)
6713 continue;
6715 gcc_assert (match < noutputs);
6716 output = SET_DEST (p_sets[match]);
6717 input = RTVEC_ELT (inputs, i);
6718 /* Only do the transformation for pseudos. */
6719 if (! REG_P (output)
6720 || rtx_equal_p (output, input)
6721 || (GET_MODE (input) != VOIDmode
6722 && GET_MODE (input) != GET_MODE (output)))
6723 continue;
6725 /* We can't do anything if the output is also used as input,
6726 as we're going to overwrite it. */
6727 for (j = 0; j < ninputs; j++)
6728 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6729 break;
6730 if (j != ninputs)
6731 continue;
6733 /* Avoid changing the same input several times. For
6734 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6735 only change in once (to out1), rather than changing it
6736 first to out1 and afterwards to out2. */
6737 if (i > 0)
6739 for (j = 0; j < noutputs; j++)
6740 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6741 break;
6742 if (j != noutputs)
6743 continue;
6745 output_matched[match] = true;
6747 start_sequence ();
6748 emit_move_insn (output, input);
6749 insns = get_insns ();
6750 end_sequence ();
6751 emit_insn_before (insns, insn);
6753 /* Now replace all mentions of the input with output. We can't
6754 just replace the occurrence in inputs[i], as the register might
6755 also be used in some other input (or even in an address of an
6756 output), which would mean possibly increasing the number of
6757 inputs by one (namely 'output' in addition), which might pose
6758 a too complicated problem for reload to solve. E.g. this situation:
6760 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6762 Here 'input' is used in two occurrences as input (once for the
6763 input operand, once for the address in the second output operand).
6764 If we would replace only the occurrence of the input operand (to
6765 make the matching) we would be left with this:
6767 output = input
6768 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6770 Now we suddenly have two different input values (containing the same
6771 value, but different pseudos) where we formerly had only one.
6772 With more complicated asms this might lead to reload failures
6773 which wouldn't have happen without this pass. So, iterate over
6774 all operands and replace all occurrences of the register used. */
6775 for (j = 0; j < noutputs; j++)
6776 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6777 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6778 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6779 input, output);
6780 for (j = 0; j < ninputs; j++)
6781 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6782 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6783 input, output);
6785 changed = true;
6788 if (changed)
6789 df_insn_rescan (insn);
6792 /* Add the decl D to the local_decls list of FUN. */
6794 void
6795 add_local_decl (struct function *fun, tree d)
6797 gcc_assert (TREE_CODE (d) == VAR_DECL);
6798 vec_safe_push (fun->local_decls, d);
6801 namespace {
6803 const pass_data pass_data_match_asm_constraints =
6805 RTL_PASS, /* type */
6806 "asmcons", /* name */
6807 OPTGROUP_NONE, /* optinfo_flags */
6808 TV_NONE, /* tv_id */
6809 0, /* properties_required */
6810 0, /* properties_provided */
6811 0, /* properties_destroyed */
6812 0, /* todo_flags_start */
6813 0, /* todo_flags_finish */
6816 class pass_match_asm_constraints : public rtl_opt_pass
6818 public:
6819 pass_match_asm_constraints (gcc::context *ctxt)
6820 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6823 /* opt_pass methods: */
6824 virtual unsigned int execute (function *);
6826 }; // class pass_match_asm_constraints
6828 unsigned
6829 pass_match_asm_constraints::execute (function *fun)
6831 basic_block bb;
6832 rtx_insn *insn;
6833 rtx pat, *p_sets;
6834 int noutputs;
6836 if (!crtl->has_asm_statement)
6837 return 0;
6839 df_set_flags (DF_DEFER_INSN_RESCAN);
6840 FOR_EACH_BB_FN (bb, fun)
6842 FOR_BB_INSNS (bb, insn)
6844 if (!INSN_P (insn))
6845 continue;
6847 pat = PATTERN (insn);
6848 if (GET_CODE (pat) == PARALLEL)
6849 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6850 else if (GET_CODE (pat) == SET)
6851 p_sets = &PATTERN (insn), noutputs = 1;
6852 else
6853 continue;
6855 if (GET_CODE (*p_sets) == SET
6856 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6857 match_asm_constraints_1 (insn, p_sets, noutputs);
6861 return TODO_df_finish;
6864 } // anon namespace
6866 rtl_opt_pass *
6867 make_pass_match_asm_constraints (gcc::context *ctxt)
6869 return new pass_match_asm_constraints (ctxt);
6873 #include "gt-function.h"