gcc/
[official-gcc.git] / gcc / config / arm / arm.h
blob56da3117178e4c3eae061cc31159cb0841621aef
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2014 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
24 You should have received a copy of the GNU General Public License
25 along with GCC; see the file COPYING3. If not see
26 <http://www.gnu.org/licenses/>. */
28 #ifndef GCC_ARM_H
29 #define GCC_ARM_H
31 /* We can't use enum machine_mode inside a generator file because it
32 hasn't been created yet; we shouldn't be using any code that
33 needs the real definition though, so this ought to be safe. */
34 #ifdef GENERATOR_FILE
35 #define MACHMODE int
36 #else
37 #include "insn-modes.h"
38 #define MACHMODE enum machine_mode
39 #endif
41 #include "config/vxworks-dummy.h"
43 /* The architecture define. */
44 extern char arm_arch_name[];
46 /* Target CPU builtins. */
47 #define TARGET_CPU_CPP_BUILTINS() \
48 do \
49 { \
50 if (TARGET_DSP_MULTIPLY) \
51 builtin_define ("__ARM_FEATURE_DSP"); \
52 if (TARGET_ARM_QBIT) \
53 builtin_define ("__ARM_FEATURE_QBIT"); \
54 if (TARGET_ARM_SAT) \
55 builtin_define ("__ARM_FEATURE_SAT"); \
56 if (TARGET_CRYPTO) \
57 builtin_define ("__ARM_FEATURE_CRYPTO"); \
58 if (unaligned_access) \
59 builtin_define ("__ARM_FEATURE_UNALIGNED"); \
60 if (TARGET_CRC32) \
61 builtin_define ("__ARM_FEATURE_CRC32"); \
62 if (TARGET_32BIT) \
63 builtin_define ("__ARM_32BIT_STATE"); \
64 if (TARGET_ARM_FEATURE_LDREX) \
65 builtin_define_with_int_value ( \
66 "__ARM_FEATURE_LDREX", TARGET_ARM_FEATURE_LDREX); \
67 if ((TARGET_ARM_ARCH >= 5 && !TARGET_THUMB) \
68 || TARGET_ARM_ARCH_ISA_THUMB >=2) \
69 builtin_define ("__ARM_FEATURE_CLZ"); \
70 if (TARGET_INT_SIMD) \
71 builtin_define ("__ARM_FEATURE_SIMD32"); \
73 builtin_define_with_int_value ( \
74 "__ARM_SIZEOF_MINIMAL_ENUM", \
75 flag_short_enums ? 1 : 4); \
76 builtin_define_with_int_value ( \
77 "__ARM_SIZEOF_WCHAR_T", WCHAR_TYPE_SIZE); \
78 if (TARGET_ARM_ARCH_PROFILE) \
79 builtin_define_with_int_value ( \
80 "__ARM_ARCH_PROFILE", TARGET_ARM_ARCH_PROFILE); \
82 /* Define __arm__ even when in thumb mode, for \
83 consistency with armcc. */ \
84 builtin_define ("__arm__"); \
85 if (TARGET_ARM_ARCH) \
86 builtin_define_with_int_value ( \
87 "__ARM_ARCH", TARGET_ARM_ARCH); \
88 if (arm_arch_notm) \
89 builtin_define ("__ARM_ARCH_ISA_ARM"); \
90 builtin_define ("__APCS_32__"); \
91 if (TARGET_THUMB) \
92 builtin_define ("__thumb__"); \
93 if (TARGET_THUMB2) \
94 builtin_define ("__thumb2__"); \
95 if (TARGET_ARM_ARCH_ISA_THUMB) \
96 builtin_define_with_int_value ( \
97 "__ARM_ARCH_ISA_THUMB", \
98 TARGET_ARM_ARCH_ISA_THUMB); \
100 if (TARGET_BIG_END) \
102 builtin_define ("__ARMEB__"); \
103 builtin_define ("__ARM_BIG_ENDIAN"); \
104 if (TARGET_THUMB) \
105 builtin_define ("__THUMBEB__"); \
106 if (TARGET_LITTLE_WORDS) \
107 builtin_define ("__ARMWEL__"); \
109 else \
111 builtin_define ("__ARMEL__"); \
112 if (TARGET_THUMB) \
113 builtin_define ("__THUMBEL__"); \
116 if (TARGET_SOFT_FLOAT) \
117 builtin_define ("__SOFTFP__"); \
119 if (TARGET_VFP) \
120 builtin_define ("__VFP_FP__"); \
122 if (TARGET_ARM_FP) \
123 builtin_define_with_int_value ( \
124 "__ARM_FP", TARGET_ARM_FP); \
125 if (arm_fp16_format == ARM_FP16_FORMAT_IEEE) \
126 builtin_define ("__ARM_FP16_FORMAT_IEEE"); \
127 if (arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE) \
128 builtin_define ("__ARM_FP16_FORMAT_ALTERNATIVE"); \
129 if (TARGET_FMA) \
130 builtin_define ("__ARM_FEATURE_FMA"); \
132 if (TARGET_NEON) \
134 builtin_define ("__ARM_NEON__"); \
135 builtin_define ("__ARM_NEON"); \
137 if (TARGET_NEON_FP) \
138 builtin_define_with_int_value ( \
139 "__ARM_NEON_FP", TARGET_NEON_FP); \
141 /* Add a define for interworking. \
142 Needed when building libgcc.a. */ \
143 if (arm_cpp_interwork) \
144 builtin_define ("__THUMB_INTERWORK__"); \
146 builtin_assert ("cpu=arm"); \
147 builtin_assert ("machine=arm"); \
149 builtin_define (arm_arch_name); \
150 if (arm_arch_xscale) \
151 builtin_define ("__XSCALE__"); \
152 if (arm_arch_iwmmxt) \
154 builtin_define ("__IWMMXT__"); \
155 builtin_define ("__ARM_WMMX"); \
157 if (arm_arch_iwmmxt2) \
158 builtin_define ("__IWMMXT2__"); \
159 if (TARGET_AAPCS_BASED) \
161 if (arm_pcs_default == ARM_PCS_AAPCS_VFP) \
162 builtin_define ("__ARM_PCS_VFP"); \
163 else if (arm_pcs_default == ARM_PCS_AAPCS) \
164 builtin_define ("__ARM_PCS"); \
165 builtin_define ("__ARM_EABI__"); \
167 if (TARGET_IDIV) \
168 builtin_define ("__ARM_ARCH_EXT_IDIV__"); \
169 } while (0)
171 #include "config/arm/arm-opts.h"
173 enum target_cpus
175 #define ARM_CORE(NAME, INTERNAL_IDENT, IDENT, ARCH, FLAGS, COSTS) \
176 TARGET_CPU_##INTERNAL_IDENT,
177 #include "arm-cores.def"
178 #undef ARM_CORE
179 TARGET_CPU_generic
182 /* The processor for which instructions should be scheduled. */
183 extern enum processor_type arm_tune;
185 typedef enum arm_cond_code
187 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
188 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
190 arm_cc;
192 extern arm_cc arm_current_cc;
194 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
196 /* The maximum number of instructions that is beneficial to
197 conditionally execute. */
198 #undef MAX_CONDITIONAL_EXECUTE
199 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
201 extern int arm_target_label;
202 extern int arm_ccfsm_state;
203 extern GTY(()) rtx arm_target_insn;
204 /* The label of the current constant pool. */
205 extern rtx pool_vector_label;
206 /* Set to 1 when a return insn is output, this means that the epilogue
207 is not needed. */
208 extern int return_used_this_function;
209 /* Callback to output language specific object attributes. */
210 extern void (*arm_lang_output_object_attributes_hook)(void);
212 /* Just in case configure has failed to define anything. */
213 #ifndef TARGET_CPU_DEFAULT
214 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
215 #endif
218 #undef CPP_SPEC
219 #define CPP_SPEC "%(subtarget_cpp_spec) \
220 %{mfloat-abi=soft:%{mfloat-abi=hard: \
221 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
222 %{mbig-endian:%{mlittle-endian: \
223 %e-mbig-endian and -mlittle-endian may not be used together}}"
225 #ifndef CC1_SPEC
226 #define CC1_SPEC ""
227 #endif
229 /* This macro defines names of additional specifications to put in the specs
230 that can be used in various specifications like CC1_SPEC. Its definition
231 is an initializer with a subgrouping for each command option.
233 Each subgrouping contains a string constant, that defines the
234 specification name, and a string constant that used by the GCC driver
235 program.
237 Do not define this macro if it does not need to do anything. */
238 #define EXTRA_SPECS \
239 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
240 { "asm_cpu_spec", ASM_CPU_SPEC }, \
241 SUBTARGET_EXTRA_SPECS
243 #ifndef SUBTARGET_EXTRA_SPECS
244 #define SUBTARGET_EXTRA_SPECS
245 #endif
247 #ifndef SUBTARGET_CPP_SPEC
248 #define SUBTARGET_CPP_SPEC ""
249 #endif
251 /* Run-time Target Specification. */
252 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
253 /* Use hardware floating point instructions. */
254 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
255 /* Use hardware floating point calling convention. */
256 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
257 #define TARGET_VFP (arm_fpu_desc->model == ARM_FP_MODEL_VFP)
258 #define TARGET_IWMMXT (arm_arch_iwmmxt)
259 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
260 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
261 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
262 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
263 #define TARGET_ARM (! TARGET_THUMB)
264 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
265 #define TARGET_BACKTRACE (leaf_function_p () \
266 ? TARGET_TPCS_LEAF_FRAME \
267 : TARGET_TPCS_FRAME)
268 #define TARGET_AAPCS_BASED \
269 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
271 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
272 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
273 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
275 /* Only 16-bit thumb code. */
276 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
277 /* Arm or Thumb-2 32-bit code. */
278 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
279 /* 32-bit Thumb-2 code. */
280 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
281 /* Thumb-1 only. */
282 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
284 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
285 && !TARGET_THUMB1)
287 #define TARGET_CRC32 (arm_arch_crc)
289 /* The following two macros concern the ability to execute coprocessor
290 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
291 only ever tested when we know we are generating for VFP hardware; we need
292 to be more careful with TARGET_NEON as noted below. */
294 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
295 #define TARGET_VFPD32 (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_D32)
297 /* FPU supports VFPv3 instructions. */
298 #define TARGET_VFP3 (TARGET_VFP && arm_fpu_desc->rev >= 3)
300 /* FPU only supports VFP single-precision instructions. */
301 #define TARGET_VFP_SINGLE (TARGET_VFP && arm_fpu_desc->regs == VFP_REG_SINGLE)
303 /* FPU supports VFP double-precision instructions. */
304 #define TARGET_VFP_DOUBLE (TARGET_VFP && arm_fpu_desc->regs != VFP_REG_SINGLE)
306 /* FPU supports half-precision floating-point with NEON element load/store. */
307 #define TARGET_NEON_FP16 \
308 (TARGET_VFP && arm_fpu_desc->neon && arm_fpu_desc->fp16)
310 /* FPU supports VFP half-precision floating-point. */
311 #define TARGET_FP16 (TARGET_VFP && arm_fpu_desc->fp16)
313 /* FPU supports fused-multiply-add operations. */
314 #define TARGET_FMA (TARGET_VFP && arm_fpu_desc->rev >= 4)
316 /* FPU is ARMv8 compatible. */
317 #define TARGET_FPU_ARMV8 (TARGET_VFP && arm_fpu_desc->rev >= 8)
319 /* FPU supports Crypto extensions. */
320 #define TARGET_CRYPTO (TARGET_VFP && arm_fpu_desc->crypto)
322 /* FPU supports Neon instructions. The setting of this macro gets
323 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
324 and TARGET_HARD_FLOAT to ensure that NEON instructions are
325 available. */
326 #define TARGET_NEON (TARGET_32BIT && TARGET_HARD_FLOAT \
327 && TARGET_VFP && arm_fpu_desc->neon)
329 /* Q-bit is present. */
330 #define TARGET_ARM_QBIT \
331 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
332 /* Saturation operation, e.g. SSAT. */
333 #define TARGET_ARM_SAT \
334 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
335 /* "DSP" multiply instructions, eg. SMULxy. */
336 #define TARGET_DSP_MULTIPLY \
337 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
338 /* Integer SIMD instructions, and extend-accumulate instructions. */
339 #define TARGET_INT_SIMD \
340 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
342 /* Should MOVW/MOVT be used in preference to a constant pool. */
343 #define TARGET_USE_MOVT \
344 (arm_arch_thumb2 \
345 && (arm_disable_literal_pool \
346 || (!optimize_size && !current_tune->prefer_constant_pool)))
348 /* We could use unified syntax for arm mode, but for now we just use it
349 for Thumb-2. */
350 #define TARGET_UNIFIED_ASM TARGET_THUMB2
352 /* Nonzero if this chip provides the DMB instruction. */
353 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
355 /* Nonzero if this chip implements a memory barrier via CP15. */
356 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
357 && ! TARGET_THUMB1)
359 /* Nonzero if this chip implements a memory barrier instruction. */
360 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
362 /* Nonzero if this chip supports ldrex and strex */
363 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7)
365 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
366 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7)
368 /* Nonzero if this chip supports ldrexd and strexd. */
369 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) || arm_arch7) \
370 && arm_arch_notm)
372 /* Nonzero if this chip supports load-acquire and store-release. */
373 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
375 /* Nonzero if integer division instructions supported. */
376 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
377 || (TARGET_THUMB2 && arm_arch_thumb_hwdiv))
379 /* Should NEON be used for 64-bits bitops. */
380 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
382 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
383 then TARGET_AAPCS_BASED must be true -- but the converse does not
384 hold. TARGET_BPABI implies the use of the BPABI runtime library,
385 etc., in addition to just the AAPCS calling conventions. */
386 #ifndef TARGET_BPABI
387 #define TARGET_BPABI false
388 #endif
390 /* Support for a compile-time default CPU, et cetera. The rules are:
391 --with-arch is ignored if -march or -mcpu are specified.
392 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
393 by --with-arch.
394 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
395 by -march).
396 --with-float is ignored if -mfloat-abi is specified.
397 --with-fpu is ignored if -mfpu is specified.
398 --with-abi is ignored if -mabi is specified.
399 --with-tls is ignored if -mtls-dialect is specified. */
400 #define OPTION_DEFAULT_SPECS \
401 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
402 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
403 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
404 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
405 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
406 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
407 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
408 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
410 /* Which floating point model to use. */
411 enum arm_fp_model
413 ARM_FP_MODEL_UNKNOWN,
414 /* VFP floating point model. */
415 ARM_FP_MODEL_VFP
418 enum vfp_reg_type
420 VFP_NONE = 0,
421 VFP_REG_D16,
422 VFP_REG_D32,
423 VFP_REG_SINGLE
426 extern const struct arm_fpu_desc
428 const char *name;
429 enum arm_fp_model model;
430 int rev;
431 enum vfp_reg_type regs;
432 int neon;
433 int fp16;
434 int crypto;
435 } *arm_fpu_desc;
437 /* Which floating point hardware to schedule for. */
438 extern int arm_fpu_attr;
440 #ifndef TARGET_DEFAULT_FLOAT_ABI
441 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
442 #endif
444 #define LARGEST_EXPONENT_IS_NORMAL(bits) \
445 ((bits) == 16 && arm_fp16_format == ARM_FP16_FORMAT_ALTERNATIVE)
447 #ifndef ARM_DEFAULT_ABI
448 #define ARM_DEFAULT_ABI ARM_ABI_APCS
449 #endif
451 /* Map each of the micro-architecture variants to their corresponding
452 major architecture revision. */
454 enum base_architecture
456 BASE_ARCH_0 = 0,
457 BASE_ARCH_2 = 2,
458 BASE_ARCH_3 = 3,
459 BASE_ARCH_3M = 3,
460 BASE_ARCH_4 = 4,
461 BASE_ARCH_4T = 4,
462 BASE_ARCH_5 = 5,
463 BASE_ARCH_5E = 5,
464 BASE_ARCH_5T = 5,
465 BASE_ARCH_5TE = 5,
466 BASE_ARCH_5TEJ = 5,
467 BASE_ARCH_6 = 6,
468 BASE_ARCH_6J = 6,
469 BASE_ARCH_6ZK = 6,
470 BASE_ARCH_6K = 6,
471 BASE_ARCH_6T2 = 6,
472 BASE_ARCH_6M = 6,
473 BASE_ARCH_6Z = 6,
474 BASE_ARCH_7 = 7,
475 BASE_ARCH_7A = 7,
476 BASE_ARCH_7R = 7,
477 BASE_ARCH_7M = 7,
478 BASE_ARCH_7EM = 7,
479 BASE_ARCH_8A = 8
482 /* The major revision number of the ARM Architecture implemented by the target. */
483 extern enum base_architecture arm_base_arch;
485 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
486 extern int arm_arch3m;
488 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
489 extern int arm_arch4;
491 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
492 extern int arm_arch4t;
494 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
495 extern int arm_arch5;
497 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
498 extern int arm_arch5e;
500 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
501 extern int arm_arch6;
503 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
504 extern int arm_arch6k;
506 /* Nonzero if instructions present in ARMv6-M can be used. */
507 extern int arm_arch6m;
509 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
510 extern int arm_arch7;
512 /* Nonzero if instructions not present in the 'M' profile can be used. */
513 extern int arm_arch_notm;
515 /* Nonzero if instructions present in ARMv7E-M can be used. */
516 extern int arm_arch7em;
518 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
519 extern int arm_arch8;
521 /* Nonzero if this chip can benefit from load scheduling. */
522 extern int arm_ld_sched;
524 /* Nonzero if generating Thumb code, either Thumb-1 or Thumb-2. */
525 extern int thumb_code;
527 /* Nonzero if generating Thumb-1 code. */
528 extern int thumb1_code;
530 /* Nonzero if this chip is a StrongARM. */
531 extern int arm_tune_strongarm;
533 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
534 extern int arm_arch_iwmmxt;
536 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
537 extern int arm_arch_iwmmxt2;
539 /* Nonzero if this chip is an XScale. */
540 extern int arm_arch_xscale;
542 /* Nonzero if tuning for XScale. */
543 extern int arm_tune_xscale;
545 /* Nonzero if tuning for stores via the write buffer. */
546 extern int arm_tune_wbuf;
548 /* Nonzero if tuning for Cortex-A9. */
549 extern int arm_tune_cortex_a9;
551 /* Nonzero if we should define __THUMB_INTERWORK__ in the
552 preprocessor.
553 XXX This is a bit of a hack, it's intended to help work around
554 problems in GLD which doesn't understand that armv5t code is
555 interworking clean. */
556 extern int arm_cpp_interwork;
558 /* Nonzero if chip supports Thumb 2. */
559 extern int arm_arch_thumb2;
561 /* Nonzero if chip supports integer division instruction in ARM mode. */
562 extern int arm_arch_arm_hwdiv;
564 /* Nonzero if chip supports integer division instruction in Thumb mode. */
565 extern int arm_arch_thumb_hwdiv;
567 /* Nonzero if we should use Neon to handle 64-bits operations rather
568 than core registers. */
569 extern int prefer_neon_for_64bits;
571 /* Nonzero if we shouldn't use literal pools. */
572 #ifndef USED_FOR_TARGET
573 extern bool arm_disable_literal_pool;
574 #endif
576 /* Nonzero if chip supports the ARMv8 CRC instructions. */
577 extern int arm_arch_crc;
579 #ifndef TARGET_DEFAULT
580 #define TARGET_DEFAULT (MASK_APCS_FRAME)
581 #endif
583 /* Nonzero if PIC code requires explicit qualifiers to generate
584 PLT and GOT relocs rather than the assembler doing so implicitly.
585 Subtargets can override these if required. */
586 #ifndef NEED_GOT_RELOC
587 #define NEED_GOT_RELOC 0
588 #endif
589 #ifndef NEED_PLT_RELOC
590 #define NEED_PLT_RELOC 0
591 #endif
593 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
594 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
595 #endif
597 /* Nonzero if we need to refer to the GOT with a PC-relative
598 offset. In other words, generate
600 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
602 rather than
604 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
606 The default is true, which matches NetBSD. Subtargets can
607 override this if required. */
608 #ifndef GOT_PCREL
609 #define GOT_PCREL 1
610 #endif
612 /* Target machine storage Layout. */
615 /* Define this macro if it is advisable to hold scalars in registers
616 in a wider mode than that declared by the program. In such cases,
617 the value is constrained to be within the bounds of the declared
618 type, but kept valid in the wider mode. The signedness of the
619 extension may differ from that of the type. */
621 /* It is far faster to zero extend chars than to sign extend them */
623 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
624 if (GET_MODE_CLASS (MODE) == MODE_INT \
625 && GET_MODE_SIZE (MODE) < 4) \
627 if (MODE == QImode) \
628 UNSIGNEDP = 1; \
629 else if (MODE == HImode) \
630 UNSIGNEDP = 1; \
631 (MODE) = SImode; \
634 /* Define this if most significant bit is lowest numbered
635 in instructions that operate on numbered bit-fields. */
636 #define BITS_BIG_ENDIAN 0
638 /* Define this if most significant byte of a word is the lowest numbered.
639 Most ARM processors are run in little endian mode, so that is the default.
640 If you want to have it run-time selectable, change the definition in a
641 cover file to be TARGET_BIG_ENDIAN. */
642 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
644 /* Define this if most significant word of a multiword number is the lowest
645 numbered.
646 This is always false, even when in big-endian mode. */
647 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN && ! TARGET_LITTLE_WORDS)
649 #define UNITS_PER_WORD 4
651 /* True if natural alignment is used for doubleword types. */
652 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
654 #define DOUBLEWORD_ALIGNMENT 64
656 #define PARM_BOUNDARY 32
658 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
660 #define PREFERRED_STACK_BOUNDARY \
661 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
663 #define FUNCTION_BOUNDARY ((TARGET_THUMB && optimize_size) ? 16 : 32)
665 /* The lowest bit is used to indicate Thumb-mode functions, so the
666 vbit must go into the delta field of pointers to member
667 functions. */
668 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
670 #define EMPTY_FIELD_BOUNDARY 32
672 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
674 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
676 /* XXX Blah -- this macro is used directly by libobjc. Since it
677 supports no vector modes, cut out the complexity and fall back
678 on BIGGEST_FIELD_ALIGNMENT. */
679 #ifdef IN_TARGET_LIBS
680 #define BIGGEST_FIELD_ALIGNMENT 64
681 #endif
683 /* Make strings word-aligned so strcpy from constants will be faster. */
684 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
686 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
687 ((TREE_CODE (EXP) == STRING_CST \
688 && !optimize_size \
689 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
690 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
692 /* Align definitions of arrays, unions and structures so that
693 initializations and copies can be made more efficient. This is not
694 ABI-changing, so it only affects places where we can see the
695 definition. Increasing the alignment tends to introduce padding,
696 so don't do this when optimizing for size/conserving stack space. */
697 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
698 (((COND) && ((ALIGN) < BITS_PER_WORD) \
699 && (TREE_CODE (EXP) == ARRAY_TYPE \
700 || TREE_CODE (EXP) == UNION_TYPE \
701 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
703 /* Align global data. */
704 #define DATA_ALIGNMENT(EXP, ALIGN) \
705 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
707 /* Similarly, make sure that objects on the stack are sensibly aligned. */
708 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
709 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
711 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
712 value set in previous versions of this toolchain was 8, which produces more
713 compact structures. The command line option -mstructure_size_boundary=<n>
714 can be used to change this value. For compatibility with the ARM SDK
715 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
716 0020D) page 2-20 says "Structures are aligned on word boundaries".
717 The AAPCS specifies a value of 8. */
718 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
720 /* This is the value used to initialize arm_structure_size_boundary. If a
721 particular arm target wants to change the default value it should change
722 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
723 for an example of this. */
724 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
725 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
726 #endif
728 /* Nonzero if move instructions will actually fail to work
729 when given unaligned data. */
730 #define STRICT_ALIGNMENT 1
732 /* wchar_t is unsigned under the AAPCS. */
733 #ifndef WCHAR_TYPE
734 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
736 #define WCHAR_TYPE_SIZE BITS_PER_WORD
737 #endif
739 /* Sized for fixed-point types. */
741 #define SHORT_FRACT_TYPE_SIZE 8
742 #define FRACT_TYPE_SIZE 16
743 #define LONG_FRACT_TYPE_SIZE 32
744 #define LONG_LONG_FRACT_TYPE_SIZE 64
746 #define SHORT_ACCUM_TYPE_SIZE 16
747 #define ACCUM_TYPE_SIZE 32
748 #define LONG_ACCUM_TYPE_SIZE 64
749 #define LONG_LONG_ACCUM_TYPE_SIZE 64
751 #define MAX_FIXED_MODE_SIZE 64
753 #ifndef SIZE_TYPE
754 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
755 #endif
757 #ifndef PTRDIFF_TYPE
758 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
759 #endif
761 /* AAPCS requires that structure alignment is affected by bitfields. */
762 #ifndef PCC_BITFIELD_TYPE_MATTERS
763 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
764 #endif
767 /* Standard register usage. */
769 /* Register allocation in ARM Procedure Call Standard
770 (S - saved over call).
772 r0 * argument word/integer result
773 r1-r3 argument word
775 r4-r8 S register variable
776 r9 S (rfp) register variable (real frame pointer)
778 r10 F S (sl) stack limit (used by -mapcs-stack-check)
779 r11 F S (fp) argument pointer
780 r12 (ip) temp workspace
781 r13 F S (sp) lower end of current stack frame
782 r14 (lr) link address/workspace
783 r15 F (pc) program counter
785 cc This is NOT a real register, but is used internally
786 to represent things that use or set the condition
787 codes.
788 sfp This isn't either. It is used during rtl generation
789 since the offset between the frame pointer and the
790 auto's isn't known until after register allocation.
791 afp Nor this, we only need this because of non-local
792 goto. Without it fp appears to be used and the
793 elimination code won't get rid of sfp. It tracks
794 fp exactly at all times.
796 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
798 /* s0-s15 VFP scratch (aka d0-d7).
799 s16-s31 S VFP variable (aka d8-d15).
800 vfpcc Not a real register. Represents the VFP condition
801 code flags. */
803 /* The stack backtrace structure is as follows:
804 fp points to here: | save code pointer | [fp]
805 | return link value | [fp, #-4]
806 | return sp value | [fp, #-8]
807 | return fp value | [fp, #-12]
808 [| saved r10 value |]
809 [| saved r9 value |]
810 [| saved r8 value |]
811 [| saved r7 value |]
812 [| saved r6 value |]
813 [| saved r5 value |]
814 [| saved r4 value |]
815 [| saved r3 value |]
816 [| saved r2 value |]
817 [| saved r1 value |]
818 [| saved r0 value |]
819 r0-r3 are not normally saved in a C function. */
821 /* 1 for registers that have pervasive standard uses
822 and are not available for the register allocator. */
823 #define FIXED_REGISTERS \
825 /* Core regs. */ \
826 0,0,0,0,0,0,0,0, \
827 0,0,0,0,0,1,0,1, \
828 /* VFP regs. */ \
829 1,1,1,1,1,1,1,1, \
830 1,1,1,1,1,1,1,1, \
831 1,1,1,1,1,1,1,1, \
832 1,1,1,1,1,1,1,1, \
833 1,1,1,1,1,1,1,1, \
834 1,1,1,1,1,1,1,1, \
835 1,1,1,1,1,1,1,1, \
836 1,1,1,1,1,1,1,1, \
837 /* IWMMXT regs. */ \
838 1,1,1,1,1,1,1,1, \
839 1,1,1,1,1,1,1,1, \
840 1,1,1,1, \
841 /* Specials. */ \
842 1,1,1,1 \
845 /* 1 for registers not available across function calls.
846 These must include the FIXED_REGISTERS and also any
847 registers that can be used without being saved.
848 The latter must include the registers where values are returned
849 and the register where structure-value addresses are passed.
850 Aside from that, you can include as many other registers as you like.
851 The CC is not preserved over function calls on the ARM 6, so it is
852 easier to assume this for all. SFP is preserved, since FP is. */
853 #define CALL_USED_REGISTERS \
855 /* Core regs. */ \
856 1,1,1,1,0,0,0,0, \
857 0,0,0,0,1,1,1,1, \
858 /* VFP Regs. */ \
859 1,1,1,1,1,1,1,1, \
860 1,1,1,1,1,1,1,1, \
861 1,1,1,1,1,1,1,1, \
862 1,1,1,1,1,1,1,1, \
863 1,1,1,1,1,1,1,1, \
864 1,1,1,1,1,1,1,1, \
865 1,1,1,1,1,1,1,1, \
866 1,1,1,1,1,1,1,1, \
867 /* IWMMXT regs. */ \
868 1,1,1,1,1,1,1,1, \
869 1,1,1,1,1,1,1,1, \
870 1,1,1,1, \
871 /* Specials. */ \
872 1,1,1,1 \
875 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
876 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
877 #endif
879 /* These are a couple of extensions to the formats accepted
880 by asm_fprintf:
881 %@ prints out ASM_COMMENT_START
882 %r prints out REGISTER_PREFIX reg_names[arg] */
883 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
884 case '@': \
885 fputs (ASM_COMMENT_START, FILE); \
886 break; \
888 case 'r': \
889 fputs (REGISTER_PREFIX, FILE); \
890 fputs (reg_names [va_arg (ARGS, int)], FILE); \
891 break;
893 /* Round X up to the nearest word. */
894 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
896 /* Convert fron bytes to ints. */
897 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
899 /* The number of (integer) registers required to hold a quantity of type MODE.
900 Also used for VFP registers. */
901 #define ARM_NUM_REGS(MODE) \
902 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
904 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
905 #define ARM_NUM_REGS2(MODE, TYPE) \
906 ARM_NUM_INTS ((MODE) == BLKmode ? \
907 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
909 /* The number of (integer) argument register available. */
910 #define NUM_ARG_REGS 4
912 /* And similarly for the VFP. */
913 #define NUM_VFP_ARG_REGS 16
915 /* Return the register number of the N'th (integer) argument. */
916 #define ARG_REGISTER(N) (N - 1)
918 /* Specify the registers used for certain standard purposes.
919 The values of these macros are register numbers. */
921 /* The number of the last argument register. */
922 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
924 /* The numbers of the Thumb register ranges. */
925 #define FIRST_LO_REGNUM 0
926 #define LAST_LO_REGNUM 7
927 #define FIRST_HI_REGNUM 8
928 #define LAST_HI_REGNUM 11
930 /* Overridden by config/arm/bpabi.h. */
931 #ifndef ARM_UNWIND_INFO
932 #define ARM_UNWIND_INFO 0
933 #endif
935 /* Use r0 and r1 to pass exception handling information. */
936 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
938 /* The register that holds the return address in exception handlers. */
939 #define ARM_EH_STACKADJ_REGNUM 2
940 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
942 #ifndef ARM_TARGET2_DWARF_FORMAT
943 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
944 #endif
946 /* ttype entries (the only interesting data references used)
947 use TARGET2 relocations. */
948 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
949 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
950 : DW_EH_PE_absptr)
952 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
953 as an invisible last argument (possible since varargs don't exist in
954 Pascal), so the following is not true. */
955 #define STATIC_CHAIN_REGNUM 12
957 /* Define this to be where the real frame pointer is if it is not possible to
958 work out the offset between the frame pointer and the automatic variables
959 until after register allocation has taken place. FRAME_POINTER_REGNUM
960 should point to a special register that we will make sure is eliminated.
962 For the Thumb we have another problem. The TPCS defines the frame pointer
963 as r11, and GCC believes that it is always possible to use the frame pointer
964 as base register for addressing purposes. (See comments in
965 find_reloads_address()). But - the Thumb does not allow high registers,
966 including r11, to be used as base address registers. Hence our problem.
968 The solution used here, and in the old thumb port is to use r7 instead of
969 r11 as the hard frame pointer and to have special code to generate
970 backtrace structures on the stack (if required to do so via a command line
971 option) using r11. This is the only 'user visible' use of r11 as a frame
972 pointer. */
973 #define ARM_HARD_FRAME_POINTER_REGNUM 11
974 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
976 #define HARD_FRAME_POINTER_REGNUM \
977 (TARGET_ARM \
978 ? ARM_HARD_FRAME_POINTER_REGNUM \
979 : THUMB_HARD_FRAME_POINTER_REGNUM)
981 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
982 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
984 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
986 /* Register to use for pushing function arguments. */
987 #define STACK_POINTER_REGNUM SP_REGNUM
989 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
990 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
992 /* Need to sync with WCGR in iwmmxt.md. */
993 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
994 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
996 #define IS_IWMMXT_REGNUM(REGNUM) \
997 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
998 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
999 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
1001 /* Base register for access to local variables of the function. */
1002 #define FRAME_POINTER_REGNUM 102
1004 /* Base register for access to arguments of the function. */
1005 #define ARG_POINTER_REGNUM 103
1007 #define FIRST_VFP_REGNUM 16
1008 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
1009 #define LAST_VFP_REGNUM \
1010 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
1012 #define IS_VFP_REGNUM(REGNUM) \
1013 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
1015 /* VFP registers are split into two types: those defined by VFP versions < 3
1016 have D registers overlaid on consecutive pairs of S registers. VFP version 3
1017 defines 16 new D registers (d16-d31) which, for simplicity and correctness
1018 in various parts of the backend, we implement as "fake" single-precision
1019 registers (which would be S32-S63, but cannot be used in that way). The
1020 following macros define these ranges of registers. */
1021 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
1022 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
1023 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
1025 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
1026 ((REGNUM) <= LAST_LO_VFP_REGNUM)
1028 /* DFmode values are only valid in even register pairs. */
1029 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
1030 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
1032 /* Neon Quad values must start at a multiple of four registers. */
1033 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
1034 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
1036 /* Neon structures of vectors must be in even register pairs and there
1037 must be enough registers available. Because of various patterns
1038 requiring quad registers, we require them to start at a multiple of
1039 four. */
1040 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
1041 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
1042 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
1044 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
1045 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
1046 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
1047 #define FIRST_PSEUDO_REGISTER 104
1049 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
1051 /* Value should be nonzero if functions must have frame pointers.
1052 Zero means the frame pointer need not be set up (and parms may be accessed
1053 via the stack pointer) in functions that seem suitable.
1054 If we have to have a frame pointer we might as well make use of it.
1055 APCS says that the frame pointer does not need to be pushed in leaf
1056 functions, or simple tail call functions. */
1058 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
1059 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
1060 #endif
1062 /* Return number of consecutive hard regs needed starting at reg REGNO
1063 to hold something of mode MODE.
1064 This is ordinarily the length in words of a value of mode MODE
1065 but can be less for certain modes in special long registers.
1067 On the ARM core regs are UNITS_PER_WORD bits wide. */
1068 #define HARD_REGNO_NREGS(REGNO, MODE) \
1069 ((TARGET_32BIT \
1070 && REGNO > PC_REGNUM \
1071 && REGNO != FRAME_POINTER_REGNUM \
1072 && REGNO != ARG_POINTER_REGNUM) \
1073 && !IS_VFP_REGNUM (REGNO) \
1074 ? 1 : ARM_NUM_REGS (MODE))
1076 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
1077 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1078 arm_hard_regno_mode_ok ((REGNO), (MODE))
1080 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
1082 #define VALID_IWMMXT_REG_MODE(MODE) \
1083 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1085 /* Modes valid for Neon D registers. */
1086 #define VALID_NEON_DREG_MODE(MODE) \
1087 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1088 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1090 /* Modes valid for Neon Q registers. */
1091 #define VALID_NEON_QREG_MODE(MODE) \
1092 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1093 || (MODE) == V4SFmode || (MODE) == V2DImode)
1095 /* Structure modes valid for Neon registers. */
1096 #define VALID_NEON_STRUCT_MODE(MODE) \
1097 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1098 || (MODE) == CImode || (MODE) == XImode)
1100 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1101 extern int arm_regs_in_sequence[];
1103 /* The order in which register should be allocated. It is good to use ip
1104 since no saving is required (though calls clobber it) and it never contains
1105 function parameters. It is quite good to use lr since other calls may
1106 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1107 least likely to contain a function parameter; in addition results are
1108 returned in r0.
1109 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1110 then D8-D15. The reason for doing this is to attempt to reduce register
1111 pressure when both single- and double-precision registers are used in a
1112 function. */
1114 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1115 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1116 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1118 #define REG_ALLOC_ORDER \
1120 /* General registers. */ \
1121 3, 2, 1, 0, 12, 14, 4, 5, \
1122 6, 7, 8, 9, 10, 11, \
1123 /* High VFP registers. */ \
1124 VREG(32), VREG(33), VREG(34), VREG(35), \
1125 VREG(36), VREG(37), VREG(38), VREG(39), \
1126 VREG(40), VREG(41), VREG(42), VREG(43), \
1127 VREG(44), VREG(45), VREG(46), VREG(47), \
1128 VREG(48), VREG(49), VREG(50), VREG(51), \
1129 VREG(52), VREG(53), VREG(54), VREG(55), \
1130 VREG(56), VREG(57), VREG(58), VREG(59), \
1131 VREG(60), VREG(61), VREG(62), VREG(63), \
1132 /* VFP argument registers. */ \
1133 VREG(15), VREG(14), VREG(13), VREG(12), \
1134 VREG(11), VREG(10), VREG(9), VREG(8), \
1135 VREG(7), VREG(6), VREG(5), VREG(4), \
1136 VREG(3), VREG(2), VREG(1), VREG(0), \
1137 /* VFP call-saved registers. */ \
1138 VREG(16), VREG(17), VREG(18), VREG(19), \
1139 VREG(20), VREG(21), VREG(22), VREG(23), \
1140 VREG(24), VREG(25), VREG(26), VREG(27), \
1141 VREG(28), VREG(29), VREG(30), VREG(31), \
1142 /* IWMMX registers. */ \
1143 WREG(0), WREG(1), WREG(2), WREG(3), \
1144 WREG(4), WREG(5), WREG(6), WREG(7), \
1145 WREG(8), WREG(9), WREG(10), WREG(11), \
1146 WREG(12), WREG(13), WREG(14), WREG(15), \
1147 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1148 /* Registers not for general use. */ \
1149 CC_REGNUM, VFPCC_REGNUM, \
1150 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1151 SP_REGNUM, PC_REGNUM \
1154 /* Use different register alloc ordering for Thumb. */
1155 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1157 /* Tell IRA to use the order we define rather than messing it up with its
1158 own cost calculations. */
1159 #define HONOR_REG_ALLOC_ORDER 1
1161 /* Interrupt functions can only use registers that have already been
1162 saved by the prologue, even if they would normally be
1163 call-clobbered. */
1164 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1165 (! IS_INTERRUPT (cfun->machine->func_type) || \
1166 df_regs_ever_live_p (DST))
1168 /* Register and constant classes. */
1170 /* Register classes. */
1171 enum reg_class
1173 NO_REGS,
1174 LO_REGS,
1175 STACK_REG,
1176 BASE_REGS,
1177 HI_REGS,
1178 CALLER_SAVE_REGS,
1179 GENERAL_REGS,
1180 CORE_REGS,
1181 VFP_D0_D7_REGS,
1182 VFP_LO_REGS,
1183 VFP_HI_REGS,
1184 VFP_REGS,
1185 IWMMXT_REGS,
1186 IWMMXT_GR_REGS,
1187 CC_REG,
1188 VFPCC_REG,
1189 SFP_REG,
1190 AFP_REG,
1191 ALL_REGS,
1192 LIM_REG_CLASSES
1195 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1197 /* Give names of register classes as strings for dump file. */
1198 #define REG_CLASS_NAMES \
1200 "NO_REGS", \
1201 "LO_REGS", \
1202 "STACK_REG", \
1203 "BASE_REGS", \
1204 "HI_REGS", \
1205 "CALLER_SAVE_REGS", \
1206 "GENERAL_REGS", \
1207 "CORE_REGS", \
1208 "VFP_D0_D7_REGS", \
1209 "VFP_LO_REGS", \
1210 "VFP_HI_REGS", \
1211 "VFP_REGS", \
1212 "IWMMXT_REGS", \
1213 "IWMMXT_GR_REGS", \
1214 "CC_REG", \
1215 "VFPCC_REG", \
1216 "SFP_REG", \
1217 "AFP_REG", \
1218 "ALL_REGS" \
1221 /* Define which registers fit in which classes.
1222 This is an initializer for a vector of HARD_REG_SET
1223 of length N_REG_CLASSES. */
1224 #define REG_CLASS_CONTENTS \
1226 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1227 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1228 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1229 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1230 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1231 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1232 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1233 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1234 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1235 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1236 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1237 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1238 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1239 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1240 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1241 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1242 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1243 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1244 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1247 /* Any of the VFP register classes. */
1248 #define IS_VFP_CLASS(X) \
1249 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1250 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1252 /* The same information, inverted:
1253 Return the class number of the smallest class containing
1254 reg number REGNO. This could be a conditional expression
1255 or could index an array. */
1256 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1258 /* In VFPv1, VFP registers could only be accessed in the mode they
1259 were set, so subregs would be invalid there. However, we don't
1260 support VFPv1 at the moment, and the restriction was lifted in
1261 VFPv2.
1262 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1263 VFP registers in little-endian order. We can't describe that accurately to
1264 GCC, so avoid taking subregs of such values.
1265 The only exception is going from a 128-bit to a 64-bit type. In that case
1266 the data layout happens to be consistent for big-endian, so we explicitly allow
1267 that case. */
1268 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1269 (TARGET_VFP && TARGET_BIG_END \
1270 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1271 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1272 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1273 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1275 /* The class value for index registers, and the one for base regs. */
1276 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1277 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1279 /* For the Thumb the high registers cannot be used as base registers
1280 when addressing quantities in QI or HI mode; if we don't know the
1281 mode, then we must be conservative. */
1282 #define MODE_BASE_REG_CLASS(MODE) \
1283 (arm_lra_flag \
1284 ? (TARGET_32BIT ? CORE_REGS \
1285 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1286 : LO_REGS) \
1287 : ((TARGET_ARM || (TARGET_THUMB2 && !optimize_size)) ? CORE_REGS \
1288 : ((MODE) == SImode) ? BASE_REGS \
1289 : LO_REGS))
1291 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1292 instead of BASE_REGS. */
1293 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1295 /* When this hook returns true for MODE, the compiler allows
1296 registers explicitly used in the rtl to be used as spill registers
1297 but prevents the compiler from extending the lifetime of these
1298 registers. */
1299 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1300 arm_small_register_classes_for_mode_p
1302 /* Must leave BASE_REGS reloads alone */
1303 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1304 (lra_in_progress ? NO_REGS \
1305 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1306 ? ((true_regnum (X) == -1 ? LO_REGS \
1307 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1308 : NO_REGS)) \
1309 : NO_REGS))
1311 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1312 (lra_in_progress ? NO_REGS \
1313 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1314 ? ((true_regnum (X) == -1 ? LO_REGS \
1315 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1316 : NO_REGS)) \
1317 : NO_REGS)
1319 /* Return the register class of a scratch register needed to copy IN into
1320 or out of a register in CLASS in MODE. If it can be done directly,
1321 NO_REGS is returned. */
1322 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1323 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1324 ((TARGET_VFP && TARGET_HARD_FLOAT \
1325 && IS_VFP_CLASS (CLASS)) \
1326 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1327 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1328 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1329 : TARGET_32BIT \
1330 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1331 ? GENERAL_REGS : NO_REGS) \
1332 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1334 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1335 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1336 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1337 ((TARGET_VFP && TARGET_HARD_FLOAT \
1338 && IS_VFP_CLASS (CLASS)) \
1339 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1340 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1341 coproc_secondary_reload_class (MODE, X, TRUE) : \
1342 (TARGET_32BIT ? \
1343 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1344 && CONSTANT_P (X)) \
1345 ? GENERAL_REGS : \
1346 (((MODE) == HImode && ! arm_arch4 \
1347 && (MEM_P (X) \
1348 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1349 && true_regnum (X) == -1))) \
1350 ? GENERAL_REGS : NO_REGS) \
1351 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1353 /* Try a machine-dependent way of reloading an illegitimate address
1354 operand. If we find one, push the reload and jump to WIN. This
1355 macro is used in only one place: `find_reloads_address' in reload.c.
1357 For the ARM, we wish to handle large displacements off a base
1358 register by splitting the addend across a MOV and the mem insn.
1359 This can cut the number of reloads needed. */
1360 #define ARM_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND, WIN) \
1361 do \
1363 if (arm_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND)) \
1364 goto WIN; \
1366 while (0)
1368 /* XXX If an HImode FP+large_offset address is converted to an HImode
1369 SP+large_offset address, then reload won't know how to fix it. It sees
1370 only that SP isn't valid for HImode, and so reloads the SP into an index
1371 register, but the resulting address is still invalid because the offset
1372 is too big. We fix it here instead by reloading the entire address. */
1373 /* We could probably achieve better results by defining PROMOTE_MODE to help
1374 cope with the variances between the Thumb's signed and unsigned byte and
1375 halfword load instructions. */
1376 /* ??? This should be safe for thumb2, but we may be able to do better. */
1377 #define THUMB_LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_L, WIN) \
1378 do { \
1379 rtx new_x = thumb_legitimize_reload_address (&X, MODE, OPNUM, TYPE, IND_L); \
1380 if (new_x) \
1382 X = new_x; \
1383 goto WIN; \
1385 } while (0)
1387 #define LEGITIMIZE_RELOAD_ADDRESS(X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) \
1388 if (TARGET_ARM) \
1389 ARM_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN); \
1390 else \
1391 THUMB_LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)
1393 /* Return the maximum number of consecutive registers
1394 needed to represent mode MODE in a register of class CLASS.
1395 ARM regs are UNITS_PER_WORD bits.
1396 FIXME: Is this true for iWMMX? */
1397 #define CLASS_MAX_NREGS(CLASS, MODE) \
1398 (ARM_NUM_REGS (MODE))
1400 /* If defined, gives a class of registers that cannot be used as the
1401 operand of a SUBREG that changes the mode of the object illegally. */
1403 /* Stack layout; function entry, exit and calling. */
1405 /* Define this if pushing a word on the stack
1406 makes the stack pointer a smaller address. */
1407 #define STACK_GROWS_DOWNWARD 1
1409 /* Define this to nonzero if the nominal address of the stack frame
1410 is at the high-address end of the local variables;
1411 that is, each additional local variable allocated
1412 goes at a more negative offset in the frame. */
1413 #define FRAME_GROWS_DOWNWARD 1
1415 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1416 When present, it is one word in size, and sits at the top of the frame,
1417 between the soft frame pointer and either r7 or r11.
1419 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1420 and only then if some outgoing arguments are passed on the stack. It would
1421 be tempting to also check whether the stack arguments are passed by indirect
1422 calls, but there seems to be no reason in principle why a post-reload pass
1423 couldn't convert a direct call into an indirect one. */
1424 #define CALLER_INTERWORKING_SLOT_SIZE \
1425 (TARGET_CALLER_INTERWORKING \
1426 && crtl->outgoing_args_size != 0 \
1427 ? UNITS_PER_WORD : 0)
1429 /* Offset within stack frame to start allocating local variables at.
1430 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1431 first local allocated. Otherwise, it is the offset to the BEGINNING
1432 of the first local allocated. */
1433 #define STARTING_FRAME_OFFSET 0
1435 /* If we generate an insn to push BYTES bytes,
1436 this says how many the stack pointer really advances by. */
1437 /* The push insns do not do this rounding implicitly.
1438 So don't define this. */
1439 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1441 /* Define this if the maximum size of all the outgoing args is to be
1442 accumulated and pushed during the prologue. The amount can be
1443 found in the variable crtl->outgoing_args_size. */
1444 #define ACCUMULATE_OUTGOING_ARGS 1
1446 /* Offset of first parameter from the argument pointer register value. */
1447 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1449 /* Amount of memory needed for an untyped call to save all possible return
1450 registers. */
1451 #define APPLY_RESULT_SIZE arm_apply_result_size()
1453 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1454 values must be in memory. On the ARM, they need only do so if larger
1455 than a word, or if they contain elements offset from zero in the struct. */
1456 #define DEFAULT_PCC_STRUCT_RETURN 0
1458 /* These bits describe the different types of function supported
1459 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1460 normal function and an interworked function, for example. Knowing the
1461 type of a function is important for determining its prologue and
1462 epilogue sequences.
1463 Note value 7 is currently unassigned. Also note that the interrupt
1464 function types all have bit 2 set, so that they can be tested for easily.
1465 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1466 machine_function structure is initialized (to zero) func_type will
1467 default to unknown. This will force the first use of arm_current_func_type
1468 to call arm_compute_func_type. */
1469 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1470 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1471 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1472 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1473 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1474 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1476 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1478 /* In addition functions can have several type modifiers,
1479 outlined by these bit masks: */
1480 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1481 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1482 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1483 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1484 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1486 /* Some macros to test these flags. */
1487 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1488 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1489 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1490 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1491 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1492 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1495 /* Structure used to hold the function stack frame layout. Offsets are
1496 relative to the stack pointer on function entry. Positive offsets are
1497 in the direction of stack growth.
1498 Only soft_frame is used in thumb mode. */
1500 typedef struct GTY(()) arm_stack_offsets
1502 int saved_args; /* ARG_POINTER_REGNUM. */
1503 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1504 int saved_regs;
1505 int soft_frame; /* FRAME_POINTER_REGNUM. */
1506 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1507 int outgoing_args; /* STACK_POINTER_REGNUM. */
1508 unsigned int saved_regs_mask;
1510 arm_stack_offsets;
1512 #ifndef GENERATOR_FILE
1513 /* A C structure for machine-specific, per-function data.
1514 This is added to the cfun structure. */
1515 typedef struct GTY(()) machine_function
1517 /* Additional stack adjustment in __builtin_eh_throw. */
1518 rtx eh_epilogue_sp_ofs;
1519 /* Records if LR has to be saved for far jumps. */
1520 int far_jump_used;
1521 /* Records if ARG_POINTER was ever live. */
1522 int arg_pointer_live;
1523 /* Records if the save of LR has been eliminated. */
1524 int lr_save_eliminated;
1525 /* The size of the stack frame. Only valid after reload. */
1526 arm_stack_offsets stack_offsets;
1527 /* Records the type of the current function. */
1528 unsigned long func_type;
1529 /* Record if the function has a variable argument list. */
1530 int uses_anonymous_args;
1531 /* Records if sibcalls are blocked because an argument
1532 register is needed to preserve stack alignment. */
1533 int sibcall_blocked;
1534 /* The PIC register for this function. This might be a pseudo. */
1535 rtx pic_reg;
1536 /* Labels for per-function Thumb call-via stubs. One per potential calling
1537 register. We can never call via LR or PC. We can call via SP if a
1538 trampoline happens to be on the top of the stack. */
1539 rtx call_via[14];
1540 /* Set to 1 when a return insn is output, this means that the epilogue
1541 is not needed. */
1542 int return_used_this_function;
1543 /* When outputting Thumb-1 code, record the last insn that provides
1544 information about condition codes, and the comparison operands. */
1545 rtx thumb1_cc_insn;
1546 rtx thumb1_cc_op0;
1547 rtx thumb1_cc_op1;
1548 /* Also record the CC mode that is supported. */
1549 enum machine_mode thumb1_cc_mode;
1550 /* Set to 1 after arm_reorg has started. */
1551 int after_arm_reorg;
1553 machine_function;
1554 #endif
1556 /* As in the machine_function, a global set of call-via labels, for code
1557 that is in text_section. */
1558 extern GTY(()) rtx thumb_call_via_label[14];
1560 /* The number of potential ways of assigning to a co-processor. */
1561 #define ARM_NUM_COPROC_SLOTS 1
1563 /* Enumeration of procedure calling standard variants. We don't really
1564 support all of these yet. */
1565 enum arm_pcs
1567 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1568 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1569 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1570 /* This must be the last AAPCS variant. */
1571 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1572 ARM_PCS_ATPCS, /* ATPCS. */
1573 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1574 ARM_PCS_UNKNOWN
1577 /* Default procedure calling standard of current compilation unit. */
1578 extern enum arm_pcs arm_pcs_default;
1580 /* A C type for declaring a variable that is used as the first argument of
1581 `FUNCTION_ARG' and other related values. */
1582 typedef struct
1584 /* This is the number of registers of arguments scanned so far. */
1585 int nregs;
1586 /* This is the number of iWMMXt register arguments scanned so far. */
1587 int iwmmxt_nregs;
1588 int named_count;
1589 int nargs;
1590 /* Which procedure call variant to use for this call. */
1591 enum arm_pcs pcs_variant;
1593 /* AAPCS related state tracking. */
1594 int aapcs_arg_processed; /* No need to lay out this argument again. */
1595 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1596 this argument, or -1 if using core
1597 registers. */
1598 int aapcs_ncrn;
1599 int aapcs_next_ncrn;
1600 rtx aapcs_reg; /* Register assigned to this argument. */
1601 int aapcs_partial; /* How many bytes are passed in regs (if
1602 split between core regs and stack.
1603 Zero otherwise. */
1604 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1605 int can_split; /* Argument can be split between core regs
1606 and the stack. */
1607 /* Private data for tracking VFP register allocation */
1608 unsigned aapcs_vfp_regs_free;
1609 unsigned aapcs_vfp_reg_alloc;
1610 int aapcs_vfp_rcount;
1611 MACHMODE aapcs_vfp_rmode;
1612 } CUMULATIVE_ARGS;
1614 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1615 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1617 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1618 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1620 /* For AAPCS, padding should never be below the argument. For other ABIs,
1621 * mimic the default. */
1622 #define PAD_VARARGS_DOWN \
1623 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1625 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1626 for a call to a function whose data type is FNTYPE.
1627 For a library call, FNTYPE is 0.
1628 On the ARM, the offset starts at 0. */
1629 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1630 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1632 /* 1 if N is a possible register number for function argument passing.
1633 On the ARM, r0-r3 are used to pass args. */
1634 #define FUNCTION_ARG_REGNO_P(REGNO) \
1635 (IN_RANGE ((REGNO), 0, 3) \
1636 || (TARGET_AAPCS_BASED && TARGET_VFP && TARGET_HARD_FLOAT \
1637 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1638 || (TARGET_IWMMXT_ABI \
1639 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1642 /* If your target environment doesn't prefix user functions with an
1643 underscore, you may wish to re-define this to prevent any conflicts. */
1644 #ifndef ARM_MCOUNT_NAME
1645 #define ARM_MCOUNT_NAME "*mcount"
1646 #endif
1648 /* Call the function profiler with a given profile label. The Acorn
1649 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1650 On the ARM the full profile code will look like:
1651 .data
1653 .word 0
1654 .text
1655 mov ip, lr
1656 bl mcount
1657 .word LP1
1659 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1660 will output the .text section.
1662 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1663 ``prof'' doesn't seem to mind about this!
1665 Note - this version of the code is designed to work in both ARM and
1666 Thumb modes. */
1667 #ifndef ARM_FUNCTION_PROFILER
1668 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1670 char temp[20]; \
1671 rtx sym; \
1673 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1674 IP_REGNUM, LR_REGNUM); \
1675 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1676 fputc ('\n', STREAM); \
1677 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1678 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1679 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1681 #endif
1683 #ifdef THUMB_FUNCTION_PROFILER
1684 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1685 if (TARGET_ARM) \
1686 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1687 else \
1688 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1689 #else
1690 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1691 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1692 #endif
1694 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1695 the stack pointer does not matter. The value is tested only in
1696 functions that have frame pointers.
1697 No definition is equivalent to always zero.
1699 On the ARM, the function epilogue recovers the stack pointer from the
1700 frame. */
1701 #define EXIT_IGNORE_STACK 1
1703 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1705 /* Determine if the epilogue should be output as RTL.
1706 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1707 #define USE_RETURN_INSN(ISCOND) \
1708 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1710 /* Definitions for register eliminations.
1712 This is an array of structures. Each structure initializes one pair
1713 of eliminable registers. The "from" register number is given first,
1714 followed by "to". Eliminations of the same "from" register are listed
1715 in order of preference.
1717 We have two registers that can be eliminated on the ARM. First, the
1718 arg pointer register can often be eliminated in favor of the stack
1719 pointer register. Secondly, the pseudo frame pointer register can always
1720 be eliminated; it is replaced with either the stack or the real frame
1721 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1722 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1724 #define ELIMINABLE_REGS \
1725 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1726 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1727 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1728 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1729 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1730 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1731 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1733 /* Define the offset between two registers, one to be eliminated, and the
1734 other its replacement, at the start of a routine. */
1735 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1736 if (TARGET_ARM) \
1737 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1738 else \
1739 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1741 /* Special case handling of the location of arguments passed on the stack. */
1742 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1744 /* Initialize data used by insn expanders. This is called from insn_emit,
1745 once for every function before code is generated. */
1746 #define INIT_EXPANDERS arm_init_expanders ()
1748 /* Length in units of the trampoline for entering a nested function. */
1749 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1751 /* Alignment required for a trampoline in bits. */
1752 #define TRAMPOLINE_ALIGNMENT 32
1754 /* Addressing modes, and classification of registers for them. */
1755 #define HAVE_POST_INCREMENT 1
1756 #define HAVE_PRE_INCREMENT TARGET_32BIT
1757 #define HAVE_POST_DECREMENT TARGET_32BIT
1758 #define HAVE_PRE_DECREMENT TARGET_32BIT
1759 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1760 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1761 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1762 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1764 enum arm_auto_incmodes
1766 ARM_POST_INC,
1767 ARM_PRE_INC,
1768 ARM_POST_DEC,
1769 ARM_PRE_DEC
1772 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1773 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1774 #define USE_LOAD_POST_INCREMENT(mode) \
1775 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1776 #define USE_LOAD_PRE_INCREMENT(mode) \
1777 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1778 #define USE_LOAD_POST_DECREMENT(mode) \
1779 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1780 #define USE_LOAD_PRE_DECREMENT(mode) \
1781 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1783 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1784 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1785 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1786 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1788 /* Macros to check register numbers against specific register classes. */
1790 /* These assume that REGNO is a hard or pseudo reg number.
1791 They give nonzero only if REGNO is a hard reg of the suitable class
1792 or a pseudo reg currently allocated to a suitable hard reg.
1793 Since they use reg_renumber, they are safe only once reg_renumber
1794 has been allocated, which happens in reginfo.c during register
1795 allocation. */
1796 #define TEST_REGNO(R, TEST, VALUE) \
1797 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1799 /* Don't allow the pc to be used. */
1800 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1801 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1802 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1803 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1805 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1806 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1807 || (GET_MODE_SIZE (MODE) >= 4 \
1808 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1810 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1811 (TARGET_THUMB1 \
1812 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1813 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1815 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1816 For Thumb, we can not use SP + reg, so reject SP. */
1817 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1818 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1820 /* For ARM code, we don't care about the mode, but for Thumb, the index
1821 must be suitable for use in a QImode load. */
1822 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1823 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1824 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1826 /* Maximum number of registers that can appear in a valid memory address.
1827 Shifts in addresses can't be by a register. */
1828 #define MAX_REGS_PER_ADDRESS 2
1830 /* Recognize any constant value that is a valid address. */
1831 /* XXX We can address any constant, eventually... */
1832 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1833 #define CONSTANT_ADDRESS_P(X) \
1834 (GET_CODE (X) == SYMBOL_REF \
1835 && (CONSTANT_POOL_ADDRESS_P (X) \
1836 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1838 /* True if SYMBOL + OFFSET constants must refer to something within
1839 SYMBOL's section. */
1840 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1842 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1843 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1844 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1845 #endif
1847 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1848 #define SUBTARGET_NAME_ENCODING_LENGTHS
1849 #endif
1851 /* This is a C fragment for the inside of a switch statement.
1852 Each case label should return the number of characters to
1853 be stripped from the start of a function's name, if that
1854 name starts with the indicated character. */
1855 #define ARM_NAME_ENCODING_LENGTHS \
1856 case '*': return 1; \
1857 SUBTARGET_NAME_ENCODING_LENGTHS
1859 /* This is how to output a reference to a user-level label named NAME.
1860 `assemble_name' uses this. */
1861 #undef ASM_OUTPUT_LABELREF
1862 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1863 arm_asm_output_labelref (FILE, NAME)
1865 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1866 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1867 if (TARGET_THUMB2) \
1868 thumb2_asm_output_opcode (STREAM);
1870 /* The EABI specifies that constructors should go in .init_array.
1871 Other targets use .ctors for compatibility. */
1872 #ifndef ARM_EABI_CTORS_SECTION_OP
1873 #define ARM_EABI_CTORS_SECTION_OP \
1874 "\t.section\t.init_array,\"aw\",%init_array"
1875 #endif
1876 #ifndef ARM_EABI_DTORS_SECTION_OP
1877 #define ARM_EABI_DTORS_SECTION_OP \
1878 "\t.section\t.fini_array,\"aw\",%fini_array"
1879 #endif
1880 #define ARM_CTORS_SECTION_OP \
1881 "\t.section\t.ctors,\"aw\",%progbits"
1882 #define ARM_DTORS_SECTION_OP \
1883 "\t.section\t.dtors,\"aw\",%progbits"
1885 /* Define CTORS_SECTION_ASM_OP. */
1886 #undef CTORS_SECTION_ASM_OP
1887 #undef DTORS_SECTION_ASM_OP
1888 #ifndef IN_LIBGCC2
1889 # define CTORS_SECTION_ASM_OP \
1890 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1891 # define DTORS_SECTION_ASM_OP \
1892 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1893 #else /* !defined (IN_LIBGCC2) */
1894 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1895 so we cannot use the definition above. */
1896 # ifdef __ARM_EABI__
1897 /* The .ctors section is not part of the EABI, so we do not define
1898 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1899 from trying to use it. We do define it when doing normal
1900 compilation, as .init_array can be used instead of .ctors. */
1901 /* There is no need to emit begin or end markers when using
1902 init_array; the dynamic linker will compute the size of the
1903 array itself based on special symbols created by the static
1904 linker. However, we do need to arrange to set up
1905 exception-handling here. */
1906 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1907 # define CTOR_LIST_END /* empty */
1908 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1909 # define DTOR_LIST_END /* empty */
1910 # else /* !defined (__ARM_EABI__) */
1911 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1912 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1913 # endif /* !defined (__ARM_EABI__) */
1914 #endif /* !defined (IN_LIBCC2) */
1916 /* True if the operating system can merge entities with vague linkage
1917 (e.g., symbols in COMDAT group) during dynamic linking. */
1918 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1919 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1920 #endif
1922 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1924 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1925 and check its validity for a certain class.
1926 We have two alternate definitions for each of them.
1927 The usual definition accepts all pseudo regs; the other rejects
1928 them unless they have been allocated suitable hard regs.
1929 The symbol REG_OK_STRICT causes the latter definition to be used.
1930 Thumb-2 has the same restrictions as arm. */
1931 #ifndef REG_OK_STRICT
1933 #define ARM_REG_OK_FOR_BASE_P(X) \
1934 (REGNO (X) <= LAST_ARM_REGNUM \
1935 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1936 || REGNO (X) == FRAME_POINTER_REGNUM \
1937 || REGNO (X) == ARG_POINTER_REGNUM)
1939 #define ARM_REG_OK_FOR_INDEX_P(X) \
1940 ((REGNO (X) <= LAST_ARM_REGNUM \
1941 && REGNO (X) != STACK_POINTER_REGNUM) \
1942 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1943 || REGNO (X) == FRAME_POINTER_REGNUM \
1944 || REGNO (X) == ARG_POINTER_REGNUM)
1946 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1947 (REGNO (X) <= LAST_LO_REGNUM \
1948 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1949 || (GET_MODE_SIZE (MODE) >= 4 \
1950 && (REGNO (X) == STACK_POINTER_REGNUM \
1951 || (X) == hard_frame_pointer_rtx \
1952 || (X) == arg_pointer_rtx)))
1954 #define REG_STRICT_P 0
1956 #else /* REG_OK_STRICT */
1958 #define ARM_REG_OK_FOR_BASE_P(X) \
1959 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1961 #define ARM_REG_OK_FOR_INDEX_P(X) \
1962 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1964 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1965 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1967 #define REG_STRICT_P 1
1969 #endif /* REG_OK_STRICT */
1971 /* Now define some helpers in terms of the above. */
1973 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1974 (TARGET_THUMB1 \
1975 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1976 : ARM_REG_OK_FOR_BASE_P (X))
1978 /* For 16-bit Thumb, a valid index register is anything that can be used in
1979 a byte load instruction. */
1980 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1981 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1983 /* Nonzero if X is a hard reg that can be used as an index
1984 or if it is a pseudo reg. On the Thumb, the stack pointer
1985 is not suitable. */
1986 #define REG_OK_FOR_INDEX_P(X) \
1987 (TARGET_THUMB1 \
1988 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1989 : ARM_REG_OK_FOR_INDEX_P (X))
1991 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1992 For Thumb, we can not use SP + reg, so reject SP. */
1993 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1994 REG_OK_FOR_INDEX_P (X)
1996 #define ARM_BASE_REGISTER_RTX_P(X) \
1997 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1999 #define ARM_INDEX_REGISTER_RTX_P(X) \
2000 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
2002 /* Specify the machine mode that this machine uses
2003 for the index in the tablejump instruction. */
2004 #define CASE_VECTOR_MODE Pmode
2006 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
2007 || (TARGET_THUMB1 \
2008 && (optimize_size || flag_pic)))
2010 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
2011 (TARGET_THUMB1 \
2012 ? (min >= 0 && max < 512 \
2013 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
2014 : min >= -256 && max < 256 \
2015 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
2016 : min >= 0 && max < 8192 \
2017 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
2018 : min >= -4096 && max < 4096 \
2019 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
2020 : SImode) \
2021 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
2022 : (max >= 0x200) ? HImode \
2023 : QImode))
2025 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
2026 unsigned is probably best, but may break some code. */
2027 #ifndef DEFAULT_SIGNED_CHAR
2028 #define DEFAULT_SIGNED_CHAR 0
2029 #endif
2031 /* Max number of bytes we can move from memory to memory
2032 in one reasonably fast instruction. */
2033 #define MOVE_MAX 4
2035 #undef MOVE_RATIO
2036 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
2038 /* Define if operations between registers always perform the operation
2039 on the full register even if a narrower mode is specified. */
2040 #define WORD_REGISTER_OPERATIONS
2042 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2043 will either zero-extend or sign-extend. The value of this macro should
2044 be the code that says which one of the two operations is implicitly
2045 done, UNKNOWN if none. */
2046 #define LOAD_EXTEND_OP(MODE) \
2047 (TARGET_THUMB ? ZERO_EXTEND : \
2048 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
2049 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
2051 /* Nonzero if access to memory by bytes is slow and undesirable. */
2052 #define SLOW_BYTE_ACCESS 0
2054 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
2056 /* Immediate shift counts are truncated by the output routines (or was it
2057 the assembler?). Shift counts in a register are truncated by ARM. Note
2058 that the native compiler puts too large (> 32) immediate shift counts
2059 into a register and shifts by the register, letting the ARM decide what
2060 to do instead of doing that itself. */
2061 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
2062 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
2063 On the arm, Y in a register is used modulo 256 for the shift. Only for
2064 rotates is modulo 32 used. */
2065 /* #define SHIFT_COUNT_TRUNCATED 1 */
2067 /* All integers have the same format so truncation is easy. */
2068 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2070 /* Calling from registers is a massive pain. */
2071 #define NO_FUNCTION_CSE 1
2073 /* The machine modes of pointers and functions */
2074 #define Pmode SImode
2075 #define FUNCTION_MODE Pmode
2077 #define ARM_FRAME_RTX(X) \
2078 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
2079 || (X) == arg_pointer_rtx)
2081 /* Try to generate sequences that don't involve branches, we can then use
2082 conditional instructions. */
2083 #define BRANCH_COST(speed_p, predictable_p) \
2084 (current_tune->branch_cost (speed_p, predictable_p))
2086 /* False if short circuit operation is preferred. */
2087 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
2088 ((optimize_size) \
2089 ? (TARGET_THUMB ? false : true) \
2090 : (current_tune->logical_op_non_short_circuit[TARGET_ARM]))
2093 /* Position Independent Code. */
2094 /* We decide which register to use based on the compilation options and
2095 the assembler in use; this is more general than the APCS restriction of
2096 using sb (r9) all the time. */
2097 extern unsigned arm_pic_register;
2099 /* The register number of the register used to address a table of static
2100 data addresses in memory. */
2101 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
2103 /* We can't directly access anything that contains a symbol,
2104 nor can we indirect via the constant pool. One exception is
2105 UNSPEC_TLS, which is always PIC. */
2106 #define LEGITIMATE_PIC_OPERAND_P(X) \
2107 (!(symbol_mentioned_p (X) \
2108 || label_mentioned_p (X) \
2109 || (GET_CODE (X) == SYMBOL_REF \
2110 && CONSTANT_POOL_ADDRESS_P (X) \
2111 && (symbol_mentioned_p (get_pool_constant (X)) \
2112 || label_mentioned_p (get_pool_constant (X))))) \
2113 || tls_mentioned_p (X))
2115 /* We need to know when we are making a constant pool; this determines
2116 whether data needs to be in the GOT or can be referenced via a GOT
2117 offset. */
2118 extern int making_const_table;
2120 /* Handle pragmas for compatibility with Intel's compilers. */
2121 /* Also abuse this to register additional C specific EABI attributes. */
2122 #define REGISTER_TARGET_PRAGMAS() do { \
2123 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
2124 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
2125 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2126 arm_lang_object_attributes_init(); \
2127 } while (0)
2129 /* Condition code information. */
2130 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2131 return the mode to be used for the comparison. */
2133 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2135 #define REVERSIBLE_CC_MODE(MODE) 1
2137 #define REVERSE_CONDITION(CODE,MODE) \
2138 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2139 ? reverse_condition_maybe_unordered (code) \
2140 : reverse_condition (code))
2142 /* The arm5 clz instruction returns 32. */
2143 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2144 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
2146 #define CC_STATUS_INIT \
2147 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2149 #undef ASM_APP_OFF
2150 #define ASM_APP_OFF (TARGET_ARM ? "" : "\t.thumb\n")
2152 /* Output a push or a pop instruction (only used when profiling).
2153 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2154 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2155 that r7 isn't used by the function profiler, so we can use it as a
2156 scratch reg. WARNING: This isn't safe in the general case! It may be
2157 sensitive to future changes in final.c:profile_function. */
2158 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2159 do \
2161 if (TARGET_ARM) \
2162 asm_fprintf (STREAM,"\tstmfd\t%r!,{%r}\n", \
2163 STACK_POINTER_REGNUM, REGNO); \
2164 else if (TARGET_THUMB1 \
2165 && (REGNO) == STATIC_CHAIN_REGNUM) \
2167 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2168 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2169 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2171 else \
2172 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2173 } while (0)
2176 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2177 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2178 do \
2180 if (TARGET_ARM) \
2181 asm_fprintf (STREAM, "\tldmfd\t%r!,{%r}\n", \
2182 STACK_POINTER_REGNUM, REGNO); \
2183 else if (TARGET_THUMB1 \
2184 && (REGNO) == STATIC_CHAIN_REGNUM) \
2186 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2187 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2188 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2190 else \
2191 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2192 } while (0)
2194 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2195 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2197 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2198 default alignment from elfos.h. */
2199 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2200 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2202 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2203 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2204 ? 1 : 0)
2206 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2207 do \
2209 if (TARGET_THUMB) \
2211 if (is_called_in_ARM_mode (DECL) \
2212 || (TARGET_THUMB1 && !TARGET_THUMB1_ONLY \
2213 && cfun->is_thunk)) \
2214 fprintf (STREAM, "\t.code 32\n") ; \
2215 else if (TARGET_THUMB1) \
2216 fprintf (STREAM, "\t.code\t16\n\t.thumb_func\n") ; \
2217 else \
2218 fprintf (STREAM, "\t.thumb\n\t.thumb_func\n") ; \
2220 if (TARGET_POKE_FUNCTION_NAME) \
2221 arm_poke_function_name (STREAM, (const char *) NAME); \
2223 while (0)
2225 /* For aliases of functions we use .thumb_set instead. */
2226 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2227 do \
2229 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2230 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2232 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2234 fprintf (FILE, "\t.thumb_set "); \
2235 assemble_name (FILE, LABEL1); \
2236 fprintf (FILE, ","); \
2237 assemble_name (FILE, LABEL2); \
2238 fprintf (FILE, "\n"); \
2240 else \
2241 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2243 while (0)
2245 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2246 /* To support -falign-* switches we need to use .p2align so
2247 that alignment directives in code sections will be padded
2248 with no-op instructions, rather than zeroes. */
2249 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2250 if ((LOG) != 0) \
2252 if ((MAX_SKIP) == 0) \
2253 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2254 else \
2255 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2256 (int) (LOG), (int) (MAX_SKIP)); \
2258 #endif
2260 /* Add two bytes to the length of conditionally executed Thumb-2
2261 instructions for the IT instruction. */
2262 #define ADJUST_INSN_LENGTH(insn, length) \
2263 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2264 length += 2;
2266 /* Only perform branch elimination (by making instructions conditional) if
2267 we're optimizing. For Thumb-2 check if any IT instructions need
2268 outputting. */
2269 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2270 if (TARGET_ARM && optimize) \
2271 arm_final_prescan_insn (INSN); \
2272 else if (TARGET_THUMB2) \
2273 thumb2_final_prescan_insn (INSN); \
2274 else if (TARGET_THUMB1) \
2275 thumb1_final_prescan_insn (INSN)
2277 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2278 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2279 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2280 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2281 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2282 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2283 : 0))))
2285 /* A C expression whose value is RTL representing the value of the return
2286 address for the frame COUNT steps up from the current frame. */
2288 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2289 arm_return_addr (COUNT, FRAME)
2291 /* Mask of the bits in the PC that contain the real return address
2292 when running in 26-bit mode. */
2293 #define RETURN_ADDR_MASK26 (0x03fffffc)
2295 /* Pick up the return address upon entry to a procedure. Used for
2296 dwarf2 unwind information. This also enables the table driven
2297 mechanism. */
2298 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2299 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2301 /* Used to mask out junk bits from the return address, such as
2302 processor state, interrupt status, condition codes and the like. */
2303 #define MASK_RETURN_ADDR \
2304 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2305 in 26 bit mode, the condition codes must be masked out of the \
2306 return address. This does not apply to ARM6 and later processors \
2307 when running in 32 bit mode. */ \
2308 ((arm_arch4 || TARGET_THUMB) \
2309 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2310 : arm_gen_return_addr_mask ())
2313 /* Do not emit .note.GNU-stack by default. */
2314 #ifndef NEED_INDICATE_EXEC_STACK
2315 #define NEED_INDICATE_EXEC_STACK 0
2316 #endif
2318 #define TARGET_ARM_ARCH \
2319 (arm_base_arch) \
2321 #define TARGET_ARM_V6M (!arm_arch_notm && !arm_arch_thumb2)
2322 #define TARGET_ARM_V7M (!arm_arch_notm && arm_arch_thumb2)
2324 /* The highest Thumb instruction set version supported by the chip. */
2325 #define TARGET_ARM_ARCH_ISA_THUMB \
2326 (arm_arch_thumb2 ? 2 \
2327 : ((TARGET_ARM_ARCH >= 5 || arm_arch4t) ? 1 : 0))
2329 /* Expands to an upper-case char of the target's architectural
2330 profile. */
2331 #define TARGET_ARM_ARCH_PROFILE \
2332 (!arm_arch_notm \
2333 ? 'M' \
2334 : (arm_arch7 \
2335 ? (strlen (arm_arch_name) >=3 \
2336 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2337 : 0) \
2338 : 0))
2340 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2341 Bit 0 for bytes, up to bit 3 for double-words. */
2342 #define TARGET_ARM_FEATURE_LDREX \
2343 ((TARGET_HAVE_LDREX ? 4 : 0) \
2344 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2345 | (TARGET_HAVE_LDREXD ? 8 : 0))
2347 /* Set as a bit mask indicating the available widths of hardware floating
2348 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2349 32-bit support, bit 3 indicates 64-bit support. */
2350 #define TARGET_ARM_FP \
2351 (TARGET_VFP_SINGLE ? 4 \
2352 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0))
2355 /* Set as a bit mask indicating the available widths of floating point
2356 types for hardware NEON floating point. This is the same as
2357 TARGET_ARM_FP without the 64-bit bit set. */
2358 #ifdef TARGET_NEON
2359 #define TARGET_NEON_FP \
2360 (TARGET_ARM_FP & (0xff ^ 0x08))
2361 #endif
2363 /* The maximum number of parallel loads or stores we support in an ldm/stm
2364 instruction. */
2365 #define MAX_LDM_STM_OPS 4
2367 #define BIG_LITTLE_SPEC \
2368 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2370 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2371 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2372 { "rewrite_mcpu", arm_rewrite_mcpu },
2374 #define ASM_CPU_SPEC \
2375 " %{mcpu=generic-*:-march=%*;" \
2376 " :%{march=*:-march=%*}}" \
2377 BIG_LITTLE_SPEC
2379 /* -mcpu=native handling only makes sense with compiler running on
2380 an ARM chip. */
2381 #if defined(__arm__)
2382 extern const char *host_detect_local_cpu (int argc, const char **argv);
2383 # define EXTRA_SPEC_FUNCTIONS \
2384 { "local_cpu_detect", host_detect_local_cpu }, \
2385 BIG_LITTLE_CPU_SPEC_FUNCTIONS
2387 # define MCPU_MTUNE_NATIVE_SPECS \
2388 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2389 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2390 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2391 #else
2392 # define MCPU_MTUNE_NATIVE_SPECS ""
2393 # define EXTRA_SPEC_FUNCTIONS BIG_LITTLE_CPU_SPEC_FUNCTIONS
2394 #endif
2396 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS
2398 #endif /* ! GCC_ARM_H */