PR middle-end/19698
[official-gcc.git] / gcc / expmed.c
blob55eb7d113d59a5732f2480de83a34ae775401469
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
40 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
41 unsigned HOST_WIDE_INT,
42 unsigned HOST_WIDE_INT, rtx);
43 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
46 unsigned HOST_WIDE_INT,
47 unsigned HOST_WIDE_INT,
48 unsigned HOST_WIDE_INT, rtx, int);
49 static rtx mask_rtx (enum machine_mode, int, int, int);
50 static rtx lshift_value (enum machine_mode, rtx, int, int);
51 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
52 unsigned HOST_WIDE_INT, int);
53 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
54 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
55 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 /* Test whether a value is zero of a power of two. */
58 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
60 /* Nonzero means divides or modulus operations are relatively cheap for
61 powers of two, so don't use branches; emit the operation instead.
62 Usually, this will mean that the MD file will emit non-branch
63 sequences. */
65 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
66 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
68 #ifndef SLOW_UNALIGNED_ACCESS
69 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
70 #endif
72 /* For compilers that support multiple targets with different word sizes,
73 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
74 is the H8/300(H) compiler. */
76 #ifndef MAX_BITS_PER_WORD
77 #define MAX_BITS_PER_WORD BITS_PER_WORD
78 #endif
80 /* Reduce conditional compilation elsewhere. */
81 #ifndef HAVE_insv
82 #define HAVE_insv 0
83 #define CODE_FOR_insv CODE_FOR_nothing
84 #define gen_insv(a,b,c,d) NULL_RTX
85 #endif
86 #ifndef HAVE_extv
87 #define HAVE_extv 0
88 #define CODE_FOR_extv CODE_FOR_nothing
89 #define gen_extv(a,b,c,d) NULL_RTX
90 #endif
91 #ifndef HAVE_extzv
92 #define HAVE_extzv 0
93 #define CODE_FOR_extzv CODE_FOR_nothing
94 #define gen_extzv(a,b,c,d) NULL_RTX
95 #endif
97 /* Cost of various pieces of RTL. Note that some of these are indexed by
98 shift count and some by mode. */
99 static int zero_cost;
100 static int add_cost[NUM_MACHINE_MODES];
101 static int neg_cost[NUM_MACHINE_MODES];
102 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
103 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
104 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int mul_cost[NUM_MACHINE_MODES];
106 static int div_cost[NUM_MACHINE_MODES];
107 static int mul_widen_cost[NUM_MACHINE_MODES];
108 static int mul_highpart_cost[NUM_MACHINE_MODES];
110 void
111 init_expmed (void)
113 struct
115 struct rtx_def reg; rtunion reg_fld[2];
116 struct rtx_def plus; rtunion plus_fld1;
117 struct rtx_def neg;
118 struct rtx_def udiv; rtunion udiv_fld1;
119 struct rtx_def mult; rtunion mult_fld1;
120 struct rtx_def div; rtunion div_fld1;
121 struct rtx_def mod; rtunion mod_fld1;
122 struct rtx_def zext;
123 struct rtx_def wide_mult; rtunion wide_mult_fld1;
124 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
125 struct rtx_def wide_trunc;
126 struct rtx_def shift; rtunion shift_fld1;
127 struct rtx_def shift_mult; rtunion shift_mult_fld1;
128 struct rtx_def shift_add; rtunion shift_add_fld1;
129 struct rtx_def shift_sub; rtunion shift_sub_fld1;
130 } all;
132 rtx pow2[MAX_BITS_PER_WORD];
133 rtx cint[MAX_BITS_PER_WORD];
134 int m, n;
135 enum machine_mode mode, wider_mode;
137 zero_cost = rtx_cost (const0_rtx, 0);
139 for (m = 1; m < MAX_BITS_PER_WORD; m++)
141 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
142 cint[m] = GEN_INT (m);
145 memset (&all, 0, sizeof all);
147 PUT_CODE (&all.reg, REG);
148 REGNO (&all.reg) = 10000;
150 PUT_CODE (&all.plus, PLUS);
151 XEXP (&all.plus, 0) = &all.reg;
152 XEXP (&all.plus, 1) = &all.reg;
154 PUT_CODE (&all.neg, NEG);
155 XEXP (&all.neg, 0) = &all.reg;
157 PUT_CODE (&all.udiv, UDIV);
158 XEXP (&all.udiv, 0) = &all.reg;
159 XEXP (&all.udiv, 1) = &all.reg;
161 PUT_CODE (&all.mult, MULT);
162 XEXP (&all.mult, 0) = &all.reg;
163 XEXP (&all.mult, 1) = &all.reg;
165 PUT_CODE (&all.div, DIV);
166 XEXP (&all.div, 0) = &all.reg;
167 XEXP (&all.div, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
169 PUT_CODE (&all.mod, MOD);
170 XEXP (&all.mod, 0) = &all.reg;
171 XEXP (&all.mod, 1) = XEXP (&all.div, 1);
173 PUT_CODE (&all.zext, ZERO_EXTEND);
174 XEXP (&all.zext, 0) = &all.reg;
176 PUT_CODE (&all.wide_mult, MULT);
177 XEXP (&all.wide_mult, 0) = &all.zext;
178 XEXP (&all.wide_mult, 1) = &all.zext;
180 PUT_CODE (&all.wide_lshr, LSHIFTRT);
181 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
183 PUT_CODE (&all.wide_trunc, TRUNCATE);
184 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
186 PUT_CODE (&all.shift, ASHIFT);
187 XEXP (&all.shift, 0) = &all.reg;
189 PUT_CODE (&all.shift_mult, MULT);
190 XEXP (&all.shift_mult, 0) = &all.reg;
192 PUT_CODE (&all.shift_add, PLUS);
193 XEXP (&all.shift_add, 0) = &all.shift_mult;
194 XEXP (&all.shift_add, 1) = &all.reg;
196 PUT_CODE (&all.shift_sub, MINUS);
197 XEXP (&all.shift_sub, 0) = &all.shift_mult;
198 XEXP (&all.shift_sub, 1) = &all.reg;
200 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
201 mode != VOIDmode;
202 mode = GET_MODE_WIDER_MODE (mode))
204 PUT_MODE (&all.reg, mode);
205 PUT_MODE (&all.plus, mode);
206 PUT_MODE (&all.neg, mode);
207 PUT_MODE (&all.udiv, mode);
208 PUT_MODE (&all.mult, mode);
209 PUT_MODE (&all.div, mode);
210 PUT_MODE (&all.mod, mode);
211 PUT_MODE (&all.wide_trunc, mode);
212 PUT_MODE (&all.shift, mode);
213 PUT_MODE (&all.shift_mult, mode);
214 PUT_MODE (&all.shift_add, mode);
215 PUT_MODE (&all.shift_sub, mode);
217 add_cost[mode] = rtx_cost (&all.plus, SET);
218 neg_cost[mode] = rtx_cost (&all.neg, SET);
219 div_cost[mode] = rtx_cost (&all.udiv, SET);
220 mul_cost[mode] = rtx_cost (&all.mult, SET);
222 sdiv_pow2_cheap[mode] = (rtx_cost (&all.div, SET) <= 2 * add_cost[mode]);
223 smod_pow2_cheap[mode] = (rtx_cost (&all.mod, SET) <= 4 * add_cost[mode]);
225 wider_mode = GET_MODE_WIDER_MODE (mode);
226 if (wider_mode != VOIDmode)
228 PUT_MODE (&all.zext, wider_mode);
229 PUT_MODE (&all.wide_mult, wider_mode);
230 PUT_MODE (&all.wide_lshr, wider_mode);
231 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
233 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
234 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
237 shift_cost[mode][0] = 0;
238 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
240 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
241 for (m = 1; m < n; m++)
243 XEXP (&all.shift, 1) = cint[m];
244 XEXP (&all.shift_mult, 1) = pow2[m];
246 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
247 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
248 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
253 /* Return an rtx representing minus the value of X.
254 MODE is the intended mode of the result,
255 useful if X is a CONST_INT. */
258 negate_rtx (enum machine_mode mode, rtx x)
260 rtx result = simplify_unary_operation (NEG, mode, x, mode);
262 if (result == 0)
263 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
265 return result;
268 /* Report on the availability of insv/extv/extzv and the desired mode
269 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
270 is false; else the mode of the specified operand. If OPNO is -1,
271 all the caller cares about is whether the insn is available. */
272 enum machine_mode
273 mode_for_extraction (enum extraction_pattern pattern, int opno)
275 const struct insn_data *data;
277 switch (pattern)
279 case EP_insv:
280 if (HAVE_insv)
282 data = &insn_data[CODE_FOR_insv];
283 break;
285 return MAX_MACHINE_MODE;
287 case EP_extv:
288 if (HAVE_extv)
290 data = &insn_data[CODE_FOR_extv];
291 break;
293 return MAX_MACHINE_MODE;
295 case EP_extzv:
296 if (HAVE_extzv)
298 data = &insn_data[CODE_FOR_extzv];
299 break;
301 return MAX_MACHINE_MODE;
303 default:
304 gcc_unreachable ();
307 if (opno == -1)
308 return VOIDmode;
310 /* Everyone who uses this function used to follow it with
311 if (result == VOIDmode) result = word_mode; */
312 if (data->operand[opno].mode == VOIDmode)
313 return word_mode;
314 return data->operand[opno].mode;
318 /* Generate code to store value from rtx VALUE
319 into a bit-field within structure STR_RTX
320 containing BITSIZE bits starting at bit BITNUM.
321 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
322 ALIGN is the alignment that STR_RTX is known to have.
323 TOTAL_SIZE is the size of the structure in bytes, or -1 if varying. */
325 /* ??? Note that there are two different ideas here for how
326 to determine the size to count bits within, for a register.
327 One is BITS_PER_WORD, and the other is the size of operand 3
328 of the insv pattern.
330 If operand 3 of the insv pattern is VOIDmode, then we will use BITS_PER_WORD
331 else, we use the mode of operand 3. */
334 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
335 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
336 rtx value)
338 unsigned int unit
339 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
340 unsigned HOST_WIDE_INT offset, bitpos;
341 rtx op0 = str_rtx;
342 int byte_offset;
343 rtx orig_value;
345 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
347 while (GET_CODE (op0) == SUBREG)
349 /* The following line once was done only if WORDS_BIG_ENDIAN,
350 but I think that is a mistake. WORDS_BIG_ENDIAN is
351 meaningful at a much higher level; when structures are copied
352 between memory and regs, the higher-numbered regs
353 always get higher addresses. */
354 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
355 op0 = SUBREG_REG (op0);
358 /* No action is needed if the target is a register and if the field
359 lies completely outside that register. This can occur if the source
360 code contains an out-of-bounds access to a small array. */
361 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
362 return value;
364 /* Use vec_set patterns for inserting parts of vectors whenever
365 available. */
366 if (VECTOR_MODE_P (GET_MODE (op0))
367 && !MEM_P (op0)
368 && (vec_set_optab->handlers[GET_MODE (op0)].insn_code
369 != CODE_FOR_nothing)
370 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
371 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
372 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
374 enum machine_mode outermode = GET_MODE (op0);
375 enum machine_mode innermode = GET_MODE_INNER (outermode);
376 int icode = (int) vec_set_optab->handlers[outermode].insn_code;
377 int pos = bitnum / GET_MODE_BITSIZE (innermode);
378 rtx rtxpos = GEN_INT (pos);
379 rtx src = value;
380 rtx dest = op0;
381 rtx pat, seq;
382 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
383 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
384 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
386 start_sequence ();
388 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
389 src = copy_to_mode_reg (mode1, src);
391 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
392 rtxpos = copy_to_mode_reg (mode1, rtxpos);
394 /* We could handle this, but we should always be called with a pseudo
395 for our targets and all insns should take them as outputs. */
396 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
397 && (*insn_data[icode].operand[1].predicate) (src, mode1)
398 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
399 pat = GEN_FCN (icode) (dest, src, rtxpos);
400 seq = get_insns ();
401 end_sequence ();
402 if (pat)
404 emit_insn (seq);
405 emit_insn (pat);
406 return dest;
410 if (flag_force_mem)
412 int old_generating_concat_p = generating_concat_p;
413 generating_concat_p = 0;
414 value = force_not_mem (value);
415 generating_concat_p = old_generating_concat_p;
418 /* If the target is a register, overwriting the entire object, or storing
419 a full-word or multi-word field can be done with just a SUBREG.
421 If the target is memory, storing any naturally aligned field can be
422 done with a simple store. For targets that support fast unaligned
423 memory, any naturally sized, unit aligned field can be done directly. */
425 offset = bitnum / unit;
426 bitpos = bitnum % unit;
427 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
428 + (offset * UNITS_PER_WORD);
430 if (bitpos == 0
431 && bitsize == GET_MODE_BITSIZE (fieldmode)
432 && (!MEM_P (op0)
433 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
434 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
435 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
436 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
437 || (offset * BITS_PER_UNIT % bitsize == 0
438 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
440 if (GET_MODE (op0) != fieldmode)
442 if (MEM_P (op0))
443 op0 = adjust_address (op0, fieldmode, offset);
444 else
445 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
446 byte_offset);
448 emit_move_insn (op0, value);
449 return value;
452 /* Make sure we are playing with integral modes. Pun with subregs
453 if we aren't. This must come after the entire register case above,
454 since that case is valid for any mode. The following cases are only
455 valid for integral modes. */
457 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
458 if (imode != GET_MODE (op0))
460 if (MEM_P (op0))
461 op0 = adjust_address (op0, imode, 0);
462 else
464 gcc_assert (imode != BLKmode);
465 op0 = gen_lowpart (imode, op0);
470 /* We may be accessing data outside the field, which means
471 we can alias adjacent data. */
472 if (MEM_P (op0))
474 op0 = shallow_copy_rtx (op0);
475 set_mem_alias_set (op0, 0);
476 set_mem_expr (op0, 0);
479 /* If OP0 is a register, BITPOS must count within a word.
480 But as we have it, it counts within whatever size OP0 now has.
481 On a bigendian machine, these are not the same, so convert. */
482 if (BYTES_BIG_ENDIAN
483 && !MEM_P (op0)
484 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
485 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
487 /* Storing an lsb-aligned field in a register
488 can be done with a movestrict instruction. */
490 if (!MEM_P (op0)
491 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
492 && bitsize == GET_MODE_BITSIZE (fieldmode)
493 && (movstrict_optab->handlers[fieldmode].insn_code
494 != CODE_FOR_nothing))
496 int icode = movstrict_optab->handlers[fieldmode].insn_code;
498 /* Get appropriate low part of the value being stored. */
499 if (GET_CODE (value) == CONST_INT || REG_P (value))
500 value = gen_lowpart (fieldmode, value);
501 else if (!(GET_CODE (value) == SYMBOL_REF
502 || GET_CODE (value) == LABEL_REF
503 || GET_CODE (value) == CONST))
504 value = convert_to_mode (fieldmode, value, 0);
506 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
507 value = copy_to_mode_reg (fieldmode, value);
509 if (GET_CODE (op0) == SUBREG)
511 /* Else we've got some float mode source being extracted into
512 a different float mode destination -- this combination of
513 subregs results in Severe Tire Damage. */
514 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
515 || GET_MODE_CLASS (fieldmode) == MODE_INT
516 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
517 op0 = SUBREG_REG (op0);
520 emit_insn (GEN_FCN (icode)
521 (gen_rtx_SUBREG (fieldmode, op0,
522 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
523 + (offset * UNITS_PER_WORD)),
524 value));
526 return value;
529 /* Handle fields bigger than a word. */
531 if (bitsize > BITS_PER_WORD)
533 /* Here we transfer the words of the field
534 in the order least significant first.
535 This is because the most significant word is the one which may
536 be less than full.
537 However, only do that if the value is not BLKmode. */
539 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
540 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
541 unsigned int i;
543 /* This is the mode we must force value to, so that there will be enough
544 subwords to extract. Note that fieldmode will often (always?) be
545 VOIDmode, because that is what store_field uses to indicate that this
546 is a bit field, but passing VOIDmode to operand_subword_force will
547 result in an abort. */
548 fieldmode = GET_MODE (value);
549 if (fieldmode == VOIDmode)
550 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
552 for (i = 0; i < nwords; i++)
554 /* If I is 0, use the low-order word in both field and target;
555 if I is 1, use the next to lowest word; and so on. */
556 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
557 unsigned int bit_offset = (backwards
558 ? MAX ((int) bitsize - ((int) i + 1)
559 * BITS_PER_WORD,
561 : (int) i * BITS_PER_WORD);
563 store_bit_field (op0, MIN (BITS_PER_WORD,
564 bitsize - i * BITS_PER_WORD),
565 bitnum + bit_offset, word_mode,
566 operand_subword_force (value, wordnum, fieldmode));
568 return value;
571 /* From here on we can assume that the field to be stored in is
572 a full-word (whatever type that is), since it is shorter than a word. */
574 /* OFFSET is the number of words or bytes (UNIT says which)
575 from STR_RTX to the first word or byte containing part of the field. */
577 if (!MEM_P (op0))
579 if (offset != 0
580 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
582 if (!REG_P (op0))
584 /* Since this is a destination (lvalue), we can't copy it to a
585 pseudo. We can trivially remove a SUBREG that does not
586 change the size of the operand. Such a SUBREG may have been
587 added above. Otherwise, abort. */
588 gcc_assert (GET_CODE (op0) == SUBREG
589 && (GET_MODE_SIZE (GET_MODE (op0))
590 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
591 op0 = SUBREG_REG (op0);
593 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
594 op0, (offset * UNITS_PER_WORD));
596 offset = 0;
599 /* If VALUE has a floating-point or complex mode, access it as an
600 integer of the corresponding size. This can occur on a machine
601 with 64 bit registers that uses SFmode for float. It can also
602 occur for unaligned float or complex fields. */
603 orig_value = value;
604 if (GET_MODE (value) != VOIDmode
605 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
606 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
608 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
609 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
612 /* Now OFFSET is nonzero only if OP0 is memory
613 and is therefore always measured in bytes. */
615 if (HAVE_insv
616 && GET_MODE (value) != BLKmode
617 && !(bitsize == 1 && GET_CODE (value) == CONST_INT)
618 /* Ensure insv's size is wide enough for this field. */
619 && (GET_MODE_BITSIZE (op_mode) >= bitsize)
620 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
621 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode))))
623 int xbitpos = bitpos;
624 rtx value1;
625 rtx xop0 = op0;
626 rtx last = get_last_insn ();
627 rtx pat;
628 enum machine_mode maxmode = mode_for_extraction (EP_insv, 3);
629 int save_volatile_ok = volatile_ok;
631 volatile_ok = 1;
633 /* If this machine's insv can only insert into a register, copy OP0
634 into a register and save it back later. */
635 /* This used to check flag_force_mem, but that was a serious
636 de-optimization now that flag_force_mem is enabled by -O2. */
637 if (MEM_P (op0)
638 && ! ((*insn_data[(int) CODE_FOR_insv].operand[0].predicate)
639 (op0, VOIDmode)))
641 rtx tempreg;
642 enum machine_mode bestmode;
644 /* Get the mode to use for inserting into this field. If OP0 is
645 BLKmode, get the smallest mode consistent with the alignment. If
646 OP0 is a non-BLKmode object that is no wider than MAXMODE, use its
647 mode. Otherwise, use the smallest mode containing the field. */
649 if (GET_MODE (op0) == BLKmode
650 || GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (maxmode))
651 bestmode
652 = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0), maxmode,
653 MEM_VOLATILE_P (op0));
654 else
655 bestmode = GET_MODE (op0);
657 if (bestmode == VOIDmode
658 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
659 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
660 goto insv_loses;
662 /* Adjust address to point to the containing unit of that mode.
663 Compute offset as multiple of this unit, counting in bytes. */
664 unit = GET_MODE_BITSIZE (bestmode);
665 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
666 bitpos = bitnum % unit;
667 op0 = adjust_address (op0, bestmode, offset);
669 /* Fetch that unit, store the bitfield in it, then store
670 the unit. */
671 tempreg = copy_to_reg (op0);
672 store_bit_field (tempreg, bitsize, bitpos, fieldmode, orig_value);
673 emit_move_insn (op0, tempreg);
674 return value;
676 volatile_ok = save_volatile_ok;
678 /* Add OFFSET into OP0's address. */
679 if (MEM_P (xop0))
680 xop0 = adjust_address (xop0, byte_mode, offset);
682 /* If xop0 is a register, we need it in MAXMODE
683 to make it acceptable to the format of insv. */
684 if (GET_CODE (xop0) == SUBREG)
685 /* We can't just change the mode, because this might clobber op0,
686 and we will need the original value of op0 if insv fails. */
687 xop0 = gen_rtx_SUBREG (maxmode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
688 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
689 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
691 /* On big-endian machines, we count bits from the most significant.
692 If the bit field insn does not, we must invert. */
694 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
695 xbitpos = unit - bitsize - xbitpos;
697 /* We have been counting XBITPOS within UNIT.
698 Count instead within the size of the register. */
699 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
700 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
702 unit = GET_MODE_BITSIZE (maxmode);
704 /* Convert VALUE to maxmode (which insv insn wants) in VALUE1. */
705 value1 = value;
706 if (GET_MODE (value) != maxmode)
708 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
710 /* Optimization: Don't bother really extending VALUE
711 if it has all the bits we will actually use. However,
712 if we must narrow it, be sure we do it correctly. */
714 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (maxmode))
716 rtx tmp;
718 tmp = simplify_subreg (maxmode, value1, GET_MODE (value), 0);
719 if (! tmp)
720 tmp = simplify_gen_subreg (maxmode,
721 force_reg (GET_MODE (value),
722 value1),
723 GET_MODE (value), 0);
724 value1 = tmp;
726 else
727 value1 = gen_lowpart (maxmode, value1);
729 else if (GET_CODE (value) == CONST_INT)
730 value1 = gen_int_mode (INTVAL (value), maxmode);
731 else
732 /* Parse phase is supposed to make VALUE's data type
733 match that of the component reference, which is a type
734 at least as wide as the field; so VALUE should have
735 a mode that corresponds to that type. */
736 gcc_assert (CONSTANT_P (value));
739 /* If this machine's insv insists on a register,
740 get VALUE1 into a register. */
741 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
742 (value1, maxmode)))
743 value1 = force_reg (maxmode, value1);
745 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
746 if (pat)
747 emit_insn (pat);
748 else
750 delete_insns_since (last);
751 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
754 else
755 insv_loses:
756 /* Insv is not available; store using shifts and boolean ops. */
757 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
758 return value;
761 /* Use shifts and boolean operations to store VALUE
762 into a bit field of width BITSIZE
763 in a memory location specified by OP0 except offset by OFFSET bytes.
764 (OFFSET must be 0 if OP0 is a register.)
765 The field starts at position BITPOS within the byte.
766 (If OP0 is a register, it may be a full word or a narrower mode,
767 but BITPOS still counts within a full word,
768 which is significant on bigendian machines.) */
770 static void
771 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
772 unsigned HOST_WIDE_INT bitsize,
773 unsigned HOST_WIDE_INT bitpos, rtx value)
775 enum machine_mode mode;
776 unsigned int total_bits = BITS_PER_WORD;
777 rtx subtarget, temp;
778 int all_zero = 0;
779 int all_one = 0;
781 /* There is a case not handled here:
782 a structure with a known alignment of just a halfword
783 and a field split across two aligned halfwords within the structure.
784 Or likewise a structure with a known alignment of just a byte
785 and a field split across two bytes.
786 Such cases are not supposed to be able to occur. */
788 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
790 gcc_assert (!offset);
791 /* Special treatment for a bit field split across two registers. */
792 if (bitsize + bitpos > BITS_PER_WORD)
794 store_split_bit_field (op0, bitsize, bitpos, value);
795 return;
798 else
800 /* Get the proper mode to use for this field. We want a mode that
801 includes the entire field. If such a mode would be larger than
802 a word, we won't be doing the extraction the normal way.
803 We don't want a mode bigger than the destination. */
805 mode = GET_MODE (op0);
806 if (GET_MODE_BITSIZE (mode) == 0
807 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
808 mode = word_mode;
809 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
810 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
812 if (mode == VOIDmode)
814 /* The only way this should occur is if the field spans word
815 boundaries. */
816 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
817 value);
818 return;
821 total_bits = GET_MODE_BITSIZE (mode);
823 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
824 be in the range 0 to total_bits-1, and put any excess bytes in
825 OFFSET. */
826 if (bitpos >= total_bits)
828 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
829 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
830 * BITS_PER_UNIT);
833 /* Get ref to an aligned byte, halfword, or word containing the field.
834 Adjust BITPOS to be position within a word,
835 and OFFSET to be the offset of that word.
836 Then alter OP0 to refer to that word. */
837 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
838 offset -= (offset % (total_bits / BITS_PER_UNIT));
839 op0 = adjust_address (op0, mode, offset);
842 mode = GET_MODE (op0);
844 /* Now MODE is either some integral mode for a MEM as OP0,
845 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
846 The bit field is contained entirely within OP0.
847 BITPOS is the starting bit number within OP0.
848 (OP0's mode may actually be narrower than MODE.) */
850 if (BYTES_BIG_ENDIAN)
851 /* BITPOS is the distance between our msb
852 and that of the containing datum.
853 Convert it to the distance from the lsb. */
854 bitpos = total_bits - bitsize - bitpos;
856 /* Now BITPOS is always the distance between our lsb
857 and that of OP0. */
859 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
860 we must first convert its mode to MODE. */
862 if (GET_CODE (value) == CONST_INT)
864 HOST_WIDE_INT v = INTVAL (value);
866 if (bitsize < HOST_BITS_PER_WIDE_INT)
867 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
869 if (v == 0)
870 all_zero = 1;
871 else if ((bitsize < HOST_BITS_PER_WIDE_INT
872 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
873 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
874 all_one = 1;
876 value = lshift_value (mode, value, bitpos, bitsize);
878 else
880 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
881 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
883 if (GET_MODE (value) != mode)
885 if ((REG_P (value) || GET_CODE (value) == SUBREG)
886 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
887 value = gen_lowpart (mode, value);
888 else
889 value = convert_to_mode (mode, value, 1);
892 if (must_and)
893 value = expand_binop (mode, and_optab, value,
894 mask_rtx (mode, 0, bitsize, 0),
895 NULL_RTX, 1, OPTAB_LIB_WIDEN);
896 if (bitpos > 0)
897 value = expand_shift (LSHIFT_EXPR, mode, value,
898 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
901 /* Now clear the chosen bits in OP0,
902 except that if VALUE is -1 we need not bother. */
904 subtarget = (REG_P (op0) || ! flag_force_mem) ? op0 : 0;
906 if (! all_one)
908 temp = expand_binop (mode, and_optab, op0,
909 mask_rtx (mode, bitpos, bitsize, 1),
910 subtarget, 1, OPTAB_LIB_WIDEN);
911 subtarget = temp;
913 else
914 temp = op0;
916 /* Now logical-or VALUE into OP0, unless it is zero. */
918 if (! all_zero)
919 temp = expand_binop (mode, ior_optab, temp, value,
920 subtarget, 1, OPTAB_LIB_WIDEN);
921 if (op0 != temp)
922 emit_move_insn (op0, temp);
925 /* Store a bit field that is split across multiple accessible memory objects.
927 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
928 BITSIZE is the field width; BITPOS the position of its first bit
929 (within the word).
930 VALUE is the value to store.
932 This does not yet handle fields wider than BITS_PER_WORD. */
934 static void
935 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
936 unsigned HOST_WIDE_INT bitpos, rtx value)
938 unsigned int unit;
939 unsigned int bitsdone = 0;
941 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
942 much at a time. */
943 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
944 unit = BITS_PER_WORD;
945 else
946 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
948 /* If VALUE is a constant other than a CONST_INT, get it into a register in
949 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
950 that VALUE might be a floating-point constant. */
951 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
953 rtx word = gen_lowpart_common (word_mode, value);
955 if (word && (value != word))
956 value = word;
957 else
958 value = gen_lowpart_common (word_mode,
959 force_reg (GET_MODE (value) != VOIDmode
960 ? GET_MODE (value)
961 : word_mode, value));
964 while (bitsdone < bitsize)
966 unsigned HOST_WIDE_INT thissize;
967 rtx part, word;
968 unsigned HOST_WIDE_INT thispos;
969 unsigned HOST_WIDE_INT offset;
971 offset = (bitpos + bitsdone) / unit;
972 thispos = (bitpos + bitsdone) % unit;
974 /* THISSIZE must not overrun a word boundary. Otherwise,
975 store_fixed_bit_field will call us again, and we will mutually
976 recurse forever. */
977 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
978 thissize = MIN (thissize, unit - thispos);
980 if (BYTES_BIG_ENDIAN)
982 int total_bits;
984 /* We must do an endian conversion exactly the same way as it is
985 done in extract_bit_field, so that the two calls to
986 extract_fixed_bit_field will have comparable arguments. */
987 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
988 total_bits = BITS_PER_WORD;
989 else
990 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
992 /* Fetch successively less significant portions. */
993 if (GET_CODE (value) == CONST_INT)
994 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
995 >> (bitsize - bitsdone - thissize))
996 & (((HOST_WIDE_INT) 1 << thissize) - 1));
997 else
998 /* The args are chosen so that the last part includes the
999 lsb. Give extract_bit_field the value it needs (with
1000 endianness compensation) to fetch the piece we want. */
1001 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1002 total_bits - bitsize + bitsdone,
1003 NULL_RTX, 1);
1005 else
1007 /* Fetch successively more significant portions. */
1008 if (GET_CODE (value) == CONST_INT)
1009 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1010 >> bitsdone)
1011 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1012 else
1013 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1014 bitsdone, NULL_RTX, 1);
1017 /* If OP0 is a register, then handle OFFSET here.
1019 When handling multiword bitfields, extract_bit_field may pass
1020 down a word_mode SUBREG of a larger REG for a bitfield that actually
1021 crosses a word boundary. Thus, for a SUBREG, we must find
1022 the current word starting from the base register. */
1023 if (GET_CODE (op0) == SUBREG)
1025 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1026 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1027 GET_MODE (SUBREG_REG (op0)));
1028 offset = 0;
1030 else if (REG_P (op0))
1032 word = operand_subword_force (op0, offset, GET_MODE (op0));
1033 offset = 0;
1035 else
1036 word = op0;
1038 /* OFFSET is in UNITs, and UNIT is in bits.
1039 store_fixed_bit_field wants offset in bytes. */
1040 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1041 thispos, part);
1042 bitsdone += thissize;
1046 /* Generate code to extract a byte-field from STR_RTX
1047 containing BITSIZE bits, starting at BITNUM,
1048 and put it in TARGET if possible (if TARGET is nonzero).
1049 Regardless of TARGET, we return the rtx for where the value is placed.
1051 STR_RTX is the structure containing the byte (a REG or MEM).
1052 UNSIGNEDP is nonzero if this is an unsigned bit field.
1053 MODE is the natural mode of the field value once extracted.
1054 TMODE is the mode the caller would like the value to have;
1055 but the value may be returned with type MODE instead.
1057 TOTAL_SIZE is the size in bytes of the containing structure,
1058 or -1 if varying.
1060 If a TARGET is specified and we can store in it at no extra cost,
1061 we do so, and return TARGET.
1062 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1063 if they are equally easy. */
1066 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1067 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1068 enum machine_mode mode, enum machine_mode tmode)
1070 unsigned int unit
1071 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1072 unsigned HOST_WIDE_INT offset, bitpos;
1073 rtx op0 = str_rtx;
1074 rtx spec_target = target;
1075 rtx spec_target_subreg = 0;
1076 enum machine_mode int_mode;
1077 enum machine_mode extv_mode = mode_for_extraction (EP_extv, 0);
1078 enum machine_mode extzv_mode = mode_for_extraction (EP_extzv, 0);
1079 enum machine_mode mode1;
1080 int byte_offset;
1082 if (tmode == VOIDmode)
1083 tmode = mode;
1085 while (GET_CODE (op0) == SUBREG)
1087 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1088 op0 = SUBREG_REG (op0);
1091 /* If we have an out-of-bounds access to a register, just return an
1092 uninitialized register of the required mode. This can occur if the
1093 source code contains an out-of-bounds access to a small array. */
1094 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1095 return gen_reg_rtx (tmode);
1097 if (REG_P (op0)
1098 && mode == GET_MODE (op0)
1099 && bitnum == 0
1100 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1102 /* We're trying to extract a full register from itself. */
1103 return op0;
1106 /* Use vec_extract patterns for extracting parts of vectors whenever
1107 available. */
1108 if (VECTOR_MODE_P (GET_MODE (op0))
1109 && !MEM_P (op0)
1110 && (vec_extract_optab->handlers[GET_MODE (op0)].insn_code
1111 != CODE_FOR_nothing)
1112 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1113 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1115 enum machine_mode outermode = GET_MODE (op0);
1116 enum machine_mode innermode = GET_MODE_INNER (outermode);
1117 int icode = (int) vec_extract_optab->handlers[outermode].insn_code;
1118 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1119 rtx rtxpos = GEN_INT (pos);
1120 rtx src = op0;
1121 rtx dest = NULL, pat, seq;
1122 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1123 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1124 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1126 if (innermode == tmode || innermode == mode)
1127 dest = target;
1129 if (!dest)
1130 dest = gen_reg_rtx (innermode);
1132 start_sequence ();
1134 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1135 dest = copy_to_mode_reg (mode0, dest);
1137 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1138 src = copy_to_mode_reg (mode1, src);
1140 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1141 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1143 /* We could handle this, but we should always be called with a pseudo
1144 for our targets and all insns should take them as outputs. */
1145 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1146 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1147 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1149 pat = GEN_FCN (icode) (dest, src, rtxpos);
1150 seq = get_insns ();
1151 end_sequence ();
1152 if (pat)
1154 emit_insn (seq);
1155 emit_insn (pat);
1156 return dest;
1160 /* Make sure we are playing with integral modes. Pun with subregs
1161 if we aren't. */
1163 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1164 if (imode != GET_MODE (op0))
1166 if (MEM_P (op0))
1167 op0 = adjust_address (op0, imode, 0);
1168 else
1170 gcc_assert (imode != BLKmode);
1171 op0 = gen_lowpart (imode, op0);
1173 /* If we got a SUBREG, force it into a register since we
1174 aren't going to be able to do another SUBREG on it. */
1175 if (GET_CODE (op0) == SUBREG)
1176 op0 = force_reg (imode, op0);
1181 /* We may be accessing data outside the field, which means
1182 we can alias adjacent data. */
1183 if (MEM_P (op0))
1185 op0 = shallow_copy_rtx (op0);
1186 set_mem_alias_set (op0, 0);
1187 set_mem_expr (op0, 0);
1190 /* Extraction of a full-word or multi-word value from a structure
1191 in a register or aligned memory can be done with just a SUBREG.
1192 A subword value in the least significant part of a register
1193 can also be extracted with a SUBREG. For this, we need the
1194 byte offset of the value in op0. */
1196 bitpos = bitnum % unit;
1197 offset = bitnum / unit;
1198 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1200 /* If OP0 is a register, BITPOS must count within a word.
1201 But as we have it, it counts within whatever size OP0 now has.
1202 On a bigendian machine, these are not the same, so convert. */
1203 if (BYTES_BIG_ENDIAN
1204 && !MEM_P (op0)
1205 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1206 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1208 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1209 If that's wrong, the solution is to test for it and set TARGET to 0
1210 if needed. */
1212 /* Only scalar integer modes can be converted via subregs. There is an
1213 additional problem for FP modes here in that they can have a precision
1214 which is different from the size. mode_for_size uses precision, but
1215 we want a mode based on the size, so we must avoid calling it for FP
1216 modes. */
1217 mode1 = (SCALAR_INT_MODE_P (tmode)
1218 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1219 : mode);
1221 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1222 && bitpos % BITS_PER_WORD == 0)
1223 || (mode1 != BLKmode
1224 /* ??? The big endian test here is wrong. This is correct
1225 if the value is in a register, and if mode_for_size is not
1226 the same mode as op0. This causes us to get unnecessarily
1227 inefficient code from the Thumb port when -mbig-endian. */
1228 && (BYTES_BIG_ENDIAN
1229 ? bitpos + bitsize == BITS_PER_WORD
1230 : bitpos == 0)))
1231 && ((!MEM_P (op0)
1232 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1233 GET_MODE_BITSIZE (GET_MODE (op0)))
1234 && GET_MODE_SIZE (mode1) != 0
1235 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1236 || (MEM_P (op0)
1237 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1238 || (offset * BITS_PER_UNIT % bitsize == 0
1239 && MEM_ALIGN (op0) % bitsize == 0)))))
1241 if (mode1 != GET_MODE (op0))
1243 if (MEM_P (op0))
1244 op0 = adjust_address (op0, mode1, offset);
1245 else
1247 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1248 byte_offset);
1249 if (sub == NULL)
1250 goto no_subreg_mode_swap;
1251 op0 = sub;
1254 if (mode1 != mode)
1255 return convert_to_mode (tmode, op0, unsignedp);
1256 return op0;
1258 no_subreg_mode_swap:
1260 /* Handle fields bigger than a word. */
1262 if (bitsize > BITS_PER_WORD)
1264 /* Here we transfer the words of the field
1265 in the order least significant first.
1266 This is because the most significant word is the one which may
1267 be less than full. */
1269 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1270 unsigned int i;
1272 if (target == 0 || !REG_P (target))
1273 target = gen_reg_rtx (mode);
1275 /* Indicate for flow that the entire target reg is being set. */
1276 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
1278 for (i = 0; i < nwords; i++)
1280 /* If I is 0, use the low-order word in both field and target;
1281 if I is 1, use the next to lowest word; and so on. */
1282 /* Word number in TARGET to use. */
1283 unsigned int wordnum
1284 = (WORDS_BIG_ENDIAN
1285 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1286 : i);
1287 /* Offset from start of field in OP0. */
1288 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1289 ? MAX (0, ((int) bitsize - ((int) i + 1)
1290 * (int) BITS_PER_WORD))
1291 : (int) i * BITS_PER_WORD);
1292 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1293 rtx result_part
1294 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1295 bitsize - i * BITS_PER_WORD),
1296 bitnum + bit_offset, 1, target_part, mode,
1297 word_mode);
1299 gcc_assert (target_part);
1301 if (result_part != target_part)
1302 emit_move_insn (target_part, result_part);
1305 if (unsignedp)
1307 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1308 need to be zero'd out. */
1309 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1311 unsigned int i, total_words;
1313 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1314 for (i = nwords; i < total_words; i++)
1315 emit_move_insn
1316 (operand_subword (target,
1317 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1318 1, VOIDmode),
1319 const0_rtx);
1321 return target;
1324 /* Signed bit field: sign-extend with two arithmetic shifts. */
1325 target = expand_shift (LSHIFT_EXPR, mode, target,
1326 build_int_cst (NULL_TREE,
1327 GET_MODE_BITSIZE (mode) - bitsize),
1328 NULL_RTX, 0);
1329 return expand_shift (RSHIFT_EXPR, mode, target,
1330 build_int_cst (NULL_TREE,
1331 GET_MODE_BITSIZE (mode) - bitsize),
1332 NULL_RTX, 0);
1335 /* From here on we know the desired field is smaller than a word. */
1337 /* Check if there is a correspondingly-sized integer field, so we can
1338 safely extract it as one size of integer, if necessary; then
1339 truncate or extend to the size that is wanted; then use SUBREGs or
1340 convert_to_mode to get one of the modes we really wanted. */
1342 int_mode = int_mode_for_mode (tmode);
1343 if (int_mode == BLKmode)
1344 int_mode = int_mode_for_mode (mode);
1345 /* Should probably push op0 out to memory and then do a load. */
1346 gcc_assert (int_mode != BLKmode);
1348 /* OFFSET is the number of words or bytes (UNIT says which)
1349 from STR_RTX to the first word or byte containing part of the field. */
1350 if (!MEM_P (op0))
1352 if (offset != 0
1353 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1355 if (!REG_P (op0))
1356 op0 = copy_to_reg (op0);
1357 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1358 op0, (offset * UNITS_PER_WORD));
1360 offset = 0;
1363 /* Now OFFSET is nonzero only for memory operands. */
1365 if (unsignedp)
1367 if (HAVE_extzv
1368 && (GET_MODE_BITSIZE (extzv_mode) >= bitsize)
1369 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1370 && (bitsize + bitpos > GET_MODE_BITSIZE (extzv_mode))))
1372 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1373 rtx bitsize_rtx, bitpos_rtx;
1374 rtx last = get_last_insn ();
1375 rtx xop0 = op0;
1376 rtx xtarget = target;
1377 rtx xspec_target = spec_target;
1378 rtx xspec_target_subreg = spec_target_subreg;
1379 rtx pat;
1380 enum machine_mode maxmode = mode_for_extraction (EP_extzv, 0);
1382 if (MEM_P (xop0))
1384 int save_volatile_ok = volatile_ok;
1385 volatile_ok = 1;
1387 /* Is the memory operand acceptable? */
1388 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[1].predicate)
1389 (xop0, GET_MODE (xop0))))
1391 /* No, load into a reg and extract from there. */
1392 enum machine_mode bestmode;
1394 /* Get the mode to use for inserting into this field. If
1395 OP0 is BLKmode, get the smallest mode consistent with the
1396 alignment. If OP0 is a non-BLKmode object that is no
1397 wider than MAXMODE, use its mode. Otherwise, use the
1398 smallest mode containing the field. */
1400 if (GET_MODE (xop0) == BLKmode
1401 || (GET_MODE_SIZE (GET_MODE (op0))
1402 > GET_MODE_SIZE (maxmode)))
1403 bestmode = get_best_mode (bitsize, bitnum,
1404 MEM_ALIGN (xop0), maxmode,
1405 MEM_VOLATILE_P (xop0));
1406 else
1407 bestmode = GET_MODE (xop0);
1409 if (bestmode == VOIDmode
1410 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1411 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1412 goto extzv_loses;
1414 /* Compute offset as multiple of this unit,
1415 counting in bytes. */
1416 unit = GET_MODE_BITSIZE (bestmode);
1417 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1418 xbitpos = bitnum % unit;
1419 xop0 = adjust_address (xop0, bestmode, xoffset);
1421 /* Fetch it to a register in that size. */
1422 xop0 = force_reg (bestmode, xop0);
1424 /* XBITPOS counts within UNIT, which is what is expected. */
1426 else
1427 /* Get ref to first byte containing part of the field. */
1428 xop0 = adjust_address (xop0, byte_mode, xoffset);
1430 volatile_ok = save_volatile_ok;
1433 /* If op0 is a register, we need it in MAXMODE (which is usually
1434 SImode). to make it acceptable to the format of extzv. */
1435 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1436 goto extzv_loses;
1437 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1438 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1440 /* On big-endian machines, we count bits from the most significant.
1441 If the bit field insn does not, we must invert. */
1442 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1443 xbitpos = unit - bitsize - xbitpos;
1445 /* Now convert from counting within UNIT to counting in MAXMODE. */
1446 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1447 xbitpos += GET_MODE_BITSIZE (maxmode) - unit;
1449 unit = GET_MODE_BITSIZE (maxmode);
1451 if (xtarget == 0
1452 || (flag_force_mem && MEM_P (xtarget)))
1453 xtarget = xspec_target = gen_reg_rtx (tmode);
1455 if (GET_MODE (xtarget) != maxmode)
1457 if (REG_P (xtarget))
1459 int wider = (GET_MODE_SIZE (maxmode)
1460 > GET_MODE_SIZE (GET_MODE (xtarget)));
1461 xtarget = gen_lowpart (maxmode, xtarget);
1462 if (wider)
1463 xspec_target_subreg = xtarget;
1465 else
1466 xtarget = gen_reg_rtx (maxmode);
1469 /* If this machine's extzv insists on a register target,
1470 make sure we have one. */
1471 if (! ((*insn_data[(int) CODE_FOR_extzv].operand[0].predicate)
1472 (xtarget, maxmode)))
1473 xtarget = gen_reg_rtx (maxmode);
1475 bitsize_rtx = GEN_INT (bitsize);
1476 bitpos_rtx = GEN_INT (xbitpos);
1478 pat = gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1479 if (pat)
1481 emit_insn (pat);
1482 target = xtarget;
1483 spec_target = xspec_target;
1484 spec_target_subreg = xspec_target_subreg;
1486 else
1488 delete_insns_since (last);
1489 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1490 bitpos, target, 1);
1493 else
1494 extzv_loses:
1495 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1496 bitpos, target, 1);
1498 else
1500 if (HAVE_extv
1501 && (GET_MODE_BITSIZE (extv_mode) >= bitsize)
1502 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
1503 && (bitsize + bitpos > GET_MODE_BITSIZE (extv_mode))))
1505 int xbitpos = bitpos, xoffset = offset;
1506 rtx bitsize_rtx, bitpos_rtx;
1507 rtx last = get_last_insn ();
1508 rtx xop0 = op0, xtarget = target;
1509 rtx xspec_target = spec_target;
1510 rtx xspec_target_subreg = spec_target_subreg;
1511 rtx pat;
1512 enum machine_mode maxmode = mode_for_extraction (EP_extv, 0);
1514 if (MEM_P (xop0))
1516 /* Is the memory operand acceptable? */
1517 if (! ((*insn_data[(int) CODE_FOR_extv].operand[1].predicate)
1518 (xop0, GET_MODE (xop0))))
1520 /* No, load into a reg and extract from there. */
1521 enum machine_mode bestmode;
1523 /* Get the mode to use for inserting into this field. If
1524 OP0 is BLKmode, get the smallest mode consistent with the
1525 alignment. If OP0 is a non-BLKmode object that is no
1526 wider than MAXMODE, use its mode. Otherwise, use the
1527 smallest mode containing the field. */
1529 if (GET_MODE (xop0) == BLKmode
1530 || (GET_MODE_SIZE (GET_MODE (op0))
1531 > GET_MODE_SIZE (maxmode)))
1532 bestmode = get_best_mode (bitsize, bitnum,
1533 MEM_ALIGN (xop0), maxmode,
1534 MEM_VOLATILE_P (xop0));
1535 else
1536 bestmode = GET_MODE (xop0);
1538 if (bestmode == VOIDmode
1539 || (SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (xop0))
1540 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (xop0)))
1541 goto extv_loses;
1543 /* Compute offset as multiple of this unit,
1544 counting in bytes. */
1545 unit = GET_MODE_BITSIZE (bestmode);
1546 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1547 xbitpos = bitnum % unit;
1548 xop0 = adjust_address (xop0, bestmode, xoffset);
1550 /* Fetch it to a register in that size. */
1551 xop0 = force_reg (bestmode, xop0);
1553 /* XBITPOS counts within UNIT, which is what is expected. */
1555 else
1556 /* Get ref to first byte containing part of the field. */
1557 xop0 = adjust_address (xop0, byte_mode, xoffset);
1560 /* If op0 is a register, we need it in MAXMODE (which is usually
1561 SImode) to make it acceptable to the format of extv. */
1562 if (GET_CODE (xop0) == SUBREG && GET_MODE (xop0) != maxmode)
1563 goto extv_loses;
1564 if (REG_P (xop0) && GET_MODE (xop0) != maxmode)
1565 xop0 = gen_rtx_SUBREG (maxmode, xop0, 0);
1567 /* On big-endian machines, we count bits from the most significant.
1568 If the bit field insn does not, we must invert. */
1569 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1570 xbitpos = unit - bitsize - xbitpos;
1572 /* XBITPOS counts within a size of UNIT.
1573 Adjust to count within a size of MAXMODE. */
1574 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1575 xbitpos += (GET_MODE_BITSIZE (maxmode) - unit);
1577 unit = GET_MODE_BITSIZE (maxmode);
1579 if (xtarget == 0
1580 || (flag_force_mem && MEM_P (xtarget)))
1581 xtarget = xspec_target = gen_reg_rtx (tmode);
1583 if (GET_MODE (xtarget) != maxmode)
1585 if (REG_P (xtarget))
1587 int wider = (GET_MODE_SIZE (maxmode)
1588 > GET_MODE_SIZE (GET_MODE (xtarget)));
1589 xtarget = gen_lowpart (maxmode, xtarget);
1590 if (wider)
1591 xspec_target_subreg = xtarget;
1593 else
1594 xtarget = gen_reg_rtx (maxmode);
1597 /* If this machine's extv insists on a register target,
1598 make sure we have one. */
1599 if (! ((*insn_data[(int) CODE_FOR_extv].operand[0].predicate)
1600 (xtarget, maxmode)))
1601 xtarget = gen_reg_rtx (maxmode);
1603 bitsize_rtx = GEN_INT (bitsize);
1604 bitpos_rtx = GEN_INT (xbitpos);
1606 pat = gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx);
1607 if (pat)
1609 emit_insn (pat);
1610 target = xtarget;
1611 spec_target = xspec_target;
1612 spec_target_subreg = xspec_target_subreg;
1614 else
1616 delete_insns_since (last);
1617 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1618 bitpos, target, 0);
1621 else
1622 extv_loses:
1623 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1624 bitpos, target, 0);
1626 if (target == spec_target)
1627 return target;
1628 if (target == spec_target_subreg)
1629 return spec_target;
1630 if (GET_MODE (target) != tmode && GET_MODE (target) != mode)
1632 /* If the target mode is not a scalar integral, first convert to the
1633 integer mode of that size and then access it as a floating-point
1634 value via a SUBREG. */
1635 if (!SCALAR_INT_MODE_P (tmode))
1637 enum machine_mode smode
1638 = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1639 target = convert_to_mode (smode, target, unsignedp);
1640 target = force_reg (smode, target);
1641 return gen_lowpart (tmode, target);
1644 return convert_to_mode (tmode, target, unsignedp);
1646 return target;
1649 /* Extract a bit field using shifts and boolean operations
1650 Returns an rtx to represent the value.
1651 OP0 addresses a register (word) or memory (byte).
1652 BITPOS says which bit within the word or byte the bit field starts in.
1653 OFFSET says how many bytes farther the bit field starts;
1654 it is 0 if OP0 is a register.
1655 BITSIZE says how many bits long the bit field is.
1656 (If OP0 is a register, it may be narrower than a full word,
1657 but BITPOS still counts within a full word,
1658 which is significant on bigendian machines.)
1660 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1661 If TARGET is nonzero, attempts to store the value there
1662 and return TARGET, but this is not guaranteed.
1663 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1665 static rtx
1666 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1667 unsigned HOST_WIDE_INT offset,
1668 unsigned HOST_WIDE_INT bitsize,
1669 unsigned HOST_WIDE_INT bitpos, rtx target,
1670 int unsignedp)
1672 unsigned int total_bits = BITS_PER_WORD;
1673 enum machine_mode mode;
1675 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1677 /* Special treatment for a bit field split across two registers. */
1678 if (bitsize + bitpos > BITS_PER_WORD)
1679 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1681 else
1683 /* Get the proper mode to use for this field. We want a mode that
1684 includes the entire field. If such a mode would be larger than
1685 a word, we won't be doing the extraction the normal way. */
1687 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1688 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1690 if (mode == VOIDmode)
1691 /* The only way this should occur is if the field spans word
1692 boundaries. */
1693 return extract_split_bit_field (op0, bitsize,
1694 bitpos + offset * BITS_PER_UNIT,
1695 unsignedp);
1697 total_bits = GET_MODE_BITSIZE (mode);
1699 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1700 be in the range 0 to total_bits-1, and put any excess bytes in
1701 OFFSET. */
1702 if (bitpos >= total_bits)
1704 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1705 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1706 * BITS_PER_UNIT);
1709 /* Get ref to an aligned byte, halfword, or word containing the field.
1710 Adjust BITPOS to be position within a word,
1711 and OFFSET to be the offset of that word.
1712 Then alter OP0 to refer to that word. */
1713 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1714 offset -= (offset % (total_bits / BITS_PER_UNIT));
1715 op0 = adjust_address (op0, mode, offset);
1718 mode = GET_MODE (op0);
1720 if (BYTES_BIG_ENDIAN)
1721 /* BITPOS is the distance between our msb and that of OP0.
1722 Convert it to the distance from the lsb. */
1723 bitpos = total_bits - bitsize - bitpos;
1725 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1726 We have reduced the big-endian case to the little-endian case. */
1728 if (unsignedp)
1730 if (bitpos)
1732 /* If the field does not already start at the lsb,
1733 shift it so it does. */
1734 tree amount = build_int_cst (NULL_TREE, bitpos);
1735 /* Maybe propagate the target for the shift. */
1736 /* But not if we will return it--could confuse integrate.c. */
1737 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1738 if (tmode != mode) subtarget = 0;
1739 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1741 /* Convert the value to the desired mode. */
1742 if (mode != tmode)
1743 op0 = convert_to_mode (tmode, op0, 1);
1745 /* Unless the msb of the field used to be the msb when we shifted,
1746 mask out the upper bits. */
1748 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1749 return expand_binop (GET_MODE (op0), and_optab, op0,
1750 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1751 target, 1, OPTAB_LIB_WIDEN);
1752 return op0;
1755 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1756 then arithmetic-shift its lsb to the lsb of the word. */
1757 op0 = force_reg (mode, op0);
1758 if (mode != tmode)
1759 target = 0;
1761 /* Find the narrowest integer mode that contains the field. */
1763 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1764 mode = GET_MODE_WIDER_MODE (mode))
1765 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1767 op0 = convert_to_mode (mode, op0, 0);
1768 break;
1771 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1773 tree amount
1774 = build_int_cst (NULL_TREE,
1775 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1776 /* Maybe propagate the target for the shift. */
1777 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1778 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1781 return expand_shift (RSHIFT_EXPR, mode, op0,
1782 build_int_cst (NULL_TREE,
1783 GET_MODE_BITSIZE (mode) - bitsize),
1784 target, 0);
1787 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1788 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1789 complement of that if COMPLEMENT. The mask is truncated if
1790 necessary to the width of mode MODE. The mask is zero-extended if
1791 BITSIZE+BITPOS is too small for MODE. */
1793 static rtx
1794 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1796 HOST_WIDE_INT masklow, maskhigh;
1798 if (bitsize == 0)
1799 masklow = 0;
1800 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1801 masklow = (HOST_WIDE_INT) -1 << bitpos;
1802 else
1803 masklow = 0;
1805 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1806 masklow &= ((unsigned HOST_WIDE_INT) -1
1807 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1809 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1810 maskhigh = -1;
1811 else
1812 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1814 if (bitsize == 0)
1815 maskhigh = 0;
1816 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1817 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1818 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1819 else
1820 maskhigh = 0;
1822 if (complement)
1824 maskhigh = ~maskhigh;
1825 masklow = ~masklow;
1828 return immed_double_const (masklow, maskhigh, mode);
1831 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1832 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1834 static rtx
1835 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1837 unsigned HOST_WIDE_INT v = INTVAL (value);
1838 HOST_WIDE_INT low, high;
1840 if (bitsize < HOST_BITS_PER_WIDE_INT)
1841 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1843 if (bitpos < HOST_BITS_PER_WIDE_INT)
1845 low = v << bitpos;
1846 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1848 else
1850 low = 0;
1851 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1854 return immed_double_const (low, high, mode);
1857 /* Extract a bit field from a memory by forcing the alignment of the
1858 memory. This efficient only if the field spans at least 4 boundaries.
1860 OP0 is the MEM.
1861 BITSIZE is the field width; BITPOS is the position of the first bit.
1862 UNSIGNEDP is true if the result should be zero-extended. */
1864 static rtx
1865 extract_force_align_mem_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1866 unsigned HOST_WIDE_INT bitpos,
1867 int unsignedp)
1869 enum machine_mode mode, dmode;
1870 unsigned int m_bitsize, m_size;
1871 unsigned int sign_shift_up, sign_shift_dn;
1872 rtx base, a1, a2, v1, v2, comb, shift, result, start;
1874 /* Choose a mode that will fit BITSIZE. */
1875 mode = smallest_mode_for_size (bitsize, MODE_INT);
1876 m_size = GET_MODE_SIZE (mode);
1877 m_bitsize = GET_MODE_BITSIZE (mode);
1879 /* Choose a mode twice as wide. Fail if no such mode exists. */
1880 dmode = mode_for_size (m_bitsize * 2, MODE_INT, false);
1881 if (dmode == BLKmode)
1882 return NULL;
1884 do_pending_stack_adjust ();
1885 start = get_last_insn ();
1887 /* At the end, we'll need an additional shift to deal with sign/zero
1888 extension. By default this will be a left+right shift of the
1889 appropriate size. But we may be able to eliminate one of them. */
1890 sign_shift_up = sign_shift_dn = m_bitsize - bitsize;
1892 if (STRICT_ALIGNMENT)
1894 base = plus_constant (XEXP (op0, 0), bitpos / BITS_PER_UNIT);
1895 bitpos %= BITS_PER_UNIT;
1897 /* We load two values to be concatenate. There's an edge condition
1898 that bears notice -- an aligned value at the end of a page can
1899 only load one value lest we segfault. So the two values we load
1900 are at "base & -size" and "(base + size - 1) & -size". If base
1901 is unaligned, the addresses will be aligned and sequential; if
1902 base is aligned, the addresses will both be equal to base. */
1904 a1 = expand_simple_binop (Pmode, AND, force_operand (base, NULL),
1905 GEN_INT (-(HOST_WIDE_INT)m_size),
1906 NULL, true, OPTAB_LIB_WIDEN);
1907 mark_reg_pointer (a1, m_bitsize);
1908 v1 = gen_rtx_MEM (mode, a1);
1909 set_mem_align (v1, m_bitsize);
1910 v1 = force_reg (mode, validize_mem (v1));
1912 a2 = plus_constant (base, GET_MODE_SIZE (mode) - 1);
1913 a2 = expand_simple_binop (Pmode, AND, force_operand (a2, NULL),
1914 GEN_INT (-(HOST_WIDE_INT)m_size),
1915 NULL, true, OPTAB_LIB_WIDEN);
1916 v2 = gen_rtx_MEM (mode, a2);
1917 set_mem_align (v2, m_bitsize);
1918 v2 = force_reg (mode, validize_mem (v2));
1920 /* Combine these two values into a double-word value. */
1921 if (m_bitsize == BITS_PER_WORD)
1923 comb = gen_reg_rtx (dmode);
1924 emit_insn (gen_rtx_CLOBBER (VOIDmode, comb));
1925 emit_move_insn (gen_rtx_SUBREG (mode, comb, 0), v1);
1926 emit_move_insn (gen_rtx_SUBREG (mode, comb, m_size), v2);
1928 else
1930 if (BYTES_BIG_ENDIAN)
1931 comb = v1, v1 = v2, v2 = comb;
1932 v1 = convert_modes (dmode, mode, v1, true);
1933 if (v1 == NULL)
1934 goto fail;
1935 v2 = convert_modes (dmode, mode, v2, true);
1936 v2 = expand_simple_binop (dmode, ASHIFT, v2, GEN_INT (m_bitsize),
1937 NULL, true, OPTAB_LIB_WIDEN);
1938 if (v2 == NULL)
1939 goto fail;
1940 comb = expand_simple_binop (dmode, IOR, v1, v2, NULL,
1941 true, OPTAB_LIB_WIDEN);
1942 if (comb == NULL)
1943 goto fail;
1946 shift = expand_simple_binop (Pmode, AND, base, GEN_INT (m_size - 1),
1947 NULL, true, OPTAB_LIB_WIDEN);
1948 shift = expand_mult (Pmode, shift, GEN_INT (BITS_PER_UNIT), NULL, 1);
1950 if (bitpos != 0)
1952 if (sign_shift_up <= bitpos)
1953 bitpos -= sign_shift_up, sign_shift_up = 0;
1954 shift = expand_simple_binop (Pmode, PLUS, shift, GEN_INT (bitpos),
1955 NULL, true, OPTAB_LIB_WIDEN);
1958 else
1960 unsigned HOST_WIDE_INT offset = bitpos / BITS_PER_UNIT;
1961 bitpos %= BITS_PER_UNIT;
1963 /* When strict alignment is not required, we can just load directly
1964 from memory without masking. If the remaining BITPOS offset is
1965 small enough, we may be able to do all operations in MODE as
1966 opposed to DMODE. */
1967 if (bitpos + bitsize <= m_bitsize)
1968 dmode = mode;
1969 comb = adjust_address (op0, dmode, offset);
1971 if (sign_shift_up <= bitpos)
1972 bitpos -= sign_shift_up, sign_shift_up = 0;
1973 shift = GEN_INT (bitpos);
1976 /* Shift down the double-word such that the requested value is at bit 0. */
1977 if (shift != const0_rtx)
1978 comb = expand_simple_binop (dmode, unsignedp ? LSHIFTRT : ASHIFTRT,
1979 comb, shift, NULL, unsignedp, OPTAB_LIB_WIDEN);
1980 if (comb == NULL)
1981 goto fail;
1983 /* If the field exactly matches MODE, then all we need to do is return the
1984 lowpart. Otherwise, shift to get the sign bits set properly. */
1985 result = force_reg (mode, gen_lowpart (mode, comb));
1987 if (sign_shift_up)
1988 result = expand_simple_binop (mode, ASHIFT, result,
1989 GEN_INT (sign_shift_up),
1990 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1991 if (sign_shift_dn)
1992 result = expand_simple_binop (mode, unsignedp ? LSHIFTRT : ASHIFTRT,
1993 result, GEN_INT (sign_shift_dn),
1994 NULL_RTX, 0, OPTAB_LIB_WIDEN);
1996 return result;
1998 fail:
1999 delete_insns_since (start);
2000 return NULL;
2003 /* Extract a bit field that is split across two words
2004 and return an RTX for the result.
2006 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2007 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2008 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
2010 static rtx
2011 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
2012 unsigned HOST_WIDE_INT bitpos, int unsignedp)
2014 unsigned int unit;
2015 unsigned int bitsdone = 0;
2016 rtx result = NULL_RTX;
2017 int first = 1;
2019 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2020 much at a time. */
2021 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
2022 unit = BITS_PER_WORD;
2023 else
2025 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
2026 if (0 && bitsize / unit > 2)
2028 rtx tmp = extract_force_align_mem_bit_field (op0, bitsize, bitpos,
2029 unsignedp);
2030 if (tmp)
2031 return tmp;
2035 while (bitsdone < bitsize)
2037 unsigned HOST_WIDE_INT thissize;
2038 rtx part, word;
2039 unsigned HOST_WIDE_INT thispos;
2040 unsigned HOST_WIDE_INT offset;
2042 offset = (bitpos + bitsdone) / unit;
2043 thispos = (bitpos + bitsdone) % unit;
2045 /* THISSIZE must not overrun a word boundary. Otherwise,
2046 extract_fixed_bit_field will call us again, and we will mutually
2047 recurse forever. */
2048 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2049 thissize = MIN (thissize, unit - thispos);
2051 /* If OP0 is a register, then handle OFFSET here.
2053 When handling multiword bitfields, extract_bit_field may pass
2054 down a word_mode SUBREG of a larger REG for a bitfield that actually
2055 crosses a word boundary. Thus, for a SUBREG, we must find
2056 the current word starting from the base register. */
2057 if (GET_CODE (op0) == SUBREG)
2059 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
2060 word = operand_subword_force (SUBREG_REG (op0), word_offset,
2061 GET_MODE (SUBREG_REG (op0)));
2062 offset = 0;
2064 else if (REG_P (op0))
2066 word = operand_subword_force (op0, offset, GET_MODE (op0));
2067 offset = 0;
2069 else
2070 word = op0;
2072 /* Extract the parts in bit-counting order,
2073 whose meaning is determined by BYTES_PER_UNIT.
2074 OFFSET is in UNITs, and UNIT is in bits.
2075 extract_fixed_bit_field wants offset in bytes. */
2076 part = extract_fixed_bit_field (word_mode, word,
2077 offset * unit / BITS_PER_UNIT,
2078 thissize, thispos, 0, 1);
2079 bitsdone += thissize;
2081 /* Shift this part into place for the result. */
2082 if (BYTES_BIG_ENDIAN)
2084 if (bitsize != bitsdone)
2085 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2086 build_int_cst (NULL_TREE, bitsize - bitsdone),
2087 0, 1);
2089 else
2091 if (bitsdone != thissize)
2092 part = expand_shift (LSHIFT_EXPR, word_mode, part,
2093 build_int_cst (NULL_TREE,
2094 bitsdone - thissize), 0, 1);
2097 if (first)
2098 result = part;
2099 else
2100 /* Combine the parts with bitwise or. This works
2101 because we extracted each part as an unsigned bit field. */
2102 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2103 OPTAB_LIB_WIDEN);
2105 first = 0;
2108 /* Unsigned bit field: we are done. */
2109 if (unsignedp)
2110 return result;
2111 /* Signed bit field: sign-extend with two arithmetic shifts. */
2112 result = expand_shift (LSHIFT_EXPR, word_mode, result,
2113 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2114 NULL_RTX, 0);
2115 return expand_shift (RSHIFT_EXPR, word_mode, result,
2116 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
2117 NULL_RTX, 0);
2120 /* Add INC into TARGET. */
2122 void
2123 expand_inc (rtx target, rtx inc)
2125 rtx value = expand_binop (GET_MODE (target), add_optab,
2126 target, inc,
2127 target, 0, OPTAB_LIB_WIDEN);
2128 if (value != target)
2129 emit_move_insn (target, value);
2132 /* Subtract DEC from TARGET. */
2134 void
2135 expand_dec (rtx target, rtx dec)
2137 rtx value = expand_binop (GET_MODE (target), sub_optab,
2138 target, dec,
2139 target, 0, OPTAB_LIB_WIDEN);
2140 if (value != target)
2141 emit_move_insn (target, value);
2144 /* Output a shift instruction for expression code CODE,
2145 with SHIFTED being the rtx for the value to shift,
2146 and AMOUNT the tree for the amount to shift by.
2147 Store the result in the rtx TARGET, if that is convenient.
2148 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2149 Return the rtx for where the value is. */
2152 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2153 tree amount, rtx target, int unsignedp)
2155 rtx op1, temp = 0;
2156 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2157 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2158 int try;
2160 /* Previously detected shift-counts computed by NEGATE_EXPR
2161 and shifted in the other direction; but that does not work
2162 on all machines. */
2164 op1 = expand_expr (amount, NULL_RTX, VOIDmode, 0);
2166 if (SHIFT_COUNT_TRUNCATED)
2168 if (GET_CODE (op1) == CONST_INT
2169 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2170 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2171 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2172 % GET_MODE_BITSIZE (mode));
2173 else if (GET_CODE (op1) == SUBREG
2174 && subreg_lowpart_p (op1))
2175 op1 = SUBREG_REG (op1);
2178 if (op1 == const0_rtx)
2179 return shifted;
2181 /* Check whether its cheaper to implement a left shift by a constant
2182 bit count by a sequence of additions. */
2183 if (code == LSHIFT_EXPR
2184 && GET_CODE (op1) == CONST_INT
2185 && INTVAL (op1) > 0
2186 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2187 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode])
2189 int i;
2190 for (i = 0; i < INTVAL (op1); i++)
2192 temp = force_reg (mode, shifted);
2193 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2194 unsignedp, OPTAB_LIB_WIDEN);
2196 return shifted;
2199 for (try = 0; temp == 0 && try < 3; try++)
2201 enum optab_methods methods;
2203 if (try == 0)
2204 methods = OPTAB_DIRECT;
2205 else if (try == 1)
2206 methods = OPTAB_WIDEN;
2207 else
2208 methods = OPTAB_LIB_WIDEN;
2210 if (rotate)
2212 /* Widening does not work for rotation. */
2213 if (methods == OPTAB_WIDEN)
2214 continue;
2215 else if (methods == OPTAB_LIB_WIDEN)
2217 /* If we have been unable to open-code this by a rotation,
2218 do it as the IOR of two shifts. I.e., to rotate A
2219 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2220 where C is the bitsize of A.
2222 It is theoretically possible that the target machine might
2223 not be able to perform either shift and hence we would
2224 be making two libcalls rather than just the one for the
2225 shift (similarly if IOR could not be done). We will allow
2226 this extremely unlikely lossage to avoid complicating the
2227 code below. */
2229 rtx subtarget = target == shifted ? 0 : target;
2230 rtx temp1;
2231 tree type = TREE_TYPE (amount);
2232 tree new_amount = make_tree (type, op1);
2233 tree other_amount
2234 = fold (build2 (MINUS_EXPR, type,
2235 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2236 amount));
2238 shifted = force_reg (mode, shifted);
2240 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2241 mode, shifted, new_amount, subtarget, 1);
2242 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2243 mode, shifted, other_amount, 0, 1);
2244 return expand_binop (mode, ior_optab, temp, temp1, target,
2245 unsignedp, methods);
2248 temp = expand_binop (mode,
2249 left ? rotl_optab : rotr_optab,
2250 shifted, op1, target, unsignedp, methods);
2252 /* If we don't have the rotate, but we are rotating by a constant
2253 that is in range, try a rotate in the opposite direction. */
2255 if (temp == 0 && GET_CODE (op1) == CONST_INT
2256 && INTVAL (op1) > 0
2257 && (unsigned int) INTVAL (op1) < GET_MODE_BITSIZE (mode))
2258 temp = expand_binop (mode,
2259 left ? rotr_optab : rotl_optab,
2260 shifted,
2261 GEN_INT (GET_MODE_BITSIZE (mode)
2262 - INTVAL (op1)),
2263 target, unsignedp, methods);
2265 else if (unsignedp)
2266 temp = expand_binop (mode,
2267 left ? ashl_optab : lshr_optab,
2268 shifted, op1, target, unsignedp, methods);
2270 /* Do arithmetic shifts.
2271 Also, if we are going to widen the operand, we can just as well
2272 use an arithmetic right-shift instead of a logical one. */
2273 if (temp == 0 && ! rotate
2274 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2276 enum optab_methods methods1 = methods;
2278 /* If trying to widen a log shift to an arithmetic shift,
2279 don't accept an arithmetic shift of the same size. */
2280 if (unsignedp)
2281 methods1 = OPTAB_MUST_WIDEN;
2283 /* Arithmetic shift */
2285 temp = expand_binop (mode,
2286 left ? ashl_optab : ashr_optab,
2287 shifted, op1, target, unsignedp, methods1);
2290 /* We used to try extzv here for logical right shifts, but that was
2291 only useful for one machine, the VAX, and caused poor code
2292 generation there for lshrdi3, so the code was deleted and a
2293 define_expand for lshrsi3 was added to vax.md. */
2296 gcc_assert (temp);
2297 return temp;
2300 enum alg_code { alg_unknown, alg_zero, alg_m, alg_shift,
2301 alg_add_t_m2, alg_sub_t_m2,
2302 alg_add_factor, alg_sub_factor,
2303 alg_add_t2_m, alg_sub_t2_m };
2305 /* This structure holds the "cost" of a multiply sequence. The
2306 "cost" field holds the total rtx_cost of every operator in the
2307 synthetic multiplication sequence, hence cost(a op b) is defined
2308 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2309 The "latency" field holds the minimum possible latency of the
2310 synthetic multiply, on a hypothetical infinitely parallel CPU.
2311 This is the critical path, or the maximum height, of the expression
2312 tree which is the sum of rtx_costs on the most expensive path from
2313 any leaf to the root. Hence latency(a op b) is defined as zero for
2314 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2316 struct mult_cost {
2317 short cost; /* Total rtx_cost of the multiplication sequence. */
2318 short latency; /* The latency of the multiplication sequence. */
2321 /* This macro is used to compare a pointer to a mult_cost against an
2322 single integer "rtx_cost" value. This is equivalent to the macro
2323 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2324 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2325 || ((X)->cost == (Y) && (X)->latency < (Y)))
2327 /* This macro is used to compare two pointers to mult_costs against
2328 each other. The macro returns true if X is cheaper than Y.
2329 Currently, the cheaper of two mult_costs is the one with the
2330 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2331 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2332 || ((X)->cost == (Y)->cost \
2333 && (X)->latency < (Y)->latency))
2335 /* This structure records a sequence of operations.
2336 `ops' is the number of operations recorded.
2337 `cost' is their total cost.
2338 The operations are stored in `op' and the corresponding
2339 logarithms of the integer coefficients in `log'.
2341 These are the operations:
2342 alg_zero total := 0;
2343 alg_m total := multiplicand;
2344 alg_shift total := total * coeff
2345 alg_add_t_m2 total := total + multiplicand * coeff;
2346 alg_sub_t_m2 total := total - multiplicand * coeff;
2347 alg_add_factor total := total * coeff + total;
2348 alg_sub_factor total := total * coeff - total;
2349 alg_add_t2_m total := total * coeff + multiplicand;
2350 alg_sub_t2_m total := total * coeff - multiplicand;
2352 The first operand must be either alg_zero or alg_m. */
2354 struct algorithm
2356 struct mult_cost cost;
2357 short ops;
2358 /* The size of the OP and LOG fields are not directly related to the
2359 word size, but the worst-case algorithms will be if we have few
2360 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2361 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2362 in total wordsize operations. */
2363 enum alg_code op[MAX_BITS_PER_WORD];
2364 char log[MAX_BITS_PER_WORD];
2367 /* The entry for our multiplication cache/hash table. */
2368 struct alg_hash_entry {
2369 /* The number we are multiplying by. */
2370 unsigned int t;
2372 /* The mode in which we are multiplying something by T. */
2373 enum machine_mode mode;
2375 /* The best multiplication algorithm for t. */
2376 enum alg_code alg;
2379 /* The number of cache/hash entries. */
2380 #define NUM_ALG_HASH_ENTRIES 307
2382 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2383 actually a hash table. If we have a collision, that the older
2384 entry is kicked out. */
2385 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2387 /* Indicates the type of fixup needed after a constant multiplication.
2388 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2389 the result should be negated, and ADD_VARIANT means that the
2390 multiplicand should be added to the result. */
2391 enum mult_variant {basic_variant, negate_variant, add_variant};
2393 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2394 const struct mult_cost *, enum machine_mode mode);
2395 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2396 struct algorithm *, enum mult_variant *, int);
2397 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2398 const struct algorithm *, enum mult_variant);
2399 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2400 int, rtx *, int *, int *);
2401 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2402 static rtx extract_high_half (enum machine_mode, rtx);
2403 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2404 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2405 int, int);
2406 /* Compute and return the best algorithm for multiplying by T.
2407 The algorithm must cost less than cost_limit
2408 If retval.cost >= COST_LIMIT, no algorithm was found and all
2409 other field of the returned struct are undefined.
2410 MODE is the machine mode of the multiplication. */
2412 static void
2413 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2414 const struct mult_cost *cost_limit, enum machine_mode mode)
2416 int m;
2417 struct algorithm *alg_in, *best_alg;
2418 struct mult_cost best_cost;
2419 struct mult_cost new_limit;
2420 int op_cost, op_latency;
2421 unsigned HOST_WIDE_INT q;
2422 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2423 int hash_index;
2424 bool cache_hit = false;
2425 enum alg_code cache_alg = alg_zero;
2427 /* Indicate that no algorithm is yet found. If no algorithm
2428 is found, this value will be returned and indicate failure. */
2429 alg_out->cost.cost = cost_limit->cost + 1;
2430 alg_out->cost.latency = cost_limit->latency + 1;
2432 if (cost_limit->cost < 0
2433 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2434 return;
2436 /* Restrict the bits of "t" to the multiplication's mode. */
2437 t &= GET_MODE_MASK (mode);
2439 /* t == 1 can be done in zero cost. */
2440 if (t == 1)
2442 alg_out->ops = 1;
2443 alg_out->cost.cost = 0;
2444 alg_out->cost.latency = 0;
2445 alg_out->op[0] = alg_m;
2446 return;
2449 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2450 fail now. */
2451 if (t == 0)
2453 if (MULT_COST_LESS (cost_limit, zero_cost))
2454 return;
2455 else
2457 alg_out->ops = 1;
2458 alg_out->cost.cost = zero_cost;
2459 alg_out->cost.latency = zero_cost;
2460 alg_out->op[0] = alg_zero;
2461 return;
2465 /* We'll be needing a couple extra algorithm structures now. */
2467 alg_in = alloca (sizeof (struct algorithm));
2468 best_alg = alloca (sizeof (struct algorithm));
2469 best_cost = *cost_limit;
2471 /* Compute the hash index. */
2472 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2474 /* See if we already know what to do for T. */
2475 if (alg_hash[hash_index].t == t
2476 && alg_hash[hash_index].mode == mode
2477 && alg_hash[hash_index].alg != alg_unknown)
2479 cache_hit = true;
2480 cache_alg = alg_hash[hash_index].alg;
2481 switch (cache_alg)
2483 case alg_shift:
2484 goto do_alg_shift;
2486 case alg_add_t_m2:
2487 case alg_sub_t_m2:
2488 goto do_alg_addsub_t_m2;
2490 case alg_add_factor:
2491 case alg_sub_factor:
2492 goto do_alg_addsub_factor;
2494 case alg_add_t2_m:
2495 goto do_alg_add_t2_m;
2497 case alg_sub_t2_m:
2498 goto do_alg_sub_t2_m;
2500 default:
2501 gcc_unreachable ();
2505 /* If we have a group of zero bits at the low-order part of T, try
2506 multiplying by the remaining bits and then doing a shift. */
2508 if ((t & 1) == 0)
2510 do_alg_shift:
2511 m = floor_log2 (t & -t); /* m = number of low zero bits */
2512 if (m < maxm)
2514 q = t >> m;
2515 /* The function expand_shift will choose between a shift and
2516 a sequence of additions, so the observed cost is given as
2517 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2518 op_cost = m * add_cost[mode];
2519 if (shift_cost[mode][m] < op_cost)
2520 op_cost = shift_cost[mode][m];
2521 new_limit.cost = best_cost.cost - op_cost;
2522 new_limit.latency = best_cost.latency - op_cost;
2523 synth_mult (alg_in, q, &new_limit, mode);
2525 alg_in->cost.cost += op_cost;
2526 alg_in->cost.latency += op_cost;
2527 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2529 struct algorithm *x;
2530 best_cost = alg_in->cost;
2531 x = alg_in, alg_in = best_alg, best_alg = x;
2532 best_alg->log[best_alg->ops] = m;
2533 best_alg->op[best_alg->ops] = alg_shift;
2536 if (cache_hit)
2537 goto done;
2540 /* If we have an odd number, add or subtract one. */
2541 if ((t & 1) != 0)
2543 unsigned HOST_WIDE_INT w;
2545 do_alg_addsub_t_m2:
2546 for (w = 1; (w & t) != 0; w <<= 1)
2548 /* If T was -1, then W will be zero after the loop. This is another
2549 case where T ends with ...111. Handling this with (T + 1) and
2550 subtract 1 produces slightly better code and results in algorithm
2551 selection much faster than treating it like the ...0111 case
2552 below. */
2553 if (w == 0
2554 || (w > 2
2555 /* Reject the case where t is 3.
2556 Thus we prefer addition in that case. */
2557 && t != 3))
2559 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2561 op_cost = add_cost[mode];
2562 new_limit.cost = best_cost.cost - op_cost;
2563 new_limit.latency = best_cost.latency - op_cost;
2564 synth_mult (alg_in, t + 1, &new_limit, mode);
2566 alg_in->cost.cost += op_cost;
2567 alg_in->cost.latency += op_cost;
2568 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2570 struct algorithm *x;
2571 best_cost = alg_in->cost;
2572 x = alg_in, alg_in = best_alg, best_alg = x;
2573 best_alg->log[best_alg->ops] = 0;
2574 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2577 else
2579 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2581 op_cost = add_cost[mode];
2582 new_limit.cost = best_cost.cost - op_cost;
2583 new_limit.latency = best_cost.latency - op_cost;
2584 synth_mult (alg_in, t - 1, &new_limit, mode);
2586 alg_in->cost.cost += op_cost;
2587 alg_in->cost.latency += op_cost;
2588 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590 struct algorithm *x;
2591 best_cost = alg_in->cost;
2592 x = alg_in, alg_in = best_alg, best_alg = x;
2593 best_alg->log[best_alg->ops] = 0;
2594 best_alg->op[best_alg->ops] = alg_add_t_m2;
2597 if (cache_hit)
2598 goto done;
2601 /* Look for factors of t of the form
2602 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2603 If we find such a factor, we can multiply by t using an algorithm that
2604 multiplies by q, shift the result by m and add/subtract it to itself.
2606 We search for large factors first and loop down, even if large factors
2607 are less probable than small; if we find a large factor we will find a
2608 good sequence quickly, and therefore be able to prune (by decreasing
2609 COST_LIMIT) the search. */
2611 do_alg_addsub_factor:
2612 for (m = floor_log2 (t - 1); m >= 2; m--)
2614 unsigned HOST_WIDE_INT d;
2616 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2617 if (t % d == 0 && t > d && m < maxm
2618 && (!cache_hit || cache_alg == alg_add_factor))
2620 /* If the target has a cheap shift-and-add instruction use
2621 that in preference to a shift insn followed by an add insn.
2622 Assume that the shift-and-add is "atomic" with a latency
2623 equal to its cost, otherwise assume that on superscalar
2624 hardware the shift may be executed concurrently with the
2625 earlier steps in the algorithm. */
2626 op_cost = add_cost[mode] + shift_cost[mode][m];
2627 if (shiftadd_cost[mode][m] < op_cost)
2629 op_cost = shiftadd_cost[mode][m];
2630 op_latency = op_cost;
2632 else
2633 op_latency = add_cost[mode];
2635 new_limit.cost = best_cost.cost - op_cost;
2636 new_limit.latency = best_cost.latency - op_latency;
2637 synth_mult (alg_in, t / d, &new_limit, mode);
2639 alg_in->cost.cost += op_cost;
2640 alg_in->cost.latency += op_latency;
2641 if (alg_in->cost.latency < op_cost)
2642 alg_in->cost.latency = op_cost;
2643 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2645 struct algorithm *x;
2646 best_cost = alg_in->cost;
2647 x = alg_in, alg_in = best_alg, best_alg = x;
2648 best_alg->log[best_alg->ops] = m;
2649 best_alg->op[best_alg->ops] = alg_add_factor;
2651 /* Other factors will have been taken care of in the recursion. */
2652 break;
2655 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2656 if (t % d == 0 && t > d && m < maxm
2657 && (!cache_hit || cache_alg == alg_sub_factor))
2659 /* If the target has a cheap shift-and-subtract insn use
2660 that in preference to a shift insn followed by a sub insn.
2661 Assume that the shift-and-sub is "atomic" with a latency
2662 equal to it's cost, otherwise assume that on superscalar
2663 hardware the shift may be executed concurrently with the
2664 earlier steps in the algorithm. */
2665 op_cost = add_cost[mode] + shift_cost[mode][m];
2666 if (shiftsub_cost[mode][m] < op_cost)
2668 op_cost = shiftsub_cost[mode][m];
2669 op_latency = op_cost;
2671 else
2672 op_latency = add_cost[mode];
2674 new_limit.cost = best_cost.cost - op_cost;
2675 new_limit.latency = best_cost.latency - op_latency;
2676 synth_mult (alg_in, t / d, &new_limit, mode);
2678 alg_in->cost.cost += op_cost;
2679 alg_in->cost.latency += op_latency;
2680 if (alg_in->cost.latency < op_cost)
2681 alg_in->cost.latency = op_cost;
2682 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2684 struct algorithm *x;
2685 best_cost = alg_in->cost;
2686 x = alg_in, alg_in = best_alg, best_alg = x;
2687 best_alg->log[best_alg->ops] = m;
2688 best_alg->op[best_alg->ops] = alg_sub_factor;
2690 break;
2693 if (cache_hit)
2694 goto done;
2696 /* Try shift-and-add (load effective address) instructions,
2697 i.e. do a*3, a*5, a*9. */
2698 if ((t & 1) != 0)
2700 do_alg_add_t2_m:
2701 q = t - 1;
2702 q = q & -q;
2703 m = exact_log2 (q);
2704 if (m >= 0 && m < maxm)
2706 op_cost = shiftadd_cost[mode][m];
2707 new_limit.cost = best_cost.cost - op_cost;
2708 new_limit.latency = best_cost.latency - op_cost;
2709 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2711 alg_in->cost.cost += op_cost;
2712 alg_in->cost.latency += op_cost;
2713 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2715 struct algorithm *x;
2716 best_cost = alg_in->cost;
2717 x = alg_in, alg_in = best_alg, best_alg = x;
2718 best_alg->log[best_alg->ops] = m;
2719 best_alg->op[best_alg->ops] = alg_add_t2_m;
2722 if (cache_hit)
2723 goto done;
2725 do_alg_sub_t2_m:
2726 q = t + 1;
2727 q = q & -q;
2728 m = exact_log2 (q);
2729 if (m >= 0 && m < maxm)
2731 op_cost = shiftsub_cost[mode][m];
2732 new_limit.cost = best_cost.cost - op_cost;
2733 new_limit.latency = best_cost.latency - op_cost;
2734 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2736 alg_in->cost.cost += op_cost;
2737 alg_in->cost.latency += op_cost;
2738 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2740 struct algorithm *x;
2741 best_cost = alg_in->cost;
2742 x = alg_in, alg_in = best_alg, best_alg = x;
2743 best_alg->log[best_alg->ops] = m;
2744 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2747 if (cache_hit)
2748 goto done;
2751 done:
2752 /* If best_cost has not decreased, we have not found any algorithm. */
2753 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2754 return;
2756 /* Cache the result. */
2757 if (!cache_hit)
2759 alg_hash[hash_index].t = t;
2760 alg_hash[hash_index].mode = mode;
2761 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2764 /* If we are getting a too long sequence for `struct algorithm'
2765 to record, make this search fail. */
2766 if (best_alg->ops == MAX_BITS_PER_WORD)
2767 return;
2769 /* Copy the algorithm from temporary space to the space at alg_out.
2770 We avoid using structure assignment because the majority of
2771 best_alg is normally undefined, and this is a critical function. */
2772 alg_out->ops = best_alg->ops + 1;
2773 alg_out->cost = best_cost;
2774 memcpy (alg_out->op, best_alg->op,
2775 alg_out->ops * sizeof *alg_out->op);
2776 memcpy (alg_out->log, best_alg->log,
2777 alg_out->ops * sizeof *alg_out->log);
2780 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2781 Try three variations:
2783 - a shift/add sequence based on VAL itself
2784 - a shift/add sequence based on -VAL, followed by a negation
2785 - a shift/add sequence based on VAL - 1, followed by an addition.
2787 Return true if the cheapest of these cost less than MULT_COST,
2788 describing the algorithm in *ALG and final fixup in *VARIANT. */
2790 static bool
2791 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2792 struct algorithm *alg, enum mult_variant *variant,
2793 int mult_cost)
2795 struct algorithm alg2;
2796 struct mult_cost limit;
2797 int op_cost;
2799 *variant = basic_variant;
2800 limit.cost = mult_cost;
2801 limit.latency = mult_cost;
2802 synth_mult (alg, val, &limit, mode);
2804 /* This works only if the inverted value actually fits in an
2805 `unsigned int' */
2806 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2808 op_cost = neg_cost[mode];
2809 if (MULT_COST_LESS (&alg->cost, mult_cost))
2811 limit.cost = alg->cost.cost - op_cost;
2812 limit.latency = alg->cost.latency - op_cost;
2814 else
2816 limit.cost = mult_cost - op_cost;
2817 limit.latency = mult_cost - op_cost;
2820 synth_mult (&alg2, -val, &limit, mode);
2821 alg2.cost.cost += op_cost;
2822 alg2.cost.latency += op_cost;
2823 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2824 *alg = alg2, *variant = negate_variant;
2827 /* This proves very useful for division-by-constant. */
2828 op_cost = add_cost[mode];
2829 if (MULT_COST_LESS (&alg->cost, mult_cost))
2831 limit.cost = alg->cost.cost - op_cost;
2832 limit.latency = alg->cost.latency - op_cost;
2834 else
2836 limit.cost = mult_cost - op_cost;
2837 limit.latency = mult_cost - op_cost;
2840 synth_mult (&alg2, val - 1, &limit, mode);
2841 alg2.cost.cost += op_cost;
2842 alg2.cost.latency += op_cost;
2843 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2844 *alg = alg2, *variant = add_variant;
2846 return MULT_COST_LESS (&alg->cost, mult_cost);
2849 /* A subroutine of expand_mult, used for constant multiplications.
2850 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2851 convenient. Use the shift/add sequence described by ALG and apply
2852 the final fixup specified by VARIANT. */
2854 static rtx
2855 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2856 rtx target, const struct algorithm *alg,
2857 enum mult_variant variant)
2859 HOST_WIDE_INT val_so_far;
2860 rtx insn, accum, tem;
2861 int opno;
2862 enum machine_mode nmode;
2864 /* Avoid referencing memory over and over.
2865 For speed, but also for correctness when mem is volatile. */
2866 if (MEM_P (op0))
2867 op0 = force_reg (mode, op0);
2869 /* ACCUM starts out either as OP0 or as a zero, depending on
2870 the first operation. */
2872 if (alg->op[0] == alg_zero)
2874 accum = copy_to_mode_reg (mode, const0_rtx);
2875 val_so_far = 0;
2877 else if (alg->op[0] == alg_m)
2879 accum = copy_to_mode_reg (mode, op0);
2880 val_so_far = 1;
2882 else
2883 gcc_unreachable ();
2885 for (opno = 1; opno < alg->ops; opno++)
2887 int log = alg->log[opno];
2888 rtx shift_subtarget = optimize ? 0 : accum;
2889 rtx add_target
2890 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2891 && !optimize)
2892 ? target : 0;
2893 rtx accum_target = optimize ? 0 : accum;
2895 switch (alg->op[opno])
2897 case alg_shift:
2898 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2899 build_int_cst (NULL_TREE, log),
2900 NULL_RTX, 0);
2901 val_so_far <<= log;
2902 break;
2904 case alg_add_t_m2:
2905 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2906 build_int_cst (NULL_TREE, log),
2907 NULL_RTX, 0);
2908 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2909 add_target ? add_target : accum_target);
2910 val_so_far += (HOST_WIDE_INT) 1 << log;
2911 break;
2913 case alg_sub_t_m2:
2914 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2915 build_int_cst (NULL_TREE, log),
2916 NULL_RTX, 0);
2917 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2918 add_target ? add_target : accum_target);
2919 val_so_far -= (HOST_WIDE_INT) 1 << log;
2920 break;
2922 case alg_add_t2_m:
2923 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2924 build_int_cst (NULL_TREE, log),
2925 shift_subtarget,
2927 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2928 add_target ? add_target : accum_target);
2929 val_so_far = (val_so_far << log) + 1;
2930 break;
2932 case alg_sub_t2_m:
2933 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2934 build_int_cst (NULL_TREE, log),
2935 shift_subtarget, 0);
2936 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2937 add_target ? add_target : accum_target);
2938 val_so_far = (val_so_far << log) - 1;
2939 break;
2941 case alg_add_factor:
2942 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2943 build_int_cst (NULL_TREE, log),
2944 NULL_RTX, 0);
2945 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2946 add_target ? add_target : accum_target);
2947 val_so_far += val_so_far << log;
2948 break;
2950 case alg_sub_factor:
2951 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2952 build_int_cst (NULL_TREE, log),
2953 NULL_RTX, 0);
2954 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2955 (add_target
2956 ? add_target : (optimize ? 0 : tem)));
2957 val_so_far = (val_so_far << log) - val_so_far;
2958 break;
2960 default:
2961 gcc_unreachable ();
2964 /* Write a REG_EQUAL note on the last insn so that we can cse
2965 multiplication sequences. Note that if ACCUM is a SUBREG,
2966 we've set the inner register and must properly indicate
2967 that. */
2969 tem = op0, nmode = mode;
2970 if (GET_CODE (accum) == SUBREG)
2972 nmode = GET_MODE (SUBREG_REG (accum));
2973 tem = gen_lowpart (nmode, op0);
2976 insn = get_last_insn ();
2977 set_unique_reg_note (insn, REG_EQUAL,
2978 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)));
2981 if (variant == negate_variant)
2983 val_so_far = -val_so_far;
2984 accum = expand_unop (mode, neg_optab, accum, target, 0);
2986 else if (variant == add_variant)
2988 val_so_far = val_so_far + 1;
2989 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2992 /* Compare only the bits of val and val_so_far that are significant
2993 in the result mode, to avoid sign-/zero-extension confusion. */
2994 val &= GET_MODE_MASK (mode);
2995 val_so_far &= GET_MODE_MASK (mode);
2996 gcc_assert (val == val_so_far);
2998 return accum;
3001 /* Perform a multiplication and return an rtx for the result.
3002 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3003 TARGET is a suggestion for where to store the result (an rtx).
3005 We check specially for a constant integer as OP1.
3006 If you want this check for OP0 as well, then before calling
3007 you should swap the two operands if OP0 would be constant. */
3010 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3011 int unsignedp)
3013 rtx const_op1 = op1;
3014 enum mult_variant variant;
3015 struct algorithm algorithm;
3017 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3018 less than or equal in size to `unsigned int' this doesn't matter.
3019 If the mode is larger than `unsigned int', then synth_mult works only
3020 if the constant value exactly fits in an `unsigned int' without any
3021 truncation. This means that multiplying by negative values does
3022 not work; results are off by 2^32 on a 32 bit machine. */
3024 /* If we are multiplying in DImode, it may still be a win
3025 to try to work with shifts and adds. */
3026 if (GET_CODE (op1) == CONST_DOUBLE
3027 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_INT
3028 && HOST_BITS_PER_INT >= BITS_PER_WORD
3029 && CONST_DOUBLE_HIGH (op1) == 0)
3030 const_op1 = GEN_INT (CONST_DOUBLE_LOW (op1));
3031 else if (HOST_BITS_PER_INT < GET_MODE_BITSIZE (mode)
3032 && GET_CODE (op1) == CONST_INT
3033 && INTVAL (op1) < 0)
3034 const_op1 = 0;
3036 /* We used to test optimize here, on the grounds that it's better to
3037 produce a smaller program when -O is not used.
3038 But this causes such a terrible slowdown sometimes
3039 that it seems better to use synth_mult always. */
3041 if (const_op1 && GET_CODE (const_op1) == CONST_INT
3042 && (unsignedp || !flag_trapv))
3044 HOST_WIDE_INT coeff = INTVAL (const_op1);
3045 int mult_cost;
3047 /* Special case powers of two. */
3048 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3050 if (coeff == 0)
3051 return const0_rtx;
3052 if (coeff == 1)
3053 return op0;
3054 return expand_shift (LSHIFT_EXPR, mode, op0,
3055 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3056 target, unsignedp);
3059 mult_cost = rtx_cost (gen_rtx_MULT (mode, op0, op1), SET);
3060 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3061 mult_cost))
3062 return expand_mult_const (mode, op0, coeff, target,
3063 &algorithm, variant);
3066 if (GET_CODE (op0) == CONST_DOUBLE)
3068 rtx temp = op0;
3069 op0 = op1;
3070 op1 = temp;
3073 /* Expand x*2.0 as x+x. */
3074 if (GET_CODE (op1) == CONST_DOUBLE
3075 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3077 REAL_VALUE_TYPE d;
3078 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3080 if (REAL_VALUES_EQUAL (d, dconst2))
3082 op0 = force_reg (GET_MODE (op0), op0);
3083 return expand_binop (mode, add_optab, op0, op0,
3084 target, unsignedp, OPTAB_LIB_WIDEN);
3088 /* This used to use umul_optab if unsigned, but for non-widening multiply
3089 there is no difference between signed and unsigned. */
3090 op0 = expand_binop (mode,
3091 ! unsignedp
3092 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3093 ? smulv_optab : smul_optab,
3094 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3095 gcc_assert (op0);
3096 return op0;
3099 /* Return the smallest n such that 2**n >= X. */
3102 ceil_log2 (unsigned HOST_WIDE_INT x)
3104 return floor_log2 (x - 1) + 1;
3107 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3108 replace division by D, and put the least significant N bits of the result
3109 in *MULTIPLIER_PTR and return the most significant bit.
3111 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3112 needed precision is in PRECISION (should be <= N).
3114 PRECISION should be as small as possible so this function can choose
3115 multiplier more freely.
3117 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3118 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3120 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3121 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3123 static
3124 unsigned HOST_WIDE_INT
3125 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3126 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3128 HOST_WIDE_INT mhigh_hi, mlow_hi;
3129 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3130 int lgup, post_shift;
3131 int pow, pow2;
3132 unsigned HOST_WIDE_INT nl, dummy1;
3133 HOST_WIDE_INT nh, dummy2;
3135 /* lgup = ceil(log2(divisor)); */
3136 lgup = ceil_log2 (d);
3138 gcc_assert (lgup <= n);
3140 pow = n + lgup;
3141 pow2 = n + lgup - precision;
3143 /* We could handle this with some effort, but this case is much
3144 better handled directly with a scc insn, so rely on caller using
3145 that. */
3146 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3148 /* mlow = 2^(N + lgup)/d */
3149 if (pow >= HOST_BITS_PER_WIDE_INT)
3151 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3152 nl = 0;
3154 else
3156 nh = 0;
3157 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3159 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3160 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3162 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3163 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3164 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3165 else
3166 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3167 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3168 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3170 gcc_assert (!mhigh_hi || nh - d < d);
3171 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3172 /* Assert that mlow < mhigh. */
3173 gcc_assert (mlow_hi < mhigh_hi
3174 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3176 /* If precision == N, then mlow, mhigh exceed 2^N
3177 (but they do not exceed 2^(N+1)). */
3179 /* Reduce to lowest terms. */
3180 for (post_shift = lgup; post_shift > 0; post_shift--)
3182 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3183 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3184 if (ml_lo >= mh_lo)
3185 break;
3187 mlow_hi = 0;
3188 mlow_lo = ml_lo;
3189 mhigh_hi = 0;
3190 mhigh_lo = mh_lo;
3193 *post_shift_ptr = post_shift;
3194 *lgup_ptr = lgup;
3195 if (n < HOST_BITS_PER_WIDE_INT)
3197 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3198 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3199 return mhigh_lo >= mask;
3201 else
3203 *multiplier_ptr = GEN_INT (mhigh_lo);
3204 return mhigh_hi;
3208 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3209 congruent to 1 (mod 2**N). */
3211 static unsigned HOST_WIDE_INT
3212 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3214 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3216 /* The algorithm notes that the choice y = x satisfies
3217 x*y == 1 mod 2^3, since x is assumed odd.
3218 Each iteration doubles the number of bits of significance in y. */
3220 unsigned HOST_WIDE_INT mask;
3221 unsigned HOST_WIDE_INT y = x;
3222 int nbit = 3;
3224 mask = (n == HOST_BITS_PER_WIDE_INT
3225 ? ~(unsigned HOST_WIDE_INT) 0
3226 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3228 while (nbit < n)
3230 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3231 nbit *= 2;
3233 return y;
3236 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3237 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3238 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3239 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3240 become signed.
3242 The result is put in TARGET if that is convenient.
3244 MODE is the mode of operation. */
3247 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3248 rtx op1, rtx target, int unsignedp)
3250 rtx tem;
3251 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3253 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3254 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3255 NULL_RTX, 0);
3256 tem = expand_and (mode, tem, op1, NULL_RTX);
3257 adj_operand
3258 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3259 adj_operand);
3261 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3262 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3263 NULL_RTX, 0);
3264 tem = expand_and (mode, tem, op0, NULL_RTX);
3265 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3266 target);
3268 return target;
3271 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3273 static rtx
3274 extract_high_half (enum machine_mode mode, rtx op)
3276 enum machine_mode wider_mode;
3278 if (mode == word_mode)
3279 return gen_highpart (mode, op);
3281 wider_mode = GET_MODE_WIDER_MODE (mode);
3282 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3283 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3284 return convert_modes (mode, wider_mode, op, 0);
3287 /* Like expand_mult_highpart, but only consider using a multiplication
3288 optab. OP1 is an rtx for the constant operand. */
3290 static rtx
3291 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3292 rtx target, int unsignedp, int max_cost)
3294 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3295 enum machine_mode wider_mode;
3296 optab moptab;
3297 rtx tem;
3298 int size;
3300 wider_mode = GET_MODE_WIDER_MODE (mode);
3301 size = GET_MODE_BITSIZE (mode);
3303 /* Firstly, try using a multiplication insn that only generates the needed
3304 high part of the product, and in the sign flavor of unsignedp. */
3305 if (mul_highpart_cost[mode] < max_cost)
3307 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3308 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3309 unsignedp, OPTAB_DIRECT);
3310 if (tem)
3311 return tem;
3314 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3315 Need to adjust the result after the multiplication. */
3316 if (size - 1 < BITS_PER_WORD
3317 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3318 + 4 * add_cost[mode] < max_cost))
3320 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3321 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3322 unsignedp, OPTAB_DIRECT);
3323 if (tem)
3324 /* We used the wrong signedness. Adjust the result. */
3325 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3326 tem, unsignedp);
3329 /* Try widening multiplication. */
3330 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3331 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3332 && mul_widen_cost[wider_mode] < max_cost)
3334 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3335 unsignedp, OPTAB_WIDEN);
3336 if (tem)
3337 return extract_high_half (mode, tem);
3340 /* Try widening the mode and perform a non-widening multiplication. */
3341 if (smul_optab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3342 && size - 1 < BITS_PER_WORD
3343 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3345 rtx insns, wop0, wop1;
3347 /* We need to widen the operands, for example to ensure the
3348 constant multiplier is correctly sign or zero extended.
3349 Use a sequence to clean-up any instructions emitted by
3350 the conversions if things don't work out. */
3351 start_sequence ();
3352 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3353 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3354 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3355 unsignedp, OPTAB_WIDEN);
3356 insns = get_insns ();
3357 end_sequence ();
3359 if (tem)
3361 emit_insn (insns);
3362 return extract_high_half (mode, tem);
3366 /* Try widening multiplication of opposite signedness, and adjust. */
3367 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3368 if (moptab->handlers[wider_mode].insn_code != CODE_FOR_nothing
3369 && size - 1 < BITS_PER_WORD
3370 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3371 + 4 * add_cost[mode] < max_cost))
3373 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3374 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3375 if (tem != 0)
3377 tem = extract_high_half (mode, tem);
3378 /* We used the wrong signedness. Adjust the result. */
3379 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3380 target, unsignedp);
3384 return 0;
3387 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3388 putting the high half of the result in TARGET if that is convenient,
3389 and return where the result is. If the operation can not be performed,
3390 0 is returned.
3392 MODE is the mode of operation and result.
3394 UNSIGNEDP nonzero means unsigned multiply.
3396 MAX_COST is the total allowed cost for the expanded RTL. */
3398 static rtx
3399 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3400 rtx target, int unsignedp, int max_cost)
3402 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3403 unsigned HOST_WIDE_INT cnst1;
3404 int extra_cost;
3405 bool sign_adjust = false;
3406 enum mult_variant variant;
3407 struct algorithm alg;
3408 rtx tem;
3410 /* We can't support modes wider than HOST_BITS_PER_INT. */
3411 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3413 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3415 /* We can't optimize modes wider than BITS_PER_WORD.
3416 ??? We might be able to perform double-word arithmetic if
3417 mode == word_mode, however all the cost calculations in
3418 synth_mult etc. assume single-word operations. */
3419 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3420 return expand_mult_highpart_optab (mode, op0, op1, target,
3421 unsignedp, max_cost);
3423 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3425 /* Check whether we try to multiply by a negative constant. */
3426 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3428 sign_adjust = true;
3429 extra_cost += add_cost[mode];
3432 /* See whether shift/add multiplication is cheap enough. */
3433 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3434 max_cost - extra_cost))
3436 /* See whether the specialized multiplication optabs are
3437 cheaper than the shift/add version. */
3438 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3439 alg.cost.cost + extra_cost);
3440 if (tem)
3441 return tem;
3443 tem = convert_to_mode (wider_mode, op0, unsignedp);
3444 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3445 tem = extract_high_half (mode, tem);
3447 /* Adjust result for signedness. */
3448 if (sign_adjust)
3449 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3451 return tem;
3453 return expand_mult_highpart_optab (mode, op0, op1, target,
3454 unsignedp, max_cost);
3458 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3460 static rtx
3461 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3463 unsigned HOST_WIDE_INT masklow, maskhigh;
3464 rtx result, temp, shift, label;
3465 int logd;
3467 logd = floor_log2 (d);
3468 result = gen_reg_rtx (mode);
3470 /* Avoid conditional branches when they're expensive. */
3471 if (BRANCH_COST >= 2
3472 && !optimize_size)
3474 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3475 mode, 0, -1);
3476 if (signmask)
3478 signmask = force_reg (mode, signmask);
3479 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3480 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3482 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3483 which instruction sequence to use. If logical right shifts
3484 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3485 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3487 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3488 if (lshr_optab->handlers[mode].insn_code == CODE_FOR_nothing
3489 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3491 temp = expand_binop (mode, xor_optab, op0, signmask,
3492 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3493 temp = expand_binop (mode, sub_optab, temp, signmask,
3494 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3495 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3496 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3497 temp = expand_binop (mode, xor_optab, temp, signmask,
3498 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3499 temp = expand_binop (mode, sub_optab, temp, signmask,
3500 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3502 else
3504 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3505 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3506 signmask = force_reg (mode, signmask);
3508 temp = expand_binop (mode, add_optab, op0, signmask,
3509 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3510 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3511 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3512 temp = expand_binop (mode, sub_optab, temp, signmask,
3513 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3515 return temp;
3519 /* Mask contains the mode's signbit and the significant bits of the
3520 modulus. By including the signbit in the operation, many targets
3521 can avoid an explicit compare operation in the following comparison
3522 against zero. */
3524 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3525 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3527 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3528 maskhigh = -1;
3530 else
3531 maskhigh = (HOST_WIDE_INT) -1
3532 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3534 temp = expand_binop (mode, and_optab, op0,
3535 immed_double_const (masklow, maskhigh, mode),
3536 result, 1, OPTAB_LIB_WIDEN);
3537 if (temp != result)
3538 emit_move_insn (result, temp);
3540 label = gen_label_rtx ();
3541 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3543 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3544 0, OPTAB_LIB_WIDEN);
3545 masklow = (HOST_WIDE_INT) -1 << logd;
3546 maskhigh = -1;
3547 temp = expand_binop (mode, ior_optab, temp,
3548 immed_double_const (masklow, maskhigh, mode),
3549 result, 1, OPTAB_LIB_WIDEN);
3550 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3551 0, OPTAB_LIB_WIDEN);
3552 if (temp != result)
3553 emit_move_insn (result, temp);
3554 emit_label (label);
3555 return result;
3558 /* Expand signed division of OP0 by a power of two D in mode MODE.
3559 This routine is only called for positive values of D. */
3561 static rtx
3562 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3564 rtx temp, label;
3565 tree shift;
3566 int logd;
3568 logd = floor_log2 (d);
3569 shift = build_int_cst (NULL_TREE, logd);
3571 if (d == 2 && BRANCH_COST >= 1)
3573 temp = gen_reg_rtx (mode);
3574 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3575 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3576 0, OPTAB_LIB_WIDEN);
3577 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3580 #ifdef HAVE_conditional_move
3581 if (BRANCH_COST >= 2)
3583 rtx temp2;
3585 /* ??? emit_conditional_move forces a stack adjustment via
3586 compare_from_rtx so, if the sequence is discarded, it will
3587 be lost. Do it now instead. */
3588 do_pending_stack_adjust ();
3590 start_sequence ();
3591 temp2 = copy_to_mode_reg (mode, op0);
3592 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3593 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3594 temp = force_reg (mode, temp);
3596 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3597 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3598 mode, temp, temp2, mode, 0);
3599 if (temp2)
3601 rtx seq = get_insns ();
3602 end_sequence ();
3603 emit_insn (seq);
3604 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3606 end_sequence ();
3608 #endif
3610 if (BRANCH_COST >= 2)
3612 int ushift = GET_MODE_BITSIZE (mode) - logd;
3614 temp = gen_reg_rtx (mode);
3615 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3616 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3617 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3618 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3619 else
3620 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3621 build_int_cst (NULL_TREE, ushift),
3622 NULL_RTX, 1);
3623 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3624 0, OPTAB_LIB_WIDEN);
3625 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3628 label = gen_label_rtx ();
3629 temp = copy_to_mode_reg (mode, op0);
3630 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3631 expand_inc (temp, GEN_INT (d - 1));
3632 emit_label (label);
3633 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3636 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3637 if that is convenient, and returning where the result is.
3638 You may request either the quotient or the remainder as the result;
3639 specify REM_FLAG nonzero to get the remainder.
3641 CODE is the expression code for which kind of division this is;
3642 it controls how rounding is done. MODE is the machine mode to use.
3643 UNSIGNEDP nonzero means do unsigned division. */
3645 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3646 and then correct it by or'ing in missing high bits
3647 if result of ANDI is nonzero.
3648 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3649 This could optimize to a bfexts instruction.
3650 But C doesn't use these operations, so their optimizations are
3651 left for later. */
3652 /* ??? For modulo, we don't actually need the highpart of the first product,
3653 the low part will do nicely. And for small divisors, the second multiply
3654 can also be a low-part only multiply or even be completely left out.
3655 E.g. to calculate the remainder of a division by 3 with a 32 bit
3656 multiply, multiply with 0x55555556 and extract the upper two bits;
3657 the result is exact for inputs up to 0x1fffffff.
3658 The input range can be reduced by using cross-sum rules.
3659 For odd divisors >= 3, the following table gives right shift counts
3660 so that if a number is shifted by an integer multiple of the given
3661 amount, the remainder stays the same:
3662 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3663 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3664 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3665 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3666 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3668 Cross-sum rules for even numbers can be derived by leaving as many bits
3669 to the right alone as the divisor has zeros to the right.
3670 E.g. if x is an unsigned 32 bit number:
3671 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3675 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3676 rtx op0, rtx op1, rtx target, int unsignedp)
3678 enum machine_mode compute_mode;
3679 rtx tquotient;
3680 rtx quotient = 0, remainder = 0;
3681 rtx last;
3682 int size;
3683 rtx insn, set;
3684 optab optab1, optab2;
3685 int op1_is_constant, op1_is_pow2 = 0;
3686 int max_cost, extra_cost;
3687 static HOST_WIDE_INT last_div_const = 0;
3688 static HOST_WIDE_INT ext_op1;
3690 op1_is_constant = GET_CODE (op1) == CONST_INT;
3691 if (op1_is_constant)
3693 ext_op1 = INTVAL (op1);
3694 if (unsignedp)
3695 ext_op1 &= GET_MODE_MASK (mode);
3696 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3697 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3701 This is the structure of expand_divmod:
3703 First comes code to fix up the operands so we can perform the operations
3704 correctly and efficiently.
3706 Second comes a switch statement with code specific for each rounding mode.
3707 For some special operands this code emits all RTL for the desired
3708 operation, for other cases, it generates only a quotient and stores it in
3709 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3710 to indicate that it has not done anything.
3712 Last comes code that finishes the operation. If QUOTIENT is set and
3713 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3714 QUOTIENT is not set, it is computed using trunc rounding.
3716 We try to generate special code for division and remainder when OP1 is a
3717 constant. If |OP1| = 2**n we can use shifts and some other fast
3718 operations. For other values of OP1, we compute a carefully selected
3719 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3720 by m.
3722 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3723 half of the product. Different strategies for generating the product are
3724 implemented in expand_mult_highpart.
3726 If what we actually want is the remainder, we generate that by another
3727 by-constant multiplication and a subtraction. */
3729 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3730 code below will malfunction if we are, so check here and handle
3731 the special case if so. */
3732 if (op1 == const1_rtx)
3733 return rem_flag ? const0_rtx : op0;
3735 /* When dividing by -1, we could get an overflow.
3736 negv_optab can handle overflows. */
3737 if (! unsignedp && op1 == constm1_rtx)
3739 if (rem_flag)
3740 return const0_rtx;
3741 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3742 ? negv_optab : neg_optab, op0, target, 0);
3745 if (target
3746 /* Don't use the function value register as a target
3747 since we have to read it as well as write it,
3748 and function-inlining gets confused by this. */
3749 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3750 /* Don't clobber an operand while doing a multi-step calculation. */
3751 || ((rem_flag || op1_is_constant)
3752 && (reg_mentioned_p (target, op0)
3753 || (MEM_P (op0) && MEM_P (target))))
3754 || reg_mentioned_p (target, op1)
3755 || (MEM_P (op1) && MEM_P (target))))
3756 target = 0;
3758 /* Get the mode in which to perform this computation. Normally it will
3759 be MODE, but sometimes we can't do the desired operation in MODE.
3760 If so, pick a wider mode in which we can do the operation. Convert
3761 to that mode at the start to avoid repeated conversions.
3763 First see what operations we need. These depend on the expression
3764 we are evaluating. (We assume that divxx3 insns exist under the
3765 same conditions that modxx3 insns and that these insns don't normally
3766 fail. If these assumptions are not correct, we may generate less
3767 efficient code in some cases.)
3769 Then see if we find a mode in which we can open-code that operation
3770 (either a division, modulus, or shift). Finally, check for the smallest
3771 mode for which we can do the operation with a library call. */
3773 /* We might want to refine this now that we have division-by-constant
3774 optimization. Since expand_mult_highpart tries so many variants, it is
3775 not straightforward to generalize this. Maybe we should make an array
3776 of possible modes in init_expmed? Save this for GCC 2.7. */
3778 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3779 ? (unsignedp ? lshr_optab : ashr_optab)
3780 : (unsignedp ? udiv_optab : sdiv_optab));
3781 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3782 ? optab1
3783 : (unsignedp ? udivmod_optab : sdivmod_optab));
3785 for (compute_mode = mode; compute_mode != VOIDmode;
3786 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3787 if (optab1->handlers[compute_mode].insn_code != CODE_FOR_nothing
3788 || optab2->handlers[compute_mode].insn_code != CODE_FOR_nothing)
3789 break;
3791 if (compute_mode == VOIDmode)
3792 for (compute_mode = mode; compute_mode != VOIDmode;
3793 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3794 if (optab1->handlers[compute_mode].libfunc
3795 || optab2->handlers[compute_mode].libfunc)
3796 break;
3798 /* If we still couldn't find a mode, use MODE, but we'll probably abort
3799 in expand_binop. */
3800 if (compute_mode == VOIDmode)
3801 compute_mode = mode;
3803 if (target && GET_MODE (target) == compute_mode)
3804 tquotient = target;
3805 else
3806 tquotient = gen_reg_rtx (compute_mode);
3808 size = GET_MODE_BITSIZE (compute_mode);
3809 #if 0
3810 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3811 (mode), and thereby get better code when OP1 is a constant. Do that
3812 later. It will require going over all usages of SIZE below. */
3813 size = GET_MODE_BITSIZE (mode);
3814 #endif
3816 /* Only deduct something for a REM if the last divide done was
3817 for a different constant. Then set the constant of the last
3818 divide. */
3819 max_cost = div_cost[compute_mode]
3820 - (rem_flag && ! (last_div_const != 0 && op1_is_constant
3821 && INTVAL (op1) == last_div_const)
3822 ? mul_cost[compute_mode] + add_cost[compute_mode]
3823 : 0);
3825 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3827 /* Now convert to the best mode to use. */
3828 if (compute_mode != mode)
3830 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3831 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3833 /* convert_modes may have placed op1 into a register, so we
3834 must recompute the following. */
3835 op1_is_constant = GET_CODE (op1) == CONST_INT;
3836 op1_is_pow2 = (op1_is_constant
3837 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3838 || (! unsignedp
3839 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3842 /* If one of the operands is a volatile MEM, copy it into a register. */
3844 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3845 op0 = force_reg (compute_mode, op0);
3846 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3847 op1 = force_reg (compute_mode, op1);
3849 /* If we need the remainder or if OP1 is constant, we need to
3850 put OP0 in a register in case it has any queued subexpressions. */
3851 if (rem_flag || op1_is_constant)
3852 op0 = force_reg (compute_mode, op0);
3854 last = get_last_insn ();
3856 /* Promote floor rounding to trunc rounding for unsigned operations. */
3857 if (unsignedp)
3859 if (code == FLOOR_DIV_EXPR)
3860 code = TRUNC_DIV_EXPR;
3861 if (code == FLOOR_MOD_EXPR)
3862 code = TRUNC_MOD_EXPR;
3863 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3864 code = TRUNC_DIV_EXPR;
3867 if (op1 != const0_rtx)
3868 switch (code)
3870 case TRUNC_MOD_EXPR:
3871 case TRUNC_DIV_EXPR:
3872 if (op1_is_constant)
3874 if (unsignedp)
3876 unsigned HOST_WIDE_INT mh;
3877 int pre_shift, post_shift;
3878 int dummy;
3879 rtx ml;
3880 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3881 & GET_MODE_MASK (compute_mode));
3883 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3885 pre_shift = floor_log2 (d);
3886 if (rem_flag)
3888 remainder
3889 = expand_binop (compute_mode, and_optab, op0,
3890 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3891 remainder, 1,
3892 OPTAB_LIB_WIDEN);
3893 if (remainder)
3894 return gen_lowpart (mode, remainder);
3896 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3897 build_int_cst (NULL_TREE,
3898 pre_shift),
3899 tquotient, 1);
3901 else if (size <= HOST_BITS_PER_WIDE_INT)
3903 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3905 /* Most significant bit of divisor is set; emit an scc
3906 insn. */
3907 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3908 compute_mode, 1, 1);
3909 if (quotient == 0)
3910 goto fail1;
3912 else
3914 /* Find a suitable multiplier and right shift count
3915 instead of multiplying with D. */
3917 mh = choose_multiplier (d, size, size,
3918 &ml, &post_shift, &dummy);
3920 /* If the suggested multiplier is more than SIZE bits,
3921 we can do better for even divisors, using an
3922 initial right shift. */
3923 if (mh != 0 && (d & 1) == 0)
3925 pre_shift = floor_log2 (d & -d);
3926 mh = choose_multiplier (d >> pre_shift, size,
3927 size - pre_shift,
3928 &ml, &post_shift, &dummy);
3929 gcc_assert (!mh);
3931 else
3932 pre_shift = 0;
3934 if (mh != 0)
3936 rtx t1, t2, t3, t4;
3938 if (post_shift - 1 >= BITS_PER_WORD)
3939 goto fail1;
3941 extra_cost
3942 = (shift_cost[compute_mode][post_shift - 1]
3943 + shift_cost[compute_mode][1]
3944 + 2 * add_cost[compute_mode]);
3945 t1 = expand_mult_highpart (compute_mode, op0, ml,
3946 NULL_RTX, 1,
3947 max_cost - extra_cost);
3948 if (t1 == 0)
3949 goto fail1;
3950 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3951 op0, t1),
3952 NULL_RTX);
3953 t3 = expand_shift
3954 (RSHIFT_EXPR, compute_mode, t2,
3955 build_int_cst (NULL_TREE, 1),
3956 NULL_RTX,1);
3957 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3958 t1, t3),
3959 NULL_RTX);
3960 quotient = expand_shift
3961 (RSHIFT_EXPR, compute_mode, t4,
3962 build_int_cst (NULL_TREE, post_shift - 1),
3963 tquotient, 1);
3965 else
3967 rtx t1, t2;
3969 if (pre_shift >= BITS_PER_WORD
3970 || post_shift >= BITS_PER_WORD)
3971 goto fail1;
3973 t1 = expand_shift
3974 (RSHIFT_EXPR, compute_mode, op0,
3975 build_int_cst (NULL_TREE, pre_shift),
3976 NULL_RTX, 1);
3977 extra_cost
3978 = (shift_cost[compute_mode][pre_shift]
3979 + shift_cost[compute_mode][post_shift]);
3980 t2 = expand_mult_highpart (compute_mode, t1, ml,
3981 NULL_RTX, 1,
3982 max_cost - extra_cost);
3983 if (t2 == 0)
3984 goto fail1;
3985 quotient = expand_shift
3986 (RSHIFT_EXPR, compute_mode, t2,
3987 build_int_cst (NULL_TREE, post_shift),
3988 tquotient, 1);
3992 else /* Too wide mode to use tricky code */
3993 break;
3995 insn = get_last_insn ();
3996 if (insn != last
3997 && (set = single_set (insn)) != 0
3998 && SET_DEST (set) == quotient)
3999 set_unique_reg_note (insn,
4000 REG_EQUAL,
4001 gen_rtx_UDIV (compute_mode, op0, op1));
4003 else /* TRUNC_DIV, signed */
4005 unsigned HOST_WIDE_INT ml;
4006 int lgup, post_shift;
4007 rtx mlr;
4008 HOST_WIDE_INT d = INTVAL (op1);
4009 unsigned HOST_WIDE_INT abs_d = d >= 0 ? d : -d;
4011 /* n rem d = n rem -d */
4012 if (rem_flag && d < 0)
4014 d = abs_d;
4015 op1 = gen_int_mode (abs_d, compute_mode);
4018 if (d == 1)
4019 quotient = op0;
4020 else if (d == -1)
4021 quotient = expand_unop (compute_mode, neg_optab, op0,
4022 tquotient, 0);
4023 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4025 /* This case is not handled correctly below. */
4026 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4027 compute_mode, 1, 1);
4028 if (quotient == 0)
4029 goto fail1;
4031 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4032 && (rem_flag ? smod_pow2_cheap[compute_mode]
4033 : sdiv_pow2_cheap[compute_mode])
4034 /* We assume that cheap metric is true if the
4035 optab has an expander for this mode. */
4036 && (((rem_flag ? smod_optab : sdiv_optab)
4037 ->handlers[compute_mode].insn_code
4038 != CODE_FOR_nothing)
4039 || (sdivmod_optab->handlers[compute_mode]
4040 .insn_code != CODE_FOR_nothing)))
4042 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4044 if (rem_flag)
4046 remainder = expand_smod_pow2 (compute_mode, op0, d);
4047 if (remainder)
4048 return gen_lowpart (mode, remainder);
4051 if (sdiv_pow2_cheap[compute_mode]
4052 && ((sdiv_optab->handlers[compute_mode].insn_code
4053 != CODE_FOR_nothing)
4054 || (sdivmod_optab->handlers[compute_mode].insn_code
4055 != CODE_FOR_nothing)))
4056 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4057 compute_mode, op0,
4058 gen_int_mode (abs_d,
4059 compute_mode),
4060 NULL_RTX, 0);
4061 else
4062 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4064 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4065 negate the quotient. */
4066 if (d < 0)
4068 insn = get_last_insn ();
4069 if (insn != last
4070 && (set = single_set (insn)) != 0
4071 && SET_DEST (set) == quotient
4072 && abs_d < ((unsigned HOST_WIDE_INT) 1
4073 << (HOST_BITS_PER_WIDE_INT - 1)))
4074 set_unique_reg_note (insn,
4075 REG_EQUAL,
4076 gen_rtx_DIV (compute_mode,
4077 op0,
4078 GEN_INT
4079 (trunc_int_for_mode
4080 (abs_d,
4081 compute_mode))));
4083 quotient = expand_unop (compute_mode, neg_optab,
4084 quotient, quotient, 0);
4087 else if (size <= HOST_BITS_PER_WIDE_INT)
4089 choose_multiplier (abs_d, size, size - 1,
4090 &mlr, &post_shift, &lgup);
4091 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4092 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4094 rtx t1, t2, t3;
4096 if (post_shift >= BITS_PER_WORD
4097 || size - 1 >= BITS_PER_WORD)
4098 goto fail1;
4100 extra_cost = (shift_cost[compute_mode][post_shift]
4101 + shift_cost[compute_mode][size - 1]
4102 + add_cost[compute_mode]);
4103 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4104 NULL_RTX, 0,
4105 max_cost - extra_cost);
4106 if (t1 == 0)
4107 goto fail1;
4108 t2 = expand_shift
4109 (RSHIFT_EXPR, compute_mode, t1,
4110 build_int_cst (NULL_TREE, post_shift),
4111 NULL_RTX, 0);
4112 t3 = expand_shift
4113 (RSHIFT_EXPR, compute_mode, op0,
4114 build_int_cst (NULL_TREE, size - 1),
4115 NULL_RTX, 0);
4116 if (d < 0)
4117 quotient
4118 = force_operand (gen_rtx_MINUS (compute_mode,
4119 t3, t2),
4120 tquotient);
4121 else
4122 quotient
4123 = force_operand (gen_rtx_MINUS (compute_mode,
4124 t2, t3),
4125 tquotient);
4127 else
4129 rtx t1, t2, t3, t4;
4131 if (post_shift >= BITS_PER_WORD
4132 || size - 1 >= BITS_PER_WORD)
4133 goto fail1;
4135 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4136 mlr = gen_int_mode (ml, compute_mode);
4137 extra_cost = (shift_cost[compute_mode][post_shift]
4138 + shift_cost[compute_mode][size - 1]
4139 + 2 * add_cost[compute_mode]);
4140 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4141 NULL_RTX, 0,
4142 max_cost - extra_cost);
4143 if (t1 == 0)
4144 goto fail1;
4145 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4146 t1, op0),
4147 NULL_RTX);
4148 t3 = expand_shift
4149 (RSHIFT_EXPR, compute_mode, t2,
4150 build_int_cst (NULL_TREE, post_shift),
4151 NULL_RTX, 0);
4152 t4 = expand_shift
4153 (RSHIFT_EXPR, compute_mode, op0,
4154 build_int_cst (NULL_TREE, size - 1),
4155 NULL_RTX, 0);
4156 if (d < 0)
4157 quotient
4158 = force_operand (gen_rtx_MINUS (compute_mode,
4159 t4, t3),
4160 tquotient);
4161 else
4162 quotient
4163 = force_operand (gen_rtx_MINUS (compute_mode,
4164 t3, t4),
4165 tquotient);
4168 else /* Too wide mode to use tricky code */
4169 break;
4171 insn = get_last_insn ();
4172 if (insn != last
4173 && (set = single_set (insn)) != 0
4174 && SET_DEST (set) == quotient)
4175 set_unique_reg_note (insn,
4176 REG_EQUAL,
4177 gen_rtx_DIV (compute_mode, op0, op1));
4179 break;
4181 fail1:
4182 delete_insns_since (last);
4183 break;
4185 case FLOOR_DIV_EXPR:
4186 case FLOOR_MOD_EXPR:
4187 /* We will come here only for signed operations. */
4188 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4190 unsigned HOST_WIDE_INT mh;
4191 int pre_shift, lgup, post_shift;
4192 HOST_WIDE_INT d = INTVAL (op1);
4193 rtx ml;
4195 if (d > 0)
4197 /* We could just as easily deal with negative constants here,
4198 but it does not seem worth the trouble for GCC 2.6. */
4199 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4201 pre_shift = floor_log2 (d);
4202 if (rem_flag)
4204 remainder = expand_binop (compute_mode, and_optab, op0,
4205 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4206 remainder, 0, OPTAB_LIB_WIDEN);
4207 if (remainder)
4208 return gen_lowpart (mode, remainder);
4210 quotient = expand_shift
4211 (RSHIFT_EXPR, compute_mode, op0,
4212 build_int_cst (NULL_TREE, pre_shift),
4213 tquotient, 0);
4215 else
4217 rtx t1, t2, t3, t4;
4219 mh = choose_multiplier (d, size, size - 1,
4220 &ml, &post_shift, &lgup);
4221 gcc_assert (!mh);
4223 if (post_shift < BITS_PER_WORD
4224 && size - 1 < BITS_PER_WORD)
4226 t1 = expand_shift
4227 (RSHIFT_EXPR, compute_mode, op0,
4228 build_int_cst (NULL_TREE, size - 1),
4229 NULL_RTX, 0);
4230 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4231 NULL_RTX, 0, OPTAB_WIDEN);
4232 extra_cost = (shift_cost[compute_mode][post_shift]
4233 + shift_cost[compute_mode][size - 1]
4234 + 2 * add_cost[compute_mode]);
4235 t3 = expand_mult_highpart (compute_mode, t2, ml,
4236 NULL_RTX, 1,
4237 max_cost - extra_cost);
4238 if (t3 != 0)
4240 t4 = expand_shift
4241 (RSHIFT_EXPR, compute_mode, t3,
4242 build_int_cst (NULL_TREE, post_shift),
4243 NULL_RTX, 1);
4244 quotient = expand_binop (compute_mode, xor_optab,
4245 t4, t1, tquotient, 0,
4246 OPTAB_WIDEN);
4251 else
4253 rtx nsign, t1, t2, t3, t4;
4254 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4255 op0, constm1_rtx), NULL_RTX);
4256 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4257 0, OPTAB_WIDEN);
4258 nsign = expand_shift
4259 (RSHIFT_EXPR, compute_mode, t2,
4260 build_int_cst (NULL_TREE, size - 1),
4261 NULL_RTX, 0);
4262 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4263 NULL_RTX);
4264 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4265 NULL_RTX, 0);
4266 if (t4)
4268 rtx t5;
4269 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4270 NULL_RTX, 0);
4271 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4272 t4, t5),
4273 tquotient);
4278 if (quotient != 0)
4279 break;
4280 delete_insns_since (last);
4282 /* Try using an instruction that produces both the quotient and
4283 remainder, using truncation. We can easily compensate the quotient
4284 or remainder to get floor rounding, once we have the remainder.
4285 Notice that we compute also the final remainder value here,
4286 and return the result right away. */
4287 if (target == 0 || GET_MODE (target) != compute_mode)
4288 target = gen_reg_rtx (compute_mode);
4290 if (rem_flag)
4292 remainder
4293 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4294 quotient = gen_reg_rtx (compute_mode);
4296 else
4298 quotient
4299 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4300 remainder = gen_reg_rtx (compute_mode);
4303 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4304 quotient, remainder, 0))
4306 /* This could be computed with a branch-less sequence.
4307 Save that for later. */
4308 rtx tem;
4309 rtx label = gen_label_rtx ();
4310 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4311 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4312 NULL_RTX, 0, OPTAB_WIDEN);
4313 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4314 expand_dec (quotient, const1_rtx);
4315 expand_inc (remainder, op1);
4316 emit_label (label);
4317 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4320 /* No luck with division elimination or divmod. Have to do it
4321 by conditionally adjusting op0 *and* the result. */
4323 rtx label1, label2, label3, label4, label5;
4324 rtx adjusted_op0;
4325 rtx tem;
4327 quotient = gen_reg_rtx (compute_mode);
4328 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4329 label1 = gen_label_rtx ();
4330 label2 = gen_label_rtx ();
4331 label3 = gen_label_rtx ();
4332 label4 = gen_label_rtx ();
4333 label5 = gen_label_rtx ();
4334 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4335 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4336 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4337 quotient, 0, OPTAB_LIB_WIDEN);
4338 if (tem != quotient)
4339 emit_move_insn (quotient, tem);
4340 emit_jump_insn (gen_jump (label5));
4341 emit_barrier ();
4342 emit_label (label1);
4343 expand_inc (adjusted_op0, const1_rtx);
4344 emit_jump_insn (gen_jump (label4));
4345 emit_barrier ();
4346 emit_label (label2);
4347 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4348 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4349 quotient, 0, OPTAB_LIB_WIDEN);
4350 if (tem != quotient)
4351 emit_move_insn (quotient, tem);
4352 emit_jump_insn (gen_jump (label5));
4353 emit_barrier ();
4354 emit_label (label3);
4355 expand_dec (adjusted_op0, const1_rtx);
4356 emit_label (label4);
4357 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4358 quotient, 0, OPTAB_LIB_WIDEN);
4359 if (tem != quotient)
4360 emit_move_insn (quotient, tem);
4361 expand_dec (quotient, const1_rtx);
4362 emit_label (label5);
4364 break;
4366 case CEIL_DIV_EXPR:
4367 case CEIL_MOD_EXPR:
4368 if (unsignedp)
4370 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4372 rtx t1, t2, t3;
4373 unsigned HOST_WIDE_INT d = INTVAL (op1);
4374 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4375 build_int_cst (NULL_TREE, floor_log2 (d)),
4376 tquotient, 1);
4377 t2 = expand_binop (compute_mode, and_optab, op0,
4378 GEN_INT (d - 1),
4379 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4380 t3 = gen_reg_rtx (compute_mode);
4381 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4382 compute_mode, 1, 1);
4383 if (t3 == 0)
4385 rtx lab;
4386 lab = gen_label_rtx ();
4387 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4388 expand_inc (t1, const1_rtx);
4389 emit_label (lab);
4390 quotient = t1;
4392 else
4393 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4394 t1, t3),
4395 tquotient);
4396 break;
4399 /* Try using an instruction that produces both the quotient and
4400 remainder, using truncation. We can easily compensate the
4401 quotient or remainder to get ceiling rounding, once we have the
4402 remainder. Notice that we compute also the final remainder
4403 value here, and return the result right away. */
4404 if (target == 0 || GET_MODE (target) != compute_mode)
4405 target = gen_reg_rtx (compute_mode);
4407 if (rem_flag)
4409 remainder = (REG_P (target)
4410 ? target : gen_reg_rtx (compute_mode));
4411 quotient = gen_reg_rtx (compute_mode);
4413 else
4415 quotient = (REG_P (target)
4416 ? target : gen_reg_rtx (compute_mode));
4417 remainder = gen_reg_rtx (compute_mode);
4420 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4421 remainder, 1))
4423 /* This could be computed with a branch-less sequence.
4424 Save that for later. */
4425 rtx label = gen_label_rtx ();
4426 do_cmp_and_jump (remainder, const0_rtx, EQ,
4427 compute_mode, label);
4428 expand_inc (quotient, const1_rtx);
4429 expand_dec (remainder, op1);
4430 emit_label (label);
4431 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4434 /* No luck with division elimination or divmod. Have to do it
4435 by conditionally adjusting op0 *and* the result. */
4437 rtx label1, label2;
4438 rtx adjusted_op0, tem;
4440 quotient = gen_reg_rtx (compute_mode);
4441 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4442 label1 = gen_label_rtx ();
4443 label2 = gen_label_rtx ();
4444 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4445 compute_mode, label1);
4446 emit_move_insn (quotient, const0_rtx);
4447 emit_jump_insn (gen_jump (label2));
4448 emit_barrier ();
4449 emit_label (label1);
4450 expand_dec (adjusted_op0, const1_rtx);
4451 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4452 quotient, 1, OPTAB_LIB_WIDEN);
4453 if (tem != quotient)
4454 emit_move_insn (quotient, tem);
4455 expand_inc (quotient, const1_rtx);
4456 emit_label (label2);
4459 else /* signed */
4461 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4462 && INTVAL (op1) >= 0)
4464 /* This is extremely similar to the code for the unsigned case
4465 above. For 2.7 we should merge these variants, but for
4466 2.6.1 I don't want to touch the code for unsigned since that
4467 get used in C. The signed case will only be used by other
4468 languages (Ada). */
4470 rtx t1, t2, t3;
4471 unsigned HOST_WIDE_INT d = INTVAL (op1);
4472 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4473 build_int_cst (NULL_TREE, floor_log2 (d)),
4474 tquotient, 0);
4475 t2 = expand_binop (compute_mode, and_optab, op0,
4476 GEN_INT (d - 1),
4477 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4478 t3 = gen_reg_rtx (compute_mode);
4479 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4480 compute_mode, 1, 1);
4481 if (t3 == 0)
4483 rtx lab;
4484 lab = gen_label_rtx ();
4485 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4486 expand_inc (t1, const1_rtx);
4487 emit_label (lab);
4488 quotient = t1;
4490 else
4491 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4492 t1, t3),
4493 tquotient);
4494 break;
4497 /* Try using an instruction that produces both the quotient and
4498 remainder, using truncation. We can easily compensate the
4499 quotient or remainder to get ceiling rounding, once we have the
4500 remainder. Notice that we compute also the final remainder
4501 value here, and return the result right away. */
4502 if (target == 0 || GET_MODE (target) != compute_mode)
4503 target = gen_reg_rtx (compute_mode);
4504 if (rem_flag)
4506 remainder= (REG_P (target)
4507 ? target : gen_reg_rtx (compute_mode));
4508 quotient = gen_reg_rtx (compute_mode);
4510 else
4512 quotient = (REG_P (target)
4513 ? target : gen_reg_rtx (compute_mode));
4514 remainder = gen_reg_rtx (compute_mode);
4517 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4518 remainder, 0))
4520 /* This could be computed with a branch-less sequence.
4521 Save that for later. */
4522 rtx tem;
4523 rtx label = gen_label_rtx ();
4524 do_cmp_and_jump (remainder, const0_rtx, EQ,
4525 compute_mode, label);
4526 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4527 NULL_RTX, 0, OPTAB_WIDEN);
4528 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4529 expand_inc (quotient, const1_rtx);
4530 expand_dec (remainder, op1);
4531 emit_label (label);
4532 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4535 /* No luck with division elimination or divmod. Have to do it
4536 by conditionally adjusting op0 *and* the result. */
4538 rtx label1, label2, label3, label4, label5;
4539 rtx adjusted_op0;
4540 rtx tem;
4542 quotient = gen_reg_rtx (compute_mode);
4543 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4544 label1 = gen_label_rtx ();
4545 label2 = gen_label_rtx ();
4546 label3 = gen_label_rtx ();
4547 label4 = gen_label_rtx ();
4548 label5 = gen_label_rtx ();
4549 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4550 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4551 compute_mode, label1);
4552 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4553 quotient, 0, OPTAB_LIB_WIDEN);
4554 if (tem != quotient)
4555 emit_move_insn (quotient, tem);
4556 emit_jump_insn (gen_jump (label5));
4557 emit_barrier ();
4558 emit_label (label1);
4559 expand_dec (adjusted_op0, const1_rtx);
4560 emit_jump_insn (gen_jump (label4));
4561 emit_barrier ();
4562 emit_label (label2);
4563 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4564 compute_mode, label3);
4565 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4566 quotient, 0, OPTAB_LIB_WIDEN);
4567 if (tem != quotient)
4568 emit_move_insn (quotient, tem);
4569 emit_jump_insn (gen_jump (label5));
4570 emit_barrier ();
4571 emit_label (label3);
4572 expand_inc (adjusted_op0, const1_rtx);
4573 emit_label (label4);
4574 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4575 quotient, 0, OPTAB_LIB_WIDEN);
4576 if (tem != quotient)
4577 emit_move_insn (quotient, tem);
4578 expand_inc (quotient, const1_rtx);
4579 emit_label (label5);
4582 break;
4584 case EXACT_DIV_EXPR:
4585 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4587 HOST_WIDE_INT d = INTVAL (op1);
4588 unsigned HOST_WIDE_INT ml;
4589 int pre_shift;
4590 rtx t1;
4592 pre_shift = floor_log2 (d & -d);
4593 ml = invert_mod2n (d >> pre_shift, size);
4594 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4595 build_int_cst (NULL_TREE, pre_shift),
4596 NULL_RTX, unsignedp);
4597 quotient = expand_mult (compute_mode, t1,
4598 gen_int_mode (ml, compute_mode),
4599 NULL_RTX, 1);
4601 insn = get_last_insn ();
4602 set_unique_reg_note (insn,
4603 REG_EQUAL,
4604 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4605 compute_mode,
4606 op0, op1));
4608 break;
4610 case ROUND_DIV_EXPR:
4611 case ROUND_MOD_EXPR:
4612 if (unsignedp)
4614 rtx tem;
4615 rtx label;
4616 label = gen_label_rtx ();
4617 quotient = gen_reg_rtx (compute_mode);
4618 remainder = gen_reg_rtx (compute_mode);
4619 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4621 rtx tem;
4622 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4623 quotient, 1, OPTAB_LIB_WIDEN);
4624 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4625 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4626 remainder, 1, OPTAB_LIB_WIDEN);
4628 tem = plus_constant (op1, -1);
4629 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4630 build_int_cst (NULL_TREE, 1),
4631 NULL_RTX, 1);
4632 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4633 expand_inc (quotient, const1_rtx);
4634 expand_dec (remainder, op1);
4635 emit_label (label);
4637 else
4639 rtx abs_rem, abs_op1, tem, mask;
4640 rtx label;
4641 label = gen_label_rtx ();
4642 quotient = gen_reg_rtx (compute_mode);
4643 remainder = gen_reg_rtx (compute_mode);
4644 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4646 rtx tem;
4647 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4648 quotient, 0, OPTAB_LIB_WIDEN);
4649 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4650 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4651 remainder, 0, OPTAB_LIB_WIDEN);
4653 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4654 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4655 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4656 build_int_cst (NULL_TREE, 1),
4657 NULL_RTX, 1);
4658 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4659 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4660 NULL_RTX, 0, OPTAB_WIDEN);
4661 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4662 build_int_cst (NULL_TREE, size - 1),
4663 NULL_RTX, 0);
4664 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4665 NULL_RTX, 0, OPTAB_WIDEN);
4666 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4667 NULL_RTX, 0, OPTAB_WIDEN);
4668 expand_inc (quotient, tem);
4669 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4670 NULL_RTX, 0, OPTAB_WIDEN);
4671 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4672 NULL_RTX, 0, OPTAB_WIDEN);
4673 expand_dec (remainder, tem);
4674 emit_label (label);
4676 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4678 default:
4679 gcc_unreachable ();
4682 if (quotient == 0)
4684 if (target && GET_MODE (target) != compute_mode)
4685 target = 0;
4687 if (rem_flag)
4689 /* Try to produce the remainder without producing the quotient.
4690 If we seem to have a divmod pattern that does not require widening,
4691 don't try widening here. We should really have a WIDEN argument
4692 to expand_twoval_binop, since what we'd really like to do here is
4693 1) try a mod insn in compute_mode
4694 2) try a divmod insn in compute_mode
4695 3) try a div insn in compute_mode and multiply-subtract to get
4696 remainder
4697 4) try the same things with widening allowed. */
4698 remainder
4699 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4700 op0, op1, target,
4701 unsignedp,
4702 ((optab2->handlers[compute_mode].insn_code
4703 != CODE_FOR_nothing)
4704 ? OPTAB_DIRECT : OPTAB_WIDEN));
4705 if (remainder == 0)
4707 /* No luck there. Can we do remainder and divide at once
4708 without a library call? */
4709 remainder = gen_reg_rtx (compute_mode);
4710 if (! expand_twoval_binop ((unsignedp
4711 ? udivmod_optab
4712 : sdivmod_optab),
4713 op0, op1,
4714 NULL_RTX, remainder, unsignedp))
4715 remainder = 0;
4718 if (remainder)
4719 return gen_lowpart (mode, remainder);
4722 /* Produce the quotient. Try a quotient insn, but not a library call.
4723 If we have a divmod in this mode, use it in preference to widening
4724 the div (for this test we assume it will not fail). Note that optab2
4725 is set to the one of the two optabs that the call below will use. */
4726 quotient
4727 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4728 op0, op1, rem_flag ? NULL_RTX : target,
4729 unsignedp,
4730 ((optab2->handlers[compute_mode].insn_code
4731 != CODE_FOR_nothing)
4732 ? OPTAB_DIRECT : OPTAB_WIDEN));
4734 if (quotient == 0)
4736 /* No luck there. Try a quotient-and-remainder insn,
4737 keeping the quotient alone. */
4738 quotient = gen_reg_rtx (compute_mode);
4739 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4740 op0, op1,
4741 quotient, NULL_RTX, unsignedp))
4743 quotient = 0;
4744 if (! rem_flag)
4745 /* Still no luck. If we are not computing the remainder,
4746 use a library call for the quotient. */
4747 quotient = sign_expand_binop (compute_mode,
4748 udiv_optab, sdiv_optab,
4749 op0, op1, target,
4750 unsignedp, OPTAB_LIB_WIDEN);
4755 if (rem_flag)
4757 if (target && GET_MODE (target) != compute_mode)
4758 target = 0;
4760 if (quotient == 0)
4762 /* No divide instruction either. Use library for remainder. */
4763 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4764 op0, op1, target,
4765 unsignedp, OPTAB_LIB_WIDEN);
4766 /* No remainder function. Try a quotient-and-remainder
4767 function, keeping the remainder. */
4768 if (!remainder)
4770 remainder = gen_reg_rtx (compute_mode);
4771 if (!expand_twoval_binop_libfunc
4772 (unsignedp ? udivmod_optab : sdivmod_optab,
4773 op0, op1,
4774 NULL_RTX, remainder,
4775 unsignedp ? UMOD : MOD))
4776 remainder = NULL_RTX;
4779 else
4781 /* We divided. Now finish doing X - Y * (X / Y). */
4782 remainder = expand_mult (compute_mode, quotient, op1,
4783 NULL_RTX, unsignedp);
4784 remainder = expand_binop (compute_mode, sub_optab, op0,
4785 remainder, target, unsignedp,
4786 OPTAB_LIB_WIDEN);
4790 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4793 /* Return a tree node with data type TYPE, describing the value of X.
4794 Usually this is an VAR_DECL, if there is no obvious better choice.
4795 X may be an expression, however we only support those expressions
4796 generated by loop.c. */
4798 tree
4799 make_tree (tree type, rtx x)
4801 tree t;
4803 switch (GET_CODE (x))
4805 case CONST_INT:
4807 HOST_WIDE_INT hi = 0;
4809 if (INTVAL (x) < 0
4810 && !(TYPE_UNSIGNED (type)
4811 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4812 < HOST_BITS_PER_WIDE_INT)))
4813 hi = -1;
4815 t = build_int_cst_wide (type, INTVAL (x), hi);
4817 return t;
4820 case CONST_DOUBLE:
4821 if (GET_MODE (x) == VOIDmode)
4822 t = build_int_cst_wide (type,
4823 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4824 else
4826 REAL_VALUE_TYPE d;
4828 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4829 t = build_real (type, d);
4832 return t;
4834 case CONST_VECTOR:
4836 int i, units;
4837 rtx elt;
4838 tree t = NULL_TREE;
4840 units = CONST_VECTOR_NUNITS (x);
4842 /* Build a tree with vector elements. */
4843 for (i = units - 1; i >= 0; --i)
4845 elt = CONST_VECTOR_ELT (x, i);
4846 t = tree_cons (NULL_TREE, make_tree (type, elt), t);
4849 return build_vector (type, t);
4852 case PLUS:
4853 return fold (build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4854 make_tree (type, XEXP (x, 1))));
4856 case MINUS:
4857 return fold (build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4858 make_tree (type, XEXP (x, 1))));
4860 case NEG:
4861 return fold (build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0))));
4863 case MULT:
4864 return fold (build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4865 make_tree (type, XEXP (x, 1))));
4867 case ASHIFT:
4868 return fold (build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4869 make_tree (type, XEXP (x, 1))));
4871 case LSHIFTRT:
4872 t = lang_hooks.types.unsigned_type (type);
4873 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4874 make_tree (t, XEXP (x, 0)),
4875 make_tree (type, XEXP (x, 1))));
4877 case ASHIFTRT:
4878 t = lang_hooks.types.signed_type (type);
4879 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4880 make_tree (t, XEXP (x, 0)),
4881 make_tree (type, XEXP (x, 1))));
4883 case DIV:
4884 if (TREE_CODE (type) != REAL_TYPE)
4885 t = lang_hooks.types.signed_type (type);
4886 else
4887 t = type;
4889 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4890 make_tree (t, XEXP (x, 0)),
4891 make_tree (t, XEXP (x, 1))));
4892 case UDIV:
4893 t = lang_hooks.types.unsigned_type (type);
4894 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4895 make_tree (t, XEXP (x, 0)),
4896 make_tree (t, XEXP (x, 1))));
4898 case SIGN_EXTEND:
4899 case ZERO_EXTEND:
4900 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4901 GET_CODE (x) == ZERO_EXTEND);
4902 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4904 default:
4905 t = build_decl (VAR_DECL, NULL_TREE, type);
4907 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4908 ptr_mode. So convert. */
4909 if (POINTER_TYPE_P (type))
4910 x = convert_memory_address (TYPE_MODE (type), x);
4912 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4913 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4914 t->decl.rtl = x;
4916 return t;
4920 /* Check whether the multiplication X * MULT + ADD overflows.
4921 X, MULT and ADD must be CONST_*.
4922 MODE is the machine mode for the computation.
4923 X and MULT must have mode MODE. ADD may have a different mode.
4924 So can X (defaults to same as MODE).
4925 UNSIGNEDP is nonzero to do unsigned multiplication. */
4927 bool
4928 const_mult_add_overflow_p (rtx x, rtx mult, rtx add,
4929 enum machine_mode mode, int unsignedp)
4931 tree type, mult_type, add_type, result;
4933 type = lang_hooks.types.type_for_mode (mode, unsignedp);
4935 /* In order to get a proper overflow indication from an unsigned
4936 type, we have to pretend that it's a sizetype. */
4937 mult_type = type;
4938 if (unsignedp)
4940 /* FIXME:It would be nice if we could step directly from this
4941 type to its sizetype equivalent. */
4942 mult_type = build_distinct_type_copy (type);
4943 TYPE_IS_SIZETYPE (mult_type) = 1;
4946 add_type = (GET_MODE (add) == VOIDmode ? mult_type
4947 : lang_hooks.types.type_for_mode (GET_MODE (add), unsignedp));
4949 result = fold (build2 (PLUS_EXPR, mult_type,
4950 fold (build2 (MULT_EXPR, mult_type,
4951 make_tree (mult_type, x),
4952 make_tree (mult_type, mult))),
4953 make_tree (add_type, add)));
4955 return TREE_CONSTANT_OVERFLOW (result);
4958 /* Return an rtx representing the value of X * MULT + ADD.
4959 TARGET is a suggestion for where to store the result (an rtx).
4960 MODE is the machine mode for the computation.
4961 X and MULT must have mode MODE. ADD may have a different mode.
4962 So can X (defaults to same as MODE).
4963 UNSIGNEDP is nonzero to do unsigned multiplication.
4964 This may emit insns. */
4967 expand_mult_add (rtx x, rtx target, rtx mult, rtx add, enum machine_mode mode,
4968 int unsignedp)
4970 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
4971 tree add_type = (GET_MODE (add) == VOIDmode
4972 ? type: lang_hooks.types.type_for_mode (GET_MODE (add),
4973 unsignedp));
4974 tree result = fold (build2 (PLUS_EXPR, type,
4975 fold (build2 (MULT_EXPR, type,
4976 make_tree (type, x),
4977 make_tree (type, mult))),
4978 make_tree (add_type, add)));
4980 return expand_expr (result, target, VOIDmode, 0);
4983 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4984 and returning TARGET.
4986 If TARGET is 0, a pseudo-register or constant is returned. */
4989 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4991 rtx tem = 0;
4993 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4994 tem = simplify_binary_operation (AND, mode, op0, op1);
4995 if (tem == 0)
4996 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4998 if (target == 0)
4999 target = tem;
5000 else if (tem != target)
5001 emit_move_insn (target, tem);
5002 return target;
5005 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5006 and storing in TARGET. Normally return TARGET.
5007 Return 0 if that cannot be done.
5009 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5010 it is VOIDmode, they cannot both be CONST_INT.
5012 UNSIGNEDP is for the case where we have to widen the operands
5013 to perform the operation. It says to use zero-extension.
5015 NORMALIZEP is 1 if we should convert the result to be either zero
5016 or one. Normalize is -1 if we should convert the result to be
5017 either zero or -1. If NORMALIZEP is zero, the result will be left
5018 "raw" out of the scc insn. */
5021 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5022 enum machine_mode mode, int unsignedp, int normalizep)
5024 rtx subtarget;
5025 enum insn_code icode;
5026 enum machine_mode compare_mode;
5027 enum machine_mode target_mode = GET_MODE (target);
5028 rtx tem;
5029 rtx last = get_last_insn ();
5030 rtx pattern, comparison;
5032 if (unsignedp)
5033 code = unsigned_condition (code);
5035 /* If one operand is constant, make it the second one. Only do this
5036 if the other operand is not constant as well. */
5038 if (swap_commutative_operands_p (op0, op1))
5040 tem = op0;
5041 op0 = op1;
5042 op1 = tem;
5043 code = swap_condition (code);
5046 if (mode == VOIDmode)
5047 mode = GET_MODE (op0);
5049 /* For some comparisons with 1 and -1, we can convert this to
5050 comparisons with zero. This will often produce more opportunities for
5051 store-flag insns. */
5053 switch (code)
5055 case LT:
5056 if (op1 == const1_rtx)
5057 op1 = const0_rtx, code = LE;
5058 break;
5059 case LE:
5060 if (op1 == constm1_rtx)
5061 op1 = const0_rtx, code = LT;
5062 break;
5063 case GE:
5064 if (op1 == const1_rtx)
5065 op1 = const0_rtx, code = GT;
5066 break;
5067 case GT:
5068 if (op1 == constm1_rtx)
5069 op1 = const0_rtx, code = GE;
5070 break;
5071 case GEU:
5072 if (op1 == const1_rtx)
5073 op1 = const0_rtx, code = NE;
5074 break;
5075 case LTU:
5076 if (op1 == const1_rtx)
5077 op1 = const0_rtx, code = EQ;
5078 break;
5079 default:
5080 break;
5083 /* If we are comparing a double-word integer with zero or -1, we can
5084 convert the comparison into one involving a single word. */
5085 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5086 && GET_MODE_CLASS (mode) == MODE_INT
5087 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5089 if ((code == EQ || code == NE)
5090 && (op1 == const0_rtx || op1 == constm1_rtx))
5092 rtx op00, op01, op0both;
5094 /* Do a logical OR or AND of the two words and compare the result. */
5095 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5096 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5097 op0both = expand_binop (word_mode,
5098 op1 == const0_rtx ? ior_optab : and_optab,
5099 op00, op01, NULL_RTX, unsignedp, OPTAB_DIRECT);
5101 if (op0both != 0)
5102 return emit_store_flag (target, code, op0both, op1, word_mode,
5103 unsignedp, normalizep);
5105 else if ((code == LT || code == GE) && op1 == const0_rtx)
5107 rtx op0h;
5109 /* If testing the sign bit, can just test on high word. */
5110 op0h = simplify_gen_subreg (word_mode, op0, mode,
5111 subreg_highpart_offset (word_mode, mode));
5112 return emit_store_flag (target, code, op0h, op1, word_mode,
5113 unsignedp, normalizep);
5117 /* From now on, we won't change CODE, so set ICODE now. */
5118 icode = setcc_gen_code[(int) code];
5120 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5121 complement of A (for GE) and shifting the sign bit to the low bit. */
5122 if (op1 == const0_rtx && (code == LT || code == GE)
5123 && GET_MODE_CLASS (mode) == MODE_INT
5124 && (normalizep || STORE_FLAG_VALUE == 1
5125 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5126 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5127 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))))
5129 subtarget = target;
5131 /* If the result is to be wider than OP0, it is best to convert it
5132 first. If it is to be narrower, it is *incorrect* to convert it
5133 first. */
5134 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5136 op0 = convert_modes (target_mode, mode, op0, 0);
5137 mode = target_mode;
5140 if (target_mode != mode)
5141 subtarget = 0;
5143 if (code == GE)
5144 op0 = expand_unop (mode, one_cmpl_optab, op0,
5145 ((STORE_FLAG_VALUE == 1 || normalizep)
5146 ? 0 : subtarget), 0);
5148 if (STORE_FLAG_VALUE == 1 || normalizep)
5149 /* If we are supposed to produce a 0/1 value, we want to do
5150 a logical shift from the sign bit to the low-order bit; for
5151 a -1/0 value, we do an arithmetic shift. */
5152 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5153 size_int (GET_MODE_BITSIZE (mode) - 1),
5154 subtarget, normalizep != -1);
5156 if (mode != target_mode)
5157 op0 = convert_modes (target_mode, mode, op0, 0);
5159 return op0;
5162 if (icode != CODE_FOR_nothing)
5164 insn_operand_predicate_fn pred;
5166 /* We think we may be able to do this with a scc insn. Emit the
5167 comparison and then the scc insn. */
5169 do_pending_stack_adjust ();
5170 last = get_last_insn ();
5172 comparison
5173 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5174 if (CONSTANT_P (comparison))
5176 switch (GET_CODE (comparison))
5178 case CONST_INT:
5179 if (comparison == const0_rtx)
5180 return const0_rtx;
5181 break;
5183 #ifdef FLOAT_STORE_FLAG_VALUE
5184 case CONST_DOUBLE:
5185 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5186 return const0_rtx;
5187 break;
5188 #endif
5189 default:
5190 gcc_unreachable ();
5193 if (normalizep == 1)
5194 return const1_rtx;
5195 if (normalizep == -1)
5196 return constm1_rtx;
5197 return const_true_rtx;
5200 /* The code of COMPARISON may not match CODE if compare_from_rtx
5201 decided to swap its operands and reverse the original code.
5203 We know that compare_from_rtx returns either a CONST_INT or
5204 a new comparison code, so it is safe to just extract the
5205 code from COMPARISON. */
5206 code = GET_CODE (comparison);
5208 /* Get a reference to the target in the proper mode for this insn. */
5209 compare_mode = insn_data[(int) icode].operand[0].mode;
5210 subtarget = target;
5211 pred = insn_data[(int) icode].operand[0].predicate;
5212 if (optimize || ! (*pred) (subtarget, compare_mode))
5213 subtarget = gen_reg_rtx (compare_mode);
5215 pattern = GEN_FCN (icode) (subtarget);
5216 if (pattern)
5218 emit_insn (pattern);
5220 /* If we are converting to a wider mode, first convert to
5221 TARGET_MODE, then normalize. This produces better combining
5222 opportunities on machines that have a SIGN_EXTRACT when we are
5223 testing a single bit. This mostly benefits the 68k.
5225 If STORE_FLAG_VALUE does not have the sign bit set when
5226 interpreted in COMPARE_MODE, we can do this conversion as
5227 unsigned, which is usually more efficient. */
5228 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (compare_mode))
5230 convert_move (target, subtarget,
5231 (GET_MODE_BITSIZE (compare_mode)
5232 <= HOST_BITS_PER_WIDE_INT)
5233 && 0 == (STORE_FLAG_VALUE
5234 & ((HOST_WIDE_INT) 1
5235 << (GET_MODE_BITSIZE (compare_mode) -1))));
5236 op0 = target;
5237 compare_mode = target_mode;
5239 else
5240 op0 = subtarget;
5242 /* If we want to keep subexpressions around, don't reuse our
5243 last target. */
5245 if (optimize)
5246 subtarget = 0;
5248 /* Now normalize to the proper value in COMPARE_MODE. Sometimes
5249 we don't have to do anything. */
5250 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5252 /* STORE_FLAG_VALUE might be the most negative number, so write
5253 the comparison this way to avoid a compiler-time warning. */
5254 else if (- normalizep == STORE_FLAG_VALUE)
5255 op0 = expand_unop (compare_mode, neg_optab, op0, subtarget, 0);
5257 /* We don't want to use STORE_FLAG_VALUE < 0 below since this
5258 makes it hard to use a value of just the sign bit due to
5259 ANSI integer constant typing rules. */
5260 else if (GET_MODE_BITSIZE (compare_mode) <= HOST_BITS_PER_WIDE_INT
5261 && (STORE_FLAG_VALUE
5262 & ((HOST_WIDE_INT) 1
5263 << (GET_MODE_BITSIZE (compare_mode) - 1))))
5264 op0 = expand_shift (RSHIFT_EXPR, compare_mode, op0,
5265 size_int (GET_MODE_BITSIZE (compare_mode) - 1),
5266 subtarget, normalizep == 1);
5267 else
5269 gcc_assert (STORE_FLAG_VALUE & 1);
5271 op0 = expand_and (compare_mode, op0, const1_rtx, subtarget);
5272 if (normalizep == -1)
5273 op0 = expand_unop (compare_mode, neg_optab, op0, op0, 0);
5276 /* If we were converting to a smaller mode, do the
5277 conversion now. */
5278 if (target_mode != compare_mode)
5280 convert_move (target, op0, 0);
5281 return target;
5283 else
5284 return op0;
5288 delete_insns_since (last);
5290 /* If optimizing, use different pseudo registers for each insn, instead
5291 of reusing the same pseudo. This leads to better CSE, but slows
5292 down the compiler, since there are more pseudos */
5293 subtarget = (!optimize
5294 && (target_mode == mode)) ? target : NULL_RTX;
5296 /* If we reached here, we can't do this with a scc insn. However, there
5297 are some comparisons that can be done directly. For example, if
5298 this is an equality comparison of integers, we can try to exclusive-or
5299 (or subtract) the two operands and use a recursive call to try the
5300 comparison with zero. Don't do any of these cases if branches are
5301 very cheap. */
5303 if (BRANCH_COST > 0
5304 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5305 && op1 != const0_rtx)
5307 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5308 OPTAB_WIDEN);
5310 if (tem == 0)
5311 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5312 OPTAB_WIDEN);
5313 if (tem != 0)
5314 tem = emit_store_flag (target, code, tem, const0_rtx,
5315 mode, unsignedp, normalizep);
5316 if (tem == 0)
5317 delete_insns_since (last);
5318 return tem;
5321 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5322 the constant zero. Reject all other comparisons at this point. Only
5323 do LE and GT if branches are expensive since they are expensive on
5324 2-operand machines. */
5326 if (BRANCH_COST == 0
5327 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5328 || (code != EQ && code != NE
5329 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5330 return 0;
5332 /* See what we need to return. We can only return a 1, -1, or the
5333 sign bit. */
5335 if (normalizep == 0)
5337 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5338 normalizep = STORE_FLAG_VALUE;
5340 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5341 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5342 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5344 else
5345 return 0;
5348 /* Try to put the result of the comparison in the sign bit. Assume we can't
5349 do the necessary operation below. */
5351 tem = 0;
5353 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5354 the sign bit set. */
5356 if (code == LE)
5358 /* This is destructive, so SUBTARGET can't be OP0. */
5359 if (rtx_equal_p (subtarget, op0))
5360 subtarget = 0;
5362 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5363 OPTAB_WIDEN);
5364 if (tem)
5365 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5366 OPTAB_WIDEN);
5369 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5370 number of bits in the mode of OP0, minus one. */
5372 if (code == GT)
5374 if (rtx_equal_p (subtarget, op0))
5375 subtarget = 0;
5377 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5378 size_int (GET_MODE_BITSIZE (mode) - 1),
5379 subtarget, 0);
5380 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5381 OPTAB_WIDEN);
5384 if (code == EQ || code == NE)
5386 /* For EQ or NE, one way to do the comparison is to apply an operation
5387 that converts the operand into a positive number if it is nonzero
5388 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5389 for NE we negate. This puts the result in the sign bit. Then we
5390 normalize with a shift, if needed.
5392 Two operations that can do the above actions are ABS and FFS, so try
5393 them. If that doesn't work, and MODE is smaller than a full word,
5394 we can use zero-extension to the wider mode (an unsigned conversion)
5395 as the operation. */
5397 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5398 that is compensated by the subsequent overflow when subtracting
5399 one / negating. */
5401 if (abs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5402 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5403 else if (ffs_optab->handlers[mode].insn_code != CODE_FOR_nothing)
5404 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5405 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5407 tem = convert_modes (word_mode, mode, op0, 1);
5408 mode = word_mode;
5411 if (tem != 0)
5413 if (code == EQ)
5414 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5415 0, OPTAB_WIDEN);
5416 else
5417 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5420 /* If we couldn't do it that way, for NE we can "or" the two's complement
5421 of the value with itself. For EQ, we take the one's complement of
5422 that "or", which is an extra insn, so we only handle EQ if branches
5423 are expensive. */
5425 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5427 if (rtx_equal_p (subtarget, op0))
5428 subtarget = 0;
5430 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5431 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5432 OPTAB_WIDEN);
5434 if (tem && code == EQ)
5435 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5439 if (tem && normalizep)
5440 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5441 size_int (GET_MODE_BITSIZE (mode) - 1),
5442 subtarget, normalizep == 1);
5444 if (tem)
5446 if (GET_MODE (tem) != target_mode)
5448 convert_move (target, tem, 0);
5449 tem = target;
5451 else if (!subtarget)
5453 emit_move_insn (target, tem);
5454 tem = target;
5457 else
5458 delete_insns_since (last);
5460 return tem;
5463 /* Like emit_store_flag, but always succeeds. */
5466 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5467 enum machine_mode mode, int unsignedp, int normalizep)
5469 rtx tem, label;
5471 /* First see if emit_store_flag can do the job. */
5472 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5473 if (tem != 0)
5474 return tem;
5476 if (normalizep == 0)
5477 normalizep = 1;
5479 /* If this failed, we have to do this with set/compare/jump/set code. */
5481 if (!REG_P (target)
5482 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5483 target = gen_reg_rtx (GET_MODE (target));
5485 emit_move_insn (target, const1_rtx);
5486 label = gen_label_rtx ();
5487 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5488 NULL_RTX, label);
5490 emit_move_insn (target, const0_rtx);
5491 emit_label (label);
5493 return target;
5496 /* Perform possibly multi-word comparison and conditional jump to LABEL
5497 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE
5499 The algorithm is based on the code in expr.c:do_jump.
5501 Note that this does not perform a general comparison. Only variants
5502 generated within expmed.c are correctly handled, others abort (but could
5503 be handled if needed). */
5505 static void
5506 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5507 rtx label)
5509 /* If this mode is an integer too wide to compare properly,
5510 compare word by word. Rely on cse to optimize constant cases. */
5512 if (GET_MODE_CLASS (mode) == MODE_INT
5513 && ! can_compare_p (op, mode, ccp_jump))
5515 rtx label2 = gen_label_rtx ();
5517 switch (op)
5519 case LTU:
5520 do_jump_by_parts_greater_rtx (mode, 1, arg2, arg1, label2, label);
5521 break;
5523 case LEU:
5524 do_jump_by_parts_greater_rtx (mode, 1, arg1, arg2, label, label2);
5525 break;
5527 case LT:
5528 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label2, label);
5529 break;
5531 case GT:
5532 do_jump_by_parts_greater_rtx (mode, 0, arg1, arg2, label2, label);
5533 break;
5535 case GE:
5536 do_jump_by_parts_greater_rtx (mode, 0, arg2, arg1, label, label2);
5537 break;
5539 /* do_jump_by_parts_equality_rtx compares with zero. Luckily
5540 that's the only equality operations we do */
5541 case EQ:
5542 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5543 do_jump_by_parts_equality_rtx (arg1, label2, label);
5544 break;
5546 case NE:
5547 gcc_assert (arg2 == const0_rtx && mode == GET_MODE(arg1));
5548 do_jump_by_parts_equality_rtx (arg1, label, label2);
5549 break;
5551 default:
5552 gcc_unreachable ();
5555 emit_label (label2);
5557 else
5558 emit_cmp_and_jump_insns (arg1, arg2, op, NULL_RTX, mode, 0, label);