1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the loop optimization pass of the compiler.
23 It finds invariant computations within loops and moves them
24 to the beginning of the loop. Then it identifies basic and
25 general induction variables. Strength reduction is applied to the general
26 induction variables, and induction variable elimination is applied to
27 the basic induction variables.
29 It also finds cases where
30 a register is set within the loop by zero-extending a narrower value
31 and changes these to zero the entire register once before the loop
32 and merely copy the low part within the loop.
34 Most of the complexity is in heuristics to decide when it is worth
35 while to do these things. */
44 #include "hard-reg-set.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "insn-flags.h"
57 /* Vector mapping INSN_UIDs to luids.
58 The luids are like uids but increase monotonically always.
59 We use them to see whether a jump comes from outside a given loop. */
63 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
64 number the insn is contained in. */
66 struct loop
**uid_loop
;
68 /* 1 + largest uid of any insn. */
72 /* 1 + luid of last insn. */
76 /* Number of loops detected in current function. Used as index to the
79 static int max_loop_num
;
81 /* Bound on pseudo register number before loop optimization.
82 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
83 unsigned int max_reg_before_loop
;
85 /* The value to pass to the next call of reg_scan_update. */
86 static int loop_max_reg
;
88 #define obstack_chunk_alloc xmalloc
89 #define obstack_chunk_free free
91 /* During the analysis of a loop, a chain of `struct movable's
92 is made to record all the movable insns found.
93 Then the entire chain can be scanned to decide which to move. */
97 rtx insn
; /* A movable insn */
98 rtx set_src
; /* The expression this reg is set from. */
99 rtx set_dest
; /* The destination of this SET. */
100 rtx dependencies
; /* When INSN is libcall, this is an EXPR_LIST
101 of any registers used within the LIBCALL. */
102 int consec
; /* Number of consecutive following insns
103 that must be moved with this one. */
104 unsigned int regno
; /* The register it sets */
105 short lifetime
; /* lifetime of that register;
106 may be adjusted when matching movables
107 that load the same value are found. */
108 short savings
; /* Number of insns we can move for this reg,
109 including other movables that force this
110 or match this one. */
111 unsigned int cond
: 1; /* 1 if only conditionally movable */
112 unsigned int force
: 1; /* 1 means MUST move this insn */
113 unsigned int global
: 1; /* 1 means reg is live outside this loop */
114 /* If PARTIAL is 1, GLOBAL means something different:
115 that the reg is live outside the range from where it is set
116 to the following label. */
117 unsigned int done
: 1; /* 1 inhibits further processing of this */
119 unsigned int partial
: 1; /* 1 means this reg is used for zero-extending.
120 In particular, moving it does not make it
122 unsigned int move_insn
: 1; /* 1 means that we call emit_move_insn to
123 load SRC, rather than copying INSN. */
124 unsigned int move_insn_first
:1;/* Same as above, if this is necessary for the
125 first insn of a consecutive sets group. */
126 unsigned int is_equiv
: 1; /* 1 means a REG_EQUIV is present on INSN. */
127 enum machine_mode savemode
; /* Nonzero means it is a mode for a low part
128 that we should avoid changing when clearing
129 the rest of the reg. */
130 struct movable
*match
; /* First entry for same value */
131 struct movable
*forces
; /* An insn that must be moved if this is */
132 struct movable
*next
;
137 /* Head of movable chain. */
138 struct movable
*head
;
139 /* Last movable in chain. */
140 struct movable
*last
;
141 /* Number of movables in the loop. */
145 static struct movables the_movables
;
147 FILE *loop_dump_stream
;
149 /* Forward declarations. */
151 static void find_and_verify_loops
PARAMS ((rtx
, struct loops
*));
152 static void mark_loop_jump
PARAMS ((rtx
, struct loop
*));
153 static void prescan_loop
PARAMS ((struct loop
*));
154 static int reg_in_basic_block_p
PARAMS ((rtx
, rtx
));
155 static int consec_sets_invariant_p
PARAMS ((const struct loop
*,
157 static int labels_in_range_p
PARAMS ((rtx
, int));
158 static void count_one_set
PARAMS ((struct loop_regs
*, rtx
, rtx
,
159 varray_type
, rtx
*));
161 static void count_loop_regs_set
PARAMS ((const struct loop
*,
162 varray_type
, varray_type
,
164 static void note_addr_stored
PARAMS ((rtx
, rtx
, void *));
165 static void note_set_pseudo_multiple_uses
PARAMS ((rtx
, rtx
, void *));
166 static int loop_reg_used_before_p
PARAMS ((const struct loop
*, rtx
, rtx
));
167 static void scan_loop
PARAMS ((struct loop
*, int));
169 static void replace_call_address
PARAMS ((rtx
, rtx
, rtx
));
171 static rtx skip_consec_insns
PARAMS ((rtx
, int));
172 static int libcall_benefit
PARAMS ((rtx
));
173 static void ignore_some_movables
PARAMS ((struct movables
*));
174 static void force_movables
PARAMS ((struct movables
*));
175 static void combine_movables
PARAMS ((struct movables
*, struct loop_regs
*));
176 static int regs_match_p
PARAMS ((rtx
, rtx
, struct movables
*));
177 static int rtx_equal_for_loop_p
PARAMS ((rtx
, rtx
, struct movables
*,
178 struct loop_regs
*));
179 static void add_label_notes
PARAMS ((rtx
, rtx
));
180 static void move_movables
PARAMS ((struct loop
*loop
, struct movables
*,
182 static int count_nonfixed_reads
PARAMS ((const struct loop
*, rtx
));
183 static void strength_reduce
PARAMS ((struct loop
*, int, int));
184 static void find_single_use_in_loop
PARAMS ((rtx
, rtx
, varray_type
));
185 static int valid_initial_value_p
PARAMS ((rtx
, rtx
, int, rtx
));
186 static void find_mem_givs
PARAMS ((const struct loop
*, rtx
, rtx
, int, int));
187 static void record_biv
PARAMS ((struct loop
*, struct induction
*,
188 rtx
, rtx
, rtx
, rtx
, rtx
*,
190 static void check_final_value
PARAMS ((const struct loop
*,
191 struct induction
*));
192 static void record_giv
PARAMS ((const struct loop
*, struct induction
*,
193 rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, int,
194 enum g_types
, int, int, rtx
*));
195 static void update_giv_derive
PARAMS ((const struct loop
*, rtx
));
196 static void check_ext_dependant_givs
PARAMS ((struct iv_class
*,
197 struct loop_info
*));
198 static int basic_induction_var
PARAMS ((const struct loop
*, rtx
,
199 enum machine_mode
, rtx
, rtx
,
200 rtx
*, rtx
*, rtx
**));
201 static rtx simplify_giv_expr
PARAMS ((const struct loop
*, rtx
, rtx
*, int *));
202 static int general_induction_var
PARAMS ((const struct loop
*loop
, rtx
, rtx
*,
203 rtx
*, rtx
*, rtx
*, int, int *,
205 static int consec_sets_giv
PARAMS ((const struct loop
*, int, rtx
,
206 rtx
, rtx
, rtx
*, rtx
*, rtx
*, rtx
*));
207 static int check_dbra_loop
PARAMS ((struct loop
*, int));
208 static rtx express_from_1
PARAMS ((rtx
, rtx
, rtx
));
209 static rtx combine_givs_p
PARAMS ((struct induction
*, struct induction
*));
210 static int cmp_combine_givs_stats
PARAMS ((const PTR
, const PTR
));
211 static void combine_givs
PARAMS ((struct loop_regs
*, struct iv_class
*));
212 static int product_cheap_p
PARAMS ((rtx
, rtx
));
213 static int maybe_eliminate_biv
PARAMS ((const struct loop
*, struct iv_class
*,
215 static int maybe_eliminate_biv_1
PARAMS ((const struct loop
*, rtx
, rtx
,
216 struct iv_class
*, int, rtx
));
217 static int last_use_this_basic_block
PARAMS ((rtx
, rtx
));
218 static void record_initial
PARAMS ((rtx
, rtx
, void *));
219 static void update_reg_last_use
PARAMS ((rtx
, rtx
));
220 static rtx next_insn_in_loop
PARAMS ((const struct loop
*, rtx
));
221 static void load_mems_and_recount_loop_regs_set
PARAMS ((const struct loop
*,
223 static void load_mems
PARAMS ((const struct loop
*));
224 static int insert_loop_mem
PARAMS ((rtx
*, void *));
225 static int replace_loop_mem
PARAMS ((rtx
*, void *));
226 static void replace_loop_mems
PARAMS ((rtx
, rtx
, rtx
));
227 static int replace_loop_reg
PARAMS ((rtx
*, void *));
228 static void replace_loop_regs
PARAMS ((rtx insn
, rtx
, rtx
));
229 static void note_reg_stored
PARAMS ((rtx
, rtx
, void *));
230 static void try_copy_prop
PARAMS ((const struct loop
*, rtx
, unsigned int));
231 static void try_swap_copy_prop
PARAMS ((const struct loop
*, rtx
,
233 static int replace_label
PARAMS ((rtx
*, void *));
234 static rtx check_insn_for_givs
PARAMS((struct loop
*, rtx
, int, int));
235 static rtx check_insn_for_bivs
PARAMS((struct loop
*, rtx
, int, int));
236 static int iv_add_mult_cost
PARAMS ((rtx
, rtx
, rtx
, rtx
));
238 static void loop_dump_aux
PARAMS ((const struct loop
*, FILE *, int));
239 void debug_loop
PARAMS ((const struct loop
*));
241 typedef struct rtx_pair
247 typedef struct loop_replace_args
254 /* Nonzero iff INSN is between START and END, inclusive. */
255 #define INSN_IN_RANGE_P(INSN, START, END) \
256 (INSN_UID (INSN) < max_uid_for_loop \
257 && INSN_LUID (INSN) >= INSN_LUID (START) \
258 && INSN_LUID (INSN) <= INSN_LUID (END))
260 /* Indirect_jump_in_function is computed once per function. */
261 static int indirect_jump_in_function
;
262 static int indirect_jump_in_function_p
PARAMS ((rtx
));
264 static int compute_luids
PARAMS ((rtx
, rtx
, int));
266 static int biv_elimination_giv_has_0_offset
PARAMS ((struct induction
*,
270 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
271 copy the value of the strength reduced giv to its original register. */
272 static int copy_cost
;
274 /* Cost of using a register, to normalize the benefits of a giv. */
275 static int reg_address_cost
;
280 rtx reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
282 reg_address_cost
= address_cost (reg
, SImode
);
284 copy_cost
= COSTS_N_INSNS (1);
287 /* Compute the mapping from uids to luids.
288 LUIDs are numbers assigned to insns, like uids,
289 except that luids increase monotonically through the code.
290 Start at insn START and stop just before END. Assign LUIDs
291 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
293 compute_luids (start
, end
, prev_luid
)
300 for (insn
= start
, i
= prev_luid
; insn
!= end
; insn
= NEXT_INSN (insn
))
302 if (INSN_UID (insn
) >= max_uid_for_loop
)
304 /* Don't assign luids to line-number NOTEs, so that the distance in
305 luids between two insns is not affected by -g. */
306 if (GET_CODE (insn
) != NOTE
307 || NOTE_LINE_NUMBER (insn
) <= 0)
308 uid_luid
[INSN_UID (insn
)] = ++i
;
310 /* Give a line number note the same luid as preceding insn. */
311 uid_luid
[INSN_UID (insn
)] = i
;
316 /* Entry point of this file. Perform loop optimization
317 on the current function. F is the first insn of the function
318 and DUMPFILE is a stream for output of a trace of actions taken
319 (or 0 if none should be output). */
322 loop_optimize (f
, dumpfile
, flags
)
323 /* f is the first instruction of a chain of insns for one function */
330 struct loops loops_data
;
331 struct loops
*loops
= &loops_data
;
332 struct loop_info
*loops_info
;
333 static char *moved_once
;
335 loop_dump_stream
= dumpfile
;
337 init_recog_no_volatile ();
339 max_reg_before_loop
= max_reg_num ();
340 loop_max_reg
= max_reg_before_loop
;
344 /* Count the number of loops. */
347 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
349 if (GET_CODE (insn
) == NOTE
350 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
354 /* Don't waste time if no loops. */
355 if (max_loop_num
== 0)
358 loops
->num
= max_loop_num
;
360 moved_once
= (char *) xcalloc (max_reg_before_loop
, sizeof (char));
362 /* Get size to use for tables indexed by uids.
363 Leave some space for labels allocated by find_and_verify_loops. */
364 max_uid_for_loop
= get_max_uid () + 1 + max_loop_num
* 32;
366 uid_luid
= (int *) xcalloc (max_uid_for_loop
, sizeof (int));
367 uid_loop
= (struct loop
**) xcalloc (max_uid_for_loop
,
368 sizeof (struct loop
*));
370 /* Allocate storage for array of loops. */
371 loops
->array
= (struct loop
*)
372 xcalloc (loops
->num
, sizeof (struct loop
));
374 /* Find and process each loop.
375 First, find them, and record them in order of their beginnings. */
376 find_and_verify_loops (f
, loops
);
378 /* Allocate and initialize auxiliary loop information. */
379 loops_info
= xcalloc (loops
->num
, sizeof (struct loop_info
));
380 for (i
= 0; i
< loops
->num
; i
++)
381 loops
->array
[i
].aux
= loops_info
+ i
;
383 /* Now find all register lifetimes. This must be done after
384 find_and_verify_loops, because it might reorder the insns in the
386 reg_scan (f
, max_reg_before_loop
, 1);
388 /* This must occur after reg_scan so that registers created by gcse
389 will have entries in the register tables.
391 We could have added a call to reg_scan after gcse_main in toplev.c,
392 but moving this call to init_alias_analysis is more efficient. */
393 init_alias_analysis ();
395 /* See if we went too far. Note that get_max_uid already returns
396 one more that the maximum uid of all insn. */
397 if (get_max_uid () > max_uid_for_loop
)
399 /* Now reset it to the actual size we need. See above. */
400 max_uid_for_loop
= get_max_uid ();
402 /* find_and_verify_loops has already called compute_luids, but it
403 might have rearranged code afterwards, so we need to recompute
405 max_luid
= compute_luids (f
, NULL_RTX
, 0);
407 /* Don't leave gaps in uid_luid for insns that have been
408 deleted. It is possible that the first or last insn
409 using some register has been deleted by cross-jumping.
410 Make sure that uid_luid for that former insn's uid
411 points to the general area where that insn used to be. */
412 for (i
= 0; i
< max_uid_for_loop
; i
++)
414 uid_luid
[0] = uid_luid
[i
];
415 if (uid_luid
[0] != 0)
418 for (i
= 0; i
< max_uid_for_loop
; i
++)
419 if (uid_luid
[i
] == 0)
420 uid_luid
[i
] = uid_luid
[i
- 1];
422 /* Determine if the function has indirect jump. On some systems
423 this prevents low overhead loop instructions from being used. */
424 indirect_jump_in_function
= indirect_jump_in_function_p (f
);
426 /* Now scan the loops, last ones first, since this means inner ones are done
427 before outer ones. */
428 for (i
= max_loop_num
- 1; i
>= 0; i
--)
430 struct loop
*loop
= &loops
->array
[i
];
431 struct loop_regs
*regs
= LOOP_REGS (loop
);
433 regs
->moved_once
= moved_once
;
435 if (! loop
->invalid
&& loop
->end
)
436 scan_loop (loop
, flags
);
439 /* If there were lexical blocks inside the loop, they have been
440 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
441 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
442 the BLOCKs as well. */
443 if (write_symbols
!= NO_DEBUG
)
446 end_alias_analysis ();
456 /* Returns the next insn, in execution order, after INSN. START and
457 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
458 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
459 insn-stream; it is used with loops that are entered near the
463 next_insn_in_loop (loop
, insn
)
464 const struct loop
*loop
;
467 insn
= NEXT_INSN (insn
);
469 if (insn
== loop
->end
)
472 /* Go to the top of the loop, and continue there. */
479 if (insn
== loop
->scan_start
)
486 /* Optimize one loop described by LOOP. */
488 /* ??? Could also move memory writes out of loops if the destination address
489 is invariant, the source is invariant, the memory write is not volatile,
490 and if we can prove that no read inside the loop can read this address
491 before the write occurs. If there is a read of this address after the
492 write, then we can also mark the memory read as invariant. */
495 scan_loop (loop
, flags
)
499 struct loop_info
*loop_info
= LOOP_INFO (loop
);
500 struct loop_regs
*regs
= LOOP_REGS (loop
);
502 rtx loop_start
= loop
->start
;
503 rtx loop_end
= loop
->end
;
505 /* 1 if we are scanning insns that could be executed zero times. */
507 /* 1 if we are scanning insns that might never be executed
508 due to a subroutine call which might exit before they are reached. */
510 /* Jump insn that enters the loop, or 0 if control drops in. */
511 rtx loop_entry_jump
= 0;
512 /* Number of insns in the loop. */
515 rtx temp
, update_start
, update_end
;
516 /* The SET from an insn, if it is the only SET in the insn. */
518 /* Chain describing insns movable in current loop. */
519 struct movables
*movables
= &the_movables
;
520 /* Ratio of extra register life span we can justify
521 for saving an instruction. More if loop doesn't call subroutines
522 since in that case saving an insn makes more difference
523 and more registers are available. */
525 /* Nonzero if we are scanning instructions in a sub-loop. */
535 /* Determine whether this loop starts with a jump down to a test at
536 the end. This will occur for a small number of loops with a test
537 that is too complex to duplicate in front of the loop.
539 We search for the first insn or label in the loop, skipping NOTEs.
540 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
541 (because we might have a loop executed only once that contains a
542 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
543 (in case we have a degenerate loop).
545 Note that if we mistakenly think that a loop is entered at the top
546 when, in fact, it is entered at the exit test, the only effect will be
547 slightly poorer optimization. Making the opposite error can generate
548 incorrect code. Since very few loops now start with a jump to the
549 exit test, the code here to detect that case is very conservative. */
551 for (p
= NEXT_INSN (loop_start
);
553 && GET_CODE (p
) != CODE_LABEL
&& ! INSN_P (p
)
554 && (GET_CODE (p
) != NOTE
555 || (NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_BEG
556 && NOTE_LINE_NUMBER (p
) != NOTE_INSN_LOOP_END
));
560 loop
->scan_start
= p
;
562 /* Set up variables describing this loop. */
564 threshold
= (loop_info
->has_call
? 1 : 2) * (1 + n_non_fixed_regs
);
566 /* If loop has a jump before the first label,
567 the true entry is the target of that jump.
568 Start scan from there.
569 But record in LOOP->TOP the place where the end-test jumps
570 back to so we can scan that after the end of the loop. */
571 if (GET_CODE (p
) == JUMP_INSN
)
575 /* Loop entry must be unconditional jump (and not a RETURN) */
576 if (any_uncondjump_p (p
)
577 && JUMP_LABEL (p
) != 0
578 /* Check to see whether the jump actually
579 jumps out of the loop (meaning it's no loop).
580 This case can happen for things like
581 do {..} while (0). If this label was generated previously
582 by loop, we can't tell anything about it and have to reject
584 && INSN_IN_RANGE_P (JUMP_LABEL (p
), loop_start
, loop_end
))
586 loop
->top
= next_label (loop
->scan_start
);
587 loop
->scan_start
= JUMP_LABEL (p
);
591 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
592 as required by loop_reg_used_before_p. So skip such loops. (This
593 test may never be true, but it's best to play it safe.)
595 Also, skip loops where we do not start scanning at a label. This
596 test also rejects loops starting with a JUMP_INSN that failed the
599 if (INSN_UID (loop
->scan_start
) >= max_uid_for_loop
600 || GET_CODE (loop
->scan_start
) != CODE_LABEL
)
602 if (loop_dump_stream
)
603 fprintf (loop_dump_stream
, "\nLoop from %d to %d is phony.\n\n",
604 INSN_UID (loop_start
), INSN_UID (loop_end
));
608 /* Count number of times each reg is set during this loop. Set
609 VARRAY_CHAR (regs->may_not_optimize, I) if it is not safe to move
610 out the setting of register I. Set VARRAY_RTX
611 (regs->single_usage, I). */
613 /* Allocate extra space for REGS that might be created by
614 load_mems. We allocate a little extra slop as well, in the hopes
615 that even after the moving of movables creates some new registers
616 we won't have to reallocate these arrays. However, we do grow
617 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
618 nregs
= max_reg_num () + loop_info
->mems_idx
+ 16;
619 VARRAY_INT_INIT (regs
->set_in_loop
, nregs
, "set_in_loop");
620 VARRAY_INT_INIT (regs
->n_times_set
, nregs
, "n_times_set");
621 VARRAY_CHAR_INIT (regs
->may_not_optimize
, nregs
, "may_not_optimize");
622 VARRAY_RTX_INIT (regs
->single_usage
, nregs
, "single_usage");
626 count_loop_regs_set (loop
, regs
->may_not_optimize
, regs
->single_usage
,
629 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
631 VARRAY_CHAR (regs
->may_not_optimize
, i
) = 1;
632 VARRAY_INT (regs
->set_in_loop
, i
) = 1;
635 #ifdef AVOID_CCMODE_COPIES
636 /* Don't try to move insns which set CC registers if we should not
637 create CCmode register copies. */
638 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
639 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
640 VARRAY_CHAR (regs
->may_not_optimize
, i
) = 1;
643 bcopy ((char *) ®s
->set_in_loop
->data
,
644 (char *) ®s
->n_times_set
->data
, nregs
* sizeof (int));
646 if (loop_dump_stream
)
648 fprintf (loop_dump_stream
, "\nLoop from %d to %d: %d real insns.\n",
649 INSN_UID (loop_start
), INSN_UID (loop_end
), insn_count
);
651 fprintf (loop_dump_stream
, "Continue at insn %d.\n",
652 INSN_UID (loop
->cont
));
655 /* Scan through the loop finding insns that are safe to move.
656 Set regs->set_in_loop negative for the reg being set, so that
657 this reg will be considered invariant for subsequent insns.
658 We consider whether subsequent insns use the reg
659 in deciding whether it is worth actually moving.
661 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
662 and therefore it is possible that the insns we are scanning
663 would never be executed. At such times, we must make sure
664 that it is safe to execute the insn once instead of zero times.
665 When MAYBE_NEVER is 0, all insns will be executed at least once
666 so that is not a problem. */
668 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
670 p
= next_insn_in_loop (loop
, p
))
672 if (GET_CODE (p
) == INSN
673 && (set
= single_set (p
))
674 && GET_CODE (SET_DEST (set
)) == REG
675 && ! VARRAY_CHAR (regs
->may_not_optimize
, REGNO (SET_DEST (set
))))
680 rtx src
= SET_SRC (set
);
681 rtx dependencies
= 0;
683 /* Figure out what to use as a source of this insn. If a REG_EQUIV
684 note is given or if a REG_EQUAL note with a constant operand is
685 specified, use it as the source and mark that we should move
686 this insn by calling emit_move_insn rather that duplicating the
689 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
691 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
693 src
= XEXP (temp
, 0), move_insn
= 1;
696 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
697 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
698 src
= XEXP (temp
, 0), move_insn
= 1;
699 if (temp
&& find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
701 src
= XEXP (temp
, 0);
702 /* A libcall block can use regs that don't appear in
703 the equivalent expression. To move the libcall,
704 we must move those regs too. */
705 dependencies
= libcall_other_reg (p
, src
);
709 /* Don't try to optimize a register that was made
710 by loop-optimization for an inner loop.
711 We don't know its life-span, so we can't compute the benefit. */
712 if (REGNO (SET_DEST (set
)) >= max_reg_before_loop
)
714 else if (/* The register is used in basic blocks other
715 than the one where it is set (meaning that
716 something after this point in the loop might
717 depend on its value before the set). */
718 ! reg_in_basic_block_p (p
, SET_DEST (set
))
719 /* And the set is not guaranteed to be executed one
720 the loop starts, or the value before the set is
721 needed before the set occurs...
723 ??? Note we have quadratic behaviour here, mitigated
724 by the fact that the previous test will often fail for
725 large loops. Rather than re-scanning the entire loop
726 each time for register usage, we should build tables
727 of the register usage and use them here instead. */
729 || loop_reg_used_before_p (loop
, set
, p
)))
730 /* It is unsafe to move the set.
732 This code used to consider it OK to move a set of a variable
733 which was not created by the user and not used in an exit test.
734 That behavior is incorrect and was removed. */
736 else if ((tem
= loop_invariant_p (loop
, src
))
737 && (dependencies
== 0
738 || (tem2
= loop_invariant_p (loop
, dependencies
)) != 0)
739 && (VARRAY_INT (regs
->set_in_loop
,
740 REGNO (SET_DEST (set
))) == 1
742 = consec_sets_invariant_p
743 (loop
, SET_DEST (set
),
744 VARRAY_INT (regs
->set_in_loop
,
745 REGNO (SET_DEST (set
))),
747 /* If the insn can cause a trap (such as divide by zero),
748 can't move it unless it's guaranteed to be executed
749 once loop is entered. Even a function call might
750 prevent the trap insn from being reached
751 (since it might exit!) */
752 && ! ((maybe_never
|| call_passed
)
753 && may_trap_p (src
)))
755 register struct movable
*m
;
756 register int regno
= REGNO (SET_DEST (set
));
758 /* A potential lossage is where we have a case where two insns
759 can be combined as long as they are both in the loop, but
760 we move one of them outside the loop. For large loops,
761 this can lose. The most common case of this is the address
762 of a function being called.
764 Therefore, if this register is marked as being used exactly
765 once if we are in a loop with calls (a "large loop"), see if
766 we can replace the usage of this register with the source
767 of this SET. If we can, delete this insn.
769 Don't do this if P has a REG_RETVAL note or if we have
770 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
772 if (loop_info
->has_call
773 && VARRAY_RTX (regs
->single_usage
, regno
) != 0
774 && VARRAY_RTX (regs
->single_usage
, regno
) != const0_rtx
775 && REGNO_FIRST_UID (regno
) == INSN_UID (p
)
776 && (REGNO_LAST_UID (regno
)
777 == INSN_UID (VARRAY_RTX (regs
->single_usage
, regno
)))
778 && VARRAY_INT (regs
->set_in_loop
, regno
) == 1
779 && ! side_effects_p (SET_SRC (set
))
780 && ! find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
781 && (! SMALL_REGISTER_CLASSES
782 || (! (GET_CODE (SET_SRC (set
)) == REG
783 && REGNO (SET_SRC (set
)) < FIRST_PSEUDO_REGISTER
)))
784 /* This test is not redundant; SET_SRC (set) might be
785 a call-clobbered register and the life of REGNO
786 might span a call. */
787 && ! modified_between_p (SET_SRC (set
), p
,
789 (regs
->single_usage
, regno
))
790 && no_labels_between_p (p
, VARRAY_RTX (regs
->single_usage
,
792 && validate_replace_rtx (SET_DEST (set
), SET_SRC (set
),
794 (regs
->single_usage
, regno
)))
796 /* Replace any usage in a REG_EQUAL note. Must copy the
797 new source, so that we don't get rtx sharing between the
798 SET_SOURCE and REG_NOTES of insn p. */
799 REG_NOTES (VARRAY_RTX (regs
->single_usage
, regno
))
800 = replace_rtx (REG_NOTES (VARRAY_RTX
801 (regs
->single_usage
, regno
)),
802 SET_DEST (set
), copy_rtx (SET_SRC (set
)));
805 NOTE_LINE_NUMBER (p
) = NOTE_INSN_DELETED
;
806 NOTE_SOURCE_FILE (p
) = 0;
807 VARRAY_INT (regs
->set_in_loop
, regno
) = 0;
811 m
= (struct movable
*) alloca (sizeof (struct movable
));
815 m
->dependencies
= dependencies
;
816 m
->set_dest
= SET_DEST (set
);
818 m
->consec
= VARRAY_INT (regs
->set_in_loop
,
819 REGNO (SET_DEST (set
))) - 1;
823 m
->move_insn
= move_insn
;
824 m
->move_insn_first
= 0;
825 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
826 m
->savemode
= VOIDmode
;
828 /* Set M->cond if either loop_invariant_p
829 or consec_sets_invariant_p returned 2
830 (only conditionally invariant). */
831 m
->cond
= ((tem
| tem1
| tem2
) > 1);
832 m
->global
= (uid_luid
[REGNO_LAST_UID (regno
)]
833 > INSN_LUID (loop_end
)
834 || uid_luid
[REGNO_FIRST_UID (regno
)] < INSN_LUID (loop_start
));
836 m
->lifetime
= (uid_luid
[REGNO_LAST_UID (regno
)]
837 - uid_luid
[REGNO_FIRST_UID (regno
)]);
838 m
->savings
= VARRAY_INT (regs
->n_times_set
, regno
);
839 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
840 m
->savings
+= libcall_benefit (p
);
841 VARRAY_INT (regs
->set_in_loop
, regno
) = move_insn
? -2 : -1;
842 /* Add M to the end of the chain MOVABLES. */
843 if (movables
->head
== 0)
846 movables
->last
->next
= m
;
851 /* It is possible for the first instruction to have a
852 REG_EQUAL note but a non-invariant SET_SRC, so we must
853 remember the status of the first instruction in case
854 the last instruction doesn't have a REG_EQUAL note. */
855 m
->move_insn_first
= m
->move_insn
;
857 /* Skip this insn, not checking REG_LIBCALL notes. */
858 p
= next_nonnote_insn (p
);
859 /* Skip the consecutive insns, if there are any. */
860 p
= skip_consec_insns (p
, m
->consec
);
861 /* Back up to the last insn of the consecutive group. */
862 p
= prev_nonnote_insn (p
);
864 /* We must now reset m->move_insn, m->is_equiv, and possibly
865 m->set_src to correspond to the effects of all the
867 temp
= find_reg_note (p
, REG_EQUIV
, NULL_RTX
);
869 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
872 temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
);
873 if (temp
&& CONSTANT_P (XEXP (temp
, 0)))
874 m
->set_src
= XEXP (temp
, 0), m
->move_insn
= 1;
879 m
->is_equiv
= (find_reg_note (p
, REG_EQUIV
, NULL_RTX
) != 0);
882 /* If this register is always set within a STRICT_LOW_PART
883 or set to zero, then its high bytes are constant.
884 So clear them outside the loop and within the loop
885 just load the low bytes.
886 We must check that the machine has an instruction to do so.
887 Also, if the value loaded into the register
888 depends on the same register, this cannot be done. */
889 else if (SET_SRC (set
) == const0_rtx
890 && GET_CODE (NEXT_INSN (p
)) == INSN
891 && (set1
= single_set (NEXT_INSN (p
)))
892 && GET_CODE (set1
) == SET
893 && (GET_CODE (SET_DEST (set1
)) == STRICT_LOW_PART
)
894 && (GET_CODE (XEXP (SET_DEST (set1
), 0)) == SUBREG
)
895 && (SUBREG_REG (XEXP (SET_DEST (set1
), 0))
897 && !reg_mentioned_p (SET_DEST (set
), SET_SRC (set1
)))
899 register int regno
= REGNO (SET_DEST (set
));
900 if (VARRAY_INT (regs
->set_in_loop
, regno
) == 2)
902 register struct movable
*m
;
903 m
= (struct movable
*) alloca (sizeof (struct movable
));
906 m
->set_dest
= SET_DEST (set
);
913 m
->move_insn_first
= 0;
915 /* If the insn may not be executed on some cycles,
916 we can't clear the whole reg; clear just high part.
917 Not even if the reg is used only within this loop.
924 Clearing x before the inner loop could clobber a value
925 being saved from the last time around the outer loop.
926 However, if the reg is not used outside this loop
927 and all uses of the register are in the same
928 basic block as the store, there is no problem.
930 If this insn was made by loop, we don't know its
931 INSN_LUID and hence must make a conservative
933 m
->global
= (INSN_UID (p
) >= max_uid_for_loop
934 || (uid_luid
[REGNO_LAST_UID (regno
)]
935 > INSN_LUID (loop_end
))
936 || (uid_luid
[REGNO_FIRST_UID (regno
)]
938 || (labels_in_range_p
939 (p
, uid_luid
[REGNO_FIRST_UID (regno
)])));
940 if (maybe_never
&& m
->global
)
941 m
->savemode
= GET_MODE (SET_SRC (set1
));
943 m
->savemode
= VOIDmode
;
947 m
->lifetime
= (uid_luid
[REGNO_LAST_UID (regno
)]
948 - uid_luid
[REGNO_FIRST_UID (regno
)]);
950 VARRAY_INT (regs
->set_in_loop
, regno
) = -1;
951 /* Add M to the end of the chain MOVABLES. */
952 if (movables
->head
== 0)
955 movables
->last
->next
= m
;
960 /* Past a call insn, we get to insns which might not be executed
961 because the call might exit. This matters for insns that trap.
962 Constant and pure call insns always return, so they don't count. */
963 else if (GET_CODE (p
) == CALL_INSN
&& ! CONST_CALL_P (p
))
965 /* Past a label or a jump, we get to insns for which we
966 can't count on whether or how many times they will be
967 executed during each iteration. Therefore, we can
968 only move out sets of trivial variables
969 (those not used after the loop). */
970 /* Similar code appears twice in strength_reduce. */
971 else if ((GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
)
972 /* If we enter the loop in the middle, and scan around to the
973 beginning, don't set maybe_never for that. This must be an
974 unconditional jump, otherwise the code at the top of the
975 loop might never be executed. Unconditional jumps are
976 followed a by barrier then loop end. */
977 && ! (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == loop
->top
978 && NEXT_INSN (NEXT_INSN (p
)) == loop_end
979 && any_uncondjump_p (p
)))
981 else if (GET_CODE (p
) == NOTE
)
983 /* At the virtual top of a converted loop, insns are again known to
984 be executed: logically, the loop begins here even though the exit
985 code has been duplicated. */
986 if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
&& loop_depth
== 0)
987 maybe_never
= call_passed
= 0;
988 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
990 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
995 /* If one movable subsumes another, ignore that other. */
997 ignore_some_movables (movables
);
999 /* For each movable insn, see if the reg that it loads
1000 leads when it dies right into another conditionally movable insn.
1001 If so, record that the second insn "forces" the first one,
1002 since the second can be moved only if the first is. */
1004 force_movables (movables
);
1006 /* See if there are multiple movable insns that load the same value.
1007 If there are, make all but the first point at the first one
1008 through the `match' field, and add the priorities of them
1009 all together as the priority of the first. */
1011 combine_movables (movables
, regs
);
1013 /* Now consider each movable insn to decide whether it is worth moving.
1014 Store 0 in regs->set_in_loop for each reg that is moved.
1016 Generally this increases code size, so do not move moveables when
1017 optimizing for code size. */
1019 if (! optimize_size
)
1020 move_movables (loop
, movables
, threshold
, insn_count
);
1022 /* Now candidates that still are negative are those not moved.
1023 Change regs->set_in_loop to indicate that those are not actually
1025 for (i
= 0; i
< nregs
; i
++)
1026 if (VARRAY_INT (regs
->set_in_loop
, i
) < 0)
1027 VARRAY_INT (regs
->set_in_loop
, i
) = VARRAY_INT (regs
->n_times_set
, i
);
1029 /* Now that we've moved some things out of the loop, we might be able to
1030 hoist even more memory references. */
1031 load_mems_and_recount_loop_regs_set (loop
, &insn_count
);
1033 for (update_start
= loop_start
;
1034 PREV_INSN (update_start
)
1035 && GET_CODE (PREV_INSN (update_start
)) != CODE_LABEL
;
1036 update_start
= PREV_INSN (update_start
))
1038 update_end
= NEXT_INSN (loop_end
);
1040 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1041 loop_max_reg
= max_reg_num ();
1043 if (flag_strength_reduce
)
1045 if (update_end
&& GET_CODE (update_end
) == CODE_LABEL
)
1046 /* Ensure our label doesn't go away. */
1047 LABEL_NUSES (update_end
)++;
1049 strength_reduce (loop
, insn_count
, flags
);
1051 reg_scan_update (update_start
, update_end
, loop_max_reg
);
1052 loop_max_reg
= max_reg_num ();
1054 if (update_end
&& GET_CODE (update_end
) == CODE_LABEL
1055 && --LABEL_NUSES (update_end
) == 0)
1056 delete_insn (update_end
);
1059 VARRAY_FREE (regs
->single_usage
);
1060 VARRAY_FREE (regs
->set_in_loop
);
1061 VARRAY_FREE (regs
->n_times_set
);
1062 VARRAY_FREE (regs
->may_not_optimize
);
1065 /* Add elements to *OUTPUT to record all the pseudo-regs
1066 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1069 record_excess_regs (in_this
, not_in_this
, output
)
1070 rtx in_this
, not_in_this
;
1077 code
= GET_CODE (in_this
);
1091 if (REGNO (in_this
) >= FIRST_PSEUDO_REGISTER
1092 && ! reg_mentioned_p (in_this
, not_in_this
))
1093 *output
= gen_rtx_EXPR_LIST (VOIDmode
, in_this
, *output
);
1100 fmt
= GET_RTX_FORMAT (code
);
1101 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1108 for (j
= 0; j
< XVECLEN (in_this
, i
); j
++)
1109 record_excess_regs (XVECEXP (in_this
, i
, j
), not_in_this
, output
);
1113 record_excess_regs (XEXP (in_this
, i
), not_in_this
, output
);
1119 /* Check what regs are referred to in the libcall block ending with INSN,
1120 aside from those mentioned in the equivalent value.
1121 If there are none, return 0.
1122 If there are one or more, return an EXPR_LIST containing all of them. */
1125 libcall_other_reg (insn
, equiv
)
1128 rtx note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
1129 rtx p
= XEXP (note
, 0);
1132 /* First, find all the regs used in the libcall block
1133 that are not mentioned as inputs to the result. */
1137 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
1138 || GET_CODE (p
) == CALL_INSN
)
1139 record_excess_regs (PATTERN (p
), equiv
, &output
);
1146 /* Return 1 if all uses of REG
1147 are between INSN and the end of the basic block. */
1150 reg_in_basic_block_p (insn
, reg
)
1153 int regno
= REGNO (reg
);
1156 if (REGNO_FIRST_UID (regno
) != INSN_UID (insn
))
1159 /* Search this basic block for the already recorded last use of the reg. */
1160 for (p
= insn
; p
; p
= NEXT_INSN (p
))
1162 switch (GET_CODE (p
))
1169 /* Ordinary insn: if this is the last use, we win. */
1170 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1175 /* Jump insn: if this is the last use, we win. */
1176 if (REGNO_LAST_UID (regno
) == INSN_UID (p
))
1178 /* Otherwise, it's the end of the basic block, so we lose. */
1183 /* It's the end of the basic block, so we lose. */
1191 /* The "last use" that was recorded can't be found after the first
1192 use. This can happen when the last use was deleted while
1193 processing an inner loop, this inner loop was then completely
1194 unrolled, and the outer loop is always exited after the inner loop,
1195 so that everything after the first use becomes a single basic block. */
1199 /* Compute the benefit of eliminating the insns in the block whose
1200 last insn is LAST. This may be a group of insns used to compute a
1201 value directly or can contain a library call. */
1204 libcall_benefit (last
)
1210 for (insn
= XEXP (find_reg_note (last
, REG_RETVAL
, NULL_RTX
), 0);
1211 insn
!= last
; insn
= NEXT_INSN (insn
))
1213 if (GET_CODE (insn
) == CALL_INSN
)
1214 benefit
+= 10; /* Assume at least this many insns in a library
1216 else if (GET_CODE (insn
) == INSN
1217 && GET_CODE (PATTERN (insn
)) != USE
1218 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
1225 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1228 skip_consec_insns (insn
, count
)
1232 for (; count
> 0; count
--)
1236 /* If first insn of libcall sequence, skip to end. */
1237 /* Do this at start of loop, since INSN is guaranteed to
1239 if (GET_CODE (insn
) != NOTE
1240 && (temp
= find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
)))
1241 insn
= XEXP (temp
, 0);
1244 insn
= NEXT_INSN (insn
);
1245 while (GET_CODE (insn
) == NOTE
);
1251 /* Ignore any movable whose insn falls within a libcall
1252 which is part of another movable.
1253 We make use of the fact that the movable for the libcall value
1254 was made later and so appears later on the chain. */
1257 ignore_some_movables (movables
)
1258 struct movables
*movables
;
1260 register struct movable
*m
, *m1
;
1262 for (m
= movables
->head
; m
; m
= m
->next
)
1264 /* Is this a movable for the value of a libcall? */
1265 rtx note
= find_reg_note (m
->insn
, REG_RETVAL
, NULL_RTX
);
1269 /* Check for earlier movables inside that range,
1270 and mark them invalid. We cannot use LUIDs here because
1271 insns created by loop.c for prior loops don't have LUIDs.
1272 Rather than reject all such insns from movables, we just
1273 explicitly check each insn in the libcall (since invariant
1274 libcalls aren't that common). */
1275 for (insn
= XEXP (note
, 0); insn
!= m
->insn
; insn
= NEXT_INSN (insn
))
1276 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1277 if (m1
->insn
== insn
)
1283 /* For each movable insn, see if the reg that it loads
1284 leads when it dies right into another conditionally movable insn.
1285 If so, record that the second insn "forces" the first one,
1286 since the second can be moved only if the first is. */
1289 force_movables (movables
)
1290 struct movables
*movables
;
1292 register struct movable
*m
, *m1
;
1293 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
1294 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1295 if (!m1
->partial
&& !m1
->done
)
1297 int regno
= m1
->regno
;
1298 for (m
= m1
->next
; m
; m
= m
->next
)
1299 /* ??? Could this be a bug? What if CSE caused the
1300 register of M1 to be used after this insn?
1301 Since CSE does not update regno_last_uid,
1302 this insn M->insn might not be where it dies.
1303 But very likely this doesn't matter; what matters is
1304 that M's reg is computed from M1's reg. */
1305 if (INSN_UID (m
->insn
) == REGNO_LAST_UID (regno
)
1308 if (m
!= 0 && m
->set_src
== m1
->set_dest
1309 /* If m->consec, m->set_src isn't valid. */
1313 /* Increase the priority of the moving the first insn
1314 since it permits the second to be moved as well. */
1318 m1
->lifetime
+= m
->lifetime
;
1319 m1
->savings
+= m
->savings
;
1324 /* Find invariant expressions that are equal and can be combined into
1328 combine_movables (movables
, regs
)
1329 struct movables
*movables
;
1330 struct loop_regs
*regs
;
1332 register struct movable
*m
;
1333 char *matched_regs
= (char *) xmalloc (regs
->num
);
1334 enum machine_mode mode
;
1336 /* Regs that are set more than once are not allowed to match
1337 or be matched. I'm no longer sure why not. */
1338 /* Perhaps testing m->consec_sets would be more appropriate here? */
1340 for (m
= movables
->head
; m
; m
= m
->next
)
1341 if (m
->match
== 0 && VARRAY_INT (regs
->n_times_set
, m
->regno
) == 1
1344 register struct movable
*m1
;
1345 int regno
= m
->regno
;
1347 memset (matched_regs
, 0, regs
->num
);
1348 matched_regs
[regno
] = 1;
1350 /* We want later insns to match the first one. Don't make the first
1351 one match any later ones. So start this loop at m->next. */
1352 for (m1
= m
->next
; m1
; m1
= m1
->next
)
1353 if (m
!= m1
&& m1
->match
== 0 && VARRAY_INT (regs
->n_times_set
,
1355 /* A reg used outside the loop mustn't be eliminated. */
1357 /* A reg used for zero-extending mustn't be eliminated. */
1359 && (matched_regs
[m1
->regno
]
1362 /* Can combine regs with different modes loaded from the
1363 same constant only if the modes are the same or
1364 if both are integer modes with M wider or the same
1365 width as M1. The check for integer is redundant, but
1366 safe, since the only case of differing destination
1367 modes with equal sources is when both sources are
1368 VOIDmode, i.e., CONST_INT. */
1369 (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
)
1370 || (GET_MODE_CLASS (GET_MODE (m
->set_dest
)) == MODE_INT
1371 && GET_MODE_CLASS (GET_MODE (m1
->set_dest
)) == MODE_INT
1372 && (GET_MODE_BITSIZE (GET_MODE (m
->set_dest
))
1373 >= GET_MODE_BITSIZE (GET_MODE (m1
->set_dest
)))))
1374 /* See if the source of M1 says it matches M. */
1375 && ((GET_CODE (m1
->set_src
) == REG
1376 && matched_regs
[REGNO (m1
->set_src
)])
1377 || rtx_equal_for_loop_p (m
->set_src
, m1
->set_src
,
1379 && ((m
->dependencies
== m1
->dependencies
)
1380 || rtx_equal_p (m
->dependencies
, m1
->dependencies
)))
1382 m
->lifetime
+= m1
->lifetime
;
1383 m
->savings
+= m1
->savings
;
1386 matched_regs
[m1
->regno
] = 1;
1390 /* Now combine the regs used for zero-extension.
1391 This can be done for those not marked `global'
1392 provided their lives don't overlap. */
1394 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1395 mode
= GET_MODE_WIDER_MODE (mode
))
1397 register struct movable
*m0
= 0;
1399 /* Combine all the registers for extension from mode MODE.
1400 Don't combine any that are used outside this loop. */
1401 for (m
= movables
->head
; m
; m
= m
->next
)
1402 if (m
->partial
&& ! m
->global
1403 && mode
== GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m
->insn
)))))
1405 register struct movable
*m1
;
1406 int first
= uid_luid
[REGNO_FIRST_UID (m
->regno
)];
1407 int last
= uid_luid
[REGNO_LAST_UID (m
->regno
)];
1411 /* First one: don't check for overlap, just record it. */
1416 /* Make sure they extend to the same mode.
1417 (Almost always true.) */
1418 if (GET_MODE (m
->set_dest
) != GET_MODE (m0
->set_dest
))
1421 /* We already have one: check for overlap with those
1422 already combined together. */
1423 for (m1
= movables
->head
; m1
!= m
; m1
= m1
->next
)
1424 if (m1
== m0
|| (m1
->partial
&& m1
->match
== m0
))
1425 if (! (uid_luid
[REGNO_FIRST_UID (m1
->regno
)] > last
1426 || uid_luid
[REGNO_LAST_UID (m1
->regno
)] < first
))
1429 /* No overlap: we can combine this with the others. */
1430 m0
->lifetime
+= m
->lifetime
;
1431 m0
->savings
+= m
->savings
;
1441 free (matched_regs
);
1444 /* Return 1 if regs X and Y will become the same if moved. */
1447 regs_match_p (x
, y
, movables
)
1449 struct movables
*movables
;
1451 unsigned int xn
= REGNO (x
);
1452 unsigned int yn
= REGNO (y
);
1453 struct movable
*mx
, *my
;
1455 for (mx
= movables
->head
; mx
; mx
= mx
->next
)
1456 if (mx
->regno
== xn
)
1459 for (my
= movables
->head
; my
; my
= my
->next
)
1460 if (my
->regno
== yn
)
1464 && ((mx
->match
== my
->match
&& mx
->match
!= 0)
1466 || mx
== my
->match
));
1469 /* Return 1 if X and Y are identical-looking rtx's.
1470 This is the Lisp function EQUAL for rtx arguments.
1472 If two registers are matching movables or a movable register and an
1473 equivalent constant, consider them equal. */
1476 rtx_equal_for_loop_p (x
, y
, movables
, regs
)
1478 struct movables
*movables
;
1479 struct loop_regs
*regs
;
1483 register struct movable
*m
;
1484 register enum rtx_code code
;
1485 register const char *fmt
;
1489 if (x
== 0 || y
== 0)
1492 code
= GET_CODE (x
);
1494 /* If we have a register and a constant, they may sometimes be
1496 if (GET_CODE (x
) == REG
&& VARRAY_INT (regs
->set_in_loop
, REGNO (x
)) == -2
1499 for (m
= movables
->head
; m
; m
= m
->next
)
1500 if (m
->move_insn
&& m
->regno
== REGNO (x
)
1501 && rtx_equal_p (m
->set_src
, y
))
1504 else if (GET_CODE (y
) == REG
&& VARRAY_INT (regs
->set_in_loop
,
1508 for (m
= movables
->head
; m
; m
= m
->next
)
1509 if (m
->move_insn
&& m
->regno
== REGNO (y
)
1510 && rtx_equal_p (m
->set_src
, x
))
1514 /* Otherwise, rtx's of different codes cannot be equal. */
1515 if (code
!= GET_CODE (y
))
1518 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1519 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1521 if (GET_MODE (x
) != GET_MODE (y
))
1524 /* These three types of rtx's can be compared nonrecursively. */
1526 return (REGNO (x
) == REGNO (y
) || regs_match_p (x
, y
, movables
));
1528 if (code
== LABEL_REF
)
1529 return XEXP (x
, 0) == XEXP (y
, 0);
1530 if (code
== SYMBOL_REF
)
1531 return XSTR (x
, 0) == XSTR (y
, 0);
1533 /* Compare the elements. If any pair of corresponding elements
1534 fail to match, return 0 for the whole things. */
1536 fmt
= GET_RTX_FORMAT (code
);
1537 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1542 if (XWINT (x
, i
) != XWINT (y
, i
))
1547 if (XINT (x
, i
) != XINT (y
, i
))
1552 /* Two vectors must have the same length. */
1553 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1556 /* And the corresponding elements must match. */
1557 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1558 if (rtx_equal_for_loop_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
),
1559 movables
, regs
) == 0)
1564 if (rtx_equal_for_loop_p (XEXP (x
, i
), XEXP (y
, i
), movables
, regs
)
1570 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1575 /* These are just backpointers, so they don't matter. */
1581 /* It is believed that rtx's at this level will never
1582 contain anything but integers and other rtx's,
1583 except for within LABEL_REFs and SYMBOL_REFs. */
1591 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1592 insns in INSNS which use the reference. */
1595 add_label_notes (x
, insns
)
1599 enum rtx_code code
= GET_CODE (x
);
1604 if (code
== LABEL_REF
&& !LABEL_REF_NONLOCAL_P (x
))
1606 /* This code used to ignore labels that referred to dispatch tables to
1607 avoid flow generating (slighly) worse code.
1609 We no longer ignore such label references (see LABEL_REF handling in
1610 mark_jump_label for additional information). */
1611 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
1612 if (reg_mentioned_p (XEXP (x
, 0), insn
))
1613 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_LABEL
, XEXP (x
, 0),
1617 fmt
= GET_RTX_FORMAT (code
);
1618 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1621 add_label_notes (XEXP (x
, i
), insns
);
1622 else if (fmt
[i
] == 'E')
1623 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1624 add_label_notes (XVECEXP (x
, i
, j
), insns
);
1628 /* Scan MOVABLES, and move the insns that deserve to be moved.
1629 If two matching movables are combined, replace one reg with the
1630 other throughout. */
1633 move_movables (loop
, movables
, threshold
, insn_count
)
1635 struct movables
*movables
;
1639 struct loop_regs
*regs
= LOOP_REGS (loop
);
1640 int nregs
= regs
->num
;
1642 register struct movable
*m
;
1644 rtx loop_start
= loop
->start
;
1645 rtx loop_end
= loop
->end
;
1646 /* Map of pseudo-register replacements to handle combining
1647 when we move several insns that load the same value
1648 into different pseudo-registers. */
1649 rtx
*reg_map
= (rtx
*) xcalloc (nregs
, sizeof (rtx
));
1650 char *already_moved
= (char *) xcalloc (nregs
, sizeof (char));
1654 for (m
= movables
->head
; m
; m
= m
->next
)
1656 /* Describe this movable insn. */
1658 if (loop_dump_stream
)
1660 fprintf (loop_dump_stream
, "Insn %d: regno %d (life %d), ",
1661 INSN_UID (m
->insn
), m
->regno
, m
->lifetime
);
1663 fprintf (loop_dump_stream
, "consec %d, ", m
->consec
);
1665 fprintf (loop_dump_stream
, "cond ");
1667 fprintf (loop_dump_stream
, "force ");
1669 fprintf (loop_dump_stream
, "global ");
1671 fprintf (loop_dump_stream
, "done ");
1673 fprintf (loop_dump_stream
, "move-insn ");
1675 fprintf (loop_dump_stream
, "matches %d ",
1676 INSN_UID (m
->match
->insn
));
1678 fprintf (loop_dump_stream
, "forces %d ",
1679 INSN_UID (m
->forces
->insn
));
1682 /* Count movables. Value used in heuristics in strength_reduce. */
1685 /* Ignore the insn if it's already done (it matched something else).
1686 Otherwise, see if it is now safe to move. */
1690 || (1 == loop_invariant_p (loop
, m
->set_src
)
1691 && (m
->dependencies
== 0
1692 || 1 == loop_invariant_p (loop
, m
->dependencies
))
1694 || 1 == consec_sets_invariant_p (loop
, m
->set_dest
,
1697 && (! m
->forces
|| m
->forces
->done
))
1701 int savings
= m
->savings
;
1703 /* We have an insn that is safe to move.
1704 Compute its desirability. */
1709 if (loop_dump_stream
)
1710 fprintf (loop_dump_stream
, "savings %d ", savings
);
1712 if (regs
->moved_once
[regno
] && loop_dump_stream
)
1713 fprintf (loop_dump_stream
, "halved since already moved ");
1715 /* An insn MUST be moved if we already moved something else
1716 which is safe only if this one is moved too: that is,
1717 if already_moved[REGNO] is nonzero. */
1719 /* An insn is desirable to move if the new lifetime of the
1720 register is no more than THRESHOLD times the old lifetime.
1721 If it's not desirable, it means the loop is so big
1722 that moving won't speed things up much,
1723 and it is liable to make register usage worse. */
1725 /* It is also desirable to move if it can be moved at no
1726 extra cost because something else was already moved. */
1728 if (already_moved
[regno
]
1729 || flag_move_all_movables
1730 || (threshold
* savings
* m
->lifetime
) >=
1731 (regs
->moved_once
[regno
] ? insn_count
* 2 : insn_count
)
1732 || (m
->forces
&& m
->forces
->done
1733 && VARRAY_INT (regs
->n_times_set
, m
->forces
->regno
) == 1))
1736 register struct movable
*m1
;
1737 rtx first
= NULL_RTX
;
1739 /* Now move the insns that set the reg. */
1741 if (m
->partial
&& m
->match
)
1745 /* Find the end of this chain of matching regs.
1746 Thus, we load each reg in the chain from that one reg.
1747 And that reg is loaded with 0 directly,
1748 since it has ->match == 0. */
1749 for (m1
= m
; m1
->match
; m1
= m1
->match
);
1750 newpat
= gen_move_insn (SET_DEST (PATTERN (m
->insn
)),
1751 SET_DEST (PATTERN (m1
->insn
)));
1752 i1
= emit_insn_before (newpat
, loop_start
);
1754 /* Mark the moved, invariant reg as being allowed to
1755 share a hard reg with the other matching invariant. */
1756 REG_NOTES (i1
) = REG_NOTES (m
->insn
);
1757 r1
= SET_DEST (PATTERN (m
->insn
));
1758 r2
= SET_DEST (PATTERN (m1
->insn
));
1760 = gen_rtx_EXPR_LIST (VOIDmode
, r1
,
1761 gen_rtx_EXPR_LIST (VOIDmode
, r2
,
1763 delete_insn (m
->insn
);
1768 if (loop_dump_stream
)
1769 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1771 /* If we are to re-generate the item being moved with a
1772 new move insn, first delete what we have and then emit
1773 the move insn before the loop. */
1774 else if (m
->move_insn
)
1778 for (count
= m
->consec
; count
>= 0; count
--)
1780 /* If this is the first insn of a library call sequence,
1782 if (GET_CODE (p
) != NOTE
1783 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1786 /* If this is the last insn of a libcall sequence, then
1787 delete every insn in the sequence except the last.
1788 The last insn is handled in the normal manner. */
1789 if (GET_CODE (p
) != NOTE
1790 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1792 temp
= XEXP (temp
, 0);
1794 temp
= delete_insn (temp
);
1798 p
= delete_insn (p
);
1800 /* simplify_giv_expr expects that it can walk the insns
1801 at m->insn forwards and see this old sequence we are
1802 tossing here. delete_insn does preserve the next
1803 pointers, but when we skip over a NOTE we must fix
1804 it up. Otherwise that code walks into the non-deleted
1806 while (p
&& GET_CODE (p
) == NOTE
)
1807 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
1811 emit_move_insn (m
->set_dest
, m
->set_src
);
1812 temp
= get_insns ();
1815 add_label_notes (m
->set_src
, temp
);
1817 i1
= emit_insns_before (temp
, loop_start
);
1818 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
1820 = gen_rtx_EXPR_LIST (m
->is_equiv
? REG_EQUIV
: REG_EQUAL
,
1821 m
->set_src
, REG_NOTES (i1
));
1823 if (loop_dump_stream
)
1824 fprintf (loop_dump_stream
, " moved to %d", INSN_UID (i1
));
1826 /* The more regs we move, the less we like moving them. */
1831 for (count
= m
->consec
; count
>= 0; count
--)
1835 /* If first insn of libcall sequence, skip to end. */
1836 /* Do this at start of loop, since p is guaranteed to
1838 if (GET_CODE (p
) != NOTE
1839 && (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
1842 /* If last insn of libcall sequence, move all
1843 insns except the last before the loop. The last
1844 insn is handled in the normal manner. */
1845 if (GET_CODE (p
) != NOTE
1846 && (temp
= find_reg_note (p
, REG_RETVAL
, NULL_RTX
)))
1850 rtx fn_address_insn
= 0;
1853 for (temp
= XEXP (temp
, 0); temp
!= p
;
1854 temp
= NEXT_INSN (temp
))
1860 if (GET_CODE (temp
) == NOTE
)
1863 body
= PATTERN (temp
);
1865 /* Find the next insn after TEMP,
1866 not counting USE or NOTE insns. */
1867 for (next
= NEXT_INSN (temp
); next
!= p
;
1868 next
= NEXT_INSN (next
))
1869 if (! (GET_CODE (next
) == INSN
1870 && GET_CODE (PATTERN (next
)) == USE
)
1871 && GET_CODE (next
) != NOTE
)
1874 /* If that is the call, this may be the insn
1875 that loads the function address.
1877 Extract the function address from the insn
1878 that loads it into a register.
1879 If this insn was cse'd, we get incorrect code.
1881 So emit a new move insn that copies the
1882 function address into the register that the
1883 call insn will use. flow.c will delete any
1884 redundant stores that we have created. */
1885 if (GET_CODE (next
) == CALL_INSN
1886 && GET_CODE (body
) == SET
1887 && GET_CODE (SET_DEST (body
)) == REG
1888 && (n
= find_reg_note (temp
, REG_EQUAL
,
1891 fn_reg
= SET_SRC (body
);
1892 if (GET_CODE (fn_reg
) != REG
)
1893 fn_reg
= SET_DEST (body
);
1894 fn_address
= XEXP (n
, 0);
1895 fn_address_insn
= temp
;
1897 /* We have the call insn.
1898 If it uses the register we suspect it might,
1899 load it with the correct address directly. */
1900 if (GET_CODE (temp
) == CALL_INSN
1902 && reg_referenced_p (fn_reg
, body
))
1903 emit_insn_after (gen_move_insn (fn_reg
,
1907 if (GET_CODE (temp
) == CALL_INSN
)
1909 i1
= emit_call_insn_before (body
, loop_start
);
1910 /* Because the USAGE information potentially
1911 contains objects other than hard registers
1912 we need to copy it. */
1913 if (CALL_INSN_FUNCTION_USAGE (temp
))
1914 CALL_INSN_FUNCTION_USAGE (i1
)
1915 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp
));
1918 i1
= emit_insn_before (body
, loop_start
);
1921 if (temp
== fn_address_insn
)
1922 fn_address_insn
= i1
;
1923 REG_NOTES (i1
) = REG_NOTES (temp
);
1929 if (m
->savemode
!= VOIDmode
)
1931 /* P sets REG to zero; but we should clear only
1932 the bits that are not covered by the mode
1934 rtx reg
= m
->set_dest
;
1940 (GET_MODE (reg
), and_optab
, reg
,
1941 GEN_INT ((((HOST_WIDE_INT
) 1
1942 << GET_MODE_BITSIZE (m
->savemode
)))
1944 reg
, 1, OPTAB_LIB_WIDEN
);
1948 emit_move_insn (reg
, tem
);
1949 sequence
= gen_sequence ();
1951 i1
= emit_insn_before (sequence
, loop_start
);
1953 else if (GET_CODE (p
) == CALL_INSN
)
1955 i1
= emit_call_insn_before (PATTERN (p
), loop_start
);
1956 /* Because the USAGE information potentially
1957 contains objects other than hard registers
1958 we need to copy it. */
1959 if (CALL_INSN_FUNCTION_USAGE (p
))
1960 CALL_INSN_FUNCTION_USAGE (i1
)
1961 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p
));
1963 else if (count
== m
->consec
&& m
->move_insn_first
)
1965 /* The SET_SRC might not be invariant, so we must
1966 use the REG_EQUAL note. */
1968 emit_move_insn (m
->set_dest
, m
->set_src
);
1969 temp
= get_insns ();
1972 add_label_notes (m
->set_src
, temp
);
1974 i1
= emit_insns_before (temp
, loop_start
);
1975 if (! find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
1977 = gen_rtx_EXPR_LIST ((m
->is_equiv
? REG_EQUIV
1979 m
->set_src
, REG_NOTES (i1
));
1982 i1
= emit_insn_before (PATTERN (p
), loop_start
);
1984 if (REG_NOTES (i1
) == 0)
1986 REG_NOTES (i1
) = REG_NOTES (p
);
1988 /* If there is a REG_EQUAL note present whose value
1989 is not loop invariant, then delete it, since it
1990 may cause problems with later optimization passes.
1991 It is possible for cse to create such notes
1992 like this as a result of record_jump_cond. */
1994 if ((temp
= find_reg_note (i1
, REG_EQUAL
, NULL_RTX
))
1995 && ! loop_invariant_p (loop
, XEXP (temp
, 0)))
1996 remove_note (i1
, temp
);
2002 if (loop_dump_stream
)
2003 fprintf (loop_dump_stream
, " moved to %d",
2006 /* If library call, now fix the REG_NOTES that contain
2007 insn pointers, namely REG_LIBCALL on FIRST
2008 and REG_RETVAL on I1. */
2009 if ((temp
= find_reg_note (i1
, REG_RETVAL
, NULL_RTX
)))
2011 XEXP (temp
, 0) = first
;
2012 temp
= find_reg_note (first
, REG_LIBCALL
, NULL_RTX
);
2013 XEXP (temp
, 0) = i1
;
2020 /* simplify_giv_expr expects that it can walk the insns
2021 at m->insn forwards and see this old sequence we are
2022 tossing here. delete_insn does preserve the next
2023 pointers, but when we skip over a NOTE we must fix
2024 it up. Otherwise that code walks into the non-deleted
2026 while (p
&& GET_CODE (p
) == NOTE
)
2027 p
= NEXT_INSN (temp
) = NEXT_INSN (p
);
2030 /* The more regs we move, the less we like moving them. */
2034 /* Any other movable that loads the same register
2036 already_moved
[regno
] = 1;
2038 /* This reg has been moved out of one loop. */
2039 regs
->moved_once
[regno
] = 1;
2041 /* The reg set here is now invariant. */
2043 VARRAY_INT (regs
->set_in_loop
, regno
) = 0;
2047 /* Change the length-of-life info for the register
2048 to say it lives at least the full length of this loop.
2049 This will help guide optimizations in outer loops. */
2051 if (uid_luid
[REGNO_FIRST_UID (regno
)] > INSN_LUID (loop_start
))
2052 /* This is the old insn before all the moved insns.
2053 We can't use the moved insn because it is out of range
2054 in uid_luid. Only the old insns have luids. */
2055 REGNO_FIRST_UID (regno
) = INSN_UID (loop_start
);
2056 if (uid_luid
[REGNO_LAST_UID (regno
)] < INSN_LUID (loop_end
))
2057 REGNO_LAST_UID (regno
) = INSN_UID (loop_end
);
2059 /* Combine with this moved insn any other matching movables. */
2062 for (m1
= movables
->head
; m1
; m1
= m1
->next
)
2067 /* Schedule the reg loaded by M1
2068 for replacement so that shares the reg of M.
2069 If the modes differ (only possible in restricted
2070 circumstances, make a SUBREG.
2072 Note this assumes that the target dependent files
2073 treat REG and SUBREG equally, including within
2074 GO_IF_LEGITIMATE_ADDRESS and in all the
2075 predicates since we never verify that replacing the
2076 original register with a SUBREG results in a
2077 recognizable insn. */
2078 if (GET_MODE (m
->set_dest
) == GET_MODE (m1
->set_dest
))
2079 reg_map
[m1
->regno
] = m
->set_dest
;
2082 = gen_lowpart_common (GET_MODE (m1
->set_dest
),
2085 /* Get rid of the matching insn
2086 and prevent further processing of it. */
2089 /* if library call, delete all insn except last, which
2091 if ((temp
= find_reg_note (m1
->insn
, REG_RETVAL
,
2094 for (temp
= XEXP (temp
, 0); temp
!= m1
->insn
;
2095 temp
= NEXT_INSN (temp
))
2098 delete_insn (m1
->insn
);
2100 /* Any other movable that loads the same register
2102 already_moved
[m1
->regno
] = 1;
2104 /* The reg merged here is now invariant,
2105 if the reg it matches is invariant. */
2107 VARRAY_INT (regs
->set_in_loop
, m1
->regno
) = 0;
2110 else if (loop_dump_stream
)
2111 fprintf (loop_dump_stream
, "not desirable");
2113 else if (loop_dump_stream
&& !m
->match
)
2114 fprintf (loop_dump_stream
, "not safe");
2116 if (loop_dump_stream
)
2117 fprintf (loop_dump_stream
, "\n");
2121 new_start
= loop_start
;
2123 /* Go through all the instructions in the loop, making
2124 all the register substitutions scheduled in REG_MAP. */
2125 for (p
= new_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
2126 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
2127 || GET_CODE (p
) == CALL_INSN
)
2129 replace_regs (PATTERN (p
), reg_map
, nregs
, 0);
2130 replace_regs (REG_NOTES (p
), reg_map
, nregs
, 0);
2136 free (already_moved
);
2140 /* Scan X and replace the address of any MEM in it with ADDR.
2141 REG is the address that MEM should have before the replacement. */
2144 replace_call_address (x
, reg
, addr
)
2147 register enum rtx_code code
;
2149 register const char *fmt
;
2153 code
= GET_CODE (x
);
2167 /* Short cut for very common case. */
2168 replace_call_address (XEXP (x
, 1), reg
, addr
);
2172 /* Short cut for very common case. */
2173 replace_call_address (XEXP (x
, 0), reg
, addr
);
2177 /* If this MEM uses a reg other than the one we expected,
2178 something is wrong. */
2179 if (XEXP (x
, 0) != reg
)
2188 fmt
= GET_RTX_FORMAT (code
);
2189 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2192 replace_call_address (XEXP (x
, i
), reg
, addr
);
2193 else if (fmt
[i
] == 'E')
2196 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2197 replace_call_address (XVECEXP (x
, i
, j
), reg
, addr
);
2203 /* Return the number of memory refs to addresses that vary
2207 count_nonfixed_reads (loop
, x
)
2208 const struct loop
*loop
;
2211 register enum rtx_code code
;
2213 register const char *fmt
;
2219 code
= GET_CODE (x
);
2233 return ((loop_invariant_p (loop
, XEXP (x
, 0)) != 1)
2234 + count_nonfixed_reads (loop
, XEXP (x
, 0)));
2241 fmt
= GET_RTX_FORMAT (code
);
2242 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2245 value
+= count_nonfixed_reads (loop
, XEXP (x
, i
));
2249 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2250 value
+= count_nonfixed_reads (loop
, XVECEXP (x
, i
, j
));
2256 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2257 `has_call', `has_volatile', `has_tablejump',
2258 `unknown_address_altered', `unknown_constant_address_altered', and
2259 `num_mem_sets' in LOOP. Also, fill in the array `mems' and the
2260 list `store_mems' in LOOP. */
2266 register int level
= 1;
2268 struct loop_info
*loop_info
= LOOP_INFO (loop
);
2269 rtx start
= loop
->start
;
2270 rtx end
= loop
->end
;
2271 /* The label after END. Jumping here is just like falling off the
2272 end of the loop. We use next_nonnote_insn instead of next_label
2273 as a hedge against the (pathological) case where some actual insn
2274 might end up between the two. */
2275 rtx exit_target
= next_nonnote_insn (end
);
2277 loop_info
->has_indirect_jump
= indirect_jump_in_function
;
2278 loop_info
->has_call
= 0;
2279 loop_info
->has_volatile
= 0;
2280 loop_info
->has_tablejump
= 0;
2281 loop_info
->has_multiple_exit_targets
= 0;
2284 loop_info
->unknown_address_altered
= 0;
2285 loop_info
->unknown_constant_address_altered
= 0;
2286 loop_info
->store_mems
= NULL_RTX
;
2287 loop_info
->first_loop_store_insn
= NULL_RTX
;
2288 loop_info
->mems_idx
= 0;
2289 loop_info
->num_mem_sets
= 0;
2291 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2292 insn
= NEXT_INSN (insn
))
2294 if (GET_CODE (insn
) == NOTE
)
2296 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
2299 /* Count number of loops contained in this one. */
2302 else if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
2307 else if (GET_CODE (insn
) == CALL_INSN
)
2309 if (! CONST_CALL_P (insn
))
2310 loop_info
->unknown_address_altered
= 1;
2311 loop_info
->has_call
= 1;
2313 else if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2315 rtx label1
= NULL_RTX
;
2316 rtx label2
= NULL_RTX
;
2318 if (volatile_refs_p (PATTERN (insn
)))
2319 loop_info
->has_volatile
= 1;
2321 if (GET_CODE (insn
) == JUMP_INSN
2322 && (GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
2323 || GET_CODE (PATTERN (insn
)) == ADDR_VEC
))
2324 loop_info
->has_tablejump
= 1;
2326 note_stores (PATTERN (insn
), note_addr_stored
, loop_info
);
2327 if (! loop_info
->first_loop_store_insn
&& loop_info
->store_mems
)
2328 loop_info
->first_loop_store_insn
= insn
;
2330 if (! loop_info
->has_multiple_exit_targets
2331 && GET_CODE (insn
) == JUMP_INSN
2332 && GET_CODE (PATTERN (insn
)) == SET
2333 && SET_DEST (PATTERN (insn
)) == pc_rtx
)
2335 if (GET_CODE (SET_SRC (PATTERN (insn
))) == IF_THEN_ELSE
)
2337 label1
= XEXP (SET_SRC (PATTERN (insn
)), 1);
2338 label2
= XEXP (SET_SRC (PATTERN (insn
)), 2);
2342 label1
= SET_SRC (PATTERN (insn
));
2347 if (label1
&& label1
!= pc_rtx
)
2349 if (GET_CODE (label1
) != LABEL_REF
)
2351 /* Something tricky. */
2352 loop_info
->has_multiple_exit_targets
= 1;
2355 else if (XEXP (label1
, 0) != exit_target
2356 && LABEL_OUTSIDE_LOOP_P (label1
))
2358 /* A jump outside the current loop. */
2359 loop_info
->has_multiple_exit_targets
= 1;
2370 else if (GET_CODE (insn
) == RETURN
)
2371 loop_info
->has_multiple_exit_targets
= 1;
2374 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2375 if (/* An exception thrown by a called function might land us
2377 ! loop_info
->has_call
2378 /* We don't want loads for MEMs moved to a location before the
2379 one at which their stack memory becomes allocated. (Note
2380 that this is not a problem for malloc, etc., since those
2381 require actual function calls. */
2382 && ! current_function_calls_alloca
2383 /* There are ways to leave the loop other than falling off the
2385 && ! loop_info
->has_multiple_exit_targets
)
2386 for (insn
= NEXT_INSN (start
); insn
!= NEXT_INSN (end
);
2387 insn
= NEXT_INSN (insn
))
2388 for_each_rtx (&insn
, insert_loop_mem
, loop_info
);
2390 /* BLKmode MEMs are added to LOOP_STORE_MEM as necessary so
2391 that loop_invariant_p and load_mems can use true_dependence
2392 to determine what is really clobbered. */
2393 if (loop_info
->unknown_address_altered
)
2395 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2397 loop_info
->store_mems
2398 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2400 if (loop_info
->unknown_constant_address_altered
)
2402 rtx mem
= gen_rtx_MEM (BLKmode
, const0_rtx
);
2404 RTX_UNCHANGING_P (mem
) = 1;
2405 loop_info
->store_mems
2406 = gen_rtx_EXPR_LIST (VOIDmode
, mem
, loop_info
->store_mems
);
2410 /* Scan the function looking for loops. Record the start and end of each loop.
2411 Also mark as invalid loops any loops that contain a setjmp or are branched
2412 to from outside the loop. */
2415 find_and_verify_loops (f
, loops
)
2417 struct loops
*loops
;
2422 struct loop
*current_loop
;
2423 struct loop
*next_loop
;
2426 num_loops
= loops
->num
;
2428 compute_luids (f
, NULL_RTX
, 0);
2430 /* If there are jumps to undefined labels,
2431 treat them as jumps out of any/all loops.
2432 This also avoids writing past end of tables when there are no loops. */
2435 /* Find boundaries of loops, mark which loops are contained within
2436 loops, and invalidate loops that have setjmp. */
2439 current_loop
= NULL
;
2440 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2442 if (GET_CODE (insn
) == NOTE
)
2443 switch (NOTE_LINE_NUMBER (insn
))
2445 case NOTE_INSN_LOOP_BEG
:
2446 next_loop
= loops
->array
+ num_loops
;
2447 next_loop
->num
= num_loops
;
2449 next_loop
->start
= insn
;
2450 next_loop
->outer
= current_loop
;
2451 current_loop
= next_loop
;
2454 case NOTE_INSN_SETJMP
:
2455 /* In this case, we must invalidate our current loop and any
2457 for (loop
= current_loop
; loop
; loop
= loop
->outer
)
2460 if (loop_dump_stream
)
2461 fprintf (loop_dump_stream
,
2462 "\nLoop at %d ignored due to setjmp.\n",
2463 INSN_UID (loop
->start
));
2467 case NOTE_INSN_LOOP_CONT
:
2468 current_loop
->cont
= insn
;
2471 case NOTE_INSN_LOOP_VTOP
:
2472 current_loop
->vtop
= insn
;
2475 case NOTE_INSN_LOOP_END
:
2479 current_loop
->end
= insn
;
2480 current_loop
= current_loop
->outer
;
2487 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2488 enclosing loop, but this doesn't matter. */
2489 uid_loop
[INSN_UID (insn
)] = current_loop
;
2492 /* Any loop containing a label used in an initializer must be invalidated,
2493 because it can be jumped into from anywhere. */
2495 for (label
= forced_labels
; label
; label
= XEXP (label
, 1))
2497 for (loop
= uid_loop
[INSN_UID (XEXP (label
, 0))];
2498 loop
; loop
= loop
->outer
)
2502 /* Any loop containing a label used for an exception handler must be
2503 invalidated, because it can be jumped into from anywhere. */
2505 for (label
= exception_handler_labels
; label
; label
= XEXP (label
, 1))
2507 for (loop
= uid_loop
[INSN_UID (XEXP (label
, 0))];
2508 loop
; loop
= loop
->outer
)
2512 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2513 loop that it is not contained within, that loop is marked invalid.
2514 If any INSN or CALL_INSN uses a label's address, then the loop containing
2515 that label is marked invalid, because it could be jumped into from
2518 Also look for blocks of code ending in an unconditional branch that
2519 exits the loop. If such a block is surrounded by a conditional
2520 branch around the block, move the block elsewhere (see below) and
2521 invert the jump to point to the code block. This may eliminate a
2522 label in our loop and will simplify processing by both us and a
2523 possible second cse pass. */
2525 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
2528 struct loop
*this_loop
= uid_loop
[INSN_UID (insn
)];
2530 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
2532 rtx note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
2535 for (loop
= uid_loop
[INSN_UID (XEXP (note
, 0))];
2536 loop
; loop
= loop
->outer
)
2541 if (GET_CODE (insn
) != JUMP_INSN
)
2544 mark_loop_jump (PATTERN (insn
), this_loop
);
2546 /* See if this is an unconditional branch outside the loop. */
2548 && (GET_CODE (PATTERN (insn
)) == RETURN
2549 || (any_uncondjump_p (insn
)
2550 && onlyjump_p (insn
)
2551 && (uid_loop
[INSN_UID (JUMP_LABEL (insn
))]
2553 && get_max_uid () < max_uid_for_loop
)
2556 rtx our_next
= next_real_insn (insn
);
2557 rtx last_insn_to_move
= NEXT_INSN (insn
);
2558 struct loop
*dest_loop
;
2559 struct loop
*outer_loop
= NULL
;
2561 /* Go backwards until we reach the start of the loop, a label,
2563 for (p
= PREV_INSN (insn
);
2564 GET_CODE (p
) != CODE_LABEL
2565 && ! (GET_CODE (p
) == NOTE
2566 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
2567 && GET_CODE (p
) != JUMP_INSN
;
2571 /* Check for the case where we have a jump to an inner nested
2572 loop, and do not perform the optimization in that case. */
2574 if (JUMP_LABEL (insn
))
2576 dest_loop
= uid_loop
[INSN_UID (JUMP_LABEL (insn
))];
2579 for (outer_loop
= dest_loop
; outer_loop
;
2580 outer_loop
= outer_loop
->outer
)
2581 if (outer_loop
== this_loop
)
2586 /* Make sure that the target of P is within the current loop. */
2588 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
2589 && uid_loop
[INSN_UID (JUMP_LABEL (p
))] != this_loop
)
2590 outer_loop
= this_loop
;
2592 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2593 we have a block of code to try to move.
2595 We look backward and then forward from the target of INSN
2596 to find a BARRIER at the same loop depth as the target.
2597 If we find such a BARRIER, we make a new label for the start
2598 of the block, invert the jump in P and point it to that label,
2599 and move the block of code to the spot we found. */
2602 && GET_CODE (p
) == JUMP_INSN
2603 && JUMP_LABEL (p
) != 0
2604 /* Just ignore jumps to labels that were never emitted.
2605 These always indicate compilation errors. */
2606 && INSN_UID (JUMP_LABEL (p
)) != 0
2607 && any_condjump_p (p
) && onlyjump_p (p
)
2608 && next_real_insn (JUMP_LABEL (p
)) == our_next
2609 /* If it's not safe to move the sequence, then we
2611 && insns_safe_to_move_p (p
, NEXT_INSN (insn
),
2612 &last_insn_to_move
))
2615 = JUMP_LABEL (insn
) ? JUMP_LABEL (insn
) : get_last_insn ();
2616 struct loop
*target_loop
= uid_loop
[INSN_UID (target
)];
2619 for (loc
= target
; loc
; loc
= PREV_INSN (loc
))
2620 if (GET_CODE (loc
) == BARRIER
2621 /* Don't move things inside a tablejump. */
2622 && ((loc2
= next_nonnote_insn (loc
)) == 0
2623 || GET_CODE (loc2
) != CODE_LABEL
2624 || (loc2
= next_nonnote_insn (loc2
)) == 0
2625 || GET_CODE (loc2
) != JUMP_INSN
2626 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2627 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2628 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2632 for (loc
= target
; loc
; loc
= NEXT_INSN (loc
))
2633 if (GET_CODE (loc
) == BARRIER
2634 /* Don't move things inside a tablejump. */
2635 && ((loc2
= next_nonnote_insn (loc
)) == 0
2636 || GET_CODE (loc2
) != CODE_LABEL
2637 || (loc2
= next_nonnote_insn (loc2
)) == 0
2638 || GET_CODE (loc2
) != JUMP_INSN
2639 || (GET_CODE (PATTERN (loc2
)) != ADDR_VEC
2640 && GET_CODE (PATTERN (loc2
)) != ADDR_DIFF_VEC
))
2641 && uid_loop
[INSN_UID (loc
)] == target_loop
)
2646 rtx cond_label
= JUMP_LABEL (p
);
2647 rtx new_label
= get_label_after (p
);
2649 /* Ensure our label doesn't go away. */
2650 LABEL_NUSES (cond_label
)++;
2652 /* Verify that uid_loop is large enough and that
2654 if (invert_jump (p
, new_label
, 1))
2658 /* If no suitable BARRIER was found, create a suitable
2659 one before TARGET. Since TARGET is a fall through
2660 path, we'll need to insert an jump around our block
2661 and a add a BARRIER before TARGET.
2663 This creates an extra unconditional jump outside
2664 the loop. However, the benefits of removing rarely
2665 executed instructions from inside the loop usually
2666 outweighs the cost of the extra unconditional jump
2667 outside the loop. */
2672 temp
= gen_jump (JUMP_LABEL (insn
));
2673 temp
= emit_jump_insn_before (temp
, target
);
2674 JUMP_LABEL (temp
) = JUMP_LABEL (insn
);
2675 LABEL_NUSES (JUMP_LABEL (insn
))++;
2676 loc
= emit_barrier_before (target
);
2679 /* Include the BARRIER after INSN and copy the
2681 new_label
= squeeze_notes (new_label
,
2683 reorder_insns (new_label
, last_insn_to_move
, loc
);
2685 /* All those insns are now in TARGET_LOOP. */
2687 q
!= NEXT_INSN (last_insn_to_move
);
2689 uid_loop
[INSN_UID (q
)] = target_loop
;
2691 /* The label jumped to by INSN is no longer a loop
2692 exit. Unless INSN does not have a label (e.g.,
2693 it is a RETURN insn), search loop->exit_labels
2694 to find its label_ref, and remove it. Also turn
2695 off LABEL_OUTSIDE_LOOP_P bit. */
2696 if (JUMP_LABEL (insn
))
2698 for (q
= 0, r
= this_loop
->exit_labels
;
2700 q
= r
, r
= LABEL_NEXTREF (r
))
2701 if (XEXP (r
, 0) == JUMP_LABEL (insn
))
2703 LABEL_OUTSIDE_LOOP_P (r
) = 0;
2705 LABEL_NEXTREF (q
) = LABEL_NEXTREF (r
);
2707 this_loop
->exit_labels
= LABEL_NEXTREF (r
);
2711 for (loop
= this_loop
; loop
&& loop
!= target_loop
;
2715 /* If we didn't find it, then something is
2721 /* P is now a jump outside the loop, so it must be put
2722 in loop->exit_labels, and marked as such.
2723 The easiest way to do this is to just call
2724 mark_loop_jump again for P. */
2725 mark_loop_jump (PATTERN (p
), this_loop
);
2727 /* If INSN now jumps to the insn after it,
2729 if (JUMP_LABEL (insn
) != 0
2730 && (next_real_insn (JUMP_LABEL (insn
))
2731 == next_real_insn (insn
)))
2735 /* Continue the loop after where the conditional
2736 branch used to jump, since the only branch insn
2737 in the block (if it still remains) is an inter-loop
2738 branch and hence needs no processing. */
2739 insn
= NEXT_INSN (cond_label
);
2741 if (--LABEL_NUSES (cond_label
) == 0)
2742 delete_insn (cond_label
);
2744 /* This loop will be continued with NEXT_INSN (insn). */
2745 insn
= PREV_INSN (insn
);
2752 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2753 loops it is contained in, mark the target loop invalid.
2755 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2758 mark_loop_jump (x
, loop
)
2762 struct loop
*dest_loop
;
2763 struct loop
*outer_loop
;
2766 switch (GET_CODE (x
))
2779 /* There could be a label reference in here. */
2780 mark_loop_jump (XEXP (x
, 0), loop
);
2786 mark_loop_jump (XEXP (x
, 0), loop
);
2787 mark_loop_jump (XEXP (x
, 1), loop
);
2791 /* This may refer to a LABEL_REF or SYMBOL_REF. */
2792 mark_loop_jump (XEXP (x
, 1), loop
);
2797 mark_loop_jump (XEXP (x
, 0), loop
);
2801 dest_loop
= uid_loop
[INSN_UID (XEXP (x
, 0))];
2803 /* Link together all labels that branch outside the loop. This
2804 is used by final_[bg]iv_value and the loop unrolling code. Also
2805 mark this LABEL_REF so we know that this branch should predict
2808 /* A check to make sure the label is not in an inner nested loop,
2809 since this does not count as a loop exit. */
2812 for (outer_loop
= dest_loop
; outer_loop
;
2813 outer_loop
= outer_loop
->outer
)
2814 if (outer_loop
== loop
)
2820 if (loop
&& ! outer_loop
)
2822 LABEL_OUTSIDE_LOOP_P (x
) = 1;
2823 LABEL_NEXTREF (x
) = loop
->exit_labels
;
2824 loop
->exit_labels
= x
;
2826 for (outer_loop
= loop
;
2827 outer_loop
&& outer_loop
!= dest_loop
;
2828 outer_loop
= outer_loop
->outer
)
2829 outer_loop
->exit_count
++;
2832 /* If this is inside a loop, but not in the current loop or one enclosed
2833 by it, it invalidates at least one loop. */
2838 /* We must invalidate every nested loop containing the target of this
2839 label, except those that also contain the jump insn. */
2841 for (; dest_loop
; dest_loop
= dest_loop
->outer
)
2843 /* Stop when we reach a loop that also contains the jump insn. */
2844 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
2845 if (dest_loop
== outer_loop
)
2848 /* If we get here, we know we need to invalidate a loop. */
2849 if (loop_dump_stream
&& ! dest_loop
->invalid
)
2850 fprintf (loop_dump_stream
,
2851 "\nLoop at %d ignored due to multiple entry points.\n",
2852 INSN_UID (dest_loop
->start
));
2854 dest_loop
->invalid
= 1;
2859 /* If this is not setting pc, ignore. */
2860 if (SET_DEST (x
) == pc_rtx
)
2861 mark_loop_jump (SET_SRC (x
), loop
);
2865 mark_loop_jump (XEXP (x
, 1), loop
);
2866 mark_loop_jump (XEXP (x
, 2), loop
);
2871 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2872 mark_loop_jump (XVECEXP (x
, 0, i
), loop
);
2876 for (i
= 0; i
< XVECLEN (x
, 1); i
++)
2877 mark_loop_jump (XVECEXP (x
, 1, i
), loop
);
2881 /* Strictly speaking this is not a jump into the loop, only a possible
2882 jump out of the loop. However, we have no way to link the destination
2883 of this jump onto the list of exit labels. To be safe we mark this
2884 loop and any containing loops as invalid. */
2887 for (outer_loop
= loop
; outer_loop
; outer_loop
= outer_loop
->outer
)
2889 if (loop_dump_stream
&& ! outer_loop
->invalid
)
2890 fprintf (loop_dump_stream
,
2891 "\nLoop at %d ignored due to unknown exit jump.\n",
2892 INSN_UID (outer_loop
->start
));
2893 outer_loop
->invalid
= 1;
2900 /* Return nonzero if there is a label in the range from
2901 insn INSN to and including the insn whose luid is END
2902 INSN must have an assigned luid (i.e., it must not have
2903 been previously created by loop.c). */
2906 labels_in_range_p (insn
, end
)
2910 while (insn
&& INSN_LUID (insn
) <= end
)
2912 if (GET_CODE (insn
) == CODE_LABEL
)
2914 insn
= NEXT_INSN (insn
);
2920 /* Record that a memory reference X is being set. */
2923 note_addr_stored (x
, y
, data
)
2925 rtx y ATTRIBUTE_UNUSED
;
2926 void *data ATTRIBUTE_UNUSED
;
2928 struct loop_info
*loop_info
= data
;
2930 if (x
== 0 || GET_CODE (x
) != MEM
)
2933 /* Count number of memory writes.
2934 This affects heuristics in strength_reduce. */
2935 loop_info
->num_mem_sets
++;
2937 /* BLKmode MEM means all memory is clobbered. */
2938 if (GET_MODE (x
) == BLKmode
)
2940 if (RTX_UNCHANGING_P (x
))
2941 loop_info
->unknown_constant_address_altered
= 1;
2943 loop_info
->unknown_address_altered
= 1;
2948 loop_info
->store_mems
= gen_rtx_EXPR_LIST (VOIDmode
, x
,
2949 loop_info
->store_mems
);
2952 /* X is a value modified by an INSN that references a biv inside a loop
2953 exit test (ie, X is somehow related to the value of the biv). If X
2954 is a pseudo that is used more than once, then the biv is (effectively)
2955 used more than once. DATA is a pointer to a loop_regs structure. */
2958 note_set_pseudo_multiple_uses (x
, y
, data
)
2960 rtx y ATTRIBUTE_UNUSED
;
2963 struct loop_regs
*regs
= (struct loop_regs
*) data
;
2968 while (GET_CODE (x
) == STRICT_LOW_PART
2969 || GET_CODE (x
) == SIGN_EXTRACT
2970 || GET_CODE (x
) == ZERO_EXTRACT
2971 || GET_CODE (x
) == SUBREG
)
2974 if (GET_CODE (x
) != REG
|| REGNO (x
) < FIRST_PSEUDO_REGISTER
)
2977 /* If we do not have usage information, or if we know the register
2978 is used more than once, note that fact for check_dbra_loop. */
2979 if (REGNO (x
) >= max_reg_before_loop
2980 || ! VARRAY_RTX (regs
->single_usage
, REGNO (x
))
2981 || VARRAY_RTX (regs
->single_usage
, REGNO (x
)) == const0_rtx
)
2982 regs
->multiple_uses
= 1;
2985 /* Return nonzero if the rtx X is invariant over the current loop.
2987 The value is 2 if we refer to something only conditionally invariant.
2989 A memory ref is invariant if it is not volatile and does not conflict
2990 with anything stored in `loop_info->store_mems'. */
2993 loop_invariant_p (loop
, x
)
2994 const struct loop
*loop
;
2997 struct loop_info
*loop_info
= LOOP_INFO (loop
);
2998 struct loop_regs
*regs
= LOOP_REGS (loop
);
3000 register enum rtx_code code
;
3001 register const char *fmt
;
3002 int conditional
= 0;
3007 code
= GET_CODE (x
);
3017 /* A LABEL_REF is normally invariant, however, if we are unrolling
3018 loops, and this label is inside the loop, then it isn't invariant.
3019 This is because each unrolled copy of the loop body will have
3020 a copy of this label. If this was invariant, then an insn loading
3021 the address of this label into a register might get moved outside
3022 the loop, and then each loop body would end up using the same label.
3024 We don't know the loop bounds here though, so just fail for all
3026 if (flag_unroll_loops
)
3033 case UNSPEC_VOLATILE
:
3037 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3038 since the reg might be set by initialization within the loop. */
3040 if ((x
== frame_pointer_rtx
|| x
== hard_frame_pointer_rtx
3041 || x
== arg_pointer_rtx
)
3042 && ! current_function_has_nonlocal_goto
)
3045 if (LOOP_INFO (loop
)->has_call
3046 && REGNO (x
) < FIRST_PSEUDO_REGISTER
&& call_used_regs
[REGNO (x
)])
3049 if (VARRAY_INT (regs
->set_in_loop
, REGNO (x
)) < 0)
3052 return VARRAY_INT (regs
->set_in_loop
, REGNO (x
)) == 0;
3055 /* Volatile memory references must be rejected. Do this before
3056 checking for read-only items, so that volatile read-only items
3057 will be rejected also. */
3058 if (MEM_VOLATILE_P (x
))
3061 /* See if there is any dependence between a store and this load. */
3062 mem_list_entry
= loop_info
->store_mems
;
3063 while (mem_list_entry
)
3065 if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
3069 mem_list_entry
= XEXP (mem_list_entry
, 1);
3072 /* It's not invalidated by a store in memory
3073 but we must still verify the address is invariant. */
3077 /* Don't mess with insns declared volatile. */
3078 if (MEM_VOLATILE_P (x
))
3086 fmt
= GET_RTX_FORMAT (code
);
3087 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3091 int tem
= loop_invariant_p (loop
, XEXP (x
, i
));
3097 else if (fmt
[i
] == 'E')
3100 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3102 int tem
= loop_invariant_p (loop
, XVECEXP (x
, i
, j
));
3112 return 1 + conditional
;
3115 /* Return nonzero if all the insns in the loop that set REG
3116 are INSN and the immediately following insns,
3117 and if each of those insns sets REG in an invariant way
3118 (not counting uses of REG in them).
3120 The value is 2 if some of these insns are only conditionally invariant.
3122 We assume that INSN itself is the first set of REG
3123 and that its source is invariant. */
3126 consec_sets_invariant_p (loop
, reg
, n_sets
, insn
)
3127 const struct loop
*loop
;
3131 struct loop_regs
*regs
= LOOP_REGS (loop
);
3133 unsigned int regno
= REGNO (reg
);
3135 /* Number of sets we have to insist on finding after INSN. */
3136 int count
= n_sets
- 1;
3137 int old
= VARRAY_INT (regs
->set_in_loop
, regno
);
3141 /* If N_SETS hit the limit, we can't rely on its value. */
3145 VARRAY_INT (regs
->set_in_loop
, regno
) = 0;
3149 register enum rtx_code code
;
3153 code
= GET_CODE (p
);
3155 /* If library call, skip to end of it. */
3156 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
3161 && (set
= single_set (p
))
3162 && GET_CODE (SET_DEST (set
)) == REG
3163 && REGNO (SET_DEST (set
)) == regno
)
3165 this = loop_invariant_p (loop
, SET_SRC (set
));
3168 else if ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
)))
3170 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3171 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3173 this = (CONSTANT_P (XEXP (temp
, 0))
3174 || (find_reg_note (p
, REG_RETVAL
, NULL_RTX
)
3175 && loop_invariant_p (loop
, XEXP (temp
, 0))));
3182 else if (code
!= NOTE
)
3184 VARRAY_INT (regs
->set_in_loop
, regno
) = old
;
3189 VARRAY_INT (regs
->set_in_loop
, regno
) = old
;
3190 /* If loop_invariant_p ever returned 2, we return 2. */
3191 return 1 + (value
& 2);
3195 /* I don't think this condition is sufficient to allow INSN
3196 to be moved, so we no longer test it. */
3198 /* Return 1 if all insns in the basic block of INSN and following INSN
3199 that set REG are invariant according to TABLE. */
3202 all_sets_invariant_p (reg
, insn
, table
)
3206 register rtx p
= insn
;
3207 register int regno
= REGNO (reg
);
3211 register enum rtx_code code
;
3213 code
= GET_CODE (p
);
3214 if (code
== CODE_LABEL
|| code
== JUMP_INSN
)
3216 if (code
== INSN
&& GET_CODE (PATTERN (p
)) == SET
3217 && GET_CODE (SET_DEST (PATTERN (p
))) == REG
3218 && REGNO (SET_DEST (PATTERN (p
))) == regno
)
3220 if (! loop_invariant_p (loop
, SET_SRC (PATTERN (p
)), table
))
3227 /* Look at all uses (not sets) of registers in X. For each, if it is
3228 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3229 a different insn, set USAGE[REGNO] to const0_rtx. */
3232 find_single_use_in_loop (insn
, x
, usage
)
3237 enum rtx_code code
= GET_CODE (x
);
3238 const char *fmt
= GET_RTX_FORMAT (code
);
3242 VARRAY_RTX (usage
, REGNO (x
))
3243 = (VARRAY_RTX (usage
, REGNO (x
)) != 0
3244 && VARRAY_RTX (usage
, REGNO (x
)) != insn
)
3245 ? const0_rtx
: insn
;
3247 else if (code
== SET
)
3249 /* Don't count SET_DEST if it is a REG; otherwise count things
3250 in SET_DEST because if a register is partially modified, it won't
3251 show up as a potential movable so we don't care how USAGE is set
3253 if (GET_CODE (SET_DEST (x
)) != REG
)
3254 find_single_use_in_loop (insn
, SET_DEST (x
), usage
);
3255 find_single_use_in_loop (insn
, SET_SRC (x
), usage
);
3258 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3260 if (fmt
[i
] == 'e' && XEXP (x
, i
) != 0)
3261 find_single_use_in_loop (insn
, XEXP (x
, i
), usage
);
3262 else if (fmt
[i
] == 'E')
3263 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3264 find_single_use_in_loop (insn
, XVECEXP (x
, i
, j
), usage
);
3268 /* Count and record any set in X which is contained in INSN. Update
3269 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3272 count_one_set (regs
, insn
, x
, may_not_move
, last_set
)
3273 struct loop_regs
*regs
;
3275 varray_type may_not_move
;
3278 if (GET_CODE (x
) == CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
)
3279 /* Don't move a reg that has an explicit clobber.
3280 It's not worth the pain to try to do it correctly. */
3281 VARRAY_CHAR (may_not_move
, REGNO (XEXP (x
, 0))) = 1;
3283 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
3285 rtx dest
= SET_DEST (x
);
3286 while (GET_CODE (dest
) == SUBREG
3287 || GET_CODE (dest
) == ZERO_EXTRACT
3288 || GET_CODE (dest
) == SIGN_EXTRACT
3289 || GET_CODE (dest
) == STRICT_LOW_PART
)
3290 dest
= XEXP (dest
, 0);
3291 if (GET_CODE (dest
) == REG
)
3293 register int regno
= REGNO (dest
);
3294 /* If this is the first setting of this reg
3295 in current basic block, and it was set before,
3296 it must be set in two basic blocks, so it cannot
3297 be moved out of the loop. */
3298 if (VARRAY_INT (regs
->set_in_loop
, regno
) > 0
3299 && last_set
[regno
] == 0)
3300 VARRAY_CHAR (may_not_move
, regno
) = 1;
3301 /* If this is not first setting in current basic block,
3302 see if reg was used in between previous one and this.
3303 If so, neither one can be moved. */
3304 if (last_set
[regno
] != 0
3305 && reg_used_between_p (dest
, last_set
[regno
], insn
))
3306 VARRAY_CHAR (may_not_move
, regno
) = 1;
3307 if (VARRAY_INT (regs
->set_in_loop
, regno
) < 127)
3308 ++VARRAY_INT (regs
->set_in_loop
, regno
);
3309 last_set
[regno
] = insn
;
3314 /* Increment REGS->SET_IN_LOOP at the index of each register
3315 that is modified by an insn between FROM and TO.
3316 If the value of an element of REGS->SET_IN_LOOP becomes 127 or more,
3317 stop incrementing it, to avoid overflow.
3319 Store in SINGLE_USAGE[I] the single insn in which register I is
3320 used, if it is only used once. Otherwise, it is set to 0 (for no
3321 uses) or const0_rtx for more than one use. This parameter may be zero,
3322 in which case this processing is not done.
3324 Store in *COUNT_PTR the number of actual instruction
3325 in the loop. We use this to decide what is worth moving out. */
3327 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3328 In that case, it is the insn that last set reg n. */
3331 count_loop_regs_set (loop
, may_not_move
, single_usage
, count_ptr
, nregs
)
3332 const struct loop
*loop
;
3333 varray_type may_not_move
;
3334 varray_type single_usage
;
3338 struct loop_regs
*regs
= LOOP_REGS (loop
);
3339 register rtx
*last_set
= (rtx
*) xcalloc (nregs
, sizeof (rtx
));
3341 register int count
= 0;
3343 for (insn
= loop
->top
? loop
->top
: loop
->start
; insn
!= loop
->end
;
3344 insn
= NEXT_INSN (insn
))
3350 /* Record registers that have exactly one use. */
3351 find_single_use_in_loop (insn
, PATTERN (insn
), single_usage
);
3353 /* Include uses in REG_EQUAL notes. */
3354 if (REG_NOTES (insn
))
3355 find_single_use_in_loop (insn
, REG_NOTES (insn
), single_usage
);
3357 if (GET_CODE (PATTERN (insn
)) == SET
3358 || GET_CODE (PATTERN (insn
)) == CLOBBER
)
3359 count_one_set (regs
, insn
, PATTERN (insn
), may_not_move
, last_set
);
3360 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
3363 for (i
= XVECLEN (PATTERN (insn
), 0) - 1; i
>= 0; i
--)
3364 count_one_set (regs
, insn
, XVECEXP (PATTERN (insn
), 0, i
),
3365 may_not_move
, last_set
);
3369 if (GET_CODE (insn
) == CODE_LABEL
|| GET_CODE (insn
) == JUMP_INSN
)
3370 memset ((char *) last_set
, 0, nregs
* sizeof (rtx
));
3378 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3379 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3380 contained in insn INSN is used by any insn that precedes INSN in
3381 cyclic order starting from the loop entry point.
3383 We don't want to use INSN_LUID here because if we restrict INSN to those
3384 that have a valid INSN_LUID, it means we cannot move an invariant out
3385 from an inner loop past two loops. */
3388 loop_reg_used_before_p (loop
, set
, insn
)
3389 const struct loop
*loop
;
3392 rtx reg
= SET_DEST (set
);
3395 /* Scan forward checking for register usage. If we hit INSN, we
3396 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3397 for (p
= loop
->scan_start
; p
!= insn
; p
= NEXT_INSN (p
))
3399 if (INSN_P (p
) && reg_overlap_mentioned_p (reg
, PATTERN (p
)))
3409 /* A "basic induction variable" or biv is a pseudo reg that is set
3410 (within this loop) only by incrementing or decrementing it. */
3411 /* A "general induction variable" or giv is a pseudo reg whose
3412 value is a linear function of a biv. */
3414 /* Bivs are recognized by `basic_induction_var';
3415 Givs by `general_induction_var'. */
3417 /* Communication with routines called via `note_stores'. */
3419 static rtx note_insn
;
3421 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3423 static rtx addr_placeholder
;
3425 /* ??? Unfinished optimizations, and possible future optimizations,
3426 for the strength reduction code. */
3428 /* ??? The interaction of biv elimination, and recognition of 'constant'
3429 bivs, may cause problems. */
3431 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3432 performance problems.
3434 Perhaps don't eliminate things that can be combined with an addressing
3435 mode. Find all givs that have the same biv, mult_val, and add_val;
3436 then for each giv, check to see if its only use dies in a following
3437 memory address. If so, generate a new memory address and check to see
3438 if it is valid. If it is valid, then store the modified memory address,
3439 otherwise, mark the giv as not done so that it will get its own iv. */
3441 /* ??? Could try to optimize branches when it is known that a biv is always
3444 /* ??? When replace a biv in a compare insn, we should replace with closest
3445 giv so that an optimized branch can still be recognized by the combiner,
3446 e.g. the VAX acb insn. */
3448 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3449 was rerun in loop_optimize whenever a register was added or moved.
3450 Also, some of the optimizations could be a little less conservative. */
3452 /* Scan the loop body and call FNCALL for each insn. In the addition to the
3453 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
3456 NOT_EVERY_ITERATION if current insn is not executed at least once for every
3457 loop iteration except for the last one.
3459 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
3463 for_each_insn_in_loop (loop
, fncall
)
3465 loop_insn_callback fncall
;
3467 /* This is 1 if current insn is not executed at least once for every loop
3469 int not_every_iteration
= 0;
3470 int maybe_multiple
= 0;
3471 int past_loop_latch
= 0;
3475 /* If loop_scan_start points to the loop exit test, we have to be wary of
3476 subversive use of gotos inside expression statements. */
3477 if (prev_nonnote_insn (loop
->scan_start
) != prev_nonnote_insn (loop
->start
))
3478 maybe_multiple
= back_branch_in_range_p (loop
, loop
->scan_start
);
3480 /* Scan through loop to find all possible bivs. */
3482 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
3484 p
= next_insn_in_loop (loop
, p
))
3486 p
= fncall (loop
, p
, not_every_iteration
, maybe_multiple
);
3488 /* Past CODE_LABEL, we get to insns that may be executed multiple
3489 times. The only way we can be sure that they can't is if every
3490 jump insn between here and the end of the loop either
3491 returns, exits the loop, is a jump to a location that is still
3492 behind the label, or is a jump to the loop start. */
3494 if (GET_CODE (p
) == CODE_LABEL
)
3502 insn
= NEXT_INSN (insn
);
3503 if (insn
== loop
->scan_start
)
3505 if (insn
== loop
->end
)
3511 if (insn
== loop
->scan_start
)
3515 if (GET_CODE (insn
) == JUMP_INSN
3516 && GET_CODE (PATTERN (insn
)) != RETURN
3517 && (!any_condjump_p (insn
)
3518 || (JUMP_LABEL (insn
) != 0
3519 && JUMP_LABEL (insn
) != loop
->scan_start
3520 && !loop_insn_first_p (p
, JUMP_LABEL (insn
)))))
3528 /* Past a jump, we get to insns for which we can't count
3529 on whether they will be executed during each iteration. */
3530 /* This code appears twice in strength_reduce. There is also similar
3531 code in scan_loop. */
3532 if (GET_CODE (p
) == JUMP_INSN
3533 /* If we enter the loop in the middle, and scan around to the
3534 beginning, don't set not_every_iteration for that.
3535 This can be any kind of jump, since we want to know if insns
3536 will be executed if the loop is executed. */
3537 && !(JUMP_LABEL (p
) == loop
->top
3538 && ((NEXT_INSN (NEXT_INSN (p
)) == loop
->end
3539 && any_uncondjump_p (p
))
3540 || (NEXT_INSN (p
) == loop
->end
&& any_condjump_p (p
)))))
3544 /* If this is a jump outside the loop, then it also doesn't
3545 matter. Check to see if the target of this branch is on the
3546 loop->exits_labels list. */
3548 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
3549 if (XEXP (label
, 0) == JUMP_LABEL (p
))
3553 not_every_iteration
= 1;
3556 else if (GET_CODE (p
) == NOTE
)
3558 /* At the virtual top of a converted loop, insns are again known to
3559 be executed each iteration: logically, the loop begins here
3560 even though the exit code has been duplicated.
3562 Insns are also again known to be executed each iteration at
3563 the LOOP_CONT note. */
3564 if ((NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_VTOP
3565 || NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_CONT
)
3567 not_every_iteration
= 0;
3568 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_BEG
)
3570 else if (NOTE_LINE_NUMBER (p
) == NOTE_INSN_LOOP_END
)
3574 /* Note if we pass a loop latch. If we do, then we can not clear
3575 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3576 a loop since a jump before the last CODE_LABEL may have started
3577 a new loop iteration.
3579 Note that LOOP_TOP is only set for rotated loops and we need
3580 this check for all loops, so compare against the CODE_LABEL
3581 which immediately follows LOOP_START. */
3582 if (GET_CODE (p
) == JUMP_INSN
3583 && JUMP_LABEL (p
) == NEXT_INSN (loop
->start
))
3584 past_loop_latch
= 1;
3586 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3587 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3588 or not an insn is known to be executed each iteration of the
3589 loop, whether or not any iterations are known to occur.
3591 Therefore, if we have just passed a label and have no more labels
3592 between here and the test insn of the loop, and we have not passed
3593 a jump to the top of the loop, then we know these insns will be
3594 executed each iteration. */
3596 if (not_every_iteration
3598 && GET_CODE (p
) == CODE_LABEL
3599 && no_labels_between_p (p
, loop
->end
)
3600 && loop_insn_first_p (p
, loop
->cont
))
3601 not_every_iteration
= 0;
3605 /* Perform strength reduction and induction variable elimination.
3607 Pseudo registers created during this function will be beyond the
3608 last valid index in several tables including regs->n_times_set and
3609 regno_last_uid. This does not cause a problem here, because the
3610 added registers cannot be givs outside of their loop, and hence
3611 will never be reconsidered. But scan_loop must check regnos to
3612 make sure they are in bounds. */
3615 strength_reduce (loop
, insn_count
, flags
)
3620 struct loop_info
*loop_info
= LOOP_INFO (loop
);
3621 struct loop_regs
*regs
= LOOP_REGS (loop
);
3622 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
3624 /* Temporary list pointers for traversing ivs->loop_iv_list. */
3625 struct iv_class
*bl
, **backbl
;
3626 /* Ratio of extra register life span we can justify
3627 for saving an instruction. More if loop doesn't call subroutines
3628 since in that case saving an insn makes more difference
3629 and more registers are available. */
3630 /* ??? could set this to last value of threshold in move_movables */
3631 int threshold
= (loop_info
->has_call
? 1 : 2) * (3 + n_non_fixed_regs
);
3632 /* Map of pseudo-register replacements. */
3633 rtx
*reg_map
= NULL
;
3637 rtx end_insert_before
;
3638 int unrolled_insn_copies
= 0;
3639 rtx loop_start
= loop
->start
;
3640 rtx loop_end
= loop
->end
;
3641 rtx test_reg
= gen_rtx_REG (word_mode
, LAST_VIRTUAL_REGISTER
+ 1);
3643 VARRAY_INT_INIT (ivs
->reg_iv_type
, max_reg_before_loop
, "reg_iv_type");
3644 VARRAY_GENERIC_PTR_INIT (ivs
->reg_iv_info
, max_reg_before_loop
, "reg_iv_info");
3645 ivs
->reg_biv_class
= (struct iv_class
**)
3646 xcalloc (max_reg_before_loop
, sizeof (struct iv_class
*));
3648 ivs
->loop_iv_list
= 0;
3649 addr_placeholder
= gen_reg_rtx (Pmode
);
3651 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3652 must be put before this insn, so that they will appear in the right
3653 order (i.e. loop order).
3655 If loop_end is the end of the current function, then emit a
3656 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3658 if (NEXT_INSN (loop_end
) != 0)
3659 end_insert_before
= NEXT_INSN (loop_end
);
3661 end_insert_before
= emit_note_after (NOTE_INSN_DELETED
, loop_end
);
3663 for_each_insn_in_loop (loop
, check_insn_for_bivs
);
3665 /* Scan ivs->loop_iv_list to remove all regs that proved not to be bivs.
3666 Make a sanity check against regs->n_times_set. */
3667 for (backbl
= &ivs
->loop_iv_list
, bl
= *backbl
; bl
; bl
= bl
->next
)
3669 if (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
3670 /* Above happens if register modified by subreg, etc. */
3671 /* Make sure it is not recognized as a basic induction var: */
3672 || VARRAY_INT (regs
->n_times_set
, bl
->regno
) != bl
->biv_count
3673 /* If never incremented, it is invariant that we decided not to
3674 move. So leave it alone. */
3675 || ! bl
->incremented
)
3677 if (loop_dump_stream
)
3678 fprintf (loop_dump_stream
, "Reg %d: biv discarded, %s\n",
3680 (REG_IV_TYPE (ivs
, bl
->regno
) != BASIC_INDUCT
3681 ? "not induction variable"
3682 : (! bl
->incremented
? "never incremented"
3685 REG_IV_TYPE (ivs
, bl
->regno
) = NOT_BASIC_INDUCT
;
3692 if (loop_dump_stream
)
3693 fprintf (loop_dump_stream
, "Reg %d: biv verified\n", bl
->regno
);
3697 /* Exit if there are no bivs. */
3698 if (! ivs
->loop_iv_list
)
3700 /* Can still unroll the loop anyways, but indicate that there is no
3701 strength reduction info available. */
3702 if (flags
& LOOP_UNROLL
)
3703 unroll_loop (loop
, insn_count
, end_insert_before
, 0);
3708 /* Find initial value for each biv by searching backwards from loop_start,
3709 halting at first label. Also record any test condition. */
3712 for (p
= loop_start
; p
&& GET_CODE (p
) != CODE_LABEL
; p
= PREV_INSN (p
))
3716 if (GET_CODE (p
) == CALL_INSN
)
3720 note_stores (PATTERN (p
), record_initial
, ivs
);
3722 /* Record any test of a biv that branches around the loop if no store
3723 between it and the start of loop. We only care about tests with
3724 constants and registers and only certain of those. */
3725 if (GET_CODE (p
) == JUMP_INSN
3726 && JUMP_LABEL (p
) != 0
3727 && next_real_insn (JUMP_LABEL (p
)) == next_real_insn (loop_end
)
3728 && (test
= get_condition_for_loop (loop
, p
)) != 0
3729 && GET_CODE (XEXP (test
, 0)) == REG
3730 && REGNO (XEXP (test
, 0)) < max_reg_before_loop
3731 && (bl
= ivs
->reg_biv_class
[REGNO (XEXP (test
, 0))]) != 0
3732 && valid_initial_value_p (XEXP (test
, 1), p
, call_seen
, loop_start
)
3733 && bl
->init_insn
== 0)
3735 /* If an NE test, we have an initial value! */
3736 if (GET_CODE (test
) == NE
)
3739 bl
->init_set
= gen_rtx_SET (VOIDmode
,
3740 XEXP (test
, 0), XEXP (test
, 1));
3743 bl
->initial_test
= test
;
3747 /* Look at the each biv and see if we can say anything better about its
3748 initial value from any initializing insns set up above. (This is done
3749 in two passes to avoid missing SETs in a PARALLEL.) */
3750 for (backbl
= &ivs
->loop_iv_list
; (bl
= *backbl
); backbl
= &bl
->next
)
3755 if (! bl
->init_insn
)
3758 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
3759 is a constant, use the value of that. */
3760 if (((note
= find_reg_note (bl
->init_insn
, REG_EQUAL
, 0)) != NULL
3761 && CONSTANT_P (XEXP (note
, 0)))
3762 || ((note
= find_reg_note (bl
->init_insn
, REG_EQUIV
, 0)) != NULL
3763 && CONSTANT_P (XEXP (note
, 0))))
3764 src
= XEXP (note
, 0);
3766 src
= SET_SRC (bl
->init_set
);
3768 if (loop_dump_stream
)
3769 fprintf (loop_dump_stream
,
3770 "Biv %d initialized at insn %d: initial value ",
3771 bl
->regno
, INSN_UID (bl
->init_insn
));
3773 if ((GET_MODE (src
) == GET_MODE (regno_reg_rtx
[bl
->regno
])
3774 || GET_MODE (src
) == VOIDmode
)
3775 && valid_initial_value_p (src
, bl
->init_insn
, call_seen
, loop_start
))
3777 bl
->initial_value
= src
;
3779 if (loop_dump_stream
)
3781 if (GET_CODE (src
) == CONST_INT
)
3783 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (src
));
3784 fputc ('\n', loop_dump_stream
);
3788 print_rtl (loop_dump_stream
, src
);
3789 fprintf (loop_dump_stream
, "\n");
3793 /* If we can't make it a giv,
3794 let biv keep initial value of "itself". */
3795 else if (loop_dump_stream
)
3796 fprintf (loop_dump_stream
, "is complex\n");
3799 /* Search the loop for general induction variables. */
3801 for_each_insn_in_loop (loop
, check_insn_for_givs
);
3803 /* Try to calculate and save the number of loop iterations. This is
3804 set to zero if the actual number can not be calculated. This must
3805 be called after all giv's have been identified, since otherwise it may
3806 fail if the iteration variable is a giv. */
3808 loop_iterations (loop
);
3810 /* Now for each giv for which we still don't know whether or not it is
3811 replaceable, check to see if it is replaceable because its final value
3812 can be calculated. This must be done after loop_iterations is called,
3813 so that final_giv_value will work correctly. */
3815 for (bl
= ivs
->loop_iv_list
; bl
; bl
= bl
->next
)
3817 struct induction
*v
;
3819 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
3820 if (! v
->replaceable
&& ! v
->not_replaceable
)
3821 check_final_value (loop
, v
);
3824 /* Try to prove that the loop counter variable (if any) is always
3825 nonnegative; if so, record that fact with a REG_NONNEG note
3826 so that "decrement and branch until zero" insn can be used. */
3827 check_dbra_loop (loop
, insn_count
);
3829 /* Create reg_map to hold substitutions for replaceable giv regs.
3830 Some givs might have been made from biv increments, so look at
3831 ivs->reg_iv_type for a suitable size. */
3832 reg_map_size
= ivs
->reg_iv_type
->num_elements
;
3833 reg_map
= (rtx
*) xcalloc (reg_map_size
, sizeof (rtx
));
3835 /* Examine each iv class for feasibility of strength reduction/induction
3836 variable elimination. */
3838 for (bl
= ivs
->loop_iv_list
; bl
; bl
= bl
->next
)
3840 struct induction
*v
;
3843 rtx final_value
= 0;
3845 /* Test whether it will be possible to eliminate this biv
3846 provided all givs are reduced. This is possible if either
3847 the reg is not used outside the loop, or we can compute
3848 what its final value will be.
3850 For architectures with a decrement_and_branch_until_zero insn,
3851 don't do this if we put a REG_NONNEG note on the endtest for
3854 /* Compare against bl->init_insn rather than loop_start.
3855 We aren't concerned with any uses of the biv between
3856 init_insn and loop_start since these won't be affected
3857 by the value of the biv elsewhere in the function, so
3858 long as init_insn doesn't use the biv itself.
3859 March 14, 1989 -- self@bayes.arc.nasa.gov */
3861 if ((uid_luid
[REGNO_LAST_UID (bl
->regno
)] < INSN_LUID (loop_end
)
3863 && INSN_UID (bl
->init_insn
) < max_uid_for_loop
3864 && uid_luid
[REGNO_FIRST_UID (bl
->regno
)] >= INSN_LUID (bl
->init_insn
)
3865 #ifdef HAVE_decrement_and_branch_until_zero
3868 && ! reg_mentioned_p (bl
->biv
->dest_reg
, SET_SRC (bl
->init_set
)))
3869 || ((final_value
= final_biv_value (loop
, bl
))
3870 #ifdef HAVE_decrement_and_branch_until_zero
3874 bl
->eliminable
= maybe_eliminate_biv (loop
, bl
, 0, threshold
,
3878 if (loop_dump_stream
)
3880 fprintf (loop_dump_stream
,
3881 "Cannot eliminate biv %d.\n",
3883 fprintf (loop_dump_stream
,
3884 "First use: insn %d, last use: insn %d.\n",
3885 REGNO_FIRST_UID (bl
->regno
),
3886 REGNO_LAST_UID (bl
->regno
));
3890 /* Check each extension dependant giv in this class to see if its
3891 root biv is safe from wrapping in the interior mode. */
3892 check_ext_dependant_givs (bl
, loop_info
);
3894 /* Combine all giv's for this iv_class. */
3895 combine_givs (regs
, bl
);
3897 /* This will be true at the end, if all givs which depend on this
3898 biv have been strength reduced.
3899 We can't (currently) eliminate the biv unless this is so. */
3902 /* Check each giv in this class to see if we will benefit by reducing
3903 it. Skip giv's combined with others. */
3904 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
3906 struct induction
*tv
;
3909 if (v
->ignore
|| v
->same
)
3912 benefit
= v
->benefit
;
3913 PUT_MODE (test_reg
, v
->mode
);
3914 add_cost
= iv_add_mult_cost (bl
->biv
->add_val
, v
->mult_val
,
3915 test_reg
, test_reg
);
3917 /* Reduce benefit if not replaceable, since we will insert
3918 a move-insn to replace the insn that calculates this giv.
3919 Don't do this unless the giv is a user variable, since it
3920 will often be marked non-replaceable because of the duplication
3921 of the exit code outside the loop. In such a case, the copies
3922 we insert are dead and will be deleted. So they don't have
3923 a cost. Similar situations exist. */
3924 /* ??? The new final_[bg]iv_value code does a much better job
3925 of finding replaceable giv's, and hence this code may no longer
3927 if (! v
->replaceable
&& ! bl
->eliminable
3928 && REG_USERVAR_P (v
->dest_reg
))
3929 benefit
-= copy_cost
;
3931 /* Decrease the benefit to count the add-insns that we will
3932 insert to increment the reduced reg for the giv.
3933 ??? This can overestimate the run-time cost of the additional
3934 insns, e.g. if there are multiple basic blocks that increment
3935 the biv, but only one of these blocks is executed during each
3936 iteration. There is no good way to detect cases like this with
3937 the current structure of the loop optimizer.
3938 This code is more accurate for determining code size than
3939 run-time benefits. */
3940 benefit
-= add_cost
* bl
->biv_count
;
3942 /* Decide whether to strength-reduce this giv or to leave the code
3943 unchanged (recompute it from the biv each time it is used).
3944 This decision can be made independently for each giv. */
3947 /* Attempt to guess whether autoincrement will handle some of the
3948 new add insns; if so, increase BENEFIT (undo the subtraction of
3949 add_cost that was done above). */
3950 if (v
->giv_type
== DEST_ADDR
3951 /* Increasing the benefit is risky, since this is only a guess.
3952 Avoid increasing register pressure in cases where there would
3953 be no other benefit from reducing this giv. */
3955 && GET_CODE (v
->mult_val
) == CONST_INT
)
3957 if (HAVE_POST_INCREMENT
3958 && INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
3959 benefit
+= add_cost
* bl
->biv_count
;
3960 else if (HAVE_PRE_INCREMENT
3961 && INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
3962 benefit
+= add_cost
* bl
->biv_count
;
3963 else if (HAVE_POST_DECREMENT
3964 && -INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
3965 benefit
+= add_cost
* bl
->biv_count
;
3966 else if (HAVE_PRE_DECREMENT
3967 && -INTVAL (v
->mult_val
) == GET_MODE_SIZE (v
->mem_mode
))
3968 benefit
+= add_cost
* bl
->biv_count
;
3972 /* If an insn is not to be strength reduced, then set its ignore
3973 flag, and clear all_reduced. */
3975 /* A giv that depends on a reversed biv must be reduced if it is
3976 used after the loop exit, otherwise, it would have the wrong
3977 value after the loop exit. To make it simple, just reduce all
3978 of such giv's whether or not we know they are used after the loop
3981 if ( ! flag_reduce_all_givs
&& v
->lifetime
* threshold
* benefit
< insn_count
3984 if (loop_dump_stream
)
3985 fprintf (loop_dump_stream
,
3986 "giv of insn %d not worth while, %d vs %d.\n",
3988 v
->lifetime
* threshold
* benefit
, insn_count
);
3994 /* Check that we can increment the reduced giv without a
3995 multiply insn. If not, reject it. */
3997 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
3998 if (tv
->mult_val
== const1_rtx
3999 && ! product_cheap_p (tv
->add_val
, v
->mult_val
))
4001 if (loop_dump_stream
)
4002 fprintf (loop_dump_stream
,
4003 "giv of insn %d: would need a multiply.\n",
4004 INSN_UID (v
->insn
));
4012 /* Check for givs whose first use is their definition and whose
4013 last use is the definition of another giv. If so, it is likely
4014 dead and should not be used to derive another giv nor to
4016 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4019 || (v
->same
&& v
->same
->ignore
))
4022 if (v
->giv_type
== DEST_REG
4023 && REGNO_FIRST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v
->insn
))
4025 struct induction
*v1
;
4027 for (v1
= bl
->giv
; v1
; v1
= v1
->next_iv
)
4028 if (REGNO_LAST_UID (REGNO (v
->dest_reg
)) == INSN_UID (v1
->insn
))
4033 /* Reduce each giv that we decided to reduce. */
4035 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4037 struct induction
*tv
;
4038 if (! v
->ignore
&& v
->same
== 0)
4040 int auto_inc_opt
= 0;
4042 /* If the code for derived givs immediately below has already
4043 allocated a new_reg, we must keep it. */
4045 v
->new_reg
= gen_reg_rtx (v
->mode
);
4048 /* If the target has auto-increment addressing modes, and
4049 this is an address giv, then try to put the increment
4050 immediately after its use, so that flow can create an
4051 auto-increment addressing mode. */
4052 if (v
->giv_type
== DEST_ADDR
&& bl
->biv_count
== 1
4053 && bl
->biv
->always_executed
&& ! bl
->biv
->maybe_multiple
4054 /* We don't handle reversed biv's because bl->biv->insn
4055 does not have a valid INSN_LUID. */
4057 && v
->always_executed
&& ! v
->maybe_multiple
4058 && INSN_UID (v
->insn
) < max_uid_for_loop
)
4060 /* If other giv's have been combined with this one, then
4061 this will work only if all uses of the other giv's occur
4062 before this giv's insn. This is difficult to check.
4064 We simplify this by looking for the common case where
4065 there is one DEST_REG giv, and this giv's insn is the
4066 last use of the dest_reg of that DEST_REG giv. If the
4067 increment occurs after the address giv, then we can
4068 perform the optimization. (Otherwise, the increment
4069 would have to go before other_giv, and we would not be
4070 able to combine it with the address giv to get an
4071 auto-inc address.) */
4072 if (v
->combined_with
)
4074 struct induction
*other_giv
= 0;
4076 for (tv
= bl
->giv
; tv
; tv
= tv
->next_iv
)
4084 if (! tv
&& other_giv
4085 && REGNO (other_giv
->dest_reg
) < max_reg_before_loop
4086 && (REGNO_LAST_UID (REGNO (other_giv
->dest_reg
))
4087 == INSN_UID (v
->insn
))
4088 && INSN_LUID (v
->insn
) < INSN_LUID (bl
->biv
->insn
))
4091 /* Check for case where increment is before the address
4092 giv. Do this test in "loop order". */
4093 else if ((INSN_LUID (v
->insn
) > INSN_LUID (bl
->biv
->insn
)
4094 && (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4095 || (INSN_LUID (bl
->biv
->insn
)
4096 > INSN_LUID (loop
->scan_start
))))
4097 || (INSN_LUID (v
->insn
) < INSN_LUID (loop
->scan_start
)
4098 && (INSN_LUID (loop
->scan_start
)
4099 < INSN_LUID (bl
->biv
->insn
))))
4108 /* We can't put an insn immediately after one setting
4109 cc0, or immediately before one using cc0. */
4110 if ((auto_inc_opt
== 1 && sets_cc0_p (PATTERN (v
->insn
)))
4111 || (auto_inc_opt
== -1
4112 && (prev
= prev_nonnote_insn (v
->insn
)) != 0
4114 && sets_cc0_p (PATTERN (prev
))))
4120 v
->auto_inc_opt
= 1;
4124 /* For each place where the biv is incremented, add an insn
4125 to increment the new, reduced reg for the giv. */
4126 for (tv
= bl
->biv
; tv
; tv
= tv
->next_iv
)
4131 insert_before
= tv
->insn
;
4132 else if (auto_inc_opt
== 1)
4133 insert_before
= NEXT_INSN (v
->insn
);
4135 insert_before
= v
->insn
;
4137 if (tv
->mult_val
== const1_rtx
)
4138 emit_iv_add_mult (tv
->add_val
, v
->mult_val
,
4139 v
->new_reg
, v
->new_reg
, insert_before
);
4140 else /* tv->mult_val == const0_rtx */
4141 /* A multiply is acceptable here
4142 since this is presumed to be seldom executed. */
4143 emit_iv_add_mult (tv
->add_val
, v
->mult_val
,
4144 v
->add_val
, v
->new_reg
, insert_before
);
4147 /* Add code at loop start to initialize giv's reduced reg. */
4149 emit_iv_add_mult (extend_value_for_giv (v
, bl
->initial_value
),
4150 v
->mult_val
, v
->add_val
, v
->new_reg
,
4155 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4158 For each giv register that can be reduced now: if replaceable,
4159 substitute reduced reg wherever the old giv occurs;
4160 else add new move insn "giv_reg = reduced_reg". */
4162 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4164 if (v
->same
&& v
->same
->ignore
)
4170 /* Update expression if this was combined, in case other giv was
4173 v
->new_reg
= replace_rtx (v
->new_reg
,
4174 v
->same
->dest_reg
, v
->same
->new_reg
);
4176 /* See if this register is known to be a pointer to something. If
4177 so, see if we can find the alignment. First see if there is a
4178 destination register that is a pointer. If so, this shares the
4179 alignment too. Next see if we can deduce anything from the
4180 computational information. If not, and this is a DEST_ADDR
4181 giv, at least we know that it's a pointer, though we don't know
4183 if (GET_CODE (v
->new_reg
) == REG
4184 && v
->giv_type
== DEST_REG
4185 && REG_POINTER (v
->dest_reg
))
4186 mark_reg_pointer (v
->new_reg
,
4187 REGNO_POINTER_ALIGN (REGNO (v
->dest_reg
)));
4188 else if (GET_CODE (v
->new_reg
) == REG
4189 && REG_POINTER (v
->src_reg
))
4191 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->src_reg
));
4194 || GET_CODE (v
->add_val
) != CONST_INT
4195 || INTVAL (v
->add_val
) % (align
/ BITS_PER_UNIT
) != 0)
4198 mark_reg_pointer (v
->new_reg
, align
);
4200 else if (GET_CODE (v
->new_reg
) == REG
4201 && GET_CODE (v
->add_val
) == REG
4202 && REG_POINTER (v
->add_val
))
4204 unsigned int align
= REGNO_POINTER_ALIGN (REGNO (v
->add_val
));
4206 if (align
== 0 || GET_CODE (v
->mult_val
) != CONST_INT
4207 || INTVAL (v
->mult_val
) % (align
/ BITS_PER_UNIT
) != 0)
4210 mark_reg_pointer (v
->new_reg
, align
);
4212 else if (GET_CODE (v
->new_reg
) == REG
&& v
->giv_type
== DEST_ADDR
)
4213 mark_reg_pointer (v
->new_reg
, 0);
4215 if (v
->giv_type
== DEST_ADDR
)
4216 /* Store reduced reg as the address in the memref where we found
4218 validate_change (v
->insn
, v
->location
, v
->new_reg
, 0);
4219 else if (v
->replaceable
)
4221 reg_map
[REGNO (v
->dest_reg
)] = v
->new_reg
;
4224 /* I can no longer duplicate the original problem. Perhaps
4225 this is unnecessary now? */
4227 /* Replaceable; it isn't strictly necessary to delete the old
4228 insn and emit a new one, because v->dest_reg is now dead.
4230 However, especially when unrolling loops, the special
4231 handling for (set REG0 REG1) in the second cse pass may
4232 make v->dest_reg live again. To avoid this problem, emit
4233 an insn to set the original giv reg from the reduced giv.
4234 We can not delete the original insn, since it may be part
4235 of a LIBCALL, and the code in flow that eliminates dead
4236 libcalls will fail if it is deleted. */
4237 emit_insn_after (gen_move_insn (v
->dest_reg
, v
->new_reg
),
4243 /* Not replaceable; emit an insn to set the original giv reg from
4244 the reduced giv, same as above. */
4245 emit_insn_after (gen_move_insn (v
->dest_reg
, v
->new_reg
),
4249 /* When a loop is reversed, givs which depend on the reversed
4250 biv, and which are live outside the loop, must be set to their
4251 correct final value. This insn is only needed if the giv is
4252 not replaceable. The correct final value is the same as the
4253 value that the giv starts the reversed loop with. */
4254 if (bl
->reversed
&& ! v
->replaceable
)
4255 emit_iv_add_mult (extend_value_for_giv (v
, bl
->initial_value
),
4256 v
->mult_val
, v
->add_val
, v
->dest_reg
,
4258 else if (v
->final_value
)
4262 /* If the loop has multiple exits, emit the insn before the
4263 loop to ensure that it will always be executed no matter
4264 how the loop exits. Otherwise, emit the insn after the loop,
4265 since this is slightly more efficient. */
4266 if (loop
->exit_count
)
4267 insert_before
= loop_start
;
4269 insert_before
= end_insert_before
;
4270 emit_insn_before (gen_move_insn (v
->dest_reg
, v
->final_value
),
4274 /* If the insn to set the final value of the giv was emitted
4275 before the loop, then we must delete the insn inside the loop
4276 that sets it. If this is a LIBCALL, then we must delete
4277 every insn in the libcall. Note, however, that
4278 final_giv_value will only succeed when there are multiple
4279 exits if the giv is dead at each exit, hence it does not
4280 matter that the original insn remains because it is dead
4282 /* Delete the insn inside the loop that sets the giv since
4283 the giv is now set before (or after) the loop. */
4284 delete_insn (v
->insn
);
4288 if (loop_dump_stream
)
4290 fprintf (loop_dump_stream
, "giv at %d reduced to ",
4291 INSN_UID (v
->insn
));
4292 print_rtl (loop_dump_stream
, v
->new_reg
);
4293 fprintf (loop_dump_stream
, "\n");
4297 /* All the givs based on the biv bl have been reduced if they
4300 /* For each giv not marked as maybe dead that has been combined with a
4301 second giv, clear any "maybe dead" mark on that second giv.
4302 v->new_reg will either be or refer to the register of the giv it
4305 Doing this clearing avoids problems in biv elimination where a
4306 giv's new_reg is a complex value that can't be put in the insn but
4307 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4308 Since the register will be used in either case, we'd prefer it be
4309 used from the simpler giv. */
4311 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
4312 if (! v
->maybe_dead
&& v
->same
)
4313 v
->same
->maybe_dead
= 0;
4315 /* Try to eliminate the biv, if it is a candidate.
4316 This won't work if ! all_reduced,
4317 since the givs we planned to use might not have been reduced.
4319 We have to be careful that we didn't initially think we could eliminate
4320 this biv because of a giv that we now think may be dead and shouldn't
4321 be used as a biv replacement.
4323 Also, there is the possibility that we may have a giv that looks
4324 like it can be used to eliminate a biv, but the resulting insn
4325 isn't valid. This can happen, for example, on the 88k, where a
4326 JUMP_INSN can compare a register only with zero. Attempts to
4327 replace it with a compare with a constant will fail.
4329 Note that in cases where this call fails, we may have replaced some
4330 of the occurrences of the biv with a giv, but no harm was done in
4331 doing so in the rare cases where it can occur. */
4333 if (all_reduced
== 1 && bl
->eliminable
4334 && maybe_eliminate_biv (loop
, bl
, 1, threshold
, insn_count
))
4336 /* ?? If we created a new test to bypass the loop entirely,
4337 or otherwise drop straight in, based on this test, then
4338 we might want to rewrite it also. This way some later
4339 pass has more hope of removing the initialization of this
4342 /* If final_value != 0, then the biv may be used after loop end
4343 and we must emit an insn to set it just in case.
4345 Reversed bivs already have an insn after the loop setting their
4346 value, so we don't need another one. We can't calculate the
4347 proper final value for such a biv here anyways. */
4348 if (final_value
!= 0 && ! bl
->reversed
)
4352 /* If the loop has multiple exits, emit the insn before the
4353 loop to ensure that it will always be executed no matter
4354 how the loop exits. Otherwise, emit the insn after the
4355 loop, since this is slightly more efficient. */
4356 if (loop
->exit_count
)
4357 insert_before
= loop_start
;
4359 insert_before
= end_insert_before
;
4361 emit_insn_before (gen_move_insn (bl
->biv
->dest_reg
, final_value
),
4366 /* Delete all of the instructions inside the loop which set
4367 the biv, as they are all dead. If is safe to delete them,
4368 because an insn setting a biv will never be part of a libcall. */
4369 /* However, deleting them will invalidate the regno_last_uid info,
4370 so keeping them around is more convenient. Final_biv_value
4371 will only succeed when there are multiple exits if the biv
4372 is dead at each exit, hence it does not matter that the original
4373 insn remains, because it is dead anyways. */
4374 for (v
= bl
->biv
; v
; v
= v
->next_iv
)
4375 delete_insn (v
->insn
);
4378 if (loop_dump_stream
)
4379 fprintf (loop_dump_stream
, "Reg %d: biv eliminated\n",
4384 /* Go through all the instructions in the loop, making all the
4385 register substitutions scheduled in REG_MAP. */
4387 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
4388 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
4389 || GET_CODE (p
) == CALL_INSN
)
4391 replace_regs (PATTERN (p
), reg_map
, reg_map_size
, 0);
4392 replace_regs (REG_NOTES (p
), reg_map
, reg_map_size
, 0);
4396 if (loop_info
->n_iterations
> 0)
4398 /* When we completely unroll a loop we will likely not need the increment
4399 of the loop BIV and we will not need the conditional branch at the
4401 unrolled_insn_copies
= insn_count
- 2;
4404 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
4405 need the comparison before the conditional branch at the end of the
4407 unrolled_insn_copies
-= 1;
4410 /* We'll need one copy for each loop iteration. */
4411 unrolled_insn_copies
*= loop_info
->n_iterations
;
4413 /* A little slop to account for the ability to remove initialization
4414 code, better CSE, and other secondary benefits of completely
4415 unrolling some loops. */
4416 unrolled_insn_copies
-= 1;
4418 /* Clamp the value. */
4419 if (unrolled_insn_copies
< 0)
4420 unrolled_insn_copies
= 0;
4423 /* Unroll loops from within strength reduction so that we can use the
4424 induction variable information that strength_reduce has already
4425 collected. Always unroll loops that would be as small or smaller
4426 unrolled than when rolled. */
4427 if ((flags
& LOOP_UNROLL
)
4428 || (loop_info
->n_iterations
> 0
4429 && unrolled_insn_copies
<= insn_count
))
4430 unroll_loop (loop
, insn_count
, end_insert_before
, 1);
4432 #ifdef HAVE_doloop_end
4433 if (HAVE_doloop_end
&& (flags
& LOOP_BCT
) && flag_branch_on_count_reg
)
4434 doloop_optimize (loop
);
4435 #endif /* HAVE_doloop_end */
4437 if (loop_dump_stream
)
4438 fprintf (loop_dump_stream
, "\n");
4441 VARRAY_FREE (ivs
->reg_iv_type
);
4442 VARRAY_FREE (ivs
->reg_iv_info
);
4443 free (ivs
->reg_biv_class
);
4445 struct iv_class
*iv
= ivs
->loop_iv_list
;
4448 struct iv_class
*next
= iv
->next
;
4449 struct induction
*induction
;
4450 struct induction
*next_induction
;
4452 for (induction
= iv
->biv
; induction
; induction
= next_induction
)
4454 next_induction
= induction
->next_iv
;
4457 for (induction
= iv
->giv
; induction
; induction
= next_induction
)
4459 next_induction
= induction
->next_iv
;
4471 /*Record all basic induction variables calculated in the insn. */
4473 check_insn_for_bivs (loop
, p
, not_every_iteration
, maybe_multiple
)
4476 int not_every_iteration
;
4479 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4486 if (GET_CODE (p
) == INSN
4487 && (set
= single_set (p
))
4488 && GET_CODE (SET_DEST (set
)) == REG
)
4490 dest_reg
= SET_DEST (set
);
4491 if (REGNO (dest_reg
) < max_reg_before_loop
4492 && REGNO (dest_reg
) >= FIRST_PSEUDO_REGISTER
4493 && REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != NOT_BASIC_INDUCT
)
4495 if (basic_induction_var (loop
, SET_SRC (set
),
4496 GET_MODE (SET_SRC (set
)),
4497 dest_reg
, p
, &inc_val
, &mult_val
,
4500 /* It is a possible basic induction variable.
4501 Create and initialize an induction structure for it. */
4504 = (struct induction
*) xmalloc (sizeof (struct induction
));
4506 record_biv (loop
, v
, p
, dest_reg
, inc_val
, mult_val
, location
,
4507 not_every_iteration
, maybe_multiple
);
4508 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = BASIC_INDUCT
;
4510 else if (REGNO (dest_reg
) < max_reg_before_loop
)
4511 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = NOT_BASIC_INDUCT
;
4517 /* Record all givs calculated in the insn.
4518 A register is a giv if: it is only set once, it is a function of a
4519 biv and a constant (or invariant), and it is not a biv. */
4521 check_insn_for_givs (loop
, p
, not_every_iteration
, maybe_multiple
)
4524 int not_every_iteration
;
4527 struct loop_regs
*regs
= LOOP_REGS (loop
);
4530 /* Look for a general induction variable in a register. */
4531 if (GET_CODE (p
) == INSN
4532 && (set
= single_set (p
))
4533 && GET_CODE (SET_DEST (set
)) == REG
4534 && ! VARRAY_CHAR (regs
->may_not_optimize
, REGNO (SET_DEST (set
))))
4543 rtx last_consec_insn
;
4545 dest_reg
= SET_DEST (set
);
4546 if (REGNO (dest_reg
) < FIRST_PSEUDO_REGISTER
)
4549 if (/* SET_SRC is a giv. */
4550 (general_induction_var (loop
, SET_SRC (set
), &src_reg
, &add_val
,
4551 &mult_val
, &ext_val
, 0, &benefit
, VOIDmode
)
4552 /* Equivalent expression is a giv. */
4553 || ((regnote
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
4554 && general_induction_var (loop
, XEXP (regnote
, 0), &src_reg
,
4555 &add_val
, &mult_val
, &ext_val
, 0,
4556 &benefit
, VOIDmode
)))
4557 /* Don't try to handle any regs made by loop optimization.
4558 We have nothing on them in regno_first_uid, etc. */
4559 && REGNO (dest_reg
) < max_reg_before_loop
4560 /* Don't recognize a BASIC_INDUCT_VAR here. */
4561 && dest_reg
!= src_reg
4562 /* This must be the only place where the register is set. */
4563 && (VARRAY_INT (regs
->n_times_set
, REGNO (dest_reg
)) == 1
4564 /* or all sets must be consecutive and make a giv. */
4565 || (benefit
= consec_sets_giv (loop
, benefit
, p
,
4567 &add_val
, &mult_val
, &ext_val
,
4568 &last_consec_insn
))))
4571 = (struct induction
*) xmalloc (sizeof (struct induction
));
4573 /* If this is a library call, increase benefit. */
4574 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
4575 benefit
+= libcall_benefit (p
);
4577 /* Skip the consecutive insns, if there are any. */
4578 if (VARRAY_INT (regs
->n_times_set
, REGNO (dest_reg
)) != 1)
4579 p
= last_consec_insn
;
4581 record_giv (loop
, v
, p
, src_reg
, dest_reg
, mult_val
, add_val
,
4582 ext_val
, benefit
, DEST_REG
, not_every_iteration
,
4583 maybe_multiple
, NULL_PTR
);
4588 #ifndef DONT_REDUCE_ADDR
4589 /* Look for givs which are memory addresses. */
4590 /* This resulted in worse code on a VAX 8600. I wonder if it
4592 if (GET_CODE (p
) == INSN
)
4593 find_mem_givs (loop
, PATTERN (p
), p
, not_every_iteration
,
4597 /* Update the status of whether giv can derive other givs. This can
4598 change when we pass a label or an insn that updates a biv. */
4599 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
4600 || GET_CODE (p
) == CODE_LABEL
)
4601 update_giv_derive (loop
, p
);
4605 /* Return 1 if X is a valid source for an initial value (or as value being
4606 compared against in an initial test).
4608 X must be either a register or constant and must not be clobbered between
4609 the current insn and the start of the loop.
4611 INSN is the insn containing X. */
4614 valid_initial_value_p (x
, insn
, call_seen
, loop_start
)
4623 /* Only consider pseudos we know about initialized in insns whose luids
4625 if (GET_CODE (x
) != REG
4626 || REGNO (x
) >= max_reg_before_loop
)
4629 /* Don't use call-clobbered registers across a call which clobbers it. On
4630 some machines, don't use any hard registers at all. */
4631 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
4632 && (SMALL_REGISTER_CLASSES
4633 || (call_used_regs
[REGNO (x
)] && call_seen
)))
4636 /* Don't use registers that have been clobbered before the start of the
4638 if (reg_set_between_p (x
, insn
, loop_start
))
4644 /* Scan X for memory refs and check each memory address
4645 as a possible giv. INSN is the insn whose pattern X comes from.
4646 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
4647 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
4648 more thanonce in each loop iteration. */
4651 find_mem_givs (loop
, x
, insn
, not_every_iteration
, maybe_multiple
)
4652 const struct loop
*loop
;
4655 int not_every_iteration
, maybe_multiple
;
4658 register enum rtx_code code
;
4659 register const char *fmt
;
4664 code
= GET_CODE (x
);
4689 /* This code used to disable creating GIVs with mult_val == 1 and
4690 add_val == 0. However, this leads to lost optimizations when
4691 it comes time to combine a set of related DEST_ADDR GIVs, since
4692 this one would not be seen. */
4694 if (general_induction_var (loop
, XEXP (x
, 0), &src_reg
, &add_val
,
4695 &mult_val
, &ext_val
, 1, &benefit
,
4698 /* Found one; record it. */
4700 = (struct induction
*) xmalloc (sizeof (struct induction
));
4702 record_giv (loop
, v
, insn
, src_reg
, addr_placeholder
, mult_val
,
4703 add_val
, ext_val
, benefit
, DEST_ADDR
,
4704 not_every_iteration
, maybe_multiple
, &XEXP (x
, 0));
4706 v
->mem_mode
= GET_MODE (x
);
4715 /* Recursively scan the subexpressions for other mem refs. */
4717 fmt
= GET_RTX_FORMAT (code
);
4718 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4720 find_mem_givs (loop
, XEXP (x
, i
), insn
, not_every_iteration
,
4722 else if (fmt
[i
] == 'E')
4723 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
4724 find_mem_givs (loop
, XVECEXP (x
, i
, j
), insn
, not_every_iteration
,
4728 /* Fill in the data about one biv update.
4729 V is the `struct induction' in which we record the biv. (It is
4730 allocated by the caller, with alloca.)
4731 INSN is the insn that sets it.
4732 DEST_REG is the biv's reg.
4734 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
4735 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
4736 being set to INC_VAL.
4738 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
4739 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
4740 can be executed more than once per iteration. If MAYBE_MULTIPLE
4741 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
4742 executed exactly once per iteration. */
4745 record_biv (loop
, v
, insn
, dest_reg
, inc_val
, mult_val
, location
,
4746 not_every_iteration
, maybe_multiple
)
4748 struct induction
*v
;
4754 int not_every_iteration
;
4757 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4758 struct iv_class
*bl
;
4761 v
->src_reg
= dest_reg
;
4762 v
->dest_reg
= dest_reg
;
4763 v
->mult_val
= mult_val
;
4764 v
->add_val
= inc_val
;
4765 v
->ext_dependant
= NULL_RTX
;
4766 v
->location
= location
;
4767 v
->mode
= GET_MODE (dest_reg
);
4768 v
->always_computable
= ! not_every_iteration
;
4769 v
->always_executed
= ! not_every_iteration
;
4770 v
->maybe_multiple
= maybe_multiple
;
4772 /* Add this to the reg's iv_class, creating a class
4773 if this is the first incrementation of the reg. */
4775 bl
= ivs
->reg_biv_class
[REGNO (dest_reg
)];
4778 /* Create and initialize new iv_class. */
4780 bl
= (struct iv_class
*) xmalloc (sizeof (struct iv_class
));
4782 bl
->regno
= REGNO (dest_reg
);
4788 /* Set initial value to the reg itself. */
4789 bl
->initial_value
= dest_reg
;
4790 /* We haven't seen the initializing insn yet */
4793 bl
->initial_test
= 0;
4794 bl
->incremented
= 0;
4798 bl
->total_benefit
= 0;
4800 /* Add this class to ivs->loop_iv_list. */
4801 bl
->next
= ivs
->loop_iv_list
;
4802 ivs
->loop_iv_list
= bl
;
4804 /* Put it in the array of biv register classes. */
4805 ivs
->reg_biv_class
[REGNO (dest_reg
)] = bl
;
4808 /* Update IV_CLASS entry for this biv. */
4809 v
->next_iv
= bl
->biv
;
4812 if (mult_val
== const1_rtx
)
4813 bl
->incremented
= 1;
4815 if (loop_dump_stream
)
4817 fprintf (loop_dump_stream
,
4818 "Insn %d: possible biv, reg %d,",
4819 INSN_UID (insn
), REGNO (dest_reg
));
4820 if (GET_CODE (inc_val
) == CONST_INT
)
4822 fprintf (loop_dump_stream
, " const =");
4823 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (inc_val
));
4824 fputc ('\n', loop_dump_stream
);
4828 fprintf (loop_dump_stream
, " const = ");
4829 print_rtl (loop_dump_stream
, inc_val
);
4830 fprintf (loop_dump_stream
, "\n");
4835 /* Fill in the data about one giv.
4836 V is the `struct induction' in which we record the giv. (It is
4837 allocated by the caller, with alloca.)
4838 INSN is the insn that sets it.
4839 BENEFIT estimates the savings from deleting this insn.
4840 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
4841 into a register or is used as a memory address.
4843 SRC_REG is the biv reg which the giv is computed from.
4844 DEST_REG is the giv's reg (if the giv is stored in a reg).
4845 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
4846 LOCATION points to the place where this giv's value appears in INSN. */
4849 record_giv (loop
, v
, insn
, src_reg
, dest_reg
, mult_val
, add_val
, ext_val
,
4850 benefit
, type
, not_every_iteration
, maybe_multiple
, location
)
4851 const struct loop
*loop
;
4852 struct induction
*v
;
4856 rtx mult_val
, add_val
, ext_val
;
4859 int not_every_iteration
, maybe_multiple
;
4862 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
4863 struct induction
*b
;
4864 struct iv_class
*bl
;
4865 rtx set
= single_set (insn
);
4868 /* Attempt to prove constantness of the values. */
4869 temp
= simplify_rtx (add_val
);
4874 v
->src_reg
= src_reg
;
4876 v
->dest_reg
= dest_reg
;
4877 v
->mult_val
= mult_val
;
4878 v
->add_val
= add_val
;
4879 v
->ext_dependant
= ext_val
;
4880 v
->benefit
= benefit
;
4881 v
->location
= location
;
4883 v
->combined_with
= 0;
4884 v
->maybe_multiple
= maybe_multiple
;
4886 v
->derive_adjustment
= 0;
4892 v
->auto_inc_opt
= 0;
4896 /* The v->always_computable field is used in update_giv_derive, to
4897 determine whether a giv can be used to derive another giv. For a
4898 DEST_REG giv, INSN computes a new value for the giv, so its value
4899 isn't computable if INSN insn't executed every iteration.
4900 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
4901 it does not compute a new value. Hence the value is always computable
4902 regardless of whether INSN is executed each iteration. */
4904 if (type
== DEST_ADDR
)
4905 v
->always_computable
= 1;
4907 v
->always_computable
= ! not_every_iteration
;
4909 v
->always_executed
= ! not_every_iteration
;
4911 if (type
== DEST_ADDR
)
4913 v
->mode
= GET_MODE (*location
);
4916 else /* type == DEST_REG */
4918 v
->mode
= GET_MODE (SET_DEST (set
));
4920 v
->lifetime
= (uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))]
4921 - uid_luid
[REGNO_FIRST_UID (REGNO (dest_reg
))]);
4923 /* If the lifetime is zero, it means that this register is
4924 really a dead store. So mark this as a giv that can be
4925 ignored. This will not prevent the biv from being eliminated. */
4926 if (v
->lifetime
== 0)
4929 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
4930 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
4933 /* Add the giv to the class of givs computed from one biv. */
4935 bl
= ivs
->reg_biv_class
[REGNO (src_reg
)];
4938 v
->next_iv
= bl
->giv
;
4940 /* Don't count DEST_ADDR. This is supposed to count the number of
4941 insns that calculate givs. */
4942 if (type
== DEST_REG
)
4944 bl
->total_benefit
+= benefit
;
4947 /* Fatal error, biv missing for this giv? */
4950 if (type
== DEST_ADDR
)
4954 /* The giv can be replaced outright by the reduced register only if all
4955 of the following conditions are true:
4956 - the insn that sets the giv is always executed on any iteration
4957 on which the giv is used at all
4958 (there are two ways to deduce this:
4959 either the insn is executed on every iteration,
4960 or all uses follow that insn in the same basic block),
4961 - the giv is not used outside the loop
4962 - no assignments to the biv occur during the giv's lifetime. */
4964 if (REGNO_FIRST_UID (REGNO (dest_reg
)) == INSN_UID (insn
)
4965 /* Previous line always fails if INSN was moved by loop opt. */
4966 && uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))]
4967 < INSN_LUID (loop
->end
)
4968 && (! not_every_iteration
4969 || last_use_this_basic_block (dest_reg
, insn
)))
4971 /* Now check that there are no assignments to the biv within the
4972 giv's lifetime. This requires two separate checks. */
4974 /* Check each biv update, and fail if any are between the first
4975 and last use of the giv.
4977 If this loop contains an inner loop that was unrolled, then
4978 the insn modifying the biv may have been emitted by the loop
4979 unrolling code, and hence does not have a valid luid. Just
4980 mark the biv as not replaceable in this case. It is not very
4981 useful as a biv, because it is used in two different loops.
4982 It is very unlikely that we would be able to optimize the giv
4983 using this biv anyways. */
4986 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
4988 if (INSN_UID (b
->insn
) >= max_uid_for_loop
4989 || ((uid_luid
[INSN_UID (b
->insn
)]
4990 >= uid_luid
[REGNO_FIRST_UID (REGNO (dest_reg
))])
4991 && (uid_luid
[INSN_UID (b
->insn
)]
4992 <= uid_luid
[REGNO_LAST_UID (REGNO (dest_reg
))])))
4995 v
->not_replaceable
= 1;
5000 /* If there are any backwards branches that go from after the
5001 biv update to before it, then this giv is not replaceable. */
5003 for (b
= bl
->biv
; b
; b
= b
->next_iv
)
5004 if (back_branch_in_range_p (loop
, b
->insn
))
5007 v
->not_replaceable
= 1;
5013 /* May still be replaceable, we don't have enough info here to
5016 v
->not_replaceable
= 0;
5020 /* Record whether the add_val contains a const_int, for later use by
5025 v
->no_const_addval
= 1;
5026 if (tem
== const0_rtx
)
5028 else if (CONSTANT_P (add_val
))
5029 v
->no_const_addval
= 0;
5030 if (GET_CODE (tem
) == PLUS
)
5034 if (GET_CODE (XEXP (tem
, 0)) == PLUS
)
5035 tem
= XEXP (tem
, 0);
5036 else if (GET_CODE (XEXP (tem
, 1)) == PLUS
)
5037 tem
= XEXP (tem
, 1);
5041 if (CONSTANT_P (XEXP (tem
, 1)))
5042 v
->no_const_addval
= 0;
5046 if (loop_dump_stream
)
5048 if (type
== DEST_REG
)
5049 fprintf (loop_dump_stream
, "Insn %d: giv reg %d",
5050 INSN_UID (insn
), REGNO (dest_reg
));
5052 fprintf (loop_dump_stream
, "Insn %d: dest address",
5055 fprintf (loop_dump_stream
, " src reg %d benefit %d",
5056 REGNO (src_reg
), v
->benefit
);
5057 fprintf (loop_dump_stream
, " lifetime %d",
5061 fprintf (loop_dump_stream
, " replaceable");
5063 if (v
->no_const_addval
)
5064 fprintf (loop_dump_stream
, " ncav");
5066 if (v
->ext_dependant
)
5068 switch (GET_CODE (v
->ext_dependant
))
5071 fprintf (loop_dump_stream
, " ext se");
5074 fprintf (loop_dump_stream
, " ext ze");
5077 fprintf (loop_dump_stream
, " ext tr");
5084 if (GET_CODE (mult_val
) == CONST_INT
)
5086 fprintf (loop_dump_stream
, " mult ");
5087 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (mult_val
));
5091 fprintf (loop_dump_stream
, " mult ");
5092 print_rtl (loop_dump_stream
, mult_val
);
5095 if (GET_CODE (add_val
) == CONST_INT
)
5097 fprintf (loop_dump_stream
, " add ");
5098 fprintf (loop_dump_stream
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (add_val
));
5102 fprintf (loop_dump_stream
, " add ");
5103 print_rtl (loop_dump_stream
, add_val
);
5107 if (loop_dump_stream
)
5108 fprintf (loop_dump_stream
, "\n");
5112 /* All this does is determine whether a giv can be made replaceable because
5113 its final value can be calculated. This code can not be part of record_giv
5114 above, because final_giv_value requires that the number of loop iterations
5115 be known, and that can not be accurately calculated until after all givs
5116 have been identified. */
5119 check_final_value (loop
, v
)
5120 const struct loop
*loop
;
5121 struct induction
*v
;
5123 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5124 struct iv_class
*bl
;
5125 rtx final_value
= 0;
5127 bl
= ivs
->reg_biv_class
[REGNO (v
->src_reg
)];
5129 /* DEST_ADDR givs will never reach here, because they are always marked
5130 replaceable above in record_giv. */
5132 /* The giv can be replaced outright by the reduced register only if all
5133 of the following conditions are true:
5134 - the insn that sets the giv is always executed on any iteration
5135 on which the giv is used at all
5136 (there are two ways to deduce this:
5137 either the insn is executed on every iteration,
5138 or all uses follow that insn in the same basic block),
5139 - its final value can be calculated (this condition is different
5140 than the one above in record_giv)
5141 - it's not used before the it's set
5142 - no assignments to the biv occur during the giv's lifetime. */
5145 /* This is only called now when replaceable is known to be false. */
5146 /* Clear replaceable, so that it won't confuse final_giv_value. */
5150 if ((final_value
= final_giv_value (loop
, v
))
5151 && (v
->always_computable
|| last_use_this_basic_block (v
->dest_reg
, v
->insn
)))
5153 int biv_increment_seen
= 0, before_giv_insn
= 0;
5159 /* When trying to determine whether or not a biv increment occurs
5160 during the lifetime of the giv, we can ignore uses of the variable
5161 outside the loop because final_value is true. Hence we can not
5162 use regno_last_uid and regno_first_uid as above in record_giv. */
5164 /* Search the loop to determine whether any assignments to the
5165 biv occur during the giv's lifetime. Start with the insn
5166 that sets the giv, and search around the loop until we come
5167 back to that insn again.
5169 Also fail if there is a jump within the giv's lifetime that jumps
5170 to somewhere outside the lifetime but still within the loop. This
5171 catches spaghetti code where the execution order is not linear, and
5172 hence the above test fails. Here we assume that the giv lifetime
5173 does not extend from one iteration of the loop to the next, so as
5174 to make the test easier. Since the lifetime isn't known yet,
5175 this requires two loops. See also record_giv above. */
5177 last_giv_use
= v
->insn
;
5184 before_giv_insn
= 1;
5185 p
= NEXT_INSN (loop
->start
);
5190 if (GET_CODE (p
) == INSN
|| GET_CODE (p
) == JUMP_INSN
5191 || GET_CODE (p
) == CALL_INSN
)
5193 /* It is possible for the BIV increment to use the GIV if we
5194 have a cycle. Thus we must be sure to check each insn for
5195 both BIV and GIV uses, and we must check for BIV uses
5198 if (! biv_increment_seen
5199 && reg_set_p (v
->src_reg
, PATTERN (p
)))
5200 biv_increment_seen
= 1;
5202 if (reg_mentioned_p (v
->dest_reg
, PATTERN (p
)))
5204 if (biv_increment_seen
|| before_giv_insn
)
5207 v
->not_replaceable
= 1;
5215 /* Now that the lifetime of the giv is known, check for branches
5216 from within the lifetime to outside the lifetime if it is still
5226 p
= NEXT_INSN (loop
->start
);
5227 if (p
== last_giv_use
)
5230 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
)
5231 && LABEL_NAME (JUMP_LABEL (p
))
5232 && ((loop_insn_first_p (JUMP_LABEL (p
), v
->insn
)
5233 && loop_insn_first_p (loop
->start
, JUMP_LABEL (p
)))
5234 || (loop_insn_first_p (last_giv_use
, JUMP_LABEL (p
))
5235 && loop_insn_first_p (JUMP_LABEL (p
), loop
->end
))))
5238 v
->not_replaceable
= 1;
5240 if (loop_dump_stream
)
5241 fprintf (loop_dump_stream
,
5242 "Found branch outside giv lifetime.\n");
5249 /* If it is replaceable, then save the final value. */
5251 v
->final_value
= final_value
;
5254 if (loop_dump_stream
&& v
->replaceable
)
5255 fprintf (loop_dump_stream
, "Insn %d: giv reg %d final_value replaceable\n",
5256 INSN_UID (v
->insn
), REGNO (v
->dest_reg
));
5259 /* Update the status of whether a giv can derive other givs.
5261 We need to do something special if there is or may be an update to the biv
5262 between the time the giv is defined and the time it is used to derive
5265 In addition, a giv that is only conditionally set is not allowed to
5266 derive another giv once a label has been passed.
5268 The cases we look at are when a label or an update to a biv is passed. */
5271 update_giv_derive (loop
, p
)
5272 const struct loop
*loop
;
5275 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5276 struct iv_class
*bl
;
5277 struct induction
*biv
, *giv
;
5281 /* Search all IV classes, then all bivs, and finally all givs.
5283 There are three cases we are concerned with. First we have the situation
5284 of a giv that is only updated conditionally. In that case, it may not
5285 derive any givs after a label is passed.
5287 The second case is when a biv update occurs, or may occur, after the
5288 definition of a giv. For certain biv updates (see below) that are
5289 known to occur between the giv definition and use, we can adjust the
5290 giv definition. For others, or when the biv update is conditional,
5291 we must prevent the giv from deriving any other givs. There are two
5292 sub-cases within this case.
5294 If this is a label, we are concerned with any biv update that is done
5295 conditionally, since it may be done after the giv is defined followed by
5296 a branch here (actually, we need to pass both a jump and a label, but
5297 this extra tracking doesn't seem worth it).
5299 If this is a jump, we are concerned about any biv update that may be
5300 executed multiple times. We are actually only concerned about
5301 backward jumps, but it is probably not worth performing the test
5302 on the jump again here.
5304 If this is a biv update, we must adjust the giv status to show that a
5305 subsequent biv update was performed. If this adjustment cannot be done,
5306 the giv cannot derive further givs. */
5308 for (bl
= ivs
->loop_iv_list
; bl
; bl
= bl
->next
)
5309 for (biv
= bl
->biv
; biv
; biv
= biv
->next_iv
)
5310 if (GET_CODE (p
) == CODE_LABEL
|| GET_CODE (p
) == JUMP_INSN
5313 for (giv
= bl
->giv
; giv
; giv
= giv
->next_iv
)
5315 /* If cant_derive is already true, there is no point in
5316 checking all of these conditions again. */
5317 if (giv
->cant_derive
)
5320 /* If this giv is conditionally set and we have passed a label,
5321 it cannot derive anything. */
5322 if (GET_CODE (p
) == CODE_LABEL
&& ! giv
->always_computable
)
5323 giv
->cant_derive
= 1;
5325 /* Skip givs that have mult_val == 0, since
5326 they are really invariants. Also skip those that are
5327 replaceable, since we know their lifetime doesn't contain
5329 else if (giv
->mult_val
== const0_rtx
|| giv
->replaceable
)
5332 /* The only way we can allow this giv to derive another
5333 is if this is a biv increment and we can form the product
5334 of biv->add_val and giv->mult_val. In this case, we will
5335 be able to compute a compensation. */
5336 else if (biv
->insn
== p
)
5341 if (biv
->mult_val
== const1_rtx
)
5342 tem
= simplify_giv_expr (loop
,
5343 gen_rtx_MULT (giv
->mode
,
5346 &ext_val_dummy
, &dummy
);
5348 if (tem
&& giv
->derive_adjustment
)
5349 tem
= simplify_giv_expr
5351 gen_rtx_PLUS (giv
->mode
, tem
, giv
->derive_adjustment
),
5352 &ext_val_dummy
, &dummy
);
5355 giv
->derive_adjustment
= tem
;
5357 giv
->cant_derive
= 1;
5359 else if ((GET_CODE (p
) == CODE_LABEL
&& ! biv
->always_computable
)
5360 || (GET_CODE (p
) == JUMP_INSN
&& biv
->maybe_multiple
))
5361 giv
->cant_derive
= 1;
5366 /* Check whether an insn is an increment legitimate for a basic induction var.
5367 X is the source of insn P, or a part of it.
5368 MODE is the mode in which X should be interpreted.
5370 DEST_REG is the putative biv, also the destination of the insn.
5371 We accept patterns of these forms:
5372 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5373 REG = INVARIANT + REG
5375 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5376 store the additive term into *INC_VAL, and store the place where
5377 we found the additive term into *LOCATION.
5379 If X is an assignment of an invariant into DEST_REG, we set
5380 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5382 We also want to detect a BIV when it corresponds to a variable
5383 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5384 of the variable may be a PLUS that adds a SUBREG of that variable to
5385 an invariant and then sign- or zero-extends the result of the PLUS
5388 Most GIVs in such cases will be in the promoted mode, since that is the
5389 probably the natural computation mode (and almost certainly the mode
5390 used for addresses) on the machine. So we view the pseudo-reg containing
5391 the variable as the BIV, as if it were simply incremented.
5393 Note that treating the entire pseudo as a BIV will result in making
5394 simple increments to any GIVs based on it. However, if the variable
5395 overflows in its declared mode but not its promoted mode, the result will
5396 be incorrect. This is acceptable if the variable is signed, since
5397 overflows in such cases are undefined, but not if it is unsigned, since
5398 those overflows are defined. So we only check for SIGN_EXTEND and
5401 If we cannot find a biv, we return 0. */
5404 basic_induction_var (loop
, x
, mode
, dest_reg
, p
, inc_val
, mult_val
, location
)
5405 const struct loop
*loop
;
5407 enum machine_mode mode
;
5414 register enum rtx_code code
;
5418 code
= GET_CODE (x
);
5423 if (rtx_equal_p (XEXP (x
, 0), dest_reg
)
5424 || (GET_CODE (XEXP (x
, 0)) == SUBREG
5425 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 0))
5426 && SUBREG_REG (XEXP (x
, 0)) == dest_reg
))
5428 argp
= &XEXP (x
, 1);
5430 else if (rtx_equal_p (XEXP (x
, 1), dest_reg
)
5431 || (GET_CODE (XEXP (x
, 1)) == SUBREG
5432 && SUBREG_PROMOTED_VAR_P (XEXP (x
, 1))
5433 && SUBREG_REG (XEXP (x
, 1)) == dest_reg
))
5435 argp
= &XEXP (x
, 0);
5441 if (loop_invariant_p (loop
, arg
) != 1)
5444 *inc_val
= convert_modes (GET_MODE (dest_reg
), GET_MODE (x
), arg
, 0);
5445 *mult_val
= const1_rtx
;
5450 /* If this is a SUBREG for a promoted variable, check the inner
5452 if (SUBREG_PROMOTED_VAR_P (x
))
5453 return basic_induction_var (loop
, SUBREG_REG (x
),
5454 GET_MODE (SUBREG_REG (x
)),
5455 dest_reg
, p
, inc_val
, mult_val
, location
);
5459 /* If this register is assigned in a previous insn, look at its
5460 source, but don't go outside the loop or past a label. */
5462 /* If this sets a register to itself, we would repeat any previous
5463 biv increment if we applied this strategy blindly. */
5464 if (rtx_equal_p (dest_reg
, x
))
5473 insn
= PREV_INSN (insn
);
5475 while (insn
&& GET_CODE (insn
) == NOTE
5476 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
5480 set
= single_set (insn
);
5483 dest
= SET_DEST (set
);
5485 || (GET_CODE (dest
) == SUBREG
5486 && (GET_MODE_SIZE (GET_MODE (dest
)) <= UNITS_PER_WORD
)
5487 && (GET_MODE_CLASS (GET_MODE (dest
)) == MODE_INT
)
5488 && SUBREG_REG (dest
) == x
))
5489 return basic_induction_var (loop
, SET_SRC (set
),
5490 (GET_MODE (SET_SRC (set
)) == VOIDmode
5492 : GET_MODE (SET_SRC (set
))),
5494 inc_val
, mult_val
, location
);
5496 while (GET_CODE (dest
) == SIGN_EXTRACT
5497 || GET_CODE (dest
) == ZERO_EXTRACT
5498 || GET_CODE (dest
) == SUBREG
5499 || GET_CODE (dest
) == STRICT_LOW_PART
)
5500 dest
= XEXP (dest
, 0);
5506 /* Can accept constant setting of biv only when inside inner most loop.
5507 Otherwise, a biv of an inner loop may be incorrectly recognized
5508 as a biv of the outer loop,
5509 causing code to be moved INTO the inner loop. */
5511 if (loop_invariant_p (loop
, x
) != 1)
5516 /* convert_modes aborts if we try to convert to or from CCmode, so just
5517 exclude that case. It is very unlikely that a condition code value
5518 would be a useful iterator anyways. */
5519 if (loop
->level
== 1
5520 && GET_MODE_CLASS (mode
) != MODE_CC
5521 && GET_MODE_CLASS (GET_MODE (dest_reg
)) != MODE_CC
)
5523 /* Possible bug here? Perhaps we don't know the mode of X. */
5524 *inc_val
= convert_modes (GET_MODE (dest_reg
), mode
, x
, 0);
5525 *mult_val
= const0_rtx
;
5532 return basic_induction_var (loop
, XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5533 dest_reg
, p
, inc_val
, mult_val
, location
);
5536 /* Similar, since this can be a sign extension. */
5537 for (insn
= PREV_INSN (p
);
5538 (insn
&& GET_CODE (insn
) == NOTE
5539 && NOTE_LINE_NUMBER (insn
) != NOTE_INSN_LOOP_BEG
);
5540 insn
= PREV_INSN (insn
))
5544 set
= single_set (insn
);
5546 if (! rtx_equal_p (dest_reg
, XEXP (x
, 0))
5547 && set
&& SET_DEST (set
) == XEXP (x
, 0)
5548 && GET_CODE (XEXP (x
, 1)) == CONST_INT
5549 && INTVAL (XEXP (x
, 1)) >= 0
5550 && GET_CODE (SET_SRC (set
)) == ASHIFT
5551 && XEXP (x
, 1) == XEXP (SET_SRC (set
), 1))
5552 return basic_induction_var (loop
, XEXP (SET_SRC (set
), 0),
5553 GET_MODE (XEXP (x
, 0)),
5554 dest_reg
, insn
, inc_val
, mult_val
,
5563 /* A general induction variable (giv) is any quantity that is a linear
5564 function of a basic induction variable,
5565 i.e. giv = biv * mult_val + add_val.
5566 The coefficients can be any loop invariant quantity.
5567 A giv need not be computed directly from the biv;
5568 it can be computed by way of other givs. */
5570 /* Determine whether X computes a giv.
5571 If it does, return a nonzero value
5572 which is the benefit from eliminating the computation of X;
5573 set *SRC_REG to the register of the biv that it is computed from;
5574 set *ADD_VAL and *MULT_VAL to the coefficients,
5575 such that the value of X is biv * mult + add; */
5578 general_induction_var (loop
, x
, src_reg
, add_val
, mult_val
, ext_val
,
5579 is_addr
, pbenefit
, addr_mode
)
5580 const struct loop
*loop
;
5588 enum machine_mode addr_mode
;
5590 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5593 /* If this is an invariant, forget it, it isn't a giv. */
5594 if (loop_invariant_p (loop
, x
) == 1)
5598 *ext_val
= NULL_RTX
;
5599 x
= simplify_giv_expr (loop
, x
, ext_val
, pbenefit
);
5603 switch (GET_CODE (x
))
5607 /* Since this is now an invariant and wasn't before, it must be a giv
5608 with MULT_VAL == 0. It doesn't matter which BIV we associate this
5610 *src_reg
= ivs
->loop_iv_list
->biv
->dest_reg
;
5611 *mult_val
= const0_rtx
;
5616 /* This is equivalent to a BIV. */
5618 *mult_val
= const1_rtx
;
5619 *add_val
= const0_rtx
;
5623 /* Either (plus (biv) (invar)) or
5624 (plus (mult (biv) (invar_1)) (invar_2)). */
5625 if (GET_CODE (XEXP (x
, 0)) == MULT
)
5627 *src_reg
= XEXP (XEXP (x
, 0), 0);
5628 *mult_val
= XEXP (XEXP (x
, 0), 1);
5632 *src_reg
= XEXP (x
, 0);
5633 *mult_val
= const1_rtx
;
5635 *add_val
= XEXP (x
, 1);
5639 /* ADD_VAL is zero. */
5640 *src_reg
= XEXP (x
, 0);
5641 *mult_val
= XEXP (x
, 1);
5642 *add_val
= const0_rtx
;
5649 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
5650 unless they are CONST_INT). */
5651 if (GET_CODE (*add_val
) == USE
)
5652 *add_val
= XEXP (*add_val
, 0);
5653 if (GET_CODE (*mult_val
) == USE
)
5654 *mult_val
= XEXP (*mult_val
, 0);
5657 *pbenefit
+= address_cost (orig_x
, addr_mode
) - reg_address_cost
;
5659 *pbenefit
+= rtx_cost (orig_x
, SET
);
5661 /* Always return true if this is a giv so it will be detected as such,
5662 even if the benefit is zero or negative. This allows elimination
5663 of bivs that might otherwise not be eliminated. */
5667 /* Given an expression, X, try to form it as a linear function of a biv.
5668 We will canonicalize it to be of the form
5669 (plus (mult (BIV) (invar_1))
5671 with possible degeneracies.
5673 The invariant expressions must each be of a form that can be used as a
5674 machine operand. We surround then with a USE rtx (a hack, but localized
5675 and certainly unambiguous!) if not a CONST_INT for simplicity in this
5676 routine; it is the caller's responsibility to strip them.
5678 If no such canonicalization is possible (i.e., two biv's are used or an
5679 expression that is neither invariant nor a biv or giv), this routine
5682 For a non-zero return, the result will have a code of CONST_INT, USE,
5683 REG (for a BIV), PLUS, or MULT. No other codes will occur.
5685 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
5687 static rtx sge_plus
PARAMS ((enum machine_mode
, rtx
, rtx
));
5688 static rtx sge_plus_constant
PARAMS ((rtx
, rtx
));
5691 simplify_giv_expr (loop
, x
, ext_val
, benefit
)
5692 const struct loop
*loop
;
5697 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
5698 struct loop_regs
*regs
= LOOP_REGS (loop
);
5699 enum machine_mode mode
= GET_MODE (x
);
5703 /* If this is not an integer mode, or if we cannot do arithmetic in this
5704 mode, this can't be a giv. */
5705 if (mode
!= VOIDmode
5706 && (GET_MODE_CLASS (mode
) != MODE_INT
5707 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
))
5710 switch (GET_CODE (x
))
5713 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
5714 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
5715 if (arg0
== 0 || arg1
== 0)
5718 /* Put constant last, CONST_INT last if both constant. */
5719 if ((GET_CODE (arg0
) == USE
5720 || GET_CODE (arg0
) == CONST_INT
)
5721 && ! ((GET_CODE (arg0
) == USE
5722 && GET_CODE (arg1
) == USE
)
5723 || GET_CODE (arg1
) == CONST_INT
))
5724 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
5726 /* Handle addition of zero, then addition of an invariant. */
5727 if (arg1
== const0_rtx
)
5729 else if (GET_CODE (arg1
) == CONST_INT
|| GET_CODE (arg1
) == USE
)
5730 switch (GET_CODE (arg0
))
5734 /* Adding two invariants must result in an invariant, so enclose
5735 addition operation inside a USE and return it. */
5736 if (GET_CODE (arg0
) == USE
)
5737 arg0
= XEXP (arg0
, 0);
5738 if (GET_CODE (arg1
) == USE
)
5739 arg1
= XEXP (arg1
, 0);
5741 if (GET_CODE (arg0
) == CONST_INT
)
5742 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
5743 if (GET_CODE (arg1
) == CONST_INT
)
5744 tem
= sge_plus_constant (arg0
, arg1
);
5746 tem
= sge_plus (mode
, arg0
, arg1
);
5748 if (GET_CODE (tem
) != CONST_INT
)
5749 tem
= gen_rtx_USE (mode
, tem
);
5754 /* biv + invar or mult + invar. Return sum. */
5755 return gen_rtx_PLUS (mode
, arg0
, arg1
);
5758 /* (a + invar_1) + invar_2. Associate. */
5760 simplify_giv_expr (loop
,
5772 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
5773 MULT to reduce cases. */
5774 if (GET_CODE (arg0
) == REG
)
5775 arg0
= gen_rtx_MULT (mode
, arg0
, const1_rtx
);
5776 if (GET_CODE (arg1
) == REG
)
5777 arg1
= gen_rtx_MULT (mode
, arg1
, const1_rtx
);
5779 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
5780 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
5781 Recurse to associate the second PLUS. */
5782 if (GET_CODE (arg1
) == MULT
)
5783 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
5785 if (GET_CODE (arg1
) == PLUS
)
5787 simplify_giv_expr (loop
,
5789 gen_rtx_PLUS (mode
, arg0
,
5794 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
5795 if (GET_CODE (arg0
) != MULT
|| GET_CODE (arg1
) != MULT
)
5798 if (!rtx_equal_p (arg0
, arg1
))
5801 return simplify_giv_expr (loop
,
5810 /* Handle "a - b" as "a + b * (-1)". */
5811 return simplify_giv_expr (loop
,
5820 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
5821 arg1
= simplify_giv_expr (loop
, XEXP (x
, 1), ext_val
, benefit
);
5822 if (arg0
== 0 || arg1
== 0)
5825 /* Put constant last, CONST_INT last if both constant. */
5826 if ((GET_CODE (arg0
) == USE
|| GET_CODE (arg0
) == CONST_INT
)
5827 && GET_CODE (arg1
) != CONST_INT
)
5828 tem
= arg0
, arg0
= arg1
, arg1
= tem
;
5830 /* If second argument is not now constant, not giv. */
5831 if (GET_CODE (arg1
) != USE
&& GET_CODE (arg1
) != CONST_INT
)
5834 /* Handle multiply by 0 or 1. */
5835 if (arg1
== const0_rtx
)
5838 else if (arg1
== const1_rtx
)
5841 switch (GET_CODE (arg0
))
5844 /* biv * invar. Done. */
5845 return gen_rtx_MULT (mode
, arg0
, arg1
);
5848 /* Product of two constants. */
5849 return GEN_INT (INTVAL (arg0
) * INTVAL (arg1
));
5852 /* invar * invar is a giv, but attempt to simplify it somehow. */
5853 if (GET_CODE (arg1
) != CONST_INT
)
5856 arg0
= XEXP (arg0
, 0);
5857 if (GET_CODE (arg0
) == MULT
)
5859 /* (invar_0 * invar_1) * invar_2. Associate. */
5860 return simplify_giv_expr (loop
,
5869 /* Porpagate the MULT expressions to the intermost nodes. */
5870 else if (GET_CODE (arg0
) == PLUS
)
5872 /* (invar_0 + invar_1) * invar_2. Distribute. */
5873 return simplify_giv_expr (loop
,
5885 return gen_rtx_USE (mode
, gen_rtx_MULT (mode
, arg0
, arg1
));
5888 /* (a * invar_1) * invar_2. Associate. */
5889 return simplify_giv_expr (loop
,
5898 /* (a + invar_1) * invar_2. Distribute. */
5899 return simplify_giv_expr (loop
,
5914 /* Shift by constant is multiply by power of two. */
5915 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
5919 simplify_giv_expr (loop
,
5922 GEN_INT ((HOST_WIDE_INT
) 1
5923 << INTVAL (XEXP (x
, 1)))),
5927 /* "-a" is "a * (-1)" */
5928 return simplify_giv_expr (loop
,
5929 gen_rtx_MULT (mode
, XEXP (x
, 0), constm1_rtx
),
5933 /* "~a" is "-a - 1". Silly, but easy. */
5934 return simplify_giv_expr (loop
,
5935 gen_rtx_MINUS (mode
,
5936 gen_rtx_NEG (mode
, XEXP (x
, 0)),
5941 /* Already in proper form for invariant. */
5947 /* Conditionally recognize extensions of simple IVs. After we've
5948 computed loop traversal counts and verified the range of the
5949 source IV, we'll reevaluate this as a GIV. */
5950 if (*ext_val
== NULL_RTX
)
5952 arg0
= simplify_giv_expr (loop
, XEXP (x
, 0), ext_val
, benefit
);
5953 if (arg0
&& *ext_val
== NULL_RTX
&& GET_CODE (arg0
) == REG
)
5955 *ext_val
= gen_rtx_fmt_e (GET_CODE (x
), mode
, arg0
);
5962 /* If this is a new register, we can't deal with it. */
5963 if (REGNO (x
) >= max_reg_before_loop
)
5966 /* Check for biv or giv. */
5967 switch (REG_IV_TYPE (ivs
, REGNO (x
)))
5971 case GENERAL_INDUCT
:
5973 struct induction
*v
= REG_IV_INFO (ivs
, REGNO (x
));
5975 /* Form expression from giv and add benefit. Ensure this giv
5976 can derive another and subtract any needed adjustment if so. */
5978 /* Increasing the benefit here is risky. The only case in which it
5979 is arguably correct is if this is the only use of V. In other
5980 cases, this will artificially inflate the benefit of the current
5981 giv, and lead to suboptimal code. Thus, it is disabled, since
5982 potentially not reducing an only marginally beneficial giv is
5983 less harmful than reducing many givs that are not really
5986 rtx single_use
= VARRAY_RTX (regs
->single_usage
, REGNO (x
));
5987 if (single_use
&& single_use
!= const0_rtx
)
5988 *benefit
+= v
->benefit
;
5994 tem
= gen_rtx_PLUS (mode
, gen_rtx_MULT (mode
,
5995 v
->src_reg
, v
->mult_val
),
5998 if (v
->derive_adjustment
)
5999 tem
= gen_rtx_MINUS (mode
, tem
, v
->derive_adjustment
);
6000 arg0
= simplify_giv_expr (loop
, tem
, ext_val
, benefit
);
6003 if (!v
->ext_dependant
)
6008 *ext_val
= v
->ext_dependant
;
6016 /* If it isn't an induction variable, and it is invariant, we
6017 may be able to simplify things further by looking through
6018 the bits we just moved outside the loop. */
6019 if (loop_invariant_p (loop
, x
) == 1)
6023 for (m
= the_movables
.head
; m
; m
= m
->next
)
6024 if (rtx_equal_p (x
, m
->set_dest
))
6026 /* Ok, we found a match. Substitute and simplify. */
6028 /* If we match another movable, we must use that, as
6029 this one is going away. */
6031 return simplify_giv_expr (loop
, m
->match
->set_dest
,
6034 /* If consec is non-zero, this is a member of a group of
6035 instructions that were moved together. We handle this
6036 case only to the point of seeking to the last insn and
6037 looking for a REG_EQUAL. Fail if we don't find one. */
6044 tem
= NEXT_INSN (tem
);
6048 tem
= find_reg_note (tem
, REG_EQUAL
, NULL_RTX
);
6050 tem
= XEXP (tem
, 0);
6054 tem
= single_set (m
->insn
);
6056 tem
= SET_SRC (tem
);
6061 /* What we are most interested in is pointer
6062 arithmetic on invariants -- only take
6063 patterns we may be able to do something with. */
6064 if (GET_CODE (tem
) == PLUS
6065 || GET_CODE (tem
) == MULT
6066 || GET_CODE (tem
) == ASHIFT
6067 || GET_CODE (tem
) == CONST_INT
6068 || GET_CODE (tem
) == SYMBOL_REF
)
6070 tem
= simplify_giv_expr (loop
, tem
, ext_val
,
6075 else if (GET_CODE (tem
) == CONST
6076 && GET_CODE (XEXP (tem
, 0)) == PLUS
6077 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == SYMBOL_REF
6078 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)
6080 tem
= simplify_giv_expr (loop
, XEXP (tem
, 0),
6092 /* Fall through to general case. */
6094 /* If invariant, return as USE (unless CONST_INT).
6095 Otherwise, not giv. */
6096 if (GET_CODE (x
) == USE
)
6099 if (loop_invariant_p (loop
, x
) == 1)
6101 if (GET_CODE (x
) == CONST_INT
)
6103 if (GET_CODE (x
) == CONST
6104 && GET_CODE (XEXP (x
, 0)) == PLUS
6105 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
6106 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
6108 return gen_rtx_USE (mode
, x
);
6115 /* This routine folds invariants such that there is only ever one
6116 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6119 sge_plus_constant (x
, c
)
6122 if (GET_CODE (x
) == CONST_INT
)
6123 return GEN_INT (INTVAL (x
) + INTVAL (c
));
6124 else if (GET_CODE (x
) != PLUS
)
6125 return gen_rtx_PLUS (GET_MODE (x
), x
, c
);
6126 else if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6128 return gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0),
6129 GEN_INT (INTVAL (XEXP (x
, 1)) + INTVAL (c
)));
6131 else if (GET_CODE (XEXP (x
, 0)) == PLUS
6132 || GET_CODE (XEXP (x
, 1)) != PLUS
)
6134 return gen_rtx_PLUS (GET_MODE (x
),
6135 sge_plus_constant (XEXP (x
, 0), c
), XEXP (x
, 1));
6139 return gen_rtx_PLUS (GET_MODE (x
),
6140 sge_plus_constant (XEXP (x
, 1), c
), XEXP (x
, 0));
6145 sge_plus (mode
, x
, y
)
6146 enum machine_mode mode
;
6149 while (GET_CODE (y
) == PLUS
)
6151 rtx a
= XEXP (y
, 0);
6152 if (GET_CODE (a
) == CONST_INT
)
6153 x
= sge_plus_constant (x
, a
);
6155 x
= gen_rtx_PLUS (mode
, x
, a
);
6158 if (GET_CODE (y
) == CONST_INT
)
6159 x
= sge_plus_constant (x
, y
);
6161 x
= gen_rtx_PLUS (mode
, x
, y
);
6165 /* Help detect a giv that is calculated by several consecutive insns;
6169 The caller has already identified the first insn P as having a giv as dest;
6170 we check that all other insns that set the same register follow
6171 immediately after P, that they alter nothing else,
6172 and that the result of the last is still a giv.
6174 The value is 0 if the reg set in P is not really a giv.
6175 Otherwise, the value is the amount gained by eliminating
6176 all the consecutive insns that compute the value.
6178 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6179 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6181 The coefficients of the ultimate giv value are stored in
6182 *MULT_VAL and *ADD_VAL. */
6185 consec_sets_giv (loop
, first_benefit
, p
, src_reg
, dest_reg
,
6186 add_val
, mult_val
, ext_val
, last_consec_insn
)
6187 const struct loop
*loop
;
6195 rtx
*last_consec_insn
;
6197 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
6198 struct loop_regs
*regs
= LOOP_REGS (loop
);
6205 /* Indicate that this is a giv so that we can update the value produced in
6206 each insn of the multi-insn sequence.
6208 This induction structure will be used only by the call to
6209 general_induction_var below, so we can allocate it on our stack.
6210 If this is a giv, our caller will replace the induct var entry with
6211 a new induction structure. */
6212 struct induction
*v
;
6214 if (REG_IV_TYPE (ivs
, REGNO (dest_reg
)) != UNKNOWN_INDUCT
)
6217 v
= (struct induction
*) alloca (sizeof (struct induction
));
6218 v
->src_reg
= src_reg
;
6219 v
->mult_val
= *mult_val
;
6220 v
->add_val
= *add_val
;
6221 v
->benefit
= first_benefit
;
6223 v
->derive_adjustment
= 0;
6224 v
->ext_dependant
= NULL_RTX
;
6226 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = GENERAL_INDUCT
;
6227 REG_IV_INFO (ivs
, REGNO (dest_reg
)) = v
;
6229 count
= VARRAY_INT (regs
->n_times_set
, REGNO (dest_reg
)) - 1;
6234 code
= GET_CODE (p
);
6236 /* If libcall, skip to end of call sequence. */
6237 if (code
== INSN
&& (temp
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)))
6241 && (set
= single_set (p
))
6242 && GET_CODE (SET_DEST (set
)) == REG
6243 && SET_DEST (set
) == dest_reg
6244 && (general_induction_var (loop
, SET_SRC (set
), &src_reg
,
6245 add_val
, mult_val
, ext_val
, 0,
6247 /* Giv created by equivalent expression. */
6248 || ((temp
= find_reg_note (p
, REG_EQUAL
, NULL_RTX
))
6249 && general_induction_var (loop
, XEXP (temp
, 0), &src_reg
,
6250 add_val
, mult_val
, ext_val
, 0,
6251 &benefit
, VOIDmode
)))
6252 && src_reg
== v
->src_reg
)
6254 if (find_reg_note (p
, REG_RETVAL
, NULL_RTX
))
6255 benefit
+= libcall_benefit (p
);
6258 v
->mult_val
= *mult_val
;
6259 v
->add_val
= *add_val
;
6260 v
->benefit
+= benefit
;
6262 else if (code
!= NOTE
)
6264 /* Allow insns that set something other than this giv to a
6265 constant. Such insns are needed on machines which cannot
6266 include long constants and should not disqualify a giv. */
6268 && (set
= single_set (p
))
6269 && SET_DEST (set
) != dest_reg
6270 && CONSTANT_P (SET_SRC (set
)))
6273 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
6278 REG_IV_TYPE (ivs
, REGNO (dest_reg
)) = UNKNOWN_INDUCT
;
6279 *last_consec_insn
= p
;
6283 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6284 represented by G1. If no such expression can be found, or it is clear that
6285 it cannot possibly be a valid address, 0 is returned.
6287 To perform the computation, we note that
6290 where `v' is the biv.
6292 So G2 = (y/b) * G1 + (b - a*y/x).
6294 Note that MULT = y/x.
6296 Update: A and B are now allowed to be additive expressions such that
6297 B contains all variables in A. That is, computing B-A will not require
6298 subtracting variables. */
6301 express_from_1 (a
, b
, mult
)
6304 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6306 if (mult
== const0_rtx
)
6309 /* If MULT is not 1, we cannot handle A with non-constants, since we
6310 would then be required to subtract multiples of the registers in A.
6311 This is theoretically possible, and may even apply to some Fortran
6312 constructs, but it is a lot of work and we do not attempt it here. */
6314 if (mult
!= const1_rtx
&& GET_CODE (a
) != CONST_INT
)
6317 /* In general these structures are sorted top to bottom (down the PLUS
6318 chain), but not left to right across the PLUS. If B is a higher
6319 order giv than A, we can strip one level and recurse. If A is higher
6320 order, we'll eventually bail out, but won't know that until the end.
6321 If they are the same, we'll strip one level around this loop. */
6323 while (GET_CODE (a
) == PLUS
&& GET_CODE (b
) == PLUS
)
6325 rtx ra
, rb
, oa
, ob
, tmp
;
6327 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
6328 if (GET_CODE (ra
) == PLUS
)
6329 tmp
= ra
, ra
= oa
, oa
= tmp
;
6331 rb
= XEXP (b
, 0), ob
= XEXP (b
, 1);
6332 if (GET_CODE (rb
) == PLUS
)
6333 tmp
= rb
, rb
= ob
, ob
= tmp
;
6335 if (rtx_equal_p (ra
, rb
))
6336 /* We matched: remove one reg completely. */
6338 else if (GET_CODE (ob
) != PLUS
&& rtx_equal_p (ra
, ob
))
6339 /* An alternate match. */
6341 else if (GET_CODE (oa
) != PLUS
&& rtx_equal_p (oa
, rb
))
6342 /* An alternate match. */
6346 /* Indicates an extra register in B. Strip one level from B and
6347 recurse, hoping B was the higher order expression. */
6348 ob
= express_from_1 (a
, ob
, mult
);
6351 return gen_rtx_PLUS (GET_MODE (b
), rb
, ob
);
6355 /* Here we are at the last level of A, go through the cases hoping to
6356 get rid of everything but a constant. */
6358 if (GET_CODE (a
) == PLUS
)
6362 ra
= XEXP (a
, 0), oa
= XEXP (a
, 1);
6363 if (rtx_equal_p (oa
, b
))
6365 else if (!rtx_equal_p (ra
, b
))
6368 if (GET_CODE (oa
) != CONST_INT
)
6371 return GEN_INT (-INTVAL (oa
) * INTVAL (mult
));
6373 else if (GET_CODE (a
) == CONST_INT
)
6375 return plus_constant (b
, -INTVAL (a
) * INTVAL (mult
));
6377 else if (CONSTANT_P (a
))
6379 return simplify_gen_binary (MINUS
, GET_MODE (b
) != VOIDmode
? GET_MODE (b
) : GET_MODE (a
), const0_rtx
, a
);
6381 else if (GET_CODE (b
) == PLUS
)
6383 if (rtx_equal_p (a
, XEXP (b
, 0)))
6385 else if (rtx_equal_p (a
, XEXP (b
, 1)))
6390 else if (rtx_equal_p (a
, b
))
6397 express_from (g1
, g2
)
6398 struct induction
*g1
, *g2
;
6402 /* The value that G1 will be multiplied by must be a constant integer. Also,
6403 the only chance we have of getting a valid address is if b*c/a (see above
6404 for notation) is also an integer. */
6405 if (GET_CODE (g1
->mult_val
) == CONST_INT
6406 && GET_CODE (g2
->mult_val
) == CONST_INT
)
6408 if (g1
->mult_val
== const0_rtx
6409 || INTVAL (g2
->mult_val
) % INTVAL (g1
->mult_val
) != 0)
6411 mult
= GEN_INT (INTVAL (g2
->mult_val
) / INTVAL (g1
->mult_val
));
6413 else if (rtx_equal_p (g1
->mult_val
, g2
->mult_val
))
6417 /* ??? Find out if the one is a multiple of the other? */
6421 add
= express_from_1 (g1
->add_val
, g2
->add_val
, mult
);
6422 if (add
== NULL_RTX
)
6424 /* Failed. If we've got a multiplication factor between G1 and G2,
6425 scale G1's addend and try again. */
6426 if (INTVAL (mult
) > 1)
6428 rtx g1_add_val
= g1
->add_val
;
6429 if (GET_CODE (g1_add_val
) == MULT
6430 && GET_CODE (XEXP (g1_add_val
, 1)) == CONST_INT
)
6433 m
= INTVAL (mult
) * INTVAL (XEXP (g1_add_val
, 1));
6434 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
),
6435 XEXP (g1_add_val
, 0), GEN_INT (m
));
6439 g1_add_val
= gen_rtx_MULT (GET_MODE (g1_add_val
), g1_add_val
,
6443 add
= express_from_1 (g1_add_val
, g2
->add_val
, const1_rtx
);
6446 if (add
== NULL_RTX
)
6449 /* Form simplified final result. */
6450 if (mult
== const0_rtx
)
6452 else if (mult
== const1_rtx
)
6453 mult
= g1
->dest_reg
;
6455 mult
= gen_rtx_MULT (g2
->mode
, g1
->dest_reg
, mult
);
6457 if (add
== const0_rtx
)
6461 if (GET_CODE (add
) == PLUS
6462 && CONSTANT_P (XEXP (add
, 1)))
6464 rtx tem
= XEXP (add
, 1);
6465 mult
= gen_rtx_PLUS (g2
->mode
, mult
, XEXP (add
, 0));
6469 return gen_rtx_PLUS (g2
->mode
, mult
, add
);
6473 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6474 represented by G1. This indicates that G2 should be combined with G1 and
6475 that G2 can use (either directly or via an address expression) a register
6476 used to represent G1. */
6479 combine_givs_p (g1
, g2
)
6480 struct induction
*g1
, *g2
;
6484 /* With the introduction of ext dependant givs, we must care for modes.
6485 G2 must not use a wider mode than G1. */
6486 if (GET_MODE_SIZE (g1
->mode
) < GET_MODE_SIZE (g2
->mode
))
6489 ret
= comb
= express_from (g1
, g2
);
6490 if (comb
== NULL_RTX
)
6492 if (g1
->mode
!= g2
->mode
)
6493 ret
= gen_lowpart (g2
->mode
, comb
);
6495 /* If these givs are identical, they can be combined. We use the results
6496 of express_from because the addends are not in a canonical form, so
6497 rtx_equal_p is a weaker test. */
6498 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6499 combination to be the other way round. */
6500 if (comb
== g1
->dest_reg
6501 && (g1
->giv_type
== DEST_REG
|| g2
->giv_type
== DEST_ADDR
))
6506 /* If G2 can be expressed as a function of G1 and that function is valid
6507 as an address and no more expensive than using a register for G2,
6508 the expression of G2 in terms of G1 can be used. */
6510 && g2
->giv_type
== DEST_ADDR
6511 && memory_address_p (g2
->mem_mode
, ret
)
6512 /* ??? Looses, especially with -fforce-addr, where *g2->location
6513 will always be a register, and so anything more complicated
6517 && ADDRESS_COST (tem
) <= ADDRESS_COST (*g2
->location
)
6519 && rtx_cost (tem
, MEM
) <= rtx_cost (*g2
->location
, MEM
)
6530 /* Check each extension dependant giv in this class to see if its
6531 root biv is safe from wrapping in the interior mode, which would
6532 make the giv illegal. */
6535 check_ext_dependant_givs (bl
, loop_info
)
6536 struct iv_class
*bl
;
6537 struct loop_info
*loop_info
;
6539 int ze_ok
= 0, se_ok
= 0, info_ok
= 0;
6540 enum machine_mode biv_mode
= GET_MODE (bl
->biv
->src_reg
);
6541 HOST_WIDE_INT start_val
;
6542 unsigned HOST_WIDE_INT u_end_val
, u_start_val
;
6544 struct induction
*v
;
6546 /* Make sure the iteration data is available. We must have
6547 constants in order to be certain of no overflow. */
6548 /* ??? An unknown iteration count with an increment of +-1
6549 combined with friendly exit tests of against an invariant
6550 value is also ameanable to optimization. Not implemented. */
6551 if (loop_info
->n_iterations
> 0
6552 && bl
->initial_value
6553 && GET_CODE (bl
->initial_value
) == CONST_INT
6554 && (incr
= biv_total_increment (bl
))
6555 && GET_CODE (incr
) == CONST_INT
6556 /* Make sure the host can represent the arithmetic. */
6557 && HOST_BITS_PER_WIDE_INT
>= GET_MODE_BITSIZE (biv_mode
))
6559 unsigned HOST_WIDE_INT abs_incr
, total_incr
;
6560 HOST_WIDE_INT s_end_val
;
6564 start_val
= INTVAL (bl
->initial_value
);
6565 u_start_val
= start_val
;
6567 neg_incr
= 0, abs_incr
= INTVAL (incr
);
6568 if (INTVAL (incr
) < 0)
6569 neg_incr
= 1, abs_incr
= -abs_incr
;
6570 total_incr
= abs_incr
* loop_info
->n_iterations
;
6572 /* Check for host arithmatic overflow. */
6573 if (total_incr
/ loop_info
->n_iterations
== abs_incr
)
6575 unsigned HOST_WIDE_INT u_max
;
6576 HOST_WIDE_INT s_max
;
6578 u_end_val
= start_val
+ (neg_incr
? -total_incr
: total_incr
);
6579 s_end_val
= u_end_val
;
6580 u_max
= GET_MODE_MASK (biv_mode
);
6583 /* Check zero extension of biv ok. */
6585 /* Check for host arithmatic overflow. */
6587 ? u_end_val
< u_start_val
6588 : u_end_val
> u_start_val
)
6589 /* Check for target arithmetic overflow. */
6591 ? 1 /* taken care of with host overflow */
6592 : u_end_val
<= u_max
))
6597 /* Check sign extension of biv ok. */
6598 /* ??? While it is true that overflow with signed and pointer
6599 arithmetic is undefined, I fear too many programmers don't
6600 keep this fact in mind -- myself included on occasion.
6601 So leave alone with the signed overflow optimizations. */
6602 if (start_val
>= -s_max
- 1
6603 /* Check for host arithmatic overflow. */
6605 ? s_end_val
< start_val
6606 : s_end_val
> start_val
)
6607 /* Check for target arithmetic overflow. */
6609 ? s_end_val
>= -s_max
- 1
6610 : s_end_val
<= s_max
))
6617 /* Invalidate givs that fail the tests. */
6618 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
6619 if (v
->ext_dependant
)
6621 enum rtx_code code
= GET_CODE (v
->ext_dependant
);
6634 /* We don't know whether this value is being used as either
6635 signed or unsigned, so to safely truncate we must satisfy
6636 both. The initial check here verifies the BIV itself;
6637 once that is successful we may check its range wrt the
6641 enum machine_mode outer_mode
= GET_MODE (v
->ext_dependant
);
6642 unsigned HOST_WIDE_INT max
= GET_MODE_MASK (outer_mode
) >> 1;
6644 /* We know from the above that both endpoints are nonnegative,
6645 and that there is no wrapping. Verify that both endpoints
6646 are within the (signed) range of the outer mode. */
6647 if (u_start_val
<= max
&& u_end_val
<= max
)
6658 if (loop_dump_stream
)
6660 fprintf (loop_dump_stream
,
6661 "Verified ext dependant giv at %d of reg %d\n",
6662 INSN_UID (v
->insn
), bl
->regno
);
6667 if (loop_dump_stream
)
6672 why
= "biv iteration values overflowed";
6676 incr
= biv_total_increment (bl
);
6677 if (incr
== const1_rtx
)
6678 why
= "biv iteration info incomplete; incr by 1";
6680 why
= "biv iteration info incomplete";
6683 fprintf (loop_dump_stream
,
6684 "Failed ext dependant giv at %d, %s\n",
6685 INSN_UID (v
->insn
), why
);
6692 /* Generate a version of VALUE in a mode appropriate for initializing V. */
6695 extend_value_for_giv (v
, value
)
6696 struct induction
*v
;
6699 rtx ext_dep
= v
->ext_dependant
;
6704 /* Recall that check_ext_dependant_givs verified that the known bounds
6705 of a biv did not overflow or wrap with respect to the extension for
6706 the giv. Therefore, constants need no additional adjustment. */
6707 if (CONSTANT_P (value
) && GET_MODE (value
) == VOIDmode
)
6710 /* Otherwise, we must adjust the value to compensate for the
6711 differing modes of the biv and the giv. */
6712 return gen_rtx_fmt_e (GET_CODE (ext_dep
), GET_MODE (ext_dep
), value
);
6715 struct combine_givs_stats
6722 cmp_combine_givs_stats (xp
, yp
)
6726 const struct combine_givs_stats
* const x
=
6727 (const struct combine_givs_stats
*) xp
;
6728 const struct combine_givs_stats
* const y
=
6729 (const struct combine_givs_stats
*) yp
;
6731 d
= y
->total_benefit
- x
->total_benefit
;
6732 /* Stabilize the sort. */
6734 d
= x
->giv_number
- y
->giv_number
;
6738 /* Check all pairs of givs for iv_class BL and see if any can be combined with
6739 any other. If so, point SAME to the giv combined with and set NEW_REG to
6740 be an expression (in terms of the other giv's DEST_REG) equivalent to the
6741 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
6744 combine_givs (regs
, bl
)
6745 struct loop_regs
*regs
;
6746 struct iv_class
*bl
;
6748 /* Additional benefit to add for being combined multiple times. */
6749 const int extra_benefit
= 3;
6751 struct induction
*g1
, *g2
, **giv_array
;
6752 int i
, j
, k
, giv_count
;
6753 struct combine_givs_stats
*stats
;
6756 /* Count givs, because bl->giv_count is incorrect here. */
6758 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
6763 = (struct induction
**) alloca (giv_count
* sizeof (struct induction
*));
6765 for (g1
= bl
->giv
; g1
; g1
= g1
->next_iv
)
6767 giv_array
[i
++] = g1
;
6769 stats
= (struct combine_givs_stats
*) xcalloc (giv_count
, sizeof (*stats
));
6770 can_combine
= (rtx
*) xcalloc (giv_count
, giv_count
* sizeof (rtx
));
6772 for (i
= 0; i
< giv_count
; i
++)
6778 stats
[i
].giv_number
= i
;
6780 /* If a DEST_REG GIV is used only once, do not allow it to combine
6781 with anything, for in doing so we will gain nothing that cannot
6782 be had by simply letting the GIV with which we would have combined
6783 to be reduced on its own. The losage shows up in particular with
6784 DEST_ADDR targets on hosts with reg+reg addressing, though it can
6785 be seen elsewhere as well. */
6786 if (g1
->giv_type
== DEST_REG
6787 && (single_use
= VARRAY_RTX (regs
->single_usage
,
6788 REGNO (g1
->dest_reg
)))
6789 && single_use
!= const0_rtx
)
6792 this_benefit
= g1
->benefit
;
6793 /* Add an additional weight for zero addends. */
6794 if (g1
->no_const_addval
)
6797 for (j
= 0; j
< giv_count
; j
++)
6803 && (this_combine
= combine_givs_p (g1
, g2
)) != NULL_RTX
)
6805 can_combine
[i
* giv_count
+ j
] = this_combine
;
6806 this_benefit
+= g2
->benefit
+ extra_benefit
;
6809 stats
[i
].total_benefit
= this_benefit
;
6812 /* Iterate, combining until we can't. */
6814 qsort (stats
, giv_count
, sizeof (*stats
), cmp_combine_givs_stats
);
6816 if (loop_dump_stream
)
6818 fprintf (loop_dump_stream
, "Sorted combine statistics:\n");
6819 for (k
= 0; k
< giv_count
; k
++)
6821 g1
= giv_array
[stats
[k
].giv_number
];
6822 if (!g1
->combined_with
&& !g1
->same
)
6823 fprintf (loop_dump_stream
, " {%d, %d}",
6824 INSN_UID (giv_array
[stats
[k
].giv_number
]->insn
),
6825 stats
[k
].total_benefit
);
6827 putc ('\n', loop_dump_stream
);
6830 for (k
= 0; k
< giv_count
; k
++)
6832 int g1_add_benefit
= 0;
6834 i
= stats
[k
].giv_number
;
6837 /* If it has already been combined, skip. */
6838 if (g1
->combined_with
|| g1
->same
)
6841 for (j
= 0; j
< giv_count
; j
++)
6844 if (g1
!= g2
&& can_combine
[i
* giv_count
+ j
]
6845 /* If it has already been combined, skip. */
6846 && ! g2
->same
&& ! g2
->combined_with
)
6850 g2
->new_reg
= can_combine
[i
* giv_count
+ j
];
6852 g1
->combined_with
++;
6853 g1
->lifetime
+= g2
->lifetime
;
6855 g1_add_benefit
+= g2
->benefit
;
6857 /* ??? The new final_[bg]iv_value code does a much better job
6858 of finding replaceable giv's, and hence this code may no
6859 longer be necessary. */
6860 if (! g2
->replaceable
&& REG_USERVAR_P (g2
->dest_reg
))
6861 g1_add_benefit
-= copy_cost
;
6863 /* To help optimize the next set of combinations, remove
6864 this giv from the benefits of other potential mates. */
6865 for (l
= 0; l
< giv_count
; ++l
)
6867 int m
= stats
[l
].giv_number
;
6868 if (can_combine
[m
* giv_count
+ j
])
6869 stats
[l
].total_benefit
-= g2
->benefit
+ extra_benefit
;
6872 if (loop_dump_stream
)
6873 fprintf (loop_dump_stream
,
6874 "giv at %d combined with giv at %d; new benefit %d + %d, lifetime %d\n",
6875 INSN_UID (g2
->insn
), INSN_UID (g1
->insn
),
6876 g1
->benefit
, g1_add_benefit
, g1
->lifetime
);
6880 /* To help optimize the next set of combinations, remove
6881 this giv from the benefits of other potential mates. */
6882 if (g1
->combined_with
)
6884 for (j
= 0; j
< giv_count
; ++j
)
6886 int m
= stats
[j
].giv_number
;
6887 if (can_combine
[m
* giv_count
+ i
])
6888 stats
[j
].total_benefit
-= g1
->benefit
+ extra_benefit
;
6891 g1
->benefit
+= g1_add_benefit
;
6893 /* We've finished with this giv, and everything it touched.
6894 Restart the combination so that proper weights for the
6895 rest of the givs are properly taken into account. */
6896 /* ??? Ideally we would compact the arrays at this point, so
6897 as to not cover old ground. But sanely compacting
6898 can_combine is tricky. */
6908 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
6911 emit_iv_add_mult (b
, m
, a
, reg
, insert_before
)
6912 rtx b
; /* initial value of basic induction variable */
6913 rtx m
; /* multiplicative constant */
6914 rtx a
; /* additive constant */
6915 rtx reg
; /* destination register */
6921 /* Prevent unexpected sharing of these rtx. */
6925 /* Increase the lifetime of any invariants moved further in code. */
6926 update_reg_last_use (a
, insert_before
);
6927 update_reg_last_use (b
, insert_before
);
6928 update_reg_last_use (m
, insert_before
);
6931 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 1);
6933 emit_move_insn (reg
, result
);
6934 seq
= gen_sequence ();
6937 emit_insn_before (seq
, insert_before
);
6939 /* It is entirely possible that the expansion created lots of new
6940 registers. Iterate over the sequence we just created and
6943 if (GET_CODE (seq
) == SEQUENCE
)
6946 for (i
= 0; i
< XVECLEN (seq
, 0); ++i
)
6948 rtx set
= single_set (XVECEXP (seq
, 0, i
));
6949 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
6950 record_base_value (REGNO (SET_DEST (set
)), SET_SRC (set
), 0);
6953 else if (GET_CODE (seq
) == SET
6954 && GET_CODE (SET_DEST (seq
)) == REG
)
6955 record_base_value (REGNO (SET_DEST (seq
)), SET_SRC (seq
), 0);
6958 /* Similar to emit_iv_add_mult, but compute cost rather than emitting
6961 iv_add_mult_cost (b
, m
, a
, reg
)
6962 rtx b
; /* initial value of basic induction variable */
6963 rtx m
; /* multiplicative constant */
6964 rtx a
; /* additive constant */
6965 rtx reg
; /* destination register */
6971 result
= expand_mult_add (b
, reg
, m
, a
, GET_MODE (reg
), 0);
6973 emit_move_insn (reg
, result
);
6974 last
= get_last_insn ();
6977 rtx t
= single_set (last
);
6979 cost
+= rtx_cost (SET_SRC (t
), SET
);
6980 last
= PREV_INSN (last
);
6986 /* Test whether A * B can be computed without
6987 an actual multiply insn. Value is 1 if so. */
6990 product_cheap_p (a
, b
)
6998 /* If only one is constant, make it B. */
6999 if (GET_CODE (a
) == CONST_INT
)
7000 tmp
= a
, a
= b
, b
= tmp
;
7002 /* If first constant, both constant, so don't need multiply. */
7003 if (GET_CODE (a
) == CONST_INT
)
7006 /* If second not constant, neither is constant, so would need multiply. */
7007 if (GET_CODE (b
) != CONST_INT
)
7010 /* One operand is constant, so might not need multiply insn. Generate the
7011 code for the multiply and see if a call or multiply, or long sequence
7012 of insns is generated. */
7015 expand_mult (GET_MODE (a
), a
, b
, NULL_RTX
, 1);
7016 tmp
= gen_sequence ();
7019 if (GET_CODE (tmp
) == SEQUENCE
)
7021 if (XVEC (tmp
, 0) == 0)
7023 else if (XVECLEN (tmp
, 0) > 3)
7026 for (i
= 0; i
< XVECLEN (tmp
, 0); i
++)
7028 rtx insn
= XVECEXP (tmp
, 0, i
);
7030 if (GET_CODE (insn
) != INSN
7031 || (GET_CODE (PATTERN (insn
)) == SET
7032 && GET_CODE (SET_SRC (PATTERN (insn
))) == MULT
)
7033 || (GET_CODE (PATTERN (insn
)) == PARALLEL
7034 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
7035 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn
), 0, 0))) == MULT
))
7042 else if (GET_CODE (tmp
) == SET
7043 && GET_CODE (SET_SRC (tmp
)) == MULT
)
7045 else if (GET_CODE (tmp
) == PARALLEL
7046 && GET_CODE (XVECEXP (tmp
, 0, 0)) == SET
7047 && GET_CODE (SET_SRC (XVECEXP (tmp
, 0, 0))) == MULT
)
7053 /* Check to see if loop can be terminated by a "decrement and branch until
7054 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7055 Also try reversing an increment loop to a decrement loop
7056 to see if the optimization can be performed.
7057 Value is nonzero if optimization was performed. */
7059 /* This is useful even if the architecture doesn't have such an insn,
7060 because it might change a loops which increments from 0 to n to a loop
7061 which decrements from n to 0. A loop that decrements to zero is usually
7062 faster than one that increments from zero. */
7064 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7065 such as approx_final_value, biv_total_increment, loop_iterations, and
7066 final_[bg]iv_value. */
7069 check_dbra_loop (loop
, insn_count
)
7073 struct loop_info
*loop_info
= LOOP_INFO (loop
);
7074 struct loop_regs
*regs
= LOOP_REGS (loop
);
7075 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7076 struct iv_class
*bl
;
7083 rtx before_comparison
;
7087 int compare_and_branch
;
7088 rtx loop_start
= loop
->start
;
7089 rtx loop_end
= loop
->end
;
7091 /* If last insn is a conditional branch, and the insn before tests a
7092 register value, try to optimize it. Otherwise, we can't do anything. */
7094 jump
= PREV_INSN (loop_end
);
7095 comparison
= get_condition_for_loop (loop
, jump
);
7096 if (comparison
== 0)
7098 if (!onlyjump_p (jump
))
7101 /* Try to compute whether the compare/branch at the loop end is one or
7102 two instructions. */
7103 get_condition (jump
, &first_compare
);
7104 if (first_compare
== jump
)
7105 compare_and_branch
= 1;
7106 else if (first_compare
== prev_nonnote_insn (jump
))
7107 compare_and_branch
= 2;
7112 /* If more than one condition is present to control the loop, then
7113 do not proceed, as this function does not know how to rewrite
7114 loop tests with more than one condition.
7116 Look backwards from the first insn in the last comparison
7117 sequence and see if we've got another comparison sequence. */
7120 if ((jump1
= prev_nonnote_insn (first_compare
)) != loop
->cont
)
7121 if (GET_CODE (jump1
) == JUMP_INSN
)
7125 /* Check all of the bivs to see if the compare uses one of them.
7126 Skip biv's set more than once because we can't guarantee that
7127 it will be zero on the last iteration. Also skip if the biv is
7128 used between its update and the test insn. */
7130 for (bl
= ivs
->loop_iv_list
; bl
; bl
= bl
->next
)
7132 if (bl
->biv_count
== 1
7133 && ! bl
->biv
->maybe_multiple
7134 && bl
->biv
->dest_reg
== XEXP (comparison
, 0)
7135 && ! reg_used_between_p (regno_reg_rtx
[bl
->regno
], bl
->biv
->insn
,
7143 /* Look for the case where the basic induction variable is always
7144 nonnegative, and equals zero on the last iteration.
7145 In this case, add a reg_note REG_NONNEG, which allows the
7146 m68k DBRA instruction to be used. */
7148 if (((GET_CODE (comparison
) == GT
7149 && GET_CODE (XEXP (comparison
, 1)) == CONST_INT
7150 && INTVAL (XEXP (comparison
, 1)) == -1)
7151 || (GET_CODE (comparison
) == NE
&& XEXP (comparison
, 1) == const0_rtx
))
7152 && GET_CODE (bl
->biv
->add_val
) == CONST_INT
7153 && INTVAL (bl
->biv
->add_val
) < 0)
7155 /* Initial value must be greater than 0,
7156 init_val % -dec_value == 0 to ensure that it equals zero on
7157 the last iteration */
7159 if (GET_CODE (bl
->initial_value
) == CONST_INT
7160 && INTVAL (bl
->initial_value
) > 0
7161 && (INTVAL (bl
->initial_value
)
7162 % (-INTVAL (bl
->biv
->add_val
))) == 0)
7164 /* register always nonnegative, add REG_NOTE to branch */
7165 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
7167 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
7174 /* If the decrement is 1 and the value was tested as >= 0 before
7175 the loop, then we can safely optimize. */
7176 for (p
= loop_start
; p
; p
= PREV_INSN (p
))
7178 if (GET_CODE (p
) == CODE_LABEL
)
7180 if (GET_CODE (p
) != JUMP_INSN
)
7183 before_comparison
= get_condition_for_loop (loop
, p
);
7184 if (before_comparison
7185 && XEXP (before_comparison
, 0) == bl
->biv
->dest_reg
7186 && GET_CODE (before_comparison
) == LT
7187 && XEXP (before_comparison
, 1) == const0_rtx
7188 && ! reg_set_between_p (bl
->biv
->dest_reg
, p
, loop_start
)
7189 && INTVAL (bl
->biv
->add_val
) == -1)
7191 if (! find_reg_note (jump
, REG_NONNEG
, NULL_RTX
))
7193 = gen_rtx_EXPR_LIST (REG_NONNEG
, bl
->biv
->dest_reg
,
7201 else if (GET_CODE (bl
->biv
->add_val
) == CONST_INT
7202 && INTVAL (bl
->biv
->add_val
) > 0)
7204 /* Try to change inc to dec, so can apply above optimization. */
7206 all registers modified are induction variables or invariant,
7207 all memory references have non-overlapping addresses
7208 (obviously true if only one write)
7209 allow 2 insns for the compare/jump at the end of the loop. */
7210 /* Also, we must avoid any instructions which use both the reversed
7211 biv and another biv. Such instructions will fail if the loop is
7212 reversed. We meet this condition by requiring that either
7213 no_use_except_counting is true, or else that there is only
7215 int num_nonfixed_reads
= 0;
7216 /* 1 if the iteration var is used only to count iterations. */
7217 int no_use_except_counting
= 0;
7218 /* 1 if the loop has no memory store, or it has a single memory store
7219 which is reversible. */
7220 int reversible_mem_store
= 1;
7222 if (bl
->giv_count
== 0 && ! loop
->exit_count
)
7224 rtx bivreg
= regno_reg_rtx
[bl
->regno
];
7226 /* If there are no givs for this biv, and the only exit is the
7227 fall through at the end of the loop, then
7228 see if perhaps there are no uses except to count. */
7229 no_use_except_counting
= 1;
7230 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
7233 rtx set
= single_set (p
);
7235 if (set
&& GET_CODE (SET_DEST (set
)) == REG
7236 && REGNO (SET_DEST (set
)) == bl
->regno
)
7237 /* An insn that sets the biv is okay. */
7239 else if ((p
== prev_nonnote_insn (prev_nonnote_insn (loop_end
))
7240 || p
== prev_nonnote_insn (loop_end
))
7241 && reg_mentioned_p (bivreg
, PATTERN (p
)))
7243 /* If either of these insns uses the biv and sets a pseudo
7244 that has more than one usage, then the biv has uses
7245 other than counting since it's used to derive a value
7246 that is used more than one time. */
7247 note_stores (PATTERN (p
), note_set_pseudo_multiple_uses
,
7249 if (regs
->multiple_uses
)
7251 no_use_except_counting
= 0;
7255 else if (reg_mentioned_p (bivreg
, PATTERN (p
)))
7257 no_use_except_counting
= 0;
7263 if (no_use_except_counting
)
7264 /* No need to worry about MEMs. */
7266 else if (loop_info
->num_mem_sets
<= 1)
7268 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
7270 num_nonfixed_reads
+= count_nonfixed_reads (loop
, PATTERN (p
));
7272 /* If the loop has a single store, and the destination address is
7273 invariant, then we can't reverse the loop, because this address
7274 might then have the wrong value at loop exit.
7275 This would work if the source was invariant also, however, in that
7276 case, the insn should have been moved out of the loop. */
7278 if (loop_info
->num_mem_sets
== 1)
7280 struct induction
*v
;
7282 reversible_mem_store
7283 = (! loop_info
->unknown_address_altered
7284 && ! loop_info
->unknown_constant_address_altered
7285 && ! loop_invariant_p (loop
,
7286 XEXP (XEXP (loop_info
->store_mems
, 0),
7289 /* If the store depends on a register that is set after the
7290 store, it depends on the initial value, and is thus not
7292 for (v
= bl
->giv
; reversible_mem_store
&& v
; v
= v
->next_iv
)
7294 if (v
->giv_type
== DEST_REG
7295 && reg_mentioned_p (v
->dest_reg
,
7296 PATTERN (loop_info
->first_loop_store_insn
))
7297 && loop_insn_first_p (loop_info
->first_loop_store_insn
,
7299 reversible_mem_store
= 0;
7306 /* This code only acts for innermost loops. Also it simplifies
7307 the memory address check by only reversing loops with
7308 zero or one memory access.
7309 Two memory accesses could involve parts of the same array,
7310 and that can't be reversed.
7311 If the biv is used only for counting, than we don't need to worry
7312 about all these things. */
7314 if ((num_nonfixed_reads
<= 1
7315 && ! loop_info
->has_call
7316 && ! loop_info
->has_volatile
7317 && reversible_mem_store
7318 && (bl
->giv_count
+ bl
->biv_count
+ loop_info
->num_mem_sets
7319 + the_movables
.num
+ compare_and_branch
== insn_count
)
7320 && (bl
== ivs
->loop_iv_list
&& bl
->next
== 0))
7321 || no_use_except_counting
)
7325 /* Loop can be reversed. */
7326 if (loop_dump_stream
)
7327 fprintf (loop_dump_stream
, "Can reverse loop\n");
7329 /* Now check other conditions:
7331 The increment must be a constant, as must the initial value,
7332 and the comparison code must be LT.
7334 This test can probably be improved since +/- 1 in the constant
7335 can be obtained by changing LT to LE and vice versa; this is
7339 /* for constants, LE gets turned into LT */
7340 && (GET_CODE (comparison
) == LT
7341 || (GET_CODE (comparison
) == LE
7342 && no_use_except_counting
)))
7344 HOST_WIDE_INT add_val
, add_adjust
, comparison_val
= 0;
7345 rtx initial_value
, comparison_value
;
7347 enum rtx_code cmp_code
;
7348 int comparison_const_width
;
7349 unsigned HOST_WIDE_INT comparison_sign_mask
;
7351 add_val
= INTVAL (bl
->biv
->add_val
);
7352 comparison_value
= XEXP (comparison
, 1);
7353 if (GET_MODE (comparison_value
) == VOIDmode
)
7354 comparison_const_width
7355 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison
, 0)));
7357 comparison_const_width
7358 = GET_MODE_BITSIZE (GET_MODE (comparison_value
));
7359 if (comparison_const_width
> HOST_BITS_PER_WIDE_INT
)
7360 comparison_const_width
= HOST_BITS_PER_WIDE_INT
;
7361 comparison_sign_mask
7362 = (unsigned HOST_WIDE_INT
) 1 << (comparison_const_width
- 1);
7364 /* If the comparison value is not a loop invariant, then we
7365 can not reverse this loop.
7367 ??? If the insns which initialize the comparison value as
7368 a whole compute an invariant result, then we could move
7369 them out of the loop and proceed with loop reversal. */
7370 if (! loop_invariant_p (loop
, comparison_value
))
7373 if (GET_CODE (comparison_value
) == CONST_INT
)
7374 comparison_val
= INTVAL (comparison_value
);
7375 initial_value
= bl
->initial_value
;
7377 /* Normalize the initial value if it is an integer and
7378 has no other use except as a counter. This will allow
7379 a few more loops to be reversed. */
7380 if (no_use_except_counting
7381 && GET_CODE (comparison_value
) == CONST_INT
7382 && GET_CODE (initial_value
) == CONST_INT
)
7384 comparison_val
= comparison_val
- INTVAL (bl
->initial_value
);
7385 /* The code below requires comparison_val to be a multiple
7386 of add_val in order to do the loop reversal, so
7387 round up comparison_val to a multiple of add_val.
7388 Since comparison_value is constant, we know that the
7389 current comparison code is LT. */
7390 comparison_val
= comparison_val
+ add_val
- 1;
7392 -= (unsigned HOST_WIDE_INT
) comparison_val
% add_val
;
7393 /* We postpone overflow checks for COMPARISON_VAL here;
7394 even if there is an overflow, we might still be able to
7395 reverse the loop, if converting the loop exit test to
7397 initial_value
= const0_rtx
;
7400 /* First check if we can do a vanilla loop reversal. */
7401 if (initial_value
== const0_rtx
7402 /* If we have a decrement_and_branch_on_count,
7403 prefer the NE test, since this will allow that
7404 instruction to be generated. Note that we must
7405 use a vanilla loop reversal if the biv is used to
7406 calculate a giv or has a non-counting use. */
7407 #if ! defined (HAVE_decrement_and_branch_until_zero) \
7408 && defined (HAVE_decrement_and_branch_on_count)
7409 && (! (add_val
== 1 && loop
->vtop
7410 && (bl
->biv_count
== 0
7411 || no_use_except_counting
)))
7413 && GET_CODE (comparison_value
) == CONST_INT
7414 /* Now do postponed overflow checks on COMPARISON_VAL. */
7415 && ! (((comparison_val
- add_val
) ^ INTVAL (comparison_value
))
7416 & comparison_sign_mask
))
7418 /* Register will always be nonnegative, with value
7419 0 on last iteration */
7420 add_adjust
= add_val
;
7424 else if (add_val
== 1 && loop
->vtop
7425 && (bl
->biv_count
== 0
7426 || no_use_except_counting
))
7434 if (GET_CODE (comparison
) == LE
)
7435 add_adjust
-= add_val
;
7437 /* If the initial value is not zero, or if the comparison
7438 value is not an exact multiple of the increment, then we
7439 can not reverse this loop. */
7440 if (initial_value
== const0_rtx
7441 && GET_CODE (comparison_value
) == CONST_INT
)
7443 if (((unsigned HOST_WIDE_INT
) comparison_val
% add_val
) != 0)
7448 if (! no_use_except_counting
|| add_val
!= 1)
7452 final_value
= comparison_value
;
7454 /* Reset these in case we normalized the initial value
7455 and comparison value above. */
7456 if (GET_CODE (comparison_value
) == CONST_INT
7457 && GET_CODE (initial_value
) == CONST_INT
)
7459 comparison_value
= GEN_INT (comparison_val
);
7461 = GEN_INT (comparison_val
+ INTVAL (bl
->initial_value
));
7463 bl
->initial_value
= initial_value
;
7465 /* Save some info needed to produce the new insns. */
7466 reg
= bl
->biv
->dest_reg
;
7467 jump_label
= XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end
))), 1);
7468 if (jump_label
== pc_rtx
)
7469 jump_label
= XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end
))), 2);
7470 new_add_val
= GEN_INT (-INTVAL (bl
->biv
->add_val
));
7472 /* Set start_value; if this is not a CONST_INT, we need
7474 Initialize biv to start_value before loop start.
7475 The old initializing insn will be deleted as a
7476 dead store by flow.c. */
7477 if (initial_value
== const0_rtx
7478 && GET_CODE (comparison_value
) == CONST_INT
)
7480 start_value
= GEN_INT (comparison_val
- add_adjust
);
7481 emit_insn_before (gen_move_insn (reg
, start_value
),
7484 else if (GET_CODE (initial_value
) == CONST_INT
)
7486 rtx offset
= GEN_INT (-INTVAL (initial_value
) - add_adjust
);
7487 enum machine_mode mode
= GET_MODE (reg
);
7488 enum insn_code icode
7489 = add_optab
->handlers
[(int) mode
].insn_code
;
7491 if (! (*insn_data
[icode
].operand
[0].predicate
) (reg
, mode
)
7492 || ! ((*insn_data
[icode
].operand
[1].predicate
)
7493 (comparison_value
, mode
))
7494 || ! ((*insn_data
[icode
].operand
[2].predicate
)
7498 = gen_rtx_PLUS (mode
, comparison_value
, offset
);
7499 emit_insn_before ((GEN_FCN (icode
)
7500 (reg
, comparison_value
, offset
)),
7502 if (GET_CODE (comparison
) == LE
)
7503 final_value
= gen_rtx_PLUS (mode
, comparison_value
,
7506 else if (! add_adjust
)
7508 enum machine_mode mode
= GET_MODE (reg
);
7509 enum insn_code icode
7510 = sub_optab
->handlers
[(int) mode
].insn_code
;
7511 if (! (*insn_data
[icode
].operand
[0].predicate
) (reg
, mode
)
7512 || ! ((*insn_data
[icode
].operand
[1].predicate
)
7513 (comparison_value
, mode
))
7514 || ! ((*insn_data
[icode
].operand
[2].predicate
)
7515 (initial_value
, mode
)))
7518 = gen_rtx_MINUS (mode
, comparison_value
, initial_value
);
7519 emit_insn_before ((GEN_FCN (icode
)
7520 (reg
, comparison_value
, initial_value
)),
7524 /* We could handle the other cases too, but it'll be
7525 better to have a testcase first. */
7528 /* We may not have a single insn which can increment a reg, so
7529 create a sequence to hold all the insns from expand_inc. */
7531 expand_inc (reg
, new_add_val
);
7532 tem
= gen_sequence ();
7535 p
= emit_insn_before (tem
, bl
->biv
->insn
);
7536 delete_insn (bl
->biv
->insn
);
7538 /* Update biv info to reflect its new status. */
7540 bl
->initial_value
= start_value
;
7541 bl
->biv
->add_val
= new_add_val
;
7543 /* Update loop info. */
7544 loop_info
->initial_value
= reg
;
7545 loop_info
->initial_equiv_value
= reg
;
7546 loop_info
->final_value
= const0_rtx
;
7547 loop_info
->final_equiv_value
= const0_rtx
;
7548 loop_info
->comparison_value
= const0_rtx
;
7549 loop_info
->comparison_code
= cmp_code
;
7550 loop_info
->increment
= new_add_val
;
7552 /* Inc LABEL_NUSES so that delete_insn will
7553 not delete the label. */
7554 LABEL_NUSES (XEXP (jump_label
, 0))++;
7556 /* Emit an insn after the end of the loop to set the biv's
7557 proper exit value if it is used anywhere outside the loop. */
7558 if ((REGNO_LAST_UID (bl
->regno
) != INSN_UID (first_compare
))
7560 || REGNO_FIRST_UID (bl
->regno
) != INSN_UID (bl
->init_insn
))
7561 emit_insn_after (gen_move_insn (reg
, final_value
),
7564 /* Delete compare/branch at end of loop. */
7565 delete_insn (PREV_INSN (loop_end
));
7566 if (compare_and_branch
== 2)
7567 delete_insn (first_compare
);
7569 /* Add new compare/branch insn at end of loop. */
7571 emit_cmp_and_jump_insns (reg
, const0_rtx
, cmp_code
, NULL_RTX
,
7572 GET_MODE (reg
), 0, 0,
7573 XEXP (jump_label
, 0));
7574 tem
= gen_sequence ();
7576 emit_jump_insn_before (tem
, loop_end
);
7578 for (tem
= PREV_INSN (loop_end
);
7579 tem
&& GET_CODE (tem
) != JUMP_INSN
;
7580 tem
= PREV_INSN (tem
))
7584 JUMP_LABEL (tem
) = XEXP (jump_label
, 0);
7590 /* Increment of LABEL_NUSES done above. */
7591 /* Register is now always nonnegative,
7592 so add REG_NONNEG note to the branch. */
7593 REG_NOTES (tem
) = gen_rtx_EXPR_LIST (REG_NONNEG
, reg
,
7599 /* No insn may reference both the reversed and another biv or it
7600 will fail (see comment near the top of the loop reversal
7602 Earlier on, we have verified that the biv has no use except
7603 counting, or it is the only biv in this function.
7604 However, the code that computes no_use_except_counting does
7605 not verify reg notes. It's possible to have an insn that
7606 references another biv, and has a REG_EQUAL note with an
7607 expression based on the reversed biv. To avoid this case,
7608 remove all REG_EQUAL notes based on the reversed biv
7610 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
7614 rtx set
= single_set (p
);
7615 /* If this is a set of a GIV based on the reversed biv, any
7616 REG_EQUAL notes should still be correct. */
7618 || GET_CODE (SET_DEST (set
)) != REG
7619 || (size_t) REGNO (SET_DEST (set
)) >= ivs
->reg_iv_type
->num_elements
7620 || REG_IV_TYPE (ivs
, REGNO (SET_DEST (set
))) != GENERAL_INDUCT
7621 || REG_IV_INFO (ivs
, REGNO (SET_DEST (set
)))->src_reg
!= bl
->biv
->src_reg
)
7622 for (pnote
= ®_NOTES (p
); *pnote
;)
7624 if (REG_NOTE_KIND (*pnote
) == REG_EQUAL
7625 && reg_mentioned_p (regno_reg_rtx
[bl
->regno
],
7627 *pnote
= XEXP (*pnote
, 1);
7629 pnote
= &XEXP (*pnote
, 1);
7633 /* Mark that this biv has been reversed. Each giv which depends
7634 on this biv, and which is also live past the end of the loop
7635 will have to be fixed up. */
7639 if (loop_dump_stream
)
7641 fprintf (loop_dump_stream
, "Reversed loop");
7643 fprintf (loop_dump_stream
, " and added reg_nonneg\n");
7645 fprintf (loop_dump_stream
, "\n");
7656 /* Verify whether the biv BL appears to be eliminable,
7657 based on the insns in the loop that refer to it.
7659 If ELIMINATE_P is non-zero, actually do the elimination.
7661 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
7662 determine whether invariant insns should be placed inside or at the
7663 start of the loop. */
7666 maybe_eliminate_biv (loop
, bl
, eliminate_p
, threshold
, insn_count
)
7667 const struct loop
*loop
;
7668 struct iv_class
*bl
;
7670 int threshold
, insn_count
;
7672 struct loop_ivs
*ivs
= LOOP_IVS (loop
);
7673 rtx reg
= bl
->biv
->dest_reg
;
7674 rtx loop_start
= loop
->start
;
7675 rtx loop_end
= loop
->end
;
7678 /* Scan all insns in the loop, stopping if we find one that uses the
7679 biv in a way that we cannot eliminate. */
7681 for (p
= loop_start
; p
!= loop_end
; p
= NEXT_INSN (p
))
7683 enum rtx_code code
= GET_CODE (p
);
7684 rtx where
= threshold
>= insn_count
? loop_start
: p
;
7686 /* If this is a libcall that sets a giv, skip ahead to its end. */
7687 if (GET_RTX_CLASS (code
) == 'i')
7689 rtx note
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
);
7693 rtx last
= XEXP (note
, 0);
7694 rtx set
= single_set (last
);
7696 if (set
&& GET_CODE (SET_DEST (set
)) == REG
)
7698 unsigned int regno
= REGNO (SET_DEST (set
));
7700 if (regno
< max_reg_before_loop
7701 && REG_IV_TYPE (ivs
, regno
) == GENERAL_INDUCT
7702 && REG_IV_INFO (ivs
, regno
)->src_reg
== bl
->biv
->src_reg
)
7707 if ((code
== INSN
|| code
== JUMP_INSN
|| code
== CALL_INSN
)
7708 && reg_mentioned_p (reg
, PATTERN (p
))
7709 && ! maybe_eliminate_biv_1 (loop
, PATTERN (p
), p
, bl
,
7710 eliminate_p
, where
))
7712 if (loop_dump_stream
)
7713 fprintf (loop_dump_stream
,
7714 "Cannot eliminate biv %d: biv used in insn %d.\n",
7715 bl
->regno
, INSN_UID (p
));
7722 if (loop_dump_stream
)
7723 fprintf (loop_dump_stream
, "biv %d %s eliminated.\n",
7724 bl
->regno
, eliminate_p
? "was" : "can be");
7731 /* INSN and REFERENCE are instructions in the same insn chain.
7732 Return non-zero if INSN is first. */
7735 loop_insn_first_p (insn
, reference
)
7736 rtx insn
, reference
;
7740 for (p
= insn
, q
= reference
;;)
7742 /* Start with test for not first so that INSN == REFERENCE yields not
7744 if (q
== insn
|| ! p
)
7746 if (p
== reference
|| ! q
)
7749 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
7750 previous insn, hence the <= comparison below does not work if
7752 if (INSN_UID (p
) < max_uid_for_loop
7753 && INSN_UID (q
) < max_uid_for_loop
7754 && GET_CODE (p
) != NOTE
)
7755 return INSN_LUID (p
) <= INSN_LUID (q
);
7757 if (INSN_UID (p
) >= max_uid_for_loop
7758 || GET_CODE (p
) == NOTE
)
7760 if (INSN_UID (q
) >= max_uid_for_loop
)
7765 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
7766 the offset that we have to take into account due to auto-increment /
7767 div derivation is zero. */
7769 biv_elimination_giv_has_0_offset (biv
, giv
, insn
)
7770 struct induction
*biv
, *giv
;
7773 /* If the giv V had the auto-inc address optimization applied
7774 to it, and INSN occurs between the giv insn and the biv
7775 insn, then we'd have to adjust the value used here.
7776 This is rare, so we don't bother to make this possible. */
7777 if (giv
->auto_inc_opt
7778 && ((loop_insn_first_p (giv
->insn
, insn
)
7779 && loop_insn_first_p (insn
, biv
->insn
))
7780 || (loop_insn_first_p (biv
->insn
, insn
)
7781 && loop_insn_first_p (insn
, giv
->insn
))))
7787 /* If BL appears in X (part of the pattern of INSN), see if we can
7788 eliminate its use. If so, return 1. If not, return 0.
7790 If BIV does not appear in X, return 1.
7792 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
7793 where extra insns should be added. Depending on how many items have been
7794 moved out of the loop, it will either be before INSN or at the start of
7798 maybe_eliminate_biv_1 (loop
, x
, insn
, bl
, eliminate_p
, where
)
7799 const struct loop
*loop
;
7801 struct iv_class
*bl
;
7805 enum rtx_code code
= GET_CODE (x
);
7806 rtx reg
= bl
->biv
->dest_reg
;
7807 enum machine_mode mode
= GET_MODE (reg
);
7808 struct induction
*v
;
7820 /* If we haven't already been able to do something with this BIV,
7821 we can't eliminate it. */
7827 /* If this sets the BIV, it is not a problem. */
7828 if (SET_DEST (x
) == reg
)
7831 /* If this is an insn that defines a giv, it is also ok because
7832 it will go away when the giv is reduced. */
7833 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7834 if (v
->giv_type
== DEST_REG
&& SET_DEST (x
) == v
->dest_reg
)
7838 if (SET_DEST (x
) == cc0_rtx
&& SET_SRC (x
) == reg
)
7840 /* Can replace with any giv that was reduced and
7841 that has (MULT_VAL != 0) and (ADD_VAL == 0).
7842 Require a constant for MULT_VAL, so we know it's nonzero.
7843 ??? We disable this optimization to avoid potential
7846 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7847 if (GET_CODE (v
->mult_val
) == CONST_INT
&& v
->mult_val
!= const0_rtx
7848 && v
->add_val
== const0_rtx
7849 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
7853 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
7859 /* If the giv has the opposite direction of change,
7860 then reverse the comparison. */
7861 if (INTVAL (v
->mult_val
) < 0)
7862 new = gen_rtx_COMPARE (GET_MODE (v
->new_reg
),
7863 const0_rtx
, v
->new_reg
);
7867 /* We can probably test that giv's reduced reg. */
7868 if (validate_change (insn
, &SET_SRC (x
), new, 0))
7872 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
7873 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
7874 Require a constant for MULT_VAL, so we know it's nonzero.
7875 ??? Do this only if ADD_VAL is a pointer to avoid a potential
7876 overflow problem. */
7878 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7879 if (GET_CODE (v
->mult_val
) == CONST_INT
7880 && v
->mult_val
!= const0_rtx
7881 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
7883 && (GET_CODE (v
->add_val
) == SYMBOL_REF
7884 || GET_CODE (v
->add_val
) == LABEL_REF
7885 || GET_CODE (v
->add_val
) == CONST
7886 || (GET_CODE (v
->add_val
) == REG
7887 && REG_POINTER (v
->add_val
))))
7889 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
7895 /* If the giv has the opposite direction of change,
7896 then reverse the comparison. */
7897 if (INTVAL (v
->mult_val
) < 0)
7898 new = gen_rtx_COMPARE (VOIDmode
, copy_rtx (v
->add_val
),
7901 new = gen_rtx_COMPARE (VOIDmode
, v
->new_reg
,
7902 copy_rtx (v
->add_val
));
7904 /* Replace biv with the giv's reduced register. */
7905 update_reg_last_use (v
->add_val
, insn
);
7906 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
7909 /* Insn doesn't support that constant or invariant. Copy it
7910 into a register (it will be a loop invariant.) */
7911 tem
= gen_reg_rtx (GET_MODE (v
->new_reg
));
7913 emit_insn_before (gen_move_insn (tem
, copy_rtx (v
->add_val
)),
7916 /* Substitute the new register for its invariant value in
7917 the compare expression. */
7918 XEXP (new, (INTVAL (v
->mult_val
) < 0) ? 0 : 1) = tem
;
7919 if (validate_change (insn
, &SET_SRC (PATTERN (insn
)), new, 0))
7928 case GT
: case GE
: case GTU
: case GEU
:
7929 case LT
: case LE
: case LTU
: case LEU
:
7930 /* See if either argument is the biv. */
7931 if (XEXP (x
, 0) == reg
)
7932 arg
= XEXP (x
, 1), arg_operand
= 1;
7933 else if (XEXP (x
, 1) == reg
)
7934 arg
= XEXP (x
, 0), arg_operand
= 0;
7938 if (CONSTANT_P (arg
))
7940 /* First try to replace with any giv that has constant positive
7941 mult_val and constant add_val. We might be able to support
7942 negative mult_val, but it seems complex to do it in general. */
7944 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7945 if (GET_CODE (v
->mult_val
) == CONST_INT
7946 && INTVAL (v
->mult_val
) > 0
7947 && (GET_CODE (v
->add_val
) == SYMBOL_REF
7948 || GET_CODE (v
->add_val
) == LABEL_REF
7949 || GET_CODE (v
->add_val
) == CONST
7950 || (GET_CODE (v
->add_val
) == REG
7951 && REG_POINTER (v
->add_val
)))
7952 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
7955 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
7961 /* Replace biv with the giv's reduced reg. */
7962 validate_change (insn
, &XEXP (x
, 1 - arg_operand
), v
->new_reg
, 1);
7964 /* If all constants are actually constant integers and
7965 the derived constant can be directly placed in the COMPARE,
7967 if (GET_CODE (arg
) == CONST_INT
7968 && GET_CODE (v
->mult_val
) == CONST_INT
7969 && GET_CODE (v
->add_val
) == CONST_INT
)
7971 validate_change (insn
, &XEXP (x
, arg_operand
),
7972 GEN_INT (INTVAL (arg
)
7973 * INTVAL (v
->mult_val
)
7974 + INTVAL (v
->add_val
)), 1);
7978 /* Otherwise, load it into a register. */
7979 tem
= gen_reg_rtx (mode
);
7980 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
, tem
, where
);
7981 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
7983 if (apply_change_group ())
7987 /* Look for giv with positive constant mult_val and nonconst add_val.
7988 Insert insns to calculate new compare value.
7989 ??? Turn this off due to possible overflow. */
7991 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
7992 if (GET_CODE (v
->mult_val
) == CONST_INT
7993 && INTVAL (v
->mult_val
) > 0
7994 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8000 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8006 tem
= gen_reg_rtx (mode
);
8008 /* Replace biv with giv's reduced register. */
8009 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8012 /* Compute value to compare against. */
8013 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
, tem
, where
);
8014 /* Use it in this insn. */
8015 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8016 if (apply_change_group ())
8020 else if (GET_CODE (arg
) == REG
|| GET_CODE (arg
) == MEM
)
8022 if (loop_invariant_p (loop
, arg
) == 1)
8024 /* Look for giv with constant positive mult_val and nonconst
8025 add_val. Insert insns to compute new compare value.
8026 ??? Turn this off due to possible overflow. */
8028 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8029 if (GET_CODE (v
->mult_val
) == CONST_INT
&& INTVAL (v
->mult_val
) > 0
8030 && ! v
->ignore
&& ! v
->maybe_dead
&& v
->always_computable
8036 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8042 tem
= gen_reg_rtx (mode
);
8044 /* Replace biv with giv's reduced register. */
8045 validate_change (insn
, &XEXP (x
, 1 - arg_operand
),
8048 /* Compute value to compare against. */
8049 emit_iv_add_mult (arg
, v
->mult_val
, v
->add_val
,
8051 validate_change (insn
, &XEXP (x
, arg_operand
), tem
, 1);
8052 if (apply_change_group ())
8057 /* This code has problems. Basically, you can't know when
8058 seeing if we will eliminate BL, whether a particular giv
8059 of ARG will be reduced. If it isn't going to be reduced,
8060 we can't eliminate BL. We can try forcing it to be reduced,
8061 but that can generate poor code.
8063 The problem is that the benefit of reducing TV, below should
8064 be increased if BL can actually be eliminated, but this means
8065 we might have to do a topological sort of the order in which
8066 we try to process biv. It doesn't seem worthwhile to do
8067 this sort of thing now. */
8070 /* Otherwise the reg compared with had better be a biv. */
8071 if (GET_CODE (arg
) != REG
8072 || REG_IV_TYPE (ivs
, REGNO (arg
)) != BASIC_INDUCT
)
8075 /* Look for a pair of givs, one for each biv,
8076 with identical coefficients. */
8077 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8079 struct induction
*tv
;
8081 if (v
->ignore
|| v
->maybe_dead
|| v
->mode
!= mode
)
8084 for (tv
= ivs
->reg_biv_class
[REGNO (arg
)]->giv
; tv
; tv
= tv
->next_iv
)
8085 if (! tv
->ignore
&& ! tv
->maybe_dead
8086 && rtx_equal_p (tv
->mult_val
, v
->mult_val
)
8087 && rtx_equal_p (tv
->add_val
, v
->add_val
)
8088 && tv
->mode
== mode
)
8090 if (! biv_elimination_giv_has_0_offset (bl
->biv
, v
, insn
))
8096 /* Replace biv with its giv's reduced reg. */
8097 XEXP (x
, 1 - arg_operand
) = v
->new_reg
;
8098 /* Replace other operand with the other giv's
8100 XEXP (x
, arg_operand
) = tv
->new_reg
;
8107 /* If we get here, the biv can't be eliminated. */
8111 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8112 biv is used in it, since it will be replaced. */
8113 for (v
= bl
->giv
; v
; v
= v
->next_iv
)
8114 if (v
->giv_type
== DEST_ADDR
&& v
->location
== &XEXP (x
, 0))
8122 /* See if any subexpression fails elimination. */
8123 fmt
= GET_RTX_FORMAT (code
);
8124 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8129 if (! maybe_eliminate_biv_1 (loop
, XEXP (x
, i
), insn
, bl
,
8130 eliminate_p
, where
))
8135 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8136 if (! maybe_eliminate_biv_1 (loop
, XVECEXP (x
, i
, j
), insn
, bl
,
8137 eliminate_p
, where
))
8146 /* Return nonzero if the last use of REG
8147 is in an insn following INSN in the same basic block. */
8150 last_use_this_basic_block (reg
, insn
)
8156 n
&& GET_CODE (n
) != CODE_LABEL
&& GET_CODE (n
) != JUMP_INSN
;
8159 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (n
))
8165 /* Called via `note_stores' to record the initial value of a biv. Here we
8166 just record the location of the set and process it later. */
8169 record_initial (dest
, set
, data
)
8172 void *data ATTRIBUTE_UNUSED
;
8174 struct loop_ivs
*ivs
= (struct loop_ivs
*) data
;
8175 struct iv_class
*bl
;
8177 if (GET_CODE (dest
) != REG
8178 || REGNO (dest
) >= max_reg_before_loop
8179 || REG_IV_TYPE (ivs
, REGNO (dest
)) != BASIC_INDUCT
)
8182 bl
= ivs
->reg_biv_class
[REGNO (dest
)];
8184 /* If this is the first set found, record it. */
8185 if (bl
->init_insn
== 0)
8187 bl
->init_insn
= note_insn
;
8192 /* If any of the registers in X are "old" and currently have a last use earlier
8193 than INSN, update them to have a last use of INSN. Their actual last use
8194 will be the previous insn but it will not have a valid uid_luid so we can't
8198 update_reg_last_use (x
, insn
)
8202 /* Check for the case where INSN does not have a valid luid. In this case,
8203 there is no need to modify the regno_last_uid, as this can only happen
8204 when code is inserted after the loop_end to set a pseudo's final value,
8205 and hence this insn will never be the last use of x. */
8206 if (GET_CODE (x
) == REG
&& REGNO (x
) < max_reg_before_loop
8207 && INSN_UID (insn
) < max_uid_for_loop
8208 && uid_luid
[REGNO_LAST_UID (REGNO (x
))] < uid_luid
[INSN_UID (insn
)])
8209 REGNO_LAST_UID (REGNO (x
)) = INSN_UID (insn
);
8213 register const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
8214 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
8217 update_reg_last_use (XEXP (x
, i
), insn
);
8218 else if (fmt
[i
] == 'E')
8219 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8220 update_reg_last_use (XVECEXP (x
, i
, j
), insn
);
8225 /* Given an insn INSN and condition COND, return the condition in a
8226 canonical form to simplify testing by callers. Specifically:
8228 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8229 (2) Both operands will be machine operands; (cc0) will have been replaced.
8230 (3) If an operand is a constant, it will be the second operand.
8231 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8232 for GE, GEU, and LEU.
8234 If the condition cannot be understood, or is an inequality floating-point
8235 comparison which needs to be reversed, 0 will be returned.
8237 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
8239 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8240 insn used in locating the condition was found. If a replacement test
8241 of the condition is desired, it should be placed in front of that
8242 insn and we will be sure that the inputs are still valid.
8244 If WANT_REG is non-zero, we wish the condition to be relative to that
8245 register, if possible. Therefore, do not canonicalize the condition
8249 canonicalize_condition (insn
, cond
, reverse
, earliest
, want_reg
)
8261 int reverse_code
= 0;
8262 int did_reverse_condition
= 0;
8263 enum machine_mode mode
;
8265 code
= GET_CODE (cond
);
8266 mode
= GET_MODE (cond
);
8267 op0
= XEXP (cond
, 0);
8268 op1
= XEXP (cond
, 1);
8272 code
= reverse_condition (code
);
8273 did_reverse_condition
^= 1;
8279 /* If we are comparing a register with zero, see if the register is set
8280 in the previous insn to a COMPARE or a comparison operation. Perform
8281 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8284 while (GET_RTX_CLASS (code
) == '<'
8285 && op1
== CONST0_RTX (GET_MODE (op0
))
8288 /* Set non-zero when we find something of interest. */
8292 /* If comparison with cc0, import actual comparison from compare
8296 if ((prev
= prev_nonnote_insn (prev
)) == 0
8297 || GET_CODE (prev
) != INSN
8298 || (set
= single_set (prev
)) == 0
8299 || SET_DEST (set
) != cc0_rtx
)
8302 op0
= SET_SRC (set
);
8303 op1
= CONST0_RTX (GET_MODE (op0
));
8309 /* If this is a COMPARE, pick up the two things being compared. */
8310 if (GET_CODE (op0
) == COMPARE
)
8312 op1
= XEXP (op0
, 1);
8313 op0
= XEXP (op0
, 0);
8316 else if (GET_CODE (op0
) != REG
)
8319 /* Go back to the previous insn. Stop if it is not an INSN. We also
8320 stop if it isn't a single set or if it has a REG_INC note because
8321 we don't want to bother dealing with it. */
8323 if ((prev
= prev_nonnote_insn (prev
)) == 0
8324 || GET_CODE (prev
) != INSN
8325 || FIND_REG_INC_NOTE (prev
, 0)
8326 || (set
= single_set (prev
)) == 0)
8329 /* If this is setting OP0, get what it sets it to if it looks
8331 if (rtx_equal_p (SET_DEST (set
), op0
))
8333 enum machine_mode inner_mode
= GET_MODE (SET_DEST (set
));
8335 /* ??? We may not combine comparisons done in a CCmode with
8336 comparisons not done in a CCmode. This is to aid targets
8337 like Alpha that have an IEEE compliant EQ instruction, and
8338 a non-IEEE compliant BEQ instruction. The use of CCmode is
8339 actually artificial, simply to prevent the combination, but
8340 should not affect other platforms.
8342 However, we must allow VOIDmode comparisons to match either
8343 CCmode or non-CCmode comparison, because some ports have
8344 modeless comparisons inside branch patterns.
8346 ??? This mode check should perhaps look more like the mode check
8347 in simplify_comparison in combine. */
8349 if ((GET_CODE (SET_SRC (set
)) == COMPARE
8352 && GET_MODE_CLASS (inner_mode
) == MODE_INT
8353 && (GET_MODE_BITSIZE (inner_mode
)
8354 <= HOST_BITS_PER_WIDE_INT
)
8355 && (STORE_FLAG_VALUE
8356 & ((HOST_WIDE_INT
) 1
8357 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
8358 #ifdef FLOAT_STORE_FLAG_VALUE
8360 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
8361 && (REAL_VALUE_NEGATIVE
8362 (FLOAT_STORE_FLAG_VALUE (inner_mode
))))
8365 && GET_RTX_CLASS (GET_CODE (SET_SRC (set
))) == '<'))
8366 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
8367 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
8368 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
8370 else if (((code
== EQ
8372 && (GET_MODE_BITSIZE (inner_mode
)
8373 <= HOST_BITS_PER_WIDE_INT
)
8374 && GET_MODE_CLASS (inner_mode
) == MODE_INT
8375 && (STORE_FLAG_VALUE
8376 & ((HOST_WIDE_INT
) 1
8377 << (GET_MODE_BITSIZE (inner_mode
) - 1))))
8378 #ifdef FLOAT_STORE_FLAG_VALUE
8380 && GET_MODE_CLASS (inner_mode
) == MODE_FLOAT
8381 && (REAL_VALUE_NEGATIVE
8382 (FLOAT_STORE_FLAG_VALUE (inner_mode
))))
8385 && GET_RTX_CLASS (GET_CODE (SET_SRC (set
))) == '<'
8386 && (((GET_MODE_CLASS (mode
) == MODE_CC
)
8387 == (GET_MODE_CLASS (inner_mode
) == MODE_CC
))
8388 || mode
== VOIDmode
|| inner_mode
== VOIDmode
))
8391 /* We might have reversed a LT to get a GE here. But this wasn't
8392 actually the comparison of data, so we don't flag that we
8393 have had to reverse the condition. */
8394 did_reverse_condition
^= 1;
8402 else if (reg_set_p (op0
, prev
))
8403 /* If this sets OP0, but not directly, we have to give up. */
8408 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
8409 code
= GET_CODE (x
);
8412 code
= reverse_condition (code
);
8413 if (code
== UNKNOWN
)
8415 did_reverse_condition
^= 1;
8419 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
8425 /* If constant is first, put it last. */
8426 if (CONSTANT_P (op0
))
8427 code
= swap_condition (code
), tem
= op0
, op0
= op1
, op1
= tem
;
8429 /* If OP0 is the result of a comparison, we weren't able to find what
8430 was really being compared, so fail. */
8431 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
8434 /* Canonicalize any ordered comparison with integers involving equality
8435 if we can do computations in the relevant mode and we do not
8438 if (GET_CODE (op1
) == CONST_INT
8439 && GET_MODE (op0
) != VOIDmode
8440 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
)
8442 HOST_WIDE_INT const_val
= INTVAL (op1
);
8443 unsigned HOST_WIDE_INT uconst_val
= const_val
;
8444 unsigned HOST_WIDE_INT max_val
8445 = (unsigned HOST_WIDE_INT
) GET_MODE_MASK (GET_MODE (op0
));
8450 if ((unsigned HOST_WIDE_INT
) const_val
!= max_val
>> 1)
8451 code
= LT
, op1
= GEN_INT (const_val
+ 1);
8454 /* When cross-compiling, const_val might be sign-extended from
8455 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
8457 if ((HOST_WIDE_INT
) (const_val
& max_val
)
8458 != (((HOST_WIDE_INT
) 1
8459 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
8460 code
= GT
, op1
= GEN_INT (const_val
- 1);
8464 if (uconst_val
< max_val
)
8465 code
= LTU
, op1
= GEN_INT (uconst_val
+ 1);
8469 if (uconst_val
!= 0)
8470 code
= GTU
, op1
= GEN_INT (uconst_val
- 1);
8478 /* If this was floating-point and we reversed anything other than an
8479 EQ or NE or (UN)ORDERED, return zero. */
8480 if (TARGET_FLOAT_FORMAT
== IEEE_FLOAT_FORMAT
8481 && did_reverse_condition
8482 && code
!= NE
&& code
!= EQ
&& code
!= UNORDERED
&& code
!= ORDERED
8484 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_FLOAT
)
8488 /* Never return CC0; return zero instead. */
8493 return gen_rtx_fmt_ee (code
, VOIDmode
, op0
, op1
);
8496 /* Given a jump insn JUMP, return the condition that will cause it to branch
8497 to its JUMP_LABEL. If the condition cannot be understood, or is an
8498 inequality floating-point comparison which needs to be reversed, 0 will
8501 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8502 insn used in locating the condition was found. If a replacement test
8503 of the condition is desired, it should be placed in front of that
8504 insn and we will be sure that the inputs are still valid. */
8507 get_condition (jump
, earliest
)
8515 /* If this is not a standard conditional jump, we can't parse it. */
8516 if (GET_CODE (jump
) != JUMP_INSN
8517 || ! any_condjump_p (jump
))
8519 set
= pc_set (jump
);
8521 cond
= XEXP (SET_SRC (set
), 0);
8523 /* If this branches to JUMP_LABEL when the condition is false, reverse
8526 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
8527 && XEXP (XEXP (SET_SRC (set
), 2), 0) == JUMP_LABEL (jump
);
8529 return canonicalize_condition (jump
, cond
, reverse
, earliest
, NULL_RTX
);
8532 /* Similar to above routine, except that we also put an invariant last
8533 unless both operands are invariants. */
8536 get_condition_for_loop (loop
, x
)
8537 const struct loop
*loop
;
8540 rtx comparison
= get_condition (x
, NULL_PTR
);
8543 || ! loop_invariant_p (loop
, XEXP (comparison
, 0))
8544 || loop_invariant_p (loop
, XEXP (comparison
, 1)))
8547 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison
)), VOIDmode
,
8548 XEXP (comparison
, 1), XEXP (comparison
, 0));
8551 /* Scan the function and determine whether it has indirect (computed) jumps.
8553 This is taken mostly from flow.c; similar code exists elsewhere
8554 in the compiler. It may be useful to put this into rtlanal.c. */
8556 indirect_jump_in_function_p (start
)
8561 for (insn
= start
; insn
; insn
= NEXT_INSN (insn
))
8562 if (computed_jump_p (insn
))
8568 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
8569 documentation for LOOP_MEMS for the definition of `appropriate'.
8570 This function is called from prescan_loop via for_each_rtx. */
8573 insert_loop_mem (mem
, data
)
8575 void *data ATTRIBUTE_UNUSED
;
8577 struct loop_info
*loop_info
= data
;
8584 switch (GET_CODE (m
))
8590 /* We're not interested in MEMs that are only clobbered. */
8594 /* We're not interested in the MEM associated with a
8595 CONST_DOUBLE, so there's no need to traverse into this. */
8599 /* We're not interested in any MEMs that only appear in notes. */
8603 /* This is not a MEM. */
8607 /* See if we've already seen this MEM. */
8608 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
8609 if (rtx_equal_p (m
, loop_info
->mems
[i
].mem
))
8611 if (GET_MODE (m
) != GET_MODE (loop_info
->mems
[i
].mem
))
8612 /* The modes of the two memory accesses are different. If
8613 this happens, something tricky is going on, and we just
8614 don't optimize accesses to this MEM. */
8615 loop_info
->mems
[i
].optimize
= 0;
8620 /* Resize the array, if necessary. */
8621 if (loop_info
->mems_idx
== loop_info
->mems_allocated
)
8623 if (loop_info
->mems_allocated
!= 0)
8624 loop_info
->mems_allocated
*= 2;
8626 loop_info
->mems_allocated
= 32;
8628 loop_info
->mems
= (loop_mem_info
*)
8629 xrealloc (loop_info
->mems
,
8630 loop_info
->mems_allocated
* sizeof (loop_mem_info
));
8633 /* Actually insert the MEM. */
8634 loop_info
->mems
[loop_info
->mems_idx
].mem
= m
;
8635 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
8636 because we can't put it in a register. We still store it in the
8637 table, though, so that if we see the same address later, but in a
8638 non-BLK mode, we'll not think we can optimize it at that point. */
8639 loop_info
->mems
[loop_info
->mems_idx
].optimize
= (GET_MODE (m
) != BLKmode
);
8640 loop_info
->mems
[loop_info
->mems_idx
].reg
= NULL_RTX
;
8641 ++loop_info
->mems_idx
;
8646 /* Like load_mems, but also ensures that REGS->SET_IN_LOOP,
8647 REGS->MAY_NOT_OPTIMIZE, REGS->SINGLE_USAGE, and INSN_COUNT have the correct
8648 values after load_mems. */
8651 load_mems_and_recount_loop_regs_set (loop
, insn_count
)
8652 const struct loop
*loop
;
8655 struct loop_regs
*regs
= LOOP_REGS (loop
);
8656 int nregs
= max_reg_num ();
8660 /* Recalculate regs->set_in_loop and friends since load_mems may have
8661 created new registers. */
8662 if (max_reg_num () > nregs
)
8668 nregs
= max_reg_num ();
8670 if ((unsigned) nregs
> regs
->set_in_loop
->num_elements
)
8672 /* Grow all the arrays. */
8673 VARRAY_GROW (regs
->set_in_loop
, nregs
);
8674 VARRAY_GROW (regs
->n_times_set
, nregs
);
8675 VARRAY_GROW (regs
->may_not_optimize
, nregs
);
8676 VARRAY_GROW (regs
->single_usage
, nregs
);
8678 /* Clear the arrays */
8679 memset ((char *) ®s
->set_in_loop
->data
, 0, nregs
* sizeof (int));
8680 memset ((char *) ®s
->may_not_optimize
->data
, 0, nregs
* sizeof (char));
8681 memset ((char *) ®s
->single_usage
->data
, 0, nregs
* sizeof (rtx
));
8683 count_loop_regs_set (loop
, regs
->may_not_optimize
, regs
->single_usage
,
8686 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
8688 VARRAY_CHAR (regs
->may_not_optimize
, i
) = 1;
8689 VARRAY_INT (regs
->set_in_loop
, i
) = 1;
8692 #ifdef AVOID_CCMODE_COPIES
8693 /* Don't try to move insns which set CC registers if we should not
8694 create CCmode register copies. */
8695 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
8696 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx
[i
])) == MODE_CC
)
8697 VARRAY_CHAR (regs
->may_not_optimize
, i
) = 1;
8700 /* Set regs->n_times_set for the new registers. */
8701 bcopy ((char *) (®s
->set_in_loop
->data
.i
[0] + old_nregs
),
8702 (char *) (®s
->n_times_set
->data
.i
[0] + old_nregs
),
8703 (nregs
- old_nregs
) * sizeof (int));
8707 /* Move MEMs into registers for the duration of the loop. */
8711 const struct loop
*loop
;
8713 struct loop_info
*loop_info
= LOOP_INFO (loop
);
8714 struct loop_regs
*regs
= LOOP_REGS (loop
);
8715 int maybe_never
= 0;
8718 rtx label
= NULL_RTX
;
8720 /* Nonzero if the next instruction may never be executed. */
8721 int next_maybe_never
= 0;
8722 int last_max_reg
= max_reg_num ();
8724 if (loop_info
->mems_idx
== 0)
8727 /* We cannot use next_label here because it skips over normal insns. */
8728 end_label
= next_nonnote_insn (loop
->end
);
8729 if (end_label
&& GET_CODE (end_label
) != CODE_LABEL
)
8730 end_label
= NULL_RTX
;
8732 /* Check to see if it's possible that some instructions in the loop are
8733 never executed. Also check if there is a goto out of the loop other
8734 than right after the end of the loop. */
8735 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
8736 p
!= NULL_RTX
&& ! maybe_never
;
8737 p
= next_insn_in_loop (loop
, p
))
8739 if (GET_CODE (p
) == CODE_LABEL
)
8741 else if (GET_CODE (p
) == JUMP_INSN
8742 /* If we enter the loop in the middle, and scan
8743 around to the beginning, don't set maybe_never
8744 for that. This must be an unconditional jump,
8745 otherwise the code at the top of the loop might
8746 never be executed. Unconditional jumps are
8747 followed a by barrier then loop end. */
8748 && ! (GET_CODE (p
) == JUMP_INSN
8749 && JUMP_LABEL (p
) == loop
->top
8750 && NEXT_INSN (NEXT_INSN (p
)) == loop
->end
8751 && any_uncondjump_p (p
)))
8753 /* If this is a jump outside of the loop but not right
8754 after the end of the loop, we would have to emit new fixup
8755 sequences for each such label. */
8756 if (JUMP_LABEL (p
) != end_label
8757 && (INSN_UID (JUMP_LABEL (p
)) >= max_uid_for_loop
8758 || INSN_LUID (JUMP_LABEL (p
)) < INSN_LUID (loop
->start
)
8759 || INSN_LUID (JUMP_LABEL (p
)) > INSN_LUID (loop
->end
)))
8762 if (!any_condjump_p (p
))
8763 /* Something complicated. */
8766 /* If there are any more instructions in the loop, they
8767 might not be reached. */
8768 next_maybe_never
= 1;
8770 else if (next_maybe_never
)
8774 /* Find start of the extended basic block that enters the loop. */
8775 for (p
= loop
->start
;
8776 PREV_INSN (p
) && GET_CODE (p
) != CODE_LABEL
;
8782 /* Build table of mems that get set to constant values before the
8784 for (; p
!= loop
->start
; p
= NEXT_INSN (p
))
8785 cselib_process_insn (p
);
8787 /* Actually move the MEMs. */
8788 for (i
= 0; i
< loop_info
->mems_idx
; ++i
)
8790 regset_head load_copies
;
8791 regset_head store_copies
;
8794 rtx mem
= loop_info
->mems
[i
].mem
;
8797 if (MEM_VOLATILE_P (mem
)
8798 || loop_invariant_p (loop
, XEXP (mem
, 0)) != 1)
8799 /* There's no telling whether or not MEM is modified. */
8800 loop_info
->mems
[i
].optimize
= 0;
8802 /* Go through the MEMs written to in the loop to see if this
8803 one is aliased by one of them. */
8804 mem_list_entry
= loop_info
->store_mems
;
8805 while (mem_list_entry
)
8807 if (rtx_equal_p (mem
, XEXP (mem_list_entry
, 0)))
8809 else if (true_dependence (XEXP (mem_list_entry
, 0), VOIDmode
,
8812 /* MEM is indeed aliased by this store. */
8813 loop_info
->mems
[i
].optimize
= 0;
8816 mem_list_entry
= XEXP (mem_list_entry
, 1);
8819 if (flag_float_store
&& written
8820 && GET_MODE_CLASS (GET_MODE (mem
)) == MODE_FLOAT
)
8821 loop_info
->mems
[i
].optimize
= 0;
8823 /* If this MEM is written to, we must be sure that there
8824 are no reads from another MEM that aliases this one. */
8825 if (loop_info
->mems
[i
].optimize
&& written
)
8829 for (j
= 0; j
< loop_info
->mems_idx
; ++j
)
8833 else if (true_dependence (mem
,
8835 loop_info
->mems
[j
].mem
,
8838 /* It's not safe to hoist loop_info->mems[i] out of
8839 the loop because writes to it might not be
8840 seen by reads from loop_info->mems[j]. */
8841 loop_info
->mems
[i
].optimize
= 0;
8847 if (maybe_never
&& may_trap_p (mem
))
8848 /* We can't access the MEM outside the loop; it might
8849 cause a trap that wouldn't have happened otherwise. */
8850 loop_info
->mems
[i
].optimize
= 0;
8852 if (!loop_info
->mems
[i
].optimize
)
8853 /* We thought we were going to lift this MEM out of the
8854 loop, but later discovered that we could not. */
8857 INIT_REG_SET (&load_copies
);
8858 INIT_REG_SET (&store_copies
);
8860 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
8861 order to keep scan_loop from moving stores to this MEM
8862 out of the loop just because this REG is neither a
8863 user-variable nor used in the loop test. */
8864 reg
= gen_reg_rtx (GET_MODE (mem
));
8865 REG_USERVAR_P (reg
) = 1;
8866 loop_info
->mems
[i
].reg
= reg
;
8868 /* Now, replace all references to the MEM with the
8869 corresponding pesudos. */
8871 for (p
= next_insn_in_loop (loop
, loop
->scan_start
);
8873 p
= next_insn_in_loop (loop
, p
))
8879 set
= single_set (p
);
8881 /* See if this copies the mem into a register that isn't
8882 modified afterwards. We'll try to do copy propagation
8883 a little further on. */
8885 /* @@@ This test is _way_ too conservative. */
8887 && GET_CODE (SET_DEST (set
)) == REG
8888 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
8889 && REGNO (SET_DEST (set
)) < last_max_reg
8890 && VARRAY_INT (regs
->n_times_set
,
8891 REGNO (SET_DEST (set
))) == 1
8892 && rtx_equal_p (SET_SRC (set
), mem
))
8893 SET_REGNO_REG_SET (&load_copies
, REGNO (SET_DEST (set
)));
8895 /* See if this copies the mem from a register that isn't
8896 modified afterwards. We'll try to remove the
8897 redundant copy later on by doing a little register
8898 renaming and copy propagation. This will help
8899 to untangle things for the BIV detection code. */
8902 && GET_CODE (SET_SRC (set
)) == REG
8903 && REGNO (SET_SRC (set
)) >= FIRST_PSEUDO_REGISTER
8904 && REGNO (SET_SRC (set
)) < last_max_reg
8905 && VARRAY_INT (regs
->n_times_set
, REGNO (SET_SRC (set
))) == 1
8906 && rtx_equal_p (SET_DEST (set
), mem
))
8907 SET_REGNO_REG_SET (&store_copies
, REGNO (SET_SRC (set
)));
8909 /* Replace the memory reference with the shadow register. */
8910 replace_loop_mems (p
, loop_info
->mems
[i
].mem
,
8911 loop_info
->mems
[i
].reg
);
8914 if (GET_CODE (p
) == CODE_LABEL
8915 || GET_CODE (p
) == JUMP_INSN
)
8919 if (! apply_change_group ())
8920 /* We couldn't replace all occurrences of the MEM. */
8921 loop_info
->mems
[i
].optimize
= 0;
8924 /* Load the memory immediately before LOOP->START, which is
8925 the NOTE_LOOP_BEG. */
8926 cselib_val
*e
= cselib_lookup (mem
, VOIDmode
, 0);
8930 struct elt_loc_list
*const_equiv
= 0;
8934 struct elt_loc_list
*equiv
;
8935 struct elt_loc_list
*best_equiv
= 0;
8936 for (equiv
= e
->locs
; equiv
; equiv
= equiv
->next
)
8938 if (CONSTANT_P (equiv
->loc
))
8939 const_equiv
= equiv
;
8940 else if (GET_CODE (equiv
->loc
) == REG
8941 /* Extending hard register lifetimes cuases crash
8942 on SRC targets. Doing so on non-SRC is
8943 probably also not good idea, since we most
8944 probably have pseudoregister equivalence as
8946 && REGNO (equiv
->loc
) >= FIRST_PSEUDO_REGISTER
)
8949 /* Use the constant equivalence if that is cheap enough. */
8951 best_equiv
= const_equiv
;
8952 else if (const_equiv
8953 && (rtx_cost (const_equiv
->loc
, SET
)
8954 <= rtx_cost (best_equiv
->loc
, SET
)))
8956 best_equiv
= const_equiv
;
8960 /* If best_equiv is nonzero, we know that MEM is set to a
8961 constant or register before the loop. We will use this
8962 knowledge to initialize the shadow register with that
8963 constant or reg rather than by loading from MEM. */
8965 best
= copy_rtx (best_equiv
->loc
);
8967 set
= gen_move_insn (reg
, best
);
8968 set
= emit_insn_before (set
, loop
->start
);
8970 REG_NOTES (set
) = gen_rtx_EXPR_LIST (REG_EQUAL
,
8971 copy_rtx (const_equiv
->loc
),
8976 if (label
== NULL_RTX
)
8978 label
= gen_label_rtx ();
8979 emit_label_after (label
, loop
->end
);
8982 /* Store the memory immediately after END, which is
8983 the NOTE_LOOP_END. */
8984 set
= gen_move_insn (copy_rtx (mem
), reg
);
8985 emit_insn_after (set
, label
);
8988 if (loop_dump_stream
)
8990 fprintf (loop_dump_stream
, "Hoisted regno %d %s from ",
8991 REGNO (reg
), (written
? "r/w" : "r/o"));
8992 print_rtl (loop_dump_stream
, mem
);
8993 fputc ('\n', loop_dump_stream
);
8996 /* Attempt a bit of copy propagation. This helps untangle the
8997 data flow, and enables {basic,general}_induction_var to find
8999 EXECUTE_IF_SET_IN_REG_SET
9000 (&load_copies
, FIRST_PSEUDO_REGISTER
, j
,
9002 try_copy_prop (loop
, reg
, j
);
9004 CLEAR_REG_SET (&load_copies
);
9006 EXECUTE_IF_SET_IN_REG_SET
9007 (&store_copies
, FIRST_PSEUDO_REGISTER
, j
,
9009 try_swap_copy_prop (loop
, reg
, j
);
9011 CLEAR_REG_SET (&store_copies
);
9015 if (label
!= NULL_RTX
&& end_label
!= NULL_RTX
)
9017 /* Now, we need to replace all references to the previous exit
9018 label with the new one. */
9023 for (p
= loop
->start
; p
!= loop
->end
; p
= NEXT_INSN (p
))
9025 for_each_rtx (&p
, replace_label
, &rr
);
9027 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9028 field. This is not handled by for_each_rtx because it doesn't
9029 handle unprinted ('0') fields. We need to update JUMP_LABEL
9030 because the immediately following unroll pass will use it.
9031 replace_label would not work anyways, because that only handles
9033 if (GET_CODE (p
) == JUMP_INSN
&& JUMP_LABEL (p
) == end_label
)
9034 JUMP_LABEL (p
) = label
;
9041 /* For communication between note_reg_stored and its caller. */
9042 struct note_reg_stored_arg
9048 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9051 note_reg_stored (x
, setter
, arg
)
9052 rtx x
, setter ATTRIBUTE_UNUSED
;
9055 struct note_reg_stored_arg
*t
= (struct note_reg_stored_arg
*) arg
;
9060 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
9061 There must be exactly one insn that sets this pseudo; it will be
9062 deleted if all replacements succeed and we can prove that the register
9063 is not used after the loop. */
9066 try_copy_prop (loop
, replacement
, regno
)
9067 const struct loop
*loop
;
9071 /* This is the reg that we are copying from. */
9072 rtx reg_rtx
= regno_reg_rtx
[regno
];
9075 /* These help keep track of whether we replaced all uses of the reg. */
9076 int replaced_last
= 0;
9077 int store_is_first
= 0;
9079 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
9081 insn
= next_insn_in_loop (loop
, insn
))
9085 /* Only substitute within one extended basic block from the initializing
9087 if (GET_CODE (insn
) == CODE_LABEL
&& init_insn
)
9090 if (! INSN_P (insn
))
9093 /* Is this the initializing insn? */
9094 set
= single_set (insn
);
9096 && GET_CODE (SET_DEST (set
)) == REG
9097 && REGNO (SET_DEST (set
)) == regno
)
9103 if (REGNO_FIRST_UID (regno
) == INSN_UID (insn
))
9107 /* Only substitute after seeing the initializing insn. */
9108 if (init_insn
&& insn
!= init_insn
)
9110 struct note_reg_stored_arg arg
;
9112 replace_loop_regs (insn
, reg_rtx
, replacement
);
9113 if (REGNO_LAST_UID (regno
) == INSN_UID (insn
))
9116 /* Stop replacing when REPLACEMENT is modified. */
9117 arg
.reg
= replacement
;
9119 note_stores (PATTERN (insn
), note_reg_stored
, &arg
);
9126 if (apply_change_group ())
9128 if (loop_dump_stream
)
9129 fprintf (loop_dump_stream
, " Replaced reg %d", regno
);
9130 if (store_is_first
&& replaced_last
)
9132 PUT_CODE (init_insn
, NOTE
);
9133 NOTE_LINE_NUMBER (init_insn
) = NOTE_INSN_DELETED
;
9134 if (loop_dump_stream
)
9135 fprintf (loop_dump_stream
, ", deleting init_insn (%d)",
9136 INSN_UID (init_insn
));
9138 if (loop_dump_stream
)
9139 fprintf (loop_dump_stream
, ".\n");
9143 /* Try to replace occurrences of pseudo REGNO with REPLACEMENT within
9144 loop LOOP if the order of the sets of these registers can be
9145 swapped. There must be exactly one insn within the loop that sets
9146 this pseudo followed immediately by a move insn that sets
9147 REPLACEMENT with REGNO. */
9149 try_swap_copy_prop (loop
, replacement
, regno
)
9150 const struct loop
*loop
;
9156 unsigned int new_regno
;
9158 new_regno
= REGNO (replacement
);
9160 for (insn
= next_insn_in_loop (loop
, loop
->scan_start
);
9162 insn
= next_insn_in_loop (loop
, insn
))
9164 /* Search for the insn that copies REGNO to NEW_REGNO? */
9165 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
9166 && (set
= single_set (insn
))
9167 && GET_CODE (SET_DEST (set
)) == REG
9168 && REGNO (SET_DEST (set
)) == new_regno
9169 && GET_CODE (SET_SRC (set
)) == REG
9170 && REGNO (SET_SRC (set
)) == regno
)
9174 if (insn
!= NULL_RTX
)
9179 /* Some DEF-USE info would come in handy here to make this
9180 function more general. For now, just check the previous insn
9181 which is the most likely candidate for setting REGNO. */
9183 prev_insn
= PREV_INSN (insn
);
9185 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
9186 && (prev_set
= single_set (prev_insn
))
9187 && GET_CODE (SET_DEST (prev_set
)) == REG
9188 && REGNO (SET_DEST (prev_set
)) == regno
)
9191 (set (reg regno) (expr))
9192 (set (reg new_regno) (reg regno))
9194 so try converting this to:
9195 (set (reg new_regno) (expr))
9196 (set (reg regno) (reg new_regno))
9198 The former construct is often generated when a global
9199 variable used for an induction variable is shadowed by a
9200 register (NEW_REGNO). The latter construct improves the
9201 chances of GIV replacement and BIV elimination. */
9203 validate_change (prev_insn
, &SET_DEST (prev_set
),
9205 validate_change (insn
, &SET_DEST (set
),
9207 validate_change (insn
, &SET_SRC (set
),
9210 if (apply_change_group ())
9212 if (loop_dump_stream
)
9213 fprintf (loop_dump_stream
,
9214 " Swapped set of reg %d at %d with reg %d at %d.\n",
9215 regno
, INSN_UID (insn
),
9216 new_regno
, INSN_UID (prev_insn
));
9218 /* Update first use of REGNO. */
9219 if (REGNO_FIRST_UID (regno
) == INSN_UID (prev_insn
))
9220 REGNO_FIRST_UID (regno
) = INSN_UID (insn
);
9222 /* Now perform copy propagation to hopefully
9223 remove all uses of REGNO within the loop. */
9224 try_copy_prop (loop
, replacement
, regno
);
9230 /* Replace MEM with its associated pseudo register. This function is
9231 called from load_mems via for_each_rtx. DATA is actually a pointer
9232 to a structure describing the instruction currently being scanned
9233 and the MEM we are currently replacing. */
9236 replace_loop_mem (mem
, data
)
9240 loop_replace_args
*args
= (loop_replace_args
*) data
;
9246 switch (GET_CODE (m
))
9252 /* We're not interested in the MEM associated with a
9253 CONST_DOUBLE, so there's no need to traverse into one. */
9257 /* This is not a MEM. */
9261 if (!rtx_equal_p (args
->match
, m
))
9262 /* This is not the MEM we are currently replacing. */
9265 /* Actually replace the MEM. */
9266 validate_change (args
->insn
, mem
, args
->replacement
, 1);
9272 replace_loop_mems (insn
, mem
, reg
)
9277 loop_replace_args args
;
9281 args
.replacement
= reg
;
9283 for_each_rtx (&insn
, replace_loop_mem
, &args
);
9286 /* Replace one register with another. Called through for_each_rtx; PX points
9287 to the rtx being scanned. DATA is actually a pointer to
9288 a structure of arguments. */
9291 replace_loop_reg (px
, data
)
9296 loop_replace_args
*args
= (loop_replace_args
*) data
;
9301 if (x
== args
->match
)
9302 validate_change (args
->insn
, px
, args
->replacement
, 1);
9308 replace_loop_regs (insn
, reg
, replacement
)
9313 loop_replace_args args
;
9317 args
.replacement
= replacement
;
9319 for_each_rtx (&insn
, replace_loop_reg
, &args
);
9322 /* Replace occurrences of the old exit label for the loop with the new
9323 one. DATA is an rtx_pair containing the old and new labels,
9327 replace_label (x
, data
)
9332 rtx old_label
= ((rtx_pair
*) data
)->r1
;
9333 rtx new_label
= ((rtx_pair
*) data
)->r2
;
9338 if (GET_CODE (l
) != LABEL_REF
)
9341 if (XEXP (l
, 0) != old_label
)
9344 XEXP (l
, 0) = new_label
;
9345 ++LABEL_NUSES (new_label
);
9346 --LABEL_NUSES (old_label
);
9351 #define LOOP_BLOCK_NUM_1(INSN) \
9352 ((INSN) ? (BLOCK_FOR_INSN (INSN) ? BLOCK_NUM (INSN) : - 1) : -1)
9354 /* The notes do not have an assigned block, so look at the next insn. */
9355 #define LOOP_BLOCK_NUM(INSN) \
9356 ((INSN) ? (GET_CODE (INSN) == NOTE \
9357 ? LOOP_BLOCK_NUM_1 (next_nonnote_insn (INSN)) \
9358 : LOOP_BLOCK_NUM_1 (INSN)) \
9361 #define LOOP_INSN_UID(INSN) ((INSN) ? INSN_UID (INSN) : -1)
9364 loop_dump_aux (loop
, file
, verbose
)
9365 const struct loop
*loop
;
9367 int verbose ATTRIBUTE_UNUSED
;
9371 if (! loop
|| ! file
)
9374 /* Print diagnostics to compare our concept of a loop with
9375 what the loop notes say. */
9376 if (! PREV_INSN (loop
->first
->head
)
9377 || GET_CODE (PREV_INSN (loop
->first
->head
)) != NOTE
9378 || NOTE_LINE_NUMBER (PREV_INSN (loop
->first
->head
))
9379 != NOTE_INSN_LOOP_BEG
)
9380 fprintf (file
, ";; No NOTE_INSN_LOOP_BEG at %d\n",
9381 INSN_UID (PREV_INSN (loop
->first
->head
)));
9382 if (! NEXT_INSN (loop
->last
->end
)
9383 || GET_CODE (NEXT_INSN (loop
->last
->end
)) != NOTE
9384 || NOTE_LINE_NUMBER (NEXT_INSN (loop
->last
->end
))
9385 != NOTE_INSN_LOOP_END
)
9386 fprintf (file
, ";; No NOTE_INSN_LOOP_END at %d\n",
9387 INSN_UID (NEXT_INSN (loop
->last
->end
)));
9392 ";; start %d (%d), cont dom %d (%d), cont %d (%d), vtop %d (%d), end %d (%d)\n",
9393 LOOP_BLOCK_NUM (loop
->start
),
9394 LOOP_INSN_UID (loop
->start
),
9395 LOOP_BLOCK_NUM (loop
->cont
),
9396 LOOP_INSN_UID (loop
->cont
),
9397 LOOP_BLOCK_NUM (loop
->cont
),
9398 LOOP_INSN_UID (loop
->cont
),
9399 LOOP_BLOCK_NUM (loop
->vtop
),
9400 LOOP_INSN_UID (loop
->vtop
),
9401 LOOP_BLOCK_NUM (loop
->end
),
9402 LOOP_INSN_UID (loop
->end
));
9403 fprintf (file
, ";; top %d (%d), scan start %d (%d)\n",
9404 LOOP_BLOCK_NUM (loop
->top
),
9405 LOOP_INSN_UID (loop
->top
),
9406 LOOP_BLOCK_NUM (loop
->scan_start
),
9407 LOOP_INSN_UID (loop
->scan_start
));
9408 fprintf (file
, ";; exit_count %d", loop
->exit_count
);
9409 if (loop
->exit_count
)
9411 fputs (", labels:", file
);
9412 for (label
= loop
->exit_labels
; label
; label
= LABEL_NEXTREF (label
))
9414 fprintf (file
, " %d ",
9415 LOOP_INSN_UID (XEXP (label
, 0)));
9420 /* This can happen when a marked loop appears as two nested loops,
9421 say from while (a || b) {}. The inner loop won't match
9422 the loop markers but the outer one will. */
9423 if (LOOP_BLOCK_NUM (loop
->cont
) != loop
->latch
->index
)
9424 fprintf (file
, ";; NOTE_INSN_LOOP_CONT not in loop latch\n");
9428 /* Call this function from the debugger to dump LOOP. */
9432 const struct loop
*loop
;
9434 flow_loop_dump (loop
, stderr
, loop_dump_aux
, 1);