[testsuite] Fix FAIL: gcc.dg/lto/pr69188 on bare-metal targets
[official-gcc.git] / gcc / combine.c
blob28133ff3ba9cbd6e9ff9ab3e543876daa25c36d5
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
328 static struct insn_link **uid_log_links;
330 static inline int
331 insn_uid_check (const_rtx insn)
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack;
348 /* Allocate a link. */
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
362 /* Incremented for each basic block. */
364 static int label_tick;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
381 static int nonzero_sign_valid;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
389 struct undo
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
403 struct undobuf
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
410 static struct undobuf undobuf;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences;
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
537 rtx_insn *ret;
538 unsigned int nregs;
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
563 switch (code)
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
899 else
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
905 if (undobuf.other_insn)
907 int old_other_cost, new_other_cost;
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
916 else
917 old_cost = 0;
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
924 if (dump_file)
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
948 if (reject)
949 return false;
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
961 return true;
965 /* Delete any insns that copy a register to itself. */
967 static void
968 delete_noop_moves (void)
970 rtx_insn *insn, *next;
971 basic_block bb;
973 FOR_EACH_BB_FN (bb, cfun)
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
983 delete_insn_and_edges (insn);
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
998 unsigned int regno = DF_REF_REGNO (def);
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1010 return true;
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1021 return true;
1024 /* Fill in log links field for all insns. */
1026 static void
1027 create_log_links (void)
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1045 FOR_EACH_BB_FN (bb, cfun)
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1055 FOR_EACH_INSN_DEF (def, insn)
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1060 if (!next_use[regno])
1061 continue;
1063 if (!can_combine_def_p (def))
1064 continue;
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1072 /* flow.c claimed:
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1100 free (next_use);
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1136 int new_direct_jump_p = 0;
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1148 rtl_hooks = combine_rtl_hooks;
1150 reg_stat.safe_grow_cleared (nregs);
1152 init_recog_no_volatile ();
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1196 rtx links;
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1221 nonzero_sign_valid = 1;
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1270 /* Try this insn with each insn it links back to. */
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1281 /* Try each sequence of three linked insns ending with this one. */
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1286 rtx_insn *link = links->insn;
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1394 FOR_EACH_LOG_LINK (next1, link)
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1422 for (next1 = links->next; next1; next1 = next1->next)
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1496 retry:
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1516 next = undo->next;
1517 free (undo);
1519 undobuf.frees = 0;
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1533 return new_direct_jump_p;
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1538 static void
1539 init_reg_last (void)
1541 unsigned int i;
1542 reg_stat_type *p;
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1548 /* Set up any promoted values for incoming argument registers. */
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1553 tree arg;
1554 bool strictly_local = false;
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1643 return src;
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1706 rtx_insn *insn = (rtx_insn *) data;
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1743 struct insn_link *link;
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1780 Return 0 if the combination is not allowed for any reason.
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1799 if (succ)
1801 if (succ2)
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1840 switch (GET_CODE (elt))
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1877 while (--i >= 0);
1879 break;
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1898 set = elt;
1899 break;
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1913 else
1914 return 0;
1916 if (set == 0)
1917 return 0;
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1957 || (!all_adjacent
1958 && ((succ2
1959 && (reg_used_between_p (dest, succ2, i3)
1960 || reg_used_between_p (dest, succ, succ2)))
1961 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1971 || (! all_adjacent
1972 && (((!MEM_P (src)
1973 || ! find_reg_note (insn, REG_EQUIV, src))
1974 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1975 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1976 || GET_CODE (src) == UNSPEC_VOLATILE))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1983 return 0;
1985 /* DEST must either be a REG or CC0. */
1986 if (REG_P (dest))
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1994 Also, on some machines we don't want to extend the life of a hard
1995 register. */
1997 if (REG_P (src)
1998 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2003 is going on).
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2006 inputs. */
2007 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2009 return 0;
2011 else if (GET_CODE (dest) != CC0)
2012 return 0;
2015 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2016 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2019 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2028 if (!REG_P (reg)
2029 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs[REGNO (reg)])
2031 if (reg_overlap_mentioned_p (reg, src))
2032 return 0;
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2038 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2042 return 0;
2043 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2044 return 0;
2045 /* We'll check insns between INSN and I3 below. */
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2051 if (GET_CODE (src) == ASM_OPERANDS
2052 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2053 return 0;
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2060 is_volatile_p = volatile_refs_p (PATTERN (insn))
2061 ? volatile_refs_p
2062 : volatile_insn_p;
2064 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2065 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2066 return 0;
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2074 if (AUTO_INC_DEC)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == REG_INC
2077 && (JUMP_P (i3)
2078 || reg_used_between_p (XEXP (link, 0), insn, i3)
2079 || (pred != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2081 || (pred2 != NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2083 || (succ != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2085 || (succ2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2087 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2088 return 0;
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2099 if (HAVE_cc0)
2101 p = prev_nonnote_insn (insn);
2102 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2103 && ! all_adjacent)
2104 return 0;
2107 /* If we get here, we have passed all the tests and the combination is
2108 to be allowed. */
2110 *pdest = dest;
2111 *psrc = src;
2113 return 1;
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2123 Consider:
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2128 This is NOT equivalent to:
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2152 Return 1 if the combination is valid, zero otherwise. */
2154 static int
2155 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2156 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2158 rtx x = *loc;
2160 if (GET_CODE (x) == SET)
2162 rtx set = x ;
2163 rtx dest = SET_DEST (set);
2164 rtx src = SET_SRC (set);
2165 rtx inner_dest = dest;
2166 rtx subdest;
2168 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest) == SUBREG
2170 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2171 inner_dest = XEXP (inner_dest, 0);
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest != dest &&
2178 (!MEM_P (inner_dest)
2179 || rtx_equal_p (i2dest, inner_dest)
2180 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2181 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2182 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2183 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2184 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2189 INNER_DEST.
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2196 || (REG_P (inner_dest)
2197 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2199 GET_MODE (inner_dest))))
2200 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2201 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2202 return 0;
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2211 subdest = dest;
2212 if (GET_CODE (subdest) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2215 subdest = SUBREG_REG (subdest);
2216 if (pi3dest_killed
2217 && REG_P (subdest)
2218 && reg_referenced_p (subdest, PATTERN (i3))
2219 && REGNO (subdest) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2222 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2223 || (REGNO (subdest) != ARG_POINTER_REGNUM
2224 || ! fixed_regs [REGNO (subdest)]))
2225 && REGNO (subdest) != STACK_POINTER_REGNUM)
2227 if (*pi3dest_killed)
2228 return 0;
2230 *pi3dest_killed = subdest;
2234 else if (GET_CODE (x) == PARALLEL)
2236 int i;
2238 for (i = 0; i < XVECLEN (x, 0); i++)
2239 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2240 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2241 return 0;
2244 return 1;
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2250 static int
2251 contains_muldiv (rtx x)
2253 switch (GET_CODE (x))
2255 case MOD: case DIV: case UMOD: case UDIV:
2256 return 1;
2258 case MULT:
2259 return ! (CONST_INT_P (XEXP (x, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2261 default:
2262 if (BINARY_P (x))
2263 return contains_muldiv (XEXP (x, 0))
2264 || contains_muldiv (XEXP (x, 1));
2266 if (UNARY_P (x))
2267 return contains_muldiv (XEXP (x, 0));
2269 return 0;
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2277 static int
2278 cant_combine_insn_p (rtx_insn *insn)
2280 rtx set;
2281 rtx src, dest;
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn))
2287 return 1;
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2296 set = single_set (insn);
2297 if (! set)
2298 return 0;
2299 src = SET_SRC (set);
2300 dest = SET_DEST (set);
2301 if (GET_CODE (src) == SUBREG)
2302 src = SUBREG_REG (src);
2303 if (GET_CODE (dest) == SUBREG)
2304 dest = SUBREG_REG (dest);
2305 if (REG_P (src) && REG_P (dest)
2306 && ((HARD_REGISTER_P (src)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2308 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2309 || (HARD_REGISTER_P (dest)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2311 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2312 return 1;
2314 return 0;
2317 struct likely_spilled_retval_info
2319 unsigned regno, nregs;
2320 unsigned mask;
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2325 static void
2326 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2328 struct likely_spilled_retval_info *const info =
2329 (struct likely_spilled_retval_info *) data;
2330 unsigned regno, nregs;
2331 unsigned new_mask;
2333 if (!REG_P (XEXP (set, 0)))
2334 return;
2335 regno = REGNO (x);
2336 if (regno >= info->regno + info->nregs)
2337 return;
2338 nregs = REG_NREGS (x);
2339 if (regno + nregs <= info->regno)
2340 return;
2341 new_mask = (2U << (nregs - 1)) - 1;
2342 if (regno < info->regno)
2343 new_mask >>= info->regno - regno;
2344 else
2345 new_mask <<= regno - info->regno;
2346 info->mask &= ~new_mask;
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2354 static int
2355 likely_spilled_retval_p (rtx_insn *insn)
2357 rtx_insn *use = BB_END (this_basic_block);
2358 rtx reg;
2359 rtx_insn *p;
2360 unsigned regno, nregs;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2364 unsigned mask;
2365 struct likely_spilled_retval_info info;
2367 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2368 return 0;
2369 reg = XEXP (PATTERN (use), 0);
2370 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2371 return 0;
2372 regno = REGNO (reg);
2373 nregs = REG_NREGS (reg);
2374 if (nregs == 1)
2375 return 0;
2376 mask = (2U << (nregs - 1)) - 1;
2378 /* Disregard parts of the return value that are set later. */
2379 info.regno = regno;
2380 info.nregs = nregs;
2381 info.mask = mask;
2382 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2383 if (INSN_P (p))
2384 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2385 mask = info.mask;
2387 /* Check if any of the (probably) live return value registers is
2388 likely spilled. */
2389 nregs --;
2392 if ((mask & 1 << nregs)
2393 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2394 return 1;
2395 } while (nregs--);
2396 return 0;
2399 /* Adjust INSN after we made a change to its destination.
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2404 static void
2405 adjust_for_new_dest (rtx_insn *insn)
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn);
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2414 rtx set = single_set (insn);
2415 gcc_assert (set);
2417 rtx reg = SET_DEST (set);
2419 while (GET_CODE (reg) == ZERO_EXTRACT
2420 || GET_CODE (reg) == STRICT_LOW_PART
2421 || GET_CODE (reg) == SUBREG)
2422 reg = XEXP (reg, 0);
2423 gcc_assert (REG_P (reg));
2425 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2427 df_insn_rescan (insn);
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2432 static bool
2433 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2435 unsigned int regno;
2437 if (!REG_P (x))
2438 return false;
2440 regno = REGNO (x);
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno < FIRST_PSEUDO_REGISTER)
2444 return (HARD_REGNO_MODE_OK (regno, mode)
2445 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2447 /* Or a pseudo that is only used once. */
2448 return (regno < reg_n_sets_max
2449 && REG_N_SETS (regno) == 1
2450 && !added_sets
2451 && !REG_USERVAR_P (x));
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2458 static bool
2459 reg_subword_p (rtx x, rtx reg)
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2463 return false;
2465 if (GET_CODE (x) == STRICT_LOW_PART
2466 || GET_CODE (x) == ZERO_EXTRACT)
2467 x = XEXP (x, 0);
2469 return GET_CODE (x) == SUBREG
2470 && SUBREG_REG (x) == reg
2471 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2479 static void
2480 update_cfg_for_uncondjump (rtx_insn *insn)
2482 basic_block bb = BLOCK_FOR_INSN (insn);
2483 gcc_assert (BB_END (bb) == insn);
2485 purge_dead_edges (bb);
2487 delete_insn (insn);
2488 if (EDGE_COUNT (bb->succs) == 1)
2490 rtx_insn *insn;
2492 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2496 if (BARRIER_P (insn))
2498 if (PREV_INSN (insn))
2499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2500 else
2501 BB_FOOTER (bb) = NEXT_INSN (insn);
2502 if (NEXT_INSN (insn))
2503 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2505 else if (LABEL_P (insn))
2506 break;
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2512 static bool
2513 is_parallel_of_n_reg_sets (rtx pat, int n)
2515 if (GET_CODE (pat) != PARALLEL)
2516 return false;
2518 int len = XVECLEN (pat, 0);
2519 if (len < n)
2520 return false;
2522 int i;
2523 for (i = 0; i < n; i++)
2524 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2526 return false;
2527 for ( ; i < len; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2529 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2530 return false;
2532 return true;
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2538 static bool
2539 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2541 if (!insn_nothrow_p (insn))
2542 return false;
2544 rtx pat = PATTERN (insn);
2546 int i, j;
2547 for (i = 0; i < n; i++)
2549 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2550 return false;
2552 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2554 for (j = i + 1; j < n; j++)
2555 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2556 return false;
2559 return true;
2562 /* Try to combine the insns I0, I1 and I2 into I3.
2563 Here I0, I1 and I2 appear earlier than I3.
2564 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2567 If we are combining more than two insns and the resulting insn is not
2568 recognized, try splitting it into two insns. If that happens, I2 and I3
2569 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2570 Otherwise, I0, I1 and I2 are pseudo-deleted.
2572 Return 0 if the combination does not work. Then nothing is changed.
2573 If we did the combination, return the insn at which combine should
2574 resume scanning.
2576 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2577 new direct jump instruction.
2579 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2580 been I3 passed to an earlier try_combine within the same basic
2581 block. */
2583 static rtx_insn *
2584 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2585 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2587 /* New patterns for I3 and I2, respectively. */
2588 rtx newpat, newi2pat = 0;
2589 rtvec newpat_vec_with_clobbers = 0;
2590 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2591 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2592 dead. */
2593 int added_sets_0, added_sets_1, added_sets_2;
2594 /* Total number of SETs to put into I3. */
2595 int total_sets;
2596 /* Nonzero if I2's or I1's body now appears in I3. */
2597 int i2_is_used = 0, i1_is_used = 0;
2598 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2599 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2600 /* Contains I3 if the destination of I3 is used in its source, which means
2601 that the old life of I3 is being killed. If that usage is placed into
2602 I2 and not in I3, a REG_DEAD note must be made. */
2603 rtx i3dest_killed = 0;
2604 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2605 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2606 /* Copy of SET_SRC of I1 and I0, if needed. */
2607 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2608 /* Set if I2DEST was reused as a scratch register. */
2609 bool i2scratch = false;
2610 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2611 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2614 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2615 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2616 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2617 /* Notes that must be added to REG_NOTES in I3 and I2. */
2618 rtx new_i3_notes, new_i2_notes;
2619 /* Notes that we substituted I3 into I2 instead of the normal case. */
2620 int i3_subst_into_i2 = 0;
2621 /* Notes that I1, I2 or I3 is a MULT operation. */
2622 int have_mult = 0;
2623 int swap_i2i3 = 0;
2624 int changed_i3_dest = 0;
2626 int maxreg;
2627 rtx_insn *temp_insn;
2628 rtx temp_expr;
2629 struct insn_link *link;
2630 rtx other_pat = 0;
2631 rtx new_other_notes;
2632 int i;
2634 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2635 never be). */
2636 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2637 return 0;
2639 /* Only try four-insn combinations when there's high likelihood of
2640 success. Look for simple insns, such as loads of constants or
2641 binary operations involving a constant. */
2642 if (i0)
2644 int i;
2645 int ngood = 0;
2646 int nshift = 0;
2647 rtx set0, set3;
2649 if (!flag_expensive_optimizations)
2650 return 0;
2652 for (i = 0; i < 4; i++)
2654 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2655 rtx set = single_set (insn);
2656 rtx src;
2657 if (!set)
2658 continue;
2659 src = SET_SRC (set);
2660 if (CONSTANT_P (src))
2662 ngood += 2;
2663 break;
2665 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2666 ngood++;
2667 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2668 || GET_CODE (src) == LSHIFTRT)
2669 nshift++;
2672 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2673 are likely manipulating its value. Ideally we'll be able to combine
2674 all four insns into a bitfield insertion of some kind.
2676 Note the source in I0 might be inside a sign/zero extension and the
2677 memory modes in I0 and I3 might be different. So extract the address
2678 from the destination of I3 and search for it in the source of I0.
2680 In the event that there's a match but the source/dest do not actually
2681 refer to the same memory, the worst that happens is we try some
2682 combinations that we wouldn't have otherwise. */
2683 if ((set0 = single_set (i0))
2684 /* Ensure the source of SET0 is a MEM, possibly buried inside
2685 an extension. */
2686 && (GET_CODE (SET_SRC (set0)) == MEM
2687 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2688 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2689 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2690 && (set3 = single_set (i3))
2691 /* Ensure the destination of SET3 is a MEM. */
2692 && GET_CODE (SET_DEST (set3)) == MEM
2693 /* Would it be better to extract the base address for the MEM
2694 in SET3 and look for that? I don't have cases where it matters
2695 but I could envision such cases. */
2696 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2697 ngood += 2;
2699 if (ngood < 2 && nshift < 2)
2700 return 0;
2703 /* Exit early if one of the insns involved can't be used for
2704 combinations. */
2705 if (CALL_P (i2)
2706 || (i1 && CALL_P (i1))
2707 || (i0 && CALL_P (i0))
2708 || cant_combine_insn_p (i3)
2709 || cant_combine_insn_p (i2)
2710 || (i1 && cant_combine_insn_p (i1))
2711 || (i0 && cant_combine_insn_p (i0))
2712 || likely_spilled_retval_p (i3))
2713 return 0;
2715 combine_attempts++;
2716 undobuf.other_insn = 0;
2718 /* Reset the hard register usage information. */
2719 CLEAR_HARD_REG_SET (newpat_used_regs);
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2723 if (i0)
2724 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2725 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2726 else if (i1)
2727 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2728 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2729 else
2730 fprintf (dump_file, "\nTrying %d -> %d:\n",
2731 INSN_UID (i2), INSN_UID (i3));
2734 /* If multiple insns feed into one of I2 or I3, they can be in any
2735 order. To simplify the code below, reorder them in sequence. */
2736 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2737 std::swap (i0, i2);
2738 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2739 std::swap (i0, i1);
2740 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2741 std::swap (i1, i2);
2743 added_links_insn = 0;
2745 /* First check for one important special case that the code below will
2746 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2747 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2748 we may be able to replace that destination with the destination of I3.
2749 This occurs in the common code where we compute both a quotient and
2750 remainder into a structure, in which case we want to do the computation
2751 directly into the structure to avoid register-register copies.
2753 Note that this case handles both multiple sets in I2 and also cases
2754 where I2 has a number of CLOBBERs inside the PARALLEL.
2756 We make very conservative checks below and only try to handle the
2757 most common cases of this. For example, we only handle the case
2758 where I2 and I3 are adjacent to avoid making difficult register
2759 usage tests. */
2761 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2762 && REG_P (SET_SRC (PATTERN (i3)))
2763 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2764 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2765 && GET_CODE (PATTERN (i2)) == PARALLEL
2766 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2767 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2768 below would need to check what is inside (and reg_overlap_mentioned_p
2769 doesn't support those codes anyway). Don't allow those destinations;
2770 the resulting insn isn't likely to be recognized anyway. */
2771 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2772 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2773 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2774 SET_DEST (PATTERN (i3)))
2775 && next_active_insn (i2) == i3)
2777 rtx p2 = PATTERN (i2);
2779 /* Make sure that the destination of I3,
2780 which we are going to substitute into one output of I2,
2781 is not used within another output of I2. We must avoid making this:
2782 (parallel [(set (mem (reg 69)) ...)
2783 (set (reg 69) ...)])
2784 which is not well-defined as to order of actions.
2785 (Besides, reload can't handle output reloads for this.)
2787 The problem can also happen if the dest of I3 is a memory ref,
2788 if another dest in I2 is an indirect memory ref.
2790 Neither can this PARALLEL be an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2792 bool ok = true;
2793 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2795 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2796 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2797 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2798 SET_DEST (XVECEXP (p2, 0, i))))
2799 ok = false;
2800 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2801 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2802 ok = false;
2805 if (ok)
2806 for (i = 0; i < XVECLEN (p2, 0); i++)
2807 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2808 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2810 combine_merges++;
2812 subst_insn = i3;
2813 subst_low_luid = DF_INSN_LUID (i2);
2815 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2816 i2src = SET_SRC (XVECEXP (p2, 0, i));
2817 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2818 i2dest_killed = dead_or_set_p (i2, i2dest);
2820 /* Replace the dest in I2 with our dest and make the resulting
2821 insn the new pattern for I3. Then skip to where we validate
2822 the pattern. Everything was set up above. */
2823 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2824 newpat = p2;
2825 i3_subst_into_i2 = 1;
2826 goto validate_replacement;
2830 /* If I2 is setting a pseudo to a constant and I3 is setting some
2831 sub-part of it to another constant, merge them by making a new
2832 constant. */
2833 if (i1 == 0
2834 && (temp_expr = single_set (i2)) != 0
2835 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2836 && GET_CODE (PATTERN (i3)) == SET
2837 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2838 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2840 rtx dest = SET_DEST (PATTERN (i3));
2841 int offset = -1;
2842 int width = 0;
2844 if (GET_CODE (dest) == ZERO_EXTRACT)
2846 if (CONST_INT_P (XEXP (dest, 1))
2847 && CONST_INT_P (XEXP (dest, 2)))
2849 width = INTVAL (XEXP (dest, 1));
2850 offset = INTVAL (XEXP (dest, 2));
2851 dest = XEXP (dest, 0);
2852 if (BITS_BIG_ENDIAN)
2853 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2856 else
2858 if (GET_CODE (dest) == STRICT_LOW_PART)
2859 dest = XEXP (dest, 0);
2860 width = GET_MODE_PRECISION (GET_MODE (dest));
2861 offset = 0;
2864 if (offset >= 0)
2866 /* If this is the low part, we're done. */
2867 if (subreg_lowpart_p (dest))
2869 /* Handle the case where inner is twice the size of outer. */
2870 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2871 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2872 offset += GET_MODE_PRECISION (GET_MODE (dest));
2873 /* Otherwise give up for now. */
2874 else
2875 offset = -1;
2878 if (offset >= 0)
2880 rtx inner = SET_SRC (PATTERN (i3));
2881 rtx outer = SET_SRC (temp_expr);
2883 wide_int o
2884 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2885 rtx_mode_t (inner, GET_MODE (dest)),
2886 offset, width);
2888 combine_merges++;
2889 subst_insn = i3;
2890 subst_low_luid = DF_INSN_LUID (i2);
2891 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2892 i2dest = SET_DEST (temp_expr);
2893 i2dest_killed = dead_or_set_p (i2, i2dest);
2895 /* Replace the source in I2 with the new constant and make the
2896 resulting insn the new pattern for I3. Then skip to where we
2897 validate the pattern. Everything was set up above. */
2898 SUBST (SET_SRC (temp_expr),
2899 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2901 newpat = PATTERN (i2);
2903 /* The dest of I3 has been replaced with the dest of I2. */
2904 changed_i3_dest = 1;
2905 goto validate_replacement;
2909 /* If we have no I1 and I2 looks like:
2910 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2911 (set Y OP)])
2912 make up a dummy I1 that is
2913 (set Y OP)
2914 and change I2 to be
2915 (set (reg:CC X) (compare:CC Y (const_int 0)))
2917 (We can ignore any trailing CLOBBERs.)
2919 This undoes a previous combination and allows us to match a branch-and-
2920 decrement insn. */
2922 if (!HAVE_cc0 && i1 == 0
2923 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2924 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2925 == MODE_CC)
2926 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2927 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2928 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2929 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2930 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2931 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2933 /* We make I1 with the same INSN_UID as I2. This gives it
2934 the same DF_INSN_LUID for value tracking. Our fake I1 will
2935 never appear in the insn stream so giving it the same INSN_UID
2936 as I2 will not cause a problem. */
2938 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2939 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2940 -1, NULL_RTX);
2941 INSN_UID (i1) = INSN_UID (i2);
2943 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2944 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2945 SET_DEST (PATTERN (i1)));
2946 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2947 SUBST_LINK (LOG_LINKS (i2),
2948 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2951 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2952 make those two SETs separate I1 and I2 insns, and make an I0 that is
2953 the original I1. */
2954 if (!HAVE_cc0 && i0 == 0
2955 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2956 && can_split_parallel_of_n_reg_sets (i2, 2)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2958 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2960 /* If there is no I1, there is no I0 either. */
2961 i0 = i1;
2963 /* We make I1 with the same INSN_UID as I2. This gives it
2964 the same DF_INSN_LUID for value tracking. Our fake I1 will
2965 never appear in the insn stream so giving it the same INSN_UID
2966 as I2 will not cause a problem. */
2968 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2969 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2970 -1, NULL_RTX);
2971 INSN_UID (i1) = INSN_UID (i2);
2973 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2976 /* Verify that I2 and I1 are valid for combining. */
2977 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2978 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2979 &i1dest, &i1src))
2980 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2981 &i0dest, &i0src)))
2983 undo_all ();
2984 return 0;
2987 /* Record whether I2DEST is used in I2SRC and similarly for the other
2988 cases. Knowing this will help in register status updating below. */
2989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2992 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2993 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2994 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2995 i2dest_killed = dead_or_set_p (i2, i2dest);
2996 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2997 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2999 /* For the earlier insns, determine which of the subsequent ones they
3000 feed. */
3001 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3002 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3003 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3004 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3005 && reg_overlap_mentioned_p (i0dest, i2src))));
3007 /* Ensure that I3's pattern can be the destination of combines. */
3008 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3009 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3010 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3011 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3012 &i3dest_killed))
3014 undo_all ();
3015 return 0;
3018 /* See if any of the insns is a MULT operation. Unless one is, we will
3019 reject a combination that is, since it must be slower. Be conservative
3020 here. */
3021 if (GET_CODE (i2src) == MULT
3022 || (i1 != 0 && GET_CODE (i1src) == MULT)
3023 || (i0 != 0 && GET_CODE (i0src) == MULT)
3024 || (GET_CODE (PATTERN (i3)) == SET
3025 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3026 have_mult = 1;
3028 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3029 We used to do this EXCEPT in one case: I3 has a post-inc in an
3030 output operand. However, that exception can give rise to insns like
3031 mov r3,(r3)+
3032 which is a famous insn on the PDP-11 where the value of r3 used as the
3033 source was model-dependent. Avoid this sort of thing. */
3035 #if 0
3036 if (!(GET_CODE (PATTERN (i3)) == SET
3037 && REG_P (SET_SRC (PATTERN (i3)))
3038 && MEM_P (SET_DEST (PATTERN (i3)))
3039 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3040 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3041 /* It's not the exception. */
3042 #endif
3043 if (AUTO_INC_DEC)
3045 rtx link;
3046 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3047 if (REG_NOTE_KIND (link) == REG_INC
3048 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3049 || (i1 != 0
3050 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3052 undo_all ();
3053 return 0;
3057 /* See if the SETs in I1 or I2 need to be kept around in the merged
3058 instruction: whenever the value set there is still needed past I3.
3059 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061 For the SET in I1, we have two cases: if I1 and I2 independently feed
3062 into I3, the set in I1 needs to be kept around unless I1DEST dies
3063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3064 in I1 needs to be kept around unless I1DEST dies or is set in either
3065 I2 or I3. The same considerations apply to I0. */
3067 added_sets_2 = !dead_or_set_p (i3, i2dest);
3069 if (i1)
3070 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3071 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3072 else
3073 added_sets_1 = 0;
3075 if (i0)
3076 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3077 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3078 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3079 && dead_or_set_p (i2, i0dest)));
3080 else
3081 added_sets_0 = 0;
3083 /* We are about to copy insns for the case where they need to be kept
3084 around. Check that they can be copied in the merged instruction. */
3086 if (targetm.cannot_copy_insn_p
3087 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3088 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3089 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3091 undo_all ();
3092 return 0;
3095 /* If the set in I2 needs to be kept around, we must make a copy of
3096 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3097 PATTERN (I2), we are only substituting for the original I1DEST, not into
3098 an already-substituted copy. This also prevents making self-referential
3099 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3100 I2DEST. */
3102 if (added_sets_2)
3104 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3105 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3106 else
3107 i2pat = copy_rtx (PATTERN (i2));
3110 if (added_sets_1)
3112 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3113 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3114 else
3115 i1pat = copy_rtx (PATTERN (i1));
3118 if (added_sets_0)
3120 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3121 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3122 else
3123 i0pat = copy_rtx (PATTERN (i0));
3126 combine_merges++;
3128 /* Substitute in the latest insn for the regs set by the earlier ones. */
3130 maxreg = max_reg_num ();
3132 subst_insn = i3;
3134 /* Many machines that don't use CC0 have insns that can both perform an
3135 arithmetic operation and set the condition code. These operations will
3136 be represented as a PARALLEL with the first element of the vector
3137 being a COMPARE of an arithmetic operation with the constant zero.
3138 The second element of the vector will set some pseudo to the result
3139 of the same arithmetic operation. If we simplify the COMPARE, we won't
3140 match such a pattern and so will generate an extra insn. Here we test
3141 for this case, where both the comparison and the operation result are
3142 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3143 I2SRC. Later we will make the PARALLEL that contains I2. */
3145 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3147 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3148 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3150 rtx newpat_dest;
3151 rtx *cc_use_loc = NULL;
3152 rtx_insn *cc_use_insn = NULL;
3153 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3154 machine_mode compare_mode, orig_compare_mode;
3155 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3157 newpat = PATTERN (i3);
3158 newpat_dest = SET_DEST (newpat);
3159 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3161 if (undobuf.other_insn == 0
3162 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3163 &cc_use_insn)))
3165 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3166 compare_code = simplify_compare_const (compare_code,
3167 GET_MODE (i2dest), op0, &op1);
3168 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3171 /* Do the rest only if op1 is const0_rtx, which may be the
3172 result of simplification. */
3173 if (op1 == const0_rtx)
3175 /* If a single use of the CC is found, prepare to modify it
3176 when SELECT_CC_MODE returns a new CC-class mode, or when
3177 the above simplify_compare_const() returned a new comparison
3178 operator. undobuf.other_insn is assigned the CC use insn
3179 when modifying it. */
3180 if (cc_use_loc)
3182 #ifdef SELECT_CC_MODE
3183 machine_mode new_mode
3184 = SELECT_CC_MODE (compare_code, op0, op1);
3185 if (new_mode != orig_compare_mode
3186 && can_change_dest_mode (SET_DEST (newpat),
3187 added_sets_2, new_mode))
3189 unsigned int regno = REGNO (newpat_dest);
3190 compare_mode = new_mode;
3191 if (regno < FIRST_PSEUDO_REGISTER)
3192 newpat_dest = gen_rtx_REG (compare_mode, regno);
3193 else
3195 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3196 newpat_dest = regno_reg_rtx[regno];
3199 #endif
3200 /* Cases for modifying the CC-using comparison. */
3201 if (compare_code != orig_compare_code
3202 /* ??? Do we need to verify the zero rtx? */
3203 && XEXP (*cc_use_loc, 1) == const0_rtx)
3205 /* Replace cc_use_loc with entire new RTX. */
3206 SUBST (*cc_use_loc,
3207 gen_rtx_fmt_ee (compare_code, compare_mode,
3208 newpat_dest, const0_rtx));
3209 undobuf.other_insn = cc_use_insn;
3211 else if (compare_mode != orig_compare_mode)
3213 /* Just replace the CC reg with a new mode. */
3214 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3215 undobuf.other_insn = cc_use_insn;
3219 /* Now we modify the current newpat:
3220 First, SET_DEST(newpat) is updated if the CC mode has been
3221 altered. For targets without SELECT_CC_MODE, this should be
3222 optimized away. */
3223 if (compare_mode != orig_compare_mode)
3224 SUBST (SET_DEST (newpat), newpat_dest);
3225 /* This is always done to propagate i2src into newpat. */
3226 SUBST (SET_SRC (newpat),
3227 gen_rtx_COMPARE (compare_mode, op0, op1));
3228 /* Create new version of i2pat if needed; the below PARALLEL
3229 creation needs this to work correctly. */
3230 if (! rtx_equal_p (i2src, op0))
3231 i2pat = gen_rtx_SET (i2dest, op0);
3232 i2_is_used = 1;
3236 if (i2_is_used == 0)
3238 /* It is possible that the source of I2 or I1 may be performing
3239 an unneeded operation, such as a ZERO_EXTEND of something
3240 that is known to have the high part zero. Handle that case
3241 by letting subst look at the inner insns.
3243 Another way to do this would be to have a function that tries
3244 to simplify a single insn instead of merging two or more
3245 insns. We don't do this because of the potential of infinite
3246 loops and because of the potential extra memory required.
3247 However, doing it the way we are is a bit of a kludge and
3248 doesn't catch all cases.
3250 But only do this if -fexpensive-optimizations since it slows
3251 things down and doesn't usually win.
3253 This is not done in the COMPARE case above because the
3254 unmodified I2PAT is used in the PARALLEL and so a pattern
3255 with a modified I2SRC would not match. */
3257 if (flag_expensive_optimizations)
3259 /* Pass pc_rtx so no substitutions are done, just
3260 simplifications. */
3261 if (i1)
3263 subst_low_luid = DF_INSN_LUID (i1);
3264 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3267 subst_low_luid = DF_INSN_LUID (i2);
3268 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3271 n_occurrences = 0; /* `subst' counts here */
3272 subst_low_luid = DF_INSN_LUID (i2);
3274 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3275 copy of I2SRC each time we substitute it, in order to avoid creating
3276 self-referential RTL when we will be substituting I1SRC for I1DEST
3277 later. Likewise if I0 feeds into I2, either directly or indirectly
3278 through I1, and I0DEST is in I0SRC. */
3279 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3280 (i1_feeds_i2_n && i1dest_in_i1src)
3281 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3282 && i0dest_in_i0src));
3283 substed_i2 = 1;
3285 /* Record whether I2's body now appears within I3's body. */
3286 i2_is_used = n_occurrences;
3289 /* If we already got a failure, don't try to do more. Otherwise, try to
3290 substitute I1 if we have it. */
3292 if (i1 && GET_CODE (newpat) != CLOBBER)
3294 /* Check that an autoincrement side-effect on I1 has not been lost.
3295 This happens if I1DEST is mentioned in I2 and dies there, and
3296 has disappeared from the new pattern. */
3297 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3298 && i1_feeds_i2_n
3299 && dead_or_set_p (i2, i1dest)
3300 && !reg_overlap_mentioned_p (i1dest, newpat))
3301 /* Before we can do this substitution, we must redo the test done
3302 above (see detailed comments there) that ensures I1DEST isn't
3303 mentioned in any SETs in NEWPAT that are field assignments. */
3304 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3305 0, 0, 0))
3307 undo_all ();
3308 return 0;
3311 n_occurrences = 0;
3312 subst_low_luid = DF_INSN_LUID (i1);
3314 /* If the following substitution will modify I1SRC, make a copy of it
3315 for the case where it is substituted for I1DEST in I2PAT later. */
3316 if (added_sets_2 && i1_feeds_i2_n)
3317 i1src_copy = copy_rtx (i1src);
3319 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3320 copy of I1SRC each time we substitute it, in order to avoid creating
3321 self-referential RTL when we will be substituting I0SRC for I0DEST
3322 later. */
3323 newpat = subst (newpat, i1dest, i1src, 0, 0,
3324 i0_feeds_i1_n && i0dest_in_i0src);
3325 substed_i1 = 1;
3327 /* Record whether I1's body now appears within I3's body. */
3328 i1_is_used = n_occurrences;
3331 /* Likewise for I0 if we have it. */
3333 if (i0 && GET_CODE (newpat) != CLOBBER)
3335 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3336 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3337 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3338 && !reg_overlap_mentioned_p (i0dest, newpat))
3339 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3340 0, 0, 0))
3342 undo_all ();
3343 return 0;
3346 /* If the following substitution will modify I0SRC, make a copy of it
3347 for the case where it is substituted for I0DEST in I1PAT later. */
3348 if (added_sets_1 && i0_feeds_i1_n)
3349 i0src_copy = copy_rtx (i0src);
3350 /* And a copy for I0DEST in I2PAT substitution. */
3351 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3352 || (i0_feeds_i2_n)))
3353 i0src_copy2 = copy_rtx (i0src);
3355 n_occurrences = 0;
3356 subst_low_luid = DF_INSN_LUID (i0);
3357 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3358 substed_i0 = 1;
3361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3362 to count all the ways that I2SRC and I1SRC can be used. */
3363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3364 && i2_is_used + added_sets_2 > 1)
3365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3366 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3367 > 1))
3368 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3369 && (n_occurrences + added_sets_0
3370 + (added_sets_1 && i0_feeds_i1_n)
3371 + (added_sets_2 && i0_feeds_i2_n)
3372 > 1))
3373 /* Fail if we tried to make a new register. */
3374 || max_reg_num () != maxreg
3375 /* Fail if we couldn't do something and have a CLOBBER. */
3376 || GET_CODE (newpat) == CLOBBER
3377 /* Fail if this new pattern is a MULT and we didn't have one before
3378 at the outer level. */
3379 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3380 && ! have_mult))
3382 undo_all ();
3383 return 0;
3386 /* If the actions of the earlier insns must be kept
3387 in addition to substituting them into the latest one,
3388 we must make a new PARALLEL for the latest insn
3389 to hold additional the SETs. */
3391 if (added_sets_0 || added_sets_1 || added_sets_2)
3393 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3394 combine_extras++;
3396 if (GET_CODE (newpat) == PARALLEL)
3398 rtvec old = XVEC (newpat, 0);
3399 total_sets = XVECLEN (newpat, 0) + extra_sets;
3400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3401 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3402 sizeof (old->elem[0]) * old->num_elem);
3404 else
3406 rtx old = newpat;
3407 total_sets = 1 + extra_sets;
3408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3409 XVECEXP (newpat, 0, 0) = old;
3412 if (added_sets_0)
3413 XVECEXP (newpat, 0, --total_sets) = i0pat;
3415 if (added_sets_1)
3417 rtx t = i1pat;
3418 if (i0_feeds_i1_n)
3419 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3421 XVECEXP (newpat, 0, --total_sets) = t;
3423 if (added_sets_2)
3425 rtx t = i2pat;
3426 if (i1_feeds_i2_n)
3427 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3428 i0_feeds_i1_n && i0dest_in_i0src);
3429 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3430 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3432 XVECEXP (newpat, 0, --total_sets) = t;
3436 validate_replacement:
3438 /* Note which hard regs this insn has as inputs. */
3439 mark_used_regs_combine (newpat);
3441 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3442 consider splitting this pattern, we might need these clobbers. */
3443 if (i1 && GET_CODE (newpat) == PARALLEL
3444 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3446 int len = XVECLEN (newpat, 0);
3448 newpat_vec_with_clobbers = rtvec_alloc (len);
3449 for (i = 0; i < len; i++)
3450 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3453 /* We have recognized nothing yet. */
3454 insn_code_number = -1;
3456 /* See if this is a PARALLEL of two SETs where one SET's destination is
3457 a register that is unused and this isn't marked as an instruction that
3458 might trap in an EH region. In that case, we just need the other SET.
3459 We prefer this over the PARALLEL.
3461 This can occur when simplifying a divmod insn. We *must* test for this
3462 case here because the code below that splits two independent SETs doesn't
3463 handle this case correctly when it updates the register status.
3465 It's pointless doing this if we originally had two sets, one from
3466 i3, and one from i2. Combining then splitting the parallel results
3467 in the original i2 again plus an invalid insn (which we delete).
3468 The net effect is only to move instructions around, which makes
3469 debug info less accurate. */
3471 if (!(added_sets_2 && i1 == 0)
3472 && is_parallel_of_n_reg_sets (newpat, 2)
3473 && asm_noperands (newpat) < 0)
3475 rtx set0 = XVECEXP (newpat, 0, 0);
3476 rtx set1 = XVECEXP (newpat, 0, 1);
3477 rtx oldpat = newpat;
3479 if (((REG_P (SET_DEST (set1))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3481 || (GET_CODE (SET_DEST (set1)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3483 && insn_nothrow_p (i3)
3484 && !side_effects_p (SET_SRC (set1)))
3486 newpat = set0;
3487 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490 else if (((REG_P (SET_DEST (set0))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3492 || (GET_CODE (SET_DEST (set0)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED,
3494 SUBREG_REG (SET_DEST (set0)))))
3495 && insn_nothrow_p (i3)
3496 && !side_effects_p (SET_SRC (set0)))
3498 newpat = set1;
3499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 if (insn_code_number >= 0)
3502 changed_i3_dest = 1;
3505 if (insn_code_number < 0)
3506 newpat = oldpat;
3509 /* Is the result of combination a valid instruction? */
3510 if (insn_code_number < 0)
3511 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3513 /* If we were combining three insns and the result is a simple SET
3514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3515 insns. There are two ways to do this. It can be split using a
3516 machine-specific method (like when you have an addition of a large
3517 constant) or by combine in the function find_split_point. */
3519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3520 && asm_noperands (newpat) < 0)
3522 rtx parallel, *split;
3523 rtx_insn *m_split_insn;
3525 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3526 use I2DEST as a scratch register will help. In the latter case,
3527 convert I2DEST to the mode of the source of NEWPAT if we can. */
3529 m_split_insn = combine_split_insns (newpat, i3);
3531 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3532 inputs of NEWPAT. */
3534 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3535 possible to try that as a scratch reg. This would require adding
3536 more code to make it work though. */
3538 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3540 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3542 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3543 (temporarily, until we are committed to this instruction
3544 combination) does not work: for example, any call to nonzero_bits
3545 on the register (from a splitter in the MD file, for example)
3546 will get the old information, which is invalid.
3548 Since nowadays we can create registers during combine just fine,
3549 we should just create a new one here, not reuse i2dest. */
3551 /* First try to split using the original register as a
3552 scratch register. */
3553 parallel = gen_rtx_PARALLEL (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 i2dest)));
3557 m_split_insn = combine_split_insns (parallel, i3);
3559 /* If that didn't work, try changing the mode of I2DEST if
3560 we can. */
3561 if (m_split_insn == 0
3562 && new_mode != GET_MODE (i2dest)
3563 && new_mode != VOIDmode
3564 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3566 machine_mode old_mode = GET_MODE (i2dest);
3567 rtx ni2dest;
3569 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3570 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3571 else
3573 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3574 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3577 parallel = (gen_rtx_PARALLEL
3578 (VOIDmode,
3579 gen_rtvec (2, newpat,
3580 gen_rtx_CLOBBER (VOIDmode,
3581 ni2dest))));
3582 m_split_insn = combine_split_insns (parallel, i3);
3584 if (m_split_insn == 0
3585 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3587 struct undo *buf;
3589 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3590 buf = undobuf.undos;
3591 undobuf.undos = buf->next;
3592 buf->next = undobuf.frees;
3593 undobuf.frees = buf;
3597 i2scratch = m_split_insn != 0;
3600 /* If recog_for_combine has discarded clobbers, try to use them
3601 again for the split. */
3602 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3604 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3605 m_split_insn = combine_split_insns (parallel, i3);
3608 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3610 rtx m_split_pat = PATTERN (m_split_insn);
3611 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = m_split_pat;
3615 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3616 && (next_nonnote_nondebug_insn (i2) == i3
3617 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3619 rtx i2set, i3set;
3620 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3621 newi2pat = PATTERN (m_split_insn);
3623 i3set = single_set (NEXT_INSN (m_split_insn));
3624 i2set = single_set (m_split_insn);
3626 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3628 /* If I2 or I3 has multiple SETs, we won't know how to track
3629 register status, so don't use these insns. If I2's destination
3630 is used between I2 and I3, we also can't use these insns. */
3632 if (i2_code_number >= 0 && i2set && i3set
3633 && (next_nonnote_nondebug_insn (i2) == i3
3634 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3635 insn_code_number = recog_for_combine (&newi3pat, i3,
3636 &new_i3_notes);
3637 if (insn_code_number >= 0)
3638 newpat = newi3pat;
3640 /* It is possible that both insns now set the destination of I3.
3641 If so, we must show an extra use of it. */
3643 if (insn_code_number >= 0)
3645 rtx new_i3_dest = SET_DEST (i3set);
3646 rtx new_i2_dest = SET_DEST (i2set);
3648 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3649 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3650 || GET_CODE (new_i3_dest) == SUBREG)
3651 new_i3_dest = XEXP (new_i3_dest, 0);
3653 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3654 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3655 || GET_CODE (new_i2_dest) == SUBREG)
3656 new_i2_dest = XEXP (new_i2_dest, 0);
3658 if (REG_P (new_i3_dest)
3659 && REG_P (new_i2_dest)
3660 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3661 && REGNO (new_i2_dest) < reg_n_sets_max)
3662 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3666 /* If we can split it and use I2DEST, go ahead and see if that
3667 helps things be recognized. Verify that none of the registers
3668 are set between I2 and I3. */
3669 if (insn_code_number < 0
3670 && (split = find_split_point (&newpat, i3, false)) != 0
3671 && (!HAVE_cc0 || REG_P (i2dest))
3672 /* We need I2DEST in the proper mode. If it is a hard register
3673 or the only use of a pseudo, we can change its mode.
3674 Make sure we don't change a hard register to have a mode that
3675 isn't valid for it, or change the number of registers. */
3676 && (GET_MODE (*split) == GET_MODE (i2dest)
3677 || GET_MODE (*split) == VOIDmode
3678 || can_change_dest_mode (i2dest, added_sets_2,
3679 GET_MODE (*split)))
3680 && (next_nonnote_nondebug_insn (i2) == i3
3681 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3682 /* We can't overwrite I2DEST if its value is still used by
3683 NEWPAT. */
3684 && ! reg_referenced_p (i2dest, newpat))
3686 rtx newdest = i2dest;
3687 enum rtx_code split_code = GET_CODE (*split);
3688 machine_mode split_mode = GET_MODE (*split);
3689 bool subst_done = false;
3690 newi2pat = NULL_RTX;
3692 i2scratch = true;
3694 /* *SPLIT may be part of I2SRC, so make sure we have the
3695 original expression around for later debug processing.
3696 We should not need I2SRC any more in other cases. */
3697 if (MAY_HAVE_DEBUG_INSNS)
3698 i2src = copy_rtx (i2src);
3699 else
3700 i2src = NULL;
3702 /* Get NEWDEST as a register in the proper mode. We have already
3703 validated that we can do this. */
3704 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3706 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3707 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3708 else
3710 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3711 newdest = regno_reg_rtx[REGNO (i2dest)];
3715 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3716 an ASHIFT. This can occur if it was inside a PLUS and hence
3717 appeared to be a memory address. This is a kludge. */
3718 if (split_code == MULT
3719 && CONST_INT_P (XEXP (*split, 1))
3720 && INTVAL (XEXP (*split, 1)) > 0
3721 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3723 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3724 XEXP (*split, 0), GEN_INT (i)));
3725 /* Update split_code because we may not have a multiply
3726 anymore. */
3727 split_code = GET_CODE (*split);
3730 /* Similarly for (plus (mult FOO (const_int pow2))). */
3731 if (split_code == PLUS
3732 && GET_CODE (XEXP (*split, 0)) == MULT
3733 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3734 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3735 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3737 rtx nsplit = XEXP (*split, 0);
3738 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3739 XEXP (nsplit, 0), GEN_INT (i)));
3740 /* Update split_code because we may not have a multiply
3741 anymore. */
3742 split_code = GET_CODE (*split);
3745 #ifdef INSN_SCHEDULING
3746 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3747 be written as a ZERO_EXTEND. */
3748 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3750 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3751 what it really is. */
3752 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3753 == SIGN_EXTEND)
3754 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3755 SUBREG_REG (*split)));
3756 else
3757 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3758 SUBREG_REG (*split)));
3760 #endif
3762 /* Attempt to split binary operators using arithmetic identities. */
3763 if (BINARY_P (SET_SRC (newpat))
3764 && split_mode == GET_MODE (SET_SRC (newpat))
3765 && ! side_effects_p (SET_SRC (newpat)))
3767 rtx setsrc = SET_SRC (newpat);
3768 machine_mode mode = GET_MODE (setsrc);
3769 enum rtx_code code = GET_CODE (setsrc);
3770 rtx src_op0 = XEXP (setsrc, 0);
3771 rtx src_op1 = XEXP (setsrc, 1);
3773 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3774 if (rtx_equal_p (src_op0, src_op1))
3776 newi2pat = gen_rtx_SET (newdest, src_op0);
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3781 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3782 else if ((code == PLUS || code == MULT)
3783 && GET_CODE (src_op0) == code
3784 && GET_CODE (XEXP (src_op0, 0)) == code
3785 && (INTEGRAL_MODE_P (mode)
3786 || (FLOAT_MODE_P (mode)
3787 && flag_unsafe_math_optimizations)))
3789 rtx p = XEXP (XEXP (src_op0, 0), 0);
3790 rtx q = XEXP (XEXP (src_op0, 0), 1);
3791 rtx r = XEXP (src_op0, 1);
3792 rtx s = src_op1;
3794 /* Split both "((X op Y) op X) op Y" and
3795 "((X op Y) op Y) op X" as "T op T" where T is
3796 "X op Y". */
3797 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3798 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3800 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3805 /* Split "((X op X) op Y) op Y)" as "T op T" where
3806 T is "X op Y". */
3807 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3809 rtx tmp = simplify_gen_binary (code, mode, p, r);
3810 newi2pat = gen_rtx_SET (newdest, tmp);
3811 SUBST (XEXP (setsrc, 0), newdest);
3812 SUBST (XEXP (setsrc, 1), newdest);
3813 subst_done = true;
3818 if (!subst_done)
3820 newi2pat = gen_rtx_SET (newdest, *split);
3821 SUBST (*split, newdest);
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3826 /* recog_for_combine might have added CLOBBERs to newi2pat.
3827 Make sure NEWPAT does not depend on the clobbered regs. */
3828 if (GET_CODE (newi2pat) == PARALLEL)
3829 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3830 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3832 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3833 if (reg_overlap_mentioned_p (reg, newpat))
3835 undo_all ();
3836 return 0;
3840 /* If the split point was a MULT and we didn't have one before,
3841 don't use one now. */
3842 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3847 /* Check for a case where we loaded from memory in a narrow mode and
3848 then sign extended it, but we need both registers. In that case,
3849 we have a PARALLEL with both loads from the same memory location.
3850 We can split this into a load from memory followed by a register-register
3851 copy. This saves at least one insn, more if register allocation can
3852 eliminate the copy.
3854 We cannot do this if the destination of the first assignment is a
3855 condition code register or cc0. We eliminate this case by making sure
3856 the SET_DEST and SET_SRC have the same mode.
3858 We cannot do this if the destination of the second assignment is
3859 a register that we have already assumed is zero-extended. Similarly
3860 for a SUBREG of such a register. */
3862 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3863 && GET_CODE (newpat) == PARALLEL
3864 && XVECLEN (newpat, 0) == 2
3865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3866 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3867 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3868 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3869 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3870 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3871 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3872 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3873 DF_INSN_LUID (i2))
3874 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3875 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3876 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3877 (REG_P (temp_expr)
3878 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3879 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3880 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3881 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3882 != GET_MODE_MASK (word_mode))))
3883 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3884 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3885 (REG_P (temp_expr)
3886 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3889 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3890 != GET_MODE_MASK (word_mode)))))
3891 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3892 SET_SRC (XVECEXP (newpat, 0, 1)))
3893 && ! find_reg_note (i3, REG_UNUSED,
3894 SET_DEST (XVECEXP (newpat, 0, 0))))
3896 rtx ni2dest;
3898 newi2pat = XVECEXP (newpat, 0, 0);
3899 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3900 newpat = XVECEXP (newpat, 0, 1);
3901 SUBST (SET_SRC (newpat),
3902 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3903 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3905 if (i2_code_number >= 0)
3906 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3908 if (insn_code_number >= 0)
3909 swap_i2i3 = 1;
3912 /* Similarly, check for a case where we have a PARALLEL of two independent
3913 SETs but we started with three insns. In this case, we can do the sets
3914 as two separate insns. This case occurs when some SET allows two
3915 other insns to combine, but the destination of that SET is still live.
3917 Also do this if we started with two insns and (at least) one of the
3918 resulting sets is a noop; this noop will be deleted later. */
3920 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3921 && GET_CODE (newpat) == PARALLEL
3922 && XVECLEN (newpat, 0) == 2
3923 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3924 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3925 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3926 || set_noop_p (XVECEXP (newpat, 0, 1)))
3927 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3928 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3929 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3930 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3931 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3932 XVECEXP (newpat, 0, 0))
3933 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3934 XVECEXP (newpat, 0, 1))
3935 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3936 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3938 rtx set0 = XVECEXP (newpat, 0, 0);
3939 rtx set1 = XVECEXP (newpat, 0, 1);
3941 /* Normally, it doesn't matter which of the two is done first,
3942 but the one that references cc0 can't be the second, and
3943 one which uses any regs/memory set in between i2 and i3 can't
3944 be first. The PARALLEL might also have been pre-existing in i3,
3945 so we need to make sure that we won't wrongly hoist a SET to i2
3946 that would conflict with a death note present in there. */
3947 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3948 && !(REG_P (SET_DEST (set1))
3949 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3950 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3951 && find_reg_note (i2, REG_DEAD,
3952 SUBREG_REG (SET_DEST (set1))))
3953 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3954 /* If I3 is a jump, ensure that set0 is a jump so that
3955 we do not create invalid RTL. */
3956 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3959 newi2pat = set1;
3960 newpat = set0;
3962 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3963 && !(REG_P (SET_DEST (set0))
3964 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3965 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3966 && find_reg_note (i2, REG_DEAD,
3967 SUBREG_REG (SET_DEST (set0))))
3968 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3969 /* If I3 is a jump, ensure that set1 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3974 newi2pat = set0;
3975 newpat = set1;
3977 else
3979 undo_all ();
3980 return 0;
3983 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3985 if (i2_code_number >= 0)
3987 /* recog_for_combine might have added CLOBBERs to newi2pat.
3988 Make sure NEWPAT does not depend on the clobbered regs. */
3989 if (GET_CODE (newi2pat) == PARALLEL)
3991 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3992 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3994 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3995 if (reg_overlap_mentioned_p (reg, newpat))
3997 undo_all ();
3998 return 0;
4003 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4007 /* If it still isn't recognized, fail and change things back the way they
4008 were. */
4009 if ((insn_code_number < 0
4010 /* Is the result a reasonable ASM_OPERANDS? */
4011 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4013 undo_all ();
4014 return 0;
4017 /* If we had to change another insn, make sure it is valid also. */
4018 if (undobuf.other_insn)
4020 CLEAR_HARD_REG_SET (newpat_used_regs);
4022 other_pat = PATTERN (undobuf.other_insn);
4023 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4024 &new_other_notes);
4026 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4028 undo_all ();
4029 return 0;
4033 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4034 they are adjacent to each other or not. */
4035 if (HAVE_cc0)
4037 rtx_insn *p = prev_nonnote_insn (i3);
4038 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4039 && sets_cc0_p (newi2pat))
4041 undo_all ();
4042 return 0;
4046 /* Only allow this combination if insn_rtx_costs reports that the
4047 replacement instructions are cheaper than the originals. */
4048 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4050 undo_all ();
4051 return 0;
4054 if (MAY_HAVE_DEBUG_INSNS)
4056 struct undo *undo;
4058 for (undo = undobuf.undos; undo; undo = undo->next)
4059 if (undo->kind == UNDO_MODE)
4061 rtx reg = *undo->where.r;
4062 machine_mode new_mode = GET_MODE (reg);
4063 machine_mode old_mode = undo->old_contents.m;
4065 /* Temporarily revert mode back. */
4066 adjust_reg_mode (reg, old_mode);
4068 if (reg == i2dest && i2scratch)
4070 /* If we used i2dest as a scratch register with a
4071 different mode, substitute it for the original
4072 i2src while its original mode is temporarily
4073 restored, and then clear i2scratch so that we don't
4074 do it again later. */
4075 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4076 this_basic_block);
4077 i2scratch = false;
4078 /* Put back the new mode. */
4079 adjust_reg_mode (reg, new_mode);
4081 else
4083 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4084 rtx_insn *first, *last;
4086 if (reg == i2dest)
4088 first = i2;
4089 last = last_combined_insn;
4091 else
4093 first = i3;
4094 last = undobuf.other_insn;
4095 gcc_assert (last);
4096 if (DF_INSN_LUID (last)
4097 < DF_INSN_LUID (last_combined_insn))
4098 last = last_combined_insn;
4101 /* We're dealing with a reg that changed mode but not
4102 meaning, so we want to turn it into a subreg for
4103 the new mode. However, because of REG sharing and
4104 because its mode had already changed, we have to do
4105 it in two steps. First, replace any debug uses of
4106 reg, with its original mode temporarily restored,
4107 with this copy we have created; then, replace the
4108 copy with the SUBREG of the original shared reg,
4109 once again changed to the new mode. */
4110 propagate_for_debug (first, last, reg, tempreg,
4111 this_basic_block);
4112 adjust_reg_mode (reg, new_mode);
4113 propagate_for_debug (first, last, tempreg,
4114 lowpart_subreg (old_mode, reg, new_mode),
4115 this_basic_block);
4120 /* If we will be able to accept this, we have made a
4121 change to the destination of I3. This requires us to
4122 do a few adjustments. */
4124 if (changed_i3_dest)
4126 PATTERN (i3) = newpat;
4127 adjust_for_new_dest (i3);
4130 /* We now know that we can do this combination. Merge the insns and
4131 update the status of registers and LOG_LINKS. */
4133 if (undobuf.other_insn)
4135 rtx note, next;
4137 PATTERN (undobuf.other_insn) = other_pat;
4139 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4140 ensure that they are still valid. Then add any non-duplicate
4141 notes added by recog_for_combine. */
4142 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4144 next = XEXP (note, 1);
4146 if ((REG_NOTE_KIND (note) == REG_DEAD
4147 && !reg_referenced_p (XEXP (note, 0),
4148 PATTERN (undobuf.other_insn)))
4149 ||(REG_NOTE_KIND (note) == REG_UNUSED
4150 && !reg_set_p (XEXP (note, 0),
4151 PATTERN (undobuf.other_insn))))
4152 remove_note (undobuf.other_insn, note);
4155 distribute_notes (new_other_notes, undobuf.other_insn,
4156 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4157 NULL_RTX);
4160 if (swap_i2i3)
4162 rtx_insn *insn;
4163 struct insn_link *link;
4164 rtx ni2dest;
4166 /* I3 now uses what used to be its destination and which is now
4167 I2's destination. This requires us to do a few adjustments. */
4168 PATTERN (i3) = newpat;
4169 adjust_for_new_dest (i3);
4171 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4172 so we still will.
4174 However, some later insn might be using I2's dest and have
4175 a LOG_LINK pointing at I3. We must remove this link.
4176 The simplest way to remove the link is to point it at I1,
4177 which we know will be a NOTE. */
4179 /* newi2pat is usually a SET here; however, recog_for_combine might
4180 have added some clobbers. */
4181 if (GET_CODE (newi2pat) == PARALLEL)
4182 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4183 else
4184 ni2dest = SET_DEST (newi2pat);
4186 for (insn = NEXT_INSN (i3);
4187 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4188 || insn != BB_HEAD (this_basic_block->next_bb));
4189 insn = NEXT_INSN (insn))
4191 if (NONDEBUG_INSN_P (insn)
4192 && reg_referenced_p (ni2dest, PATTERN (insn)))
4194 FOR_EACH_LOG_LINK (link, insn)
4195 if (link->insn == i3)
4196 link->insn = i1;
4198 break;
4204 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4205 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4206 rtx midnotes = 0;
4207 int from_luid;
4208 /* Compute which registers we expect to eliminate. newi2pat may be setting
4209 either i3dest or i2dest, so we must check it. */
4210 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4211 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4212 || !i2dest_killed
4213 ? 0 : i2dest);
4214 /* For i1, we need to compute both local elimination and global
4215 elimination information with respect to newi2pat because i1dest
4216 may be the same as i3dest, in which case newi2pat may be setting
4217 i1dest. Global information is used when distributing REG_DEAD
4218 note for i2 and i3, in which case it does matter if newi2pat sets
4219 i1dest or not.
4221 Local information is used when distributing REG_DEAD note for i1,
4222 in which case it doesn't matter if newi2pat sets i1dest or not.
4223 See PR62151, if we have four insns combination:
4224 i0: r0 <- i0src
4225 i1: r1 <- i1src (using r0)
4226 REG_DEAD (r0)
4227 i2: r0 <- i2src (using r1)
4228 i3: r3 <- i3src (using r0)
4229 ix: using r0
4230 From i1's point of view, r0 is eliminated, no matter if it is set
4231 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4232 should be discarded.
4234 Note local information only affects cases in forms like "I1->I2->I3",
4235 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4236 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4237 i0dest anyway. */
4238 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4239 || !i1dest_killed
4240 ? 0 : i1dest);
4241 rtx elim_i1 = (local_elim_i1 == 0
4242 || (newi2pat && reg_set_p (i1dest, newi2pat))
4243 ? 0 : i1dest);
4244 /* Same case as i1. */
4245 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4246 ? 0 : i0dest);
4247 rtx elim_i0 = (local_elim_i0 == 0
4248 || (newi2pat && reg_set_p (i0dest, newi2pat))
4249 ? 0 : i0dest);
4251 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4252 clear them. */
4253 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4254 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4255 if (i1)
4256 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4257 if (i0)
4258 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4260 /* Ensure that we do not have something that should not be shared but
4261 occurs multiple times in the new insns. Check this by first
4262 resetting all the `used' flags and then copying anything is shared. */
4264 reset_used_flags (i3notes);
4265 reset_used_flags (i2notes);
4266 reset_used_flags (i1notes);
4267 reset_used_flags (i0notes);
4268 reset_used_flags (newpat);
4269 reset_used_flags (newi2pat);
4270 if (undobuf.other_insn)
4271 reset_used_flags (PATTERN (undobuf.other_insn));
4273 i3notes = copy_rtx_if_shared (i3notes);
4274 i2notes = copy_rtx_if_shared (i2notes);
4275 i1notes = copy_rtx_if_shared (i1notes);
4276 i0notes = copy_rtx_if_shared (i0notes);
4277 newpat = copy_rtx_if_shared (newpat);
4278 newi2pat = copy_rtx_if_shared (newi2pat);
4279 if (undobuf.other_insn)
4280 reset_used_flags (PATTERN (undobuf.other_insn));
4282 INSN_CODE (i3) = insn_code_number;
4283 PATTERN (i3) = newpat;
4285 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4287 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4289 reset_used_flags (call_usage);
4290 call_usage = copy_rtx (call_usage);
4292 if (substed_i2)
4294 /* I2SRC must still be meaningful at this point. Some splitting
4295 operations can invalidate I2SRC, but those operations do not
4296 apply to calls. */
4297 gcc_assert (i2src);
4298 replace_rtx (call_usage, i2dest, i2src);
4301 if (substed_i1)
4302 replace_rtx (call_usage, i1dest, i1src);
4303 if (substed_i0)
4304 replace_rtx (call_usage, i0dest, i0src);
4306 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4309 if (undobuf.other_insn)
4310 INSN_CODE (undobuf.other_insn) = other_code_number;
4312 /* We had one special case above where I2 had more than one set and
4313 we replaced a destination of one of those sets with the destination
4314 of I3. In that case, we have to update LOG_LINKS of insns later
4315 in this basic block. Note that this (expensive) case is rare.
4317 Also, in this case, we must pretend that all REG_NOTEs for I2
4318 actually came from I3, so that REG_UNUSED notes from I2 will be
4319 properly handled. */
4321 if (i3_subst_into_i2)
4323 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4324 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4325 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4326 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4327 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4328 && ! find_reg_note (i2, REG_UNUSED,
4329 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4330 for (temp_insn = NEXT_INSN (i2);
4331 temp_insn
4332 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4333 || BB_HEAD (this_basic_block) != temp_insn);
4334 temp_insn = NEXT_INSN (temp_insn))
4335 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4336 FOR_EACH_LOG_LINK (link, temp_insn)
4337 if (link->insn == i2)
4338 link->insn = i3;
4340 if (i3notes)
4342 rtx link = i3notes;
4343 while (XEXP (link, 1))
4344 link = XEXP (link, 1);
4345 XEXP (link, 1) = i2notes;
4347 else
4348 i3notes = i2notes;
4349 i2notes = 0;
4352 LOG_LINKS (i3) = NULL;
4353 REG_NOTES (i3) = 0;
4354 LOG_LINKS (i2) = NULL;
4355 REG_NOTES (i2) = 0;
4357 if (newi2pat)
4359 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4360 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4361 this_basic_block);
4362 INSN_CODE (i2) = i2_code_number;
4363 PATTERN (i2) = newi2pat;
4365 else
4367 if (MAY_HAVE_DEBUG_INSNS && i2src)
4368 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4369 this_basic_block);
4370 SET_INSN_DELETED (i2);
4373 if (i1)
4375 LOG_LINKS (i1) = NULL;
4376 REG_NOTES (i1) = 0;
4377 if (MAY_HAVE_DEBUG_INSNS)
4378 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4379 this_basic_block);
4380 SET_INSN_DELETED (i1);
4383 if (i0)
4385 LOG_LINKS (i0) = NULL;
4386 REG_NOTES (i0) = 0;
4387 if (MAY_HAVE_DEBUG_INSNS)
4388 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4389 this_basic_block);
4390 SET_INSN_DELETED (i0);
4393 /* Get death notes for everything that is now used in either I3 or
4394 I2 and used to die in a previous insn. If we built two new
4395 patterns, move from I1 to I2 then I2 to I3 so that we get the
4396 proper movement on registers that I2 modifies. */
4398 if (i0)
4399 from_luid = DF_INSN_LUID (i0);
4400 else if (i1)
4401 from_luid = DF_INSN_LUID (i1);
4402 else
4403 from_luid = DF_INSN_LUID (i2);
4404 if (newi2pat)
4405 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4406 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4408 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4409 if (i3notes)
4410 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4411 elim_i2, elim_i1, elim_i0);
4412 if (i2notes)
4413 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4414 elim_i2, elim_i1, elim_i0);
4415 if (i1notes)
4416 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4417 elim_i2, local_elim_i1, local_elim_i0);
4418 if (i0notes)
4419 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4420 elim_i2, elim_i1, local_elim_i0);
4421 if (midnotes)
4422 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4423 elim_i2, elim_i1, elim_i0);
4425 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4426 know these are REG_UNUSED and want them to go to the desired insn,
4427 so we always pass it as i3. */
4429 if (newi2pat && new_i2_notes)
4430 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4431 NULL_RTX);
4433 if (new_i3_notes)
4434 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4435 NULL_RTX);
4437 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4438 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4439 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4440 in that case, it might delete I2. Similarly for I2 and I1.
4441 Show an additional death due to the REG_DEAD note we make here. If
4442 we discard it in distribute_notes, we will decrement it again. */
4444 if (i3dest_killed)
4446 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4447 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4448 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4449 elim_i1, elim_i0);
4450 else
4451 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4452 elim_i2, elim_i1, elim_i0);
4455 if (i2dest_in_i2src)
4457 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4458 if (newi2pat && reg_set_p (i2dest, newi2pat))
4459 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4460 NULL_RTX, NULL_RTX);
4461 else
4462 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4463 NULL_RTX, NULL_RTX, NULL_RTX);
4466 if (i1dest_in_i1src)
4468 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4469 if (newi2pat && reg_set_p (i1dest, newi2pat))
4470 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4471 NULL_RTX, NULL_RTX);
4472 else
4473 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4474 NULL_RTX, NULL_RTX, NULL_RTX);
4477 if (i0dest_in_i0src)
4479 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4480 if (newi2pat && reg_set_p (i0dest, newi2pat))
4481 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4482 NULL_RTX, NULL_RTX);
4483 else
4484 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4485 NULL_RTX, NULL_RTX, NULL_RTX);
4488 distribute_links (i3links);
4489 distribute_links (i2links);
4490 distribute_links (i1links);
4491 distribute_links (i0links);
4493 if (REG_P (i2dest))
4495 struct insn_link *link;
4496 rtx_insn *i2_insn = 0;
4497 rtx i2_val = 0, set;
4499 /* The insn that used to set this register doesn't exist, and
4500 this life of the register may not exist either. See if one of
4501 I3's links points to an insn that sets I2DEST. If it does,
4502 that is now the last known value for I2DEST. If we don't update
4503 this and I2 set the register to a value that depended on its old
4504 contents, we will get confused. If this insn is used, thing
4505 will be set correctly in combine_instructions. */
4506 FOR_EACH_LOG_LINK (link, i3)
4507 if ((set = single_set (link->insn)) != 0
4508 && rtx_equal_p (i2dest, SET_DEST (set)))
4509 i2_insn = link->insn, i2_val = SET_SRC (set);
4511 record_value_for_reg (i2dest, i2_insn, i2_val);
4513 /* If the reg formerly set in I2 died only once and that was in I3,
4514 zero its use count so it won't make `reload' do any work. */
4515 if (! added_sets_2
4516 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4517 && ! i2dest_in_i2src
4518 && REGNO (i2dest) < reg_n_sets_max)
4519 INC_REG_N_SETS (REGNO (i2dest), -1);
4522 if (i1 && REG_P (i1dest))
4524 struct insn_link *link;
4525 rtx_insn *i1_insn = 0;
4526 rtx i1_val = 0, set;
4528 FOR_EACH_LOG_LINK (link, i3)
4529 if ((set = single_set (link->insn)) != 0
4530 && rtx_equal_p (i1dest, SET_DEST (set)))
4531 i1_insn = link->insn, i1_val = SET_SRC (set);
4533 record_value_for_reg (i1dest, i1_insn, i1_val);
4535 if (! added_sets_1
4536 && ! i1dest_in_i1src
4537 && REGNO (i1dest) < reg_n_sets_max)
4538 INC_REG_N_SETS (REGNO (i1dest), -1);
4541 if (i0 && REG_P (i0dest))
4543 struct insn_link *link;
4544 rtx_insn *i0_insn = 0;
4545 rtx i0_val = 0, set;
4547 FOR_EACH_LOG_LINK (link, i3)
4548 if ((set = single_set (link->insn)) != 0
4549 && rtx_equal_p (i0dest, SET_DEST (set)))
4550 i0_insn = link->insn, i0_val = SET_SRC (set);
4552 record_value_for_reg (i0dest, i0_insn, i0_val);
4554 if (! added_sets_0
4555 && ! i0dest_in_i0src
4556 && REGNO (i0dest) < reg_n_sets_max)
4557 INC_REG_N_SETS (REGNO (i0dest), -1);
4560 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4561 been made to this insn. The order is important, because newi2pat
4562 can affect nonzero_bits of newpat. */
4563 if (newi2pat)
4564 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4565 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4568 if (undobuf.other_insn != NULL_RTX)
4570 if (dump_file)
4572 fprintf (dump_file, "modifying other_insn ");
4573 dump_insn_slim (dump_file, undobuf.other_insn);
4575 df_insn_rescan (undobuf.other_insn);
4578 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4580 if (dump_file)
4582 fprintf (dump_file, "modifying insn i0 ");
4583 dump_insn_slim (dump_file, i0);
4585 df_insn_rescan (i0);
4588 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4590 if (dump_file)
4592 fprintf (dump_file, "modifying insn i1 ");
4593 dump_insn_slim (dump_file, i1);
4595 df_insn_rescan (i1);
4598 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4600 if (dump_file)
4602 fprintf (dump_file, "modifying insn i2 ");
4603 dump_insn_slim (dump_file, i2);
4605 df_insn_rescan (i2);
4608 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4610 if (dump_file)
4612 fprintf (dump_file, "modifying insn i3 ");
4613 dump_insn_slim (dump_file, i3);
4615 df_insn_rescan (i3);
4618 /* Set new_direct_jump_p if a new return or simple jump instruction
4619 has been created. Adjust the CFG accordingly. */
4620 if (returnjump_p (i3) || any_uncondjump_p (i3))
4622 *new_direct_jump_p = 1;
4623 mark_jump_label (PATTERN (i3), i3, 0);
4624 update_cfg_for_uncondjump (i3);
4627 if (undobuf.other_insn != NULL_RTX
4628 && (returnjump_p (undobuf.other_insn)
4629 || any_uncondjump_p (undobuf.other_insn)))
4631 *new_direct_jump_p = 1;
4632 update_cfg_for_uncondjump (undobuf.other_insn);
4635 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4636 && XEXP (PATTERN (i3), 0) == const1_rtx)
4638 basic_block bb = BLOCK_FOR_INSN (i3);
4639 gcc_assert (bb);
4640 remove_edge (split_block (bb, i3));
4641 emit_barrier_after_bb (bb);
4642 *new_direct_jump_p = 1;
4645 if (undobuf.other_insn
4646 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4647 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4649 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4650 gcc_assert (bb);
4651 remove_edge (split_block (bb, undobuf.other_insn));
4652 emit_barrier_after_bb (bb);
4653 *new_direct_jump_p = 1;
4656 /* A noop might also need cleaning up of CFG, if it comes from the
4657 simplification of a jump. */
4658 if (JUMP_P (i3)
4659 && GET_CODE (newpat) == SET
4660 && SET_SRC (newpat) == pc_rtx
4661 && SET_DEST (newpat) == pc_rtx)
4663 *new_direct_jump_p = 1;
4664 update_cfg_for_uncondjump (i3);
4667 if (undobuf.other_insn != NULL_RTX
4668 && JUMP_P (undobuf.other_insn)
4669 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4670 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4671 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4673 *new_direct_jump_p = 1;
4674 update_cfg_for_uncondjump (undobuf.other_insn);
4677 combine_successes++;
4678 undo_commit ();
4680 if (added_links_insn
4681 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4682 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4683 return added_links_insn;
4684 else
4685 return newi2pat ? i2 : i3;
4688 /* Get a marker for undoing to the current state. */
4690 static void *
4691 get_undo_marker (void)
4693 return undobuf.undos;
4696 /* Undo the modifications up to the marker. */
4698 static void
4699 undo_to_marker (void *marker)
4701 struct undo *undo, *next;
4703 for (undo = undobuf.undos; undo != marker; undo = next)
4705 gcc_assert (undo);
4707 next = undo->next;
4708 switch (undo->kind)
4710 case UNDO_RTX:
4711 *undo->where.r = undo->old_contents.r;
4712 break;
4713 case UNDO_INT:
4714 *undo->where.i = undo->old_contents.i;
4715 break;
4716 case UNDO_MODE:
4717 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4718 break;
4719 case UNDO_LINKS:
4720 *undo->where.l = undo->old_contents.l;
4721 break;
4722 default:
4723 gcc_unreachable ();
4726 undo->next = undobuf.frees;
4727 undobuf.frees = undo;
4730 undobuf.undos = (struct undo *) marker;
4733 /* Undo all the modifications recorded in undobuf. */
4735 static void
4736 undo_all (void)
4738 undo_to_marker (0);
4741 /* We've committed to accepting the changes we made. Move all
4742 of the undos to the free list. */
4744 static void
4745 undo_commit (void)
4747 struct undo *undo, *next;
4749 for (undo = undobuf.undos; undo; undo = next)
4751 next = undo->next;
4752 undo->next = undobuf.frees;
4753 undobuf.frees = undo;
4755 undobuf.undos = 0;
4758 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4759 where we have an arithmetic expression and return that point. LOC will
4760 be inside INSN.
4762 try_combine will call this function to see if an insn can be split into
4763 two insns. */
4765 static rtx *
4766 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4768 rtx x = *loc;
4769 enum rtx_code code = GET_CODE (x);
4770 rtx *split;
4771 unsigned HOST_WIDE_INT len = 0;
4772 HOST_WIDE_INT pos = 0;
4773 int unsignedp = 0;
4774 rtx inner = NULL_RTX;
4776 /* First special-case some codes. */
4777 switch (code)
4779 case SUBREG:
4780 #ifdef INSN_SCHEDULING
4781 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4782 point. */
4783 if (MEM_P (SUBREG_REG (x)))
4784 return loc;
4785 #endif
4786 return find_split_point (&SUBREG_REG (x), insn, false);
4788 case MEM:
4789 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4790 using LO_SUM and HIGH. */
4791 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4792 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4794 machine_mode address_mode = get_address_mode (x);
4796 SUBST (XEXP (x, 0),
4797 gen_rtx_LO_SUM (address_mode,
4798 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4799 XEXP (x, 0)));
4800 return &XEXP (XEXP (x, 0), 0);
4803 /* If we have a PLUS whose second operand is a constant and the
4804 address is not valid, perhaps will can split it up using
4805 the machine-specific way to split large constants. We use
4806 the first pseudo-reg (one of the virtual regs) as a placeholder;
4807 it will not remain in the result. */
4808 if (GET_CODE (XEXP (x, 0)) == PLUS
4809 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4810 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4811 MEM_ADDR_SPACE (x)))
4813 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4814 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4815 subst_insn);
4817 /* This should have produced two insns, each of which sets our
4818 placeholder. If the source of the second is a valid address,
4819 we can make put both sources together and make a split point
4820 in the middle. */
4822 if (seq
4823 && NEXT_INSN (seq) != NULL_RTX
4824 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4825 && NONJUMP_INSN_P (seq)
4826 && GET_CODE (PATTERN (seq)) == SET
4827 && SET_DEST (PATTERN (seq)) == reg
4828 && ! reg_mentioned_p (reg,
4829 SET_SRC (PATTERN (seq)))
4830 && NONJUMP_INSN_P (NEXT_INSN (seq))
4831 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4832 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4833 && memory_address_addr_space_p
4834 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4835 MEM_ADDR_SPACE (x)))
4837 rtx src1 = SET_SRC (PATTERN (seq));
4838 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4840 /* Replace the placeholder in SRC2 with SRC1. If we can
4841 find where in SRC2 it was placed, that can become our
4842 split point and we can replace this address with SRC2.
4843 Just try two obvious places. */
4845 src2 = replace_rtx (src2, reg, src1);
4846 split = 0;
4847 if (XEXP (src2, 0) == src1)
4848 split = &XEXP (src2, 0);
4849 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4850 && XEXP (XEXP (src2, 0), 0) == src1)
4851 split = &XEXP (XEXP (src2, 0), 0);
4853 if (split)
4855 SUBST (XEXP (x, 0), src2);
4856 return split;
4860 /* If that didn't work, perhaps the first operand is complex and
4861 needs to be computed separately, so make a split point there.
4862 This will occur on machines that just support REG + CONST
4863 and have a constant moved through some previous computation. */
4865 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4866 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4867 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4868 return &XEXP (XEXP (x, 0), 0);
4871 /* If we have a PLUS whose first operand is complex, try computing it
4872 separately by making a split there. */
4873 if (GET_CODE (XEXP (x, 0)) == PLUS
4874 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4875 MEM_ADDR_SPACE (x))
4876 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4877 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4878 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4879 return &XEXP (XEXP (x, 0), 0);
4880 break;
4882 case SET:
4883 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4884 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4885 we need to put the operand into a register. So split at that
4886 point. */
4888 if (SET_DEST (x) == cc0_rtx
4889 && GET_CODE (SET_SRC (x)) != COMPARE
4890 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4891 && !OBJECT_P (SET_SRC (x))
4892 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4893 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4894 return &SET_SRC (x);
4896 /* See if we can split SET_SRC as it stands. */
4897 split = find_split_point (&SET_SRC (x), insn, true);
4898 if (split && split != &SET_SRC (x))
4899 return split;
4901 /* See if we can split SET_DEST as it stands. */
4902 split = find_split_point (&SET_DEST (x), insn, false);
4903 if (split && split != &SET_DEST (x))
4904 return split;
4906 /* See if this is a bitfield assignment with everything constant. If
4907 so, this is an IOR of an AND, so split it into that. */
4908 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4909 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4910 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4911 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4912 && CONST_INT_P (SET_SRC (x))
4913 && ((INTVAL (XEXP (SET_DEST (x), 1))
4914 + INTVAL (XEXP (SET_DEST (x), 2)))
4915 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4916 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4918 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4919 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4920 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4921 rtx dest = XEXP (SET_DEST (x), 0);
4922 machine_mode mode = GET_MODE (dest);
4923 unsigned HOST_WIDE_INT mask
4924 = (HOST_WIDE_INT_1U << len) - 1;
4925 rtx or_mask;
4927 if (BITS_BIG_ENDIAN)
4928 pos = GET_MODE_PRECISION (mode) - len - pos;
4930 or_mask = gen_int_mode (src << pos, mode);
4931 if (src == mask)
4932 SUBST (SET_SRC (x),
4933 simplify_gen_binary (IOR, mode, dest, or_mask));
4934 else
4936 rtx negmask = gen_int_mode (~(mask << pos), mode);
4937 SUBST (SET_SRC (x),
4938 simplify_gen_binary (IOR, mode,
4939 simplify_gen_binary (AND, mode,
4940 dest, negmask),
4941 or_mask));
4944 SUBST (SET_DEST (x), dest);
4946 split = find_split_point (&SET_SRC (x), insn, true);
4947 if (split && split != &SET_SRC (x))
4948 return split;
4951 /* Otherwise, see if this is an operation that we can split into two.
4952 If so, try to split that. */
4953 code = GET_CODE (SET_SRC (x));
4955 switch (code)
4957 case AND:
4958 /* If we are AND'ing with a large constant that is only a single
4959 bit and the result is only being used in a context where we
4960 need to know if it is zero or nonzero, replace it with a bit
4961 extraction. This will avoid the large constant, which might
4962 have taken more than one insn to make. If the constant were
4963 not a valid argument to the AND but took only one insn to make,
4964 this is no worse, but if it took more than one insn, it will
4965 be better. */
4967 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4968 && REG_P (XEXP (SET_SRC (x), 0))
4969 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4970 && REG_P (SET_DEST (x))
4971 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4972 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4973 && XEXP (*split, 0) == SET_DEST (x)
4974 && XEXP (*split, 1) == const0_rtx)
4976 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4977 XEXP (SET_SRC (x), 0),
4978 pos, NULL_RTX, 1, 1, 0, 0);
4979 if (extraction != 0)
4981 SUBST (SET_SRC (x), extraction);
4982 return find_split_point (loc, insn, false);
4985 break;
4987 case NE:
4988 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4989 is known to be on, this can be converted into a NEG of a shift. */
4990 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4991 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4992 && 1 <= (pos = exact_log2
4993 (nonzero_bits (XEXP (SET_SRC (x), 0),
4994 GET_MODE (XEXP (SET_SRC (x), 0))))))
4996 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4998 SUBST (SET_SRC (x),
4999 gen_rtx_NEG (mode,
5000 gen_rtx_LSHIFTRT (mode,
5001 XEXP (SET_SRC (x), 0),
5002 GEN_INT (pos))));
5004 split = find_split_point (&SET_SRC (x), insn, true);
5005 if (split && split != &SET_SRC (x))
5006 return split;
5008 break;
5010 case SIGN_EXTEND:
5011 inner = XEXP (SET_SRC (x), 0);
5013 /* We can't optimize if either mode is a partial integer
5014 mode as we don't know how many bits are significant
5015 in those modes. */
5016 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5017 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5018 break;
5020 pos = 0;
5021 len = GET_MODE_PRECISION (GET_MODE (inner));
5022 unsignedp = 0;
5023 break;
5025 case SIGN_EXTRACT:
5026 case ZERO_EXTRACT:
5027 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5028 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5030 inner = XEXP (SET_SRC (x), 0);
5031 len = INTVAL (XEXP (SET_SRC (x), 1));
5032 pos = INTVAL (XEXP (SET_SRC (x), 2));
5034 if (BITS_BIG_ENDIAN)
5035 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5036 unsignedp = (code == ZERO_EXTRACT);
5038 break;
5040 default:
5041 break;
5044 if (len && pos >= 0
5045 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5047 machine_mode mode = GET_MODE (SET_SRC (x));
5049 /* For unsigned, we have a choice of a shift followed by an
5050 AND or two shifts. Use two shifts for field sizes where the
5051 constant might be too large. We assume here that we can
5052 always at least get 8-bit constants in an AND insn, which is
5053 true for every current RISC. */
5055 if (unsignedp && len <= 8)
5057 unsigned HOST_WIDE_INT mask
5058 = (HOST_WIDE_INT_1U << len) - 1;
5059 SUBST (SET_SRC (x),
5060 gen_rtx_AND (mode,
5061 gen_rtx_LSHIFTRT
5062 (mode, gen_lowpart (mode, inner),
5063 GEN_INT (pos)),
5064 gen_int_mode (mask, mode)));
5066 split = find_split_point (&SET_SRC (x), insn, true);
5067 if (split && split != &SET_SRC (x))
5068 return split;
5070 else
5072 SUBST (SET_SRC (x),
5073 gen_rtx_fmt_ee
5074 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5075 gen_rtx_ASHIFT (mode,
5076 gen_lowpart (mode, inner),
5077 GEN_INT (GET_MODE_PRECISION (mode)
5078 - len - pos)),
5079 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5081 split = find_split_point (&SET_SRC (x), insn, true);
5082 if (split && split != &SET_SRC (x))
5083 return split;
5087 /* See if this is a simple operation with a constant as the second
5088 operand. It might be that this constant is out of range and hence
5089 could be used as a split point. */
5090 if (BINARY_P (SET_SRC (x))
5091 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5092 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5093 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5094 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5095 return &XEXP (SET_SRC (x), 1);
5097 /* Finally, see if this is a simple operation with its first operand
5098 not in a register. The operation might require this operand in a
5099 register, so return it as a split point. We can always do this
5100 because if the first operand were another operation, we would have
5101 already found it as a split point. */
5102 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5103 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5104 return &XEXP (SET_SRC (x), 0);
5106 return 0;
5108 case AND:
5109 case IOR:
5110 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5111 it is better to write this as (not (ior A B)) so we can split it.
5112 Similarly for IOR. */
5113 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5115 SUBST (*loc,
5116 gen_rtx_NOT (GET_MODE (x),
5117 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5118 GET_MODE (x),
5119 XEXP (XEXP (x, 0), 0),
5120 XEXP (XEXP (x, 1), 0))));
5121 return find_split_point (loc, insn, set_src);
5124 /* Many RISC machines have a large set of logical insns. If the
5125 second operand is a NOT, put it first so we will try to split the
5126 other operand first. */
5127 if (GET_CODE (XEXP (x, 1)) == NOT)
5129 rtx tem = XEXP (x, 0);
5130 SUBST (XEXP (x, 0), XEXP (x, 1));
5131 SUBST (XEXP (x, 1), tem);
5133 break;
5135 case PLUS:
5136 case MINUS:
5137 /* Canonicalization can produce (minus A (mult B C)), where C is a
5138 constant. It may be better to try splitting (plus (mult B -C) A)
5139 instead if this isn't a multiply by a power of two. */
5140 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5141 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5142 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5144 machine_mode mode = GET_MODE (x);
5145 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5146 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5147 SUBST (*loc, gen_rtx_PLUS (mode,
5148 gen_rtx_MULT (mode,
5149 XEXP (XEXP (x, 1), 0),
5150 gen_int_mode (other_int,
5151 mode)),
5152 XEXP (x, 0)));
5153 return find_split_point (loc, insn, set_src);
5156 /* Split at a multiply-accumulate instruction. However if this is
5157 the SET_SRC, we likely do not have such an instruction and it's
5158 worthless to try this split. */
5159 if (!set_src
5160 && (GET_CODE (XEXP (x, 0)) == MULT
5161 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5162 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5163 return loc;
5165 default:
5166 break;
5169 /* Otherwise, select our actions depending on our rtx class. */
5170 switch (GET_RTX_CLASS (code))
5172 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5173 case RTX_TERNARY:
5174 split = find_split_point (&XEXP (x, 2), insn, false);
5175 if (split)
5176 return split;
5177 /* fall through */
5178 case RTX_BIN_ARITH:
5179 case RTX_COMM_ARITH:
5180 case RTX_COMPARE:
5181 case RTX_COMM_COMPARE:
5182 split = find_split_point (&XEXP (x, 1), insn, false);
5183 if (split)
5184 return split;
5185 /* fall through */
5186 case RTX_UNARY:
5187 /* Some machines have (and (shift ...) ...) insns. If X is not
5188 an AND, but XEXP (X, 0) is, use it as our split point. */
5189 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5190 return &XEXP (x, 0);
5192 split = find_split_point (&XEXP (x, 0), insn, false);
5193 if (split)
5194 return split;
5195 return loc;
5197 default:
5198 /* Otherwise, we don't have a split point. */
5199 return 0;
5203 /* Throughout X, replace FROM with TO, and return the result.
5204 The result is TO if X is FROM;
5205 otherwise the result is X, but its contents may have been modified.
5206 If they were modified, a record was made in undobuf so that
5207 undo_all will (among other things) return X to its original state.
5209 If the number of changes necessary is too much to record to undo,
5210 the excess changes are not made, so the result is invalid.
5211 The changes already made can still be undone.
5212 undobuf.num_undo is incremented for such changes, so by testing that
5213 the caller can tell whether the result is valid.
5215 `n_occurrences' is incremented each time FROM is replaced.
5217 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5219 IN_COND is nonzero if we are at the top level of a condition.
5221 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5222 by copying if `n_occurrences' is nonzero. */
5224 static rtx
5225 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5227 enum rtx_code code = GET_CODE (x);
5228 machine_mode op0_mode = VOIDmode;
5229 const char *fmt;
5230 int len, i;
5231 rtx new_rtx;
5233 /* Two expressions are equal if they are identical copies of a shared
5234 RTX or if they are both registers with the same register number
5235 and mode. */
5237 #define COMBINE_RTX_EQUAL_P(X,Y) \
5238 ((X) == (Y) \
5239 || (REG_P (X) && REG_P (Y) \
5240 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5242 /* Do not substitute into clobbers of regs -- this will never result in
5243 valid RTL. */
5244 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5245 return x;
5247 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5249 n_occurrences++;
5250 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5253 /* If X and FROM are the same register but different modes, they
5254 will not have been seen as equal above. However, the log links code
5255 will make a LOG_LINKS entry for that case. If we do nothing, we
5256 will try to rerecognize our original insn and, when it succeeds,
5257 we will delete the feeding insn, which is incorrect.
5259 So force this insn not to match in this (rare) case. */
5260 if (! in_dest && code == REG && REG_P (from)
5261 && reg_overlap_mentioned_p (x, from))
5262 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5264 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5265 of which may contain things that can be combined. */
5266 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5267 return x;
5269 /* It is possible to have a subexpression appear twice in the insn.
5270 Suppose that FROM is a register that appears within TO.
5271 Then, after that subexpression has been scanned once by `subst',
5272 the second time it is scanned, TO may be found. If we were
5273 to scan TO here, we would find FROM within it and create a
5274 self-referent rtl structure which is completely wrong. */
5275 if (COMBINE_RTX_EQUAL_P (x, to))
5276 return to;
5278 /* Parallel asm_operands need special attention because all of the
5279 inputs are shared across the arms. Furthermore, unsharing the
5280 rtl results in recognition failures. Failure to handle this case
5281 specially can result in circular rtl.
5283 Solve this by doing a normal pass across the first entry of the
5284 parallel, and only processing the SET_DESTs of the subsequent
5285 entries. Ug. */
5287 if (code == PARALLEL
5288 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5289 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5291 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5293 /* If this substitution failed, this whole thing fails. */
5294 if (GET_CODE (new_rtx) == CLOBBER
5295 && XEXP (new_rtx, 0) == const0_rtx)
5296 return new_rtx;
5298 SUBST (XVECEXP (x, 0, 0), new_rtx);
5300 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5302 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5304 if (!REG_P (dest)
5305 && GET_CODE (dest) != CC0
5306 && GET_CODE (dest) != PC)
5308 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5310 /* If this substitution failed, this whole thing fails. */
5311 if (GET_CODE (new_rtx) == CLOBBER
5312 && XEXP (new_rtx, 0) == const0_rtx)
5313 return new_rtx;
5315 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5319 else
5321 len = GET_RTX_LENGTH (code);
5322 fmt = GET_RTX_FORMAT (code);
5324 /* We don't need to process a SET_DEST that is a register, CC0,
5325 or PC, so set up to skip this common case. All other cases
5326 where we want to suppress replacing something inside a
5327 SET_SRC are handled via the IN_DEST operand. */
5328 if (code == SET
5329 && (REG_P (SET_DEST (x))
5330 || GET_CODE (SET_DEST (x)) == CC0
5331 || GET_CODE (SET_DEST (x)) == PC))
5332 fmt = "ie";
5334 /* Trying to simplify the operands of a widening MULT is not likely
5335 to create RTL matching a machine insn. */
5336 if (code == MULT
5337 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5338 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5339 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5340 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5341 && REG_P (XEXP (XEXP (x, 0), 0))
5342 && REG_P (XEXP (XEXP (x, 1), 0))
5343 && from == to)
5344 return x;
5347 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5348 constant. */
5349 if (fmt[0] == 'e')
5350 op0_mode = GET_MODE (XEXP (x, 0));
5352 for (i = 0; i < len; i++)
5354 if (fmt[i] == 'E')
5356 int j;
5357 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5359 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5361 new_rtx = (unique_copy && n_occurrences
5362 ? copy_rtx (to) : to);
5363 n_occurrences++;
5365 else
5367 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5368 unique_copy);
5370 /* If this substitution failed, this whole thing
5371 fails. */
5372 if (GET_CODE (new_rtx) == CLOBBER
5373 && XEXP (new_rtx, 0) == const0_rtx)
5374 return new_rtx;
5377 SUBST (XVECEXP (x, i, j), new_rtx);
5380 else if (fmt[i] == 'e')
5382 /* If this is a register being set, ignore it. */
5383 new_rtx = XEXP (x, i);
5384 if (in_dest
5385 && i == 0
5386 && (((code == SUBREG || code == ZERO_EXTRACT)
5387 && REG_P (new_rtx))
5388 || code == STRICT_LOW_PART))
5391 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5393 /* In general, don't install a subreg involving two
5394 modes not tieable. It can worsen register
5395 allocation, and can even make invalid reload
5396 insns, since the reg inside may need to be copied
5397 from in the outside mode, and that may be invalid
5398 if it is an fp reg copied in integer mode.
5400 We allow two exceptions to this: It is valid if
5401 it is inside another SUBREG and the mode of that
5402 SUBREG and the mode of the inside of TO is
5403 tieable and it is valid if X is a SET that copies
5404 FROM to CC0. */
5406 if (GET_CODE (to) == SUBREG
5407 && ! MODES_TIEABLE_P (GET_MODE (to),
5408 GET_MODE (SUBREG_REG (to)))
5409 && ! (code == SUBREG
5410 && MODES_TIEABLE_P (GET_MODE (x),
5411 GET_MODE (SUBREG_REG (to))))
5412 && (!HAVE_cc0
5413 || (! (code == SET
5414 && i == 1
5415 && XEXP (x, 0) == cc0_rtx))))
5416 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5418 if (code == SUBREG
5419 && REG_P (to)
5420 && REGNO (to) < FIRST_PSEUDO_REGISTER
5421 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5422 SUBREG_BYTE (x),
5423 GET_MODE (x)) < 0)
5424 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5426 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5427 n_occurrences++;
5429 else
5430 /* If we are in a SET_DEST, suppress most cases unless we
5431 have gone inside a MEM, in which case we want to
5432 simplify the address. We assume here that things that
5433 are actually part of the destination have their inner
5434 parts in the first expression. This is true for SUBREG,
5435 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5436 things aside from REG and MEM that should appear in a
5437 SET_DEST. */
5438 new_rtx = subst (XEXP (x, i), from, to,
5439 (((in_dest
5440 && (code == SUBREG || code == STRICT_LOW_PART
5441 || code == ZERO_EXTRACT))
5442 || code == SET)
5443 && i == 0),
5444 code == IF_THEN_ELSE && i == 0,
5445 unique_copy);
5447 /* If we found that we will have to reject this combination,
5448 indicate that by returning the CLOBBER ourselves, rather than
5449 an expression containing it. This will speed things up as
5450 well as prevent accidents where two CLOBBERs are considered
5451 to be equal, thus producing an incorrect simplification. */
5453 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5454 return new_rtx;
5456 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5458 machine_mode mode = GET_MODE (x);
5460 x = simplify_subreg (GET_MODE (x), new_rtx,
5461 GET_MODE (SUBREG_REG (x)),
5462 SUBREG_BYTE (x));
5463 if (! x)
5464 x = gen_rtx_CLOBBER (mode, const0_rtx);
5466 else if (CONST_SCALAR_INT_P (new_rtx)
5467 && GET_CODE (x) == ZERO_EXTEND)
5469 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5470 new_rtx, GET_MODE (XEXP (x, 0)));
5471 gcc_assert (x);
5473 else
5474 SUBST (XEXP (x, i), new_rtx);
5479 /* Check if we are loading something from the constant pool via float
5480 extension; in this case we would undo compress_float_constant
5481 optimization and degenerate constant load to an immediate value. */
5482 if (GET_CODE (x) == FLOAT_EXTEND
5483 && MEM_P (XEXP (x, 0))
5484 && MEM_READONLY_P (XEXP (x, 0)))
5486 rtx tmp = avoid_constant_pool_reference (x);
5487 if (x != tmp)
5488 return x;
5491 /* Try to simplify X. If the simplification changed the code, it is likely
5492 that further simplification will help, so loop, but limit the number
5493 of repetitions that will be performed. */
5495 for (i = 0; i < 4; i++)
5497 /* If X is sufficiently simple, don't bother trying to do anything
5498 with it. */
5499 if (code != CONST_INT && code != REG && code != CLOBBER)
5500 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5502 if (GET_CODE (x) == code)
5503 break;
5505 code = GET_CODE (x);
5507 /* We no longer know the original mode of operand 0 since we
5508 have changed the form of X) */
5509 op0_mode = VOIDmode;
5512 return x;
5515 /* If X is a commutative operation whose operands are not in the canonical
5516 order, use substitutions to swap them. */
5518 static void
5519 maybe_swap_commutative_operands (rtx x)
5521 if (COMMUTATIVE_ARITH_P (x)
5522 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5524 rtx temp = XEXP (x, 0);
5525 SUBST (XEXP (x, 0), XEXP (x, 1));
5526 SUBST (XEXP (x, 1), temp);
5530 /* Simplify X, a piece of RTL. We just operate on the expression at the
5531 outer level; call `subst' to simplify recursively. Return the new
5532 expression.
5534 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5535 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5536 of a condition. */
5538 static rtx
5539 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5540 int in_cond)
5542 enum rtx_code code = GET_CODE (x);
5543 machine_mode mode = GET_MODE (x);
5544 rtx temp;
5545 int i;
5547 /* If this is a commutative operation, put a constant last and a complex
5548 expression first. We don't need to do this for comparisons here. */
5549 maybe_swap_commutative_operands (x);
5551 /* Try to fold this expression in case we have constants that weren't
5552 present before. */
5553 temp = 0;
5554 switch (GET_RTX_CLASS (code))
5556 case RTX_UNARY:
5557 if (op0_mode == VOIDmode)
5558 op0_mode = GET_MODE (XEXP (x, 0));
5559 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5560 break;
5561 case RTX_COMPARE:
5562 case RTX_COMM_COMPARE:
5564 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5565 if (cmp_mode == VOIDmode)
5567 cmp_mode = GET_MODE (XEXP (x, 1));
5568 if (cmp_mode == VOIDmode)
5569 cmp_mode = op0_mode;
5571 temp = simplify_relational_operation (code, mode, cmp_mode,
5572 XEXP (x, 0), XEXP (x, 1));
5574 break;
5575 case RTX_COMM_ARITH:
5576 case RTX_BIN_ARITH:
5577 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5578 break;
5579 case RTX_BITFIELD_OPS:
5580 case RTX_TERNARY:
5581 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5582 XEXP (x, 1), XEXP (x, 2));
5583 break;
5584 default:
5585 break;
5588 if (temp)
5590 x = temp;
5591 code = GET_CODE (temp);
5592 op0_mode = VOIDmode;
5593 mode = GET_MODE (temp);
5596 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5597 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5598 things. Check for cases where both arms are testing the same
5599 condition.
5601 Don't do anything if all operands are very simple. */
5603 if ((BINARY_P (x)
5604 && ((!OBJECT_P (XEXP (x, 0))
5605 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5606 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5607 || (!OBJECT_P (XEXP (x, 1))
5608 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5609 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5610 || (UNARY_P (x)
5611 && (!OBJECT_P (XEXP (x, 0))
5612 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5613 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5615 rtx cond, true_rtx, false_rtx;
5617 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5618 if (cond != 0
5619 /* If everything is a comparison, what we have is highly unlikely
5620 to be simpler, so don't use it. */
5621 && ! (COMPARISON_P (x)
5622 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5624 rtx cop1 = const0_rtx;
5625 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5627 if (cond_code == NE && COMPARISON_P (cond))
5628 return x;
5630 /* Simplify the alternative arms; this may collapse the true and
5631 false arms to store-flag values. Be careful to use copy_rtx
5632 here since true_rtx or false_rtx might share RTL with x as a
5633 result of the if_then_else_cond call above. */
5634 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5635 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5637 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5638 is unlikely to be simpler. */
5639 if (general_operand (true_rtx, VOIDmode)
5640 && general_operand (false_rtx, VOIDmode))
5642 enum rtx_code reversed;
5644 /* Restarting if we generate a store-flag expression will cause
5645 us to loop. Just drop through in this case. */
5647 /* If the result values are STORE_FLAG_VALUE and zero, we can
5648 just make the comparison operation. */
5649 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5650 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5651 cond, cop1);
5652 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5653 && ((reversed = reversed_comparison_code_parts
5654 (cond_code, cond, cop1, NULL))
5655 != UNKNOWN))
5656 x = simplify_gen_relational (reversed, mode, VOIDmode,
5657 cond, cop1);
5659 /* Likewise, we can make the negate of a comparison operation
5660 if the result values are - STORE_FLAG_VALUE and zero. */
5661 else if (CONST_INT_P (true_rtx)
5662 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5663 && false_rtx == const0_rtx)
5664 x = simplify_gen_unary (NEG, mode,
5665 simplify_gen_relational (cond_code,
5666 mode, VOIDmode,
5667 cond, cop1),
5668 mode);
5669 else if (CONST_INT_P (false_rtx)
5670 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5671 && true_rtx == const0_rtx
5672 && ((reversed = reversed_comparison_code_parts
5673 (cond_code, cond, cop1, NULL))
5674 != UNKNOWN))
5675 x = simplify_gen_unary (NEG, mode,
5676 simplify_gen_relational (reversed,
5677 mode, VOIDmode,
5678 cond, cop1),
5679 mode);
5680 else
5681 return gen_rtx_IF_THEN_ELSE (mode,
5682 simplify_gen_relational (cond_code,
5683 mode,
5684 VOIDmode,
5685 cond,
5686 cop1),
5687 true_rtx, false_rtx);
5689 code = GET_CODE (x);
5690 op0_mode = VOIDmode;
5695 /* First see if we can apply the inverse distributive law. */
5696 if (code == PLUS || code == MINUS
5697 || code == AND || code == IOR || code == XOR)
5699 x = apply_distributive_law (x);
5700 code = GET_CODE (x);
5701 op0_mode = VOIDmode;
5704 /* If CODE is an associative operation not otherwise handled, see if we
5705 can associate some operands. This can win if they are constants or
5706 if they are logically related (i.e. (a & b) & a). */
5707 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5708 || code == AND || code == IOR || code == XOR
5709 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5710 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5711 || (flag_associative_math && FLOAT_MODE_P (mode))))
5713 if (GET_CODE (XEXP (x, 0)) == code)
5715 rtx other = XEXP (XEXP (x, 0), 0);
5716 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5717 rtx inner_op1 = XEXP (x, 1);
5718 rtx inner;
5720 /* Make sure we pass the constant operand if any as the second
5721 one if this is a commutative operation. */
5722 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5723 std::swap (inner_op0, inner_op1);
5724 inner = simplify_binary_operation (code == MINUS ? PLUS
5725 : code == DIV ? MULT
5726 : code,
5727 mode, inner_op0, inner_op1);
5729 /* For commutative operations, try the other pair if that one
5730 didn't simplify. */
5731 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5733 other = XEXP (XEXP (x, 0), 1);
5734 inner = simplify_binary_operation (code, mode,
5735 XEXP (XEXP (x, 0), 0),
5736 XEXP (x, 1));
5739 if (inner)
5740 return simplify_gen_binary (code, mode, other, inner);
5744 /* A little bit of algebraic simplification here. */
5745 switch (code)
5747 case MEM:
5748 /* Ensure that our address has any ASHIFTs converted to MULT in case
5749 address-recognizing predicates are called later. */
5750 temp = make_compound_operation (XEXP (x, 0), MEM);
5751 SUBST (XEXP (x, 0), temp);
5752 break;
5754 case SUBREG:
5755 if (op0_mode == VOIDmode)
5756 op0_mode = GET_MODE (SUBREG_REG (x));
5758 /* See if this can be moved to simplify_subreg. */
5759 if (CONSTANT_P (SUBREG_REG (x))
5760 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5761 /* Don't call gen_lowpart if the inner mode
5762 is VOIDmode and we cannot simplify it, as SUBREG without
5763 inner mode is invalid. */
5764 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5765 || gen_lowpart_common (mode, SUBREG_REG (x))))
5766 return gen_lowpart (mode, SUBREG_REG (x));
5768 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5769 break;
5771 rtx temp;
5772 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5773 SUBREG_BYTE (x));
5774 if (temp)
5775 return temp;
5777 /* If op is known to have all lower bits zero, the result is zero. */
5778 if (!in_dest
5779 && SCALAR_INT_MODE_P (mode)
5780 && SCALAR_INT_MODE_P (op0_mode)
5781 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5782 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5783 && HWI_COMPUTABLE_MODE_P (op0_mode)
5784 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5785 & GET_MODE_MASK (mode)) == 0)
5786 return CONST0_RTX (mode);
5789 /* Don't change the mode of the MEM if that would change the meaning
5790 of the address. */
5791 if (MEM_P (SUBREG_REG (x))
5792 && (MEM_VOLATILE_P (SUBREG_REG (x))
5793 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5794 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5795 return gen_rtx_CLOBBER (mode, const0_rtx);
5797 /* Note that we cannot do any narrowing for non-constants since
5798 we might have been counting on using the fact that some bits were
5799 zero. We now do this in the SET. */
5801 break;
5803 case NEG:
5804 temp = expand_compound_operation (XEXP (x, 0));
5806 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5807 replaced by (lshiftrt X C). This will convert
5808 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5810 if (GET_CODE (temp) == ASHIFTRT
5811 && CONST_INT_P (XEXP (temp, 1))
5812 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5813 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5814 INTVAL (XEXP (temp, 1)));
5816 /* If X has only a single bit that might be nonzero, say, bit I, convert
5817 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5818 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5819 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5820 or a SUBREG of one since we'd be making the expression more
5821 complex if it was just a register. */
5823 if (!REG_P (temp)
5824 && ! (GET_CODE (temp) == SUBREG
5825 && REG_P (SUBREG_REG (temp)))
5826 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5828 rtx temp1 = simplify_shift_const
5829 (NULL_RTX, ASHIFTRT, mode,
5830 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5831 GET_MODE_PRECISION (mode) - 1 - i),
5832 GET_MODE_PRECISION (mode) - 1 - i);
5834 /* If all we did was surround TEMP with the two shifts, we
5835 haven't improved anything, so don't use it. Otherwise,
5836 we are better off with TEMP1. */
5837 if (GET_CODE (temp1) != ASHIFTRT
5838 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5839 || XEXP (XEXP (temp1, 0), 0) != temp)
5840 return temp1;
5842 break;
5844 case TRUNCATE:
5845 /* We can't handle truncation to a partial integer mode here
5846 because we don't know the real bitsize of the partial
5847 integer mode. */
5848 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5849 break;
5851 if (HWI_COMPUTABLE_MODE_P (mode))
5852 SUBST (XEXP (x, 0),
5853 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5854 GET_MODE_MASK (mode), 0));
5856 /* We can truncate a constant value and return it. */
5857 if (CONST_INT_P (XEXP (x, 0)))
5858 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5860 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5861 whose value is a comparison can be replaced with a subreg if
5862 STORE_FLAG_VALUE permits. */
5863 if (HWI_COMPUTABLE_MODE_P (mode)
5864 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5865 && (temp = get_last_value (XEXP (x, 0)))
5866 && COMPARISON_P (temp))
5867 return gen_lowpart (mode, XEXP (x, 0));
5868 break;
5870 case CONST:
5871 /* (const (const X)) can become (const X). Do it this way rather than
5872 returning the inner CONST since CONST can be shared with a
5873 REG_EQUAL note. */
5874 if (GET_CODE (XEXP (x, 0)) == CONST)
5875 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5876 break;
5878 case LO_SUM:
5879 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5880 can add in an offset. find_split_point will split this address up
5881 again if it doesn't match. */
5882 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5883 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5884 return XEXP (x, 1);
5885 break;
5887 case PLUS:
5888 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5889 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5890 bit-field and can be replaced by either a sign_extend or a
5891 sign_extract. The `and' may be a zero_extend and the two
5892 <c>, -<c> constants may be reversed. */
5893 if (GET_CODE (XEXP (x, 0)) == XOR
5894 && CONST_INT_P (XEXP (x, 1))
5895 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5896 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5897 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5898 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5899 && HWI_COMPUTABLE_MODE_P (mode)
5900 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5901 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5902 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5903 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5904 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5905 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5906 == (unsigned int) i + 1))))
5907 return simplify_shift_const
5908 (NULL_RTX, ASHIFTRT, mode,
5909 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5910 XEXP (XEXP (XEXP (x, 0), 0), 0),
5911 GET_MODE_PRECISION (mode) - (i + 1)),
5912 GET_MODE_PRECISION (mode) - (i + 1));
5914 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5915 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5916 the bitsize of the mode - 1. This allows simplification of
5917 "a = (b & 8) == 0;" */
5918 if (XEXP (x, 1) == constm1_rtx
5919 && !REG_P (XEXP (x, 0))
5920 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5921 && REG_P (SUBREG_REG (XEXP (x, 0))))
5922 && nonzero_bits (XEXP (x, 0), mode) == 1)
5923 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5924 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5925 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5926 GET_MODE_PRECISION (mode) - 1),
5927 GET_MODE_PRECISION (mode) - 1);
5929 /* If we are adding two things that have no bits in common, convert
5930 the addition into an IOR. This will often be further simplified,
5931 for example in cases like ((a & 1) + (a & 2)), which can
5932 become a & 3. */
5934 if (HWI_COMPUTABLE_MODE_P (mode)
5935 && (nonzero_bits (XEXP (x, 0), mode)
5936 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5938 /* Try to simplify the expression further. */
5939 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5940 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5942 /* If we could, great. If not, do not go ahead with the IOR
5943 replacement, since PLUS appears in many special purpose
5944 address arithmetic instructions. */
5945 if (GET_CODE (temp) != CLOBBER
5946 && (GET_CODE (temp) != IOR
5947 || ((XEXP (temp, 0) != XEXP (x, 0)
5948 || XEXP (temp, 1) != XEXP (x, 1))
5949 && (XEXP (temp, 0) != XEXP (x, 1)
5950 || XEXP (temp, 1) != XEXP (x, 0)))))
5951 return temp;
5954 /* Canonicalize x + x into x << 1. */
5955 if (GET_MODE_CLASS (mode) == MODE_INT
5956 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5957 && !side_effects_p (XEXP (x, 0)))
5958 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5960 break;
5962 case MINUS:
5963 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5964 (and <foo> (const_int pow2-1)) */
5965 if (GET_CODE (XEXP (x, 1)) == AND
5966 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5967 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5968 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5969 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5970 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5971 break;
5973 case MULT:
5974 /* If we have (mult (plus A B) C), apply the distributive law and then
5975 the inverse distributive law to see if things simplify. This
5976 occurs mostly in addresses, often when unrolling loops. */
5978 if (GET_CODE (XEXP (x, 0)) == PLUS)
5980 rtx result = distribute_and_simplify_rtx (x, 0);
5981 if (result)
5982 return result;
5985 /* Try simplify a*(b/c) as (a*b)/c. */
5986 if (FLOAT_MODE_P (mode) && flag_associative_math
5987 && GET_CODE (XEXP (x, 0)) == DIV)
5989 rtx tem = simplify_binary_operation (MULT, mode,
5990 XEXP (XEXP (x, 0), 0),
5991 XEXP (x, 1));
5992 if (tem)
5993 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5995 break;
5997 case UDIV:
5998 /* If this is a divide by a power of two, treat it as a shift if
5999 its first operand is a shift. */
6000 if (CONST_INT_P (XEXP (x, 1))
6001 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6002 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6003 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6004 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6005 || GET_CODE (XEXP (x, 0)) == ROTATE
6006 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6007 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6008 break;
6010 case EQ: case NE:
6011 case GT: case GTU: case GE: case GEU:
6012 case LT: case LTU: case LE: case LEU:
6013 case UNEQ: case LTGT:
6014 case UNGT: case UNGE:
6015 case UNLT: case UNLE:
6016 case UNORDERED: case ORDERED:
6017 /* If the first operand is a condition code, we can't do anything
6018 with it. */
6019 if (GET_CODE (XEXP (x, 0)) == COMPARE
6020 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6021 && ! CC0_P (XEXP (x, 0))))
6023 rtx op0 = XEXP (x, 0);
6024 rtx op1 = XEXP (x, 1);
6025 enum rtx_code new_code;
6027 if (GET_CODE (op0) == COMPARE)
6028 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6030 /* Simplify our comparison, if possible. */
6031 new_code = simplify_comparison (code, &op0, &op1);
6033 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6034 if only the low-order bit is possibly nonzero in X (such as when
6035 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6036 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6037 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6038 (plus X 1).
6040 Remove any ZERO_EXTRACT we made when thinking this was a
6041 comparison. It may now be simpler to use, e.g., an AND. If a
6042 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6043 the call to make_compound_operation in the SET case.
6045 Don't apply these optimizations if the caller would
6046 prefer a comparison rather than a value.
6047 E.g., for the condition in an IF_THEN_ELSE most targets need
6048 an explicit comparison. */
6050 if (in_cond)
6053 else if (STORE_FLAG_VALUE == 1
6054 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6055 && op1 == const0_rtx
6056 && mode == GET_MODE (op0)
6057 && nonzero_bits (op0, mode) == 1)
6058 return gen_lowpart (mode,
6059 expand_compound_operation (op0));
6061 else if (STORE_FLAG_VALUE == 1
6062 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && (num_sign_bit_copies (op0, mode)
6066 == GET_MODE_PRECISION (mode)))
6068 op0 = expand_compound_operation (op0);
6069 return simplify_gen_unary (NEG, mode,
6070 gen_lowpart (mode, op0),
6071 mode);
6074 else if (STORE_FLAG_VALUE == 1
6075 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6076 && op1 == const0_rtx
6077 && mode == GET_MODE (op0)
6078 && nonzero_bits (op0, mode) == 1)
6080 op0 = expand_compound_operation (op0);
6081 return simplify_gen_binary (XOR, mode,
6082 gen_lowpart (mode, op0),
6083 const1_rtx);
6086 else if (STORE_FLAG_VALUE == 1
6087 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6088 && op1 == const0_rtx
6089 && mode == GET_MODE (op0)
6090 && (num_sign_bit_copies (op0, mode)
6091 == GET_MODE_PRECISION (mode)))
6093 op0 = expand_compound_operation (op0);
6094 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6097 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6098 those above. */
6099 if (in_cond)
6102 else if (STORE_FLAG_VALUE == -1
6103 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6104 && op1 == const0_rtx
6105 && mode == GET_MODE (op0)
6106 && (num_sign_bit_copies (op0, mode)
6107 == GET_MODE_PRECISION (mode)))
6108 return gen_lowpart (mode,
6109 expand_compound_operation (op0));
6111 else if (STORE_FLAG_VALUE == -1
6112 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6113 && op1 == const0_rtx
6114 && mode == GET_MODE (op0)
6115 && nonzero_bits (op0, mode) == 1)
6117 op0 = expand_compound_operation (op0);
6118 return simplify_gen_unary (NEG, mode,
6119 gen_lowpart (mode, op0),
6120 mode);
6123 else if (STORE_FLAG_VALUE == -1
6124 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6125 && op1 == const0_rtx
6126 && mode == GET_MODE (op0)
6127 && (num_sign_bit_copies (op0, mode)
6128 == GET_MODE_PRECISION (mode)))
6130 op0 = expand_compound_operation (op0);
6131 return simplify_gen_unary (NOT, mode,
6132 gen_lowpart (mode, op0),
6133 mode);
6136 /* If X is 0/1, (eq X 0) is X-1. */
6137 else if (STORE_FLAG_VALUE == -1
6138 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6139 && op1 == const0_rtx
6140 && mode == GET_MODE (op0)
6141 && nonzero_bits (op0, mode) == 1)
6143 op0 = expand_compound_operation (op0);
6144 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6147 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6148 one bit that might be nonzero, we can convert (ne x 0) to
6149 (ashift x c) where C puts the bit in the sign bit. Remove any
6150 AND with STORE_FLAG_VALUE when we are done, since we are only
6151 going to test the sign bit. */
6152 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6153 && HWI_COMPUTABLE_MODE_P (mode)
6154 && val_signbit_p (mode, STORE_FLAG_VALUE)
6155 && op1 == const0_rtx
6156 && mode == GET_MODE (op0)
6157 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6159 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6160 expand_compound_operation (op0),
6161 GET_MODE_PRECISION (mode) - 1 - i);
6162 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6163 return XEXP (x, 0);
6164 else
6165 return x;
6168 /* If the code changed, return a whole new comparison.
6169 We also need to avoid using SUBST in cases where
6170 simplify_comparison has widened a comparison with a CONST_INT,
6171 since in that case the wider CONST_INT may fail the sanity
6172 checks in do_SUBST. */
6173 if (new_code != code
6174 || (CONST_INT_P (op1)
6175 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6176 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6177 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6179 /* Otherwise, keep this operation, but maybe change its operands.
6180 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6181 SUBST (XEXP (x, 0), op0);
6182 SUBST (XEXP (x, 1), op1);
6184 break;
6186 case IF_THEN_ELSE:
6187 return simplify_if_then_else (x);
6189 case ZERO_EXTRACT:
6190 case SIGN_EXTRACT:
6191 case ZERO_EXTEND:
6192 case SIGN_EXTEND:
6193 /* If we are processing SET_DEST, we are done. */
6194 if (in_dest)
6195 return x;
6197 return expand_compound_operation (x);
6199 case SET:
6200 return simplify_set (x);
6202 case AND:
6203 case IOR:
6204 return simplify_logical (x);
6206 case ASHIFT:
6207 case LSHIFTRT:
6208 case ASHIFTRT:
6209 case ROTATE:
6210 case ROTATERT:
6211 /* If this is a shift by a constant amount, simplify it. */
6212 if (CONST_INT_P (XEXP (x, 1)))
6213 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6214 INTVAL (XEXP (x, 1)));
6216 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6217 SUBST (XEXP (x, 1),
6218 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6219 (HOST_WIDE_INT_1U
6220 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6221 - 1,
6222 0));
6223 break;
6225 default:
6226 break;
6229 return x;
6232 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6234 static rtx
6235 simplify_if_then_else (rtx x)
6237 machine_mode mode = GET_MODE (x);
6238 rtx cond = XEXP (x, 0);
6239 rtx true_rtx = XEXP (x, 1);
6240 rtx false_rtx = XEXP (x, 2);
6241 enum rtx_code true_code = GET_CODE (cond);
6242 int comparison_p = COMPARISON_P (cond);
6243 rtx temp;
6244 int i;
6245 enum rtx_code false_code;
6246 rtx reversed;
6248 /* Simplify storing of the truth value. */
6249 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6250 return simplify_gen_relational (true_code, mode, VOIDmode,
6251 XEXP (cond, 0), XEXP (cond, 1));
6253 /* Also when the truth value has to be reversed. */
6254 if (comparison_p
6255 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6256 && (reversed = reversed_comparison (cond, mode)))
6257 return reversed;
6259 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6260 in it is being compared against certain values. Get the true and false
6261 comparisons and see if that says anything about the value of each arm. */
6263 if (comparison_p
6264 && ((false_code = reversed_comparison_code (cond, NULL))
6265 != UNKNOWN)
6266 && REG_P (XEXP (cond, 0)))
6268 HOST_WIDE_INT nzb;
6269 rtx from = XEXP (cond, 0);
6270 rtx true_val = XEXP (cond, 1);
6271 rtx false_val = true_val;
6272 int swapped = 0;
6274 /* If FALSE_CODE is EQ, swap the codes and arms. */
6276 if (false_code == EQ)
6278 swapped = 1, true_code = EQ, false_code = NE;
6279 std::swap (true_rtx, false_rtx);
6282 /* If we are comparing against zero and the expression being tested has
6283 only a single bit that might be nonzero, that is its value when it is
6284 not equal to zero. Similarly if it is known to be -1 or 0. */
6286 if (true_code == EQ && true_val == const0_rtx
6287 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6289 false_code = EQ;
6290 false_val = gen_int_mode (nzb, GET_MODE (from));
6292 else if (true_code == EQ && true_val == const0_rtx
6293 && (num_sign_bit_copies (from, GET_MODE (from))
6294 == GET_MODE_PRECISION (GET_MODE (from))))
6296 false_code = EQ;
6297 false_val = constm1_rtx;
6300 /* Now simplify an arm if we know the value of the register in the
6301 branch and it is used in the arm. Be careful due to the potential
6302 of locally-shared RTL. */
6304 if (reg_mentioned_p (from, true_rtx))
6305 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6306 from, true_val),
6307 pc_rtx, pc_rtx, 0, 0, 0);
6308 if (reg_mentioned_p (from, false_rtx))
6309 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6310 from, false_val),
6311 pc_rtx, pc_rtx, 0, 0, 0);
6313 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6314 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6316 true_rtx = XEXP (x, 1);
6317 false_rtx = XEXP (x, 2);
6318 true_code = GET_CODE (cond);
6321 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6322 reversed, do so to avoid needing two sets of patterns for
6323 subtract-and-branch insns. Similarly if we have a constant in the true
6324 arm, the false arm is the same as the first operand of the comparison, or
6325 the false arm is more complicated than the true arm. */
6327 if (comparison_p
6328 && reversed_comparison_code (cond, NULL) != UNKNOWN
6329 && (true_rtx == pc_rtx
6330 || (CONSTANT_P (true_rtx)
6331 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6332 || true_rtx == const0_rtx
6333 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6334 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6335 && !OBJECT_P (false_rtx))
6336 || reg_mentioned_p (true_rtx, false_rtx)
6337 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6339 true_code = reversed_comparison_code (cond, NULL);
6340 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6341 SUBST (XEXP (x, 1), false_rtx);
6342 SUBST (XEXP (x, 2), true_rtx);
6344 std::swap (true_rtx, false_rtx);
6345 cond = XEXP (x, 0);
6347 /* It is possible that the conditional has been simplified out. */
6348 true_code = GET_CODE (cond);
6349 comparison_p = COMPARISON_P (cond);
6352 /* If the two arms are identical, we don't need the comparison. */
6354 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6355 return true_rtx;
6357 /* Convert a == b ? b : a to "a". */
6358 if (true_code == EQ && ! side_effects_p (cond)
6359 && !HONOR_NANS (mode)
6360 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6361 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6362 return false_rtx;
6363 else if (true_code == NE && ! side_effects_p (cond)
6364 && !HONOR_NANS (mode)
6365 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6366 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6367 return true_rtx;
6369 /* Look for cases where we have (abs x) or (neg (abs X)). */
6371 if (GET_MODE_CLASS (mode) == MODE_INT
6372 && comparison_p
6373 && XEXP (cond, 1) == const0_rtx
6374 && GET_CODE (false_rtx) == NEG
6375 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6376 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6377 && ! side_effects_p (true_rtx))
6378 switch (true_code)
6380 case GT:
6381 case GE:
6382 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6383 case LT:
6384 case LE:
6385 return
6386 simplify_gen_unary (NEG, mode,
6387 simplify_gen_unary (ABS, mode, true_rtx, mode),
6388 mode);
6389 default:
6390 break;
6393 /* Look for MIN or MAX. */
6395 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6396 && comparison_p
6397 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6398 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6399 && ! side_effects_p (cond))
6400 switch (true_code)
6402 case GE:
6403 case GT:
6404 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6405 case LE:
6406 case LT:
6407 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6408 case GEU:
6409 case GTU:
6410 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6411 case LEU:
6412 case LTU:
6413 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6414 default:
6415 break;
6418 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6419 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6420 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6421 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6422 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6423 neither 1 or -1, but it isn't worth checking for. */
6425 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6426 && comparison_p
6427 && GET_MODE_CLASS (mode) == MODE_INT
6428 && ! side_effects_p (x))
6430 rtx t = make_compound_operation (true_rtx, SET);
6431 rtx f = make_compound_operation (false_rtx, SET);
6432 rtx cond_op0 = XEXP (cond, 0);
6433 rtx cond_op1 = XEXP (cond, 1);
6434 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6435 machine_mode m = mode;
6436 rtx z = 0, c1 = NULL_RTX;
6438 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6439 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6440 || GET_CODE (t) == ASHIFT
6441 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6442 && rtx_equal_p (XEXP (t, 0), f))
6443 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6445 /* If an identity-zero op is commutative, check whether there
6446 would be a match if we swapped the operands. */
6447 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6448 || GET_CODE (t) == XOR)
6449 && rtx_equal_p (XEXP (t, 1), f))
6450 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6451 else if (GET_CODE (t) == SIGN_EXTEND
6452 && (GET_CODE (XEXP (t, 0)) == PLUS
6453 || GET_CODE (XEXP (t, 0)) == MINUS
6454 || GET_CODE (XEXP (t, 0)) == IOR
6455 || GET_CODE (XEXP (t, 0)) == XOR
6456 || GET_CODE (XEXP (t, 0)) == ASHIFT
6457 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6458 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6459 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6460 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6461 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6462 && (num_sign_bit_copies (f, GET_MODE (f))
6463 > (unsigned int)
6464 (GET_MODE_PRECISION (mode)
6465 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6467 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6468 extend_op = SIGN_EXTEND;
6469 m = GET_MODE (XEXP (t, 0));
6471 else if (GET_CODE (t) == SIGN_EXTEND
6472 && (GET_CODE (XEXP (t, 0)) == PLUS
6473 || GET_CODE (XEXP (t, 0)) == IOR
6474 || GET_CODE (XEXP (t, 0)) == XOR)
6475 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6476 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6477 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6478 && (num_sign_bit_copies (f, GET_MODE (f))
6479 > (unsigned int)
6480 (GET_MODE_PRECISION (mode)
6481 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6483 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6484 extend_op = SIGN_EXTEND;
6485 m = GET_MODE (XEXP (t, 0));
6487 else if (GET_CODE (t) == ZERO_EXTEND
6488 && (GET_CODE (XEXP (t, 0)) == PLUS
6489 || GET_CODE (XEXP (t, 0)) == MINUS
6490 || GET_CODE (XEXP (t, 0)) == IOR
6491 || GET_CODE (XEXP (t, 0)) == XOR
6492 || GET_CODE (XEXP (t, 0)) == ASHIFT
6493 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6494 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6495 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6496 && HWI_COMPUTABLE_MODE_P (mode)
6497 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6498 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6499 && ((nonzero_bits (f, GET_MODE (f))
6500 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6501 == 0))
6503 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6504 extend_op = ZERO_EXTEND;
6505 m = GET_MODE (XEXP (t, 0));
6507 else if (GET_CODE (t) == ZERO_EXTEND
6508 && (GET_CODE (XEXP (t, 0)) == PLUS
6509 || GET_CODE (XEXP (t, 0)) == IOR
6510 || GET_CODE (XEXP (t, 0)) == XOR)
6511 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6512 && HWI_COMPUTABLE_MODE_P (mode)
6513 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6514 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6515 && ((nonzero_bits (f, GET_MODE (f))
6516 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6517 == 0))
6519 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6520 extend_op = ZERO_EXTEND;
6521 m = GET_MODE (XEXP (t, 0));
6524 if (z)
6526 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6527 cond_op0, cond_op1),
6528 pc_rtx, pc_rtx, 0, 0, 0);
6529 temp = simplify_gen_binary (MULT, m, temp,
6530 simplify_gen_binary (MULT, m, c1,
6531 const_true_rtx));
6532 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6533 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6535 if (extend_op != UNKNOWN)
6536 temp = simplify_gen_unary (extend_op, mode, temp, m);
6538 return temp;
6542 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6543 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6544 negation of a single bit, we can convert this operation to a shift. We
6545 can actually do this more generally, but it doesn't seem worth it. */
6547 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6548 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6549 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6550 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6551 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6552 == GET_MODE_PRECISION (mode))
6553 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6554 return
6555 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6556 gen_lowpart (mode, XEXP (cond, 0)), i);
6558 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6559 non-zero bit in A is C1. */
6560 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6561 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6562 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6563 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6564 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6565 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6567 rtx val = XEXP (cond, 0);
6568 enum machine_mode val_mode = GET_MODE (val);
6569 if (val_mode == mode)
6570 return val;
6571 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6572 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6575 return x;
6578 /* Simplify X, a SET expression. Return the new expression. */
6580 static rtx
6581 simplify_set (rtx x)
6583 rtx src = SET_SRC (x);
6584 rtx dest = SET_DEST (x);
6585 machine_mode mode
6586 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6587 rtx_insn *other_insn;
6588 rtx *cc_use;
6590 /* (set (pc) (return)) gets written as (return). */
6591 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6592 return src;
6594 /* Now that we know for sure which bits of SRC we are using, see if we can
6595 simplify the expression for the object knowing that we only need the
6596 low-order bits. */
6598 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6600 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6601 SUBST (SET_SRC (x), src);
6604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6605 the comparison result and try to simplify it unless we already have used
6606 undobuf.other_insn. */
6607 if ((GET_MODE_CLASS (mode) == MODE_CC
6608 || GET_CODE (src) == COMPARE
6609 || CC0_P (dest))
6610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6612 && COMPARISON_P (*cc_use)
6613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6615 enum rtx_code old_code = GET_CODE (*cc_use);
6616 enum rtx_code new_code;
6617 rtx op0, op1, tmp;
6618 int other_changed = 0;
6619 rtx inner_compare = NULL_RTX;
6620 machine_mode compare_mode = GET_MODE (dest);
6622 if (GET_CODE (src) == COMPARE)
6624 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6625 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6627 inner_compare = op0;
6628 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6631 else
6632 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6634 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6635 op0, op1);
6636 if (!tmp)
6637 new_code = old_code;
6638 else if (!CONSTANT_P (tmp))
6640 new_code = GET_CODE (tmp);
6641 op0 = XEXP (tmp, 0);
6642 op1 = XEXP (tmp, 1);
6644 else
6646 rtx pat = PATTERN (other_insn);
6647 undobuf.other_insn = other_insn;
6648 SUBST (*cc_use, tmp);
6650 /* Attempt to simplify CC user. */
6651 if (GET_CODE (pat) == SET)
6653 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6654 if (new_rtx != NULL_RTX)
6655 SUBST (SET_SRC (pat), new_rtx);
6658 /* Convert X into a no-op move. */
6659 SUBST (SET_DEST (x), pc_rtx);
6660 SUBST (SET_SRC (x), pc_rtx);
6661 return x;
6664 /* Simplify our comparison, if possible. */
6665 new_code = simplify_comparison (new_code, &op0, &op1);
6667 #ifdef SELECT_CC_MODE
6668 /* If this machine has CC modes other than CCmode, check to see if we
6669 need to use a different CC mode here. */
6670 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6671 compare_mode = GET_MODE (op0);
6672 else if (inner_compare
6673 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6674 && new_code == old_code
6675 && op0 == XEXP (inner_compare, 0)
6676 && op1 == XEXP (inner_compare, 1))
6677 compare_mode = GET_MODE (inner_compare);
6678 else
6679 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6681 /* If the mode changed, we have to change SET_DEST, the mode in the
6682 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6683 a hard register, just build new versions with the proper mode. If it
6684 is a pseudo, we lose unless it is only time we set the pseudo, in
6685 which case we can safely change its mode. */
6686 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6688 if (can_change_dest_mode (dest, 0, compare_mode))
6690 unsigned int regno = REGNO (dest);
6691 rtx new_dest;
6693 if (regno < FIRST_PSEUDO_REGISTER)
6694 new_dest = gen_rtx_REG (compare_mode, regno);
6695 else
6697 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6698 new_dest = regno_reg_rtx[regno];
6701 SUBST (SET_DEST (x), new_dest);
6702 SUBST (XEXP (*cc_use, 0), new_dest);
6703 other_changed = 1;
6705 dest = new_dest;
6708 #endif /* SELECT_CC_MODE */
6710 /* If the code changed, we have to build a new comparison in
6711 undobuf.other_insn. */
6712 if (new_code != old_code)
6714 int other_changed_previously = other_changed;
6715 unsigned HOST_WIDE_INT mask;
6716 rtx old_cc_use = *cc_use;
6718 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6719 dest, const0_rtx));
6720 other_changed = 1;
6722 /* If the only change we made was to change an EQ into an NE or
6723 vice versa, OP0 has only one bit that might be nonzero, and OP1
6724 is zero, check if changing the user of the condition code will
6725 produce a valid insn. If it won't, we can keep the original code
6726 in that insn by surrounding our operation with an XOR. */
6728 if (((old_code == NE && new_code == EQ)
6729 || (old_code == EQ && new_code == NE))
6730 && ! other_changed_previously && op1 == const0_rtx
6731 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6732 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6734 rtx pat = PATTERN (other_insn), note = 0;
6736 if ((recog_for_combine (&pat, other_insn, &note) < 0
6737 && ! check_asm_operands (pat)))
6739 *cc_use = old_cc_use;
6740 other_changed = 0;
6742 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6743 gen_int_mode (mask,
6744 GET_MODE (op0)));
6749 if (other_changed)
6750 undobuf.other_insn = other_insn;
6752 /* Don't generate a compare of a CC with 0, just use that CC. */
6753 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6755 SUBST (SET_SRC (x), op0);
6756 src = SET_SRC (x);
6758 /* Otherwise, if we didn't previously have the same COMPARE we
6759 want, create it from scratch. */
6760 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6761 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6763 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6764 src = SET_SRC (x);
6767 else
6769 /* Get SET_SRC in a form where we have placed back any
6770 compound expressions. Then do the checks below. */
6771 src = make_compound_operation (src, SET);
6772 SUBST (SET_SRC (x), src);
6775 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6776 and X being a REG or (subreg (reg)), we may be able to convert this to
6777 (set (subreg:m2 x) (op)).
6779 We can always do this if M1 is narrower than M2 because that means that
6780 we only care about the low bits of the result.
6782 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6783 perform a narrower operation than requested since the high-order bits will
6784 be undefined. On machine where it is defined, this transformation is safe
6785 as long as M1 and M2 have the same number of words. */
6787 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6788 && !OBJECT_P (SUBREG_REG (src))
6789 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6790 / UNITS_PER_WORD)
6791 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6792 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6793 && (WORD_REGISTER_OPERATIONS
6794 || (GET_MODE_SIZE (GET_MODE (src))
6795 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6796 #ifdef CANNOT_CHANGE_MODE_CLASS
6797 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6798 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6799 GET_MODE (SUBREG_REG (src)),
6800 GET_MODE (src)))
6801 #endif
6802 && (REG_P (dest)
6803 || (GET_CODE (dest) == SUBREG
6804 && REG_P (SUBREG_REG (dest)))))
6806 SUBST (SET_DEST (x),
6807 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6808 dest));
6809 SUBST (SET_SRC (x), SUBREG_REG (src));
6811 src = SET_SRC (x), dest = SET_DEST (x);
6814 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6815 in SRC. */
6816 if (dest == cc0_rtx
6817 && GET_CODE (src) == SUBREG
6818 && subreg_lowpart_p (src)
6819 && (GET_MODE_PRECISION (GET_MODE (src))
6820 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6822 rtx inner = SUBREG_REG (src);
6823 machine_mode inner_mode = GET_MODE (inner);
6825 /* Here we make sure that we don't have a sign bit on. */
6826 if (val_signbit_known_clear_p (GET_MODE (src),
6827 nonzero_bits (inner, inner_mode)))
6829 SUBST (SET_SRC (x), inner);
6830 src = SET_SRC (x);
6834 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6835 would require a paradoxical subreg. Replace the subreg with a
6836 zero_extend to avoid the reload that would otherwise be required. */
6838 enum rtx_code extend_op;
6839 if (paradoxical_subreg_p (src)
6840 && MEM_P (SUBREG_REG (src))
6841 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6843 SUBST (SET_SRC (x),
6844 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6846 src = SET_SRC (x);
6849 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6850 are comparing an item known to be 0 or -1 against 0, use a logical
6851 operation instead. Check for one of the arms being an IOR of the other
6852 arm with some value. We compute three terms to be IOR'ed together. In
6853 practice, at most two will be nonzero. Then we do the IOR's. */
6855 if (GET_CODE (dest) != PC
6856 && GET_CODE (src) == IF_THEN_ELSE
6857 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6858 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6859 && XEXP (XEXP (src, 0), 1) == const0_rtx
6860 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6861 && (!HAVE_conditional_move
6862 || ! can_conditionally_move_p (GET_MODE (src)))
6863 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6864 GET_MODE (XEXP (XEXP (src, 0), 0)))
6865 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6866 && ! side_effects_p (src))
6868 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6869 ? XEXP (src, 1) : XEXP (src, 2));
6870 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6871 ? XEXP (src, 2) : XEXP (src, 1));
6872 rtx term1 = const0_rtx, term2, term3;
6874 if (GET_CODE (true_rtx) == IOR
6875 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6876 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6877 else if (GET_CODE (true_rtx) == IOR
6878 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6879 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6880 else if (GET_CODE (false_rtx) == IOR
6881 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6882 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6883 else if (GET_CODE (false_rtx) == IOR
6884 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6885 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6887 term2 = simplify_gen_binary (AND, GET_MODE (src),
6888 XEXP (XEXP (src, 0), 0), true_rtx);
6889 term3 = simplify_gen_binary (AND, GET_MODE (src),
6890 simplify_gen_unary (NOT, GET_MODE (src),
6891 XEXP (XEXP (src, 0), 0),
6892 GET_MODE (src)),
6893 false_rtx);
6895 SUBST (SET_SRC (x),
6896 simplify_gen_binary (IOR, GET_MODE (src),
6897 simplify_gen_binary (IOR, GET_MODE (src),
6898 term1, term2),
6899 term3));
6901 src = SET_SRC (x);
6904 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6905 whole thing fail. */
6906 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6907 return src;
6908 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6909 return dest;
6910 else
6911 /* Convert this into a field assignment operation, if possible. */
6912 return make_field_assignment (x);
6915 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6916 result. */
6918 static rtx
6919 simplify_logical (rtx x)
6921 machine_mode mode = GET_MODE (x);
6922 rtx op0 = XEXP (x, 0);
6923 rtx op1 = XEXP (x, 1);
6925 switch (GET_CODE (x))
6927 case AND:
6928 /* We can call simplify_and_const_int only if we don't lose
6929 any (sign) bits when converting INTVAL (op1) to
6930 "unsigned HOST_WIDE_INT". */
6931 if (CONST_INT_P (op1)
6932 && (HWI_COMPUTABLE_MODE_P (mode)
6933 || INTVAL (op1) > 0))
6935 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6936 if (GET_CODE (x) != AND)
6937 return x;
6939 op0 = XEXP (x, 0);
6940 op1 = XEXP (x, 1);
6943 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6944 apply the distributive law and then the inverse distributive
6945 law to see if things simplify. */
6946 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6948 rtx result = distribute_and_simplify_rtx (x, 0);
6949 if (result)
6950 return result;
6952 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6954 rtx result = distribute_and_simplify_rtx (x, 1);
6955 if (result)
6956 return result;
6958 break;
6960 case IOR:
6961 /* If we have (ior (and A B) C), apply the distributive law and then
6962 the inverse distributive law to see if things simplify. */
6964 if (GET_CODE (op0) == AND)
6966 rtx result = distribute_and_simplify_rtx (x, 0);
6967 if (result)
6968 return result;
6971 if (GET_CODE (op1) == AND)
6973 rtx result = distribute_and_simplify_rtx (x, 1);
6974 if (result)
6975 return result;
6977 break;
6979 default:
6980 gcc_unreachable ();
6983 return x;
6986 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6987 operations" because they can be replaced with two more basic operations.
6988 ZERO_EXTEND is also considered "compound" because it can be replaced with
6989 an AND operation, which is simpler, though only one operation.
6991 The function expand_compound_operation is called with an rtx expression
6992 and will convert it to the appropriate shifts and AND operations,
6993 simplifying at each stage.
6995 The function make_compound_operation is called to convert an expression
6996 consisting of shifts and ANDs into the equivalent compound expression.
6997 It is the inverse of this function, loosely speaking. */
6999 static rtx
7000 expand_compound_operation (rtx x)
7002 unsigned HOST_WIDE_INT pos = 0, len;
7003 int unsignedp = 0;
7004 unsigned int modewidth;
7005 rtx tem;
7007 switch (GET_CODE (x))
7009 case ZERO_EXTEND:
7010 unsignedp = 1;
7011 /* FALLTHRU */
7012 case SIGN_EXTEND:
7013 /* We can't necessarily use a const_int for a multiword mode;
7014 it depends on implicitly extending the value.
7015 Since we don't know the right way to extend it,
7016 we can't tell whether the implicit way is right.
7018 Even for a mode that is no wider than a const_int,
7019 we can't win, because we need to sign extend one of its bits through
7020 the rest of it, and we don't know which bit. */
7021 if (CONST_INT_P (XEXP (x, 0)))
7022 return x;
7024 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7025 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7026 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7027 reloaded. If not for that, MEM's would very rarely be safe.
7029 Reject MODEs bigger than a word, because we might not be able
7030 to reference a two-register group starting with an arbitrary register
7031 (and currently gen_lowpart might crash for a SUBREG). */
7033 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7034 return x;
7036 /* Reject MODEs that aren't scalar integers because turning vector
7037 or complex modes into shifts causes problems. */
7039 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7040 return x;
7042 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7043 /* If the inner object has VOIDmode (the only way this can happen
7044 is if it is an ASM_OPERANDS), we can't do anything since we don't
7045 know how much masking to do. */
7046 if (len == 0)
7047 return x;
7049 break;
7051 case ZERO_EXTRACT:
7052 unsignedp = 1;
7054 /* fall through */
7056 case SIGN_EXTRACT:
7057 /* If the operand is a CLOBBER, just return it. */
7058 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7059 return XEXP (x, 0);
7061 if (!CONST_INT_P (XEXP (x, 1))
7062 || !CONST_INT_P (XEXP (x, 2))
7063 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7064 return x;
7066 /* Reject MODEs that aren't scalar integers because turning vector
7067 or complex modes into shifts causes problems. */
7069 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7070 return x;
7072 len = INTVAL (XEXP (x, 1));
7073 pos = INTVAL (XEXP (x, 2));
7075 /* This should stay within the object being extracted, fail otherwise. */
7076 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7077 return x;
7079 if (BITS_BIG_ENDIAN)
7080 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7082 break;
7084 default:
7085 return x;
7087 /* Convert sign extension to zero extension, if we know that the high
7088 bit is not set, as this is easier to optimize. It will be converted
7089 back to cheaper alternative in make_extraction. */
7090 if (GET_CODE (x) == SIGN_EXTEND
7091 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7092 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7093 & ~(((unsigned HOST_WIDE_INT)
7094 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7095 >> 1))
7096 == 0)))
7098 machine_mode mode = GET_MODE (x);
7099 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7100 rtx temp2 = expand_compound_operation (temp);
7102 /* Make sure this is a profitable operation. */
7103 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7104 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7105 return temp2;
7106 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7107 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7108 return temp;
7109 else
7110 return x;
7113 /* We can optimize some special cases of ZERO_EXTEND. */
7114 if (GET_CODE (x) == ZERO_EXTEND)
7116 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7117 know that the last value didn't have any inappropriate bits
7118 set. */
7119 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7120 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7121 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7122 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7123 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7124 return XEXP (XEXP (x, 0), 0);
7126 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7127 if (GET_CODE (XEXP (x, 0)) == SUBREG
7128 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7129 && subreg_lowpart_p (XEXP (x, 0))
7130 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7131 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7132 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7133 return SUBREG_REG (XEXP (x, 0));
7135 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7136 is a comparison and STORE_FLAG_VALUE permits. This is like
7137 the first case, but it works even when GET_MODE (x) is larger
7138 than HOST_WIDE_INT. */
7139 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7140 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7141 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7142 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7143 <= HOST_BITS_PER_WIDE_INT)
7144 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7145 return XEXP (XEXP (x, 0), 0);
7147 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7148 if (GET_CODE (XEXP (x, 0)) == SUBREG
7149 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7150 && subreg_lowpart_p (XEXP (x, 0))
7151 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7152 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7153 <= HOST_BITS_PER_WIDE_INT)
7154 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7155 return SUBREG_REG (XEXP (x, 0));
7159 /* If we reach here, we want to return a pair of shifts. The inner
7160 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7161 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7162 logical depending on the value of UNSIGNEDP.
7164 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7165 converted into an AND of a shift.
7167 We must check for the case where the left shift would have a negative
7168 count. This can happen in a case like (x >> 31) & 255 on machines
7169 that can't shift by a constant. On those machines, we would first
7170 combine the shift with the AND to produce a variable-position
7171 extraction. Then the constant of 31 would be substituted in
7172 to produce such a position. */
7174 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7175 if (modewidth >= pos + len)
7177 machine_mode mode = GET_MODE (x);
7178 tem = gen_lowpart (mode, XEXP (x, 0));
7179 if (!tem || GET_CODE (tem) == CLOBBER)
7180 return x;
7181 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7182 tem, modewidth - pos - len);
7183 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7184 mode, tem, modewidth - len);
7186 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7187 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7188 simplify_shift_const (NULL_RTX, LSHIFTRT,
7189 GET_MODE (x),
7190 XEXP (x, 0), pos),
7191 (HOST_WIDE_INT_1U << len) - 1);
7192 else
7193 /* Any other cases we can't handle. */
7194 return x;
7196 /* If we couldn't do this for some reason, return the original
7197 expression. */
7198 if (GET_CODE (tem) == CLOBBER)
7199 return x;
7201 return tem;
7204 /* X is a SET which contains an assignment of one object into
7205 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7206 or certain SUBREGS). If possible, convert it into a series of
7207 logical operations.
7209 We half-heartedly support variable positions, but do not at all
7210 support variable lengths. */
7212 static const_rtx
7213 expand_field_assignment (const_rtx x)
7215 rtx inner;
7216 rtx pos; /* Always counts from low bit. */
7217 int len;
7218 rtx mask, cleared, masked;
7219 machine_mode compute_mode;
7221 /* Loop until we find something we can't simplify. */
7222 while (1)
7224 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7225 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7227 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7228 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7229 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7231 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7232 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7234 inner = XEXP (SET_DEST (x), 0);
7235 len = INTVAL (XEXP (SET_DEST (x), 1));
7236 pos = XEXP (SET_DEST (x), 2);
7238 /* A constant position should stay within the width of INNER. */
7239 if (CONST_INT_P (pos)
7240 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7241 break;
7243 if (BITS_BIG_ENDIAN)
7245 if (CONST_INT_P (pos))
7246 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7247 - INTVAL (pos));
7248 else if (GET_CODE (pos) == MINUS
7249 && CONST_INT_P (XEXP (pos, 1))
7250 && (INTVAL (XEXP (pos, 1))
7251 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7252 /* If position is ADJUST - X, new position is X. */
7253 pos = XEXP (pos, 0);
7254 else
7256 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7257 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7258 gen_int_mode (prec - len,
7259 GET_MODE (pos)),
7260 pos);
7265 /* A SUBREG between two modes that occupy the same numbers of words
7266 can be done by moving the SUBREG to the source. */
7267 else if (GET_CODE (SET_DEST (x)) == SUBREG
7268 /* We need SUBREGs to compute nonzero_bits properly. */
7269 && nonzero_sign_valid
7270 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7271 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7272 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7273 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7275 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7276 gen_lowpart
7277 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7278 SET_SRC (x)));
7279 continue;
7281 else
7282 break;
7284 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7285 inner = SUBREG_REG (inner);
7287 compute_mode = GET_MODE (inner);
7289 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7290 if (! SCALAR_INT_MODE_P (compute_mode))
7292 machine_mode imode;
7294 /* Don't do anything for vector or complex integral types. */
7295 if (! FLOAT_MODE_P (compute_mode))
7296 break;
7298 /* Try to find an integral mode to pun with. */
7299 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7300 if (imode == BLKmode)
7301 break;
7303 compute_mode = imode;
7304 inner = gen_lowpart (imode, inner);
7307 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7308 if (len >= HOST_BITS_PER_WIDE_INT)
7309 break;
7311 /* Don't try to compute in too wide unsupported modes. */
7312 if (!targetm.scalar_mode_supported_p (compute_mode))
7313 break;
7315 /* Now compute the equivalent expression. Make a copy of INNER
7316 for the SET_DEST in case it is a MEM into which we will substitute;
7317 we don't want shared RTL in that case. */
7318 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7319 compute_mode);
7320 cleared = simplify_gen_binary (AND, compute_mode,
7321 simplify_gen_unary (NOT, compute_mode,
7322 simplify_gen_binary (ASHIFT,
7323 compute_mode,
7324 mask, pos),
7325 compute_mode),
7326 inner);
7327 masked = simplify_gen_binary (ASHIFT, compute_mode,
7328 simplify_gen_binary (
7329 AND, compute_mode,
7330 gen_lowpart (compute_mode, SET_SRC (x)),
7331 mask),
7332 pos);
7334 x = gen_rtx_SET (copy_rtx (inner),
7335 simplify_gen_binary (IOR, compute_mode,
7336 cleared, masked));
7339 return x;
7342 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7343 it is an RTX that represents the (variable) starting position; otherwise,
7344 POS is the (constant) starting bit position. Both are counted from the LSB.
7346 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7348 IN_DEST is nonzero if this is a reference in the destination of a SET.
7349 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7350 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7351 be used.
7353 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7354 ZERO_EXTRACT should be built even for bits starting at bit 0.
7356 MODE is the desired mode of the result (if IN_DEST == 0).
7358 The result is an RTX for the extraction or NULL_RTX if the target
7359 can't handle it. */
7361 static rtx
7362 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7363 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7364 int in_dest, int in_compare)
7366 /* This mode describes the size of the storage area
7367 to fetch the overall value from. Within that, we
7368 ignore the POS lowest bits, etc. */
7369 machine_mode is_mode = GET_MODE (inner);
7370 machine_mode inner_mode;
7371 machine_mode wanted_inner_mode;
7372 machine_mode wanted_inner_reg_mode = word_mode;
7373 machine_mode pos_mode = word_mode;
7374 machine_mode extraction_mode = word_mode;
7375 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7376 rtx new_rtx = 0;
7377 rtx orig_pos_rtx = pos_rtx;
7378 HOST_WIDE_INT orig_pos;
7380 if (pos_rtx && CONST_INT_P (pos_rtx))
7381 pos = INTVAL (pos_rtx), pos_rtx = 0;
7383 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7385 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7386 consider just the QI as the memory to extract from.
7387 The subreg adds or removes high bits; its mode is
7388 irrelevant to the meaning of this extraction,
7389 since POS and LEN count from the lsb. */
7390 if (MEM_P (SUBREG_REG (inner)))
7391 is_mode = GET_MODE (SUBREG_REG (inner));
7392 inner = SUBREG_REG (inner);
7394 else if (GET_CODE (inner) == ASHIFT
7395 && CONST_INT_P (XEXP (inner, 1))
7396 && pos_rtx == 0 && pos == 0
7397 && len > UINTVAL (XEXP (inner, 1)))
7399 /* We're extracting the least significant bits of an rtx
7400 (ashift X (const_int C)), where LEN > C. Extract the
7401 least significant (LEN - C) bits of X, giving an rtx
7402 whose mode is MODE, then shift it left C times. */
7403 new_rtx = make_extraction (mode, XEXP (inner, 0),
7404 0, 0, len - INTVAL (XEXP (inner, 1)),
7405 unsignedp, in_dest, in_compare);
7406 if (new_rtx != 0)
7407 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7409 else if (GET_CODE (inner) == TRUNCATE)
7410 inner = XEXP (inner, 0);
7412 inner_mode = GET_MODE (inner);
7414 /* See if this can be done without an extraction. We never can if the
7415 width of the field is not the same as that of some integer mode. For
7416 registers, we can only avoid the extraction if the position is at the
7417 low-order bit and this is either not in the destination or we have the
7418 appropriate STRICT_LOW_PART operation available.
7420 For MEM, we can avoid an extract if the field starts on an appropriate
7421 boundary and we can change the mode of the memory reference. */
7423 if (tmode != BLKmode
7424 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7425 && !MEM_P (inner)
7426 && (pos == 0 || REG_P (inner))
7427 && (inner_mode == tmode
7428 || !REG_P (inner)
7429 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7430 || reg_truncated_to_mode (tmode, inner))
7431 && (! in_dest
7432 || (REG_P (inner)
7433 && have_insn_for (STRICT_LOW_PART, tmode))))
7434 || (MEM_P (inner) && pos_rtx == 0
7435 && (pos
7436 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7437 : BITS_PER_UNIT)) == 0
7438 /* We can't do this if we are widening INNER_MODE (it
7439 may not be aligned, for one thing). */
7440 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7441 && (inner_mode == tmode
7442 || (! mode_dependent_address_p (XEXP (inner, 0),
7443 MEM_ADDR_SPACE (inner))
7444 && ! MEM_VOLATILE_P (inner))))))
7446 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7447 field. If the original and current mode are the same, we need not
7448 adjust the offset. Otherwise, we do if bytes big endian.
7450 If INNER is not a MEM, get a piece consisting of just the field
7451 of interest (in this case POS % BITS_PER_WORD must be 0). */
7453 if (MEM_P (inner))
7455 HOST_WIDE_INT offset;
7457 /* POS counts from lsb, but make OFFSET count in memory order. */
7458 if (BYTES_BIG_ENDIAN)
7459 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7460 else
7461 offset = pos / BITS_PER_UNIT;
7463 new_rtx = adjust_address_nv (inner, tmode, offset);
7465 else if (REG_P (inner))
7467 if (tmode != inner_mode)
7469 /* We can't call gen_lowpart in a DEST since we
7470 always want a SUBREG (see below) and it would sometimes
7471 return a new hard register. */
7472 if (pos || in_dest)
7474 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7476 if (WORDS_BIG_ENDIAN
7477 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7478 final_word = ((GET_MODE_SIZE (inner_mode)
7479 - GET_MODE_SIZE (tmode))
7480 / UNITS_PER_WORD) - final_word;
7482 final_word *= UNITS_PER_WORD;
7483 if (BYTES_BIG_ENDIAN &&
7484 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7485 final_word += (GET_MODE_SIZE (inner_mode)
7486 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7488 /* Avoid creating invalid subregs, for example when
7489 simplifying (x>>32)&255. */
7490 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7491 return NULL_RTX;
7493 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7495 else
7496 new_rtx = gen_lowpart (tmode, inner);
7498 else
7499 new_rtx = inner;
7501 else
7502 new_rtx = force_to_mode (inner, tmode,
7503 len >= HOST_BITS_PER_WIDE_INT
7504 ? HOST_WIDE_INT_M1U
7505 : (HOST_WIDE_INT_1U << len) - 1, 0);
7507 /* If this extraction is going into the destination of a SET,
7508 make a STRICT_LOW_PART unless we made a MEM. */
7510 if (in_dest)
7511 return (MEM_P (new_rtx) ? new_rtx
7512 : (GET_CODE (new_rtx) != SUBREG
7513 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7514 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7516 if (mode == tmode)
7517 return new_rtx;
7519 if (CONST_SCALAR_INT_P (new_rtx))
7520 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7521 mode, new_rtx, tmode);
7523 /* If we know that no extraneous bits are set, and that the high
7524 bit is not set, convert the extraction to the cheaper of
7525 sign and zero extension, that are equivalent in these cases. */
7526 if (flag_expensive_optimizations
7527 && (HWI_COMPUTABLE_MODE_P (tmode)
7528 && ((nonzero_bits (new_rtx, tmode)
7529 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7530 == 0)))
7532 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7533 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7535 /* Prefer ZERO_EXTENSION, since it gives more information to
7536 backends. */
7537 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7538 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7539 return temp;
7540 return temp1;
7543 /* Otherwise, sign- or zero-extend unless we already are in the
7544 proper mode. */
7546 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7547 mode, new_rtx));
7550 /* Unless this is a COMPARE or we have a funny memory reference,
7551 don't do anything with zero-extending field extracts starting at
7552 the low-order bit since they are simple AND operations. */
7553 if (pos_rtx == 0 && pos == 0 && ! in_dest
7554 && ! in_compare && unsignedp)
7555 return 0;
7557 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7558 if the position is not a constant and the length is not 1. In all
7559 other cases, we would only be going outside our object in cases when
7560 an original shift would have been undefined. */
7561 if (MEM_P (inner)
7562 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7563 || (pos_rtx != 0 && len != 1)))
7564 return 0;
7566 enum extraction_pattern pattern = (in_dest ? EP_insv
7567 : unsignedp ? EP_extzv : EP_extv);
7569 /* If INNER is not from memory, we want it to have the mode of a register
7570 extraction pattern's structure operand, or word_mode if there is no
7571 such pattern. The same applies to extraction_mode and pos_mode
7572 and their respective operands.
7574 For memory, assume that the desired extraction_mode and pos_mode
7575 are the same as for a register operation, since at present we don't
7576 have named patterns for aligned memory structures. */
7577 struct extraction_insn insn;
7578 if (get_best_reg_extraction_insn (&insn, pattern,
7579 GET_MODE_BITSIZE (inner_mode), mode))
7581 wanted_inner_reg_mode = insn.struct_mode;
7582 pos_mode = insn.pos_mode;
7583 extraction_mode = insn.field_mode;
7586 /* Never narrow an object, since that might not be safe. */
7588 if (mode != VOIDmode
7589 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7590 extraction_mode = mode;
7592 if (!MEM_P (inner))
7593 wanted_inner_mode = wanted_inner_reg_mode;
7594 else
7596 /* Be careful not to go beyond the extracted object and maintain the
7597 natural alignment of the memory. */
7598 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7599 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7600 > GET_MODE_BITSIZE (wanted_inner_mode))
7602 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7603 gcc_assert (wanted_inner_mode != VOIDmode);
7607 orig_pos = pos;
7609 if (BITS_BIG_ENDIAN)
7611 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7612 BITS_BIG_ENDIAN style. If position is constant, compute new
7613 position. Otherwise, build subtraction.
7614 Note that POS is relative to the mode of the original argument.
7615 If it's a MEM we need to recompute POS relative to that.
7616 However, if we're extracting from (or inserting into) a register,
7617 we want to recompute POS relative to wanted_inner_mode. */
7618 int width = (MEM_P (inner)
7619 ? GET_MODE_BITSIZE (is_mode)
7620 : GET_MODE_BITSIZE (wanted_inner_mode));
7622 if (pos_rtx == 0)
7623 pos = width - len - pos;
7624 else
7625 pos_rtx
7626 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7627 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7628 pos_rtx);
7629 /* POS may be less than 0 now, but we check for that below.
7630 Note that it can only be less than 0 if !MEM_P (inner). */
7633 /* If INNER has a wider mode, and this is a constant extraction, try to
7634 make it smaller and adjust the byte to point to the byte containing
7635 the value. */
7636 if (wanted_inner_mode != VOIDmode
7637 && inner_mode != wanted_inner_mode
7638 && ! pos_rtx
7639 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7640 && MEM_P (inner)
7641 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7642 && ! MEM_VOLATILE_P (inner))
7644 int offset = 0;
7646 /* The computations below will be correct if the machine is big
7647 endian in both bits and bytes or little endian in bits and bytes.
7648 If it is mixed, we must adjust. */
7650 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7651 adjust OFFSET to compensate. */
7652 if (BYTES_BIG_ENDIAN
7653 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7654 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7656 /* We can now move to the desired byte. */
7657 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7658 * GET_MODE_SIZE (wanted_inner_mode);
7659 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7661 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7662 && is_mode != wanted_inner_mode)
7663 offset = (GET_MODE_SIZE (is_mode)
7664 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7666 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7669 /* If INNER is not memory, get it into the proper mode. If we are changing
7670 its mode, POS must be a constant and smaller than the size of the new
7671 mode. */
7672 else if (!MEM_P (inner))
7674 /* On the LHS, don't create paradoxical subregs implicitely truncating
7675 the register unless TRULY_NOOP_TRUNCATION. */
7676 if (in_dest
7677 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7678 wanted_inner_mode))
7679 return NULL_RTX;
7681 if (GET_MODE (inner) != wanted_inner_mode
7682 && (pos_rtx != 0
7683 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7684 return NULL_RTX;
7686 if (orig_pos < 0)
7687 return NULL_RTX;
7689 inner = force_to_mode (inner, wanted_inner_mode,
7690 pos_rtx
7691 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7692 ? HOST_WIDE_INT_M1U
7693 : (((HOST_WIDE_INT_1U << len) - 1)
7694 << orig_pos),
7698 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7699 have to zero extend. Otherwise, we can just use a SUBREG. */
7700 if (pos_rtx != 0
7701 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7703 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7704 GET_MODE (pos_rtx));
7706 /* If we know that no extraneous bits are set, and that the high
7707 bit is not set, convert extraction to cheaper one - either
7708 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7709 cases. */
7710 if (flag_expensive_optimizations
7711 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7712 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7713 & ~(((unsigned HOST_WIDE_INT)
7714 GET_MODE_MASK (GET_MODE (pos_rtx)))
7715 >> 1))
7716 == 0)))
7718 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7719 GET_MODE (pos_rtx));
7721 /* Prefer ZERO_EXTENSION, since it gives more information to
7722 backends. */
7723 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7724 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7725 temp = temp1;
7727 pos_rtx = temp;
7730 /* Make POS_RTX unless we already have it and it is correct. If we don't
7731 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7732 be a CONST_INT. */
7733 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7734 pos_rtx = orig_pos_rtx;
7736 else if (pos_rtx == 0)
7737 pos_rtx = GEN_INT (pos);
7739 /* Make the required operation. See if we can use existing rtx. */
7740 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7741 extraction_mode, inner, GEN_INT (len), pos_rtx);
7742 if (! in_dest)
7743 new_rtx = gen_lowpart (mode, new_rtx);
7745 return new_rtx;
7748 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7749 with any other operations in X. Return X without that shift if so. */
7751 static rtx
7752 extract_left_shift (rtx x, int count)
7754 enum rtx_code code = GET_CODE (x);
7755 machine_mode mode = GET_MODE (x);
7756 rtx tem;
7758 switch (code)
7760 case ASHIFT:
7761 /* This is the shift itself. If it is wide enough, we will return
7762 either the value being shifted if the shift count is equal to
7763 COUNT or a shift for the difference. */
7764 if (CONST_INT_P (XEXP (x, 1))
7765 && INTVAL (XEXP (x, 1)) >= count)
7766 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7767 INTVAL (XEXP (x, 1)) - count);
7768 break;
7770 case NEG: case NOT:
7771 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7772 return simplify_gen_unary (code, mode, tem, mode);
7774 break;
7776 case PLUS: case IOR: case XOR: case AND:
7777 /* If we can safely shift this constant and we find the inner shift,
7778 make a new operation. */
7779 if (CONST_INT_P (XEXP (x, 1))
7780 && (UINTVAL (XEXP (x, 1))
7781 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7782 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7784 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7785 return simplify_gen_binary (code, mode, tem,
7786 gen_int_mode (val, mode));
7788 break;
7790 default:
7791 break;
7794 return 0;
7797 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7798 level of the expression and MODE is its mode. IN_CODE is as for
7799 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7800 that should be used when recursing on operands of *X_PTR.
7802 There are two possible actions:
7804 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7805 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7807 - Return a new rtx, which the caller returns directly. */
7809 static rtx
7810 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7811 enum rtx_code in_code,
7812 enum rtx_code *next_code_ptr)
7814 rtx x = *x_ptr;
7815 enum rtx_code next_code = *next_code_ptr;
7816 enum rtx_code code = GET_CODE (x);
7817 int mode_width = GET_MODE_PRECISION (mode);
7818 rtx rhs, lhs;
7819 rtx new_rtx = 0;
7820 int i;
7821 rtx tem;
7822 bool equality_comparison = false;
7824 if (in_code == EQ)
7826 equality_comparison = true;
7827 in_code = COMPARE;
7830 /* Process depending on the code of this operation. If NEW is set
7831 nonzero, it will be returned. */
7833 switch (code)
7835 case ASHIFT:
7836 /* Convert shifts by constants into multiplications if inside
7837 an address. */
7838 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7839 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7840 && INTVAL (XEXP (x, 1)) >= 0)
7842 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7843 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7845 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7846 if (GET_CODE (new_rtx) == NEG)
7848 new_rtx = XEXP (new_rtx, 0);
7849 multval = -multval;
7851 multval = trunc_int_for_mode (multval, mode);
7852 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7854 break;
7856 case PLUS:
7857 lhs = XEXP (x, 0);
7858 rhs = XEXP (x, 1);
7859 lhs = make_compound_operation (lhs, next_code);
7860 rhs = make_compound_operation (rhs, next_code);
7861 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7863 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7864 XEXP (lhs, 1));
7865 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7867 else if (GET_CODE (lhs) == MULT
7868 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7870 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7871 simplify_gen_unary (NEG, mode,
7872 XEXP (lhs, 1),
7873 mode));
7874 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7876 else
7878 SUBST (XEXP (x, 0), lhs);
7879 SUBST (XEXP (x, 1), rhs);
7881 maybe_swap_commutative_operands (x);
7882 return x;
7884 case MINUS:
7885 lhs = XEXP (x, 0);
7886 rhs = XEXP (x, 1);
7887 lhs = make_compound_operation (lhs, next_code);
7888 rhs = make_compound_operation (rhs, next_code);
7889 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7891 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7892 XEXP (rhs, 1));
7893 return simplify_gen_binary (PLUS, mode, tem, lhs);
7895 else if (GET_CODE (rhs) == MULT
7896 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7898 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7899 simplify_gen_unary (NEG, mode,
7900 XEXP (rhs, 1),
7901 mode));
7902 return simplify_gen_binary (PLUS, mode, tem, lhs);
7904 else
7906 SUBST (XEXP (x, 0), lhs);
7907 SUBST (XEXP (x, 1), rhs);
7908 return x;
7911 case AND:
7912 /* If the second operand is not a constant, we can't do anything
7913 with it. */
7914 if (!CONST_INT_P (XEXP (x, 1)))
7915 break;
7917 /* If the constant is a power of two minus one and the first operand
7918 is a logical right shift, make an extraction. */
7919 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7920 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7922 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7923 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7924 0, in_code == COMPARE);
7927 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7928 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7929 && subreg_lowpart_p (XEXP (x, 0))
7930 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7931 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7933 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7934 machine_mode inner_mode = GET_MODE (inner_x0);
7935 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7936 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7937 XEXP (inner_x0, 1),
7938 i, 1, 0, in_code == COMPARE);
7940 if (new_rtx)
7942 /* If we narrowed the mode when dropping the subreg, then
7943 we must zero-extend to keep the semantics of the AND. */
7944 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7946 else if (SCALAR_INT_MODE_P (inner_mode))
7947 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7948 new_rtx, inner_mode);
7949 else
7950 new_rtx = NULL;
7953 /* If that didn't give anything, see if the AND simplifies on
7954 its own. */
7955 if (!new_rtx && i >= 0)
7957 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7958 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7959 0, in_code == COMPARE);
7962 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7963 else if ((GET_CODE (XEXP (x, 0)) == XOR
7964 || GET_CODE (XEXP (x, 0)) == IOR)
7965 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7966 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7967 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7969 /* Apply the distributive law, and then try to make extractions. */
7970 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7971 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7972 XEXP (x, 1)),
7973 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7974 XEXP (x, 1)));
7975 new_rtx = make_compound_operation (new_rtx, in_code);
7978 /* If we are have (and (rotate X C) M) and C is larger than the number
7979 of bits in M, this is an extraction. */
7981 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7982 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7983 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7984 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7986 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7987 new_rtx = make_extraction (mode, new_rtx,
7988 (GET_MODE_PRECISION (mode)
7989 - INTVAL (XEXP (XEXP (x, 0), 1))),
7990 NULL_RTX, i, 1, 0, in_code == COMPARE);
7993 /* On machines without logical shifts, if the operand of the AND is
7994 a logical shift and our mask turns off all the propagated sign
7995 bits, we can replace the logical shift with an arithmetic shift. */
7996 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7997 && !have_insn_for (LSHIFTRT, mode)
7998 && have_insn_for (ASHIFTRT, mode)
7999 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8000 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8001 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8002 && mode_width <= HOST_BITS_PER_WIDE_INT)
8004 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8006 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8007 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8008 SUBST (XEXP (x, 0),
8009 gen_rtx_ASHIFTRT (mode,
8010 make_compound_operation
8011 (XEXP (XEXP (x, 0), 0), next_code),
8012 XEXP (XEXP (x, 0), 1)));
8015 /* If the constant is one less than a power of two, this might be
8016 representable by an extraction even if no shift is present.
8017 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8018 we are in a COMPARE. */
8019 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8020 new_rtx = make_extraction (mode,
8021 make_compound_operation (XEXP (x, 0),
8022 next_code),
8023 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8025 /* If we are in a comparison and this is an AND with a power of two,
8026 convert this into the appropriate bit extract. */
8027 else if (in_code == COMPARE
8028 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8029 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8030 new_rtx = make_extraction (mode,
8031 make_compound_operation (XEXP (x, 0),
8032 next_code),
8033 i, NULL_RTX, 1, 1, 0, 1);
8035 /* If the one operand is a paradoxical subreg of a register or memory and
8036 the constant (limited to the smaller mode) has only zero bits where
8037 the sub expression has known zero bits, this can be expressed as
8038 a zero_extend. */
8039 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8041 rtx sub;
8043 sub = XEXP (XEXP (x, 0), 0);
8044 machine_mode sub_mode = GET_MODE (sub);
8045 if ((REG_P (sub) || MEM_P (sub))
8046 && GET_MODE_PRECISION (sub_mode) < mode_width)
8048 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8049 unsigned HOST_WIDE_INT mask;
8051 /* original AND constant with all the known zero bits set */
8052 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8053 if ((mask & mode_mask) == mode_mask)
8055 new_rtx = make_compound_operation (sub, next_code);
8056 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8057 GET_MODE_PRECISION (sub_mode),
8058 1, 0, in_code == COMPARE);
8063 break;
8065 case LSHIFTRT:
8066 /* If the sign bit is known to be zero, replace this with an
8067 arithmetic shift. */
8068 if (have_insn_for (ASHIFTRT, mode)
8069 && ! have_insn_for (LSHIFTRT, mode)
8070 && mode_width <= HOST_BITS_PER_WIDE_INT
8071 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8073 new_rtx = gen_rtx_ASHIFTRT (mode,
8074 make_compound_operation (XEXP (x, 0),
8075 next_code),
8076 XEXP (x, 1));
8077 break;
8080 /* fall through */
8082 case ASHIFTRT:
8083 lhs = XEXP (x, 0);
8084 rhs = XEXP (x, 1);
8086 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8087 this is a SIGN_EXTRACT. */
8088 if (CONST_INT_P (rhs)
8089 && GET_CODE (lhs) == ASHIFT
8090 && CONST_INT_P (XEXP (lhs, 1))
8091 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8092 && INTVAL (XEXP (lhs, 1)) >= 0
8093 && INTVAL (rhs) < mode_width)
8095 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8096 new_rtx = make_extraction (mode, new_rtx,
8097 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8098 NULL_RTX, mode_width - INTVAL (rhs),
8099 code == LSHIFTRT, 0, in_code == COMPARE);
8100 break;
8103 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8104 If so, try to merge the shifts into a SIGN_EXTEND. We could
8105 also do this for some cases of SIGN_EXTRACT, but it doesn't
8106 seem worth the effort; the case checked for occurs on Alpha. */
8108 if (!OBJECT_P (lhs)
8109 && ! (GET_CODE (lhs) == SUBREG
8110 && (OBJECT_P (SUBREG_REG (lhs))))
8111 && CONST_INT_P (rhs)
8112 && INTVAL (rhs) >= 0
8113 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8114 && INTVAL (rhs) < mode_width
8115 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8116 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8117 0, NULL_RTX, mode_width - INTVAL (rhs),
8118 code == LSHIFTRT, 0, in_code == COMPARE);
8120 break;
8122 case SUBREG:
8123 /* Call ourselves recursively on the inner expression. If we are
8124 narrowing the object and it has a different RTL code from
8125 what it originally did, do this SUBREG as a force_to_mode. */
8127 rtx inner = SUBREG_REG (x), simplified;
8128 enum rtx_code subreg_code = in_code;
8130 /* If the SUBREG is masking of a logical right shift,
8131 make an extraction. */
8132 if (GET_CODE (inner) == LSHIFTRT
8133 && CONST_INT_P (XEXP (inner, 1))
8134 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8135 && (UINTVAL (XEXP (inner, 1))
8136 < GET_MODE_PRECISION (GET_MODE (inner)))
8137 && subreg_lowpart_p (x))
8139 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8140 int width = GET_MODE_PRECISION (GET_MODE (inner))
8141 - INTVAL (XEXP (inner, 1));
8142 if (width > mode_width)
8143 width = mode_width;
8144 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8145 width, 1, 0, in_code == COMPARE);
8146 break;
8149 /* If in_code is COMPARE, it isn't always safe to pass it through
8150 to the recursive make_compound_operation call. */
8151 if (subreg_code == COMPARE
8152 && (!subreg_lowpart_p (x)
8153 || GET_CODE (inner) == SUBREG
8154 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8155 is (const_int 0), rather than
8156 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8157 || (GET_CODE (inner) == AND
8158 && CONST_INT_P (XEXP (inner, 1))
8159 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8160 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8161 >= GET_MODE_BITSIZE (mode))))
8162 subreg_code = SET;
8164 tem = make_compound_operation (inner, subreg_code);
8166 simplified
8167 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8168 if (simplified)
8169 tem = simplified;
8171 if (GET_CODE (tem) != GET_CODE (inner)
8172 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8173 && subreg_lowpart_p (x))
8175 rtx newer
8176 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8178 /* If we have something other than a SUBREG, we might have
8179 done an expansion, so rerun ourselves. */
8180 if (GET_CODE (newer) != SUBREG)
8181 newer = make_compound_operation (newer, in_code);
8183 /* force_to_mode can expand compounds. If it just re-expanded the
8184 compound, use gen_lowpart to convert to the desired mode. */
8185 if (rtx_equal_p (newer, x)
8186 /* Likewise if it re-expanded the compound only partially.
8187 This happens for SUBREG of ZERO_EXTRACT if they extract
8188 the same number of bits. */
8189 || (GET_CODE (newer) == SUBREG
8190 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8191 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8192 && GET_CODE (inner) == AND
8193 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8194 return gen_lowpart (GET_MODE (x), tem);
8196 return newer;
8199 if (simplified)
8200 return tem;
8202 break;
8204 default:
8205 break;
8208 if (new_rtx)
8209 *x_ptr = gen_lowpart (mode, new_rtx);
8210 *next_code_ptr = next_code;
8211 return NULL_RTX;
8214 /* Look at the expression rooted at X. Look for expressions
8215 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8216 Form these expressions.
8218 Return the new rtx, usually just X.
8220 Also, for machines like the VAX that don't have logical shift insns,
8221 try to convert logical to arithmetic shift operations in cases where
8222 they are equivalent. This undoes the canonicalizations to logical
8223 shifts done elsewhere.
8225 We try, as much as possible, to re-use rtl expressions to save memory.
8227 IN_CODE says what kind of expression we are processing. Normally, it is
8228 SET. In a memory address it is MEM. When processing the arguments of
8229 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8230 precisely it is an equality comparison against zero. */
8233 make_compound_operation (rtx x, enum rtx_code in_code)
8235 enum rtx_code code = GET_CODE (x);
8236 const char *fmt;
8237 int i, j;
8238 enum rtx_code next_code;
8239 rtx new_rtx, tem;
8241 /* Select the code to be used in recursive calls. Once we are inside an
8242 address, we stay there. If we have a comparison, set to COMPARE,
8243 but once inside, go back to our default of SET. */
8245 next_code = (code == MEM ? MEM
8246 : ((code == COMPARE || COMPARISON_P (x))
8247 && XEXP (x, 1) == const0_rtx) ? COMPARE
8248 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8250 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8252 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8253 in_code, &next_code);
8254 if (new_rtx)
8255 return new_rtx;
8256 code = GET_CODE (x);
8259 /* Now recursively process each operand of this operation. We need to
8260 handle ZERO_EXTEND specially so that we don't lose track of the
8261 inner mode. */
8262 if (code == ZERO_EXTEND)
8264 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8265 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8266 new_rtx, GET_MODE (XEXP (x, 0)));
8267 if (tem)
8268 return tem;
8269 SUBST (XEXP (x, 0), new_rtx);
8270 return x;
8273 fmt = GET_RTX_FORMAT (code);
8274 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8275 if (fmt[i] == 'e')
8277 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8278 SUBST (XEXP (x, i), new_rtx);
8280 else if (fmt[i] == 'E')
8281 for (j = 0; j < XVECLEN (x, i); j++)
8283 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8284 SUBST (XVECEXP (x, i, j), new_rtx);
8287 maybe_swap_commutative_operands (x);
8288 return x;
8291 /* Given M see if it is a value that would select a field of bits
8292 within an item, but not the entire word. Return -1 if not.
8293 Otherwise, return the starting position of the field, where 0 is the
8294 low-order bit.
8296 *PLEN is set to the length of the field. */
8298 static int
8299 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8301 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8302 int pos = m ? ctz_hwi (m) : -1;
8303 int len = 0;
8305 if (pos >= 0)
8306 /* Now shift off the low-order zero bits and see if we have a
8307 power of two minus 1. */
8308 len = exact_log2 ((m >> pos) + 1);
8310 if (len <= 0)
8311 pos = -1;
8313 *plen = len;
8314 return pos;
8317 /* If X refers to a register that equals REG in value, replace these
8318 references with REG. */
8319 static rtx
8320 canon_reg_for_combine (rtx x, rtx reg)
8322 rtx op0, op1, op2;
8323 const char *fmt;
8324 int i;
8325 bool copied;
8327 enum rtx_code code = GET_CODE (x);
8328 switch (GET_RTX_CLASS (code))
8330 case RTX_UNARY:
8331 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8332 if (op0 != XEXP (x, 0))
8333 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8334 GET_MODE (reg));
8335 break;
8337 case RTX_BIN_ARITH:
8338 case RTX_COMM_ARITH:
8339 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8340 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8341 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8342 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8343 break;
8345 case RTX_COMPARE:
8346 case RTX_COMM_COMPARE:
8347 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8348 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8349 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8350 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8351 GET_MODE (op0), op0, op1);
8352 break;
8354 case RTX_TERNARY:
8355 case RTX_BITFIELD_OPS:
8356 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8357 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8358 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8359 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8360 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8361 GET_MODE (op0), op0, op1, op2);
8362 /* FALLTHRU */
8364 case RTX_OBJ:
8365 if (REG_P (x))
8367 if (rtx_equal_p (get_last_value (reg), x)
8368 || rtx_equal_p (reg, get_last_value (x)))
8369 return reg;
8370 else
8371 break;
8374 /* fall through */
8376 default:
8377 fmt = GET_RTX_FORMAT (code);
8378 copied = false;
8379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8380 if (fmt[i] == 'e')
8382 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8383 if (op != XEXP (x, i))
8385 if (!copied)
8387 copied = true;
8388 x = copy_rtx (x);
8390 XEXP (x, i) = op;
8393 else if (fmt[i] == 'E')
8395 int j;
8396 for (j = 0; j < XVECLEN (x, i); j++)
8398 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8399 if (op != XVECEXP (x, i, j))
8401 if (!copied)
8403 copied = true;
8404 x = copy_rtx (x);
8406 XVECEXP (x, i, j) = op;
8411 break;
8414 return x;
8417 /* Return X converted to MODE. If the value is already truncated to
8418 MODE we can just return a subreg even though in the general case we
8419 would need an explicit truncation. */
8421 static rtx
8422 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8424 if (!CONST_INT_P (x)
8425 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8426 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8427 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8429 /* Bit-cast X into an integer mode. */
8430 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8431 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8432 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8433 x, GET_MODE (x));
8436 return gen_lowpart (mode, x);
8439 /* See if X can be simplified knowing that we will only refer to it in
8440 MODE and will only refer to those bits that are nonzero in MASK.
8441 If other bits are being computed or if masking operations are done
8442 that select a superset of the bits in MASK, they can sometimes be
8443 ignored.
8445 Return a possibly simplified expression, but always convert X to
8446 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8448 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8449 are all off in X. This is used when X will be complemented, by either
8450 NOT, NEG, or XOR. */
8452 static rtx
8453 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8454 int just_select)
8456 enum rtx_code code = GET_CODE (x);
8457 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8458 machine_mode op_mode;
8459 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8460 rtx op0, op1, temp;
8462 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8463 code below will do the wrong thing since the mode of such an
8464 expression is VOIDmode.
8466 Also do nothing if X is a CLOBBER; this can happen if X was
8467 the return value from a call to gen_lowpart. */
8468 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8469 return x;
8471 /* We want to perform the operation in its present mode unless we know
8472 that the operation is valid in MODE, in which case we do the operation
8473 in MODE. */
8474 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8475 && have_insn_for (code, mode))
8476 ? mode : GET_MODE (x));
8478 /* It is not valid to do a right-shift in a narrower mode
8479 than the one it came in with. */
8480 if ((code == LSHIFTRT || code == ASHIFTRT)
8481 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8482 op_mode = GET_MODE (x);
8484 /* Truncate MASK to fit OP_MODE. */
8485 if (op_mode)
8486 mask &= GET_MODE_MASK (op_mode);
8488 /* When we have an arithmetic operation, or a shift whose count we
8489 do not know, we need to assume that all bits up to the highest-order
8490 bit in MASK will be needed. This is how we form such a mask. */
8491 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8492 fuller_mask = HOST_WIDE_INT_M1U;
8493 else
8494 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8495 - 1);
8497 /* Determine what bits of X are guaranteed to be (non)zero. */
8498 nonzero = nonzero_bits (x, mode);
8500 /* If none of the bits in X are needed, return a zero. */
8501 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8502 x = const0_rtx;
8504 /* If X is a CONST_INT, return a new one. Do this here since the
8505 test below will fail. */
8506 if (CONST_INT_P (x))
8508 if (SCALAR_INT_MODE_P (mode))
8509 return gen_int_mode (INTVAL (x) & mask, mode);
8510 else
8512 x = GEN_INT (INTVAL (x) & mask);
8513 return gen_lowpart_common (mode, x);
8517 /* If X is narrower than MODE and we want all the bits in X's mode, just
8518 get X in the proper mode. */
8519 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8520 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8521 return gen_lowpart (mode, x);
8523 /* We can ignore the effect of a SUBREG if it narrows the mode or
8524 if the constant masks to zero all the bits the mode doesn't have. */
8525 if (GET_CODE (x) == SUBREG
8526 && subreg_lowpart_p (x)
8527 && ((GET_MODE_SIZE (GET_MODE (x))
8528 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8529 || (0 == (mask
8530 & GET_MODE_MASK (GET_MODE (x))
8531 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8532 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8534 /* The arithmetic simplifications here only work for scalar integer modes. */
8535 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8536 return gen_lowpart_or_truncate (mode, x);
8538 switch (code)
8540 case CLOBBER:
8541 /* If X is a (clobber (const_int)), return it since we know we are
8542 generating something that won't match. */
8543 return x;
8545 case SIGN_EXTEND:
8546 case ZERO_EXTEND:
8547 case ZERO_EXTRACT:
8548 case SIGN_EXTRACT:
8549 x = expand_compound_operation (x);
8550 if (GET_CODE (x) != code)
8551 return force_to_mode (x, mode, mask, next_select);
8552 break;
8554 case TRUNCATE:
8555 /* Similarly for a truncate. */
8556 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8558 case AND:
8559 /* If this is an AND with a constant, convert it into an AND
8560 whose constant is the AND of that constant with MASK. If it
8561 remains an AND of MASK, delete it since it is redundant. */
8563 if (CONST_INT_P (XEXP (x, 1)))
8565 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8566 mask & INTVAL (XEXP (x, 1)));
8568 /* If X is still an AND, see if it is an AND with a mask that
8569 is just some low-order bits. If so, and it is MASK, we don't
8570 need it. */
8572 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8573 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8574 == mask))
8575 x = XEXP (x, 0);
8577 /* If it remains an AND, try making another AND with the bits
8578 in the mode mask that aren't in MASK turned on. If the
8579 constant in the AND is wide enough, this might make a
8580 cheaper constant. */
8582 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8583 && GET_MODE_MASK (GET_MODE (x)) != mask
8584 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8586 unsigned HOST_WIDE_INT cval
8587 = UINTVAL (XEXP (x, 1))
8588 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8589 rtx y;
8591 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8592 gen_int_mode (cval, GET_MODE (x)));
8593 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8594 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8595 x = y;
8598 break;
8601 goto binop;
8603 case PLUS:
8604 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8605 low-order bits (as in an alignment operation) and FOO is already
8606 aligned to that boundary, mask C1 to that boundary as well.
8607 This may eliminate that PLUS and, later, the AND. */
8610 unsigned int width = GET_MODE_PRECISION (mode);
8611 unsigned HOST_WIDE_INT smask = mask;
8613 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8614 number, sign extend it. */
8616 if (width < HOST_BITS_PER_WIDE_INT
8617 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8618 smask |= HOST_WIDE_INT_M1U << width;
8620 if (CONST_INT_P (XEXP (x, 1))
8621 && pow2p_hwi (- smask)
8622 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8623 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8624 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8625 (INTVAL (XEXP (x, 1)) & smask)),
8626 mode, smask, next_select);
8629 /* fall through */
8631 case MULT:
8632 /* Substituting into the operands of a widening MULT is not likely to
8633 create RTL matching a machine insn. */
8634 if (code == MULT
8635 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8636 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8637 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8638 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8639 && REG_P (XEXP (XEXP (x, 0), 0))
8640 && REG_P (XEXP (XEXP (x, 1), 0)))
8641 return gen_lowpart_or_truncate (mode, x);
8643 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8644 most significant bit in MASK since carries from those bits will
8645 affect the bits we are interested in. */
8646 mask = fuller_mask;
8647 goto binop;
8649 case MINUS:
8650 /* If X is (minus C Y) where C's least set bit is larger than any bit
8651 in the mask, then we may replace with (neg Y). */
8652 if (CONST_INT_P (XEXP (x, 0))
8653 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8655 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8656 GET_MODE (x));
8657 return force_to_mode (x, mode, mask, next_select);
8660 /* Similarly, if C contains every bit in the fuller_mask, then we may
8661 replace with (not Y). */
8662 if (CONST_INT_P (XEXP (x, 0))
8663 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8665 x = simplify_gen_unary (NOT, GET_MODE (x),
8666 XEXP (x, 1), GET_MODE (x));
8667 return force_to_mode (x, mode, mask, next_select);
8670 mask = fuller_mask;
8671 goto binop;
8673 case IOR:
8674 case XOR:
8675 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8676 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8677 operation which may be a bitfield extraction. Ensure that the
8678 constant we form is not wider than the mode of X. */
8680 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8681 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8682 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8683 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8684 && CONST_INT_P (XEXP (x, 1))
8685 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8686 + floor_log2 (INTVAL (XEXP (x, 1))))
8687 < GET_MODE_PRECISION (GET_MODE (x)))
8688 && (UINTVAL (XEXP (x, 1))
8689 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8691 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8692 << INTVAL (XEXP (XEXP (x, 0), 1)),
8693 GET_MODE (x));
8694 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8695 XEXP (XEXP (x, 0), 0), temp);
8696 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8697 XEXP (XEXP (x, 0), 1));
8698 return force_to_mode (x, mode, mask, next_select);
8701 binop:
8702 /* For most binary operations, just propagate into the operation and
8703 change the mode if we have an operation of that mode. */
8705 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8706 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8708 /* If we ended up truncating both operands, truncate the result of the
8709 operation instead. */
8710 if (GET_CODE (op0) == TRUNCATE
8711 && GET_CODE (op1) == TRUNCATE)
8713 op0 = XEXP (op0, 0);
8714 op1 = XEXP (op1, 0);
8717 op0 = gen_lowpart_or_truncate (op_mode, op0);
8718 op1 = gen_lowpart_or_truncate (op_mode, op1);
8720 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8721 x = simplify_gen_binary (code, op_mode, op0, op1);
8722 break;
8724 case ASHIFT:
8725 /* For left shifts, do the same, but just for the first operand.
8726 However, we cannot do anything with shifts where we cannot
8727 guarantee that the counts are smaller than the size of the mode
8728 because such a count will have a different meaning in a
8729 wider mode. */
8731 if (! (CONST_INT_P (XEXP (x, 1))
8732 && INTVAL (XEXP (x, 1)) >= 0
8733 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8734 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8735 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8736 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8737 break;
8739 /* If the shift count is a constant and we can do arithmetic in
8740 the mode of the shift, refine which bits we need. Otherwise, use the
8741 conservative form of the mask. */
8742 if (CONST_INT_P (XEXP (x, 1))
8743 && INTVAL (XEXP (x, 1)) >= 0
8744 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8745 && HWI_COMPUTABLE_MODE_P (op_mode))
8746 mask >>= INTVAL (XEXP (x, 1));
8747 else
8748 mask = fuller_mask;
8750 op0 = gen_lowpart_or_truncate (op_mode,
8751 force_to_mode (XEXP (x, 0), op_mode,
8752 mask, next_select));
8754 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8755 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8756 break;
8758 case LSHIFTRT:
8759 /* Here we can only do something if the shift count is a constant,
8760 this shift constant is valid for the host, and we can do arithmetic
8761 in OP_MODE. */
8763 if (CONST_INT_P (XEXP (x, 1))
8764 && INTVAL (XEXP (x, 1)) >= 0
8765 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8766 && HWI_COMPUTABLE_MODE_P (op_mode))
8768 rtx inner = XEXP (x, 0);
8769 unsigned HOST_WIDE_INT inner_mask;
8771 /* Select the mask of the bits we need for the shift operand. */
8772 inner_mask = mask << INTVAL (XEXP (x, 1));
8774 /* We can only change the mode of the shift if we can do arithmetic
8775 in the mode of the shift and INNER_MASK is no wider than the
8776 width of X's mode. */
8777 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8778 op_mode = GET_MODE (x);
8780 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8782 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8783 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8786 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8787 shift and AND produces only copies of the sign bit (C2 is one less
8788 than a power of two), we can do this with just a shift. */
8790 if (GET_CODE (x) == LSHIFTRT
8791 && CONST_INT_P (XEXP (x, 1))
8792 /* The shift puts one of the sign bit copies in the least significant
8793 bit. */
8794 && ((INTVAL (XEXP (x, 1))
8795 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8796 >= GET_MODE_PRECISION (GET_MODE (x)))
8797 && pow2p_hwi (mask + 1)
8798 /* Number of bits left after the shift must be more than the mask
8799 needs. */
8800 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8801 <= GET_MODE_PRECISION (GET_MODE (x)))
8802 /* Must be more sign bit copies than the mask needs. */
8803 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8804 >= exact_log2 (mask + 1)))
8805 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8806 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8807 - exact_log2 (mask + 1)));
8809 goto shiftrt;
8811 case ASHIFTRT:
8812 /* If we are just looking for the sign bit, we don't need this shift at
8813 all, even if it has a variable count. */
8814 if (val_signbit_p (GET_MODE (x), mask))
8815 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8817 /* If this is a shift by a constant, get a mask that contains those bits
8818 that are not copies of the sign bit. We then have two cases: If
8819 MASK only includes those bits, this can be a logical shift, which may
8820 allow simplifications. If MASK is a single-bit field not within
8821 those bits, we are requesting a copy of the sign bit and hence can
8822 shift the sign bit to the appropriate location. */
8824 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8825 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8827 int i;
8829 /* If the considered data is wider than HOST_WIDE_INT, we can't
8830 represent a mask for all its bits in a single scalar.
8831 But we only care about the lower bits, so calculate these. */
8833 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8835 nonzero = HOST_WIDE_INT_M1U;
8837 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8838 is the number of bits a full-width mask would have set.
8839 We need only shift if these are fewer than nonzero can
8840 hold. If not, we must keep all bits set in nonzero. */
8842 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8843 < HOST_BITS_PER_WIDE_INT)
8844 nonzero >>= INTVAL (XEXP (x, 1))
8845 + HOST_BITS_PER_WIDE_INT
8846 - GET_MODE_PRECISION (GET_MODE (x)) ;
8848 else
8850 nonzero = GET_MODE_MASK (GET_MODE (x));
8851 nonzero >>= INTVAL (XEXP (x, 1));
8854 if ((mask & ~nonzero) == 0)
8856 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8857 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8858 if (GET_CODE (x) != ASHIFTRT)
8859 return force_to_mode (x, mode, mask, next_select);
8862 else if ((i = exact_log2 (mask)) >= 0)
8864 x = simplify_shift_const
8865 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8866 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8868 if (GET_CODE (x) != ASHIFTRT)
8869 return force_to_mode (x, mode, mask, next_select);
8873 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8874 even if the shift count isn't a constant. */
8875 if (mask == 1)
8876 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8877 XEXP (x, 0), XEXP (x, 1));
8879 shiftrt:
8881 /* If this is a zero- or sign-extension operation that just affects bits
8882 we don't care about, remove it. Be sure the call above returned
8883 something that is still a shift. */
8885 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8886 && CONST_INT_P (XEXP (x, 1))
8887 && INTVAL (XEXP (x, 1)) >= 0
8888 && (INTVAL (XEXP (x, 1))
8889 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8890 && GET_CODE (XEXP (x, 0)) == ASHIFT
8891 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8892 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8893 next_select);
8895 break;
8897 case ROTATE:
8898 case ROTATERT:
8899 /* If the shift count is constant and we can do computations
8900 in the mode of X, compute where the bits we care about are.
8901 Otherwise, we can't do anything. Don't change the mode of
8902 the shift or propagate MODE into the shift, though. */
8903 if (CONST_INT_P (XEXP (x, 1))
8904 && INTVAL (XEXP (x, 1)) >= 0)
8906 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8907 GET_MODE (x),
8908 gen_int_mode (mask, GET_MODE (x)),
8909 XEXP (x, 1));
8910 if (temp && CONST_INT_P (temp))
8911 x = simplify_gen_binary (code, GET_MODE (x),
8912 force_to_mode (XEXP (x, 0), GET_MODE (x),
8913 INTVAL (temp), next_select),
8914 XEXP (x, 1));
8916 break;
8918 case NEG:
8919 /* If we just want the low-order bit, the NEG isn't needed since it
8920 won't change the low-order bit. */
8921 if (mask == 1)
8922 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8924 /* We need any bits less significant than the most significant bit in
8925 MASK since carries from those bits will affect the bits we are
8926 interested in. */
8927 mask = fuller_mask;
8928 goto unop;
8930 case NOT:
8931 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8932 same as the XOR case above. Ensure that the constant we form is not
8933 wider than the mode of X. */
8935 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8936 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8937 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8938 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8939 < GET_MODE_PRECISION (GET_MODE (x)))
8940 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8942 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8943 GET_MODE (x));
8944 temp = simplify_gen_binary (XOR, GET_MODE (x),
8945 XEXP (XEXP (x, 0), 0), temp);
8946 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8947 temp, XEXP (XEXP (x, 0), 1));
8949 return force_to_mode (x, mode, mask, next_select);
8952 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8953 use the full mask inside the NOT. */
8954 mask = fuller_mask;
8956 unop:
8957 op0 = gen_lowpart_or_truncate (op_mode,
8958 force_to_mode (XEXP (x, 0), mode, mask,
8959 next_select));
8960 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8961 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8962 break;
8964 case NE:
8965 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8966 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8967 which is equal to STORE_FLAG_VALUE. */
8968 if ((mask & ~STORE_FLAG_VALUE) == 0
8969 && XEXP (x, 1) == const0_rtx
8970 && GET_MODE (XEXP (x, 0)) == mode
8971 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8972 && (nonzero_bits (XEXP (x, 0), mode)
8973 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8974 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8976 break;
8978 case IF_THEN_ELSE:
8979 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8980 written in a narrower mode. We play it safe and do not do so. */
8982 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8983 force_to_mode (XEXP (x, 1), mode,
8984 mask, next_select));
8985 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8986 force_to_mode (XEXP (x, 2), mode,
8987 mask, next_select));
8988 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8989 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8990 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8991 op0, op1);
8992 break;
8994 default:
8995 break;
8998 /* Ensure we return a value of the proper mode. */
8999 return gen_lowpart_or_truncate (mode, x);
9002 /* Return nonzero if X is an expression that has one of two values depending on
9003 whether some other value is zero or nonzero. In that case, we return the
9004 value that is being tested, *PTRUE is set to the value if the rtx being
9005 returned has a nonzero value, and *PFALSE is set to the other alternative.
9007 If we return zero, we set *PTRUE and *PFALSE to X. */
9009 static rtx
9010 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9012 machine_mode mode = GET_MODE (x);
9013 enum rtx_code code = GET_CODE (x);
9014 rtx cond0, cond1, true0, true1, false0, false1;
9015 unsigned HOST_WIDE_INT nz;
9017 /* If we are comparing a value against zero, we are done. */
9018 if ((code == NE || code == EQ)
9019 && XEXP (x, 1) == const0_rtx)
9021 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9022 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9023 return XEXP (x, 0);
9026 /* If this is a unary operation whose operand has one of two values, apply
9027 our opcode to compute those values. */
9028 else if (UNARY_P (x)
9029 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9031 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9032 *pfalse = simplify_gen_unary (code, mode, false0,
9033 GET_MODE (XEXP (x, 0)));
9034 return cond0;
9037 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9038 make can't possibly match and would suppress other optimizations. */
9039 else if (code == COMPARE)
9042 /* If this is a binary operation, see if either side has only one of two
9043 values. If either one does or if both do and they are conditional on
9044 the same value, compute the new true and false values. */
9045 else if (BINARY_P (x))
9047 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
9048 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
9050 if ((cond0 != 0 || cond1 != 0)
9051 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
9053 /* If if_then_else_cond returned zero, then true/false are the
9054 same rtl. We must copy one of them to prevent invalid rtl
9055 sharing. */
9056 if (cond0 == 0)
9057 true0 = copy_rtx (true0);
9058 else if (cond1 == 0)
9059 true1 = copy_rtx (true1);
9061 if (COMPARISON_P (x))
9063 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9064 true0, true1);
9065 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9066 false0, false1);
9068 else
9070 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9071 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9074 return cond0 ? cond0 : cond1;
9077 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9078 operands is zero when the other is nonzero, and vice-versa,
9079 and STORE_FLAG_VALUE is 1 or -1. */
9081 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9082 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9083 || code == UMAX)
9084 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9086 rtx op0 = XEXP (XEXP (x, 0), 1);
9087 rtx op1 = XEXP (XEXP (x, 1), 1);
9089 cond0 = XEXP (XEXP (x, 0), 0);
9090 cond1 = XEXP (XEXP (x, 1), 0);
9092 if (COMPARISON_P (cond0)
9093 && COMPARISON_P (cond1)
9094 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9095 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9096 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9097 || ((swap_condition (GET_CODE (cond0))
9098 == reversed_comparison_code (cond1, NULL))
9099 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9100 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9101 && ! side_effects_p (x))
9103 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9104 *pfalse = simplify_gen_binary (MULT, mode,
9105 (code == MINUS
9106 ? simplify_gen_unary (NEG, mode,
9107 op1, mode)
9108 : op1),
9109 const_true_rtx);
9110 return cond0;
9114 /* Similarly for MULT, AND and UMIN, except that for these the result
9115 is always zero. */
9116 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9117 && (code == MULT || code == AND || code == UMIN)
9118 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9120 cond0 = XEXP (XEXP (x, 0), 0);
9121 cond1 = XEXP (XEXP (x, 1), 0);
9123 if (COMPARISON_P (cond0)
9124 && COMPARISON_P (cond1)
9125 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9126 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9127 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9128 || ((swap_condition (GET_CODE (cond0))
9129 == reversed_comparison_code (cond1, NULL))
9130 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9131 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9132 && ! side_effects_p (x))
9134 *ptrue = *pfalse = const0_rtx;
9135 return cond0;
9140 else if (code == IF_THEN_ELSE)
9142 /* If we have IF_THEN_ELSE already, extract the condition and
9143 canonicalize it if it is NE or EQ. */
9144 cond0 = XEXP (x, 0);
9145 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9146 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9147 return XEXP (cond0, 0);
9148 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9150 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9151 return XEXP (cond0, 0);
9153 else
9154 return cond0;
9157 /* If X is a SUBREG, we can narrow both the true and false values
9158 if the inner expression, if there is a condition. */
9159 else if (code == SUBREG
9160 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9161 &true0, &false0)))
9163 true0 = simplify_gen_subreg (mode, true0,
9164 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9165 false0 = simplify_gen_subreg (mode, false0,
9166 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9167 if (true0 && false0)
9169 *ptrue = true0;
9170 *pfalse = false0;
9171 return cond0;
9175 /* If X is a constant, this isn't special and will cause confusions
9176 if we treat it as such. Likewise if it is equivalent to a constant. */
9177 else if (CONSTANT_P (x)
9178 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9181 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9182 will be least confusing to the rest of the compiler. */
9183 else if (mode == BImode)
9185 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9186 return x;
9189 /* If X is known to be either 0 or -1, those are the true and
9190 false values when testing X. */
9191 else if (x == constm1_rtx || x == const0_rtx
9192 || (mode != VOIDmode && mode != BLKmode
9193 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9195 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9196 return x;
9199 /* Likewise for 0 or a single bit. */
9200 else if (HWI_COMPUTABLE_MODE_P (mode)
9201 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9203 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9204 return x;
9207 /* Otherwise fail; show no condition with true and false values the same. */
9208 *ptrue = *pfalse = x;
9209 return 0;
9212 /* Return the value of expression X given the fact that condition COND
9213 is known to be true when applied to REG as its first operand and VAL
9214 as its second. X is known to not be shared and so can be modified in
9215 place.
9217 We only handle the simplest cases, and specifically those cases that
9218 arise with IF_THEN_ELSE expressions. */
9220 static rtx
9221 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9223 enum rtx_code code = GET_CODE (x);
9224 const char *fmt;
9225 int i, j;
9227 if (side_effects_p (x))
9228 return x;
9230 /* If either operand of the condition is a floating point value,
9231 then we have to avoid collapsing an EQ comparison. */
9232 if (cond == EQ
9233 && rtx_equal_p (x, reg)
9234 && ! FLOAT_MODE_P (GET_MODE (x))
9235 && ! FLOAT_MODE_P (GET_MODE (val)))
9236 return val;
9238 if (cond == UNEQ && rtx_equal_p (x, reg))
9239 return val;
9241 /* If X is (abs REG) and we know something about REG's relationship
9242 with zero, we may be able to simplify this. */
9244 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9245 switch (cond)
9247 case GE: case GT: case EQ:
9248 return XEXP (x, 0);
9249 case LT: case LE:
9250 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9251 XEXP (x, 0),
9252 GET_MODE (XEXP (x, 0)));
9253 default:
9254 break;
9257 /* The only other cases we handle are MIN, MAX, and comparisons if the
9258 operands are the same as REG and VAL. */
9260 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9262 if (rtx_equal_p (XEXP (x, 0), val))
9264 std::swap (val, reg);
9265 cond = swap_condition (cond);
9268 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9270 if (COMPARISON_P (x))
9272 if (comparison_dominates_p (cond, code))
9273 return const_true_rtx;
9275 code = reversed_comparison_code (x, NULL);
9276 if (code != UNKNOWN
9277 && comparison_dominates_p (cond, code))
9278 return const0_rtx;
9279 else
9280 return x;
9282 else if (code == SMAX || code == SMIN
9283 || code == UMIN || code == UMAX)
9285 int unsignedp = (code == UMIN || code == UMAX);
9287 /* Do not reverse the condition when it is NE or EQ.
9288 This is because we cannot conclude anything about
9289 the value of 'SMAX (x, y)' when x is not equal to y,
9290 but we can when x equals y. */
9291 if ((code == SMAX || code == UMAX)
9292 && ! (cond == EQ || cond == NE))
9293 cond = reverse_condition (cond);
9295 switch (cond)
9297 case GE: case GT:
9298 return unsignedp ? x : XEXP (x, 1);
9299 case LE: case LT:
9300 return unsignedp ? x : XEXP (x, 0);
9301 case GEU: case GTU:
9302 return unsignedp ? XEXP (x, 1) : x;
9303 case LEU: case LTU:
9304 return unsignedp ? XEXP (x, 0) : x;
9305 default:
9306 break;
9311 else if (code == SUBREG)
9313 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9314 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9316 if (SUBREG_REG (x) != r)
9318 /* We must simplify subreg here, before we lose track of the
9319 original inner_mode. */
9320 new_rtx = simplify_subreg (GET_MODE (x), r,
9321 inner_mode, SUBREG_BYTE (x));
9322 if (new_rtx)
9323 return new_rtx;
9324 else
9325 SUBST (SUBREG_REG (x), r);
9328 return x;
9330 /* We don't have to handle SIGN_EXTEND here, because even in the
9331 case of replacing something with a modeless CONST_INT, a
9332 CONST_INT is already (supposed to be) a valid sign extension for
9333 its narrower mode, which implies it's already properly
9334 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9335 story is different. */
9336 else if (code == ZERO_EXTEND)
9338 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9339 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9341 if (XEXP (x, 0) != r)
9343 /* We must simplify the zero_extend here, before we lose
9344 track of the original inner_mode. */
9345 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9346 r, inner_mode);
9347 if (new_rtx)
9348 return new_rtx;
9349 else
9350 SUBST (XEXP (x, 0), r);
9353 return x;
9356 fmt = GET_RTX_FORMAT (code);
9357 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9359 if (fmt[i] == 'e')
9360 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9361 else if (fmt[i] == 'E')
9362 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9363 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9364 cond, reg, val));
9367 return x;
9370 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9371 assignment as a field assignment. */
9373 static int
9374 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9376 if (widen_x && GET_MODE (x) != GET_MODE (y))
9378 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9379 return 0;
9380 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9381 return 0;
9382 /* For big endian, adjust the memory offset. */
9383 if (BYTES_BIG_ENDIAN)
9384 x = adjust_address_nv (x, GET_MODE (y),
9385 -subreg_lowpart_offset (GET_MODE (x),
9386 GET_MODE (y)));
9387 else
9388 x = adjust_address_nv (x, GET_MODE (y), 0);
9391 if (x == y || rtx_equal_p (x, y))
9392 return 1;
9394 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9395 return 0;
9397 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9398 Note that all SUBREGs of MEM are paradoxical; otherwise they
9399 would have been rewritten. */
9400 if (MEM_P (x) && GET_CODE (y) == SUBREG
9401 && MEM_P (SUBREG_REG (y))
9402 && rtx_equal_p (SUBREG_REG (y),
9403 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9404 return 1;
9406 if (MEM_P (y) && GET_CODE (x) == SUBREG
9407 && MEM_P (SUBREG_REG (x))
9408 && rtx_equal_p (SUBREG_REG (x),
9409 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9410 return 1;
9412 /* We used to see if get_last_value of X and Y were the same but that's
9413 not correct. In one direction, we'll cause the assignment to have
9414 the wrong destination and in the case, we'll import a register into this
9415 insn that might have already have been dead. So fail if none of the
9416 above cases are true. */
9417 return 0;
9420 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9421 Return that assignment if so.
9423 We only handle the most common cases. */
9425 static rtx
9426 make_field_assignment (rtx x)
9428 rtx dest = SET_DEST (x);
9429 rtx src = SET_SRC (x);
9430 rtx assign;
9431 rtx rhs, lhs;
9432 HOST_WIDE_INT c1;
9433 HOST_WIDE_INT pos;
9434 unsigned HOST_WIDE_INT len;
9435 rtx other;
9436 machine_mode mode;
9438 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9439 a clear of a one-bit field. We will have changed it to
9440 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9441 for a SUBREG. */
9443 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9444 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9445 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9446 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9448 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9449 1, 1, 1, 0);
9450 if (assign != 0)
9451 return gen_rtx_SET (assign, const0_rtx);
9452 return x;
9455 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9456 && subreg_lowpart_p (XEXP (src, 0))
9457 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9458 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9459 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9460 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9461 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9462 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9464 assign = make_extraction (VOIDmode, dest, 0,
9465 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9466 1, 1, 1, 0);
9467 if (assign != 0)
9468 return gen_rtx_SET (assign, const0_rtx);
9469 return x;
9472 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9473 one-bit field. */
9474 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9475 && XEXP (XEXP (src, 0), 0) == const1_rtx
9476 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9478 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9479 1, 1, 1, 0);
9480 if (assign != 0)
9481 return gen_rtx_SET (assign, const1_rtx);
9482 return x;
9485 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9486 SRC is an AND with all bits of that field set, then we can discard
9487 the AND. */
9488 if (GET_CODE (dest) == ZERO_EXTRACT
9489 && CONST_INT_P (XEXP (dest, 1))
9490 && GET_CODE (src) == AND
9491 && CONST_INT_P (XEXP (src, 1)))
9493 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9494 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9495 unsigned HOST_WIDE_INT ze_mask;
9497 if (width >= HOST_BITS_PER_WIDE_INT)
9498 ze_mask = -1;
9499 else
9500 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9502 /* Complete overlap. We can remove the source AND. */
9503 if ((and_mask & ze_mask) == ze_mask)
9504 return gen_rtx_SET (dest, XEXP (src, 0));
9506 /* Partial overlap. We can reduce the source AND. */
9507 if ((and_mask & ze_mask) != and_mask)
9509 mode = GET_MODE (src);
9510 src = gen_rtx_AND (mode, XEXP (src, 0),
9511 gen_int_mode (and_mask & ze_mask, mode));
9512 return gen_rtx_SET (dest, src);
9516 /* The other case we handle is assignments into a constant-position
9517 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9518 a mask that has all one bits except for a group of zero bits and
9519 OTHER is known to have zeros where C1 has ones, this is such an
9520 assignment. Compute the position and length from C1. Shift OTHER
9521 to the appropriate position, force it to the required mode, and
9522 make the extraction. Check for the AND in both operands. */
9524 /* One or more SUBREGs might obscure the constant-position field
9525 assignment. The first one we are likely to encounter is an outer
9526 narrowing SUBREG, which we can just strip for the purposes of
9527 identifying the constant-field assignment. */
9528 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9529 src = SUBREG_REG (src);
9531 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9532 return x;
9534 rhs = expand_compound_operation (XEXP (src, 0));
9535 lhs = expand_compound_operation (XEXP (src, 1));
9537 if (GET_CODE (rhs) == AND
9538 && CONST_INT_P (XEXP (rhs, 1))
9539 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9540 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9541 /* The second SUBREG that might get in the way is a paradoxical
9542 SUBREG around the first operand of the AND. We want to
9543 pretend the operand is as wide as the destination here. We
9544 do this by adjusting the MEM to wider mode for the sole
9545 purpose of the call to rtx_equal_for_field_assignment_p. Also
9546 note this trick only works for MEMs. */
9547 else if (GET_CODE (rhs) == AND
9548 && paradoxical_subreg_p (XEXP (rhs, 0))
9549 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9550 && CONST_INT_P (XEXP (rhs, 1))
9551 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9552 dest, true))
9553 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9554 else if (GET_CODE (lhs) == AND
9555 && CONST_INT_P (XEXP (lhs, 1))
9556 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9557 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9558 /* The second SUBREG that might get in the way is a paradoxical
9559 SUBREG around the first operand of the AND. We want to
9560 pretend the operand is as wide as the destination here. We
9561 do this by adjusting the MEM to wider mode for the sole
9562 purpose of the call to rtx_equal_for_field_assignment_p. Also
9563 note this trick only works for MEMs. */
9564 else if (GET_CODE (lhs) == AND
9565 && paradoxical_subreg_p (XEXP (lhs, 0))
9566 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9567 && CONST_INT_P (XEXP (lhs, 1))
9568 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9569 dest, true))
9570 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9571 else
9572 return x;
9574 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9575 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9576 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9577 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9578 return x;
9580 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9581 if (assign == 0)
9582 return x;
9584 /* The mode to use for the source is the mode of the assignment, or of
9585 what is inside a possible STRICT_LOW_PART. */
9586 mode = (GET_CODE (assign) == STRICT_LOW_PART
9587 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9589 /* Shift OTHER right POS places and make it the source, restricting it
9590 to the proper length and mode. */
9592 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9593 GET_MODE (src),
9594 other, pos),
9595 dest);
9596 src = force_to_mode (src, mode,
9597 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9598 ? HOST_WIDE_INT_M1U
9599 : (HOST_WIDE_INT_1U << len) - 1,
9602 /* If SRC is masked by an AND that does not make a difference in
9603 the value being stored, strip it. */
9604 if (GET_CODE (assign) == ZERO_EXTRACT
9605 && CONST_INT_P (XEXP (assign, 1))
9606 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9607 && GET_CODE (src) == AND
9608 && CONST_INT_P (XEXP (src, 1))
9609 && UINTVAL (XEXP (src, 1))
9610 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9611 src = XEXP (src, 0);
9613 return gen_rtx_SET (assign, src);
9616 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9617 if so. */
9619 static rtx
9620 apply_distributive_law (rtx x)
9622 enum rtx_code code = GET_CODE (x);
9623 enum rtx_code inner_code;
9624 rtx lhs, rhs, other;
9625 rtx tem;
9627 /* Distributivity is not true for floating point as it can change the
9628 value. So we don't do it unless -funsafe-math-optimizations. */
9629 if (FLOAT_MODE_P (GET_MODE (x))
9630 && ! flag_unsafe_math_optimizations)
9631 return x;
9633 /* The outer operation can only be one of the following: */
9634 if (code != IOR && code != AND && code != XOR
9635 && code != PLUS && code != MINUS)
9636 return x;
9638 lhs = XEXP (x, 0);
9639 rhs = XEXP (x, 1);
9641 /* If either operand is a primitive we can't do anything, so get out
9642 fast. */
9643 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9644 return x;
9646 lhs = expand_compound_operation (lhs);
9647 rhs = expand_compound_operation (rhs);
9648 inner_code = GET_CODE (lhs);
9649 if (inner_code != GET_CODE (rhs))
9650 return x;
9652 /* See if the inner and outer operations distribute. */
9653 switch (inner_code)
9655 case LSHIFTRT:
9656 case ASHIFTRT:
9657 case AND:
9658 case IOR:
9659 /* These all distribute except over PLUS. */
9660 if (code == PLUS || code == MINUS)
9661 return x;
9662 break;
9664 case MULT:
9665 if (code != PLUS && code != MINUS)
9666 return x;
9667 break;
9669 case ASHIFT:
9670 /* This is also a multiply, so it distributes over everything. */
9671 break;
9673 /* This used to handle SUBREG, but this turned out to be counter-
9674 productive, since (subreg (op ...)) usually is not handled by
9675 insn patterns, and this "optimization" therefore transformed
9676 recognizable patterns into unrecognizable ones. Therefore the
9677 SUBREG case was removed from here.
9679 It is possible that distributing SUBREG over arithmetic operations
9680 leads to an intermediate result than can then be optimized further,
9681 e.g. by moving the outer SUBREG to the other side of a SET as done
9682 in simplify_set. This seems to have been the original intent of
9683 handling SUBREGs here.
9685 However, with current GCC this does not appear to actually happen,
9686 at least on major platforms. If some case is found where removing
9687 the SUBREG case here prevents follow-on optimizations, distributing
9688 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9690 default:
9691 return x;
9694 /* Set LHS and RHS to the inner operands (A and B in the example
9695 above) and set OTHER to the common operand (C in the example).
9696 There is only one way to do this unless the inner operation is
9697 commutative. */
9698 if (COMMUTATIVE_ARITH_P (lhs)
9699 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9700 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9701 else if (COMMUTATIVE_ARITH_P (lhs)
9702 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9703 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9704 else if (COMMUTATIVE_ARITH_P (lhs)
9705 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9706 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9707 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9708 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9709 else
9710 return x;
9712 /* Form the new inner operation, seeing if it simplifies first. */
9713 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9715 /* There is one exception to the general way of distributing:
9716 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9717 if (code == XOR && inner_code == IOR)
9719 inner_code = AND;
9720 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9723 /* We may be able to continuing distributing the result, so call
9724 ourselves recursively on the inner operation before forming the
9725 outer operation, which we return. */
9726 return simplify_gen_binary (inner_code, GET_MODE (x),
9727 apply_distributive_law (tem), other);
9730 /* See if X is of the form (* (+ A B) C), and if so convert to
9731 (+ (* A C) (* B C)) and try to simplify.
9733 Most of the time, this results in no change. However, if some of
9734 the operands are the same or inverses of each other, simplifications
9735 will result.
9737 For example, (and (ior A B) (not B)) can occur as the result of
9738 expanding a bit field assignment. When we apply the distributive
9739 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9740 which then simplifies to (and (A (not B))).
9742 Note that no checks happen on the validity of applying the inverse
9743 distributive law. This is pointless since we can do it in the
9744 few places where this routine is called.
9746 N is the index of the term that is decomposed (the arithmetic operation,
9747 i.e. (+ A B) in the first example above). !N is the index of the term that
9748 is distributed, i.e. of C in the first example above. */
9749 static rtx
9750 distribute_and_simplify_rtx (rtx x, int n)
9752 machine_mode mode;
9753 enum rtx_code outer_code, inner_code;
9754 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9756 /* Distributivity is not true for floating point as it can change the
9757 value. So we don't do it unless -funsafe-math-optimizations. */
9758 if (FLOAT_MODE_P (GET_MODE (x))
9759 && ! flag_unsafe_math_optimizations)
9760 return NULL_RTX;
9762 decomposed = XEXP (x, n);
9763 if (!ARITHMETIC_P (decomposed))
9764 return NULL_RTX;
9766 mode = GET_MODE (x);
9767 outer_code = GET_CODE (x);
9768 distributed = XEXP (x, !n);
9770 inner_code = GET_CODE (decomposed);
9771 inner_op0 = XEXP (decomposed, 0);
9772 inner_op1 = XEXP (decomposed, 1);
9774 /* Special case (and (xor B C) (not A)), which is equivalent to
9775 (xor (ior A B) (ior A C)) */
9776 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9778 distributed = XEXP (distributed, 0);
9779 outer_code = IOR;
9782 if (n == 0)
9784 /* Distribute the second term. */
9785 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9786 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9788 else
9790 /* Distribute the first term. */
9791 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9792 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9795 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9796 new_op0, new_op1));
9797 if (GET_CODE (tmp) != outer_code
9798 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9799 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9800 return tmp;
9802 return NULL_RTX;
9805 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9806 in MODE. Return an equivalent form, if different from (and VAROP
9807 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9809 static rtx
9810 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9811 unsigned HOST_WIDE_INT constop)
9813 unsigned HOST_WIDE_INT nonzero;
9814 unsigned HOST_WIDE_INT orig_constop;
9815 rtx orig_varop;
9816 int i;
9818 orig_varop = varop;
9819 orig_constop = constop;
9820 if (GET_CODE (varop) == CLOBBER)
9821 return NULL_RTX;
9823 /* Simplify VAROP knowing that we will be only looking at some of the
9824 bits in it.
9826 Note by passing in CONSTOP, we guarantee that the bits not set in
9827 CONSTOP are not significant and will never be examined. We must
9828 ensure that is the case by explicitly masking out those bits
9829 before returning. */
9830 varop = force_to_mode (varop, mode, constop, 0);
9832 /* If VAROP is a CLOBBER, we will fail so return it. */
9833 if (GET_CODE (varop) == CLOBBER)
9834 return varop;
9836 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9837 to VAROP and return the new constant. */
9838 if (CONST_INT_P (varop))
9839 return gen_int_mode (INTVAL (varop) & constop, mode);
9841 /* See what bits may be nonzero in VAROP. Unlike the general case of
9842 a call to nonzero_bits, here we don't care about bits outside
9843 MODE. */
9845 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9847 /* Turn off all bits in the constant that are known to already be zero.
9848 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9849 which is tested below. */
9851 constop &= nonzero;
9853 /* If we don't have any bits left, return zero. */
9854 if (constop == 0)
9855 return const0_rtx;
9857 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9858 a power of two, we can replace this with an ASHIFT. */
9859 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9860 && (i = exact_log2 (constop)) >= 0)
9861 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9863 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9864 or XOR, then try to apply the distributive law. This may eliminate
9865 operations if either branch can be simplified because of the AND.
9866 It may also make some cases more complex, but those cases probably
9867 won't match a pattern either with or without this. */
9869 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9870 return
9871 gen_lowpart
9872 (mode,
9873 apply_distributive_law
9874 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9875 simplify_and_const_int (NULL_RTX,
9876 GET_MODE (varop),
9877 XEXP (varop, 0),
9878 constop),
9879 simplify_and_const_int (NULL_RTX,
9880 GET_MODE (varop),
9881 XEXP (varop, 1),
9882 constop))));
9884 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9885 the AND and see if one of the operands simplifies to zero. If so, we
9886 may eliminate it. */
9888 if (GET_CODE (varop) == PLUS
9889 && pow2p_hwi (constop + 1))
9891 rtx o0, o1;
9893 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9894 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9895 if (o0 == const0_rtx)
9896 return o1;
9897 if (o1 == const0_rtx)
9898 return o0;
9901 /* Make a SUBREG if necessary. If we can't make it, fail. */
9902 varop = gen_lowpart (mode, varop);
9903 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9904 return NULL_RTX;
9906 /* If we are only masking insignificant bits, return VAROP. */
9907 if (constop == nonzero)
9908 return varop;
9910 if (varop == orig_varop && constop == orig_constop)
9911 return NULL_RTX;
9913 /* Otherwise, return an AND. */
9914 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9918 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9919 in MODE.
9921 Return an equivalent form, if different from X. Otherwise, return X. If
9922 X is zero, we are to always construct the equivalent form. */
9924 static rtx
9925 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9926 unsigned HOST_WIDE_INT constop)
9928 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9929 if (tem)
9930 return tem;
9932 if (!x)
9933 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9934 gen_int_mode (constop, mode));
9935 if (GET_MODE (x) != mode)
9936 x = gen_lowpart (mode, x);
9937 return x;
9940 /* Given a REG, X, compute which bits in X can be nonzero.
9941 We don't care about bits outside of those defined in MODE.
9943 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9944 a shift, AND, or zero_extract, we can do better. */
9946 static rtx
9947 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9948 const_rtx known_x ATTRIBUTE_UNUSED,
9949 machine_mode known_mode ATTRIBUTE_UNUSED,
9950 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9951 unsigned HOST_WIDE_INT *nonzero)
9953 rtx tem;
9954 reg_stat_type *rsp;
9956 /* If X is a register whose nonzero bits value is current, use it.
9957 Otherwise, if X is a register whose value we can find, use that
9958 value. Otherwise, use the previously-computed global nonzero bits
9959 for this register. */
9961 rsp = &reg_stat[REGNO (x)];
9962 if (rsp->last_set_value != 0
9963 && (rsp->last_set_mode == mode
9964 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9965 && GET_MODE_CLASS (mode) == MODE_INT))
9966 && ((rsp->last_set_label >= label_tick_ebb_start
9967 && rsp->last_set_label < label_tick)
9968 || (rsp->last_set_label == label_tick
9969 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9970 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9971 && REGNO (x) < reg_n_sets_max
9972 && REG_N_SETS (REGNO (x)) == 1
9973 && !REGNO_REG_SET_P
9974 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9975 REGNO (x)))))
9977 /* Note that, even if the precision of last_set_mode is lower than that
9978 of mode, record_value_for_reg invoked nonzero_bits on the register
9979 with nonzero_bits_mode (because last_set_mode is necessarily integral
9980 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
9981 are all valid, hence in mode too since nonzero_bits_mode is defined
9982 to the largest HWI_COMPUTABLE_MODE_P mode. */
9983 *nonzero &= rsp->last_set_nonzero_bits;
9984 return NULL;
9987 tem = get_last_value (x);
9988 if (tem)
9990 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9991 tem = sign_extend_short_imm (tem, GET_MODE (x),
9992 GET_MODE_PRECISION (mode));
9994 return tem;
9997 if (nonzero_sign_valid && rsp->nonzero_bits)
9999 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10001 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10002 /* We don't know anything about the upper bits. */
10003 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10005 *nonzero &= mask;
10008 return NULL;
10011 /* Return the number of bits at the high-order end of X that are known to
10012 be equal to the sign bit. X will be used in mode MODE; if MODE is
10013 VOIDmode, X will be used in its own mode. The returned value will always
10014 be between 1 and the number of bits in MODE. */
10016 static rtx
10017 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10018 const_rtx known_x ATTRIBUTE_UNUSED,
10019 machine_mode known_mode
10020 ATTRIBUTE_UNUSED,
10021 unsigned int known_ret ATTRIBUTE_UNUSED,
10022 unsigned int *result)
10024 rtx tem;
10025 reg_stat_type *rsp;
10027 rsp = &reg_stat[REGNO (x)];
10028 if (rsp->last_set_value != 0
10029 && rsp->last_set_mode == mode
10030 && ((rsp->last_set_label >= label_tick_ebb_start
10031 && rsp->last_set_label < label_tick)
10032 || (rsp->last_set_label == label_tick
10033 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10034 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10035 && REGNO (x) < reg_n_sets_max
10036 && REG_N_SETS (REGNO (x)) == 1
10037 && !REGNO_REG_SET_P
10038 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10039 REGNO (x)))))
10041 *result = rsp->last_set_sign_bit_copies;
10042 return NULL;
10045 tem = get_last_value (x);
10046 if (tem != 0)
10047 return tem;
10049 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10050 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10051 *result = rsp->sign_bit_copies;
10053 return NULL;
10056 /* Return the number of "extended" bits there are in X, when interpreted
10057 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10058 unsigned quantities, this is the number of high-order zero bits.
10059 For signed quantities, this is the number of copies of the sign bit
10060 minus 1. In both case, this function returns the number of "spare"
10061 bits. For example, if two quantities for which this function returns
10062 at least 1 are added, the addition is known not to overflow.
10064 This function will always return 0 unless called during combine, which
10065 implies that it must be called from a define_split. */
10067 unsigned int
10068 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10070 if (nonzero_sign_valid == 0)
10071 return 0;
10073 return (unsignedp
10074 ? (HWI_COMPUTABLE_MODE_P (mode)
10075 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10076 - floor_log2 (nonzero_bits (x, mode)))
10077 : 0)
10078 : num_sign_bit_copies (x, mode) - 1);
10081 /* This function is called from `simplify_shift_const' to merge two
10082 outer operations. Specifically, we have already found that we need
10083 to perform operation *POP0 with constant *PCONST0 at the outermost
10084 position. We would now like to also perform OP1 with constant CONST1
10085 (with *POP0 being done last).
10087 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10088 the resulting operation. *PCOMP_P is set to 1 if we would need to
10089 complement the innermost operand, otherwise it is unchanged.
10091 MODE is the mode in which the operation will be done. No bits outside
10092 the width of this mode matter. It is assumed that the width of this mode
10093 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10095 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10096 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10097 result is simply *PCONST0.
10099 If the resulting operation cannot be expressed as one operation, we
10100 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10102 static int
10103 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10105 enum rtx_code op0 = *pop0;
10106 HOST_WIDE_INT const0 = *pconst0;
10108 const0 &= GET_MODE_MASK (mode);
10109 const1 &= GET_MODE_MASK (mode);
10111 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10112 if (op0 == AND)
10113 const1 &= const0;
10115 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10116 if OP0 is SET. */
10118 if (op1 == UNKNOWN || op0 == SET)
10119 return 1;
10121 else if (op0 == UNKNOWN)
10122 op0 = op1, const0 = const1;
10124 else if (op0 == op1)
10126 switch (op0)
10128 case AND:
10129 const0 &= const1;
10130 break;
10131 case IOR:
10132 const0 |= const1;
10133 break;
10134 case XOR:
10135 const0 ^= const1;
10136 break;
10137 case PLUS:
10138 const0 += const1;
10139 break;
10140 case NEG:
10141 op0 = UNKNOWN;
10142 break;
10143 default:
10144 break;
10148 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10149 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10150 return 0;
10152 /* If the two constants aren't the same, we can't do anything. The
10153 remaining six cases can all be done. */
10154 else if (const0 != const1)
10155 return 0;
10157 else
10158 switch (op0)
10160 case IOR:
10161 if (op1 == AND)
10162 /* (a & b) | b == b */
10163 op0 = SET;
10164 else /* op1 == XOR */
10165 /* (a ^ b) | b == a | b */
10167 break;
10169 case XOR:
10170 if (op1 == AND)
10171 /* (a & b) ^ b == (~a) & b */
10172 op0 = AND, *pcomp_p = 1;
10173 else /* op1 == IOR */
10174 /* (a | b) ^ b == a & ~b */
10175 op0 = AND, const0 = ~const0;
10176 break;
10178 case AND:
10179 if (op1 == IOR)
10180 /* (a | b) & b == b */
10181 op0 = SET;
10182 else /* op1 == XOR */
10183 /* (a ^ b) & b) == (~a) & b */
10184 *pcomp_p = 1;
10185 break;
10186 default:
10187 break;
10190 /* Check for NO-OP cases. */
10191 const0 &= GET_MODE_MASK (mode);
10192 if (const0 == 0
10193 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10194 op0 = UNKNOWN;
10195 else if (const0 == 0 && op0 == AND)
10196 op0 = SET;
10197 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10198 && op0 == AND)
10199 op0 = UNKNOWN;
10201 *pop0 = op0;
10203 /* ??? Slightly redundant with the above mask, but not entirely.
10204 Moving this above means we'd have to sign-extend the mode mask
10205 for the final test. */
10206 if (op0 != UNKNOWN && op0 != NEG)
10207 *pconst0 = trunc_int_for_mode (const0, mode);
10209 return 1;
10212 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10213 the shift in. The original shift operation CODE is performed on OP in
10214 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10215 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10216 result of the shift is subject to operation OUTER_CODE with operand
10217 OUTER_CONST. */
10219 static machine_mode
10220 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10221 machine_mode orig_mode, machine_mode mode,
10222 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10224 if (orig_mode == mode)
10225 return mode;
10226 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10228 /* In general we can't perform in wider mode for right shift and rotate. */
10229 switch (code)
10231 case ASHIFTRT:
10232 /* We can still widen if the bits brought in from the left are identical
10233 to the sign bit of ORIG_MODE. */
10234 if (num_sign_bit_copies (op, mode)
10235 > (unsigned) (GET_MODE_PRECISION (mode)
10236 - GET_MODE_PRECISION (orig_mode)))
10237 return mode;
10238 return orig_mode;
10240 case LSHIFTRT:
10241 /* Similarly here but with zero bits. */
10242 if (HWI_COMPUTABLE_MODE_P (mode)
10243 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10244 return mode;
10246 /* We can also widen if the bits brought in will be masked off. This
10247 operation is performed in ORIG_MODE. */
10248 if (outer_code == AND)
10250 int care_bits = low_bitmask_len (orig_mode, outer_const);
10252 if (care_bits >= 0
10253 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10254 return mode;
10256 /* fall through */
10258 case ROTATE:
10259 return orig_mode;
10261 case ROTATERT:
10262 gcc_unreachable ();
10264 default:
10265 return mode;
10269 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10270 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10271 if we cannot simplify it. Otherwise, return a simplified value.
10273 The shift is normally computed in the widest mode we find in VAROP, as
10274 long as it isn't a different number of words than RESULT_MODE. Exceptions
10275 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10277 static rtx
10278 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10279 rtx varop, int orig_count)
10281 enum rtx_code orig_code = code;
10282 rtx orig_varop = varop;
10283 int count;
10284 machine_mode mode = result_mode;
10285 machine_mode shift_mode, tmode;
10286 unsigned int mode_words
10287 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10288 /* We form (outer_op (code varop count) (outer_const)). */
10289 enum rtx_code outer_op = UNKNOWN;
10290 HOST_WIDE_INT outer_const = 0;
10291 int complement_p = 0;
10292 rtx new_rtx, x;
10294 /* Make sure and truncate the "natural" shift on the way in. We don't
10295 want to do this inside the loop as it makes it more difficult to
10296 combine shifts. */
10297 if (SHIFT_COUNT_TRUNCATED)
10298 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10300 /* If we were given an invalid count, don't do anything except exactly
10301 what was requested. */
10303 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10304 return NULL_RTX;
10306 count = orig_count;
10308 /* Unless one of the branches of the `if' in this loop does a `continue',
10309 we will `break' the loop after the `if'. */
10311 while (count != 0)
10313 /* If we have an operand of (clobber (const_int 0)), fail. */
10314 if (GET_CODE (varop) == CLOBBER)
10315 return NULL_RTX;
10317 /* Convert ROTATERT to ROTATE. */
10318 if (code == ROTATERT)
10320 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10321 code = ROTATE;
10322 count = bitsize - count;
10325 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10326 mode, outer_op, outer_const);
10327 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10329 /* Handle cases where the count is greater than the size of the mode
10330 minus 1. For ASHIFT, use the size minus one as the count (this can
10331 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10332 take the count modulo the size. For other shifts, the result is
10333 zero.
10335 Since these shifts are being produced by the compiler by combining
10336 multiple operations, each of which are defined, we know what the
10337 result is supposed to be. */
10339 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10341 if (code == ASHIFTRT)
10342 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10343 else if (code == ROTATE || code == ROTATERT)
10344 count %= GET_MODE_PRECISION (shift_unit_mode);
10345 else
10347 /* We can't simply return zero because there may be an
10348 outer op. */
10349 varop = const0_rtx;
10350 count = 0;
10351 break;
10355 /* If we discovered we had to complement VAROP, leave. Making a NOT
10356 here would cause an infinite loop. */
10357 if (complement_p)
10358 break;
10360 if (shift_mode == shift_unit_mode)
10362 /* An arithmetic right shift of a quantity known to be -1 or 0
10363 is a no-op. */
10364 if (code == ASHIFTRT
10365 && (num_sign_bit_copies (varop, shift_unit_mode)
10366 == GET_MODE_PRECISION (shift_unit_mode)))
10368 count = 0;
10369 break;
10372 /* If we are doing an arithmetic right shift and discarding all but
10373 the sign bit copies, this is equivalent to doing a shift by the
10374 bitsize minus one. Convert it into that shift because it will
10375 often allow other simplifications. */
10377 if (code == ASHIFTRT
10378 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10379 >= GET_MODE_PRECISION (shift_unit_mode)))
10380 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10382 /* We simplify the tests below and elsewhere by converting
10383 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10384 `make_compound_operation' will convert it to an ASHIFTRT for
10385 those machines (such as VAX) that don't have an LSHIFTRT. */
10386 if (code == ASHIFTRT
10387 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10388 && val_signbit_known_clear_p (shift_unit_mode,
10389 nonzero_bits (varop,
10390 shift_unit_mode)))
10391 code = LSHIFTRT;
10393 if (((code == LSHIFTRT
10394 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10395 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10396 || (code == ASHIFT
10397 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10398 && !((nonzero_bits (varop, shift_unit_mode) << count)
10399 & GET_MODE_MASK (shift_unit_mode))))
10400 && !side_effects_p (varop))
10401 varop = const0_rtx;
10404 switch (GET_CODE (varop))
10406 case SIGN_EXTEND:
10407 case ZERO_EXTEND:
10408 case SIGN_EXTRACT:
10409 case ZERO_EXTRACT:
10410 new_rtx = expand_compound_operation (varop);
10411 if (new_rtx != varop)
10413 varop = new_rtx;
10414 continue;
10416 break;
10418 case MEM:
10419 /* The following rules apply only to scalars. */
10420 if (shift_mode != shift_unit_mode)
10421 break;
10423 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10424 minus the width of a smaller mode, we can do this with a
10425 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10426 if ((code == ASHIFTRT || code == LSHIFTRT)
10427 && ! mode_dependent_address_p (XEXP (varop, 0),
10428 MEM_ADDR_SPACE (varop))
10429 && ! MEM_VOLATILE_P (varop)
10430 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10431 MODE_INT, 1)) != BLKmode)
10433 new_rtx = adjust_address_nv (varop, tmode,
10434 BYTES_BIG_ENDIAN ? 0
10435 : count / BITS_PER_UNIT);
10437 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10438 : ZERO_EXTEND, mode, new_rtx);
10439 count = 0;
10440 continue;
10442 break;
10444 case SUBREG:
10445 /* The following rules apply only to scalars. */
10446 if (shift_mode != shift_unit_mode)
10447 break;
10449 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10450 the same number of words as what we've seen so far. Then store
10451 the widest mode in MODE. */
10452 if (subreg_lowpart_p (varop)
10453 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10454 > GET_MODE_SIZE (GET_MODE (varop)))
10455 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10456 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10457 == mode_words
10458 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10459 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10461 varop = SUBREG_REG (varop);
10462 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10463 mode = GET_MODE (varop);
10464 continue;
10466 break;
10468 case MULT:
10469 /* Some machines use MULT instead of ASHIFT because MULT
10470 is cheaper. But it is still better on those machines to
10471 merge two shifts into one. */
10472 if (CONST_INT_P (XEXP (varop, 1))
10473 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10475 varop
10476 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10477 XEXP (varop, 0),
10478 GEN_INT (exact_log2 (
10479 UINTVAL (XEXP (varop, 1)))));
10480 continue;
10482 break;
10484 case UDIV:
10485 /* Similar, for when divides are cheaper. */
10486 if (CONST_INT_P (XEXP (varop, 1))
10487 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10489 varop
10490 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10491 XEXP (varop, 0),
10492 GEN_INT (exact_log2 (
10493 UINTVAL (XEXP (varop, 1)))));
10494 continue;
10496 break;
10498 case ASHIFTRT:
10499 /* If we are extracting just the sign bit of an arithmetic
10500 right shift, that shift is not needed. However, the sign
10501 bit of a wider mode may be different from what would be
10502 interpreted as the sign bit in a narrower mode, so, if
10503 the result is narrower, don't discard the shift. */
10504 if (code == LSHIFTRT
10505 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10506 && (GET_MODE_UNIT_BITSIZE (result_mode)
10507 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10509 varop = XEXP (varop, 0);
10510 continue;
10513 /* fall through */
10515 case LSHIFTRT:
10516 case ASHIFT:
10517 case ROTATE:
10518 /* The following rules apply only to scalars. */
10519 if (shift_mode != shift_unit_mode)
10520 break;
10522 /* Here we have two nested shifts. The result is usually the
10523 AND of a new shift with a mask. We compute the result below. */
10524 if (CONST_INT_P (XEXP (varop, 1))
10525 && INTVAL (XEXP (varop, 1)) >= 0
10526 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10527 && HWI_COMPUTABLE_MODE_P (result_mode)
10528 && HWI_COMPUTABLE_MODE_P (mode))
10530 enum rtx_code first_code = GET_CODE (varop);
10531 unsigned int first_count = INTVAL (XEXP (varop, 1));
10532 unsigned HOST_WIDE_INT mask;
10533 rtx mask_rtx;
10535 /* We have one common special case. We can't do any merging if
10536 the inner code is an ASHIFTRT of a smaller mode. However, if
10537 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10538 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10539 we can convert it to
10540 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10541 This simplifies certain SIGN_EXTEND operations. */
10542 if (code == ASHIFT && first_code == ASHIFTRT
10543 && count == (GET_MODE_PRECISION (result_mode)
10544 - GET_MODE_PRECISION (GET_MODE (varop))))
10546 /* C3 has the low-order C1 bits zero. */
10548 mask = GET_MODE_MASK (mode)
10549 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10551 varop = simplify_and_const_int (NULL_RTX, result_mode,
10552 XEXP (varop, 0), mask);
10553 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10554 varop, count);
10555 count = first_count;
10556 code = ASHIFTRT;
10557 continue;
10560 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10561 than C1 high-order bits equal to the sign bit, we can convert
10562 this to either an ASHIFT or an ASHIFTRT depending on the
10563 two counts.
10565 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10567 if (code == ASHIFTRT && first_code == ASHIFT
10568 && GET_MODE (varop) == shift_mode
10569 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10570 > first_count))
10572 varop = XEXP (varop, 0);
10573 count -= first_count;
10574 if (count < 0)
10576 count = -count;
10577 code = ASHIFT;
10580 continue;
10583 /* There are some cases we can't do. If CODE is ASHIFTRT,
10584 we can only do this if FIRST_CODE is also ASHIFTRT.
10586 We can't do the case when CODE is ROTATE and FIRST_CODE is
10587 ASHIFTRT.
10589 If the mode of this shift is not the mode of the outer shift,
10590 we can't do this if either shift is a right shift or ROTATE.
10592 Finally, we can't do any of these if the mode is too wide
10593 unless the codes are the same.
10595 Handle the case where the shift codes are the same
10596 first. */
10598 if (code == first_code)
10600 if (GET_MODE (varop) != result_mode
10601 && (code == ASHIFTRT || code == LSHIFTRT
10602 || code == ROTATE))
10603 break;
10605 count += first_count;
10606 varop = XEXP (varop, 0);
10607 continue;
10610 if (code == ASHIFTRT
10611 || (code == ROTATE && first_code == ASHIFTRT)
10612 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10613 || (GET_MODE (varop) != result_mode
10614 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10615 || first_code == ROTATE
10616 || code == ROTATE)))
10617 break;
10619 /* To compute the mask to apply after the shift, shift the
10620 nonzero bits of the inner shift the same way the
10621 outer shift will. */
10623 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10624 result_mode);
10626 mask_rtx
10627 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10628 GEN_INT (count));
10630 /* Give up if we can't compute an outer operation to use. */
10631 if (mask_rtx == 0
10632 || !CONST_INT_P (mask_rtx)
10633 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10634 INTVAL (mask_rtx),
10635 result_mode, &complement_p))
10636 break;
10638 /* If the shifts are in the same direction, we add the
10639 counts. Otherwise, we subtract them. */
10640 if ((code == ASHIFTRT || code == LSHIFTRT)
10641 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10642 count += first_count;
10643 else
10644 count -= first_count;
10646 /* If COUNT is positive, the new shift is usually CODE,
10647 except for the two exceptions below, in which case it is
10648 FIRST_CODE. If the count is negative, FIRST_CODE should
10649 always be used */
10650 if (count > 0
10651 && ((first_code == ROTATE && code == ASHIFT)
10652 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10653 code = first_code;
10654 else if (count < 0)
10655 code = first_code, count = -count;
10657 varop = XEXP (varop, 0);
10658 continue;
10661 /* If we have (A << B << C) for any shift, we can convert this to
10662 (A << C << B). This wins if A is a constant. Only try this if
10663 B is not a constant. */
10665 else if (GET_CODE (varop) == code
10666 && CONST_INT_P (XEXP (varop, 0))
10667 && !CONST_INT_P (XEXP (varop, 1)))
10669 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10670 sure the result will be masked. See PR70222. */
10671 if (code == LSHIFTRT
10672 && mode != result_mode
10673 && !merge_outer_ops (&outer_op, &outer_const, AND,
10674 GET_MODE_MASK (result_mode)
10675 >> orig_count, result_mode,
10676 &complement_p))
10677 break;
10678 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10679 up outer sign extension (often left and right shift) is
10680 hardly more efficient than the original. See PR70429. */
10681 if (code == ASHIFTRT && mode != result_mode)
10682 break;
10684 rtx new_rtx = simplify_const_binary_operation (code, mode,
10685 XEXP (varop, 0),
10686 GEN_INT (count));
10687 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10688 count = 0;
10689 continue;
10691 break;
10693 case NOT:
10694 /* The following rules apply only to scalars. */
10695 if (shift_mode != shift_unit_mode)
10696 break;
10698 /* Make this fit the case below. */
10699 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10700 continue;
10702 case IOR:
10703 case AND:
10704 case XOR:
10705 /* The following rules apply only to scalars. */
10706 if (shift_mode != shift_unit_mode)
10707 break;
10709 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10710 with C the size of VAROP - 1 and the shift is logical if
10711 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10712 we have an (le X 0) operation. If we have an arithmetic shift
10713 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10714 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10716 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10717 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10718 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10719 && (code == LSHIFTRT || code == ASHIFTRT)
10720 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10721 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10723 count = 0;
10724 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10725 const0_rtx);
10727 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10728 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10730 continue;
10733 /* If we have (shift (logical)), move the logical to the outside
10734 to allow it to possibly combine with another logical and the
10735 shift to combine with another shift. This also canonicalizes to
10736 what a ZERO_EXTRACT looks like. Also, some machines have
10737 (and (shift)) insns. */
10739 if (CONST_INT_P (XEXP (varop, 1))
10740 /* We can't do this if we have (ashiftrt (xor)) and the
10741 constant has its sign bit set in shift_mode with shift_mode
10742 wider than result_mode. */
10743 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10744 && result_mode != shift_mode
10745 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10746 shift_mode))
10747 && (new_rtx = simplify_const_binary_operation
10748 (code, result_mode,
10749 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10750 GEN_INT (count))) != 0
10751 && CONST_INT_P (new_rtx)
10752 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10753 INTVAL (new_rtx), result_mode, &complement_p))
10755 varop = XEXP (varop, 0);
10756 continue;
10759 /* If we can't do that, try to simplify the shift in each arm of the
10760 logical expression, make a new logical expression, and apply
10761 the inverse distributive law. This also can't be done for
10762 (ashiftrt (xor)) where we've widened the shift and the constant
10763 changes the sign bit. */
10764 if (CONST_INT_P (XEXP (varop, 1))
10765 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10766 && result_mode != shift_mode
10767 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10768 shift_mode)))
10770 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10771 XEXP (varop, 0), count);
10772 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10773 XEXP (varop, 1), count);
10775 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10776 lhs, rhs);
10777 varop = apply_distributive_law (varop);
10779 count = 0;
10780 continue;
10782 break;
10784 case EQ:
10785 /* The following rules apply only to scalars. */
10786 if (shift_mode != shift_unit_mode)
10787 break;
10789 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10790 says that the sign bit can be tested, FOO has mode MODE, C is
10791 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10792 that may be nonzero. */
10793 if (code == LSHIFTRT
10794 && XEXP (varop, 1) == const0_rtx
10795 && GET_MODE (XEXP (varop, 0)) == result_mode
10796 && count == (GET_MODE_PRECISION (result_mode) - 1)
10797 && HWI_COMPUTABLE_MODE_P (result_mode)
10798 && STORE_FLAG_VALUE == -1
10799 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10800 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10801 &complement_p))
10803 varop = XEXP (varop, 0);
10804 count = 0;
10805 continue;
10807 break;
10809 case NEG:
10810 /* The following rules apply only to scalars. */
10811 if (shift_mode != shift_unit_mode)
10812 break;
10814 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10815 than the number of bits in the mode is equivalent to A. */
10816 if (code == LSHIFTRT
10817 && count == (GET_MODE_PRECISION (result_mode) - 1)
10818 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10820 varop = XEXP (varop, 0);
10821 count = 0;
10822 continue;
10825 /* NEG commutes with ASHIFT since it is multiplication. Move the
10826 NEG outside to allow shifts to combine. */
10827 if (code == ASHIFT
10828 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10829 &complement_p))
10831 varop = XEXP (varop, 0);
10832 continue;
10834 break;
10836 case PLUS:
10837 /* The following rules apply only to scalars. */
10838 if (shift_mode != shift_unit_mode)
10839 break;
10841 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10842 is one less than the number of bits in the mode is
10843 equivalent to (xor A 1). */
10844 if (code == LSHIFTRT
10845 && count == (GET_MODE_PRECISION (result_mode) - 1)
10846 && XEXP (varop, 1) == constm1_rtx
10847 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10848 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10849 &complement_p))
10851 count = 0;
10852 varop = XEXP (varop, 0);
10853 continue;
10856 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10857 that might be nonzero in BAR are those being shifted out and those
10858 bits are known zero in FOO, we can replace the PLUS with FOO.
10859 Similarly in the other operand order. This code occurs when
10860 we are computing the size of a variable-size array. */
10862 if ((code == ASHIFTRT || code == LSHIFTRT)
10863 && count < HOST_BITS_PER_WIDE_INT
10864 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10865 && (nonzero_bits (XEXP (varop, 1), result_mode)
10866 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10868 varop = XEXP (varop, 0);
10869 continue;
10871 else if ((code == ASHIFTRT || code == LSHIFTRT)
10872 && count < HOST_BITS_PER_WIDE_INT
10873 && HWI_COMPUTABLE_MODE_P (result_mode)
10874 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10875 >> count)
10876 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10877 & nonzero_bits (XEXP (varop, 1),
10878 result_mode)))
10880 varop = XEXP (varop, 1);
10881 continue;
10884 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10885 if (code == ASHIFT
10886 && CONST_INT_P (XEXP (varop, 1))
10887 && (new_rtx = simplify_const_binary_operation
10888 (ASHIFT, result_mode,
10889 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10890 GEN_INT (count))) != 0
10891 && CONST_INT_P (new_rtx)
10892 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10893 INTVAL (new_rtx), result_mode, &complement_p))
10895 varop = XEXP (varop, 0);
10896 continue;
10899 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10900 signbit', and attempt to change the PLUS to an XOR and move it to
10901 the outer operation as is done above in the AND/IOR/XOR case
10902 leg for shift(logical). See details in logical handling above
10903 for reasoning in doing so. */
10904 if (code == LSHIFTRT
10905 && CONST_INT_P (XEXP (varop, 1))
10906 && mode_signbit_p (result_mode, XEXP (varop, 1))
10907 && (new_rtx = simplify_const_binary_operation
10908 (code, result_mode,
10909 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10910 GEN_INT (count))) != 0
10911 && CONST_INT_P (new_rtx)
10912 && merge_outer_ops (&outer_op, &outer_const, XOR,
10913 INTVAL (new_rtx), result_mode, &complement_p))
10915 varop = XEXP (varop, 0);
10916 continue;
10919 break;
10921 case MINUS:
10922 /* The following rules apply only to scalars. */
10923 if (shift_mode != shift_unit_mode)
10924 break;
10926 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10927 with C the size of VAROP - 1 and the shift is logical if
10928 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10929 we have a (gt X 0) operation. If the shift is arithmetic with
10930 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10931 we have a (neg (gt X 0)) operation. */
10933 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10934 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10935 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10936 && (code == LSHIFTRT || code == ASHIFTRT)
10937 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10938 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10939 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10941 count = 0;
10942 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10943 const0_rtx);
10945 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10946 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10948 continue;
10950 break;
10952 case TRUNCATE:
10953 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10954 if the truncate does not affect the value. */
10955 if (code == LSHIFTRT
10956 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10957 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10958 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10959 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10960 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10962 rtx varop_inner = XEXP (varop, 0);
10964 varop_inner
10965 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10966 XEXP (varop_inner, 0),
10967 GEN_INT
10968 (count + INTVAL (XEXP (varop_inner, 1))));
10969 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10970 count = 0;
10971 continue;
10973 break;
10975 default:
10976 break;
10979 break;
10982 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10983 outer_op, outer_const);
10985 /* We have now finished analyzing the shift. The result should be
10986 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10987 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10988 to the result of the shift. OUTER_CONST is the relevant constant,
10989 but we must turn off all bits turned off in the shift. */
10991 if (outer_op == UNKNOWN
10992 && orig_code == code && orig_count == count
10993 && varop == orig_varop
10994 && shift_mode == GET_MODE (varop))
10995 return NULL_RTX;
10997 /* Make a SUBREG if necessary. If we can't make it, fail. */
10998 varop = gen_lowpart (shift_mode, varop);
10999 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11000 return NULL_RTX;
11002 /* If we have an outer operation and we just made a shift, it is
11003 possible that we could have simplified the shift were it not
11004 for the outer operation. So try to do the simplification
11005 recursively. */
11007 if (outer_op != UNKNOWN)
11008 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11009 else
11010 x = NULL_RTX;
11012 if (x == NULL_RTX)
11013 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11015 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11016 turn off all the bits that the shift would have turned off. */
11017 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11018 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11019 GET_MODE_MASK (result_mode) >> orig_count);
11021 /* Do the remainder of the processing in RESULT_MODE. */
11022 x = gen_lowpart_or_truncate (result_mode, x);
11024 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11025 operation. */
11026 if (complement_p)
11027 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11029 if (outer_op != UNKNOWN)
11031 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11032 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11033 outer_const = trunc_int_for_mode (outer_const, result_mode);
11035 if (outer_op == AND)
11036 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11037 else if (outer_op == SET)
11039 /* This means that we have determined that the result is
11040 equivalent to a constant. This should be rare. */
11041 if (!side_effects_p (x))
11042 x = GEN_INT (outer_const);
11044 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11045 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11046 else
11047 x = simplify_gen_binary (outer_op, result_mode, x,
11048 GEN_INT (outer_const));
11051 return x;
11054 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11055 The result of the shift is RESULT_MODE. If we cannot simplify it,
11056 return X or, if it is NULL, synthesize the expression with
11057 simplify_gen_binary. Otherwise, return a simplified value.
11059 The shift is normally computed in the widest mode we find in VAROP, as
11060 long as it isn't a different number of words than RESULT_MODE. Exceptions
11061 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11063 static rtx
11064 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11065 rtx varop, int count)
11067 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11068 if (tem)
11069 return tem;
11071 if (!x)
11072 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11073 if (GET_MODE (x) != result_mode)
11074 x = gen_lowpart (result_mode, x);
11075 return x;
11079 /* A subroutine of recog_for_combine. See there for arguments and
11080 return value. */
11082 static int
11083 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11085 rtx pat = *pnewpat;
11086 rtx pat_without_clobbers;
11087 int insn_code_number;
11088 int num_clobbers_to_add = 0;
11089 int i;
11090 rtx notes = NULL_RTX;
11091 rtx old_notes, old_pat;
11092 int old_icode;
11094 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11095 we use to indicate that something didn't match. If we find such a
11096 thing, force rejection. */
11097 if (GET_CODE (pat) == PARALLEL)
11098 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11099 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11100 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11101 return -1;
11103 old_pat = PATTERN (insn);
11104 old_notes = REG_NOTES (insn);
11105 PATTERN (insn) = pat;
11106 REG_NOTES (insn) = NULL_RTX;
11108 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11109 if (dump_file && (dump_flags & TDF_DETAILS))
11111 if (insn_code_number < 0)
11112 fputs ("Failed to match this instruction:\n", dump_file);
11113 else
11114 fputs ("Successfully matched this instruction:\n", dump_file);
11115 print_rtl_single (dump_file, pat);
11118 /* If it isn't, there is the possibility that we previously had an insn
11119 that clobbered some register as a side effect, but the combined
11120 insn doesn't need to do that. So try once more without the clobbers
11121 unless this represents an ASM insn. */
11123 if (insn_code_number < 0 && ! check_asm_operands (pat)
11124 && GET_CODE (pat) == PARALLEL)
11126 int pos;
11128 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11129 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11131 if (i != pos)
11132 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11133 pos++;
11136 SUBST_INT (XVECLEN (pat, 0), pos);
11138 if (pos == 1)
11139 pat = XVECEXP (pat, 0, 0);
11141 PATTERN (insn) = pat;
11142 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11143 if (dump_file && (dump_flags & TDF_DETAILS))
11145 if (insn_code_number < 0)
11146 fputs ("Failed to match this instruction:\n", dump_file);
11147 else
11148 fputs ("Successfully matched this instruction:\n", dump_file);
11149 print_rtl_single (dump_file, pat);
11153 pat_without_clobbers = pat;
11155 PATTERN (insn) = old_pat;
11156 REG_NOTES (insn) = old_notes;
11158 /* Recognize all noop sets, these will be killed by followup pass. */
11159 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11160 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11162 /* If we had any clobbers to add, make a new pattern than contains
11163 them. Then check to make sure that all of them are dead. */
11164 if (num_clobbers_to_add)
11166 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11167 rtvec_alloc (GET_CODE (pat) == PARALLEL
11168 ? (XVECLEN (pat, 0)
11169 + num_clobbers_to_add)
11170 : num_clobbers_to_add + 1));
11172 if (GET_CODE (pat) == PARALLEL)
11173 for (i = 0; i < XVECLEN (pat, 0); i++)
11174 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11175 else
11176 XVECEXP (newpat, 0, 0) = pat;
11178 add_clobbers (newpat, insn_code_number);
11180 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11181 i < XVECLEN (newpat, 0); i++)
11183 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11184 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11185 return -1;
11186 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11188 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11189 notes = alloc_reg_note (REG_UNUSED,
11190 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11193 pat = newpat;
11196 if (insn_code_number >= 0
11197 && insn_code_number != NOOP_MOVE_INSN_CODE)
11199 old_pat = PATTERN (insn);
11200 old_notes = REG_NOTES (insn);
11201 old_icode = INSN_CODE (insn);
11202 PATTERN (insn) = pat;
11203 REG_NOTES (insn) = notes;
11204 INSN_CODE (insn) = insn_code_number;
11206 /* Allow targets to reject combined insn. */
11207 if (!targetm.legitimate_combined_insn (insn))
11209 if (dump_file && (dump_flags & TDF_DETAILS))
11210 fputs ("Instruction not appropriate for target.",
11211 dump_file);
11213 /* Callers expect recog_for_combine to strip
11214 clobbers from the pattern on failure. */
11215 pat = pat_without_clobbers;
11216 notes = NULL_RTX;
11218 insn_code_number = -1;
11221 PATTERN (insn) = old_pat;
11222 REG_NOTES (insn) = old_notes;
11223 INSN_CODE (insn) = old_icode;
11226 *pnewpat = pat;
11227 *pnotes = notes;
11229 return insn_code_number;
11232 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11233 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11234 Return whether anything was so changed. */
11236 static bool
11237 change_zero_ext (rtx pat)
11239 bool changed = false;
11240 rtx *src = &SET_SRC (pat);
11242 subrtx_ptr_iterator::array_type array;
11243 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11245 rtx x = **iter;
11246 machine_mode mode = GET_MODE (x);
11247 int size;
11249 if (GET_CODE (x) == ZERO_EXTRACT
11250 && CONST_INT_P (XEXP (x, 1))
11251 && CONST_INT_P (XEXP (x, 2))
11252 && GET_MODE (XEXP (x, 0)) != VOIDmode
11253 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11254 <= GET_MODE_PRECISION (mode))
11256 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11258 size = INTVAL (XEXP (x, 1));
11260 int start = INTVAL (XEXP (x, 2));
11261 if (BITS_BIG_ENDIAN)
11262 start = GET_MODE_PRECISION (inner_mode) - size - start;
11264 if (start)
11265 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11266 else
11267 x = XEXP (x, 0);
11268 if (mode != inner_mode)
11269 x = gen_lowpart_SUBREG (mode, x);
11271 else if (GET_CODE (x) == ZERO_EXTEND
11272 && SCALAR_INT_MODE_P (mode)
11273 && GET_CODE (XEXP (x, 0)) == SUBREG
11274 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11275 && !paradoxical_subreg_p (XEXP (x, 0))
11276 && subreg_lowpart_p (XEXP (x, 0)))
11278 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11279 x = SUBREG_REG (XEXP (x, 0));
11280 if (GET_MODE (x) != mode)
11281 x = gen_lowpart_SUBREG (mode, x);
11283 else if (GET_CODE (x) == ZERO_EXTEND
11284 && SCALAR_INT_MODE_P (mode)
11285 && REG_P (XEXP (x, 0))
11286 && HARD_REGISTER_P (XEXP (x, 0))
11287 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11289 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11290 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11292 else
11293 continue;
11295 if (!(GET_CODE (x) == LSHIFTRT
11296 && CONST_INT_P (XEXP (x, 1))
11297 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11299 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11300 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11303 SUBST (**iter, x);
11304 changed = true;
11307 if (changed)
11308 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11309 maybe_swap_commutative_operands (**iter);
11311 rtx *dst = &SET_DEST (pat);
11312 if (GET_CODE (*dst) == ZERO_EXTRACT
11313 && REG_P (XEXP (*dst, 0))
11314 && CONST_INT_P (XEXP (*dst, 1))
11315 && CONST_INT_P (XEXP (*dst, 2)))
11317 rtx reg = XEXP (*dst, 0);
11318 int width = INTVAL (XEXP (*dst, 1));
11319 int offset = INTVAL (XEXP (*dst, 2));
11320 machine_mode mode = GET_MODE (reg);
11321 int reg_width = GET_MODE_PRECISION (mode);
11322 if (BITS_BIG_ENDIAN)
11323 offset = reg_width - width - offset;
11325 rtx x, y, z, w;
11326 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11327 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11328 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11329 if (offset)
11330 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11331 else
11332 y = SET_SRC (pat);
11333 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11334 w = gen_rtx_IOR (mode, x, z);
11335 SUBST (SET_DEST (pat), reg);
11336 SUBST (SET_SRC (pat), w);
11338 changed = true;
11341 return changed;
11344 /* Like recog, but we receive the address of a pointer to a new pattern.
11345 We try to match the rtx that the pointer points to.
11346 If that fails, we may try to modify or replace the pattern,
11347 storing the replacement into the same pointer object.
11349 Modifications include deletion or addition of CLOBBERs. If the
11350 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11351 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11352 (and undo if that fails).
11354 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11355 the CLOBBERs are placed.
11357 The value is the final insn code from the pattern ultimately matched,
11358 or -1. */
11360 static int
11361 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11363 rtx pat = *pnewpat;
11364 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11365 if (insn_code_number >= 0 || check_asm_operands (pat))
11366 return insn_code_number;
11368 void *marker = get_undo_marker ();
11369 bool changed = false;
11371 if (GET_CODE (pat) == SET)
11372 changed = change_zero_ext (pat);
11373 else if (GET_CODE (pat) == PARALLEL)
11375 int i;
11376 for (i = 0; i < XVECLEN (pat, 0); i++)
11378 rtx set = XVECEXP (pat, 0, i);
11379 if (GET_CODE (set) == SET)
11380 changed |= change_zero_ext (set);
11384 if (changed)
11386 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11388 if (insn_code_number < 0)
11389 undo_to_marker (marker);
11392 return insn_code_number;
11395 /* Like gen_lowpart_general but for use by combine. In combine it
11396 is not possible to create any new pseudoregs. However, it is
11397 safe to create invalid memory addresses, because combine will
11398 try to recognize them and all they will do is make the combine
11399 attempt fail.
11401 If for some reason this cannot do its job, an rtx
11402 (clobber (const_int 0)) is returned.
11403 An insn containing that will not be recognized. */
11405 static rtx
11406 gen_lowpart_for_combine (machine_mode omode, rtx x)
11408 machine_mode imode = GET_MODE (x);
11409 unsigned int osize = GET_MODE_SIZE (omode);
11410 unsigned int isize = GET_MODE_SIZE (imode);
11411 rtx result;
11413 if (omode == imode)
11414 return x;
11416 /* We can only support MODE being wider than a word if X is a
11417 constant integer or has a mode the same size. */
11418 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11419 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11420 goto fail;
11422 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11423 won't know what to do. So we will strip off the SUBREG here and
11424 process normally. */
11425 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11427 x = SUBREG_REG (x);
11429 /* For use in case we fall down into the address adjustments
11430 further below, we need to adjust the known mode and size of
11431 x; imode and isize, since we just adjusted x. */
11432 imode = GET_MODE (x);
11434 if (imode == omode)
11435 return x;
11437 isize = GET_MODE_SIZE (imode);
11440 result = gen_lowpart_common (omode, x);
11442 if (result)
11443 return result;
11445 if (MEM_P (x))
11447 int offset = 0;
11449 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11450 address. */
11451 if (MEM_VOLATILE_P (x)
11452 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11453 goto fail;
11455 /* If we want to refer to something bigger than the original memref,
11456 generate a paradoxical subreg instead. That will force a reload
11457 of the original memref X. */
11458 if (isize < osize)
11459 return gen_rtx_SUBREG (omode, x, 0);
11461 if (WORDS_BIG_ENDIAN)
11462 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11464 /* Adjust the address so that the address-after-the-data is
11465 unchanged. */
11466 if (BYTES_BIG_ENDIAN)
11467 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11469 return adjust_address_nv (x, omode, offset);
11472 /* If X is a comparison operator, rewrite it in a new mode. This
11473 probably won't match, but may allow further simplifications. */
11474 else if (COMPARISON_P (x))
11475 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11477 /* If we couldn't simplify X any other way, just enclose it in a
11478 SUBREG. Normally, this SUBREG won't match, but some patterns may
11479 include an explicit SUBREG or we may simplify it further in combine. */
11480 else
11482 rtx res;
11484 if (imode == VOIDmode)
11486 imode = int_mode_for_mode (omode);
11487 x = gen_lowpart_common (imode, x);
11488 if (x == NULL)
11489 goto fail;
11491 res = lowpart_subreg (omode, x, imode);
11492 if (res)
11493 return res;
11496 fail:
11497 return gen_rtx_CLOBBER (omode, const0_rtx);
11500 /* Try to simplify a comparison between OP0 and a constant OP1,
11501 where CODE is the comparison code that will be tested, into a
11502 (CODE OP0 const0_rtx) form.
11504 The result is a possibly different comparison code to use.
11505 *POP1 may be updated. */
11507 static enum rtx_code
11508 simplify_compare_const (enum rtx_code code, machine_mode mode,
11509 rtx op0, rtx *pop1)
11511 unsigned int mode_width = GET_MODE_PRECISION (mode);
11512 HOST_WIDE_INT const_op = INTVAL (*pop1);
11514 /* Get the constant we are comparing against and turn off all bits
11515 not on in our mode. */
11516 if (mode != VOIDmode)
11517 const_op = trunc_int_for_mode (const_op, mode);
11519 /* If we are comparing against a constant power of two and the value
11520 being compared can only have that single bit nonzero (e.g., it was
11521 `and'ed with that bit), we can replace this with a comparison
11522 with zero. */
11523 if (const_op
11524 && (code == EQ || code == NE || code == GE || code == GEU
11525 || code == LT || code == LTU)
11526 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11527 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11528 && (nonzero_bits (op0, mode)
11529 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11531 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11532 const_op = 0;
11535 /* Similarly, if we are comparing a value known to be either -1 or
11536 0 with -1, change it to the opposite comparison against zero. */
11537 if (const_op == -1
11538 && (code == EQ || code == NE || code == GT || code == LE
11539 || code == GEU || code == LTU)
11540 && num_sign_bit_copies (op0, mode) == mode_width)
11542 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11543 const_op = 0;
11546 /* Do some canonicalizations based on the comparison code. We prefer
11547 comparisons against zero and then prefer equality comparisons.
11548 If we can reduce the size of a constant, we will do that too. */
11549 switch (code)
11551 case LT:
11552 /* < C is equivalent to <= (C - 1) */
11553 if (const_op > 0)
11555 const_op -= 1;
11556 code = LE;
11557 /* ... fall through to LE case below. */
11558 gcc_fallthrough ();
11560 else
11561 break;
11563 case LE:
11564 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11565 if (const_op < 0)
11567 const_op += 1;
11568 code = LT;
11571 /* If we are doing a <= 0 comparison on a value known to have
11572 a zero sign bit, we can replace this with == 0. */
11573 else if (const_op == 0
11574 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11575 && (nonzero_bits (op0, mode)
11576 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11577 == 0)
11578 code = EQ;
11579 break;
11581 case GE:
11582 /* >= C is equivalent to > (C - 1). */
11583 if (const_op > 0)
11585 const_op -= 1;
11586 code = GT;
11587 /* ... fall through to GT below. */
11588 gcc_fallthrough ();
11590 else
11591 break;
11593 case GT:
11594 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11595 if (const_op < 0)
11597 const_op += 1;
11598 code = GE;
11601 /* If we are doing a > 0 comparison on a value known to have
11602 a zero sign bit, we can replace this with != 0. */
11603 else if (const_op == 0
11604 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11605 && (nonzero_bits (op0, mode)
11606 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11607 == 0)
11608 code = NE;
11609 break;
11611 case LTU:
11612 /* < C is equivalent to <= (C - 1). */
11613 if (const_op > 0)
11615 const_op -= 1;
11616 code = LEU;
11617 /* ... fall through ... */
11619 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11620 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11621 && (unsigned HOST_WIDE_INT) const_op
11622 == HOST_WIDE_INT_1U << (mode_width - 1))
11624 const_op = 0;
11625 code = GE;
11626 break;
11628 else
11629 break;
11631 case LEU:
11632 /* unsigned <= 0 is equivalent to == 0 */
11633 if (const_op == 0)
11634 code = EQ;
11635 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11636 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11637 && (unsigned HOST_WIDE_INT) const_op
11638 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11640 const_op = 0;
11641 code = GE;
11643 break;
11645 case GEU:
11646 /* >= C is equivalent to > (C - 1). */
11647 if (const_op > 1)
11649 const_op -= 1;
11650 code = GTU;
11651 /* ... fall through ... */
11654 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11655 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11656 && (unsigned HOST_WIDE_INT) const_op
11657 == HOST_WIDE_INT_1U << (mode_width - 1))
11659 const_op = 0;
11660 code = LT;
11661 break;
11663 else
11664 break;
11666 case GTU:
11667 /* unsigned > 0 is equivalent to != 0 */
11668 if (const_op == 0)
11669 code = NE;
11670 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11671 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11672 && (unsigned HOST_WIDE_INT) const_op
11673 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11675 const_op = 0;
11676 code = LT;
11678 break;
11680 default:
11681 break;
11684 *pop1 = GEN_INT (const_op);
11685 return code;
11688 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11689 comparison code that will be tested.
11691 The result is a possibly different comparison code to use. *POP0 and
11692 *POP1 may be updated.
11694 It is possible that we might detect that a comparison is either always
11695 true or always false. However, we do not perform general constant
11696 folding in combine, so this knowledge isn't useful. Such tautologies
11697 should have been detected earlier. Hence we ignore all such cases. */
11699 static enum rtx_code
11700 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11702 rtx op0 = *pop0;
11703 rtx op1 = *pop1;
11704 rtx tem, tem1;
11705 int i;
11706 machine_mode mode, tmode;
11708 /* Try a few ways of applying the same transformation to both operands. */
11709 while (1)
11711 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11712 so check specially. */
11713 if (!WORD_REGISTER_OPERATIONS
11714 && code != GTU && code != GEU && code != LTU && code != LEU
11715 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11716 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11717 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11718 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11719 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11720 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11721 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11722 && CONST_INT_P (XEXP (op0, 1))
11723 && XEXP (op0, 1) == XEXP (op1, 1)
11724 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11725 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11726 && (INTVAL (XEXP (op0, 1))
11727 == (GET_MODE_PRECISION (GET_MODE (op0))
11728 - (GET_MODE_PRECISION
11729 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11731 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11732 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11735 /* If both operands are the same constant shift, see if we can ignore the
11736 shift. We can if the shift is a rotate or if the bits shifted out of
11737 this shift are known to be zero for both inputs and if the type of
11738 comparison is compatible with the shift. */
11739 if (GET_CODE (op0) == GET_CODE (op1)
11740 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11741 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11742 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11743 && (code != GT && code != LT && code != GE && code != LE))
11744 || (GET_CODE (op0) == ASHIFTRT
11745 && (code != GTU && code != LTU
11746 && code != GEU && code != LEU)))
11747 && CONST_INT_P (XEXP (op0, 1))
11748 && INTVAL (XEXP (op0, 1)) >= 0
11749 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11750 && XEXP (op0, 1) == XEXP (op1, 1))
11752 machine_mode mode = GET_MODE (op0);
11753 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11754 int shift_count = INTVAL (XEXP (op0, 1));
11756 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11757 mask &= (mask >> shift_count) << shift_count;
11758 else if (GET_CODE (op0) == ASHIFT)
11759 mask = (mask & (mask << shift_count)) >> shift_count;
11761 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11762 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11763 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11764 else
11765 break;
11768 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11769 SUBREGs are of the same mode, and, in both cases, the AND would
11770 be redundant if the comparison was done in the narrower mode,
11771 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11772 and the operand's possibly nonzero bits are 0xffffff01; in that case
11773 if we only care about QImode, we don't need the AND). This case
11774 occurs if the output mode of an scc insn is not SImode and
11775 STORE_FLAG_VALUE == 1 (e.g., the 386).
11777 Similarly, check for a case where the AND's are ZERO_EXTEND
11778 operations from some narrower mode even though a SUBREG is not
11779 present. */
11781 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11782 && CONST_INT_P (XEXP (op0, 1))
11783 && CONST_INT_P (XEXP (op1, 1)))
11785 rtx inner_op0 = XEXP (op0, 0);
11786 rtx inner_op1 = XEXP (op1, 0);
11787 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11788 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11789 int changed = 0;
11791 if (paradoxical_subreg_p (inner_op0)
11792 && GET_CODE (inner_op1) == SUBREG
11793 && (GET_MODE (SUBREG_REG (inner_op0))
11794 == GET_MODE (SUBREG_REG (inner_op1)))
11795 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11796 <= HOST_BITS_PER_WIDE_INT)
11797 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11798 GET_MODE (SUBREG_REG (inner_op0)))))
11799 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11800 GET_MODE (SUBREG_REG (inner_op1))))))
11802 op0 = SUBREG_REG (inner_op0);
11803 op1 = SUBREG_REG (inner_op1);
11805 /* The resulting comparison is always unsigned since we masked
11806 off the original sign bit. */
11807 code = unsigned_condition (code);
11809 changed = 1;
11812 else if (c0 == c1)
11813 for (tmode = GET_CLASS_NARROWEST_MODE
11814 (GET_MODE_CLASS (GET_MODE (op0)));
11815 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11816 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11818 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11819 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11820 code = unsigned_condition (code);
11821 changed = 1;
11822 break;
11825 if (! changed)
11826 break;
11829 /* If both operands are NOT, we can strip off the outer operation
11830 and adjust the comparison code for swapped operands; similarly for
11831 NEG, except that this must be an equality comparison. */
11832 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11833 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11834 && (code == EQ || code == NE)))
11835 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11837 else
11838 break;
11841 /* If the first operand is a constant, swap the operands and adjust the
11842 comparison code appropriately, but don't do this if the second operand
11843 is already a constant integer. */
11844 if (swap_commutative_operands_p (op0, op1))
11846 std::swap (op0, op1);
11847 code = swap_condition (code);
11850 /* We now enter a loop during which we will try to simplify the comparison.
11851 For the most part, we only are concerned with comparisons with zero,
11852 but some things may really be comparisons with zero but not start
11853 out looking that way. */
11855 while (CONST_INT_P (op1))
11857 machine_mode mode = GET_MODE (op0);
11858 unsigned int mode_width = GET_MODE_PRECISION (mode);
11859 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11860 int equality_comparison_p;
11861 int sign_bit_comparison_p;
11862 int unsigned_comparison_p;
11863 HOST_WIDE_INT const_op;
11865 /* We only want to handle integral modes. This catches VOIDmode,
11866 CCmode, and the floating-point modes. An exception is that we
11867 can handle VOIDmode if OP0 is a COMPARE or a comparison
11868 operation. */
11870 if (GET_MODE_CLASS (mode) != MODE_INT
11871 && ! (mode == VOIDmode
11872 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11873 break;
11875 /* Try to simplify the compare to constant, possibly changing the
11876 comparison op, and/or changing op1 to zero. */
11877 code = simplify_compare_const (code, mode, op0, &op1);
11878 const_op = INTVAL (op1);
11880 /* Compute some predicates to simplify code below. */
11882 equality_comparison_p = (code == EQ || code == NE);
11883 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11884 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11885 || code == GEU);
11887 /* If this is a sign bit comparison and we can do arithmetic in
11888 MODE, say that we will only be needing the sign bit of OP0. */
11889 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11890 op0 = force_to_mode (op0, mode,
11891 HOST_WIDE_INT_1U
11892 << (GET_MODE_PRECISION (mode) - 1),
11895 /* Now try cases based on the opcode of OP0. If none of the cases
11896 does a "continue", we exit this loop immediately after the
11897 switch. */
11899 switch (GET_CODE (op0))
11901 case ZERO_EXTRACT:
11902 /* If we are extracting a single bit from a variable position in
11903 a constant that has only a single bit set and are comparing it
11904 with zero, we can convert this into an equality comparison
11905 between the position and the location of the single bit. */
11906 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11907 have already reduced the shift count modulo the word size. */
11908 if (!SHIFT_COUNT_TRUNCATED
11909 && CONST_INT_P (XEXP (op0, 0))
11910 && XEXP (op0, 1) == const1_rtx
11911 && equality_comparison_p && const_op == 0
11912 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11914 if (BITS_BIG_ENDIAN)
11915 i = BITS_PER_WORD - 1 - i;
11917 op0 = XEXP (op0, 2);
11918 op1 = GEN_INT (i);
11919 const_op = i;
11921 /* Result is nonzero iff shift count is equal to I. */
11922 code = reverse_condition (code);
11923 continue;
11926 /* fall through */
11928 case SIGN_EXTRACT:
11929 tem = expand_compound_operation (op0);
11930 if (tem != op0)
11932 op0 = tem;
11933 continue;
11935 break;
11937 case NOT:
11938 /* If testing for equality, we can take the NOT of the constant. */
11939 if (equality_comparison_p
11940 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11942 op0 = XEXP (op0, 0);
11943 op1 = tem;
11944 continue;
11947 /* If just looking at the sign bit, reverse the sense of the
11948 comparison. */
11949 if (sign_bit_comparison_p)
11951 op0 = XEXP (op0, 0);
11952 code = (code == GE ? LT : GE);
11953 continue;
11955 break;
11957 case NEG:
11958 /* If testing for equality, we can take the NEG of the constant. */
11959 if (equality_comparison_p
11960 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11962 op0 = XEXP (op0, 0);
11963 op1 = tem;
11964 continue;
11967 /* The remaining cases only apply to comparisons with zero. */
11968 if (const_op != 0)
11969 break;
11971 /* When X is ABS or is known positive,
11972 (neg X) is < 0 if and only if X != 0. */
11974 if (sign_bit_comparison_p
11975 && (GET_CODE (XEXP (op0, 0)) == ABS
11976 || (mode_width <= HOST_BITS_PER_WIDE_INT
11977 && (nonzero_bits (XEXP (op0, 0), mode)
11978 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11979 == 0)))
11981 op0 = XEXP (op0, 0);
11982 code = (code == LT ? NE : EQ);
11983 continue;
11986 /* If we have NEG of something whose two high-order bits are the
11987 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11988 if (num_sign_bit_copies (op0, mode) >= 2)
11990 op0 = XEXP (op0, 0);
11991 code = swap_condition (code);
11992 continue;
11994 break;
11996 case ROTATE:
11997 /* If we are testing equality and our count is a constant, we
11998 can perform the inverse operation on our RHS. */
11999 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12000 && (tem = simplify_binary_operation (ROTATERT, mode,
12001 op1, XEXP (op0, 1))) != 0)
12003 op0 = XEXP (op0, 0);
12004 op1 = tem;
12005 continue;
12008 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12009 a particular bit. Convert it to an AND of a constant of that
12010 bit. This will be converted into a ZERO_EXTRACT. */
12011 if (const_op == 0 && sign_bit_comparison_p
12012 && CONST_INT_P (XEXP (op0, 1))
12013 && mode_width <= HOST_BITS_PER_WIDE_INT)
12015 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12016 (HOST_WIDE_INT_1U
12017 << (mode_width - 1
12018 - INTVAL (XEXP (op0, 1)))));
12019 code = (code == LT ? NE : EQ);
12020 continue;
12023 /* Fall through. */
12025 case ABS:
12026 /* ABS is ignorable inside an equality comparison with zero. */
12027 if (const_op == 0 && equality_comparison_p)
12029 op0 = XEXP (op0, 0);
12030 continue;
12032 break;
12034 case SIGN_EXTEND:
12035 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12036 (compare FOO CONST) if CONST fits in FOO's mode and we
12037 are either testing inequality or have an unsigned
12038 comparison with ZERO_EXTEND or a signed comparison with
12039 SIGN_EXTEND. But don't do it if we don't have a compare
12040 insn of the given mode, since we'd have to revert it
12041 later on, and then we wouldn't know whether to sign- or
12042 zero-extend. */
12043 mode = GET_MODE (XEXP (op0, 0));
12044 if (GET_MODE_CLASS (mode) == MODE_INT
12045 && ! unsigned_comparison_p
12046 && HWI_COMPUTABLE_MODE_P (mode)
12047 && trunc_int_for_mode (const_op, mode) == const_op
12048 && have_insn_for (COMPARE, mode))
12050 op0 = XEXP (op0, 0);
12051 continue;
12053 break;
12055 case SUBREG:
12056 /* Check for the case where we are comparing A - C1 with C2, that is
12058 (subreg:MODE (plus (A) (-C1))) op (C2)
12060 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12061 comparison in the wider mode. One of the following two conditions
12062 must be true in order for this to be valid:
12064 1. The mode extension results in the same bit pattern being added
12065 on both sides and the comparison is equality or unsigned. As
12066 C2 has been truncated to fit in MODE, the pattern can only be
12067 all 0s or all 1s.
12069 2. The mode extension results in the sign bit being copied on
12070 each side.
12072 The difficulty here is that we have predicates for A but not for
12073 (A - C1) so we need to check that C1 is within proper bounds so
12074 as to perturbate A as little as possible. */
12076 if (mode_width <= HOST_BITS_PER_WIDE_INT
12077 && subreg_lowpart_p (op0)
12078 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12079 && GET_CODE (SUBREG_REG (op0)) == PLUS
12080 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12082 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12083 rtx a = XEXP (SUBREG_REG (op0), 0);
12084 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12086 if ((c1 > 0
12087 && (unsigned HOST_WIDE_INT) c1
12088 < HOST_WIDE_INT_1U << (mode_width - 1)
12089 && (equality_comparison_p || unsigned_comparison_p)
12090 /* (A - C1) zero-extends if it is positive and sign-extends
12091 if it is negative, C2 both zero- and sign-extends. */
12092 && ((0 == (nonzero_bits (a, inner_mode)
12093 & ~GET_MODE_MASK (mode))
12094 && const_op >= 0)
12095 /* (A - C1) sign-extends if it is positive and 1-extends
12096 if it is negative, C2 both sign- and 1-extends. */
12097 || (num_sign_bit_copies (a, inner_mode)
12098 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12099 - mode_width)
12100 && const_op < 0)))
12101 || ((unsigned HOST_WIDE_INT) c1
12102 < HOST_WIDE_INT_1U << (mode_width - 2)
12103 /* (A - C1) always sign-extends, like C2. */
12104 && num_sign_bit_copies (a, inner_mode)
12105 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12106 - (mode_width - 1))))
12108 op0 = SUBREG_REG (op0);
12109 continue;
12113 /* If the inner mode is narrower and we are extracting the low part,
12114 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12115 if (subreg_lowpart_p (op0)
12116 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12118 else if (subreg_lowpart_p (op0)
12119 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12120 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12121 && (code == NE || code == EQ)
12122 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12123 <= HOST_BITS_PER_WIDE_INT)
12124 && !paradoxical_subreg_p (op0)
12125 && (nonzero_bits (SUBREG_REG (op0),
12126 GET_MODE (SUBREG_REG (op0)))
12127 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12129 /* Remove outer subregs that don't do anything. */
12130 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12132 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12133 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12135 op0 = SUBREG_REG (op0);
12136 op1 = tem;
12137 continue;
12139 break;
12141 else
12142 break;
12144 /* FALLTHROUGH */
12146 case ZERO_EXTEND:
12147 mode = GET_MODE (XEXP (op0, 0));
12148 if (GET_MODE_CLASS (mode) == MODE_INT
12149 && (unsigned_comparison_p || equality_comparison_p)
12150 && HWI_COMPUTABLE_MODE_P (mode)
12151 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12152 && const_op >= 0
12153 && have_insn_for (COMPARE, mode))
12155 op0 = XEXP (op0, 0);
12156 continue;
12158 break;
12160 case PLUS:
12161 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12162 this for equality comparisons due to pathological cases involving
12163 overflows. */
12164 if (equality_comparison_p
12165 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12166 op1, XEXP (op0, 1))))
12168 op0 = XEXP (op0, 0);
12169 op1 = tem;
12170 continue;
12173 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12174 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12175 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12177 op0 = XEXP (XEXP (op0, 0), 0);
12178 code = (code == LT ? EQ : NE);
12179 continue;
12181 break;
12183 case MINUS:
12184 /* We used to optimize signed comparisons against zero, but that
12185 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12186 arrive here as equality comparisons, or (GEU, LTU) are
12187 optimized away. No need to special-case them. */
12189 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12190 (eq B (minus A C)), whichever simplifies. We can only do
12191 this for equality comparisons due to pathological cases involving
12192 overflows. */
12193 if (equality_comparison_p
12194 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12195 XEXP (op0, 1), op1)))
12197 op0 = XEXP (op0, 0);
12198 op1 = tem;
12199 continue;
12202 if (equality_comparison_p
12203 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12204 XEXP (op0, 0), op1)))
12206 op0 = XEXP (op0, 1);
12207 op1 = tem;
12208 continue;
12211 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12212 of bits in X minus 1, is one iff X > 0. */
12213 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12214 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12215 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12216 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12218 op0 = XEXP (op0, 1);
12219 code = (code == GE ? LE : GT);
12220 continue;
12222 break;
12224 case XOR:
12225 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12226 if C is zero or B is a constant. */
12227 if (equality_comparison_p
12228 && 0 != (tem = simplify_binary_operation (XOR, mode,
12229 XEXP (op0, 1), op1)))
12231 op0 = XEXP (op0, 0);
12232 op1 = tem;
12233 continue;
12235 break;
12237 case EQ: case NE:
12238 case UNEQ: case LTGT:
12239 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12240 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12241 case UNORDERED: case ORDERED:
12242 /* We can't do anything if OP0 is a condition code value, rather
12243 than an actual data value. */
12244 if (const_op != 0
12245 || CC0_P (XEXP (op0, 0))
12246 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12247 break;
12249 /* Get the two operands being compared. */
12250 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12251 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12252 else
12253 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12255 /* Check for the cases where we simply want the result of the
12256 earlier test or the opposite of that result. */
12257 if (code == NE || code == EQ
12258 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12259 && (code == LT || code == GE)))
12261 enum rtx_code new_code;
12262 if (code == LT || code == NE)
12263 new_code = GET_CODE (op0);
12264 else
12265 new_code = reversed_comparison_code (op0, NULL);
12267 if (new_code != UNKNOWN)
12269 code = new_code;
12270 op0 = tem;
12271 op1 = tem1;
12272 continue;
12275 break;
12277 case IOR:
12278 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12279 iff X <= 0. */
12280 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12281 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12282 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12284 op0 = XEXP (op0, 1);
12285 code = (code == GE ? GT : LE);
12286 continue;
12288 break;
12290 case AND:
12291 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12292 will be converted to a ZERO_EXTRACT later. */
12293 if (const_op == 0 && equality_comparison_p
12294 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12295 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12297 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12298 XEXP (XEXP (op0, 0), 1));
12299 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12300 continue;
12303 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12304 zero and X is a comparison and C1 and C2 describe only bits set
12305 in STORE_FLAG_VALUE, we can compare with X. */
12306 if (const_op == 0 && equality_comparison_p
12307 && mode_width <= HOST_BITS_PER_WIDE_INT
12308 && CONST_INT_P (XEXP (op0, 1))
12309 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12310 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12311 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12312 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12314 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12315 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12316 if ((~STORE_FLAG_VALUE & mask) == 0
12317 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12318 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12319 && COMPARISON_P (tem))))
12321 op0 = XEXP (XEXP (op0, 0), 0);
12322 continue;
12326 /* If we are doing an equality comparison of an AND of a bit equal
12327 to the sign bit, replace this with a LT or GE comparison of
12328 the underlying value. */
12329 if (equality_comparison_p
12330 && const_op == 0
12331 && CONST_INT_P (XEXP (op0, 1))
12332 && mode_width <= HOST_BITS_PER_WIDE_INT
12333 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12334 == HOST_WIDE_INT_1U << (mode_width - 1)))
12336 op0 = XEXP (op0, 0);
12337 code = (code == EQ ? GE : LT);
12338 continue;
12341 /* If this AND operation is really a ZERO_EXTEND from a narrower
12342 mode, the constant fits within that mode, and this is either an
12343 equality or unsigned comparison, try to do this comparison in
12344 the narrower mode.
12346 Note that in:
12348 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12349 -> (ne:DI (reg:SI 4) (const_int 0))
12351 unless TRULY_NOOP_TRUNCATION allows it or the register is
12352 known to hold a value of the required mode the
12353 transformation is invalid. */
12354 if ((equality_comparison_p || unsigned_comparison_p)
12355 && CONST_INT_P (XEXP (op0, 1))
12356 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12357 & GET_MODE_MASK (mode))
12358 + 1)) >= 0
12359 && const_op >> i == 0
12360 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12362 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12363 continue;
12366 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12367 fits in both M1 and M2 and the SUBREG is either paradoxical
12368 or represents the low part, permute the SUBREG and the AND
12369 and try again. */
12370 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12371 && CONST_INT_P (XEXP (op0, 1)))
12373 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12374 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12375 /* Require an integral mode, to avoid creating something like
12376 (AND:SF ...). */
12377 if (SCALAR_INT_MODE_P (tmode)
12378 /* It is unsafe to commute the AND into the SUBREG if the
12379 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12380 not defined. As originally written the upper bits
12381 have a defined value due to the AND operation.
12382 However, if we commute the AND inside the SUBREG then
12383 they no longer have defined values and the meaning of
12384 the code has been changed.
12385 Also C1 should not change value in the smaller mode,
12386 see PR67028 (a positive C1 can become negative in the
12387 smaller mode, so that the AND does no longer mask the
12388 upper bits). */
12389 && ((WORD_REGISTER_OPERATIONS
12390 && mode_width > GET_MODE_PRECISION (tmode)
12391 && mode_width <= BITS_PER_WORD
12392 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12393 || (mode_width <= GET_MODE_PRECISION (tmode)
12394 && subreg_lowpart_p (XEXP (op0, 0))))
12395 && mode_width <= HOST_BITS_PER_WIDE_INT
12396 && HWI_COMPUTABLE_MODE_P (tmode)
12397 && (c1 & ~mask) == 0
12398 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12399 && c1 != mask
12400 && c1 != GET_MODE_MASK (tmode))
12402 op0 = simplify_gen_binary (AND, tmode,
12403 SUBREG_REG (XEXP (op0, 0)),
12404 gen_int_mode (c1, tmode));
12405 op0 = gen_lowpart (mode, op0);
12406 continue;
12410 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12411 if (const_op == 0 && equality_comparison_p
12412 && XEXP (op0, 1) == const1_rtx
12413 && GET_CODE (XEXP (op0, 0)) == NOT)
12415 op0 = simplify_and_const_int (NULL_RTX, mode,
12416 XEXP (XEXP (op0, 0), 0), 1);
12417 code = (code == NE ? EQ : NE);
12418 continue;
12421 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12422 (eq (and (lshiftrt X) 1) 0).
12423 Also handle the case where (not X) is expressed using xor. */
12424 if (const_op == 0 && equality_comparison_p
12425 && XEXP (op0, 1) == const1_rtx
12426 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12428 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12429 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12431 if (GET_CODE (shift_op) == NOT
12432 || (GET_CODE (shift_op) == XOR
12433 && CONST_INT_P (XEXP (shift_op, 1))
12434 && CONST_INT_P (shift_count)
12435 && HWI_COMPUTABLE_MODE_P (mode)
12436 && (UINTVAL (XEXP (shift_op, 1))
12437 == HOST_WIDE_INT_1U
12438 << INTVAL (shift_count))))
12441 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12442 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12443 code = (code == NE ? EQ : NE);
12444 continue;
12447 break;
12449 case ASHIFT:
12450 /* If we have (compare (ashift FOO N) (const_int C)) and
12451 the high order N bits of FOO (N+1 if an inequality comparison)
12452 are known to be zero, we can do this by comparing FOO with C
12453 shifted right N bits so long as the low-order N bits of C are
12454 zero. */
12455 if (CONST_INT_P (XEXP (op0, 1))
12456 && INTVAL (XEXP (op0, 1)) >= 0
12457 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12458 < HOST_BITS_PER_WIDE_INT)
12459 && (((unsigned HOST_WIDE_INT) const_op
12460 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12461 - 1)) == 0)
12462 && mode_width <= HOST_BITS_PER_WIDE_INT
12463 && (nonzero_bits (XEXP (op0, 0), mode)
12464 & ~(mask >> (INTVAL (XEXP (op0, 1))
12465 + ! equality_comparison_p))) == 0)
12467 /* We must perform a logical shift, not an arithmetic one,
12468 as we want the top N bits of C to be zero. */
12469 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12471 temp >>= INTVAL (XEXP (op0, 1));
12472 op1 = gen_int_mode (temp, mode);
12473 op0 = XEXP (op0, 0);
12474 continue;
12477 /* If we are doing a sign bit comparison, it means we are testing
12478 a particular bit. Convert it to the appropriate AND. */
12479 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12480 && mode_width <= HOST_BITS_PER_WIDE_INT)
12482 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12483 (HOST_WIDE_INT_1U
12484 << (mode_width - 1
12485 - INTVAL (XEXP (op0, 1)))));
12486 code = (code == LT ? NE : EQ);
12487 continue;
12490 /* If this an equality comparison with zero and we are shifting
12491 the low bit to the sign bit, we can convert this to an AND of the
12492 low-order bit. */
12493 if (const_op == 0 && equality_comparison_p
12494 && CONST_INT_P (XEXP (op0, 1))
12495 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12497 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12498 continue;
12500 break;
12502 case ASHIFTRT:
12503 /* If this is an equality comparison with zero, we can do this
12504 as a logical shift, which might be much simpler. */
12505 if (equality_comparison_p && const_op == 0
12506 && CONST_INT_P (XEXP (op0, 1)))
12508 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12509 XEXP (op0, 0),
12510 INTVAL (XEXP (op0, 1)));
12511 continue;
12514 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12515 do the comparison in a narrower mode. */
12516 if (! unsigned_comparison_p
12517 && CONST_INT_P (XEXP (op0, 1))
12518 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12519 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12520 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12521 MODE_INT, 1)) != BLKmode
12522 && (((unsigned HOST_WIDE_INT) const_op
12523 + (GET_MODE_MASK (tmode) >> 1) + 1)
12524 <= GET_MODE_MASK (tmode)))
12526 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12527 continue;
12530 /* Likewise if OP0 is a PLUS of a sign extension with a
12531 constant, which is usually represented with the PLUS
12532 between the shifts. */
12533 if (! unsigned_comparison_p
12534 && CONST_INT_P (XEXP (op0, 1))
12535 && GET_CODE (XEXP (op0, 0)) == PLUS
12536 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12537 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12538 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12539 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12540 MODE_INT, 1)) != BLKmode
12541 && (((unsigned HOST_WIDE_INT) const_op
12542 + (GET_MODE_MASK (tmode) >> 1) + 1)
12543 <= GET_MODE_MASK (tmode)))
12545 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12546 rtx add_const = XEXP (XEXP (op0, 0), 1);
12547 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12548 add_const, XEXP (op0, 1));
12550 op0 = simplify_gen_binary (PLUS, tmode,
12551 gen_lowpart (tmode, inner),
12552 new_const);
12553 continue;
12556 /* FALLTHROUGH */
12557 case LSHIFTRT:
12558 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12559 the low order N bits of FOO are known to be zero, we can do this
12560 by comparing FOO with C shifted left N bits so long as no
12561 overflow occurs. Even if the low order N bits of FOO aren't known
12562 to be zero, if the comparison is >= or < we can use the same
12563 optimization and for > or <= by setting all the low
12564 order N bits in the comparison constant. */
12565 if (CONST_INT_P (XEXP (op0, 1))
12566 && INTVAL (XEXP (op0, 1)) > 0
12567 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12568 && mode_width <= HOST_BITS_PER_WIDE_INT
12569 && (((unsigned HOST_WIDE_INT) const_op
12570 + (GET_CODE (op0) != LSHIFTRT
12571 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12572 + 1)
12573 : 0))
12574 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12576 unsigned HOST_WIDE_INT low_bits
12577 = (nonzero_bits (XEXP (op0, 0), mode)
12578 & ((HOST_WIDE_INT_1U
12579 << INTVAL (XEXP (op0, 1))) - 1));
12580 if (low_bits == 0 || !equality_comparison_p)
12582 /* If the shift was logical, then we must make the condition
12583 unsigned. */
12584 if (GET_CODE (op0) == LSHIFTRT)
12585 code = unsigned_condition (code);
12587 const_op = (unsigned HOST_WIDE_INT) const_op
12588 << INTVAL (XEXP (op0, 1));
12589 if (low_bits != 0
12590 && (code == GT || code == GTU
12591 || code == LE || code == LEU))
12592 const_op
12593 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12594 op1 = GEN_INT (const_op);
12595 op0 = XEXP (op0, 0);
12596 continue;
12600 /* If we are using this shift to extract just the sign bit, we
12601 can replace this with an LT or GE comparison. */
12602 if (const_op == 0
12603 && (equality_comparison_p || sign_bit_comparison_p)
12604 && CONST_INT_P (XEXP (op0, 1))
12605 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12607 op0 = XEXP (op0, 0);
12608 code = (code == NE || code == GT ? LT : GE);
12609 continue;
12611 break;
12613 default:
12614 break;
12617 break;
12620 /* Now make any compound operations involved in this comparison. Then,
12621 check for an outmost SUBREG on OP0 that is not doing anything or is
12622 paradoxical. The latter transformation must only be performed when
12623 it is known that the "extra" bits will be the same in op0 and op1 or
12624 that they don't matter. There are three cases to consider:
12626 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12627 care bits and we can assume they have any convenient value. So
12628 making the transformation is safe.
12630 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12631 In this case the upper bits of op0 are undefined. We should not make
12632 the simplification in that case as we do not know the contents of
12633 those bits.
12635 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12636 In that case we know those bits are zeros or ones. We must also be
12637 sure that they are the same as the upper bits of op1.
12639 We can never remove a SUBREG for a non-equality comparison because
12640 the sign bit is in a different place in the underlying object. */
12642 rtx_code op0_mco_code = SET;
12643 if (op1 == const0_rtx)
12644 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12646 op0 = make_compound_operation (op0, op0_mco_code);
12647 op1 = make_compound_operation (op1, SET);
12649 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12650 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12651 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12652 && (code == NE || code == EQ))
12654 if (paradoxical_subreg_p (op0))
12656 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12657 implemented. */
12658 if (REG_P (SUBREG_REG (op0)))
12660 op0 = SUBREG_REG (op0);
12661 op1 = gen_lowpart (GET_MODE (op0), op1);
12664 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12665 <= HOST_BITS_PER_WIDE_INT)
12666 && (nonzero_bits (SUBREG_REG (op0),
12667 GET_MODE (SUBREG_REG (op0)))
12668 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12670 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12672 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12673 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12674 op0 = SUBREG_REG (op0), op1 = tem;
12678 /* We now do the opposite procedure: Some machines don't have compare
12679 insns in all modes. If OP0's mode is an integer mode smaller than a
12680 word and we can't do a compare in that mode, see if there is a larger
12681 mode for which we can do the compare. There are a number of cases in
12682 which we can use the wider mode. */
12684 mode = GET_MODE (op0);
12685 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12686 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12687 && ! have_insn_for (COMPARE, mode))
12688 for (tmode = GET_MODE_WIDER_MODE (mode);
12689 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12690 tmode = GET_MODE_WIDER_MODE (tmode))
12691 if (have_insn_for (COMPARE, tmode))
12693 int zero_extended;
12695 /* If this is a test for negative, we can make an explicit
12696 test of the sign bit. Test this first so we can use
12697 a paradoxical subreg to extend OP0. */
12699 if (op1 == const0_rtx && (code == LT || code == GE)
12700 && HWI_COMPUTABLE_MODE_P (mode))
12702 unsigned HOST_WIDE_INT sign
12703 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12704 op0 = simplify_gen_binary (AND, tmode,
12705 gen_lowpart (tmode, op0),
12706 gen_int_mode (sign, tmode));
12707 code = (code == LT) ? NE : EQ;
12708 break;
12711 /* If the only nonzero bits in OP0 and OP1 are those in the
12712 narrower mode and this is an equality or unsigned comparison,
12713 we can use the wider mode. Similarly for sign-extended
12714 values, in which case it is true for all comparisons. */
12715 zero_extended = ((code == EQ || code == NE
12716 || code == GEU || code == GTU
12717 || code == LEU || code == LTU)
12718 && (nonzero_bits (op0, tmode)
12719 & ~GET_MODE_MASK (mode)) == 0
12720 && ((CONST_INT_P (op1)
12721 || (nonzero_bits (op1, tmode)
12722 & ~GET_MODE_MASK (mode)) == 0)));
12724 if (zero_extended
12725 || ((num_sign_bit_copies (op0, tmode)
12726 > (unsigned int) (GET_MODE_PRECISION (tmode)
12727 - GET_MODE_PRECISION (mode)))
12728 && (num_sign_bit_copies (op1, tmode)
12729 > (unsigned int) (GET_MODE_PRECISION (tmode)
12730 - GET_MODE_PRECISION (mode)))))
12732 /* If OP0 is an AND and we don't have an AND in MODE either,
12733 make a new AND in the proper mode. */
12734 if (GET_CODE (op0) == AND
12735 && !have_insn_for (AND, mode))
12736 op0 = simplify_gen_binary (AND, tmode,
12737 gen_lowpart (tmode,
12738 XEXP (op0, 0)),
12739 gen_lowpart (tmode,
12740 XEXP (op0, 1)));
12741 else
12743 if (zero_extended)
12745 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12746 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12748 else
12750 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12751 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12753 break;
12758 /* We may have changed the comparison operands. Re-canonicalize. */
12759 if (swap_commutative_operands_p (op0, op1))
12761 std::swap (op0, op1);
12762 code = swap_condition (code);
12765 /* If this machine only supports a subset of valid comparisons, see if we
12766 can convert an unsupported one into a supported one. */
12767 target_canonicalize_comparison (&code, &op0, &op1, 0);
12769 *pop0 = op0;
12770 *pop1 = op1;
12772 return code;
12775 /* Utility function for record_value_for_reg. Count number of
12776 rtxs in X. */
12777 static int
12778 count_rtxs (rtx x)
12780 enum rtx_code code = GET_CODE (x);
12781 const char *fmt;
12782 int i, j, ret = 1;
12784 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12785 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12787 rtx x0 = XEXP (x, 0);
12788 rtx x1 = XEXP (x, 1);
12790 if (x0 == x1)
12791 return 1 + 2 * count_rtxs (x0);
12793 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12794 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12795 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12796 return 2 + 2 * count_rtxs (x0)
12797 + count_rtxs (x == XEXP (x1, 0)
12798 ? XEXP (x1, 1) : XEXP (x1, 0));
12800 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12801 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12802 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12803 return 2 + 2 * count_rtxs (x1)
12804 + count_rtxs (x == XEXP (x0, 0)
12805 ? XEXP (x0, 1) : XEXP (x0, 0));
12808 fmt = GET_RTX_FORMAT (code);
12809 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12810 if (fmt[i] == 'e')
12811 ret += count_rtxs (XEXP (x, i));
12812 else if (fmt[i] == 'E')
12813 for (j = 0; j < XVECLEN (x, i); j++)
12814 ret += count_rtxs (XVECEXP (x, i, j));
12816 return ret;
12819 /* Utility function for following routine. Called when X is part of a value
12820 being stored into last_set_value. Sets last_set_table_tick
12821 for each register mentioned. Similar to mention_regs in cse.c */
12823 static void
12824 update_table_tick (rtx x)
12826 enum rtx_code code = GET_CODE (x);
12827 const char *fmt = GET_RTX_FORMAT (code);
12828 int i, j;
12830 if (code == REG)
12832 unsigned int regno = REGNO (x);
12833 unsigned int endregno = END_REGNO (x);
12834 unsigned int r;
12836 for (r = regno; r < endregno; r++)
12838 reg_stat_type *rsp = &reg_stat[r];
12839 rsp->last_set_table_tick = label_tick;
12842 return;
12845 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12846 if (fmt[i] == 'e')
12848 /* Check for identical subexpressions. If x contains
12849 identical subexpression we only have to traverse one of
12850 them. */
12851 if (i == 0 && ARITHMETIC_P (x))
12853 /* Note that at this point x1 has already been
12854 processed. */
12855 rtx x0 = XEXP (x, 0);
12856 rtx x1 = XEXP (x, 1);
12858 /* If x0 and x1 are identical then there is no need to
12859 process x0. */
12860 if (x0 == x1)
12861 break;
12863 /* If x0 is identical to a subexpression of x1 then while
12864 processing x1, x0 has already been processed. Thus we
12865 are done with x. */
12866 if (ARITHMETIC_P (x1)
12867 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12868 break;
12870 /* If x1 is identical to a subexpression of x0 then we
12871 still have to process the rest of x0. */
12872 if (ARITHMETIC_P (x0)
12873 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12875 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12876 break;
12880 update_table_tick (XEXP (x, i));
12882 else if (fmt[i] == 'E')
12883 for (j = 0; j < XVECLEN (x, i); j++)
12884 update_table_tick (XVECEXP (x, i, j));
12887 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12888 are saying that the register is clobbered and we no longer know its
12889 value. If INSN is zero, don't update reg_stat[].last_set; this is
12890 only permitted with VALUE also zero and is used to invalidate the
12891 register. */
12893 static void
12894 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12896 unsigned int regno = REGNO (reg);
12897 unsigned int endregno = END_REGNO (reg);
12898 unsigned int i;
12899 reg_stat_type *rsp;
12901 /* If VALUE contains REG and we have a previous value for REG, substitute
12902 the previous value. */
12903 if (value && insn && reg_overlap_mentioned_p (reg, value))
12905 rtx tem;
12907 /* Set things up so get_last_value is allowed to see anything set up to
12908 our insn. */
12909 subst_low_luid = DF_INSN_LUID (insn);
12910 tem = get_last_value (reg);
12912 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12913 it isn't going to be useful and will take a lot of time to process,
12914 so just use the CLOBBER. */
12916 if (tem)
12918 if (ARITHMETIC_P (tem)
12919 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12920 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12921 tem = XEXP (tem, 0);
12922 else if (count_occurrences (value, reg, 1) >= 2)
12924 /* If there are two or more occurrences of REG in VALUE,
12925 prevent the value from growing too much. */
12926 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12927 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12930 value = replace_rtx (copy_rtx (value), reg, tem);
12934 /* For each register modified, show we don't know its value, that
12935 we don't know about its bitwise content, that its value has been
12936 updated, and that we don't know the location of the death of the
12937 register. */
12938 for (i = regno; i < endregno; i++)
12940 rsp = &reg_stat[i];
12942 if (insn)
12943 rsp->last_set = insn;
12945 rsp->last_set_value = 0;
12946 rsp->last_set_mode = VOIDmode;
12947 rsp->last_set_nonzero_bits = 0;
12948 rsp->last_set_sign_bit_copies = 0;
12949 rsp->last_death = 0;
12950 rsp->truncated_to_mode = VOIDmode;
12953 /* Mark registers that are being referenced in this value. */
12954 if (value)
12955 update_table_tick (value);
12957 /* Now update the status of each register being set.
12958 If someone is using this register in this block, set this register
12959 to invalid since we will get confused between the two lives in this
12960 basic block. This makes using this register always invalid. In cse, we
12961 scan the table to invalidate all entries using this register, but this
12962 is too much work for us. */
12964 for (i = regno; i < endregno; i++)
12966 rsp = &reg_stat[i];
12967 rsp->last_set_label = label_tick;
12968 if (!insn
12969 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12970 rsp->last_set_invalid = 1;
12971 else
12972 rsp->last_set_invalid = 0;
12975 /* The value being assigned might refer to X (like in "x++;"). In that
12976 case, we must replace it with (clobber (const_int 0)) to prevent
12977 infinite loops. */
12978 rsp = &reg_stat[regno];
12979 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12981 value = copy_rtx (value);
12982 if (!get_last_value_validate (&value, insn, label_tick, 1))
12983 value = 0;
12986 /* For the main register being modified, update the value, the mode, the
12987 nonzero bits, and the number of sign bit copies. */
12989 rsp->last_set_value = value;
12991 if (value)
12993 machine_mode mode = GET_MODE (reg);
12994 subst_low_luid = DF_INSN_LUID (insn);
12995 rsp->last_set_mode = mode;
12996 if (GET_MODE_CLASS (mode) == MODE_INT
12997 && HWI_COMPUTABLE_MODE_P (mode))
12998 mode = nonzero_bits_mode;
12999 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13000 rsp->last_set_sign_bit_copies
13001 = num_sign_bit_copies (value, GET_MODE (reg));
13005 /* Called via note_stores from record_dead_and_set_regs to handle one
13006 SET or CLOBBER in an insn. DATA is the instruction in which the
13007 set is occurring. */
13009 static void
13010 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13012 rtx_insn *record_dead_insn = (rtx_insn *) data;
13014 if (GET_CODE (dest) == SUBREG)
13015 dest = SUBREG_REG (dest);
13017 if (!record_dead_insn)
13019 if (REG_P (dest))
13020 record_value_for_reg (dest, NULL, NULL_RTX);
13021 return;
13024 if (REG_P (dest))
13026 /* If we are setting the whole register, we know its value. Otherwise
13027 show that we don't know the value. We can handle SUBREG in
13028 some cases. */
13029 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13030 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13031 else if (GET_CODE (setter) == SET
13032 && GET_CODE (SET_DEST (setter)) == SUBREG
13033 && SUBREG_REG (SET_DEST (setter)) == dest
13034 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13035 && subreg_lowpart_p (SET_DEST (setter)))
13036 record_value_for_reg (dest, record_dead_insn,
13037 gen_lowpart (GET_MODE (dest),
13038 SET_SRC (setter)));
13039 else
13040 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13042 else if (MEM_P (dest)
13043 /* Ignore pushes, they clobber nothing. */
13044 && ! push_operand (dest, GET_MODE (dest)))
13045 mem_last_set = DF_INSN_LUID (record_dead_insn);
13048 /* Update the records of when each REG was most recently set or killed
13049 for the things done by INSN. This is the last thing done in processing
13050 INSN in the combiner loop.
13052 We update reg_stat[], in particular fields last_set, last_set_value,
13053 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13054 last_death, and also the similar information mem_last_set (which insn
13055 most recently modified memory) and last_call_luid (which insn was the
13056 most recent subroutine call). */
13058 static void
13059 record_dead_and_set_regs (rtx_insn *insn)
13061 rtx link;
13062 unsigned int i;
13064 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13066 if (REG_NOTE_KIND (link) == REG_DEAD
13067 && REG_P (XEXP (link, 0)))
13069 unsigned int regno = REGNO (XEXP (link, 0));
13070 unsigned int endregno = END_REGNO (XEXP (link, 0));
13072 for (i = regno; i < endregno; i++)
13074 reg_stat_type *rsp;
13076 rsp = &reg_stat[i];
13077 rsp->last_death = insn;
13080 else if (REG_NOTE_KIND (link) == REG_INC)
13081 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13084 if (CALL_P (insn))
13086 hard_reg_set_iterator hrsi;
13087 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13089 reg_stat_type *rsp;
13091 rsp = &reg_stat[i];
13092 rsp->last_set_invalid = 1;
13093 rsp->last_set = insn;
13094 rsp->last_set_value = 0;
13095 rsp->last_set_mode = VOIDmode;
13096 rsp->last_set_nonzero_bits = 0;
13097 rsp->last_set_sign_bit_copies = 0;
13098 rsp->last_death = 0;
13099 rsp->truncated_to_mode = VOIDmode;
13102 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13104 /* We can't combine into a call pattern. Remember, though, that
13105 the return value register is set at this LUID. We could
13106 still replace a register with the return value from the
13107 wrong subroutine call! */
13108 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13110 else
13111 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13114 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13115 register present in the SUBREG, so for each such SUBREG go back and
13116 adjust nonzero and sign bit information of the registers that are
13117 known to have some zero/sign bits set.
13119 This is needed because when combine blows the SUBREGs away, the
13120 information on zero/sign bits is lost and further combines can be
13121 missed because of that. */
13123 static void
13124 record_promoted_value (rtx_insn *insn, rtx subreg)
13126 struct insn_link *links;
13127 rtx set;
13128 unsigned int regno = REGNO (SUBREG_REG (subreg));
13129 machine_mode mode = GET_MODE (subreg);
13131 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13132 return;
13134 for (links = LOG_LINKS (insn); links;)
13136 reg_stat_type *rsp;
13138 insn = links->insn;
13139 set = single_set (insn);
13141 if (! set || !REG_P (SET_DEST (set))
13142 || REGNO (SET_DEST (set)) != regno
13143 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13145 links = links->next;
13146 continue;
13149 rsp = &reg_stat[regno];
13150 if (rsp->last_set == insn)
13152 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13153 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13156 if (REG_P (SET_SRC (set)))
13158 regno = REGNO (SET_SRC (set));
13159 links = LOG_LINKS (insn);
13161 else
13162 break;
13166 /* Check if X, a register, is known to contain a value already
13167 truncated to MODE. In this case we can use a subreg to refer to
13168 the truncated value even though in the generic case we would need
13169 an explicit truncation. */
13171 static bool
13172 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13174 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13175 machine_mode truncated = rsp->truncated_to_mode;
13177 if (truncated == 0
13178 || rsp->truncation_label < label_tick_ebb_start)
13179 return false;
13180 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13181 return true;
13182 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13183 return true;
13184 return false;
13187 /* If X is a hard reg or a subreg record the mode that the register is
13188 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13189 to turn a truncate into a subreg using this information. Return true
13190 if traversing X is complete. */
13192 static bool
13193 record_truncated_value (rtx x)
13195 machine_mode truncated_mode;
13196 reg_stat_type *rsp;
13198 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13200 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13201 truncated_mode = GET_MODE (x);
13203 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13204 return true;
13206 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13207 return true;
13209 x = SUBREG_REG (x);
13211 /* ??? For hard-regs we now record everything. We might be able to
13212 optimize this using last_set_mode. */
13213 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13214 truncated_mode = GET_MODE (x);
13215 else
13216 return false;
13218 rsp = &reg_stat[REGNO (x)];
13219 if (rsp->truncated_to_mode == 0
13220 || rsp->truncation_label < label_tick_ebb_start
13221 || (GET_MODE_SIZE (truncated_mode)
13222 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13224 rsp->truncated_to_mode = truncated_mode;
13225 rsp->truncation_label = label_tick;
13228 return true;
13231 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13232 the modes they are used in. This can help truning TRUNCATEs into
13233 SUBREGs. */
13235 static void
13236 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13238 subrtx_var_iterator::array_type array;
13239 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13240 if (record_truncated_value (*iter))
13241 iter.skip_subrtxes ();
13244 /* Scan X for promoted SUBREGs. For each one found,
13245 note what it implies to the registers used in it. */
13247 static void
13248 check_promoted_subreg (rtx_insn *insn, rtx x)
13250 if (GET_CODE (x) == SUBREG
13251 && SUBREG_PROMOTED_VAR_P (x)
13252 && REG_P (SUBREG_REG (x)))
13253 record_promoted_value (insn, x);
13254 else
13256 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13257 int i, j;
13259 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13260 switch (format[i])
13262 case 'e':
13263 check_promoted_subreg (insn, XEXP (x, i));
13264 break;
13265 case 'V':
13266 case 'E':
13267 if (XVEC (x, i) != 0)
13268 for (j = 0; j < XVECLEN (x, i); j++)
13269 check_promoted_subreg (insn, XVECEXP (x, i, j));
13270 break;
13275 /* Verify that all the registers and memory references mentioned in *LOC are
13276 still valid. *LOC was part of a value set in INSN when label_tick was
13277 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13278 the invalid references with (clobber (const_int 0)) and return 1. This
13279 replacement is useful because we often can get useful information about
13280 the form of a value (e.g., if it was produced by a shift that always
13281 produces -1 or 0) even though we don't know exactly what registers it
13282 was produced from. */
13284 static int
13285 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13287 rtx x = *loc;
13288 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13289 int len = GET_RTX_LENGTH (GET_CODE (x));
13290 int i, j;
13292 if (REG_P (x))
13294 unsigned int regno = REGNO (x);
13295 unsigned int endregno = END_REGNO (x);
13296 unsigned int j;
13298 for (j = regno; j < endregno; j++)
13300 reg_stat_type *rsp = &reg_stat[j];
13301 if (rsp->last_set_invalid
13302 /* If this is a pseudo-register that was only set once and not
13303 live at the beginning of the function, it is always valid. */
13304 || (! (regno >= FIRST_PSEUDO_REGISTER
13305 && regno < reg_n_sets_max
13306 && REG_N_SETS (regno) == 1
13307 && (!REGNO_REG_SET_P
13308 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13309 regno)))
13310 && rsp->last_set_label > tick))
13312 if (replace)
13313 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13314 return replace;
13318 return 1;
13320 /* If this is a memory reference, make sure that there were no stores after
13321 it that might have clobbered the value. We don't have alias info, so we
13322 assume any store invalidates it. Moreover, we only have local UIDs, so
13323 we also assume that there were stores in the intervening basic blocks. */
13324 else if (MEM_P (x) && !MEM_READONLY_P (x)
13325 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13327 if (replace)
13328 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13329 return replace;
13332 for (i = 0; i < len; i++)
13334 if (fmt[i] == 'e')
13336 /* Check for identical subexpressions. If x contains
13337 identical subexpression we only have to traverse one of
13338 them. */
13339 if (i == 1 && ARITHMETIC_P (x))
13341 /* Note that at this point x0 has already been checked
13342 and found valid. */
13343 rtx x0 = XEXP (x, 0);
13344 rtx x1 = XEXP (x, 1);
13346 /* If x0 and x1 are identical then x is also valid. */
13347 if (x0 == x1)
13348 return 1;
13350 /* If x1 is identical to a subexpression of x0 then
13351 while checking x0, x1 has already been checked. Thus
13352 it is valid and so as x. */
13353 if (ARITHMETIC_P (x0)
13354 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13355 return 1;
13357 /* If x0 is identical to a subexpression of x1 then x is
13358 valid iff the rest of x1 is valid. */
13359 if (ARITHMETIC_P (x1)
13360 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13361 return
13362 get_last_value_validate (&XEXP (x1,
13363 x0 == XEXP (x1, 0) ? 1 : 0),
13364 insn, tick, replace);
13367 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13368 replace) == 0)
13369 return 0;
13371 else if (fmt[i] == 'E')
13372 for (j = 0; j < XVECLEN (x, i); j++)
13373 if (get_last_value_validate (&XVECEXP (x, i, j),
13374 insn, tick, replace) == 0)
13375 return 0;
13378 /* If we haven't found a reason for it to be invalid, it is valid. */
13379 return 1;
13382 /* Get the last value assigned to X, if known. Some registers
13383 in the value may be replaced with (clobber (const_int 0)) if their value
13384 is known longer known reliably. */
13386 static rtx
13387 get_last_value (const_rtx x)
13389 unsigned int regno;
13390 rtx value;
13391 reg_stat_type *rsp;
13393 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13394 then convert it to the desired mode. If this is a paradoxical SUBREG,
13395 we cannot predict what values the "extra" bits might have. */
13396 if (GET_CODE (x) == SUBREG
13397 && subreg_lowpart_p (x)
13398 && !paradoxical_subreg_p (x)
13399 && (value = get_last_value (SUBREG_REG (x))) != 0)
13400 return gen_lowpart (GET_MODE (x), value);
13402 if (!REG_P (x))
13403 return 0;
13405 regno = REGNO (x);
13406 rsp = &reg_stat[regno];
13407 value = rsp->last_set_value;
13409 /* If we don't have a value, or if it isn't for this basic block and
13410 it's either a hard register, set more than once, or it's a live
13411 at the beginning of the function, return 0.
13413 Because if it's not live at the beginning of the function then the reg
13414 is always set before being used (is never used without being set).
13415 And, if it's set only once, and it's always set before use, then all
13416 uses must have the same last value, even if it's not from this basic
13417 block. */
13419 if (value == 0
13420 || (rsp->last_set_label < label_tick_ebb_start
13421 && (regno < FIRST_PSEUDO_REGISTER
13422 || regno >= reg_n_sets_max
13423 || REG_N_SETS (regno) != 1
13424 || REGNO_REG_SET_P
13425 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13426 return 0;
13428 /* If the value was set in a later insn than the ones we are processing,
13429 we can't use it even if the register was only set once. */
13430 if (rsp->last_set_label == label_tick
13431 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13432 return 0;
13434 /* If fewer bits were set than what we are asked for now, we cannot use
13435 the value. */
13436 if (GET_MODE_PRECISION (rsp->last_set_mode)
13437 < GET_MODE_PRECISION (GET_MODE (x)))
13438 return 0;
13440 /* If the value has all its registers valid, return it. */
13441 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13442 return value;
13444 /* Otherwise, make a copy and replace any invalid register with
13445 (clobber (const_int 0)). If that fails for some reason, return 0. */
13447 value = copy_rtx (value);
13448 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13449 return value;
13451 return 0;
13454 /* Return nonzero if expression X refers to a REG or to memory
13455 that is set in an instruction more recent than FROM_LUID. */
13457 static int
13458 use_crosses_set_p (const_rtx x, int from_luid)
13460 const char *fmt;
13461 int i;
13462 enum rtx_code code = GET_CODE (x);
13464 if (code == REG)
13466 unsigned int regno = REGNO (x);
13467 unsigned endreg = END_REGNO (x);
13469 #ifdef PUSH_ROUNDING
13470 /* Don't allow uses of the stack pointer to be moved,
13471 because we don't know whether the move crosses a push insn. */
13472 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13473 return 1;
13474 #endif
13475 for (; regno < endreg; regno++)
13477 reg_stat_type *rsp = &reg_stat[regno];
13478 if (rsp->last_set
13479 && rsp->last_set_label == label_tick
13480 && DF_INSN_LUID (rsp->last_set) > from_luid)
13481 return 1;
13483 return 0;
13486 if (code == MEM && mem_last_set > from_luid)
13487 return 1;
13489 fmt = GET_RTX_FORMAT (code);
13491 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13493 if (fmt[i] == 'E')
13495 int j;
13496 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13497 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13498 return 1;
13500 else if (fmt[i] == 'e'
13501 && use_crosses_set_p (XEXP (x, i), from_luid))
13502 return 1;
13504 return 0;
13507 /* Define three variables used for communication between the following
13508 routines. */
13510 static unsigned int reg_dead_regno, reg_dead_endregno;
13511 static int reg_dead_flag;
13513 /* Function called via note_stores from reg_dead_at_p.
13515 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13516 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13518 static void
13519 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13521 unsigned int regno, endregno;
13523 if (!REG_P (dest))
13524 return;
13526 regno = REGNO (dest);
13527 endregno = END_REGNO (dest);
13528 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13529 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13532 /* Return nonzero if REG is known to be dead at INSN.
13534 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13535 referencing REG, it is dead. If we hit a SET referencing REG, it is
13536 live. Otherwise, see if it is live or dead at the start of the basic
13537 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13538 must be assumed to be always live. */
13540 static int
13541 reg_dead_at_p (rtx reg, rtx_insn *insn)
13543 basic_block block;
13544 unsigned int i;
13546 /* Set variables for reg_dead_at_p_1. */
13547 reg_dead_regno = REGNO (reg);
13548 reg_dead_endregno = END_REGNO (reg);
13550 reg_dead_flag = 0;
13552 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13553 we allow the machine description to decide whether use-and-clobber
13554 patterns are OK. */
13555 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13557 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13558 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13559 return 0;
13562 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13563 beginning of basic block. */
13564 block = BLOCK_FOR_INSN (insn);
13565 for (;;)
13567 if (INSN_P (insn))
13569 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13570 return 1;
13572 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13573 if (reg_dead_flag)
13574 return reg_dead_flag == 1 ? 1 : 0;
13576 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13577 return 1;
13580 if (insn == BB_HEAD (block))
13581 break;
13583 insn = PREV_INSN (insn);
13586 /* Look at live-in sets for the basic block that we were in. */
13587 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13588 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13589 return 0;
13591 return 1;
13594 /* Note hard registers in X that are used. */
13596 static void
13597 mark_used_regs_combine (rtx x)
13599 RTX_CODE code = GET_CODE (x);
13600 unsigned int regno;
13601 int i;
13603 switch (code)
13605 case LABEL_REF:
13606 case SYMBOL_REF:
13607 case CONST:
13608 CASE_CONST_ANY:
13609 case PC:
13610 case ADDR_VEC:
13611 case ADDR_DIFF_VEC:
13612 case ASM_INPUT:
13613 /* CC0 must die in the insn after it is set, so we don't need to take
13614 special note of it here. */
13615 case CC0:
13616 return;
13618 case CLOBBER:
13619 /* If we are clobbering a MEM, mark any hard registers inside the
13620 address as used. */
13621 if (MEM_P (XEXP (x, 0)))
13622 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13623 return;
13625 case REG:
13626 regno = REGNO (x);
13627 /* A hard reg in a wide mode may really be multiple registers.
13628 If so, mark all of them just like the first. */
13629 if (regno < FIRST_PSEUDO_REGISTER)
13631 /* None of this applies to the stack, frame or arg pointers. */
13632 if (regno == STACK_POINTER_REGNUM
13633 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13634 && regno == HARD_FRAME_POINTER_REGNUM)
13635 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13636 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13637 || regno == FRAME_POINTER_REGNUM)
13638 return;
13640 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13642 return;
13644 case SET:
13646 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13647 the address. */
13648 rtx testreg = SET_DEST (x);
13650 while (GET_CODE (testreg) == SUBREG
13651 || GET_CODE (testreg) == ZERO_EXTRACT
13652 || GET_CODE (testreg) == STRICT_LOW_PART)
13653 testreg = XEXP (testreg, 0);
13655 if (MEM_P (testreg))
13656 mark_used_regs_combine (XEXP (testreg, 0));
13658 mark_used_regs_combine (SET_SRC (x));
13660 return;
13662 default:
13663 break;
13666 /* Recursively scan the operands of this expression. */
13669 const char *fmt = GET_RTX_FORMAT (code);
13671 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13673 if (fmt[i] == 'e')
13674 mark_used_regs_combine (XEXP (x, i));
13675 else if (fmt[i] == 'E')
13677 int j;
13679 for (j = 0; j < XVECLEN (x, i); j++)
13680 mark_used_regs_combine (XVECEXP (x, i, j));
13686 /* Remove register number REGNO from the dead registers list of INSN.
13688 Return the note used to record the death, if there was one. */
13691 remove_death (unsigned int regno, rtx_insn *insn)
13693 rtx note = find_regno_note (insn, REG_DEAD, regno);
13695 if (note)
13696 remove_note (insn, note);
13698 return note;
13701 /* For each register (hardware or pseudo) used within expression X, if its
13702 death is in an instruction with luid between FROM_LUID (inclusive) and
13703 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13704 list headed by PNOTES.
13706 That said, don't move registers killed by maybe_kill_insn.
13708 This is done when X is being merged by combination into TO_INSN. These
13709 notes will then be distributed as needed. */
13711 static void
13712 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13713 rtx *pnotes)
13715 const char *fmt;
13716 int len, i;
13717 enum rtx_code code = GET_CODE (x);
13719 if (code == REG)
13721 unsigned int regno = REGNO (x);
13722 rtx_insn *where_dead = reg_stat[regno].last_death;
13724 /* Don't move the register if it gets killed in between from and to. */
13725 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13726 && ! reg_referenced_p (x, maybe_kill_insn))
13727 return;
13729 if (where_dead
13730 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13731 && DF_INSN_LUID (where_dead) >= from_luid
13732 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13734 rtx note = remove_death (regno, where_dead);
13736 /* It is possible for the call above to return 0. This can occur
13737 when last_death points to I2 or I1 that we combined with.
13738 In that case make a new note.
13740 We must also check for the case where X is a hard register
13741 and NOTE is a death note for a range of hard registers
13742 including X. In that case, we must put REG_DEAD notes for
13743 the remaining registers in place of NOTE. */
13745 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13746 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13747 > GET_MODE_SIZE (GET_MODE (x))))
13749 unsigned int deadregno = REGNO (XEXP (note, 0));
13750 unsigned int deadend = END_REGNO (XEXP (note, 0));
13751 unsigned int ourend = END_REGNO (x);
13752 unsigned int i;
13754 for (i = deadregno; i < deadend; i++)
13755 if (i < regno || i >= ourend)
13756 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13759 /* If we didn't find any note, or if we found a REG_DEAD note that
13760 covers only part of the given reg, and we have a multi-reg hard
13761 register, then to be safe we must check for REG_DEAD notes
13762 for each register other than the first. They could have
13763 their own REG_DEAD notes lying around. */
13764 else if ((note == 0
13765 || (note != 0
13766 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13767 < GET_MODE_SIZE (GET_MODE (x)))))
13768 && regno < FIRST_PSEUDO_REGISTER
13769 && REG_NREGS (x) > 1)
13771 unsigned int ourend = END_REGNO (x);
13772 unsigned int i, offset;
13773 rtx oldnotes = 0;
13775 if (note)
13776 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13777 else
13778 offset = 1;
13780 for (i = regno + offset; i < ourend; i++)
13781 move_deaths (regno_reg_rtx[i],
13782 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13785 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13787 XEXP (note, 1) = *pnotes;
13788 *pnotes = note;
13790 else
13791 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13794 return;
13797 else if (GET_CODE (x) == SET)
13799 rtx dest = SET_DEST (x);
13801 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13803 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13804 that accesses one word of a multi-word item, some
13805 piece of everything register in the expression is used by
13806 this insn, so remove any old death. */
13807 /* ??? So why do we test for equality of the sizes? */
13809 if (GET_CODE (dest) == ZERO_EXTRACT
13810 || GET_CODE (dest) == STRICT_LOW_PART
13811 || (GET_CODE (dest) == SUBREG
13812 && (((GET_MODE_SIZE (GET_MODE (dest))
13813 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13814 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13815 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13817 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13818 return;
13821 /* If this is some other SUBREG, we know it replaces the entire
13822 value, so use that as the destination. */
13823 if (GET_CODE (dest) == SUBREG)
13824 dest = SUBREG_REG (dest);
13826 /* If this is a MEM, adjust deaths of anything used in the address.
13827 For a REG (the only other possibility), the entire value is
13828 being replaced so the old value is not used in this insn. */
13830 if (MEM_P (dest))
13831 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13832 to_insn, pnotes);
13833 return;
13836 else if (GET_CODE (x) == CLOBBER)
13837 return;
13839 len = GET_RTX_LENGTH (code);
13840 fmt = GET_RTX_FORMAT (code);
13842 for (i = 0; i < len; i++)
13844 if (fmt[i] == 'E')
13846 int j;
13847 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13848 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13849 to_insn, pnotes);
13851 else if (fmt[i] == 'e')
13852 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13856 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13857 pattern of an insn. X must be a REG. */
13859 static int
13860 reg_bitfield_target_p (rtx x, rtx body)
13862 int i;
13864 if (GET_CODE (body) == SET)
13866 rtx dest = SET_DEST (body);
13867 rtx target;
13868 unsigned int regno, tregno, endregno, endtregno;
13870 if (GET_CODE (dest) == ZERO_EXTRACT)
13871 target = XEXP (dest, 0);
13872 else if (GET_CODE (dest) == STRICT_LOW_PART)
13873 target = SUBREG_REG (XEXP (dest, 0));
13874 else
13875 return 0;
13877 if (GET_CODE (target) == SUBREG)
13878 target = SUBREG_REG (target);
13880 if (!REG_P (target))
13881 return 0;
13883 tregno = REGNO (target), regno = REGNO (x);
13884 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13885 return target == x;
13887 endtregno = end_hard_regno (GET_MODE (target), tregno);
13888 endregno = end_hard_regno (GET_MODE (x), regno);
13890 return endregno > tregno && regno < endtregno;
13893 else if (GET_CODE (body) == PARALLEL)
13894 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13895 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13896 return 1;
13898 return 0;
13901 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13902 as appropriate. I3 and I2 are the insns resulting from the combination
13903 insns including FROM (I2 may be zero).
13905 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13906 not need REG_DEAD notes because they are being substituted for. This
13907 saves searching in the most common cases.
13909 Each note in the list is either ignored or placed on some insns, depending
13910 on the type of note. */
13912 static void
13913 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13914 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13916 rtx note, next_note;
13917 rtx tem_note;
13918 rtx_insn *tem_insn;
13920 for (note = notes; note; note = next_note)
13922 rtx_insn *place = 0, *place2 = 0;
13924 next_note = XEXP (note, 1);
13925 switch (REG_NOTE_KIND (note))
13927 case REG_BR_PROB:
13928 case REG_BR_PRED:
13929 /* Doesn't matter much where we put this, as long as it's somewhere.
13930 It is preferable to keep these notes on branches, which is most
13931 likely to be i3. */
13932 place = i3;
13933 break;
13935 case REG_NON_LOCAL_GOTO:
13936 if (JUMP_P (i3))
13937 place = i3;
13938 else
13940 gcc_assert (i2 && JUMP_P (i2));
13941 place = i2;
13943 break;
13945 case REG_EH_REGION:
13946 /* These notes must remain with the call or trapping instruction. */
13947 if (CALL_P (i3))
13948 place = i3;
13949 else if (i2 && CALL_P (i2))
13950 place = i2;
13951 else
13953 gcc_assert (cfun->can_throw_non_call_exceptions);
13954 if (may_trap_p (i3))
13955 place = i3;
13956 else if (i2 && may_trap_p (i2))
13957 place = i2;
13958 /* ??? Otherwise assume we've combined things such that we
13959 can now prove that the instructions can't trap. Drop the
13960 note in this case. */
13962 break;
13964 case REG_ARGS_SIZE:
13965 /* ??? How to distribute between i3-i1. Assume i3 contains the
13966 entire adjustment. Assert i3 contains at least some adjust. */
13967 if (!noop_move_p (i3))
13969 int old_size, args_size = INTVAL (XEXP (note, 0));
13970 /* fixup_args_size_notes looks at REG_NORETURN note,
13971 so ensure the note is placed there first. */
13972 if (CALL_P (i3))
13974 rtx *np;
13975 for (np = &next_note; *np; np = &XEXP (*np, 1))
13976 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13978 rtx n = *np;
13979 *np = XEXP (n, 1);
13980 XEXP (n, 1) = REG_NOTES (i3);
13981 REG_NOTES (i3) = n;
13982 break;
13985 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13986 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13987 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13988 gcc_assert (old_size != args_size
13989 || (CALL_P (i3)
13990 && !ACCUMULATE_OUTGOING_ARGS
13991 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13993 break;
13995 case REG_NORETURN:
13996 case REG_SETJMP:
13997 case REG_TM:
13998 case REG_CALL_DECL:
13999 /* These notes must remain with the call. It should not be
14000 possible for both I2 and I3 to be a call. */
14001 if (CALL_P (i3))
14002 place = i3;
14003 else
14005 gcc_assert (i2 && CALL_P (i2));
14006 place = i2;
14008 break;
14010 case REG_UNUSED:
14011 /* Any clobbers for i3 may still exist, and so we must process
14012 REG_UNUSED notes from that insn.
14014 Any clobbers from i2 or i1 can only exist if they were added by
14015 recog_for_combine. In that case, recog_for_combine created the
14016 necessary REG_UNUSED notes. Trying to keep any original
14017 REG_UNUSED notes from these insns can cause incorrect output
14018 if it is for the same register as the original i3 dest.
14019 In that case, we will notice that the register is set in i3,
14020 and then add a REG_UNUSED note for the destination of i3, which
14021 is wrong. However, it is possible to have REG_UNUSED notes from
14022 i2 or i1 for register which were both used and clobbered, so
14023 we keep notes from i2 or i1 if they will turn into REG_DEAD
14024 notes. */
14026 /* If this register is set or clobbered in I3, put the note there
14027 unless there is one already. */
14028 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14030 if (from_insn != i3)
14031 break;
14033 if (! (REG_P (XEXP (note, 0))
14034 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14035 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14036 place = i3;
14038 /* Otherwise, if this register is used by I3, then this register
14039 now dies here, so we must put a REG_DEAD note here unless there
14040 is one already. */
14041 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14042 && ! (REG_P (XEXP (note, 0))
14043 ? find_regno_note (i3, REG_DEAD,
14044 REGNO (XEXP (note, 0)))
14045 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14047 PUT_REG_NOTE_KIND (note, REG_DEAD);
14048 place = i3;
14050 break;
14052 case REG_EQUAL:
14053 case REG_EQUIV:
14054 case REG_NOALIAS:
14055 /* These notes say something about results of an insn. We can
14056 only support them if they used to be on I3 in which case they
14057 remain on I3. Otherwise they are ignored.
14059 If the note refers to an expression that is not a constant, we
14060 must also ignore the note since we cannot tell whether the
14061 equivalence is still true. It might be possible to do
14062 slightly better than this (we only have a problem if I2DEST
14063 or I1DEST is present in the expression), but it doesn't
14064 seem worth the trouble. */
14066 if (from_insn == i3
14067 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14068 place = i3;
14069 break;
14071 case REG_INC:
14072 /* These notes say something about how a register is used. They must
14073 be present on any use of the register in I2 or I3. */
14074 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14075 place = i3;
14077 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14079 if (place)
14080 place2 = i2;
14081 else
14082 place = i2;
14084 break;
14086 case REG_LABEL_TARGET:
14087 case REG_LABEL_OPERAND:
14088 /* This can show up in several ways -- either directly in the
14089 pattern, or hidden off in the constant pool with (or without?)
14090 a REG_EQUAL note. */
14091 /* ??? Ignore the without-reg_equal-note problem for now. */
14092 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14093 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14094 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14095 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14096 place = i3;
14098 if (i2
14099 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14100 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14101 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14102 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14104 if (place)
14105 place2 = i2;
14106 else
14107 place = i2;
14110 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14111 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14112 there. */
14113 if (place && JUMP_P (place)
14114 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14115 && (JUMP_LABEL (place) == NULL
14116 || JUMP_LABEL (place) == XEXP (note, 0)))
14118 rtx label = JUMP_LABEL (place);
14120 if (!label)
14121 JUMP_LABEL (place) = XEXP (note, 0);
14122 else if (LABEL_P (label))
14123 LABEL_NUSES (label)--;
14126 if (place2 && JUMP_P (place2)
14127 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14128 && (JUMP_LABEL (place2) == NULL
14129 || JUMP_LABEL (place2) == XEXP (note, 0)))
14131 rtx label = JUMP_LABEL (place2);
14133 if (!label)
14134 JUMP_LABEL (place2) = XEXP (note, 0);
14135 else if (LABEL_P (label))
14136 LABEL_NUSES (label)--;
14137 place2 = 0;
14139 break;
14141 case REG_NONNEG:
14142 /* This note says something about the value of a register prior
14143 to the execution of an insn. It is too much trouble to see
14144 if the note is still correct in all situations. It is better
14145 to simply delete it. */
14146 break;
14148 case REG_DEAD:
14149 /* If we replaced the right hand side of FROM_INSN with a
14150 REG_EQUAL note, the original use of the dying register
14151 will not have been combined into I3 and I2. In such cases,
14152 FROM_INSN is guaranteed to be the first of the combined
14153 instructions, so we simply need to search back before
14154 FROM_INSN for the previous use or set of this register,
14155 then alter the notes there appropriately.
14157 If the register is used as an input in I3, it dies there.
14158 Similarly for I2, if it is nonzero and adjacent to I3.
14160 If the register is not used as an input in either I3 or I2
14161 and it is not one of the registers we were supposed to eliminate,
14162 there are two possibilities. We might have a non-adjacent I2
14163 or we might have somehow eliminated an additional register
14164 from a computation. For example, we might have had A & B where
14165 we discover that B will always be zero. In this case we will
14166 eliminate the reference to A.
14168 In both cases, we must search to see if we can find a previous
14169 use of A and put the death note there. */
14171 if (from_insn
14172 && from_insn == i2mod
14173 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14174 tem_insn = from_insn;
14175 else
14177 if (from_insn
14178 && CALL_P (from_insn)
14179 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14180 place = from_insn;
14181 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14182 place = i3;
14183 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14184 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14185 place = i2;
14186 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14187 && !(i2mod
14188 && reg_overlap_mentioned_p (XEXP (note, 0),
14189 i2mod_old_rhs)))
14190 || rtx_equal_p (XEXP (note, 0), elim_i1)
14191 || rtx_equal_p (XEXP (note, 0), elim_i0))
14192 break;
14193 tem_insn = i3;
14194 /* If the new I2 sets the same register that is marked dead
14195 in the note, we do not know where to put the note.
14196 Give up. */
14197 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14198 break;
14201 if (place == 0)
14203 basic_block bb = this_basic_block;
14205 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14207 if (!NONDEBUG_INSN_P (tem_insn))
14209 if (tem_insn == BB_HEAD (bb))
14210 break;
14211 continue;
14214 /* If the register is being set at TEM_INSN, see if that is all
14215 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14216 into a REG_UNUSED note instead. Don't delete sets to
14217 global register vars. */
14218 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14219 || !global_regs[REGNO (XEXP (note, 0))])
14220 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14222 rtx set = single_set (tem_insn);
14223 rtx inner_dest = 0;
14224 rtx_insn *cc0_setter = NULL;
14226 if (set != 0)
14227 for (inner_dest = SET_DEST (set);
14228 (GET_CODE (inner_dest) == STRICT_LOW_PART
14229 || GET_CODE (inner_dest) == SUBREG
14230 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14231 inner_dest = XEXP (inner_dest, 0))
14234 /* Verify that it was the set, and not a clobber that
14235 modified the register.
14237 CC0 targets must be careful to maintain setter/user
14238 pairs. If we cannot delete the setter due to side
14239 effects, mark the user with an UNUSED note instead
14240 of deleting it. */
14242 if (set != 0 && ! side_effects_p (SET_SRC (set))
14243 && rtx_equal_p (XEXP (note, 0), inner_dest)
14244 && (!HAVE_cc0
14245 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14246 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14247 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14249 /* Move the notes and links of TEM_INSN elsewhere.
14250 This might delete other dead insns recursively.
14251 First set the pattern to something that won't use
14252 any register. */
14253 rtx old_notes = REG_NOTES (tem_insn);
14255 PATTERN (tem_insn) = pc_rtx;
14256 REG_NOTES (tem_insn) = NULL;
14258 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14259 NULL_RTX, NULL_RTX, NULL_RTX);
14260 distribute_links (LOG_LINKS (tem_insn));
14262 SET_INSN_DELETED (tem_insn);
14263 if (tem_insn == i2)
14264 i2 = NULL;
14266 /* Delete the setter too. */
14267 if (cc0_setter)
14269 PATTERN (cc0_setter) = pc_rtx;
14270 old_notes = REG_NOTES (cc0_setter);
14271 REG_NOTES (cc0_setter) = NULL;
14273 distribute_notes (old_notes, cc0_setter,
14274 cc0_setter, NULL,
14275 NULL_RTX, NULL_RTX, NULL_RTX);
14276 distribute_links (LOG_LINKS (cc0_setter));
14278 SET_INSN_DELETED (cc0_setter);
14279 if (cc0_setter == i2)
14280 i2 = NULL;
14283 else
14285 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14287 /* If there isn't already a REG_UNUSED note, put one
14288 here. Do not place a REG_DEAD note, even if
14289 the register is also used here; that would not
14290 match the algorithm used in lifetime analysis
14291 and can cause the consistency check in the
14292 scheduler to fail. */
14293 if (! find_regno_note (tem_insn, REG_UNUSED,
14294 REGNO (XEXP (note, 0))))
14295 place = tem_insn;
14296 break;
14299 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14300 || (CALL_P (tem_insn)
14301 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14303 place = tem_insn;
14305 /* If we are doing a 3->2 combination, and we have a
14306 register which formerly died in i3 and was not used
14307 by i2, which now no longer dies in i3 and is used in
14308 i2 but does not die in i2, and place is between i2
14309 and i3, then we may need to move a link from place to
14310 i2. */
14311 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14312 && from_insn
14313 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14314 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14316 struct insn_link *links = LOG_LINKS (place);
14317 LOG_LINKS (place) = NULL;
14318 distribute_links (links);
14320 break;
14323 if (tem_insn == BB_HEAD (bb))
14324 break;
14329 /* If the register is set or already dead at PLACE, we needn't do
14330 anything with this note if it is still a REG_DEAD note.
14331 We check here if it is set at all, not if is it totally replaced,
14332 which is what `dead_or_set_p' checks, so also check for it being
14333 set partially. */
14335 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14337 unsigned int regno = REGNO (XEXP (note, 0));
14338 reg_stat_type *rsp = &reg_stat[regno];
14340 if (dead_or_set_p (place, XEXP (note, 0))
14341 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14343 /* Unless the register previously died in PLACE, clear
14344 last_death. [I no longer understand why this is
14345 being done.] */
14346 if (rsp->last_death != place)
14347 rsp->last_death = 0;
14348 place = 0;
14350 else
14351 rsp->last_death = place;
14353 /* If this is a death note for a hard reg that is occupying
14354 multiple registers, ensure that we are still using all
14355 parts of the object. If we find a piece of the object
14356 that is unused, we must arrange for an appropriate REG_DEAD
14357 note to be added for it. However, we can't just emit a USE
14358 and tag the note to it, since the register might actually
14359 be dead; so we recourse, and the recursive call then finds
14360 the previous insn that used this register. */
14362 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14364 unsigned int endregno = END_REGNO (XEXP (note, 0));
14365 bool all_used = true;
14366 unsigned int i;
14368 for (i = regno; i < endregno; i++)
14369 if ((! refers_to_regno_p (i, PATTERN (place))
14370 && ! find_regno_fusage (place, USE, i))
14371 || dead_or_set_regno_p (place, i))
14373 all_used = false;
14374 break;
14377 if (! all_used)
14379 /* Put only REG_DEAD notes for pieces that are
14380 not already dead or set. */
14382 for (i = regno; i < endregno;
14383 i += hard_regno_nregs[i][reg_raw_mode[i]])
14385 rtx piece = regno_reg_rtx[i];
14386 basic_block bb = this_basic_block;
14388 if (! dead_or_set_p (place, piece)
14389 && ! reg_bitfield_target_p (piece,
14390 PATTERN (place)))
14392 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14393 NULL_RTX);
14395 distribute_notes (new_note, place, place,
14396 NULL, NULL_RTX, NULL_RTX,
14397 NULL_RTX);
14399 else if (! refers_to_regno_p (i, PATTERN (place))
14400 && ! find_regno_fusage (place, USE, i))
14401 for (tem_insn = PREV_INSN (place); ;
14402 tem_insn = PREV_INSN (tem_insn))
14404 if (!NONDEBUG_INSN_P (tem_insn))
14406 if (tem_insn == BB_HEAD (bb))
14407 break;
14408 continue;
14410 if (dead_or_set_p (tem_insn, piece)
14411 || reg_bitfield_target_p (piece,
14412 PATTERN (tem_insn)))
14414 add_reg_note (tem_insn, REG_UNUSED, piece);
14415 break;
14420 place = 0;
14424 break;
14426 default:
14427 /* Any other notes should not be present at this point in the
14428 compilation. */
14429 gcc_unreachable ();
14432 if (place)
14434 XEXP (note, 1) = REG_NOTES (place);
14435 REG_NOTES (place) = note;
14438 if (place2)
14439 add_shallow_copy_of_reg_note (place2, note);
14443 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14444 I3, I2, and I1 to new locations. This is also called to add a link
14445 pointing at I3 when I3's destination is changed. */
14447 static void
14448 distribute_links (struct insn_link *links)
14450 struct insn_link *link, *next_link;
14452 for (link = links; link; link = next_link)
14454 rtx_insn *place = 0;
14455 rtx_insn *insn;
14456 rtx set, reg;
14458 next_link = link->next;
14460 /* If the insn that this link points to is a NOTE, ignore it. */
14461 if (NOTE_P (link->insn))
14462 continue;
14464 set = 0;
14465 rtx pat = PATTERN (link->insn);
14466 if (GET_CODE (pat) == SET)
14467 set = pat;
14468 else if (GET_CODE (pat) == PARALLEL)
14470 int i;
14471 for (i = 0; i < XVECLEN (pat, 0); i++)
14473 set = XVECEXP (pat, 0, i);
14474 if (GET_CODE (set) != SET)
14475 continue;
14477 reg = SET_DEST (set);
14478 while (GET_CODE (reg) == ZERO_EXTRACT
14479 || GET_CODE (reg) == STRICT_LOW_PART
14480 || GET_CODE (reg) == SUBREG)
14481 reg = XEXP (reg, 0);
14483 if (!REG_P (reg))
14484 continue;
14486 if (REGNO (reg) == link->regno)
14487 break;
14489 if (i == XVECLEN (pat, 0))
14490 continue;
14492 else
14493 continue;
14495 reg = SET_DEST (set);
14497 while (GET_CODE (reg) == ZERO_EXTRACT
14498 || GET_CODE (reg) == STRICT_LOW_PART
14499 || GET_CODE (reg) == SUBREG)
14500 reg = XEXP (reg, 0);
14502 /* A LOG_LINK is defined as being placed on the first insn that uses
14503 a register and points to the insn that sets the register. Start
14504 searching at the next insn after the target of the link and stop
14505 when we reach a set of the register or the end of the basic block.
14507 Note that this correctly handles the link that used to point from
14508 I3 to I2. Also note that not much searching is typically done here
14509 since most links don't point very far away. */
14511 for (insn = NEXT_INSN (link->insn);
14512 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14513 || BB_HEAD (this_basic_block->next_bb) != insn));
14514 insn = NEXT_INSN (insn))
14515 if (DEBUG_INSN_P (insn))
14516 continue;
14517 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14519 if (reg_referenced_p (reg, PATTERN (insn)))
14520 place = insn;
14521 break;
14523 else if (CALL_P (insn)
14524 && find_reg_fusage (insn, USE, reg))
14526 place = insn;
14527 break;
14529 else if (INSN_P (insn) && reg_set_p (reg, insn))
14530 break;
14532 /* If we found a place to put the link, place it there unless there
14533 is already a link to the same insn as LINK at that point. */
14535 if (place)
14537 struct insn_link *link2;
14539 FOR_EACH_LOG_LINK (link2, place)
14540 if (link2->insn == link->insn && link2->regno == link->regno)
14541 break;
14543 if (link2 == NULL)
14545 link->next = LOG_LINKS (place);
14546 LOG_LINKS (place) = link;
14548 /* Set added_links_insn to the earliest insn we added a
14549 link to. */
14550 if (added_links_insn == 0
14551 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14552 added_links_insn = place;
14558 /* Check for any register or memory mentioned in EQUIV that is not
14559 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14560 of EXPR where some registers may have been replaced by constants. */
14562 static bool
14563 unmentioned_reg_p (rtx equiv, rtx expr)
14565 subrtx_iterator::array_type array;
14566 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14568 const_rtx x = *iter;
14569 if ((REG_P (x) || MEM_P (x))
14570 && !reg_mentioned_p (x, expr))
14571 return true;
14573 return false;
14576 DEBUG_FUNCTION void
14577 dump_combine_stats (FILE *file)
14579 fprintf
14580 (file,
14581 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14582 combine_attempts, combine_merges, combine_extras, combine_successes);
14585 void
14586 dump_combine_total_stats (FILE *file)
14588 fprintf
14589 (file,
14590 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14591 total_attempts, total_merges, total_extras, total_successes);
14594 /* Try combining insns through substitution. */
14595 static unsigned int
14596 rest_of_handle_combine (void)
14598 int rebuild_jump_labels_after_combine;
14600 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14601 df_note_add_problem ();
14602 df_analyze ();
14604 regstat_init_n_sets_and_refs ();
14605 reg_n_sets_max = max_reg_num ();
14607 rebuild_jump_labels_after_combine
14608 = combine_instructions (get_insns (), max_reg_num ());
14610 /* Combining insns may have turned an indirect jump into a
14611 direct jump. Rebuild the JUMP_LABEL fields of jumping
14612 instructions. */
14613 if (rebuild_jump_labels_after_combine)
14615 if (dom_info_available_p (CDI_DOMINATORS))
14616 free_dominance_info (CDI_DOMINATORS);
14617 timevar_push (TV_JUMP);
14618 rebuild_jump_labels (get_insns ());
14619 cleanup_cfg (0);
14620 timevar_pop (TV_JUMP);
14623 regstat_free_n_sets_and_refs ();
14624 return 0;
14627 namespace {
14629 const pass_data pass_data_combine =
14631 RTL_PASS, /* type */
14632 "combine", /* name */
14633 OPTGROUP_NONE, /* optinfo_flags */
14634 TV_COMBINE, /* tv_id */
14635 PROP_cfglayout, /* properties_required */
14636 0, /* properties_provided */
14637 0, /* properties_destroyed */
14638 0, /* todo_flags_start */
14639 TODO_df_finish, /* todo_flags_finish */
14642 class pass_combine : public rtl_opt_pass
14644 public:
14645 pass_combine (gcc::context *ctxt)
14646 : rtl_opt_pass (pass_data_combine, ctxt)
14649 /* opt_pass methods: */
14650 virtual bool gate (function *) { return (optimize > 0); }
14651 virtual unsigned int execute (function *)
14653 return rest_of_handle_combine ();
14656 }; // class pass_combine
14658 } // anon namespace
14660 rtl_opt_pass *
14661 make_pass_combine (gcc::context *ctxt)
14663 return new pass_combine (ctxt);