* final.c (output_asm_insn): Correct problem with -fverbose-asm.
[official-gcc.git] / gcc / postreload-gcse.c
blob93d81c48241bf480146035e6d55a5ddf371e3bb7
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
79 /* Keep statistics of this pass. */
80 static struct
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
91 /* The table itself. */
92 static htab_t expr_table;
94 /* Expression elements in the hash table. */
95 struct expr
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
98 rtx expr;
100 /* The same hash for this entry. */
101 hashval_t hash;
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
107 static struct obstack expr_obstack;
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
113 struct occr
115 /* Next occurrence of this expression. */
116 struct occr *next;
117 /* The insn that computes the expression. */
118 rtx insn;
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
120 char deleted_p;
123 static struct obstack occr_obstack;
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
127 struct unoccr
129 struct unoccr *next;
130 edge pred;
131 rtx insn;
134 static struct obstack unoccr_obstack;
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
138 basic block. */
139 static int *reg_avail_info;
141 /* A list of insns that may modify memory within the current basic block. */
142 struct modifies_mem
144 rtx insn;
145 struct modifies_mem *next;
147 static struct modifies_mem *modifies_mem_list;
149 /* The modifies_mem structs also go on an obstack, only this obstack is
150 freed each time after completing the analysis or transformations on
151 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
152 object on the obstack to keep track of the bottom of the obstack. */
153 static struct obstack modifies_mem_obstack;
154 static struct modifies_mem *modifies_mem_obstack_bottom;
156 /* Mapping of insn UIDs to CUIDs.
157 CUIDs are like UIDs except they increase monotonically in each basic
158 block, have no gaps, and only apply to real insns. */
159 static int *uid_cuid;
160 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
163 /* Helpers for memory allocation/freeing. */
164 static void alloc_mem (void);
165 static void free_mem (void);
167 /* Support for hash table construction and transformations. */
168 static bool oprs_unchanged_p (rtx, rtx, bool);
169 static void record_last_reg_set_info (rtx, int);
170 static void record_last_mem_set_info (rtx);
171 static void record_last_set_info (rtx, rtx, void *);
172 static void mark_call (rtx);
173 static void mark_set (rtx, rtx);
174 static void mark_clobber (rtx, rtx);
175 static void mark_oprs_set (rtx);
177 static void find_mem_conflicts (rtx, rtx, void *);
178 static int load_killed_in_block_p (int, rtx, bool);
179 static void reset_opr_set_tables (void);
181 /* Hash table support. */
182 static hashval_t hash_expr (rtx, int *);
183 static hashval_t hash_expr_for_htab (const void *);
184 static int expr_equiv_p (const void *, const void *);
185 static void insert_expr_in_table (rtx, rtx);
186 static struct expr *lookup_expr_in_table (rtx);
187 static int dump_hash_table_entry (void **, void *);
188 static void dump_hash_table (FILE *);
190 /* Helpers for eliminate_partially_redundant_load. */
191 static bool reg_killed_on_edge (rtx, edge);
192 static bool reg_used_on_edge (rtx, edge);
194 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
195 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
196 static rtx get_avail_load_store_reg (rtx);
198 static bool bb_has_well_behaved_predecessors (basic_block);
199 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
200 static void hash_scan_set (rtx);
201 static void compute_hash_table (void);
203 /* The work horses of this pass. */
204 static void eliminate_partially_redundant_load (basic_block,
205 rtx,
206 struct expr *);
207 static void eliminate_partially_redundant_loads (void);
210 /* Allocate memory for the CUID mapping array and register/memory
211 tracking tables. */
213 static void
214 alloc_mem (void)
216 int i;
217 basic_block bb;
218 rtx insn;
220 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
221 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
222 i = 0;
223 FOR_EACH_BB (bb)
224 FOR_BB_INSNS (bb, insn)
226 if (INSN_P (insn))
227 uid_cuid[INSN_UID (insn)] = i++;
228 else
229 uid_cuid[INSN_UID (insn)] = i;
232 /* Allocate the available expressions hash table. We don't want to
233 make the hash table too small, but unnecessarily making it too large
234 also doesn't help. The i/4 is a gcse.c relic, and seems like a
235 reasonable choice. */
236 expr_table = htab_create (MAX (i / 4, 13),
237 hash_expr_for_htab, expr_equiv_p, NULL);
239 /* We allocate everything on obstacks because we often can roll back
240 the whole obstack to some point. Freeing obstacks is very fast. */
241 gcc_obstack_init (&expr_obstack);
242 gcc_obstack_init (&occr_obstack);
243 gcc_obstack_init (&unoccr_obstack);
244 gcc_obstack_init (&modifies_mem_obstack);
246 /* Working array used to track the last set for each register
247 in the current block. */
248 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
250 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
251 can roll it back in reset_opr_set_tables. */
252 modifies_mem_obstack_bottom =
253 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
254 sizeof (struct modifies_mem));
257 /* Free memory allocated by alloc_mem. */
259 static void
260 free_mem (void)
262 free (uid_cuid);
264 htab_delete (expr_table);
266 obstack_free (&expr_obstack, NULL);
267 obstack_free (&occr_obstack, NULL);
268 obstack_free (&unoccr_obstack, NULL);
269 obstack_free (&modifies_mem_obstack, NULL);
271 free (reg_avail_info);
275 /* Hash expression X.
276 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
277 or if the expression contains something we don't want to insert in the
278 table. */
280 static hashval_t
281 hash_expr (rtx x, int *do_not_record_p)
283 *do_not_record_p = 0;
284 return hash_rtx (x, GET_MODE (x), do_not_record_p,
285 NULL, /*have_reg_qty=*/false);
288 /* Callback for hashtab.
289 Return the hash value for expression EXP. We don't actually hash
290 here, we just return the cached hash value. */
292 static hashval_t
293 hash_expr_for_htab (const void *expp)
295 struct expr *exp = (struct expr *) expp;
296 return exp->hash;
299 /* Callbach for hashtab.
300 Return nonzero if exp1 is equivalent to exp2. */
302 static int
303 expr_equiv_p (const void *exp1p, const void *exp2p)
305 struct expr *exp1 = (struct expr *) exp1p;
306 struct expr *exp2 = (struct expr *) exp2p;
307 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
308 if (equiv_p
309 && exp1->hash != exp2->hash)
310 abort ();
311 return equiv_p;
315 /* Insert expression X in INSN in the hash TABLE.
316 If it is already present, record it as the last occurrence in INSN's
317 basic block. */
319 static void
320 insert_expr_in_table (rtx x, rtx insn)
322 int do_not_record_p;
323 hashval_t hash;
324 struct expr *cur_expr, **slot;
325 struct occr *avail_occr, *last_occr = NULL;
327 hash = hash_expr (x, &do_not_record_p);
329 /* Do not insert expression in the table if it contains volatile operands,
330 or if hash_expr determines the expression is something we don't want
331 to or can't handle. */
332 if (do_not_record_p)
333 return;
335 /* We anticipate that redundant expressions are rare, so for convenience
336 allocate a new hash table element here already and set its fields.
337 If we don't do this, we need a hack with a static struct expr. Anyway,
338 obstack_free is really fast and one more obstack_alloc doesn't hurt if
339 we're going to see more expressions later on. */
340 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
341 sizeof (struct expr));
342 cur_expr->expr = x;
343 cur_expr->hash = hash;
344 cur_expr->avail_occr = NULL;
346 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
347 hash, INSERT);
349 if (! (*slot))
350 /* The expression isn't found, so insert it. */
351 *slot = cur_expr;
352 else
354 /* The expression is already in the table, so roll back the
355 obstack and use the existing table entry. */
356 obstack_free (&expr_obstack, cur_expr);
357 cur_expr = *slot;
360 /* Search for another occurrence in the same basic block. */
361 avail_occr = cur_expr->avail_occr;
362 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
364 /* If an occurrence isn't found, save a pointer to the end of
365 the list. */
366 last_occr = avail_occr;
367 avail_occr = avail_occr->next;
370 if (avail_occr)
371 /* Found another instance of the expression in the same basic block.
372 Prefer this occurrence to the currently recorded one. We want
373 the last one in the block and the block is scanned from start
374 to end. */
375 avail_occr->insn = insn;
376 else
378 /* First occurrence of this expression in this basic block. */
379 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
380 sizeof (struct occr));
382 /* First occurrence of this expression in any block? */
383 if (cur_expr->avail_occr == NULL)
384 cur_expr->avail_occr = avail_occr;
385 else
386 last_occr->next = avail_occr;
388 avail_occr->insn = insn;
389 avail_occr->next = NULL;
390 avail_occr->deleted_p = 0;
395 /* Lookup pattern PAT in the expression hash table.
396 The result is a pointer to the table entry, or NULL if not found. */
398 static struct expr *
399 lookup_expr_in_table (rtx pat)
401 int do_not_record_p;
402 struct expr **slot, *tmp_expr;
403 hashval_t hash = hash_expr (pat, &do_not_record_p);
405 if (do_not_record_p)
406 return NULL;
408 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
409 sizeof (struct expr));
410 tmp_expr->expr = pat;
411 tmp_expr->hash = hash;
412 tmp_expr->avail_occr = NULL;
414 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
415 hash, INSERT);
416 obstack_free (&expr_obstack, tmp_expr);
418 if (!slot)
419 return NULL;
420 else
421 return (*slot);
425 /* Dump all expressions and occurrences that are currently in the
426 expression hash table to FILE. */
428 /* This helper is called via htab_traverse. */
429 static int
430 dump_hash_table_entry (void **slot, void *filep)
432 struct expr *expr = (struct expr *) *slot;
433 FILE *file = (FILE *) filep;
434 struct occr *occr;
436 fprintf (file, "expr: ");
437 print_rtl (file, expr->expr);
438 fprintf (file,"\nhashcode: %u\n", expr->hash);
439 fprintf (file,"list of occurences:\n");
440 occr = expr->avail_occr;
441 while (occr)
443 rtx insn = occr->insn;
444 print_rtl_single (file, insn);
445 fprintf (file, "\n");
446 occr = occr->next;
448 fprintf (file, "\n");
449 return 1;
452 static void
453 dump_hash_table (FILE *file)
455 fprintf (file, "\n\nexpression hash table\n");
456 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
457 (long) htab_size (expr_table),
458 (long) htab_elements (expr_table),
459 htab_collisions (expr_table));
460 if (htab_elements (expr_table) > 0)
462 fprintf (file, "\n\ntable entries:\n");
463 htab_traverse (expr_table, dump_hash_table_entry, file);
465 fprintf (file, "\n");
469 /* Return nonzero if the operands of expression X are unchanged from the
470 start of INSN's basic block up to but not including INSN if AFTER_INSN
471 is false, or from INSN to the end of INSN's basic block if AFTER_INSN
472 is true. */
474 static bool
475 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
477 int i, j;
478 enum rtx_code code;
479 const char *fmt;
481 if (x == 0)
482 return 1;
484 code = GET_CODE (x);
485 switch (code)
487 case REG:
488 #ifdef ENABLE_CHECKING
489 /* We are called after register allocation. */
490 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
491 abort ();
492 #endif
493 if (after_insn)
494 /* If the last CUID setting the insn is less than the CUID of
495 INSN, then reg X is not changed in or after INSN. */
496 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
497 else
498 /* Reg X is not set before INSN in the current basic block if
499 we have not yet recorded the CUID of an insn that touches
500 the reg. */
501 return reg_avail_info[REGNO (x)] == 0;
503 case MEM:
504 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
505 return 0;
506 else
507 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
509 case PC:
510 case CC0: /*FIXME*/
511 case CONST:
512 case CONST_INT:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case SYMBOL_REF:
516 case LABEL_REF:
517 case ADDR_VEC:
518 case ADDR_DIFF_VEC:
519 return 1;
521 case PRE_DEC:
522 case PRE_INC:
523 case POST_DEC:
524 case POST_INC:
525 case PRE_MODIFY:
526 case POST_MODIFY:
527 if (after_insn)
528 return 0;
529 break;
531 default:
532 break;
535 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
537 if (fmt[i] == 'e')
539 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
540 return 0;
542 else if (fmt[i] == 'E')
543 for (j = 0; j < XVECLEN (x, i); j++)
544 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
545 return 0;
548 return 1;
552 /* Used for communication between find_mem_conflicts and
553 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
554 conflict between two memory references.
555 This is a bit of a hack to work around the limitations of note_stores. */
556 static int mems_conflict_p;
558 /* DEST is the output of an instruction. If it is a memory reference, and
559 possibly conflicts with the load found in DATA, then set mems_conflict_p
560 to a nonzero value. */
562 static void
563 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
564 void *data)
566 rtx mem_op = (rtx) data;
568 while (GET_CODE (dest) == SUBREG
569 || GET_CODE (dest) == ZERO_EXTRACT
570 || GET_CODE (dest) == SIGN_EXTRACT
571 || GET_CODE (dest) == STRICT_LOW_PART)
572 dest = XEXP (dest, 0);
574 /* If DEST is not a MEM, then it will not conflict with the load. Note
575 that function calls are assumed to clobber memory, but are handled
576 elsewhere. */
577 if (! MEM_P (dest))
578 return;
580 if (true_dependence (dest, GET_MODE (dest), mem_op,
581 rtx_addr_varies_p))
582 mems_conflict_p = 1;
586 /* Return nonzero if the expression in X (a memory reference) is killed
587 in block BB before if (AFTER_INSN is false) or after (if AFTER_INSN
588 is true) the insn with the CUID in UID_LIMIT. */
590 static int
591 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
593 struct modifies_mem *list_entry = modifies_mem_list;
595 while (list_entry)
597 rtx setter = list_entry->insn;
599 /* Ignore entries in the list that do not apply. */
600 if ((after_insn
601 && INSN_CUID (setter) < uid_limit)
602 || (! after_insn
603 && INSN_CUID (setter) > uid_limit))
605 list_entry = list_entry->next;
606 continue;
609 /* If SETTER is a call everything is clobbered. Note that calls
610 to pure functions are never put on the list, so we need not
611 worry about them. */
612 if (CALL_P (setter))
613 return 1;
615 /* SETTER must be an insn of some kind that sets memory. Call
616 note_stores to examine each hunk of memory that is modified.
617 It will set mems_conflict_p to nonzero if there may be a
618 conflict between X and SETTER. */
619 mems_conflict_p = 0;
620 note_stores (PATTERN (setter), find_mem_conflicts, x);
621 if (mems_conflict_p)
622 return 1;
624 list_entry = list_entry->next;
626 return 0;
630 /* Record register first/last/block set information for REGNO in INSN. */
632 static void
633 record_last_reg_set_info (rtx insn, int regno)
635 reg_avail_info[regno] = INSN_CUID (insn);
639 /* Record memory modification information for INSN. We do not actually care
640 about the memory location(s) that are set, or even how they are set (consider
641 a CALL_INSN). We merely need to record which insns modify memory. */
643 static void
644 record_last_mem_set_info (rtx insn)
646 struct modifies_mem *list_entry;
648 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
649 sizeof (struct modifies_mem));
650 list_entry->insn = insn;
651 list_entry->next = modifies_mem_list;
652 modifies_mem_list = list_entry;
655 /* Called from compute_hash_table via note_stores to handle one
656 SET or CLOBBER in an insn. DATA is really the instruction in which
657 the SET is taking place. */
659 static void
660 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
662 rtx last_set_insn = (rtx) data;
664 if (GET_CODE (dest) == SUBREG)
665 dest = SUBREG_REG (dest);
667 if (REG_P (dest))
668 record_last_reg_set_info (last_set_insn, REGNO (dest));
669 else if (MEM_P (dest)
670 /* Ignore pushes, they clobber nothing. */
671 && ! push_operand (dest, GET_MODE (dest)))
672 record_last_mem_set_info (last_set_insn);
676 /* Reset tables used to keep track of what's still available since the
677 start of the block. */
679 static void
680 reset_opr_set_tables (void)
682 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
683 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
684 modifies_mem_list = NULL;
687 /* Mark things set by a CALL. */
689 static void
690 mark_call (rtx insn)
692 if (! CONST_OR_PURE_CALL_P (insn))
693 record_last_mem_set_info (insn);
696 /* Mark things set by a SET. */
698 static void
699 mark_set (rtx pat, rtx insn)
701 rtx dest = SET_DEST (pat);
703 while (GET_CODE (dest) == SUBREG
704 || GET_CODE (dest) == ZERO_EXTRACT
705 || GET_CODE (dest) == SIGN_EXTRACT
706 || GET_CODE (dest) == STRICT_LOW_PART)
707 dest = XEXP (dest, 0);
709 if (REG_P (dest))
710 record_last_reg_set_info (insn, REGNO (dest));
711 else if (MEM_P (dest))
712 record_last_mem_set_info (insn);
714 if (GET_CODE (SET_SRC (pat)) == CALL)
715 mark_call (insn);
718 /* Record things set by a CLOBBER. */
720 static void
721 mark_clobber (rtx pat, rtx insn)
723 rtx clob = XEXP (pat, 0);
725 while (GET_CODE (clob) == SUBREG
726 || GET_CODE (clob) == STRICT_LOW_PART)
727 clob = XEXP (clob, 0);
729 if (REG_P (clob))
730 record_last_reg_set_info (insn, REGNO (clob));
731 else
732 record_last_mem_set_info (insn);
735 /* Record things set by INSN.
736 This data is used by oprs_unchanged_p. */
738 static void
739 mark_oprs_set (rtx insn)
741 rtx pat = PATTERN (insn);
742 int i;
744 if (GET_CODE (pat) == SET)
745 mark_set (pat, insn);
747 else if (GET_CODE (pat) == PARALLEL)
748 for (i = 0; i < XVECLEN (pat, 0); i++)
750 rtx x = XVECEXP (pat, 0, i);
752 if (GET_CODE (x) == SET)
753 mark_set (x, insn);
754 else if (GET_CODE (x) == CLOBBER)
755 mark_clobber (x, insn);
756 else if (GET_CODE (x) == CALL)
757 mark_call (insn);
760 else if (GET_CODE (pat) == CLOBBER)
761 mark_clobber (pat, insn);
763 else if (GET_CODE (pat) == CALL)
764 mark_call (insn);
768 /* Scan the pattern of INSN and add an entry to the hash TABLE.
769 After reload we are interested in loads/stores only. */
771 static void
772 hash_scan_set (rtx insn)
774 rtx pat = PATTERN (insn);
775 rtx src = SET_SRC (pat);
776 rtx dest = SET_DEST (pat);
778 /* We are only interested in loads and stores. */
779 if (! MEM_P (src) && ! MEM_P (dest))
780 return;
782 /* Don't mess with jumps and nops. */
783 if (JUMP_P (insn) || set_noop_p (pat))
784 return;
786 #ifdef ENABLE_CHEKCING
787 /* We shouldn't have any EH_REGION notes post reload. */
788 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
789 abort ();
790 #endif
792 if (REG_P (dest))
794 if (/* Don't GCSE something if we can't do a reg/reg copy. */
795 can_copy_p (GET_MODE (dest))
796 /* Is SET_SRC something we want to gcse? */
797 && general_operand (src, GET_MODE (src))
798 /* An expression is not available if its operands are
799 subsequently modified, including this insn. */
800 && oprs_unchanged_p (src, insn, true))
802 insert_expr_in_table (src, insn);
805 else if (REG_P (src))
807 /* Only record sets of pseudo-regs in the hash table. */
808 if (/* Don't GCSE something if we can't do a reg/reg copy. */
809 can_copy_p (GET_MODE (src))
810 /* Is SET_DEST something we want to gcse? */
811 && general_operand (dest, GET_MODE (dest))
812 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
813 /* Check if the memory expression is killed after insn. */
814 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
815 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
817 insert_expr_in_table (dest, insn);
822 /* Create hash table of memory expressions available at end of basic
823 blocks. */
825 static void
826 compute_hash_table (void)
828 basic_block bb;
830 FOR_EACH_BB (bb)
832 rtx insn;
833 unsigned int regno;
835 reset_opr_set_tables ();
837 /* First pass over the instructions records information used to
838 determine when registers and memory are first and last set. */
839 FOR_BB_INSNS (bb, insn)
841 if (! INSN_P (insn))
842 continue;
844 if (CALL_P (insn))
846 bool clobbers_all = false;
848 #ifdef NON_SAVING_SETJMP
849 if (NON_SAVING_SETJMP
850 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
851 clobbers_all = true;
852 #endif
854 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
855 if (clobbers_all
856 || TEST_HARD_REG_BIT (regs_invalidated_by_call,
857 regno))
858 record_last_reg_set_info (insn, regno);
860 if (! CONST_OR_PURE_CALL_P (insn))
861 record_last_mem_set_info (insn);
864 note_stores (PATTERN (insn), record_last_set_info, insn);
866 if (GET_CODE (PATTERN (insn)) == SET)
868 rtx src, dest;
870 src = SET_SRC (PATTERN (insn));
871 dest = SET_DEST (PATTERN (insn));
872 if (MEM_P (src) && auto_inc_p (XEXP (src, 0)))
874 regno = REGNO (XEXP (XEXP (src, 0), 0));
875 record_last_reg_set_info (insn, regno);
877 if (MEM_P (dest) && auto_inc_p (XEXP (dest, 0)))
879 regno = REGNO (XEXP (XEXP (dest, 0), 0));
880 record_last_reg_set_info (insn, regno);
885 /* The next pass builds the hash table. */
886 FOR_BB_INSNS (bb, insn)
887 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
888 hash_scan_set (insn);
893 /* Check if register REG is killed in any insn waiting to be inserted on
894 edge E. This function is required to check that our data flow analysis
895 is still valid prior to commit_edge_insertions. */
897 static bool
898 reg_killed_on_edge (rtx reg, edge e)
900 rtx insn;
902 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
903 if (INSN_P (insn) && reg_set_p (reg, insn))
904 return true;
906 return false;
909 /* Similar to above - check if register REG is used in any insn waiting
910 to be inserted on edge E.
911 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
912 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
914 static bool
915 reg_used_on_edge (rtx reg, edge e)
917 rtx insn;
919 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
920 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
921 return true;
923 return false;
927 /* Return the insn that sets register REG or clobbers it in between
928 FROM_INSN and TO_INSN (exclusive of those two).
929 Just like reg_set_between but for hard registers and not pseudos. */
931 static rtx
932 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
934 rtx insn;
935 int regno;
937 #ifdef ENABLE_CHECKING
938 /* We are called after register allocation. */
939 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
940 abort ();
941 #endif
943 if (from_insn == to_insn)
944 return NULL_RTX;
946 regno = REGNO (reg);
947 for (insn = NEXT_INSN (from_insn);
948 insn != to_insn;
949 insn = NEXT_INSN (insn))
951 if (INSN_P (insn))
953 if (FIND_REG_INC_NOTE (insn, reg)
954 || (CALL_P (insn)
955 && call_used_regs[regno])
956 || find_reg_fusage (insn, CLOBBER, reg))
957 return insn;
959 if (set_of (reg, insn) != NULL_RTX)
960 return insn;
963 return NULL_RTX;
966 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
967 (exclusive of those two). Similar to reg_used_between but for hard
968 registers and not pseudos. */
970 static rtx
971 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
973 rtx insn;
974 int regno;
976 #ifdef ENABLE_CHECKING
977 /* We are called after register allocation. */
978 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
979 abort ();
980 #endif
982 if (from_insn == to_insn)
983 return NULL_RTX;
985 regno = REGNO (reg);
986 for (insn = NEXT_INSN (from_insn);
987 insn != to_insn;
988 insn = NEXT_INSN (insn))
989 if (INSN_P (insn)
990 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
991 || (CALL_P (insn)
992 && call_used_regs[regno])
993 || find_reg_fusage (insn, USE, reg)
994 || find_reg_fusage (insn, CLOBBER, reg)))
995 return insn;
997 return NULL_RTX;
1000 /* Return true if REG is used, set, or killed between the beginning of
1001 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
1003 static bool
1004 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
1006 rtx insn, start = PREV_INSN (BB_HEAD (bb));
1008 if (reg_avail_info[REGNO (reg)] != 0)
1009 return true;
1011 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
1012 if (! insn)
1013 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
1015 if (insn)
1016 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
1018 return insn != NULL_RTX;
1021 /* Return the loaded/stored register of a load/store instruction. */
1023 static rtx
1024 get_avail_load_store_reg (rtx insn)
1026 if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
1027 return SET_DEST(PATTERN(insn));
1028 if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
1029 return SET_SRC (PATTERN (insn));
1030 abort ();
1033 /* Return nonzero if the predecessors of BB are "well behaved". */
1035 static bool
1036 bb_has_well_behaved_predecessors (basic_block bb)
1038 edge pred;
1040 if (! bb->pred)
1041 return false;
1043 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
1045 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
1046 return false;
1048 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
1049 return false;
1051 return true;
1055 /* Search for the occurrences of expression in BB. */
1057 static struct occr*
1058 get_bb_avail_insn (basic_block bb, struct occr *occr)
1060 for (; occr != NULL; occr = occr->next)
1061 if (BLOCK_FOR_INSN (occr->insn) == bb)
1062 return occr;
1063 return NULL;
1067 /* This handles the case where several stores feed a partially redundant
1068 load. It checks if the redundancy elimination is possible and if it's
1069 worth it. */
1071 static void
1072 eliminate_partially_redundant_load (basic_block bb, rtx insn,
1073 struct expr *expr)
1075 edge pred;
1076 rtx avail_insn = NULL_RTX;
1077 rtx avail_reg;
1078 rtx dest, pat;
1079 struct occr *a_occr;
1080 struct unoccr *occr, *avail_occrs = NULL;
1081 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1082 int npred_ok = 0;
1083 gcov_type ok_count = 0; /* Redundant load execution count. */
1084 gcov_type critical_count = 0; /* Execution count of critical edges. */
1086 /* The execution count of the loads to be added to make the
1087 load fully redundant. */
1088 gcov_type not_ok_count = 0;
1089 basic_block pred_bb;
1091 pat = PATTERN (insn);
1092 dest = SET_DEST (pat);
1094 /* Check that the loaded register is not used, set, or killed from the
1095 beginning of the block. */
1096 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1097 return;
1099 /* Check potential for replacing load with copy for predecessors. */
1100 for (pred = bb->pred; pred; pred = pred->pred_next)
1102 rtx next_pred_bb_end;
1104 avail_insn = NULL_RTX;
1105 pred_bb = pred->src;
1106 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1107 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1108 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1110 /* Check if the loaded register is not used. */
1111 avail_insn = a_occr->insn;
1112 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
1113 abort ();
1114 /* Make sure we can generate a move from register avail_reg to
1115 dest. */
1116 extract_insn (gen_move_insn (copy_rtx (dest),
1117 copy_rtx (avail_reg)));
1118 if (! constrain_operands (1)
1119 || reg_killed_on_edge (avail_reg, pred)
1120 || reg_used_on_edge (dest, pred))
1122 avail_insn = NULL;
1123 continue;
1125 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1126 next_pred_bb_end))
1127 /* AVAIL_INSN remains non-null. */
1128 break;
1129 else
1130 avail_insn = NULL;
1133 if (EDGE_CRITICAL_P (pred))
1134 critical_count += pred->count;
1136 if (avail_insn != NULL_RTX)
1138 npred_ok++;
1139 ok_count += pred->count;
1140 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1141 sizeof (struct occr));
1142 occr->insn = avail_insn;
1143 occr->pred = pred;
1144 occr->next = avail_occrs;
1145 avail_occrs = occr;
1146 if (! rollback_unoccr)
1147 rollback_unoccr = occr;
1149 else
1151 not_ok_count += pred->count;
1152 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1153 sizeof (struct unoccr));
1154 unoccr->insn = NULL_RTX;
1155 unoccr->pred = pred;
1156 unoccr->next = unavail_occrs;
1157 unavail_occrs = unoccr;
1158 if (! rollback_unoccr)
1159 rollback_unoccr = unoccr;
1163 if (/* No load can be replaced by copy. */
1164 npred_ok == 0
1165 /* Prevent exploding the code. */
1166 || (optimize_size && npred_ok > 1))
1167 goto cleanup;
1169 /* Check if it's worth applying the partial redundancy elimination. */
1170 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1171 goto cleanup;
1172 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1173 goto cleanup;
1175 /* Generate moves to the loaded register from where
1176 the memory is available. */
1177 for (occr = avail_occrs; occr; occr = occr->next)
1179 avail_insn = occr->insn;
1180 pred = occr->pred;
1181 /* Set avail_reg to be the register having the value of the
1182 memory. */
1183 avail_reg = get_avail_load_store_reg (avail_insn);
1184 if (! avail_reg)
1185 abort ();
1187 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1188 copy_rtx (avail_reg)),
1189 pred);
1190 stats.moves_inserted++;
1192 if (dump_file)
1193 fprintf (dump_file,
1194 "generating move from %d to %d on edge from %d to %d\n",
1195 REGNO (avail_reg),
1196 REGNO (dest),
1197 pred->src->index,
1198 pred->dest->index);
1201 /* Regenerate loads where the memory is unavailable. */
1202 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1204 pred = unoccr->pred;
1205 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1206 stats.copies_inserted++;
1208 if (dump_file)
1210 fprintf (dump_file,
1211 "generating on edge from %d to %d a copy of load: ",
1212 pred->src->index,
1213 pred->dest->index);
1214 print_rtl (dump_file, PATTERN (insn));
1215 fprintf (dump_file, "\n");
1219 /* Delete the insn if it is not available in this block and mark it
1220 for deletion if it is available. If insn is available it may help
1221 discover additional redundancies, so mark it for later deletion. */
1222 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1223 a_occr && (a_occr->insn != insn);
1224 a_occr = get_bb_avail_insn (bb, a_occr->next));
1226 if (!a_occr)
1227 delete_insn (insn);
1228 else
1229 a_occr->deleted_p = 1;
1231 cleanup:
1232 if (rollback_unoccr)
1233 obstack_free (&unoccr_obstack, rollback_unoccr);
1236 /* Performing the redundancy elimination as described before. */
1238 static void
1239 eliminate_partially_redundant_loads (void)
1241 rtx insn;
1242 basic_block bb;
1244 /* Note we start at block 1. */
1246 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1247 return;
1249 FOR_BB_BETWEEN (bb,
1250 ENTRY_BLOCK_PTR->next_bb->next_bb,
1251 EXIT_BLOCK_PTR,
1252 next_bb)
1254 if (! bb_has_well_behaved_predecessors (bb))
1255 continue;
1257 /* Do not try this optimization on cold basic blocks. */
1258 if (probably_cold_bb_p (bb))
1259 continue;
1261 reset_opr_set_tables ();
1263 FOR_BB_INSNS (bb, insn)
1265 /* Is it a load - of the form (set (reg) (mem))? */
1266 if (NONJUMP_INSN_P (insn)
1267 && GET_CODE (PATTERN (insn)) == SET
1268 && REG_P (SET_DEST (PATTERN (insn)))
1269 && MEM_P (SET_SRC (PATTERN (insn))))
1271 rtx pat = PATTERN (insn);
1272 rtx src = SET_SRC (pat);
1273 struct expr *expr;
1275 if (!MEM_VOLATILE_P (src)
1276 && GET_MODE (src) != BLKmode
1277 && general_operand (src, GET_MODE (src))
1278 /* Are the operands unchanged since the start of the
1279 block? */
1280 && oprs_unchanged_p (src, insn, false)
1281 && !(flag_non_call_exceptions && may_trap_p (src))
1282 && !side_effects_p (src)
1283 /* Is the expression recorded? */
1284 && (expr = lookup_expr_in_table (src)) != NULL)
1286 /* We now have a load (insn) and an available memory at
1287 its BB start (expr). Try to remove the loads if it is
1288 redundant. */
1289 eliminate_partially_redundant_load (bb, insn, expr);
1293 /* Keep track of everything modified by this insn. */
1294 if (INSN_P (insn))
1295 mark_oprs_set (insn);
1299 commit_edge_insertions ();
1302 /* Go over the expression hash table and delete insns that were
1303 marked for later deletion. */
1305 /* This helper is called via htab_traverse. */
1306 static int
1307 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1309 struct expr *expr = (struct expr *) *slot;
1310 struct occr *occr;
1312 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1314 if (occr->deleted_p)
1316 delete_insn (occr->insn);
1317 stats.insns_deleted++;
1319 if (dump_file)
1321 fprintf (dump_file, "deleting insn:\n");
1322 print_rtl_single (dump_file, occr->insn);
1323 fprintf (dump_file, "\n");
1328 return 1;
1331 static void
1332 delete_redundant_insns (void)
1334 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1335 if (dump_file)
1336 fprintf (dump_file, "\n");
1339 /* Main entry point of the GCSE after reload - clean some redundant loads
1340 due to spilling. */
1342 void
1343 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1345 memset (&stats, 0, sizeof (stats));
1347 /* Allocate ememory for this pass.
1348 Also computes and initializes the insns' CUIDs. */
1349 alloc_mem ();
1351 /* We need alias analysis. */
1352 init_alias_analysis ();
1354 compute_hash_table ();
1356 if (dump_file)
1357 dump_hash_table (dump_file);
1359 if (htab_elements (expr_table) > 0)
1361 eliminate_partially_redundant_loads ();
1362 delete_redundant_insns ();
1364 if (dump_file)
1366 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1367 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1368 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1369 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1370 fprintf (dump_file, "\n\n");
1374 /* We are finished with alias. */
1375 end_alias_analysis ();
1377 free_mem ();