1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
41 # include <valgrind.h>
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
51 # undef HAVE_MMAP_DEV_ZERO
53 # include <sys/mman.h>
55 # define MAP_FAILED -1
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
64 #ifdef HAVE_MMAP_DEV_ZERO
66 # include <sys/mman.h>
68 # define MAP_FAILED -1
75 #define USING_MALLOC_PAGE_GROUPS
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
126 msb +----------------+----+------+------+ lsb
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
172 /* The number of extra orders, not corresponding to power-of-two sized
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
187 static const size_t extra_order_size_table
[] = {
188 sizeof (struct stmt_ann_d
),
189 sizeof (struct tree_decl
),
190 sizeof (struct tree_list
),
192 RTL_SIZE (2), /* MEM, PLUS, etc. */
193 RTL_SIZE (9), /* INSN */
196 /* The total number of orders. */
198 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
200 /* We use this structure to determine the alignment required for
201 allocations. For power-of-two sized allocations, that's not a
202 problem, but it does matter for odd-sized allocations. */
204 struct max_alignment
{
212 /* The biggest alignment required. */
214 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
216 /* Compute the smallest nonnegative number which when added to X gives
219 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
221 /* Compute the smallest multiple of F that is >= X. */
223 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
225 /* The Ith entry is the number of objects on a page or order I. */
227 static unsigned objects_per_page_table
[NUM_ORDERS
];
229 /* The Ith entry is the size of an object on a page of order I. */
231 static size_t object_size_table
[NUM_ORDERS
];
233 /* The Ith entry is a pair of numbers (mult, shift) such that
234 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
235 for all k evenly divisible by OBJECT_SIZE(I). */
242 inverse_table
[NUM_ORDERS
];
244 /* A page_entry records the status of an allocation page. This
245 structure is dynamically sized to fit the bitmap in_use_p. */
246 typedef struct page_entry
248 /* The next page-entry with objects of the same size, or NULL if
249 this is the last page-entry. */
250 struct page_entry
*next
;
252 /* The previous page-entry with objects of the same size, or NULL if
253 this is the first page-entry. The PREV pointer exists solely to
254 keep the cost of ggc_free manageable. */
255 struct page_entry
*prev
;
257 /* The number of bytes allocated. (This will always be a multiple
258 of the host system page size.) */
261 /* The address at which the memory is allocated. */
264 #ifdef USING_MALLOC_PAGE_GROUPS
265 /* Back pointer to the page group this page came from. */
266 struct page_group
*group
;
269 /* This is the index in the by_depth varray where this page table
271 unsigned long index_by_depth
;
273 /* Context depth of this page. */
274 unsigned short context_depth
;
276 /* The number of free objects remaining on this page. */
277 unsigned short num_free_objects
;
279 /* A likely candidate for the bit position of a free object for the
280 next allocation from this page. */
281 unsigned short next_bit_hint
;
283 /* The lg of size of objects allocated from this page. */
286 /* A bit vector indicating whether or not objects are in use. The
287 Nth bit is one if the Nth object on this page is allocated. This
288 array is dynamically sized. */
289 unsigned long in_use_p
[1];
292 #ifdef USING_MALLOC_PAGE_GROUPS
293 /* A page_group describes a large allocation from malloc, from which
294 we parcel out aligned pages. */
295 typedef struct page_group
297 /* A linked list of all extant page groups. */
298 struct page_group
*next
;
300 /* The address we received from malloc. */
303 /* The size of the block. */
306 /* A bitmask of pages in use. */
311 #if HOST_BITS_PER_PTR <= 32
313 /* On 32-bit hosts, we use a two level page table, as pictured above. */
314 typedef page_entry
**page_table
[PAGE_L1_SIZE
];
318 /* On 64-bit hosts, we use the same two level page tables plus a linked
319 list that disambiguates the top 32-bits. There will almost always be
320 exactly one entry in the list. */
321 typedef struct page_table_chain
323 struct page_table_chain
*next
;
325 page_entry
**table
[PAGE_L1_SIZE
];
330 /* The rest of the global variables. */
331 static struct globals
333 /* The Nth element in this array is a page with objects of size 2^N.
334 If there are any pages with free objects, they will be at the
335 head of the list. NULL if there are no page-entries for this
337 page_entry
*pages
[NUM_ORDERS
];
339 /* The Nth element in this array is the last page with objects of
340 size 2^N. NULL if there are no page-entries for this object
342 page_entry
*page_tails
[NUM_ORDERS
];
344 /* Lookup table for associating allocation pages with object addresses. */
347 /* The system's page size. */
351 /* Bytes currently allocated. */
354 /* Bytes currently allocated at the end of the last collection. */
355 size_t allocated_last_gc
;
357 /* Total amount of memory mapped. */
360 /* Bit N set if any allocations have been done at context depth N. */
361 unsigned long context_depth_allocations
;
363 /* Bit N set if any collections have been done at context depth N. */
364 unsigned long context_depth_collections
;
366 /* The current depth in the context stack. */
367 unsigned short context_depth
;
369 /* A file descriptor open to /dev/zero for reading. */
370 #if defined (HAVE_MMAP_DEV_ZERO)
374 /* A cache of free system pages. */
375 page_entry
*free_pages
;
377 #ifdef USING_MALLOC_PAGE_GROUPS
378 page_group
*page_groups
;
381 /* The file descriptor for debugging output. */
384 /* Current number of elements in use in depth below. */
385 unsigned int depth_in_use
;
387 /* Maximum number of elements that can be used before resizing. */
388 unsigned int depth_max
;
390 /* Each element of this arry is an index in by_depth where the given
391 depth starts. This structure is indexed by that given depth we
392 are interested in. */
395 /* Current number of elements in use in by_depth below. */
396 unsigned int by_depth_in_use
;
398 /* Maximum number of elements that can be used before resizing. */
399 unsigned int by_depth_max
;
401 /* Each element of this array is a pointer to a page_entry, all
402 page_entries can be found in here by increasing depth.
403 index_by_depth in the page_entry is the index into this data
404 structure where that page_entry can be found. This is used to
405 speed up finding all page_entries at a particular depth. */
406 page_entry
**by_depth
;
408 /* Each element is a pointer to the saved in_use_p bits, if any,
409 zero otherwise. We allocate them all together, to enable a
410 better runtime data access pattern. */
411 unsigned long **save_in_use
;
413 #ifdef ENABLE_GC_ALWAYS_COLLECT
414 /* List of free objects to be verified as actually free on the
419 struct free_object
*next
;
423 #ifdef GATHER_STATISTICS
426 /* Total memory allocated with ggc_alloc. */
427 unsigned long long total_allocated
;
428 /* Total overhead for memory to be allocated with ggc_alloc. */
429 unsigned long long total_overhead
;
431 /* Total allocations and overhead for sizes less than 32, 64 and 128.
432 These sizes are interesting because they are typical cache line
435 unsigned long long total_allocated_under32
;
436 unsigned long long total_overhead_under32
;
438 unsigned long long total_allocated_under64
;
439 unsigned long long total_overhead_under64
;
441 unsigned long long total_allocated_under128
;
442 unsigned long long total_overhead_under128
;
444 /* The allocations for each of the allocation orders. */
445 unsigned long long total_allocated_per_order
[NUM_ORDERS
];
447 /* The overhead for each of the allocation orders. */
448 unsigned long long total_overhead_per_order
[NUM_ORDERS
];
453 /* The size in bytes required to maintain a bitmap for the objects
455 #define BITMAP_SIZE(Num_objects) \
456 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
458 /* Allocate pages in chunks of this size, to throttle calls to memory
459 allocation routines. The first page is used, the rest go onto the
460 free list. This cannot be larger than HOST_BITS_PER_INT for the
461 in_use bitmask for page_group. */
462 #define GGC_QUIRE_SIZE 16
464 /* Initial guess as to how many page table entries we might need. */
465 #define INITIAL_PTE_COUNT 128
467 static int ggc_allocated_p (const void *);
468 static page_entry
*lookup_page_table_entry (const void *);
469 static void set_page_table_entry (void *, page_entry
*);
471 static char *alloc_anon (char *, size_t);
473 #ifdef USING_MALLOC_PAGE_GROUPS
474 static size_t page_group_index (char *, char *);
475 static void set_page_group_in_use (page_group
*, char *);
476 static void clear_page_group_in_use (page_group
*, char *);
478 static struct page_entry
* alloc_page (unsigned);
479 static void free_page (struct page_entry
*);
480 static void release_pages (void);
481 static void clear_marks (void);
482 static void sweep_pages (void);
483 static void ggc_recalculate_in_use_p (page_entry
*);
484 static void compute_inverse (unsigned);
485 static inline void adjust_depth (void);
486 static void move_ptes_to_front (int, int);
488 void debug_print_page_list (int);
489 static void push_depth (unsigned int);
490 static void push_by_depth (page_entry
*, unsigned long *);
491 struct alloc_zone
*rtl_zone
= NULL
;
492 struct alloc_zone
*tree_zone
= NULL
;
493 struct alloc_zone
*garbage_zone
= NULL
;
495 /* Push an entry onto G.depth. */
498 push_depth (unsigned int i
)
500 if (G
.depth_in_use
>= G
.depth_max
)
503 G
.depth
= xrealloc (G
.depth
, G
.depth_max
* sizeof (unsigned int));
505 G
.depth
[G
.depth_in_use
++] = i
;
508 /* Push an entry onto G.by_depth and G.save_in_use. */
511 push_by_depth (page_entry
*p
, unsigned long *s
)
513 if (G
.by_depth_in_use
>= G
.by_depth_max
)
516 G
.by_depth
= xrealloc (G
.by_depth
,
517 G
.by_depth_max
* sizeof (page_entry
*));
518 G
.save_in_use
= xrealloc (G
.save_in_use
,
519 G
.by_depth_max
* sizeof (unsigned long *));
521 G
.by_depth
[G
.by_depth_in_use
] = p
;
522 G
.save_in_use
[G
.by_depth_in_use
++] = s
;
525 #if (GCC_VERSION < 3001)
526 #define prefetch(X) ((void) X)
528 #define prefetch(X) __builtin_prefetch (X)
531 #define save_in_use_p_i(__i) \
533 #define save_in_use_p(__p) \
534 (save_in_use_p_i (__p->index_by_depth))
536 /* Returns nonzero if P was allocated in GC'able memory. */
539 ggc_allocated_p (const void *p
)
544 #if HOST_BITS_PER_PTR <= 32
547 page_table table
= G
.lookup
;
548 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
553 if (table
->high_bits
== high_bits
)
557 base
= &table
->table
[0];
560 /* Extract the level 1 and 2 indices. */
564 return base
[L1
] && base
[L1
][L2
];
567 /* Traverse the page table and find the entry for a page.
568 Die (probably) if the object wasn't allocated via GC. */
570 static inline page_entry
*
571 lookup_page_table_entry (const void *p
)
576 #if HOST_BITS_PER_PTR <= 32
579 page_table table
= G
.lookup
;
580 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
581 while (table
->high_bits
!= high_bits
)
583 base
= &table
->table
[0];
586 /* Extract the level 1 and 2 indices. */
593 /* Set the page table entry for a page. */
596 set_page_table_entry (void *p
, page_entry
*entry
)
601 #if HOST_BITS_PER_PTR <= 32
605 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
606 for (table
= G
.lookup
; table
; table
= table
->next
)
607 if (table
->high_bits
== high_bits
)
610 /* Not found -- allocate a new table. */
611 table
= xcalloc (1, sizeof(*table
));
612 table
->next
= G
.lookup
;
613 table
->high_bits
= high_bits
;
616 base
= &table
->table
[0];
619 /* Extract the level 1 and 2 indices. */
623 if (base
[L1
] == NULL
)
624 base
[L1
] = xcalloc (PAGE_L2_SIZE
, sizeof (page_entry
*));
626 base
[L1
][L2
] = entry
;
629 /* Prints the page-entry for object size ORDER, for debugging. */
632 debug_print_page_list (int order
)
635 printf ("Head=%p, Tail=%p:\n", (void *) G
.pages
[order
],
636 (void *) G
.page_tails
[order
]);
640 printf ("%p(%1d|%3d) -> ", (void *) p
, p
->context_depth
,
641 p
->num_free_objects
);
649 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
650 (if non-null). The ifdef structure here is intended to cause a
651 compile error unless exactly one of the HAVE_* is defined. */
654 alloc_anon (char *pref ATTRIBUTE_UNUSED
, size_t size
)
656 #ifdef HAVE_MMAP_ANON
657 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
658 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
660 #ifdef HAVE_MMAP_DEV_ZERO
661 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
662 MAP_PRIVATE
, G
.dev_zero_fd
, 0);
665 if (page
== (char *) MAP_FAILED
)
667 perror ("virtual memory exhausted");
668 exit (FATAL_EXIT_CODE
);
671 /* Remember that we allocated this memory. */
672 G
.bytes_mapped
+= size
;
674 /* Pretend we don't have access to the allocated pages. We'll enable
675 access to smaller pieces of the area in ggc_alloc. Discard the
676 handle to avoid handle leak. */
677 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page
, size
));
682 #ifdef USING_MALLOC_PAGE_GROUPS
683 /* Compute the index for this page into the page group. */
686 page_group_index (char *allocation
, char *page
)
688 return (size_t) (page
- allocation
) >> G
.lg_pagesize
;
691 /* Set and clear the in_use bit for this page in the page group. */
694 set_page_group_in_use (page_group
*group
, char *page
)
696 group
->in_use
|= 1 << page_group_index (group
->allocation
, page
);
700 clear_page_group_in_use (page_group
*group
, char *page
)
702 group
->in_use
&= ~(1 << page_group_index (group
->allocation
, page
));
706 /* Allocate a new page for allocating objects of size 2^ORDER,
707 and return an entry for it. The entry is not added to the
708 appropriate page_table list. */
710 static inline struct page_entry
*
711 alloc_page (unsigned order
)
713 struct page_entry
*entry
, *p
, **pp
;
717 size_t page_entry_size
;
719 #ifdef USING_MALLOC_PAGE_GROUPS
723 num_objects
= OBJECTS_PER_PAGE (order
);
724 bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
725 page_entry_size
= sizeof (page_entry
) - sizeof (long) + bitmap_size
;
726 entry_size
= num_objects
* OBJECT_SIZE (order
);
727 if (entry_size
< G
.pagesize
)
728 entry_size
= G
.pagesize
;
733 /* Check the list of free pages for one we can use. */
734 for (pp
= &G
.free_pages
, p
= *pp
; p
; pp
= &p
->next
, p
= *pp
)
735 if (p
->bytes
== entry_size
)
740 /* Recycle the allocated memory from this page ... */
744 #ifdef USING_MALLOC_PAGE_GROUPS
748 /* ... and, if possible, the page entry itself. */
749 if (p
->order
== order
)
752 memset (entry
, 0, page_entry_size
);
758 else if (entry_size
== G
.pagesize
)
760 /* We want just one page. Allocate a bunch of them and put the
761 extras on the freelist. (Can only do this optimization with
762 mmap for backing store.) */
763 struct page_entry
*e
, *f
= G
.free_pages
;
766 page
= alloc_anon (NULL
, G
.pagesize
* GGC_QUIRE_SIZE
);
768 /* This loop counts down so that the chain will be in ascending
770 for (i
= GGC_QUIRE_SIZE
- 1; i
>= 1; i
--)
772 e
= xcalloc (1, page_entry_size
);
774 e
->bytes
= G
.pagesize
;
775 e
->page
= page
+ (i
<< G
.lg_pagesize
);
783 page
= alloc_anon (NULL
, entry_size
);
785 #ifdef USING_MALLOC_PAGE_GROUPS
788 /* Allocate a large block of memory and serve out the aligned
789 pages therein. This results in much less memory wastage
790 than the traditional implementation of valloc. */
792 char *allocation
, *a
, *enda
;
793 size_t alloc_size
, head_slop
, tail_slop
;
794 int multiple_pages
= (entry_size
== G
.pagesize
);
797 alloc_size
= GGC_QUIRE_SIZE
* G
.pagesize
;
799 alloc_size
= entry_size
+ G
.pagesize
- 1;
800 allocation
= xmalloc (alloc_size
);
802 page
= (char *) (((size_t) allocation
+ G
.pagesize
- 1) & -G
.pagesize
);
803 head_slop
= page
- allocation
;
805 tail_slop
= ((size_t) allocation
+ alloc_size
) & (G
.pagesize
- 1);
807 tail_slop
= alloc_size
- entry_size
- head_slop
;
808 enda
= allocation
+ alloc_size
- tail_slop
;
810 /* We allocated N pages, which are likely not aligned, leaving
811 us with N-1 usable pages. We plan to place the page_group
812 structure somewhere in the slop. */
813 if (head_slop
>= sizeof (page_group
))
814 group
= (page_group
*)page
- 1;
817 /* We magically got an aligned allocation. Too bad, we have
818 to waste a page anyway. */
822 tail_slop
+= G
.pagesize
;
824 gcc_assert (tail_slop
>= sizeof (page_group
));
825 group
= (page_group
*)enda
;
826 tail_slop
-= sizeof (page_group
);
829 /* Remember that we allocated this memory. */
830 group
->next
= G
.page_groups
;
831 group
->allocation
= allocation
;
832 group
->alloc_size
= alloc_size
;
834 G
.page_groups
= group
;
835 G
.bytes_mapped
+= alloc_size
;
837 /* If we allocated multiple pages, put the rest on the free list. */
840 struct page_entry
*e
, *f
= G
.free_pages
;
841 for (a
= enda
- G
.pagesize
; a
!= page
; a
-= G
.pagesize
)
843 e
= xcalloc (1, page_entry_size
);
845 e
->bytes
= G
.pagesize
;
857 entry
= xcalloc (1, page_entry_size
);
859 entry
->bytes
= entry_size
;
861 entry
->context_depth
= G
.context_depth
;
862 entry
->order
= order
;
863 entry
->num_free_objects
= num_objects
;
864 entry
->next_bit_hint
= 1;
866 G
.context_depth_allocations
|= (unsigned long)1 << G
.context_depth
;
868 #ifdef USING_MALLOC_PAGE_GROUPS
869 entry
->group
= group
;
870 set_page_group_in_use (group
, page
);
873 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
874 increment the hint. */
875 entry
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
876 = (unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
);
878 set_page_table_entry (page
, entry
);
880 if (GGC_DEBUG_LEVEL
>= 2)
881 fprintf (G
.debug_file
,
882 "Allocating page at %p, object size=%lu, data %p-%p\n",
883 (void *) entry
, (unsigned long) OBJECT_SIZE (order
), page
,
884 page
+ entry_size
- 1);
889 /* Adjust the size of G.depth so that no index greater than the one
890 used by the top of the G.by_depth is used. */
897 if (G
.by_depth_in_use
)
899 top
= G
.by_depth
[G
.by_depth_in_use
-1];
901 /* Peel back indices in depth that index into by_depth, so that
902 as new elements are added to by_depth, we note the indices
903 of those elements, if they are for new context depths. */
904 while (G
.depth_in_use
> (size_t)top
->context_depth
+1)
909 /* For a page that is no longer needed, put it on the free page list. */
912 free_page (page_entry
*entry
)
914 if (GGC_DEBUG_LEVEL
>= 2)
915 fprintf (G
.debug_file
,
916 "Deallocating page at %p, data %p-%p\n", (void *) entry
,
917 entry
->page
, entry
->page
+ entry
->bytes
- 1);
919 /* Mark the page as inaccessible. Discard the handle to avoid handle
921 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry
->page
, entry
->bytes
));
923 set_page_table_entry (entry
->page
, NULL
);
925 #ifdef USING_MALLOC_PAGE_GROUPS
926 clear_page_group_in_use (entry
->group
, entry
->page
);
929 if (G
.by_depth_in_use
> 1)
931 page_entry
*top
= G
.by_depth
[G
.by_depth_in_use
-1];
932 int i
= entry
->index_by_depth
;
934 /* We cannot free a page from a context deeper than the current
936 gcc_assert (entry
->context_depth
== top
->context_depth
);
938 /* Put top element into freed slot. */
940 G
.save_in_use
[i
] = G
.save_in_use
[G
.by_depth_in_use
-1];
941 top
->index_by_depth
= i
;
947 entry
->next
= G
.free_pages
;
948 G
.free_pages
= entry
;
951 /* Release the free page cache to the system. */
957 page_entry
*p
, *next
;
961 /* Gather up adjacent pages so they are unmapped together. */
972 while (p
&& p
->page
== start
+ len
)
981 G
.bytes_mapped
-= len
;
986 #ifdef USING_MALLOC_PAGE_GROUPS
990 /* Remove all pages from free page groups from the list. */
992 while ((p
= *pp
) != NULL
)
993 if (p
->group
->in_use
== 0)
1001 /* Remove all free page groups, and release the storage. */
1002 gp
= &G
.page_groups
;
1003 while ((g
= *gp
) != NULL
)
1007 G
.bytes_mapped
-= g
->alloc_size
;
1008 free (g
->allocation
);
1015 /* This table provides a fast way to determine ceil(log_2(size)) for
1016 allocation requests. The minimum allocation size is eight bytes. */
1018 static unsigned char size_lookup
[257] =
1020 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1021 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1022 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1023 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1024 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1025 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1026 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1027 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1028 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1029 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1030 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1031 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1032 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 /* Typed allocation function. Does nothing special in this collector. */
1042 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED
, size_t size
1045 return ggc_alloc_stat (size PASS_MEM_STAT
);
1048 /* Zone allocation function. Does nothing special in this collector. */
1051 ggc_alloc_zone_stat (size_t size
, struct alloc_zone
*zone ATTRIBUTE_UNUSED
1054 return ggc_alloc_stat (size PASS_MEM_STAT
);
1057 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1060 ggc_alloc_stat (size_t size MEM_STAT_DECL
)
1062 size_t order
, word
, bit
, object_offset
, object_size
;
1063 struct page_entry
*entry
;
1068 order
= size_lookup
[size
];
1069 object_size
= OBJECT_SIZE (order
);
1074 while (size
> (object_size
= OBJECT_SIZE (order
)))
1078 /* If there are non-full pages for this size allocation, they are at
1079 the head of the list. */
1080 entry
= G
.pages
[order
];
1082 /* If there is no page for this object size, or all pages in this
1083 context are full, allocate a new page. */
1084 if (entry
== NULL
|| entry
->num_free_objects
== 0)
1086 struct page_entry
*new_entry
;
1087 new_entry
= alloc_page (order
);
1089 new_entry
->index_by_depth
= G
.by_depth_in_use
;
1090 push_by_depth (new_entry
, 0);
1092 /* We can skip context depths, if we do, make sure we go all the
1093 way to the new depth. */
1094 while (new_entry
->context_depth
>= G
.depth_in_use
)
1095 push_depth (G
.by_depth_in_use
-1);
1097 /* If this is the only entry, it's also the tail. If it is not
1098 the only entry, then we must update the PREV pointer of the
1099 ENTRY (G.pages[order]) to point to our new page entry. */
1101 G
.page_tails
[order
] = new_entry
;
1103 entry
->prev
= new_entry
;
1105 /* Put new pages at the head of the page list. By definition the
1106 entry at the head of the list always has a NULL pointer. */
1107 new_entry
->next
= entry
;
1108 new_entry
->prev
= NULL
;
1110 G
.pages
[order
] = new_entry
;
1112 /* For a new page, we know the word and bit positions (in the
1113 in_use bitmap) of the first available object -- they're zero. */
1114 new_entry
->next_bit_hint
= 1;
1121 /* First try to use the hint left from the previous allocation
1122 to locate a clear bit in the in-use bitmap. We've made sure
1123 that the one-past-the-end bit is always set, so if the hint
1124 has run over, this test will fail. */
1125 unsigned hint
= entry
->next_bit_hint
;
1126 word
= hint
/ HOST_BITS_PER_LONG
;
1127 bit
= hint
% HOST_BITS_PER_LONG
;
1129 /* If the hint didn't work, scan the bitmap from the beginning. */
1130 if ((entry
->in_use_p
[word
] >> bit
) & 1)
1133 while (~entry
->in_use_p
[word
] == 0)
1135 while ((entry
->in_use_p
[word
] >> bit
) & 1)
1137 hint
= word
* HOST_BITS_PER_LONG
+ bit
;
1140 /* Next time, try the next bit. */
1141 entry
->next_bit_hint
= hint
+ 1;
1143 object_offset
= hint
* object_size
;
1146 /* Set the in-use bit. */
1147 entry
->in_use_p
[word
] |= ((unsigned long) 1 << bit
);
1149 /* Keep a running total of the number of free objects. If this page
1150 fills up, we may have to move it to the end of the list if the
1151 next page isn't full. If the next page is full, all subsequent
1152 pages are full, so there's no need to move it. */
1153 if (--entry
->num_free_objects
== 0
1154 && entry
->next
!= NULL
1155 && entry
->next
->num_free_objects
> 0)
1157 /* We have a new head for the list. */
1158 G
.pages
[order
] = entry
->next
;
1160 /* We are moving ENTRY to the end of the page table list.
1161 The new page at the head of the list will have NULL in
1162 its PREV field and ENTRY will have NULL in its NEXT field. */
1163 entry
->next
->prev
= NULL
;
1166 /* Append ENTRY to the tail of the list. */
1167 entry
->prev
= G
.page_tails
[order
];
1168 G
.page_tails
[order
]->next
= entry
;
1169 G
.page_tails
[order
] = entry
;
1172 /* Calculate the object's address. */
1173 result
= entry
->page
+ object_offset
;
1174 #ifdef GATHER_STATISTICS
1175 ggc_record_overhead (OBJECT_SIZE (order
), OBJECT_SIZE (order
) - size
,
1176 result PASS_MEM_STAT
);
1179 #ifdef ENABLE_GC_CHECKING
1180 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1181 exact same semantics in presence of memory bugs, regardless of
1182 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1183 handle to avoid handle leak. */
1184 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, object_size
));
1186 /* `Poison' the entire allocated object, including any padding at
1188 memset (result
, 0xaf, object_size
);
1190 /* Make the bytes after the end of the object unaccessible. Discard the
1191 handle to avoid handle leak. */
1192 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result
+ size
,
1193 object_size
- size
));
1196 /* Tell Valgrind that the memory is there, but its content isn't
1197 defined. The bytes at the end of the object are still marked
1199 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, size
));
1201 /* Keep track of how many bytes are being allocated. This
1202 information is used in deciding when to collect. */
1203 G
.allocated
+= object_size
;
1205 #ifdef GATHER_STATISTICS
1207 size_t overhead
= object_size
- size
;
1209 G
.stats
.total_overhead
+= overhead
;
1210 G
.stats
.total_allocated
+= object_size
;
1211 G
.stats
.total_overhead_per_order
[order
] += overhead
;
1212 G
.stats
.total_allocated_per_order
[order
] += object_size
;
1216 G
.stats
.total_overhead_under32
+= overhead
;
1217 G
.stats
.total_allocated_under32
+= object_size
;
1221 G
.stats
.total_overhead_under64
+= overhead
;
1222 G
.stats
.total_allocated_under64
+= object_size
;
1226 G
.stats
.total_overhead_under128
+= overhead
;
1227 G
.stats
.total_allocated_under128
+= object_size
;
1232 if (GGC_DEBUG_LEVEL
>= 3)
1233 fprintf (G
.debug_file
,
1234 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1235 (unsigned long) size
, (unsigned long) object_size
, result
,
1241 /* If P is not marked, marks it and return false. Otherwise return true.
1242 P must have been allocated by the GC allocator; it mustn't point to
1243 static objects, stack variables, or memory allocated with malloc. */
1246 ggc_set_mark (const void *p
)
1252 /* Look up the page on which the object is alloced. If the object
1253 wasn't allocated by the collector, we'll probably die. */
1254 entry
= lookup_page_table_entry (p
);
1257 /* Calculate the index of the object on the page; this is its bit
1258 position in the in_use_p bitmap. */
1259 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1260 word
= bit
/ HOST_BITS_PER_LONG
;
1261 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1263 /* If the bit was previously set, skip it. */
1264 if (entry
->in_use_p
[word
] & mask
)
1267 /* Otherwise set it, and decrement the free object count. */
1268 entry
->in_use_p
[word
] |= mask
;
1269 entry
->num_free_objects
-= 1;
1271 if (GGC_DEBUG_LEVEL
>= 4)
1272 fprintf (G
.debug_file
, "Marking %p\n", p
);
1277 /* Return 1 if P has been marked, zero otherwise.
1278 P must have been allocated by the GC allocator; it mustn't point to
1279 static objects, stack variables, or memory allocated with malloc. */
1282 ggc_marked_p (const void *p
)
1288 /* Look up the page on which the object is alloced. If the object
1289 wasn't allocated by the collector, we'll probably die. */
1290 entry
= lookup_page_table_entry (p
);
1293 /* Calculate the index of the object on the page; this is its bit
1294 position in the in_use_p bitmap. */
1295 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1296 word
= bit
/ HOST_BITS_PER_LONG
;
1297 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1299 return (entry
->in_use_p
[word
] & mask
) != 0;
1302 /* Return the size of the gc-able object P. */
1305 ggc_get_size (const void *p
)
1307 page_entry
*pe
= lookup_page_table_entry (p
);
1308 return OBJECT_SIZE (pe
->order
);
1311 /* Release the memory for object P. */
1316 page_entry
*pe
= lookup_page_table_entry (p
);
1317 size_t order
= pe
->order
;
1318 size_t size
= OBJECT_SIZE (order
);
1320 #ifdef GATHER_STATISTICS
1321 ggc_free_overhead (p
);
1324 if (GGC_DEBUG_LEVEL
>= 3)
1325 fprintf (G
.debug_file
,
1326 "Freeing object, actual size=%lu, at %p on %p\n",
1327 (unsigned long) size
, p
, (void *) pe
);
1329 #ifdef ENABLE_GC_CHECKING
1330 /* Poison the data, to indicate the data is garbage. */
1331 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p
, size
));
1332 memset (p
, 0xa5, size
);
1334 /* Let valgrind know the object is free. */
1335 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p
, size
));
1337 #ifdef ENABLE_GC_ALWAYS_COLLECT
1338 /* In the completely-anal-checking mode, we do *not* immediately free
1339 the data, but instead verify that the data is *actually* not
1340 reachable the next time we collect. */
1342 struct free_object
*fo
= xmalloc (sizeof (struct free_object
));
1344 fo
->next
= G
.free_object_list
;
1345 G
.free_object_list
= fo
;
1349 unsigned int bit_offset
, word
, bit
;
1351 G
.allocated
-= size
;
1353 /* Mark the object not-in-use. */
1354 bit_offset
= OFFSET_TO_BIT (((const char *) p
) - pe
->page
, order
);
1355 word
= bit_offset
/ HOST_BITS_PER_LONG
;
1356 bit
= bit_offset
% HOST_BITS_PER_LONG
;
1357 pe
->in_use_p
[word
] &= ~(1UL << bit
);
1359 if (pe
->num_free_objects
++ == 0)
1363 /* If the page is completely full, then it's supposed to
1364 be after all pages that aren't. Since we've freed one
1365 object from a page that was full, we need to move the
1366 page to the head of the list.
1368 PE is the node we want to move. Q is the previous node
1369 and P is the next node in the list. */
1371 if (q
&& q
->num_free_objects
== 0)
1377 /* If PE was at the end of the list, then Q becomes the
1378 new end of the list. If PE was not the end of the
1379 list, then we need to update the PREV field for P. */
1381 G
.page_tails
[order
] = q
;
1385 /* Move PE to the head of the list. */
1386 pe
->next
= G
.pages
[order
];
1388 G
.pages
[order
]->prev
= pe
;
1389 G
.pages
[order
] = pe
;
1392 /* Reset the hint bit to point to the only free object. */
1393 pe
->next_bit_hint
= bit_offset
;
1399 /* Subroutine of init_ggc which computes the pair of numbers used to
1400 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1402 This algorithm is taken from Granlund and Montgomery's paper
1403 "Division by Invariant Integers using Multiplication"
1404 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1408 compute_inverse (unsigned order
)
1413 size
= OBJECT_SIZE (order
);
1415 while (size
% 2 == 0)
1422 while (inv
* size
!= 1)
1423 inv
= inv
* (2 - inv
*size
);
1425 DIV_MULT (order
) = inv
;
1426 DIV_SHIFT (order
) = e
;
1429 /* Initialize the ggc-mmap allocator. */
1435 G
.pagesize
= getpagesize();
1436 G
.lg_pagesize
= exact_log2 (G
.pagesize
);
1438 #ifdef HAVE_MMAP_DEV_ZERO
1439 G
.dev_zero_fd
= open ("/dev/zero", O_RDONLY
);
1440 if (G
.dev_zero_fd
== -1)
1441 internal_error ("open /dev/zero: %m");
1445 G
.debug_file
= fopen ("ggc-mmap.debug", "w");
1447 G
.debug_file
= stdout
;
1451 /* StunOS has an amazing off-by-one error for the first mmap allocation
1452 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1453 believe, is an unaligned page allocation, which would cause us to
1454 hork badly if we tried to use it. */
1456 char *p
= alloc_anon (NULL
, G
.pagesize
);
1457 struct page_entry
*e
;
1458 if ((size_t)p
& (G
.pagesize
- 1))
1460 /* How losing. Discard this one and try another. If we still
1461 can't get something useful, give up. */
1463 p
= alloc_anon (NULL
, G
.pagesize
);
1464 gcc_assert (!((size_t)p
& (G
.pagesize
- 1)));
1467 /* We have a good page, might as well hold onto it... */
1468 e
= xcalloc (1, sizeof (struct page_entry
));
1469 e
->bytes
= G
.pagesize
;
1471 e
->next
= G
.free_pages
;
1476 /* Initialize the object size table. */
1477 for (order
= 0; order
< HOST_BITS_PER_PTR
; ++order
)
1478 object_size_table
[order
] = (size_t) 1 << order
;
1479 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1481 size_t s
= extra_order_size_table
[order
- HOST_BITS_PER_PTR
];
1483 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1484 so that we're sure of getting aligned memory. */
1485 s
= ROUND_UP (s
, MAX_ALIGNMENT
);
1486 object_size_table
[order
] = s
;
1489 /* Initialize the objects-per-page and inverse tables. */
1490 for (order
= 0; order
< NUM_ORDERS
; ++order
)
1492 objects_per_page_table
[order
] = G
.pagesize
/ OBJECT_SIZE (order
);
1493 if (objects_per_page_table
[order
] == 0)
1494 objects_per_page_table
[order
] = 1;
1495 compute_inverse (order
);
1498 /* Reset the size_lookup array to put appropriately sized objects in
1499 the special orders. All objects bigger than the previous power
1500 of two, but no greater than the special size, should go in the
1502 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1507 o
= size_lookup
[OBJECT_SIZE (order
)];
1508 for (i
= OBJECT_SIZE (order
); size_lookup
[i
] == o
; --i
)
1509 size_lookup
[i
] = order
;
1514 G
.depth
= xmalloc (G
.depth_max
* sizeof (unsigned int));
1516 G
.by_depth_in_use
= 0;
1517 G
.by_depth_max
= INITIAL_PTE_COUNT
;
1518 G
.by_depth
= xmalloc (G
.by_depth_max
* sizeof (page_entry
*));
1519 G
.save_in_use
= xmalloc (G
.by_depth_max
* sizeof (unsigned long *));
1522 /* Start a new GGC zone. */
1525 new_ggc_zone (const char *name ATTRIBUTE_UNUSED
)
1530 /* Destroy a GGC zone. */
1532 destroy_ggc_zone (struct alloc_zone
*zone ATTRIBUTE_UNUSED
)
1536 /* Increment the `GC context'. Objects allocated in an outer context
1537 are never freed, eliminating the need to register their roots. */
1540 ggc_push_context (void)
1545 gcc_assert (G
.context_depth
< HOST_BITS_PER_LONG
);
1548 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1549 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1552 ggc_recalculate_in_use_p (page_entry
*p
)
1557 /* Because the past-the-end bit in in_use_p is always set, we
1558 pretend there is one additional object. */
1559 num_objects
= OBJECTS_IN_PAGE (p
) + 1;
1561 /* Reset the free object count. */
1562 p
->num_free_objects
= num_objects
;
1564 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1566 i
< CEIL (BITMAP_SIZE (num_objects
),
1567 sizeof (*p
->in_use_p
));
1572 /* Something is in use if it is marked, or if it was in use in a
1573 context further down the context stack. */
1574 p
->in_use_p
[i
] |= save_in_use_p (p
)[i
];
1576 /* Decrement the free object count for every object allocated. */
1577 for (j
= p
->in_use_p
[i
]; j
; j
>>= 1)
1578 p
->num_free_objects
-= (j
& 1);
1581 gcc_assert (p
->num_free_objects
< num_objects
);
1584 /* Decrement the `GC context'. All objects allocated since the
1585 previous ggc_push_context are migrated to the outer context. */
1588 ggc_pop_context (void)
1590 unsigned long omask
;
1591 unsigned int depth
, i
, e
;
1592 #ifdef ENABLE_CHECKING
1596 depth
= --G
.context_depth
;
1597 omask
= (unsigned long)1 << (depth
+ 1);
1599 if (!((G
.context_depth_allocations
| G
.context_depth_collections
) & omask
))
1602 G
.context_depth_allocations
|= (G
.context_depth_allocations
& omask
) >> 1;
1603 G
.context_depth_allocations
&= omask
- 1;
1604 G
.context_depth_collections
&= omask
- 1;
1606 /* The G.depth array is shortened so that the last index is the
1607 context_depth of the top element of by_depth. */
1608 if (depth
+1 < G
.depth_in_use
)
1609 e
= G
.depth
[depth
+1];
1611 e
= G
.by_depth_in_use
;
1613 /* We might not have any PTEs of depth depth. */
1614 if (depth
< G
.depth_in_use
)
1617 /* First we go through all the pages at depth depth to
1618 recalculate the in use bits. */
1619 for (i
= G
.depth
[depth
]; i
< e
; ++i
)
1621 page_entry
*p
= G
.by_depth
[i
];
1623 /* Check that all of the pages really are at the depth that
1625 gcc_assert (p
->context_depth
== depth
);
1626 gcc_assert (p
->index_by_depth
== i
);
1628 prefetch (&save_in_use_p_i (i
+8));
1629 prefetch (&save_in_use_p_i (i
+16));
1630 if (save_in_use_p_i (i
))
1633 ggc_recalculate_in_use_p (p
);
1634 free (save_in_use_p_i (i
));
1635 save_in_use_p_i (i
) = 0;
1640 /* Then, we reset all page_entries with a depth greater than depth
1642 for (i
= e
; i
< G
.by_depth_in_use
; ++i
)
1644 page_entry
*p
= G
.by_depth
[i
];
1646 /* Check that all of the pages really are at the depth we
1648 gcc_assert (p
->context_depth
> depth
);
1649 gcc_assert (p
->index_by_depth
== i
);
1650 p
->context_depth
= depth
;
1655 #ifdef ENABLE_CHECKING
1656 for (order
= 2; order
< NUM_ORDERS
; order
++)
1660 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1661 gcc_assert (p
->context_depth
< depth
||
1662 (p
->context_depth
== depth
&& !save_in_use_p (p
)));
1667 /* Unmark all objects. */
1674 for (order
= 2; order
< NUM_ORDERS
; order
++)
1678 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1680 size_t num_objects
= OBJECTS_IN_PAGE (p
);
1681 size_t bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
1683 /* The data should be page-aligned. */
1684 gcc_assert (!((size_t) p
->page
& (G
.pagesize
- 1)));
1686 /* Pages that aren't in the topmost context are not collected;
1687 nevertheless, we need their in-use bit vectors to store GC
1688 marks. So, back them up first. */
1689 if (p
->context_depth
< G
.context_depth
)
1691 if (! save_in_use_p (p
))
1692 save_in_use_p (p
) = xmalloc (bitmap_size
);
1693 memcpy (save_in_use_p (p
), p
->in_use_p
, bitmap_size
);
1696 /* Reset reset the number of free objects and clear the
1697 in-use bits. These will be adjusted by mark_obj. */
1698 p
->num_free_objects
= num_objects
;
1699 memset (p
->in_use_p
, 0, bitmap_size
);
1701 /* Make sure the one-past-the-end bit is always set. */
1702 p
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
1703 = ((unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
));
1708 /* Free all empty pages. Partially empty pages need no attention
1709 because the `mark' bit doubles as an `unused' bit. */
1716 for (order
= 2; order
< NUM_ORDERS
; order
++)
1718 /* The last page-entry to consider, regardless of entries
1719 placed at the end of the list. */
1720 page_entry
* const last
= G
.page_tails
[order
];
1723 size_t live_objects
;
1724 page_entry
*p
, *previous
;
1734 page_entry
*next
= p
->next
;
1736 /* Loop until all entries have been examined. */
1739 num_objects
= OBJECTS_IN_PAGE (p
);
1741 /* Add all live objects on this page to the count of
1742 allocated memory. */
1743 live_objects
= num_objects
- p
->num_free_objects
;
1745 G
.allocated
+= OBJECT_SIZE (order
) * live_objects
;
1747 /* Only objects on pages in the topmost context should get
1749 if (p
->context_depth
< G
.context_depth
)
1752 /* Remove the page if it's empty. */
1753 else if (live_objects
== 0)
1755 /* If P was the first page in the list, then NEXT
1756 becomes the new first page in the list, otherwise
1757 splice P out of the forward pointers. */
1759 G
.pages
[order
] = next
;
1761 previous
->next
= next
;
1763 /* Splice P out of the back pointers too. */
1765 next
->prev
= previous
;
1767 /* Are we removing the last element? */
1768 if (p
== G
.page_tails
[order
])
1769 G
.page_tails
[order
] = previous
;
1774 /* If the page is full, move it to the end. */
1775 else if (p
->num_free_objects
== 0)
1777 /* Don't move it if it's already at the end. */
1778 if (p
!= G
.page_tails
[order
])
1780 /* Move p to the end of the list. */
1782 p
->prev
= G
.page_tails
[order
];
1783 G
.page_tails
[order
]->next
= p
;
1785 /* Update the tail pointer... */
1786 G
.page_tails
[order
] = p
;
1788 /* ... and the head pointer, if necessary. */
1790 G
.pages
[order
] = next
;
1792 previous
->next
= next
;
1794 /* And update the backpointer in NEXT if necessary. */
1796 next
->prev
= previous
;
1802 /* If we've fallen through to here, it's a page in the
1803 topmost context that is neither full nor empty. Such a
1804 page must precede pages at lesser context depth in the
1805 list, so move it to the head. */
1806 else if (p
!= G
.pages
[order
])
1808 previous
->next
= p
->next
;
1810 /* Update the backchain in the next node if it exists. */
1812 p
->next
->prev
= previous
;
1814 /* Move P to the head of the list. */
1815 p
->next
= G
.pages
[order
];
1817 G
.pages
[order
]->prev
= p
;
1819 /* Update the head pointer. */
1822 /* Are we moving the last element? */
1823 if (G
.page_tails
[order
] == p
)
1824 G
.page_tails
[order
] = previous
;
1833 /* Now, restore the in_use_p vectors for any pages from contexts
1834 other than the current one. */
1835 for (p
= G
.pages
[order
]; p
; p
= p
->next
)
1836 if (p
->context_depth
!= G
.context_depth
)
1837 ggc_recalculate_in_use_p (p
);
1841 #ifdef ENABLE_GC_CHECKING
1842 /* Clobber all free objects. */
1849 for (order
= 2; order
< NUM_ORDERS
; order
++)
1851 size_t size
= OBJECT_SIZE (order
);
1854 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1859 if (p
->context_depth
!= G
.context_depth
)
1860 /* Since we don't do any collection for pages in pushed
1861 contexts, there's no need to do any poisoning. And
1862 besides, the IN_USE_P array isn't valid until we pop
1866 num_objects
= OBJECTS_IN_PAGE (p
);
1867 for (i
= 0; i
< num_objects
; i
++)
1870 word
= i
/ HOST_BITS_PER_LONG
;
1871 bit
= i
% HOST_BITS_PER_LONG
;
1872 if (((p
->in_use_p
[word
] >> bit
) & 1) == 0)
1874 char *object
= p
->page
+ i
* size
;
1876 /* Keep poison-by-write when we expect to use Valgrind,
1877 so the exact same memory semantics is kept, in case
1878 there are memory errors. We override this request
1880 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object
, size
));
1881 memset (object
, 0xa5, size
);
1883 /* Drop the handle to avoid handle leak. */
1884 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object
, size
));
1891 #define poison_pages()
1894 #ifdef ENABLE_GC_ALWAYS_COLLECT
1895 /* Validate that the reportedly free objects actually are. */
1898 validate_free_objects (void)
1900 struct free_object
*f
, *next
, *still_free
= NULL
;
1902 for (f
= G
.free_object_list
; f
; f
= next
)
1904 page_entry
*pe
= lookup_page_table_entry (f
->object
);
1907 bit
= OFFSET_TO_BIT ((char *)f
->object
- pe
->page
, pe
->order
);
1908 word
= bit
/ HOST_BITS_PER_LONG
;
1909 bit
= bit
% HOST_BITS_PER_LONG
;
1912 /* Make certain it isn't visible from any root. Notice that we
1913 do this check before sweep_pages merges save_in_use_p. */
1914 gcc_assert (!(pe
->in_use_p
[word
] & (1UL << bit
)));
1916 /* If the object comes from an outer context, then retain the
1917 free_object entry, so that we can verify that the address
1918 isn't live on the stack in some outer context. */
1919 if (pe
->context_depth
!= G
.context_depth
)
1921 f
->next
= still_free
;
1928 G
.free_object_list
= still_free
;
1931 #define validate_free_objects()
1934 /* Top level mark-and-sweep routine. */
1939 /* Avoid frequent unnecessary work by skipping collection if the
1940 total allocations haven't expanded much since the last
1942 float allocated_last_gc
=
1943 MAX (G
.allocated_last_gc
, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE
) * 1024);
1945 float min_expand
= allocated_last_gc
* PARAM_VALUE (GGC_MIN_EXPAND
) / 100;
1947 if (G
.allocated
< allocated_last_gc
+ min_expand
&& !ggc_force_collect
)
1950 timevar_push (TV_GC
);
1952 fprintf (stderr
, " {GC %luk -> ", (unsigned long) G
.allocated
/ 1024);
1953 if (GGC_DEBUG_LEVEL
>= 2)
1954 fprintf (G
.debug_file
, "BEGIN COLLECTING\n");
1956 /* Zero the total allocated bytes. This will be recalculated in the
1960 /* Release the pages we freed the last time we collected, but didn't
1961 reuse in the interim. */
1964 /* Indicate that we've seen collections at this context depth. */
1965 G
.context_depth_collections
= ((unsigned long)1 << (G
.context_depth
+ 1)) - 1;
1969 #ifdef GATHER_STATISTICS
1970 ggc_prune_overhead_list ();
1973 validate_free_objects ();
1976 G
.allocated_last_gc
= G
.allocated
;
1978 timevar_pop (TV_GC
);
1981 fprintf (stderr
, "%luk}", (unsigned long) G
.allocated
/ 1024);
1982 if (GGC_DEBUG_LEVEL
>= 2)
1983 fprintf (G
.debug_file
, "END COLLECTING\n");
1986 /* Print allocation statistics. */
1987 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1989 : ((x) < 1024*1024*10 \
1991 : (x) / (1024*1024))))
1992 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1995 ggc_print_statistics (void)
1997 struct ggc_statistics stats
;
1999 size_t total_overhead
= 0;
2001 /* Clear the statistics. */
2002 memset (&stats
, 0, sizeof (stats
));
2004 /* Make sure collection will really occur. */
2005 G
.allocated_last_gc
= 0;
2007 /* Collect and print the statistics common across collectors. */
2008 ggc_print_common_statistics (stderr
, &stats
);
2010 /* Release free pages so that we will not count the bytes allocated
2011 there as part of the total allocated memory. */
2014 /* Collect some information about the various sizes of
2017 "Memory still allocated at the end of the compilation process\n");
2018 fprintf (stderr
, "%-5s %10s %10s %10s\n",
2019 "Size", "Allocated", "Used", "Overhead");
2020 for (i
= 0; i
< NUM_ORDERS
; ++i
)
2027 /* Skip empty entries. */
2031 overhead
= allocated
= in_use
= 0;
2033 /* Figure out the total number of bytes allocated for objects of
2034 this size, and how many of them are actually in use. Also figure
2035 out how much memory the page table is using. */
2036 for (p
= G
.pages
[i
]; p
; p
= p
->next
)
2038 allocated
+= p
->bytes
;
2040 (OBJECTS_IN_PAGE (p
) - p
->num_free_objects
) * OBJECT_SIZE (i
);
2042 overhead
+= (sizeof (page_entry
) - sizeof (long)
2043 + BITMAP_SIZE (OBJECTS_IN_PAGE (p
) + 1));
2045 fprintf (stderr
, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2046 (unsigned long) OBJECT_SIZE (i
),
2047 SCALE (allocated
), STAT_LABEL (allocated
),
2048 SCALE (in_use
), STAT_LABEL (in_use
),
2049 SCALE (overhead
), STAT_LABEL (overhead
));
2050 total_overhead
+= overhead
;
2052 fprintf (stderr
, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2053 SCALE (G
.bytes_mapped
), STAT_LABEL (G
.bytes_mapped
),
2054 SCALE (G
.allocated
), STAT_LABEL(G
.allocated
),
2055 SCALE (total_overhead
), STAT_LABEL (total_overhead
));
2057 #ifdef GATHER_STATISTICS
2059 fprintf (stderr
, "\nTotal allocations and overheads during the compilation process\n");
2061 fprintf (stderr
, "Total Overhead: %10lld\n",
2062 G
.stats
.total_overhead
);
2063 fprintf (stderr
, "Total Allocated: %10lld\n",
2064 G
.stats
.total_allocated
);
2066 fprintf (stderr
, "Total Overhead under 32B: %10lld\n",
2067 G
.stats
.total_overhead_under32
);
2068 fprintf (stderr
, "Total Allocated under 32B: %10lld\n",
2069 G
.stats
.total_allocated_under32
);
2070 fprintf (stderr
, "Total Overhead under 64B: %10lld\n",
2071 G
.stats
.total_overhead_under64
);
2072 fprintf (stderr
, "Total Allocated under 64B: %10lld\n",
2073 G
.stats
.total_allocated_under64
);
2074 fprintf (stderr
, "Total Overhead under 128B: %10lld\n",
2075 G
.stats
.total_overhead_under128
);
2076 fprintf (stderr
, "Total Allocated under 128B: %10lld\n",
2077 G
.stats
.total_allocated_under128
);
2079 for (i
= 0; i
< NUM_ORDERS
; i
++)
2080 if (G
.stats
.total_allocated_per_order
[i
])
2082 fprintf (stderr
, "Total Overhead page size %7d: %10lld\n",
2083 OBJECT_SIZE (i
), G
.stats
.total_overhead_per_order
[i
]);
2084 fprintf (stderr
, "Total Allocated page size %7d: %10lld\n",
2085 OBJECT_SIZE (i
), G
.stats
.total_allocated_per_order
[i
]);
2093 struct ggc_pch_ondisk
2095 unsigned totals
[NUM_ORDERS
];
2097 size_t base
[NUM_ORDERS
];
2098 size_t written
[NUM_ORDERS
];
2101 struct ggc_pch_data
*
2104 return xcalloc (sizeof (struct ggc_pch_data
), 1);
2108 ggc_pch_count_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2109 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2114 order
= size_lookup
[size
];
2118 while (size
> OBJECT_SIZE (order
))
2122 d
->d
.totals
[order
]++;
2126 ggc_pch_total_size (struct ggc_pch_data
*d
)
2131 for (i
= 0; i
< NUM_ORDERS
; i
++)
2132 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2137 ggc_pch_this_base (struct ggc_pch_data
*d
, void *base
)
2139 size_t a
= (size_t) base
;
2142 for (i
= 0; i
< NUM_ORDERS
; i
++)
2145 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2151 ggc_pch_alloc_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2152 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2158 order
= size_lookup
[size
];
2162 while (size
> OBJECT_SIZE (order
))
2166 result
= (char *) d
->base
[order
];
2167 d
->base
[order
] += OBJECT_SIZE (order
);
2172 ggc_pch_prepare_write (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2173 FILE *f ATTRIBUTE_UNUSED
)
2175 /* Nothing to do. */
2179 ggc_pch_write_object (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2180 FILE *f
, void *x
, void *newx ATTRIBUTE_UNUSED
,
2181 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2184 static const char emptyBytes
[256];
2187 order
= size_lookup
[size
];
2191 while (size
> OBJECT_SIZE (order
))
2195 if (fwrite (x
, size
, 1, f
) != 1)
2196 fatal_error ("can't write PCH file: %m");
2198 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2199 object out to OBJECT_SIZE(order). This happens for strings. */
2201 if (size
!= OBJECT_SIZE (order
))
2203 unsigned padding
= OBJECT_SIZE(order
) - size
;
2205 /* To speed small writes, we use a nulled-out array that's larger
2206 than most padding requests as the source for our null bytes. This
2207 permits us to do the padding with fwrite() rather than fseek(), and
2208 limits the chance the the OS may try to flush any outstanding
2210 if (padding
<= sizeof(emptyBytes
))
2212 if (fwrite (emptyBytes
, 1, padding
, f
) != padding
)
2213 fatal_error ("can't write PCH file");
2217 /* Larger than our buffer? Just default to fseek. */
2218 if (fseek (f
, padding
, SEEK_CUR
) != 0)
2219 fatal_error ("can't write PCH file");
2223 d
->written
[order
]++;
2224 if (d
->written
[order
] == d
->d
.totals
[order
]
2225 && fseek (f
, ROUND_UP_VALUE (d
->d
.totals
[order
] * OBJECT_SIZE (order
),
2228 fatal_error ("can't write PCH file: %m");
2232 ggc_pch_finish (struct ggc_pch_data
*d
, FILE *f
)
2234 if (fwrite (&d
->d
, sizeof (d
->d
), 1, f
) != 1)
2235 fatal_error ("can't write PCH file: %m");
2239 /* Move the PCH PTE entries just added to the end of by_depth, to the
2243 move_ptes_to_front (int count_old_page_tables
, int count_new_page_tables
)
2247 /* First, we swap the new entries to the front of the varrays. */
2248 page_entry
**new_by_depth
;
2249 unsigned long **new_save_in_use
;
2251 new_by_depth
= xmalloc (G
.by_depth_max
* sizeof (page_entry
*));
2252 new_save_in_use
= xmalloc (G
.by_depth_max
* sizeof (unsigned long *));
2254 memcpy (&new_by_depth
[0],
2255 &G
.by_depth
[count_old_page_tables
],
2256 count_new_page_tables
* sizeof (void *));
2257 memcpy (&new_by_depth
[count_new_page_tables
],
2259 count_old_page_tables
* sizeof (void *));
2260 memcpy (&new_save_in_use
[0],
2261 &G
.save_in_use
[count_old_page_tables
],
2262 count_new_page_tables
* sizeof (void *));
2263 memcpy (&new_save_in_use
[count_new_page_tables
],
2265 count_old_page_tables
* sizeof (void *));
2268 free (G
.save_in_use
);
2270 G
.by_depth
= new_by_depth
;
2271 G
.save_in_use
= new_save_in_use
;
2273 /* Now update all the index_by_depth fields. */
2274 for (i
= G
.by_depth_in_use
; i
> 0; --i
)
2276 page_entry
*p
= G
.by_depth
[i
-1];
2277 p
->index_by_depth
= i
-1;
2280 /* And last, we update the depth pointers in G.depth. The first
2281 entry is already 0, and context 0 entries always start at index
2282 0, so there is nothing to update in the first slot. We need a
2283 second slot, only if we have old ptes, and if we do, they start
2284 at index count_new_page_tables. */
2285 if (count_old_page_tables
)
2286 push_depth (count_new_page_tables
);
2290 ggc_pch_read (FILE *f
, void *addr
)
2292 struct ggc_pch_ondisk d
;
2295 unsigned long count_old_page_tables
;
2296 unsigned long count_new_page_tables
;
2298 count_old_page_tables
= G
.by_depth_in_use
;
2300 /* We've just read in a PCH file. So, every object that used to be
2301 allocated is now free. */
2303 #ifdef ENABLE_GC_CHECKING
2307 /* No object read from a PCH file should ever be freed. So, set the
2308 context depth to 1, and set the depth of all the currently-allocated
2309 pages to be 1 too. PCH pages will have depth 0. */
2310 gcc_assert (!G
.context_depth
);
2311 G
.context_depth
= 1;
2312 for (i
= 0; i
< NUM_ORDERS
; i
++)
2315 for (p
= G
.pages
[i
]; p
!= NULL
; p
= p
->next
)
2316 p
->context_depth
= G
.context_depth
;
2319 /* Allocate the appropriate page-table entries for the pages read from
2321 if (fread (&d
, sizeof (d
), 1, f
) != 1)
2322 fatal_error ("can't read PCH file: %m");
2324 for (i
= 0; i
< NUM_ORDERS
; i
++)
2326 struct page_entry
*entry
;
2332 if (d
.totals
[i
] == 0)
2335 bytes
= ROUND_UP (d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2336 num_objs
= bytes
/ OBJECT_SIZE (i
);
2337 entry
= xcalloc (1, (sizeof (struct page_entry
)
2339 + BITMAP_SIZE (num_objs
+ 1)));
2340 entry
->bytes
= bytes
;
2342 entry
->context_depth
= 0;
2344 entry
->num_free_objects
= 0;
2348 j
+ HOST_BITS_PER_LONG
<= num_objs
+ 1;
2349 j
+= HOST_BITS_PER_LONG
)
2350 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
] = -1;
2351 for (; j
< num_objs
+ 1; j
++)
2352 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
]
2353 |= 1L << (j
% HOST_BITS_PER_LONG
);
2355 for (pte
= entry
->page
;
2356 pte
< entry
->page
+ entry
->bytes
;
2358 set_page_table_entry (pte
, entry
);
2360 if (G
.page_tails
[i
] != NULL
)
2361 G
.page_tails
[i
]->next
= entry
;
2364 G
.page_tails
[i
] = entry
;
2366 /* We start off by just adding all the new information to the
2367 end of the varrays, later, we will move the new information
2368 to the front of the varrays, as the PCH page tables are at
2370 push_by_depth (entry
, 0);
2373 /* Now, we update the various data structures that speed page table
2375 count_new_page_tables
= G
.by_depth_in_use
- count_old_page_tables
;
2377 move_ptes_to_front (count_old_page_tables
, count_new_page_tables
);
2379 /* Update the statistics. */
2380 G
.allocated
= G
.allocated_last_gc
= offs
- (char *)addr
;