* final.c (output_asm_insn): Correct problem with -fverbose-asm.
[official-gcc.git] / gcc / cselib.c
blobaa9224892d9d8a27329d54642cd24c7b4e21996a
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
45 static bool cselib_record_memory;
46 static int entry_and_rtx_equal_p (const void *, const void *);
47 static hashval_t get_value_hash (const void *);
48 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
49 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
50 static void unchain_one_value (cselib_val *);
51 static void unchain_one_elt_list (struct elt_list **);
52 static void unchain_one_elt_loc_list (struct elt_loc_list **);
53 static void clear_table (void);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, enum machine_mode, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_invalidate_rtx (rtx, rtx, void *);
65 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
66 static void cselib_record_sets (rtx);
68 /* There are three ways in which cselib can look up an rtx:
69 - for a REG, the reg_values table (which is indexed by regno) is used
70 - for a MEM, we recursively look up its address and then follow the
71 addr_list of that value
72 - for everything else, we compute a hash value and go through the hash
73 table. Since different rtx's can still have the same hash value,
74 this involves walking the table entries for a given value and comparing
75 the locations of the entries with the rtx we are looking up. */
77 /* A table that enables us to look up elts by their value. */
78 static htab_t hash_table;
80 /* This is a global so we don't have to pass this through every function.
81 It is used in new_elt_loc_list to set SETTING_INSN. */
82 static rtx cselib_current_insn;
83 static bool cselib_current_insn_in_libcall;
85 /* Every new unknown value gets a unique number. */
86 static unsigned int next_unknown_value;
88 /* The number of registers we had when the varrays were last resized. */
89 static unsigned int cselib_nregs;
91 /* Count values without known locations. Whenever this grows too big, we
92 remove these useless values from the table. */
93 static int n_useless_values;
95 /* Number of useless values before we remove them from the hash table. */
96 #define MAX_USELESS_VALUES 32
98 /* This table maps from register number to values. It does not
99 contain pointers to cselib_val structures, but rather elt_lists.
100 The purpose is to be able to refer to the same register in
101 different modes. The first element of the list defines the mode in
102 which the register was set; if the mode is unknown or the value is
103 no longer valid in that mode, ELT will be NULL for the first
104 element. */
105 struct elt_list **reg_values;
106 unsigned int reg_values_size;
107 #define REG_VALUES(i) reg_values[i]
109 /* The largest number of hard regs used by any entry added to the
110 REG_VALUES table. Cleared on each clear_table() invocation. */
111 static unsigned int max_value_regs;
113 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
114 in clear_table() for fast emptying. */
115 static unsigned int *used_regs;
116 static unsigned int n_used_regs;
118 /* We pass this to cselib_invalidate_mem to invalidate all of
119 memory for a non-const call instruction. */
120 static GTY(()) rtx callmem;
122 /* Set by discard_useless_locs if it deleted the last location of any
123 value. */
124 static int values_became_useless;
126 /* Used as stop element of the containing_mem list so we can check
127 presence in the list by checking the next pointer. */
128 static cselib_val dummy_val;
130 /* Used to list all values that contain memory reference.
131 May or may not contain the useless values - the list is compacted
132 each time memory is invalidated. */
133 static cselib_val *first_containing_mem = &dummy_val;
134 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
137 /* Allocate a struct elt_list and fill in its two elements with the
138 arguments. */
140 static inline struct elt_list *
141 new_elt_list (struct elt_list *next, cselib_val *elt)
143 struct elt_list *el;
144 el = pool_alloc (elt_list_pool);
145 el->next = next;
146 el->elt = elt;
147 return el;
150 /* Allocate a struct elt_loc_list and fill in its two elements with the
151 arguments. */
153 static inline struct elt_loc_list *
154 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
156 struct elt_loc_list *el;
157 el = pool_alloc (elt_loc_list_pool);
158 el->next = next;
159 el->loc = loc;
160 el->setting_insn = cselib_current_insn;
161 el->in_libcall = cselib_current_insn_in_libcall;
162 return el;
165 /* The elt_list at *PL is no longer needed. Unchain it and free its
166 storage. */
168 static inline void
169 unchain_one_elt_list (struct elt_list **pl)
171 struct elt_list *l = *pl;
173 *pl = l->next;
174 pool_free (elt_list_pool, l);
177 /* Likewise for elt_loc_lists. */
179 static void
180 unchain_one_elt_loc_list (struct elt_loc_list **pl)
182 struct elt_loc_list *l = *pl;
184 *pl = l->next;
185 pool_free (elt_loc_list_pool, l);
188 /* Likewise for cselib_vals. This also frees the addr_list associated with
189 V. */
191 static void
192 unchain_one_value (cselib_val *v)
194 while (v->addr_list)
195 unchain_one_elt_list (&v->addr_list);
197 pool_free (cselib_val_pool, v);
200 /* Remove all entries from the hash table. Also used during
201 initialization. If CLEAR_ALL isn't set, then only clear the entries
202 which are known to have been used. */
204 static void
205 clear_table (void)
207 unsigned int i;
209 for (i = 0; i < n_used_regs; i++)
210 REG_VALUES (used_regs[i]) = 0;
212 max_value_regs = 0;
214 n_used_regs = 0;
216 htab_empty (hash_table);
218 n_useless_values = 0;
220 next_unknown_value = 0;
222 first_containing_mem = &dummy_val;
225 /* The equality test for our hash table. The first argument ENTRY is a table
226 element (i.e. a cselib_val), while the second arg X is an rtx. We know
227 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
228 CONST of an appropriate mode. */
230 static int
231 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
233 struct elt_loc_list *l;
234 const cselib_val *v = (const cselib_val *) entry;
235 rtx x = (rtx) x_arg;
236 enum machine_mode mode = GET_MODE (x);
238 gcc_assert (GET_CODE (x) != CONST_INT
239 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
241 if (mode != GET_MODE (v->u.val_rtx))
242 return 0;
244 /* Unwrap X if necessary. */
245 if (GET_CODE (x) == CONST
246 && (GET_CODE (XEXP (x, 0)) == CONST_INT
247 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
248 x = XEXP (x, 0);
250 /* We don't guarantee that distinct rtx's have different hash values,
251 so we need to do a comparison. */
252 for (l = v->locs; l; l = l->next)
253 if (rtx_equal_for_cselib_p (l->loc, x))
254 return 1;
256 return 0;
259 /* The hash function for our hash table. The value is always computed with
260 cselib_hash_rtx when adding an element; this function just extracts the
261 hash value from a cselib_val structure. */
263 static hashval_t
264 get_value_hash (const void *entry)
266 const cselib_val *v = (const cselib_val *) entry;
267 return v->value;
270 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
271 only return true for values which point to a cselib_val whose value
272 element has been set to zero, which implies the cselib_val will be
273 removed. */
276 references_value_p (rtx x, int only_useless)
278 enum rtx_code code = GET_CODE (x);
279 const char *fmt = GET_RTX_FORMAT (code);
280 int i, j;
282 if (GET_CODE (x) == VALUE
283 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
284 return 1;
286 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
288 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
289 return 1;
290 else if (fmt[i] == 'E')
291 for (j = 0; j < XVECLEN (x, i); j++)
292 if (references_value_p (XVECEXP (x, i, j), only_useless))
293 return 1;
296 return 0;
299 /* For all locations found in X, delete locations that reference useless
300 values (i.e. values without any location). Called through
301 htab_traverse. */
303 static int
304 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
306 cselib_val *v = (cselib_val *)*x;
307 struct elt_loc_list **p = &v->locs;
308 int had_locs = v->locs != 0;
310 while (*p)
312 if (references_value_p ((*p)->loc, 1))
313 unchain_one_elt_loc_list (p);
314 else
315 p = &(*p)->next;
318 if (had_locs && v->locs == 0)
320 n_useless_values++;
321 values_became_useless = 1;
323 return 1;
326 /* If X is a value with no locations, remove it from the hashtable. */
328 static int
329 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
331 cselib_val *v = (cselib_val *)*x;
333 if (v->locs == 0)
335 CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
336 htab_clear_slot (hash_table, x);
337 unchain_one_value (v);
338 n_useless_values--;
341 return 1;
344 /* Clean out useless values (i.e. those which no longer have locations
345 associated with them) from the hash table. */
347 static void
348 remove_useless_values (void)
350 cselib_val **p, *v;
351 /* First pass: eliminate locations that reference the value. That in
352 turn can make more values useless. */
355 values_became_useless = 0;
356 htab_traverse (hash_table, discard_useless_locs, 0);
358 while (values_became_useless);
360 /* Second pass: actually remove the values. */
362 p = &first_containing_mem;
363 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
364 if (v->locs)
366 *p = v;
367 p = &(*p)->next_containing_mem;
369 *p = &dummy_val;
371 htab_traverse (hash_table, discard_useless_values, 0);
373 gcc_assert (!n_useless_values);
376 /* Return the mode in which a register was last set. If X is not a
377 register, return its mode. If the mode in which the register was
378 set is not known, or the value was already clobbered, return
379 VOIDmode. */
381 enum machine_mode
382 cselib_reg_set_mode (rtx x)
384 if (!REG_P (x))
385 return GET_MODE (x);
387 if (REG_VALUES (REGNO (x)) == NULL
388 || REG_VALUES (REGNO (x))->elt == NULL)
389 return VOIDmode;
391 return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
394 /* Return nonzero if we can prove that X and Y contain the same value, taking
395 our gathered information into account. */
398 rtx_equal_for_cselib_p (rtx x, rtx y)
400 enum rtx_code code;
401 const char *fmt;
402 int i;
404 if (REG_P (x) || MEM_P (x))
406 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
408 if (e)
409 x = e->u.val_rtx;
412 if (REG_P (y) || MEM_P (y))
414 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
416 if (e)
417 y = e->u.val_rtx;
420 if (x == y)
421 return 1;
423 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
424 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
426 if (GET_CODE (x) == VALUE)
428 cselib_val *e = CSELIB_VAL_PTR (x);
429 struct elt_loc_list *l;
431 for (l = e->locs; l; l = l->next)
433 rtx t = l->loc;
435 /* Avoid infinite recursion. */
436 if (REG_P (t) || MEM_P (t))
437 continue;
438 else if (rtx_equal_for_cselib_p (t, y))
439 return 1;
442 return 0;
445 if (GET_CODE (y) == VALUE)
447 cselib_val *e = CSELIB_VAL_PTR (y);
448 struct elt_loc_list *l;
450 for (l = e->locs; l; l = l->next)
452 rtx t = l->loc;
454 if (REG_P (t) || MEM_P (t))
455 continue;
456 else if (rtx_equal_for_cselib_p (x, t))
457 return 1;
460 return 0;
463 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
464 return 0;
466 /* This won't be handled correctly by the code below. */
467 if (GET_CODE (x) == LABEL_REF)
468 return XEXP (x, 0) == XEXP (y, 0);
470 code = GET_CODE (x);
471 fmt = GET_RTX_FORMAT (code);
473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
475 int j;
477 switch (fmt[i])
479 case 'w':
480 if (XWINT (x, i) != XWINT (y, i))
481 return 0;
482 break;
484 case 'n':
485 case 'i':
486 if (XINT (x, i) != XINT (y, i))
487 return 0;
488 break;
490 case 'V':
491 case 'E':
492 /* Two vectors must have the same length. */
493 if (XVECLEN (x, i) != XVECLEN (y, i))
494 return 0;
496 /* And the corresponding elements must match. */
497 for (j = 0; j < XVECLEN (x, i); j++)
498 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
499 XVECEXP (y, i, j)))
500 return 0;
501 break;
503 case 'e':
504 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
505 return 0;
506 break;
508 case 'S':
509 case 's':
510 if (strcmp (XSTR (x, i), XSTR (y, i)))
511 return 0;
512 break;
514 case 'u':
515 /* These are just backpointers, so they don't matter. */
516 break;
518 case '0':
519 case 't':
520 break;
522 /* It is believed that rtx's at this level will never
523 contain anything but integers and other rtx's,
524 except for within LABEL_REFs and SYMBOL_REFs. */
525 default:
526 gcc_unreachable ();
529 return 1;
532 /* We need to pass down the mode of constants through the hash table
533 functions. For that purpose, wrap them in a CONST of the appropriate
534 mode. */
535 static rtx
536 wrap_constant (enum machine_mode mode, rtx x)
538 if (GET_CODE (x) != CONST_INT
539 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
540 return x;
541 gcc_assert (mode != VOIDmode);
542 return gen_rtx_CONST (mode, x);
545 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
546 For registers and memory locations, we look up their cselib_val structure
547 and return its VALUE element.
548 Possible reasons for return 0 are: the object is volatile, or we couldn't
549 find a register or memory location in the table and CREATE is zero. If
550 CREATE is nonzero, table elts are created for regs and mem.
551 MODE is used in hashing for CONST_INTs only;
552 otherwise the mode of X is used. */
554 static unsigned int
555 cselib_hash_rtx (rtx x, enum machine_mode mode, int create)
557 cselib_val *e;
558 int i, j;
559 enum rtx_code code;
560 const char *fmt;
561 unsigned int hash = 0;
563 code = GET_CODE (x);
564 hash += (unsigned) code + (unsigned) GET_MODE (x);
566 switch (code)
568 case MEM:
569 case REG:
570 e = cselib_lookup (x, GET_MODE (x), create);
571 if (! e)
572 return 0;
574 return e->value;
576 case CONST_INT:
577 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + INTVAL (x);
578 return hash ? hash : (unsigned int) CONST_INT;
580 case CONST_DOUBLE:
581 /* This is like the general case, except that it only counts
582 the integers representing the constant. */
583 hash += (unsigned) code + (unsigned) GET_MODE (x);
584 if (GET_MODE (x) != VOIDmode)
585 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
586 else
587 hash += ((unsigned) CONST_DOUBLE_LOW (x)
588 + (unsigned) CONST_DOUBLE_HIGH (x));
589 return hash ? hash : (unsigned int) CONST_DOUBLE;
591 case CONST_VECTOR:
593 int units;
594 rtx elt;
596 units = CONST_VECTOR_NUNITS (x);
598 for (i = 0; i < units; ++i)
600 elt = CONST_VECTOR_ELT (x, i);
601 hash += cselib_hash_rtx (elt, GET_MODE (elt), 0);
604 return hash;
607 /* Assume there is only one rtx object for any given label. */
608 case LABEL_REF:
609 hash
610 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
611 return hash ? hash : (unsigned int) LABEL_REF;
613 case SYMBOL_REF:
614 hash
615 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
616 return hash ? hash : (unsigned int) SYMBOL_REF;
618 case PRE_DEC:
619 case PRE_INC:
620 case POST_DEC:
621 case POST_INC:
622 case POST_MODIFY:
623 case PRE_MODIFY:
624 case PC:
625 case CC0:
626 case CALL:
627 case UNSPEC_VOLATILE:
628 return 0;
630 case ASM_OPERANDS:
631 if (MEM_VOLATILE_P (x))
632 return 0;
634 break;
636 default:
637 break;
640 i = GET_RTX_LENGTH (code) - 1;
641 fmt = GET_RTX_FORMAT (code);
642 for (; i >= 0; i--)
644 switch (fmt[i])
646 case 'e':
648 rtx tem = XEXP (x, i);
649 unsigned int tem_hash = cselib_hash_rtx (tem, 0, create);
651 if (tem_hash == 0)
652 return 0;
654 hash += tem_hash;
656 break;
657 case 'E':
658 for (j = 0; j < XVECLEN (x, i); j++)
660 unsigned int tem_hash
661 = cselib_hash_rtx (XVECEXP (x, i, j), 0, create);
663 if (tem_hash == 0)
664 return 0;
666 hash += tem_hash;
668 break;
670 case 's':
672 const unsigned char *p = (const unsigned char *) XSTR (x, i);
674 if (p)
675 while (*p)
676 hash += *p++;
677 break;
680 case 'i':
681 hash += XINT (x, i);
682 break;
684 case '0':
685 case 't':
686 /* unused */
687 break;
689 default:
690 gcc_unreachable ();
694 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
697 /* Create a new value structure for VALUE and initialize it. The mode of the
698 value is MODE. */
700 static inline cselib_val *
701 new_cselib_val (unsigned int value, enum machine_mode mode)
703 cselib_val *e = pool_alloc (cselib_val_pool);
705 gcc_assert (value);
707 e->value = value;
708 /* We use custom method to allocate this RTL construct because it accounts
709 about 8% of overall memory usage. */
710 e->u.val_rtx = pool_alloc (value_pool);
711 memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
712 PUT_CODE (e->u.val_rtx, VALUE);
713 PUT_MODE (e->u.val_rtx, mode);
714 CSELIB_VAL_PTR (e->u.val_rtx) = e;
715 e->addr_list = 0;
716 e->locs = 0;
717 e->next_containing_mem = 0;
718 return e;
721 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
722 contains the data at this address. X is a MEM that represents the
723 value. Update the two value structures to represent this situation. */
725 static void
726 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
728 struct elt_loc_list *l;
730 /* Avoid duplicates. */
731 for (l = mem_elt->locs; l; l = l->next)
732 if (MEM_P (l->loc)
733 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
734 return;
736 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
737 mem_elt->locs
738 = new_elt_loc_list (mem_elt->locs,
739 replace_equiv_address_nv (x, addr_elt->u.val_rtx));
740 if (mem_elt->next_containing_mem == NULL)
742 mem_elt->next_containing_mem = first_containing_mem;
743 first_containing_mem = mem_elt;
747 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
748 If CREATE, make a new one if we haven't seen it before. */
750 static cselib_val *
751 cselib_lookup_mem (rtx x, int create)
753 enum machine_mode mode = GET_MODE (x);
754 void **slot;
755 cselib_val *addr;
756 cselib_val *mem_elt;
757 struct elt_list *l;
759 if (MEM_VOLATILE_P (x) || mode == BLKmode
760 || !cselib_record_memory
761 || (FLOAT_MODE_P (mode) && flag_float_store))
762 return 0;
764 /* Look up the value for the address. */
765 addr = cselib_lookup (XEXP (x, 0), mode, create);
766 if (! addr)
767 return 0;
769 /* Find a value that describes a value of our mode at that address. */
770 for (l = addr->addr_list; l; l = l->next)
771 if (GET_MODE (l->elt->u.val_rtx) == mode)
772 return l->elt;
774 if (! create)
775 return 0;
777 mem_elt = new_cselib_val (++next_unknown_value, mode);
778 add_mem_for_addr (addr, mem_elt, x);
779 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
780 mem_elt->value, INSERT);
781 *slot = mem_elt;
782 return mem_elt;
785 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
786 with VALUE expressions. This way, it becomes independent of changes
787 to registers and memory.
788 X isn't actually modified; if modifications are needed, new rtl is
789 allocated. However, the return value can share rtl with X. */
792 cselib_subst_to_values (rtx x)
794 enum rtx_code code = GET_CODE (x);
795 const char *fmt = GET_RTX_FORMAT (code);
796 cselib_val *e;
797 struct elt_list *l;
798 rtx copy = x;
799 int i;
801 switch (code)
803 case REG:
804 l = REG_VALUES (REGNO (x));
805 if (l && l->elt == NULL)
806 l = l->next;
807 for (; l; l = l->next)
808 if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
809 return l->elt->u.val_rtx;
811 gcc_unreachable ();
813 case MEM:
814 e = cselib_lookup_mem (x, 0);
815 if (! e)
817 /* This happens for autoincrements. Assign a value that doesn't
818 match any other. */
819 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
821 return e->u.val_rtx;
823 case CONST_DOUBLE:
824 case CONST_VECTOR:
825 case CONST_INT:
826 return x;
828 case POST_INC:
829 case PRE_INC:
830 case POST_DEC:
831 case PRE_DEC:
832 case POST_MODIFY:
833 case PRE_MODIFY:
834 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
835 return e->u.val_rtx;
837 default:
838 break;
841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
843 if (fmt[i] == 'e')
845 rtx t = cselib_subst_to_values (XEXP (x, i));
847 if (t != XEXP (x, i) && x == copy)
848 copy = shallow_copy_rtx (x);
850 XEXP (copy, i) = t;
852 else if (fmt[i] == 'E')
854 int j, k;
856 for (j = 0; j < XVECLEN (x, i); j++)
858 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
860 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
862 if (x == copy)
863 copy = shallow_copy_rtx (x);
865 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
866 for (k = 0; k < j; k++)
867 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
870 XVECEXP (copy, i, j) = t;
875 return copy;
878 /* Look up the rtl expression X in our tables and return the value it has.
879 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
880 we create a new one if possible, using mode MODE if X doesn't have a mode
881 (i.e. because it's a constant). */
883 cselib_val *
884 cselib_lookup (rtx x, enum machine_mode mode, int create)
886 void **slot;
887 cselib_val *e;
888 unsigned int hashval;
890 if (GET_MODE (x) != VOIDmode)
891 mode = GET_MODE (x);
893 if (GET_CODE (x) == VALUE)
894 return CSELIB_VAL_PTR (x);
896 if (REG_P (x))
898 struct elt_list *l;
899 unsigned int i = REGNO (x);
901 l = REG_VALUES (i);
902 if (l && l->elt == NULL)
903 l = l->next;
904 for (; l; l = l->next)
905 if (mode == GET_MODE (l->elt->u.val_rtx))
906 return l->elt;
908 if (! create)
909 return 0;
911 if (i < FIRST_PSEUDO_REGISTER)
913 unsigned int n = hard_regno_nregs[i][mode];
915 if (n > max_value_regs)
916 max_value_regs = n;
919 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
920 e->locs = new_elt_loc_list (e->locs, x);
921 if (REG_VALUES (i) == 0)
923 /* Maintain the invariant that the first entry of
924 REG_VALUES, if present, must be the value used to set the
925 register, or NULL. */
926 used_regs[n_used_regs++] = i;
927 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
929 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
930 slot = htab_find_slot_with_hash (hash_table, x, e->value, INSERT);
931 *slot = e;
932 return e;
935 if (MEM_P (x))
936 return cselib_lookup_mem (x, create);
938 hashval = cselib_hash_rtx (x, mode, create);
939 /* Can't even create if hashing is not possible. */
940 if (! hashval)
941 return 0;
943 slot = htab_find_slot_with_hash (hash_table, wrap_constant (mode, x),
944 hashval, create ? INSERT : NO_INSERT);
945 if (slot == 0)
946 return 0;
948 e = (cselib_val *) *slot;
949 if (e)
950 return e;
952 e = new_cselib_val (hashval, mode);
954 /* We have to fill the slot before calling cselib_subst_to_values:
955 the hash table is inconsistent until we do so, and
956 cselib_subst_to_values will need to do lookups. */
957 *slot = (void *) e;
958 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
959 return e;
962 /* Invalidate any entries in reg_values that overlap REGNO. This is called
963 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
964 is used to determine how many hard registers are being changed. If MODE
965 is VOIDmode, then only REGNO is being changed; this is used when
966 invalidating call clobbered registers across a call. */
968 static void
969 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
971 unsigned int endregno;
972 unsigned int i;
974 /* If we see pseudos after reload, something is _wrong_. */
975 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
976 || reg_renumber[regno] < 0);
978 /* Determine the range of registers that must be invalidated. For
979 pseudos, only REGNO is affected. For hard regs, we must take MODE
980 into account, and we must also invalidate lower register numbers
981 if they contain values that overlap REGNO. */
982 if (regno < FIRST_PSEUDO_REGISTER)
984 gcc_assert (mode != VOIDmode);
986 if (regno < max_value_regs)
987 i = 0;
988 else
989 i = regno - max_value_regs;
991 endregno = regno + hard_regno_nregs[regno][mode];
993 else
995 i = regno;
996 endregno = regno + 1;
999 for (; i < endregno; i++)
1001 struct elt_list **l = &REG_VALUES (i);
1003 /* Go through all known values for this reg; if it overlaps the range
1004 we're invalidating, remove the value. */
1005 while (*l)
1007 cselib_val *v = (*l)->elt;
1008 struct elt_loc_list **p;
1009 unsigned int this_last = i;
1011 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1012 this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
1014 if (this_last < regno || v == NULL)
1016 l = &(*l)->next;
1017 continue;
1020 /* We have an overlap. */
1021 if (*l == REG_VALUES (i))
1023 /* Maintain the invariant that the first entry of
1024 REG_VALUES, if present, must be the value used to set
1025 the register, or NULL. This is also nice because
1026 then we won't push the same regno onto user_regs
1027 multiple times. */
1028 (*l)->elt = NULL;
1029 l = &(*l)->next;
1031 else
1032 unchain_one_elt_list (l);
1034 /* Now, we clear the mapping from value to reg. It must exist, so
1035 this code will crash intentionally if it doesn't. */
1036 for (p = &v->locs; ; p = &(*p)->next)
1038 rtx x = (*p)->loc;
1040 if (REG_P (x) && REGNO (x) == i)
1042 unchain_one_elt_loc_list (p);
1043 break;
1046 if (v->locs == 0)
1047 n_useless_values++;
1052 /* Return 1 if X has a value that can vary even between two
1053 executions of the program. 0 means X can be compared reliably
1054 against certain constants or near-constants. */
1056 static int
1057 cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
1059 /* We actually don't need to verify very hard. This is because
1060 if X has actually changed, we invalidate the memory anyway,
1061 so assume that all common memory addresses are
1062 invariant. */
1063 return 0;
1066 /* Invalidate any locations in the table which are changed because of a
1067 store to MEM_RTX. If this is called because of a non-const call
1068 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1070 static void
1071 cselib_invalidate_mem (rtx mem_rtx)
1073 cselib_val **vp, *v, *next;
1074 int num_mems = 0;
1075 rtx mem_addr;
1077 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1078 mem_rtx = canon_rtx (mem_rtx);
1080 vp = &first_containing_mem;
1081 for (v = *vp; v != &dummy_val; v = next)
1083 bool has_mem = false;
1084 struct elt_loc_list **p = &v->locs;
1085 int had_locs = v->locs != 0;
1087 while (*p)
1089 rtx x = (*p)->loc;
1090 cselib_val *addr;
1091 struct elt_list **mem_chain;
1093 /* MEMs may occur in locations only at the top level; below
1094 that every MEM or REG is substituted by its VALUE. */
1095 if (!MEM_P (x))
1097 p = &(*p)->next;
1098 continue;
1100 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1101 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1102 x, cselib_rtx_varies_p))
1104 has_mem = true;
1105 num_mems++;
1106 p = &(*p)->next;
1107 continue;
1110 /* This one overlaps. */
1111 /* We must have a mapping from this MEM's address to the
1112 value (E). Remove that, too. */
1113 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1114 mem_chain = &addr->addr_list;
1115 for (;;)
1117 if ((*mem_chain)->elt == v)
1119 unchain_one_elt_list (mem_chain);
1120 break;
1123 mem_chain = &(*mem_chain)->next;
1126 unchain_one_elt_loc_list (p);
1129 if (had_locs && v->locs == 0)
1130 n_useless_values++;
1132 next = v->next_containing_mem;
1133 if (has_mem)
1135 *vp = v;
1136 vp = &(*vp)->next_containing_mem;
1138 else
1139 v->next_containing_mem = NULL;
1141 *vp = &dummy_val;
1144 /* Invalidate DEST, which is being assigned to or clobbered. The second and
1145 the third parameter exist so that this function can be passed to
1146 note_stores; they are ignored. */
1148 static void
1149 cselib_invalidate_rtx (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
1150 void *data ATTRIBUTE_UNUSED)
1152 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SIGN_EXTRACT
1153 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG)
1154 dest = XEXP (dest, 0);
1156 if (REG_P (dest))
1157 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1158 else if (MEM_P (dest))
1159 cselib_invalidate_mem (dest);
1161 /* Some machines don't define AUTO_INC_DEC, but they still use push
1162 instructions. We need to catch that case here in order to
1163 invalidate the stack pointer correctly. Note that invalidating
1164 the stack pointer is different from invalidating DEST. */
1165 if (push_operand (dest, GET_MODE (dest)))
1166 cselib_invalidate_rtx (stack_pointer_rtx, NULL_RTX, NULL);
1169 /* Record the result of a SET instruction. DEST is being set; the source
1170 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1171 describes its address. */
1173 static void
1174 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1176 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1178 if (src_elt == 0 || side_effects_p (dest))
1179 return;
1181 if (dreg >= 0)
1183 if (dreg < FIRST_PSEUDO_REGISTER)
1185 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1187 if (n > max_value_regs)
1188 max_value_regs = n;
1191 if (REG_VALUES (dreg) == 0)
1193 used_regs[n_used_regs++] = dreg;
1194 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1196 else
1198 /* The register should have been invalidated. */
1199 gcc_assert (REG_VALUES (dreg)->elt == 0);
1200 REG_VALUES (dreg)->elt = src_elt;
1203 if (src_elt->locs == 0)
1204 n_useless_values--;
1205 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1207 else if (MEM_P (dest) && dest_addr_elt != 0
1208 && cselib_record_memory)
1210 if (src_elt->locs == 0)
1211 n_useless_values--;
1212 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1216 /* Describe a single set that is part of an insn. */
1217 struct set
1219 rtx src;
1220 rtx dest;
1221 cselib_val *src_elt;
1222 cselib_val *dest_addr_elt;
1225 /* There is no good way to determine how many elements there can be
1226 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1227 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1229 /* Record the effects of any sets in INSN. */
1230 static void
1231 cselib_record_sets (rtx insn)
1233 int n_sets = 0;
1234 int i;
1235 struct set sets[MAX_SETS];
1236 rtx body = PATTERN (insn);
1237 rtx cond = 0;
1239 body = PATTERN (insn);
1240 if (GET_CODE (body) == COND_EXEC)
1242 cond = COND_EXEC_TEST (body);
1243 body = COND_EXEC_CODE (body);
1246 /* Find all sets. */
1247 if (GET_CODE (body) == SET)
1249 sets[0].src = SET_SRC (body);
1250 sets[0].dest = SET_DEST (body);
1251 n_sets = 1;
1253 else if (GET_CODE (body) == PARALLEL)
1255 /* Look through the PARALLEL and record the values being
1256 set, if possible. Also handle any CLOBBERs. */
1257 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1259 rtx x = XVECEXP (body, 0, i);
1261 if (GET_CODE (x) == SET)
1263 sets[n_sets].src = SET_SRC (x);
1264 sets[n_sets].dest = SET_DEST (x);
1265 n_sets++;
1270 /* Look up the values that are read. Do this before invalidating the
1271 locations that are written. */
1272 for (i = 0; i < n_sets; i++)
1274 rtx dest = sets[i].dest;
1276 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1277 the low part after invalidating any knowledge about larger modes. */
1278 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1279 sets[i].dest = dest = XEXP (dest, 0);
1281 /* We don't know how to record anything but REG or MEM. */
1282 if (REG_P (dest)
1283 || (MEM_P (dest) && cselib_record_memory))
1285 rtx src = sets[i].src;
1286 if (cond)
1287 src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
1288 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1289 if (MEM_P (dest))
1290 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1291 else
1292 sets[i].dest_addr_elt = 0;
1296 /* Invalidate all locations written by this insn. Note that the elts we
1297 looked up in the previous loop aren't affected, just some of their
1298 locations may go away. */
1299 note_stores (body, cselib_invalidate_rtx, NULL);
1301 /* If this is an asm, look for duplicate sets. This can happen when the
1302 user uses the same value as an output multiple times. This is valid
1303 if the outputs are not actually used thereafter. Treat this case as
1304 if the value isn't actually set. We do this by smashing the destination
1305 to pc_rtx, so that we won't record the value later. */
1306 if (n_sets >= 2 && asm_noperands (body) >= 0)
1308 for (i = 0; i < n_sets; i++)
1310 rtx dest = sets[i].dest;
1311 if (REG_P (dest) || MEM_P (dest))
1313 int j;
1314 for (j = i + 1; j < n_sets; j++)
1315 if (rtx_equal_p (dest, sets[j].dest))
1317 sets[i].dest = pc_rtx;
1318 sets[j].dest = pc_rtx;
1324 /* Now enter the equivalences in our tables. */
1325 for (i = 0; i < n_sets; i++)
1327 rtx dest = sets[i].dest;
1328 if (REG_P (dest)
1329 || (MEM_P (dest) && cselib_record_memory))
1330 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1334 /* Record the effects of INSN. */
1336 void
1337 cselib_process_insn (rtx insn)
1339 int i;
1340 rtx x;
1342 if (find_reg_note (insn, REG_LIBCALL, NULL))
1343 cselib_current_insn_in_libcall = true;
1344 if (find_reg_note (insn, REG_RETVAL, NULL))
1345 cselib_current_insn_in_libcall = false;
1346 cselib_current_insn = insn;
1348 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1349 if (LABEL_P (insn)
1350 || (CALL_P (insn)
1351 && find_reg_note (insn, REG_SETJMP, NULL))
1352 || (NONJUMP_INSN_P (insn)
1353 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1354 && MEM_VOLATILE_P (PATTERN (insn))))
1356 clear_table ();
1357 return;
1360 if (! INSN_P (insn))
1362 cselib_current_insn = 0;
1363 return;
1366 /* If this is a call instruction, forget anything stored in a
1367 call clobbered register, or, if this is not a const call, in
1368 memory. */
1369 if (CALL_P (insn))
1371 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1372 if (call_used_regs[i])
1373 cselib_invalidate_regno (i, reg_raw_mode[i]);
1375 if (! CONST_OR_PURE_CALL_P (insn))
1376 cselib_invalidate_mem (callmem);
1379 cselib_record_sets (insn);
1381 #ifdef AUTO_INC_DEC
1382 /* Clobber any registers which appear in REG_INC notes. We
1383 could keep track of the changes to their values, but it is
1384 unlikely to help. */
1385 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1386 if (REG_NOTE_KIND (x) == REG_INC)
1387 cselib_invalidate_rtx (XEXP (x, 0), NULL_RTX, NULL);
1388 #endif
1390 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1391 after we have processed the insn. */
1392 if (CALL_P (insn))
1393 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1394 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1395 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0), NULL_RTX, NULL);
1397 cselib_current_insn = 0;
1399 if (n_useless_values > MAX_USELESS_VALUES)
1400 remove_useless_values ();
1403 /* Initialize cselib for one pass. The caller must also call
1404 init_alias_analysis. */
1406 void
1407 cselib_init (bool record_memory)
1409 elt_list_pool = create_alloc_pool ("elt_list",
1410 sizeof (struct elt_list), 10);
1411 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1412 sizeof (struct elt_loc_list), 10);
1413 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1414 sizeof (cselib_val), 10);
1415 value_pool = create_alloc_pool ("value",
1416 RTX_SIZE (VALUE), 100);
1417 cselib_record_memory = record_memory;
1418 /* This is only created once. */
1419 if (! callmem)
1420 callmem = gen_rtx_MEM (BLKmode, const0_rtx);
1422 cselib_nregs = max_reg_num ();
1424 /* We preserve reg_values to allow expensive clearing of the whole thing.
1425 Reallocate it however if it happens to be too large. */
1426 if (!reg_values || reg_values_size < cselib_nregs
1427 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1429 if (reg_values)
1430 free (reg_values);
1431 /* Some space for newly emit instructions so we don't end up
1432 reallocating in between passes. */
1433 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1434 reg_values = xcalloc (reg_values_size, sizeof (reg_values));
1436 used_regs = xmalloc (sizeof (*used_regs) * cselib_nregs);
1437 n_used_regs = 0;
1438 hash_table = htab_create (31, get_value_hash, entry_and_rtx_equal_p, NULL);
1439 cselib_current_insn_in_libcall = false;
1442 /* Called when the current user is done with cselib. */
1444 void
1445 cselib_finish (void)
1447 free_alloc_pool (elt_list_pool);
1448 free_alloc_pool (elt_loc_list_pool);
1449 free_alloc_pool (cselib_val_pool);
1450 free_alloc_pool (value_pool);
1451 clear_table ();
1452 htab_delete (hash_table);
1453 free (used_regs);
1454 used_regs = 0;
1455 hash_table = 0;
1456 n_useless_values = 0;
1457 next_unknown_value = 0;
1460 #include "gt-cselib.h"