* config/i386/predicates.md (general_reg_operand): Use GENERAL_REGNO_P.
[official-gcc.git] / gcc / regrename.c
blob174d3b57368d6ea80deeabd48ab99ed8377ff185
1 /* Register renaming for the GNU compiler.
2 Copyright (C) 2000-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "rtl-error.h"
27 #include "tm_p.h"
28 #include "insn-config.h"
29 #include "regs.h"
30 #include "addresses.h"
31 #include "cfganal.h"
32 #include "reload.h"
33 #include "output.h"
34 #include "recog.h"
35 #include "flags.h"
36 #include "obstack.h"
37 #include "tree-pass.h"
38 #include "target.h"
39 #include "emit-rtl.h"
40 #include "regrename.h"
42 /* This file implements the RTL register renaming pass of the compiler. It is
43 a semi-local pass whose goal is to maximize the usage of the register file
44 of the processor by substituting registers for others in the solution given
45 by the register allocator. The algorithm is as follows:
47 1. Local def/use chains are built: within each basic block, chains are
48 opened and closed; if a chain isn't closed at the end of the block,
49 it is dropped. We pre-open chains if we have already examined a
50 predecessor block and found chains live at the end which match
51 live registers at the start of the new block.
53 2. We try to combine the local chains across basic block boundaries by
54 comparing chains that were open at the start or end of a block to
55 those in successor/predecessor blocks.
57 3. For each chain, the set of possible renaming registers is computed.
58 This takes into account the renaming of previously processed chains.
59 Optionally, a preferred class is computed for the renaming register.
61 4. The best renaming register is computed for the chain in the above set,
62 using a round-robin allocation. If a preferred class exists, then the
63 round-robin allocation is done within the class first, if possible.
64 The round-robin allocation of renaming registers itself is global.
66 5. If a renaming register has been found, it is substituted in the chain.
68 Targets can parameterize the pass by specifying a preferred class for the
69 renaming register for a given (super)class of registers to be renamed. */
71 #if HOST_BITS_PER_WIDE_INT <= MAX_RECOG_OPERANDS
72 #error "Use a different bitmap implementation for untracked_operands."
73 #endif
75 enum scan_actions
77 terminate_write,
78 terminate_dead,
79 mark_all_read,
80 mark_read,
81 mark_write,
82 /* mark_access is for marking the destination regs in
83 REG_FRAME_RELATED_EXPR notes (as if they were read) so that the
84 note is updated properly. */
85 mark_access
88 static const char * const scan_actions_name[] =
90 "terminate_write",
91 "terminate_dead",
92 "mark_all_read",
93 "mark_read",
94 "mark_write",
95 "mark_access"
98 /* TICK and THIS_TICK are used to record the last time we saw each
99 register. */
100 static int tick[FIRST_PSEUDO_REGISTER];
101 static int this_tick = 0;
103 static struct obstack rename_obstack;
105 /* If nonnull, the code calling into the register renamer requested
106 information about insn operands, and we store it here. */
107 vec<insn_rr_info> insn_rr;
109 static void scan_rtx (rtx_insn *, rtx *, enum reg_class, enum scan_actions,
110 enum op_type);
111 static bool build_def_use (basic_block);
113 /* The id to be given to the next opened chain. */
114 static unsigned current_id;
116 /* A mapping of unique id numbers to chains. */
117 static vec<du_head_p> id_to_chain;
119 /* List of currently open chains. */
120 static struct du_head *open_chains;
122 /* Bitmap of open chains. The bits set always match the list found in
123 open_chains. */
124 static bitmap_head open_chains_set;
126 /* Record the registers being tracked in open_chains. */
127 static HARD_REG_SET live_in_chains;
129 /* Record the registers that are live but not tracked. The intersection
130 between this and live_in_chains is empty. */
131 static HARD_REG_SET live_hard_regs;
133 /* Set while scanning RTL if INSN_RR is nonnull, i.e. if the current analysis
134 is for a caller that requires operand data. Used in
135 record_operand_use. */
136 static operand_rr_info *cur_operand;
138 /* Return the chain corresponding to id number ID. Take into account that
139 chains may have been merged. */
140 du_head_p
141 regrename_chain_from_id (unsigned int id)
143 du_head_p first_chain = id_to_chain[id];
144 du_head_p chain = first_chain;
145 while (chain->id != id)
147 id = chain->id;
148 chain = id_to_chain[id];
150 first_chain->id = id;
151 return chain;
154 /* Dump all def/use chains, starting at id FROM. */
156 static void
157 dump_def_use_chain (int from)
159 du_head_p head;
160 int i;
161 FOR_EACH_VEC_ELT_FROM (id_to_chain, i, head, from)
163 struct du_chain *this_du = head->first;
165 fprintf (dump_file, "Register %s (%d):",
166 reg_names[head->regno], head->nregs);
167 while (this_du)
169 fprintf (dump_file, " %d [%s]", INSN_UID (this_du->insn),
170 reg_class_names[this_du->cl]);
171 this_du = this_du->next_use;
173 fprintf (dump_file, "\n");
174 head = head->next_chain;
178 static void
179 free_chain_data (void)
181 int i;
182 du_head_p ptr;
183 for (i = 0; id_to_chain.iterate (i, &ptr); i++)
184 bitmap_clear (&ptr->conflicts);
186 id_to_chain.release ();
189 /* Walk all chains starting with CHAINS and record that they conflict with
190 another chain whose id is ID. */
192 static void
193 mark_conflict (struct du_head *chains, unsigned id)
195 while (chains)
197 bitmap_set_bit (&chains->conflicts, id);
198 chains = chains->next_chain;
202 /* Examine cur_operand, and if it is nonnull, record information about the
203 use THIS_DU which is part of the chain HEAD. */
205 static void
206 record_operand_use (struct du_head *head, struct du_chain *this_du)
208 if (cur_operand == NULL)
209 return;
210 gcc_assert (cur_operand->n_chains < MAX_REGS_PER_ADDRESS);
211 cur_operand->heads[cur_operand->n_chains] = head;
212 cur_operand->chains[cur_operand->n_chains++] = this_du;
215 /* Create a new chain for THIS_NREGS registers starting at THIS_REGNO,
216 and record its occurrence in *LOC, which is being written to in INSN.
217 This access requires a register of class CL. */
219 static du_head_p
220 create_new_chain (unsigned this_regno, unsigned this_nregs, rtx *loc,
221 rtx_insn *insn, enum reg_class cl)
223 struct du_head *head = XOBNEW (&rename_obstack, struct du_head);
224 struct du_chain *this_du;
225 int nregs;
227 head->next_chain = open_chains;
228 head->regno = this_regno;
229 head->nregs = this_nregs;
230 head->need_caller_save_reg = 0;
231 head->cannot_rename = 0;
233 id_to_chain.safe_push (head);
234 head->id = current_id++;
236 bitmap_initialize (&head->conflicts, &bitmap_default_obstack);
237 bitmap_copy (&head->conflicts, &open_chains_set);
238 mark_conflict (open_chains, head->id);
240 /* Since we're tracking this as a chain now, remove it from the
241 list of conflicting live hard registers and track it in
242 live_in_chains instead. */
243 nregs = head->nregs;
244 while (nregs-- > 0)
246 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
247 CLEAR_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
250 COPY_HARD_REG_SET (head->hard_conflicts, live_hard_regs);
251 bitmap_set_bit (&open_chains_set, head->id);
253 open_chains = head;
255 if (dump_file)
257 fprintf (dump_file, "Creating chain %s (%d)",
258 reg_names[head->regno], head->id);
259 if (insn != NULL_RTX)
260 fprintf (dump_file, " at insn %d", INSN_UID (insn));
261 fprintf (dump_file, "\n");
264 if (insn == NULL_RTX)
266 head->first = head->last = NULL;
267 return head;
270 this_du = XOBNEW (&rename_obstack, struct du_chain);
271 head->first = head->last = this_du;
273 this_du->next_use = 0;
274 this_du->loc = loc;
275 this_du->insn = insn;
276 this_du->cl = cl;
277 record_operand_use (head, this_du);
278 return head;
281 /* For a def-use chain HEAD, find which registers overlap its lifetime and
282 set the corresponding bits in *PSET. */
284 static void
285 merge_overlapping_regs (HARD_REG_SET *pset, struct du_head *head)
287 bitmap_iterator bi;
288 unsigned i;
289 IOR_HARD_REG_SET (*pset, head->hard_conflicts);
290 EXECUTE_IF_SET_IN_BITMAP (&head->conflicts, 0, i, bi)
292 du_head_p other = regrename_chain_from_id (i);
293 unsigned j = other->nregs;
294 gcc_assert (other != head);
295 while (j-- > 0)
296 SET_HARD_REG_BIT (*pset, other->regno + j);
300 /* Check if NEW_REG can be the candidate register to rename for
301 REG in THIS_HEAD chain. THIS_UNAVAILABLE is a set of unavailable hard
302 registers. */
304 static bool
305 check_new_reg_p (int reg ATTRIBUTE_UNUSED, int new_reg,
306 struct du_head *this_head, HARD_REG_SET this_unavailable)
308 machine_mode mode = GET_MODE (*this_head->first->loc);
309 int nregs = hard_regno_nregs[new_reg][mode];
310 int i;
311 struct du_chain *tmp;
313 for (i = nregs - 1; i >= 0; --i)
314 if (TEST_HARD_REG_BIT (this_unavailable, new_reg + i)
315 || fixed_regs[new_reg + i]
316 || global_regs[new_reg + i]
317 /* Can't use regs which aren't saved by the prologue. */
318 || (! df_regs_ever_live_p (new_reg + i)
319 && ! call_used_regs[new_reg + i])
320 #ifdef LEAF_REGISTERS
321 /* We can't use a non-leaf register if we're in a
322 leaf function. */
323 || (crtl->is_leaf
324 && !LEAF_REGISTERS[new_reg + i])
325 #endif
326 || ! HARD_REGNO_RENAME_OK (reg + i, new_reg + i))
327 return false;
329 /* See whether it accepts all modes that occur in
330 definition and uses. */
331 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
332 if ((! HARD_REGNO_MODE_OK (new_reg, GET_MODE (*tmp->loc))
333 && ! DEBUG_INSN_P (tmp->insn))
334 || (this_head->need_caller_save_reg
335 && ! (HARD_REGNO_CALL_PART_CLOBBERED
336 (reg, GET_MODE (*tmp->loc)))
337 && (HARD_REGNO_CALL_PART_CLOBBERED
338 (new_reg, GET_MODE (*tmp->loc)))))
339 return false;
341 return true;
344 /* For the chain THIS_HEAD, compute and return the best register to
345 rename to. SUPER_CLASS is the superunion of register classes in
346 the chain. UNAVAILABLE is a set of registers that cannot be used.
347 OLD_REG is the register currently used for the chain. BEST_RENAME
348 controls whether the register chosen must be better than the
349 current one or just respect the given constraint. */
352 find_rename_reg (du_head_p this_head, enum reg_class super_class,
353 HARD_REG_SET *unavailable, int old_reg, bool best_rename)
355 bool has_preferred_class;
356 enum reg_class preferred_class;
357 int pass;
358 int best_new_reg = old_reg;
360 /* Further narrow the set of registers we can use for renaming.
361 If the chain needs a call-saved register, mark the call-used
362 registers as unavailable. */
363 if (this_head->need_caller_save_reg)
364 IOR_HARD_REG_SET (*unavailable, call_used_reg_set);
366 /* Mark registers that overlap this chain's lifetime as unavailable. */
367 merge_overlapping_regs (unavailable, this_head);
369 /* Compute preferred rename class of super union of all the classes
370 in the chain. */
371 preferred_class
372 = (enum reg_class) targetm.preferred_rename_class (super_class);
374 /* If PREFERRED_CLASS is not NO_REGS, we iterate in the first pass
375 over registers that belong to PREFERRED_CLASS and try to find the
376 best register within the class. If that failed, we iterate in
377 the second pass over registers that don't belong to the class.
378 If PREFERRED_CLASS is NO_REGS, we iterate over all registers in
379 ascending order without any preference. */
380 has_preferred_class = (preferred_class != NO_REGS);
381 for (pass = (has_preferred_class ? 0 : 1); pass < 2; pass++)
383 int new_reg;
384 for (new_reg = 0; new_reg < FIRST_PSEUDO_REGISTER; new_reg++)
386 if (has_preferred_class
387 && (pass == 0)
388 != TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
389 new_reg))
390 continue;
392 if (!check_new_reg_p (old_reg, new_reg, this_head, *unavailable))
393 continue;
395 if (!best_rename)
396 return new_reg;
398 /* In the first pass, we force the renaming of registers that
399 don't belong to PREFERRED_CLASS to registers that do, even
400 though the latters were used not very long ago. */
401 if ((pass == 0
402 && !TEST_HARD_REG_BIT (reg_class_contents[preferred_class],
403 best_new_reg))
404 || tick[best_new_reg] > tick[new_reg])
405 best_new_reg = new_reg;
407 if (pass == 0 && best_new_reg != old_reg)
408 break;
410 return best_new_reg;
413 /* Perform register renaming on the current function. */
414 static void
415 rename_chains (void)
417 HARD_REG_SET unavailable;
418 du_head_p this_head;
419 int i;
421 memset (tick, 0, sizeof tick);
423 CLEAR_HARD_REG_SET (unavailable);
424 /* Don't clobber traceback for noreturn functions. */
425 if (frame_pointer_needed)
427 add_to_hard_reg_set (&unavailable, Pmode, FRAME_POINTER_REGNUM);
428 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
429 add_to_hard_reg_set (&unavailable, Pmode, HARD_FRAME_POINTER_REGNUM);
432 FOR_EACH_VEC_ELT (id_to_chain, i, this_head)
434 int best_new_reg;
435 int n_uses;
436 struct du_chain *tmp;
437 HARD_REG_SET this_unavailable;
438 int reg = this_head->regno;
439 enum reg_class super_class = NO_REGS;
441 if (this_head->cannot_rename)
442 continue;
444 if (fixed_regs[reg] || global_regs[reg]
445 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
446 || (frame_pointer_needed && reg == HARD_FRAME_POINTER_REGNUM)
447 #else
448 || (frame_pointer_needed && reg == FRAME_POINTER_REGNUM)
449 #endif
451 continue;
453 COPY_HARD_REG_SET (this_unavailable, unavailable);
455 /* Iterate over elements in the chain in order to:
456 1. Count number of uses, and narrow the set of registers we can
457 use for renaming.
458 2. Compute the superunion of register classes in this chain. */
459 n_uses = 0;
460 super_class = NO_REGS;
461 for (tmp = this_head->first; tmp; tmp = tmp->next_use)
463 if (DEBUG_INSN_P (tmp->insn))
464 continue;
465 n_uses++;
466 IOR_COMPL_HARD_REG_SET (this_unavailable,
467 reg_class_contents[tmp->cl]);
468 super_class
469 = reg_class_superunion[(int) super_class][(int) tmp->cl];
472 if (n_uses < 2)
473 continue;
475 best_new_reg = find_rename_reg (this_head, super_class,
476 &this_unavailable, reg, true);
478 if (dump_file)
480 fprintf (dump_file, "Register %s in insn %d",
481 reg_names[reg], INSN_UID (this_head->first->insn));
482 if (this_head->need_caller_save_reg)
483 fprintf (dump_file, " crosses a call");
486 if (best_new_reg == reg)
488 tick[reg] = ++this_tick;
489 if (dump_file)
490 fprintf (dump_file, "; no available better choice\n");
491 continue;
494 if (regrename_do_replace (this_head, best_new_reg))
496 if (dump_file)
497 fprintf (dump_file, ", renamed as %s\n", reg_names[best_new_reg]);
498 tick[best_new_reg] = ++this_tick;
499 df_set_regs_ever_live (best_new_reg, true);
501 else
503 if (dump_file)
504 fprintf (dump_file, ", renaming as %s failed\n",
505 reg_names[best_new_reg]);
506 tick[reg] = ++this_tick;
511 /* A structure to record information for each hard register at the start of
512 a basic block. */
513 struct incoming_reg_info {
514 /* Holds the number of registers used in the chain that gave us information
515 about this register. Zero means no information known yet, while a
516 negative value is used for something that is part of, but not the first
517 register in a multi-register value. */
518 int nregs;
519 /* Set to true if we have accesses that conflict in the number of registers
520 used. */
521 bool unusable;
524 /* A structure recording information about each basic block. It is saved
525 and restored around basic block boundaries.
526 A pointer to such a structure is stored in each basic block's aux field
527 during regrename_analyze, except for blocks we know can't be optimized
528 (such as entry and exit blocks). */
529 struct bb_rename_info
531 /* The basic block corresponding to this structure. */
532 basic_block bb;
533 /* Copies of the global information. */
534 bitmap_head open_chains_set;
535 bitmap_head incoming_open_chains_set;
536 struct incoming_reg_info incoming[FIRST_PSEUDO_REGISTER];
539 /* Initialize a rename_info structure P for basic block BB, which starts a new
540 scan. */
541 static void
542 init_rename_info (struct bb_rename_info *p, basic_block bb)
544 int i;
545 df_ref def;
546 HARD_REG_SET start_chains_set;
548 p->bb = bb;
549 bitmap_initialize (&p->open_chains_set, &bitmap_default_obstack);
550 bitmap_initialize (&p->incoming_open_chains_set, &bitmap_default_obstack);
552 open_chains = NULL;
553 bitmap_clear (&open_chains_set);
555 CLEAR_HARD_REG_SET (live_in_chains);
556 REG_SET_TO_HARD_REG_SET (live_hard_regs, df_get_live_in (bb));
557 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
558 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
559 SET_HARD_REG_BIT (live_hard_regs, DF_REF_REGNO (def));
561 /* Open chains based on information from (at least one) predecessor
562 block. This gives us a chance later on to combine chains across
563 basic block boundaries. Inconsistencies (in access sizes) will
564 be caught normally and dealt with conservatively by disabling the
565 chain for renaming, and there is no risk of losing optimization
566 opportunities by opening chains either: if we did not open the
567 chains, we'd have to track the live register as a hard reg, and
568 we'd be unable to rename it in any case. */
569 CLEAR_HARD_REG_SET (start_chains_set);
570 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
572 struct incoming_reg_info *iri = p->incoming + i;
573 if (iri->nregs > 0 && !iri->unusable
574 && range_in_hard_reg_set_p (live_hard_regs, i, iri->nregs))
576 SET_HARD_REG_BIT (start_chains_set, i);
577 remove_range_from_hard_reg_set (&live_hard_regs, i, iri->nregs);
580 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
582 struct incoming_reg_info *iri = p->incoming + i;
583 if (TEST_HARD_REG_BIT (start_chains_set, i))
585 du_head_p chain;
586 if (dump_file)
587 fprintf (dump_file, "opening incoming chain\n");
588 chain = create_new_chain (i, iri->nregs, NULL, NULL, NO_REGS);
589 bitmap_set_bit (&p->incoming_open_chains_set, chain->id);
594 /* Record in RI that the block corresponding to it has an incoming
595 live value, described by CHAIN. */
596 static void
597 set_incoming_from_chain (struct bb_rename_info *ri, du_head_p chain)
599 int i;
600 int incoming_nregs = ri->incoming[chain->regno].nregs;
601 int nregs;
603 /* If we've recorded the same information before, everything is fine. */
604 if (incoming_nregs == chain->nregs)
606 if (dump_file)
607 fprintf (dump_file, "reg %d/%d already recorded\n",
608 chain->regno, chain->nregs);
609 return;
612 /* If we have no information for any of the involved registers, update
613 the incoming array. */
614 nregs = chain->nregs;
615 while (nregs-- > 0)
616 if (ri->incoming[chain->regno + nregs].nregs != 0
617 || ri->incoming[chain->regno + nregs].unusable)
618 break;
619 if (nregs < 0)
621 nregs = chain->nregs;
622 ri->incoming[chain->regno].nregs = nregs;
623 while (nregs-- > 1)
624 ri->incoming[chain->regno + nregs].nregs = -nregs;
625 if (dump_file)
626 fprintf (dump_file, "recorded reg %d/%d\n",
627 chain->regno, chain->nregs);
628 return;
631 /* There must be some kind of conflict. Prevent both the old and
632 new ranges from being used. */
633 if (incoming_nregs < 0)
634 ri->incoming[chain->regno + incoming_nregs].unusable = true;
635 for (i = 0; i < chain->nregs; i++)
636 ri->incoming[chain->regno + i].unusable = true;
639 /* Merge the two chains C1 and C2 so that all conflict information is
640 recorded and C1, and the id of C2 is changed to that of C1. */
641 static void
642 merge_chains (du_head_p c1, du_head_p c2)
644 if (c1 == c2)
645 return;
647 if (c2->first != NULL)
649 if (c1->first == NULL)
650 c1->first = c2->first;
651 else
652 c1->last->next_use = c2->first;
653 c1->last = c2->last;
656 c2->first = c2->last = NULL;
657 c2->id = c1->id;
659 IOR_HARD_REG_SET (c1->hard_conflicts, c2->hard_conflicts);
660 bitmap_ior_into (&c1->conflicts, &c2->conflicts);
662 c1->need_caller_save_reg |= c2->need_caller_save_reg;
663 c1->cannot_rename |= c2->cannot_rename;
666 /* Analyze the current function and build chains for renaming. */
668 void
669 regrename_analyze (bitmap bb_mask)
671 struct bb_rename_info *rename_info;
672 int i;
673 basic_block bb;
674 int n_bbs;
675 int *inverse_postorder;
677 inverse_postorder = XNEWVEC (int, last_basic_block_for_fn (cfun));
678 n_bbs = pre_and_rev_post_order_compute (NULL, inverse_postorder, false);
680 /* Gather some information about the blocks in this function. */
681 rename_info = XCNEWVEC (struct bb_rename_info, n_basic_blocks_for_fn (cfun));
682 i = 0;
683 FOR_EACH_BB_FN (bb, cfun)
685 struct bb_rename_info *ri = rename_info + i;
686 ri->bb = bb;
687 if (bb_mask != NULL && !bitmap_bit_p (bb_mask, bb->index))
688 bb->aux = NULL;
689 else
690 bb->aux = ri;
691 i++;
694 current_id = 0;
695 id_to_chain.create (0);
696 bitmap_initialize (&open_chains_set, &bitmap_default_obstack);
698 /* The order in which we visit blocks ensures that whenever
699 possible, we only process a block after at least one of its
700 predecessors, which provides a "seeding" effect to make the logic
701 in set_incoming_from_chain and init_rename_info useful. */
703 for (i = 0; i < n_bbs; i++)
705 basic_block bb1 = BASIC_BLOCK_FOR_FN (cfun, inverse_postorder[i]);
706 struct bb_rename_info *this_info;
707 bool success;
708 edge e;
709 edge_iterator ei;
710 int old_length = id_to_chain.length ();
712 this_info = (struct bb_rename_info *) bb1->aux;
713 if (this_info == NULL)
714 continue;
716 if (dump_file)
717 fprintf (dump_file, "\nprocessing block %d:\n", bb1->index);
719 init_rename_info (this_info, bb1);
721 success = build_def_use (bb1);
722 if (!success)
724 if (dump_file)
725 fprintf (dump_file, "failed\n");
726 bb1->aux = NULL;
727 id_to_chain.truncate (old_length);
728 current_id = old_length;
729 bitmap_clear (&this_info->incoming_open_chains_set);
730 open_chains = NULL;
731 if (insn_rr.exists ())
733 rtx_insn *insn;
734 FOR_BB_INSNS (bb1, insn)
736 insn_rr_info *p = &insn_rr[INSN_UID (insn)];
737 p->op_info = NULL;
740 continue;
743 if (dump_file)
744 dump_def_use_chain (old_length);
745 bitmap_copy (&this_info->open_chains_set, &open_chains_set);
747 /* Add successor blocks to the worklist if necessary, and record
748 data about our own open chains at the end of this block, which
749 will be used to pre-open chains when processing the successors. */
750 FOR_EACH_EDGE (e, ei, bb1->succs)
752 struct bb_rename_info *dest_ri;
753 struct du_head *chain;
755 if (dump_file)
756 fprintf (dump_file, "successor block %d\n", e->dest->index);
758 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
759 continue;
760 dest_ri = (struct bb_rename_info *)e->dest->aux;
761 if (dest_ri == NULL)
762 continue;
763 for (chain = open_chains; chain; chain = chain->next_chain)
764 set_incoming_from_chain (dest_ri, chain);
768 free (inverse_postorder);
770 /* Now, combine the chains data we have gathered across basic block
771 boundaries.
773 For every basic block, there may be chains open at the start, or at the
774 end. Rather than exclude them from renaming, we look for open chains
775 with matching registers at the other side of the CFG edge.
777 For a given chain using register R, open at the start of block B, we
778 must find an open chain using R on the other side of every edge leading
779 to B, if the register is live across this edge. In the code below,
780 N_PREDS_USED counts the number of edges where the register is live, and
781 N_PREDS_JOINED counts those where we found an appropriate chain for
782 joining.
784 We perform the analysis for both incoming and outgoing edges, but we
785 only need to merge once (in the second part, after verifying outgoing
786 edges). */
787 FOR_EACH_BB_FN (bb, cfun)
789 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
790 unsigned j;
791 bitmap_iterator bi;
793 if (bb_ri == NULL)
794 continue;
796 if (dump_file)
797 fprintf (dump_file, "processing bb %d in edges\n", bb->index);
799 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->incoming_open_chains_set, 0, j, bi)
801 edge e;
802 edge_iterator ei;
803 struct du_head *chain = regrename_chain_from_id (j);
804 int n_preds_used = 0, n_preds_joined = 0;
806 FOR_EACH_EDGE (e, ei, bb->preds)
808 struct bb_rename_info *src_ri;
809 unsigned k;
810 bitmap_iterator bi2;
811 HARD_REG_SET live;
812 bool success = false;
814 REG_SET_TO_HARD_REG_SET (live, df_get_live_out (e->src));
815 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
816 chain->nregs))
817 continue;
818 n_preds_used++;
820 if (e->flags & (EDGE_EH | EDGE_ABNORMAL))
821 continue;
823 src_ri = (struct bb_rename_info *)e->src->aux;
824 if (src_ri == NULL)
825 continue;
827 EXECUTE_IF_SET_IN_BITMAP (&src_ri->open_chains_set,
828 0, k, bi2)
830 struct du_head *outgoing_chain = regrename_chain_from_id (k);
832 if (outgoing_chain->regno == chain->regno
833 && outgoing_chain->nregs == chain->nregs)
835 n_preds_joined++;
836 success = true;
837 break;
840 if (!success && dump_file)
841 fprintf (dump_file, "failure to match with pred block %d\n",
842 e->src->index);
844 if (n_preds_joined < n_preds_used)
846 if (dump_file)
847 fprintf (dump_file, "cannot rename chain %d\n", j);
848 chain->cannot_rename = 1;
852 FOR_EACH_BB_FN (bb, cfun)
854 struct bb_rename_info *bb_ri = (struct bb_rename_info *) bb->aux;
855 unsigned j;
856 bitmap_iterator bi;
858 if (bb_ri == NULL)
859 continue;
861 if (dump_file)
862 fprintf (dump_file, "processing bb %d out edges\n", bb->index);
864 EXECUTE_IF_SET_IN_BITMAP (&bb_ri->open_chains_set, 0, j, bi)
866 edge e;
867 edge_iterator ei;
868 struct du_head *chain = regrename_chain_from_id (j);
869 int n_succs_used = 0, n_succs_joined = 0;
871 FOR_EACH_EDGE (e, ei, bb->succs)
873 bool printed = false;
874 struct bb_rename_info *dest_ri;
875 unsigned k;
876 bitmap_iterator bi2;
877 HARD_REG_SET live;
879 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (e->dest));
880 if (!range_overlaps_hard_reg_set_p (live, chain->regno,
881 chain->nregs))
882 continue;
884 n_succs_used++;
886 dest_ri = (struct bb_rename_info *)e->dest->aux;
887 if (dest_ri == NULL)
888 continue;
890 EXECUTE_IF_SET_IN_BITMAP (&dest_ri->incoming_open_chains_set,
891 0, k, bi2)
893 struct du_head *incoming_chain = regrename_chain_from_id (k);
895 if (incoming_chain->regno == chain->regno
896 && incoming_chain->nregs == chain->nregs)
898 if (dump_file)
900 if (!printed)
901 fprintf (dump_file,
902 "merging blocks for edge %d -> %d\n",
903 e->src->index, e->dest->index);
904 printed = true;
905 fprintf (dump_file,
906 " merging chains %d (->%d) and %d (->%d) [%s]\n",
907 k, incoming_chain->id, j, chain->id,
908 reg_names[incoming_chain->regno]);
911 merge_chains (chain, incoming_chain);
912 n_succs_joined++;
913 break;
917 if (n_succs_joined < n_succs_used)
919 if (dump_file)
920 fprintf (dump_file, "cannot rename chain %d\n",
922 chain->cannot_rename = 1;
927 free (rename_info);
929 FOR_EACH_BB_FN (bb, cfun)
930 bb->aux = NULL;
933 /* Attempt to replace all uses of the register in the chain beginning with
934 HEAD with REG. Returns true on success and false if the replacement is
935 rejected because the insns would not validate. The latter can happen
936 e.g. if a match_parallel predicate enforces restrictions on register
937 numbering in its subpatterns. */
939 bool
940 regrename_do_replace (struct du_head *head, int reg)
942 struct du_chain *chain;
943 unsigned int base_regno = head->regno;
944 machine_mode mode;
946 for (chain = head->first; chain; chain = chain->next_use)
948 unsigned int regno = ORIGINAL_REGNO (*chain->loc);
949 struct reg_attrs *attr = REG_ATTRS (*chain->loc);
950 int reg_ptr = REG_POINTER (*chain->loc);
952 if (DEBUG_INSN_P (chain->insn) && REGNO (*chain->loc) != base_regno)
953 validate_change (chain->insn, &(INSN_VAR_LOCATION_LOC (chain->insn)),
954 gen_rtx_UNKNOWN_VAR_LOC (), true);
955 else
957 validate_change (chain->insn, chain->loc,
958 gen_raw_REG (GET_MODE (*chain->loc), reg), true);
959 if (regno >= FIRST_PSEUDO_REGISTER)
960 ORIGINAL_REGNO (*chain->loc) = regno;
961 REG_ATTRS (*chain->loc) = attr;
962 REG_POINTER (*chain->loc) = reg_ptr;
966 if (!apply_change_group ())
967 return false;
969 mode = GET_MODE (*head->first->loc);
970 head->regno = reg;
971 head->nregs = hard_regno_nregs[reg][mode];
972 return true;
976 /* True if we found a register with a size mismatch, which means that we
977 can't track its lifetime accurately. If so, we abort the current block
978 without renaming. */
979 static bool fail_current_block;
981 /* Return true if OP is a reg for which all bits are set in PSET, false
982 if all bits are clear.
983 In other cases, set fail_current_block and return false. */
985 static bool
986 verify_reg_in_set (rtx op, HARD_REG_SET *pset)
988 unsigned regno, nregs;
989 bool all_live, all_dead;
990 if (!REG_P (op))
991 return false;
993 regno = REGNO (op);
994 nregs = REG_NREGS (op);
995 all_live = all_dead = true;
996 while (nregs-- > 0)
997 if (TEST_HARD_REG_BIT (*pset, regno + nregs))
998 all_dead = false;
999 else
1000 all_live = false;
1001 if (!all_dead && !all_live)
1003 fail_current_block = true;
1004 return false;
1006 return all_live;
1009 /* Return true if OP is a reg that is being tracked already in some form.
1010 May set fail_current_block if it sees an unhandled case of overlap. */
1012 static bool
1013 verify_reg_tracked (rtx op)
1015 return (verify_reg_in_set (op, &live_hard_regs)
1016 || verify_reg_in_set (op, &live_in_chains));
1019 /* Called through note_stores. DATA points to a rtx_code, either SET or
1020 CLOBBER, which tells us which kind of rtx to look at. If we have a
1021 match, record the set register in live_hard_regs and in the hard_conflicts
1022 bitmap of open chains. */
1024 static void
1025 note_sets_clobbers (rtx x, const_rtx set, void *data)
1027 enum rtx_code code = *(enum rtx_code *)data;
1028 struct du_head *chain;
1030 if (GET_CODE (x) == SUBREG)
1031 x = SUBREG_REG (x);
1032 if (!REG_P (x) || GET_CODE (set) != code)
1033 return;
1034 /* There must not be pseudos at this point. */
1035 gcc_assert (HARD_REGISTER_P (x));
1036 add_to_hard_reg_set (&live_hard_regs, GET_MODE (x), REGNO (x));
1037 for (chain = open_chains; chain; chain = chain->next_chain)
1038 add_to_hard_reg_set (&chain->hard_conflicts, GET_MODE (x), REGNO (x));
1041 static void
1042 scan_rtx_reg (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1043 enum op_type type)
1045 struct du_head **p;
1046 rtx x = *loc;
1047 unsigned this_regno = REGNO (x);
1048 int this_nregs = REG_NREGS (x);
1050 if (action == mark_write)
1052 if (type == OP_OUT)
1053 create_new_chain (this_regno, this_nregs, loc, insn, cl);
1054 return;
1057 if ((type == OP_OUT) != (action == terminate_write || action == mark_access))
1058 return;
1060 for (p = &open_chains; *p;)
1062 struct du_head *head = *p;
1063 struct du_head *next = head->next_chain;
1064 int exact_match = (head->regno == this_regno
1065 && head->nregs == this_nregs);
1066 int superset = (this_regno <= head->regno
1067 && this_regno + this_nregs >= head->regno + head->nregs);
1068 int subset = (this_regno >= head->regno
1069 && this_regno + this_nregs <= head->regno + head->nregs);
1071 if (!bitmap_bit_p (&open_chains_set, head->id)
1072 || head->regno + head->nregs <= this_regno
1073 || this_regno + this_nregs <= head->regno)
1075 p = &head->next_chain;
1076 continue;
1079 if (action == mark_read || action == mark_access)
1081 /* ??? Class NO_REGS can happen if the md file makes use of
1082 EXTRA_CONSTRAINTS to match registers. Which is arguably
1083 wrong, but there we are. */
1085 if (cl == NO_REGS || (!exact_match && !DEBUG_INSN_P (insn)))
1087 if (dump_file)
1088 fprintf (dump_file,
1089 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1090 reg_names[head->regno], head->id, INSN_UID (insn),
1091 scan_actions_name[(int) action]);
1092 head->cannot_rename = 1;
1093 if (superset)
1095 unsigned nregs = this_nregs;
1096 head->regno = this_regno;
1097 head->nregs = this_nregs;
1098 while (nregs-- > 0)
1099 SET_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1100 if (dump_file)
1101 fprintf (dump_file,
1102 "Widening register in chain %s (%d) at insn %d\n",
1103 reg_names[head->regno], head->id, INSN_UID (insn));
1105 else if (!subset)
1107 fail_current_block = true;
1108 if (dump_file)
1109 fprintf (dump_file,
1110 "Failing basic block due to unhandled overlap\n");
1113 else
1115 struct du_chain *this_du;
1116 this_du = XOBNEW (&rename_obstack, struct du_chain);
1117 this_du->next_use = 0;
1118 this_du->loc = loc;
1119 this_du->insn = insn;
1120 this_du->cl = cl;
1121 if (head->first == NULL)
1122 head->first = this_du;
1123 else
1124 head->last->next_use = this_du;
1125 record_operand_use (head, this_du);
1126 head->last = this_du;
1128 /* Avoid adding the same location in a DEBUG_INSN multiple times,
1129 which could happen with non-exact overlap. */
1130 if (DEBUG_INSN_P (insn))
1131 return;
1132 /* Otherwise, find any other chains that do not match exactly;
1133 ensure they all get marked unrenamable. */
1134 p = &head->next_chain;
1135 continue;
1138 /* Whether the terminated chain can be used for renaming
1139 depends on the action and this being an exact match.
1140 In either case, we remove this element from open_chains. */
1142 if ((action == terminate_dead || action == terminate_write)
1143 && (superset || subset))
1145 unsigned nregs;
1147 if (subset && !superset)
1148 head->cannot_rename = 1;
1149 bitmap_clear_bit (&open_chains_set, head->id);
1151 nregs = head->nregs;
1152 while (nregs-- > 0)
1154 CLEAR_HARD_REG_BIT (live_in_chains, head->regno + nregs);
1155 if (subset && !superset
1156 && (head->regno + nregs < this_regno
1157 || head->regno + nregs >= this_regno + this_nregs))
1158 SET_HARD_REG_BIT (live_hard_regs, head->regno + nregs);
1161 *p = next;
1162 if (dump_file)
1163 fprintf (dump_file,
1164 "Closing chain %s (%d) at insn %d (%s%s)\n",
1165 reg_names[head->regno], head->id, INSN_UID (insn),
1166 scan_actions_name[(int) action],
1167 superset ? ", superset" : subset ? ", subset" : "");
1169 else if (action == terminate_dead || action == terminate_write)
1171 /* In this case, tracking liveness gets too hard. Fail the
1172 entire basic block. */
1173 if (dump_file)
1174 fprintf (dump_file,
1175 "Failing basic block due to unhandled overlap\n");
1176 fail_current_block = true;
1177 return;
1179 else
1181 head->cannot_rename = 1;
1182 if (dump_file)
1183 fprintf (dump_file,
1184 "Cannot rename chain %s (%d) at insn %d (%s)\n",
1185 reg_names[head->regno], head->id, INSN_UID (insn),
1186 scan_actions_name[(int) action]);
1187 p = &head->next_chain;
1192 /* Adapted from find_reloads_address_1. CL is INDEX_REG_CLASS or
1193 BASE_REG_CLASS depending on how the register is being considered. */
1195 static void
1196 scan_rtx_address (rtx_insn *insn, rtx *loc, enum reg_class cl,
1197 enum scan_actions action, machine_mode mode,
1198 addr_space_t as)
1200 rtx x = *loc;
1201 RTX_CODE code = GET_CODE (x);
1202 const char *fmt;
1203 int i, j;
1205 if (action == mark_write || action == mark_access)
1206 return;
1208 switch (code)
1210 case PLUS:
1212 rtx orig_op0 = XEXP (x, 0);
1213 rtx orig_op1 = XEXP (x, 1);
1214 RTX_CODE code0 = GET_CODE (orig_op0);
1215 RTX_CODE code1 = GET_CODE (orig_op1);
1216 rtx op0 = orig_op0;
1217 rtx op1 = orig_op1;
1218 rtx *locI = NULL;
1219 rtx *locB = NULL;
1220 enum rtx_code index_code = SCRATCH;
1222 if (GET_CODE (op0) == SUBREG)
1224 op0 = SUBREG_REG (op0);
1225 code0 = GET_CODE (op0);
1228 if (GET_CODE (op1) == SUBREG)
1230 op1 = SUBREG_REG (op1);
1231 code1 = GET_CODE (op1);
1234 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
1235 || code0 == ZERO_EXTEND || code1 == MEM)
1237 locI = &XEXP (x, 0);
1238 locB = &XEXP (x, 1);
1239 index_code = GET_CODE (*locI);
1241 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
1242 || code1 == ZERO_EXTEND || code0 == MEM)
1244 locI = &XEXP (x, 1);
1245 locB = &XEXP (x, 0);
1246 index_code = GET_CODE (*locI);
1248 else if (code0 == CONST_INT || code0 == CONST
1249 || code0 == SYMBOL_REF || code0 == LABEL_REF)
1251 locB = &XEXP (x, 1);
1252 index_code = GET_CODE (XEXP (x, 0));
1254 else if (code1 == CONST_INT || code1 == CONST
1255 || code1 == SYMBOL_REF || code1 == LABEL_REF)
1257 locB = &XEXP (x, 0);
1258 index_code = GET_CODE (XEXP (x, 1));
1260 else if (code0 == REG && code1 == REG)
1262 int index_op;
1263 unsigned regno0 = REGNO (op0), regno1 = REGNO (op1);
1265 if (REGNO_OK_FOR_INDEX_P (regno1)
1266 && regno_ok_for_base_p (regno0, mode, as, PLUS, REG))
1267 index_op = 1;
1268 else if (REGNO_OK_FOR_INDEX_P (regno0)
1269 && regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1270 index_op = 0;
1271 else if (regno_ok_for_base_p (regno0, mode, as, PLUS, REG)
1272 || REGNO_OK_FOR_INDEX_P (regno1))
1273 index_op = 1;
1274 else if (regno_ok_for_base_p (regno1, mode, as, PLUS, REG))
1275 index_op = 0;
1276 else
1277 index_op = 1;
1279 locI = &XEXP (x, index_op);
1280 locB = &XEXP (x, !index_op);
1281 index_code = GET_CODE (*locI);
1283 else if (code0 == REG)
1285 locI = &XEXP (x, 0);
1286 locB = &XEXP (x, 1);
1287 index_code = GET_CODE (*locI);
1289 else if (code1 == REG)
1291 locI = &XEXP (x, 1);
1292 locB = &XEXP (x, 0);
1293 index_code = GET_CODE (*locI);
1296 if (locI)
1297 scan_rtx_address (insn, locI, INDEX_REG_CLASS, action, mode, as);
1298 if (locB)
1299 scan_rtx_address (insn, locB,
1300 base_reg_class (mode, as, PLUS, index_code),
1301 action, mode, as);
1303 return;
1306 case POST_INC:
1307 case POST_DEC:
1308 case POST_MODIFY:
1309 case PRE_INC:
1310 case PRE_DEC:
1311 case PRE_MODIFY:
1312 #ifndef AUTO_INC_DEC
1313 /* If the target doesn't claim to handle autoinc, this must be
1314 something special, like a stack push. Kill this chain. */
1315 action = mark_all_read;
1316 #endif
1317 break;
1319 case MEM:
1320 scan_rtx_address (insn, &XEXP (x, 0),
1321 base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
1322 MEM, SCRATCH),
1323 action, GET_MODE (x), MEM_ADDR_SPACE (x));
1324 return;
1326 case REG:
1327 scan_rtx_reg (insn, loc, cl, action, OP_IN);
1328 return;
1330 default:
1331 break;
1334 fmt = GET_RTX_FORMAT (code);
1335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1337 if (fmt[i] == 'e')
1338 scan_rtx_address (insn, &XEXP (x, i), cl, action, mode, as);
1339 else if (fmt[i] == 'E')
1340 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1341 scan_rtx_address (insn, &XVECEXP (x, i, j), cl, action, mode, as);
1345 static void
1346 scan_rtx (rtx_insn *insn, rtx *loc, enum reg_class cl, enum scan_actions action,
1347 enum op_type type)
1349 const char *fmt;
1350 rtx x = *loc;
1351 enum rtx_code code = GET_CODE (x);
1352 int i, j;
1354 code = GET_CODE (x);
1355 switch (code)
1357 case CONST:
1358 CASE_CONST_ANY:
1359 case SYMBOL_REF:
1360 case LABEL_REF:
1361 case CC0:
1362 case PC:
1363 return;
1365 case REG:
1366 scan_rtx_reg (insn, loc, cl, action, type);
1367 return;
1369 case MEM:
1370 scan_rtx_address (insn, &XEXP (x, 0),
1371 base_reg_class (GET_MODE (x), MEM_ADDR_SPACE (x),
1372 MEM, SCRATCH),
1373 action, GET_MODE (x), MEM_ADDR_SPACE (x));
1374 return;
1376 case SET:
1377 scan_rtx (insn, &SET_SRC (x), cl, action, OP_IN);
1378 scan_rtx (insn, &SET_DEST (x), cl, action,
1379 (GET_CODE (PATTERN (insn)) == COND_EXEC
1380 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1381 return;
1383 case STRICT_LOW_PART:
1384 scan_rtx (insn, &XEXP (x, 0), cl, action,
1385 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT);
1386 return;
1388 case ZERO_EXTRACT:
1389 case SIGN_EXTRACT:
1390 scan_rtx (insn, &XEXP (x, 0), cl, action,
1391 (type == OP_IN ? OP_IN :
1392 verify_reg_tracked (XEXP (x, 0)) ? OP_INOUT : OP_OUT));
1393 scan_rtx (insn, &XEXP (x, 1), cl, action, OP_IN);
1394 scan_rtx (insn, &XEXP (x, 2), cl, action, OP_IN);
1395 return;
1397 case POST_INC:
1398 case PRE_INC:
1399 case POST_DEC:
1400 case PRE_DEC:
1401 case POST_MODIFY:
1402 case PRE_MODIFY:
1403 /* Should only happen inside MEM. */
1404 gcc_unreachable ();
1406 case CLOBBER:
1407 scan_rtx (insn, &SET_DEST (x), cl, action,
1408 (GET_CODE (PATTERN (insn)) == COND_EXEC
1409 && verify_reg_tracked (SET_DEST (x))) ? OP_INOUT : OP_OUT);
1410 return;
1412 case EXPR_LIST:
1413 scan_rtx (insn, &XEXP (x, 0), cl, action, type);
1414 if (XEXP (x, 1))
1415 scan_rtx (insn, &XEXP (x, 1), cl, action, type);
1416 return;
1418 default:
1419 break;
1422 fmt = GET_RTX_FORMAT (code);
1423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1425 if (fmt[i] == 'e')
1426 scan_rtx (insn, &XEXP (x, i), cl, action, type);
1427 else if (fmt[i] == 'E')
1428 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1429 scan_rtx (insn, &XVECEXP (x, i, j), cl, action, type);
1433 /* Hide operands of the current insn (of which there are N_OPS) by
1434 substituting cc0 for them.
1435 Previous values are stored in the OLD_OPERANDS and OLD_DUPS.
1436 For every bit set in DO_NOT_HIDE, we leave the operand alone.
1437 If INOUT_AND_EC_ONLY is set, we only do this for OP_INOUT type operands
1438 and earlyclobbers. */
1440 static void
1441 hide_operands (int n_ops, rtx *old_operands, rtx *old_dups,
1442 unsigned HOST_WIDE_INT do_not_hide, bool inout_and_ec_only)
1444 int i;
1445 const operand_alternative *op_alt = which_op_alt ();
1446 for (i = 0; i < n_ops; i++)
1448 old_operands[i] = recog_data.operand[i];
1449 /* Don't squash match_operator or match_parallel here, since
1450 we don't know that all of the contained registers are
1451 reachable by proper operands. */
1452 if (recog_data.constraints[i][0] == '\0')
1453 continue;
1454 if (do_not_hide & (1 << i))
1455 continue;
1456 if (!inout_and_ec_only || recog_data.operand_type[i] == OP_INOUT
1457 || op_alt[i].earlyclobber)
1458 *recog_data.operand_loc[i] = cc0_rtx;
1460 for (i = 0; i < recog_data.n_dups; i++)
1462 int opn = recog_data.dup_num[i];
1463 old_dups[i] = *recog_data.dup_loc[i];
1464 if (do_not_hide & (1 << opn))
1465 continue;
1466 if (!inout_and_ec_only || recog_data.operand_type[opn] == OP_INOUT
1467 || op_alt[opn].earlyclobber)
1468 *recog_data.dup_loc[i] = cc0_rtx;
1472 /* Undo the substitution performed by hide_operands. INSN is the insn we
1473 are processing; the arguments are the same as in hide_operands. */
1475 static void
1476 restore_operands (rtx_insn *insn, int n_ops, rtx *old_operands, rtx *old_dups)
1478 int i;
1479 for (i = 0; i < recog_data.n_dups; i++)
1480 *recog_data.dup_loc[i] = old_dups[i];
1481 for (i = 0; i < n_ops; i++)
1482 *recog_data.operand_loc[i] = old_operands[i];
1483 if (recog_data.n_dups)
1484 df_insn_rescan (insn);
1487 /* For each output operand of INSN, call scan_rtx to create a new
1488 open chain. Do this only for normal or earlyclobber outputs,
1489 depending on EARLYCLOBBER. If INSN_INFO is nonnull, use it to
1490 record information about the operands in the insn. */
1492 static void
1493 record_out_operands (rtx_insn *insn, bool earlyclobber, insn_rr_info *insn_info)
1495 int n_ops = recog_data.n_operands;
1496 const operand_alternative *op_alt = which_op_alt ();
1498 int i;
1500 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1502 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1503 rtx *loc = (i < n_ops
1504 ? recog_data.operand_loc[opn]
1505 : recog_data.dup_loc[i - n_ops]);
1506 rtx op = *loc;
1507 enum reg_class cl = alternative_class (op_alt, opn);
1509 struct du_head *prev_open;
1511 if (recog_data.operand_type[opn] != OP_OUT
1512 || op_alt[opn].earlyclobber != earlyclobber)
1513 continue;
1515 if (insn_info)
1516 cur_operand = insn_info->op_info + i;
1518 prev_open = open_chains;
1519 scan_rtx (insn, loc, cl, mark_write, OP_OUT);
1521 /* ??? Many targets have output constraints on the SET_DEST
1522 of a call insn, which is stupid, since these are certainly
1523 ABI defined hard registers. For these, and for asm operands
1524 that originally referenced hard registers, we must record that
1525 the chain cannot be renamed. */
1526 if (CALL_P (insn)
1527 || (asm_noperands (PATTERN (insn)) > 0
1528 && REG_P (op)
1529 && REGNO (op) == ORIGINAL_REGNO (op)))
1531 if (prev_open != open_chains)
1532 open_chains->cannot_rename = 1;
1535 cur_operand = NULL;
1538 /* Build def/use chain. */
1540 static bool
1541 build_def_use (basic_block bb)
1543 rtx_insn *insn;
1544 unsigned HOST_WIDE_INT untracked_operands;
1546 fail_current_block = false;
1548 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
1550 if (NONDEBUG_INSN_P (insn))
1552 int n_ops;
1553 rtx note;
1554 rtx old_operands[MAX_RECOG_OPERANDS];
1555 rtx old_dups[MAX_DUP_OPERANDS];
1556 int i;
1557 int predicated;
1558 enum rtx_code set_code = SET;
1559 enum rtx_code clobber_code = CLOBBER;
1560 insn_rr_info *insn_info = NULL;
1562 /* Process the insn, determining its effect on the def-use
1563 chains and live hard registers. We perform the following
1564 steps with the register references in the insn, simulating
1565 its effect:
1566 (1) Deal with earlyclobber operands and CLOBBERs of non-operands
1567 by creating chains and marking hard regs live.
1568 (2) Any read outside an operand causes any chain it overlaps
1569 with to be marked unrenamable.
1570 (3) Any read inside an operand is added if there's already
1571 an open chain for it.
1572 (4) For any REG_DEAD note we find, close open chains that
1573 overlap it.
1574 (5) For any non-earlyclobber write we find, close open chains
1575 that overlap it.
1576 (6) For any non-earlyclobber write we find in an operand, make
1577 a new chain or mark the hard register as live.
1578 (7) For any REG_UNUSED, close any chains we just opened.
1580 We cannot deal with situations where we track a reg in one mode
1581 and see a reference in another mode; these will cause the chain
1582 to be marked unrenamable or even cause us to abort the entire
1583 basic block. */
1585 extract_constrain_insn (insn);
1586 preprocess_constraints (insn);
1587 const operand_alternative *op_alt = which_op_alt ();
1588 n_ops = recog_data.n_operands;
1589 untracked_operands = 0;
1591 if (insn_rr.exists ())
1593 insn_info = &insn_rr[INSN_UID (insn)];
1594 insn_info->op_info = XOBNEWVEC (&rename_obstack, operand_rr_info,
1595 recog_data.n_operands);
1596 memset (insn_info->op_info, 0,
1597 sizeof (operand_rr_info) * recog_data.n_operands);
1600 /* Simplify the code below by promoting OP_OUT to OP_INOUT in
1601 predicated instructions, but only for register operands
1602 that are already tracked, so that we can create a chain
1603 when the first SET makes a register live. */
1605 predicated = GET_CODE (PATTERN (insn)) == COND_EXEC;
1606 for (i = 0; i < n_ops; ++i)
1608 rtx op = recog_data.operand[i];
1609 int matches = op_alt[i].matches;
1610 if (matches >= 0 || op_alt[i].matched >= 0
1611 || (predicated && recog_data.operand_type[i] == OP_OUT))
1613 recog_data.operand_type[i] = OP_INOUT;
1614 /* A special case to deal with instruction patterns that
1615 have matching operands with different modes. If we're
1616 not already tracking such a reg, we won't start here,
1617 and we must instead make sure to make the operand visible
1618 to the machinery that tracks hard registers. */
1619 if (matches >= 0
1620 && (GET_MODE_SIZE (recog_data.operand_mode[i])
1621 != GET_MODE_SIZE (recog_data.operand_mode[matches]))
1622 && !verify_reg_in_set (op, &live_in_chains))
1624 untracked_operands |= 1 << i;
1625 untracked_operands |= 1 << matches;
1628 /* If there's an in-out operand with a register that is not
1629 being tracked at all yet, open a chain. */
1630 if (recog_data.operand_type[i] == OP_INOUT
1631 && !(untracked_operands & (1 << i))
1632 && REG_P (op)
1633 && !verify_reg_tracked (op))
1634 create_new_chain (REGNO (op), REG_NREGS (op), NULL, NULL,
1635 NO_REGS);
1638 if (fail_current_block)
1639 break;
1641 /* Step 1a: Mark hard registers that are clobbered in this insn,
1642 outside an operand, as live. */
1643 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1644 false);
1645 note_stores (PATTERN (insn), note_sets_clobbers, &clobber_code);
1646 restore_operands (insn, n_ops, old_operands, old_dups);
1648 /* Step 1b: Begin new chains for earlyclobbered writes inside
1649 operands. */
1650 record_out_operands (insn, true, insn_info);
1652 /* Step 2: Mark chains for which we have reads outside operands
1653 as unrenamable.
1654 We do this by munging all operands into CC0, and closing
1655 everything remaining. */
1657 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1658 false);
1659 scan_rtx (insn, &PATTERN (insn), NO_REGS, mark_all_read, OP_IN);
1660 restore_operands (insn, n_ops, old_operands, old_dups);
1662 /* Step 2B: Can't rename function call argument registers. */
1663 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
1664 scan_rtx (insn, &CALL_INSN_FUNCTION_USAGE (insn),
1665 NO_REGS, mark_all_read, OP_IN);
1667 /* Step 2C: Can't rename asm operands that were originally
1668 hard registers. */
1669 if (asm_noperands (PATTERN (insn)) > 0)
1670 for (i = 0; i < n_ops; i++)
1672 rtx *loc = recog_data.operand_loc[i];
1673 rtx op = *loc;
1675 if (REG_P (op)
1676 && REGNO (op) == ORIGINAL_REGNO (op)
1677 && (recog_data.operand_type[i] == OP_IN
1678 || recog_data.operand_type[i] == OP_INOUT))
1679 scan_rtx (insn, loc, NO_REGS, mark_all_read, OP_IN);
1682 /* Step 3: Append to chains for reads inside operands. */
1683 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1685 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1686 rtx *loc = (i < n_ops
1687 ? recog_data.operand_loc[opn]
1688 : recog_data.dup_loc[i - n_ops]);
1689 enum reg_class cl = alternative_class (op_alt, opn);
1690 enum op_type type = recog_data.operand_type[opn];
1692 /* Don't scan match_operand here, since we've no reg class
1693 information to pass down. Any operands that we could
1694 substitute in will be represented elsewhere. */
1695 if (recog_data.constraints[opn][0] == '\0'
1696 || untracked_operands & (1 << opn))
1697 continue;
1699 if (insn_info)
1700 cur_operand = i == opn ? insn_info->op_info + i : NULL;
1701 if (op_alt[opn].is_address)
1702 scan_rtx_address (insn, loc, cl, mark_read,
1703 VOIDmode, ADDR_SPACE_GENERIC);
1704 else
1705 scan_rtx (insn, loc, cl, mark_read, type);
1707 cur_operand = NULL;
1709 /* Step 3B: Record updates for regs in REG_INC notes, and
1710 source regs in REG_FRAME_RELATED_EXPR notes. */
1711 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1712 if (REG_NOTE_KIND (note) == REG_INC
1713 || REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1714 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_read,
1715 OP_INOUT);
1717 /* Step 4: Close chains for registers that die here, unless
1718 the register is mentioned in a REG_UNUSED note. In that
1719 case we keep the chain open until step #7 below to ensure
1720 it conflicts with other output operands of this insn.
1721 See PR 52573. Arguably the insn should not have both
1722 notes; it has proven difficult to fix that without
1723 other undesirable side effects. */
1724 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1725 if (REG_NOTE_KIND (note) == REG_DEAD
1726 && !find_regno_note (insn, REG_UNUSED, REGNO (XEXP (note, 0))))
1728 remove_from_hard_reg_set (&live_hard_regs,
1729 GET_MODE (XEXP (note, 0)),
1730 REGNO (XEXP (note, 0)));
1731 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1732 OP_IN);
1735 /* Step 4B: If this is a call, any chain live at this point
1736 requires a caller-saved reg. */
1737 if (CALL_P (insn))
1739 struct du_head *p;
1740 for (p = open_chains; p; p = p->next_chain)
1741 p->need_caller_save_reg = 1;
1744 /* Step 5: Close open chains that overlap writes. Similar to
1745 step 2, we hide in-out operands, since we do not want to
1746 close these chains. We also hide earlyclobber operands,
1747 since we've opened chains for them in step 1, and earlier
1748 chains they would overlap with must have been closed at
1749 the previous insn at the latest, as such operands cannot
1750 possibly overlap with any input operands. */
1752 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1753 true);
1754 scan_rtx (insn, &PATTERN (insn), NO_REGS, terminate_write, OP_IN);
1755 restore_operands (insn, n_ops, old_operands, old_dups);
1757 /* Step 6a: Mark hard registers that are set in this insn,
1758 outside an operand, as live. */
1759 hide_operands (n_ops, old_operands, old_dups, untracked_operands,
1760 false);
1761 note_stores (PATTERN (insn), note_sets_clobbers, &set_code);
1762 restore_operands (insn, n_ops, old_operands, old_dups);
1764 /* Step 6b: Begin new chains for writes inside operands. */
1765 record_out_operands (insn, false, insn_info);
1767 /* Step 6c: Record destination regs in REG_FRAME_RELATED_EXPR
1768 notes for update. */
1769 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1770 if (REG_NOTE_KIND (note) == REG_FRAME_RELATED_EXPR)
1771 scan_rtx (insn, &XEXP (note, 0), ALL_REGS, mark_access,
1772 OP_INOUT);
1774 /* Step 7: Close chains for registers that were never
1775 really used here. */
1776 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1777 if (REG_NOTE_KIND (note) == REG_UNUSED)
1779 remove_from_hard_reg_set (&live_hard_regs,
1780 GET_MODE (XEXP (note, 0)),
1781 REGNO (XEXP (note, 0)));
1782 scan_rtx (insn, &XEXP (note, 0), NO_REGS, terminate_dead,
1783 OP_IN);
1786 else if (DEBUG_INSN_P (insn)
1787 && !VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
1789 scan_rtx (insn, &INSN_VAR_LOCATION_LOC (insn),
1790 ALL_REGS, mark_read, OP_IN);
1792 if (insn == BB_END (bb))
1793 break;
1796 if (fail_current_block)
1797 return false;
1799 return true;
1802 /* Initialize the register renamer. If INSN_INFO is true, ensure that
1803 insn_rr is nonnull. */
1804 void
1805 regrename_init (bool insn_info)
1807 gcc_obstack_init (&rename_obstack);
1808 insn_rr.create (0);
1809 if (insn_info)
1810 insn_rr.safe_grow_cleared (get_max_uid ());
1813 /* Free all global data used by the register renamer. */
1814 void
1815 regrename_finish (void)
1817 insn_rr.release ();
1818 free_chain_data ();
1819 obstack_free (&rename_obstack, NULL);
1822 /* Perform register renaming on the current function. */
1824 static unsigned int
1825 regrename_optimize (void)
1827 df_set_flags (DF_LR_RUN_DCE);
1828 df_note_add_problem ();
1829 df_analyze ();
1830 df_set_flags (DF_DEFER_INSN_RESCAN);
1832 regrename_init (false);
1834 regrename_analyze (NULL);
1836 rename_chains ();
1838 regrename_finish ();
1840 return 0;
1843 namespace {
1845 const pass_data pass_data_regrename =
1847 RTL_PASS, /* type */
1848 "rnreg", /* name */
1849 OPTGROUP_NONE, /* optinfo_flags */
1850 TV_RENAME_REGISTERS, /* tv_id */
1851 0, /* properties_required */
1852 0, /* properties_provided */
1853 0, /* properties_destroyed */
1854 0, /* todo_flags_start */
1855 TODO_df_finish, /* todo_flags_finish */
1858 class pass_regrename : public rtl_opt_pass
1860 public:
1861 pass_regrename (gcc::context *ctxt)
1862 : rtl_opt_pass (pass_data_regrename, ctxt)
1865 /* opt_pass methods: */
1866 virtual bool gate (function *)
1868 return (optimize > 0 && (flag_rename_registers));
1871 virtual unsigned int execute (function *) { return regrename_optimize (); }
1873 }; // class pass_regrename
1875 } // anon namespace
1877 rtl_opt_pass *
1878 make_pass_regrename (gcc::context *ctxt)
1880 return new pass_regrename (ctxt);