* tree-chrec.c (reset_evolution_in_loop): Use build3 instead of
[official-gcc.git] / gcc / reg-stack.c
blob7007fcb2bd6034a8d85b36b3698f8cedc9834b25
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, i.e., the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that need
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* In the current_block, whether we're processing the first register
228 stack or call instruction, i.e. the the regstack is currently the
229 same as BLOCK_INFO(current_block)->stack_in. */
230 static bool starting_stack_p;
232 /* This is the register file for all register after conversion. */
233 static rtx
234 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
236 #define FP_MODE_REG(regno,mode) \
237 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
239 /* Used to initialize uninitialized registers. */
240 static rtx not_a_num;
242 /* Forward declarations */
244 static int stack_regs_mentioned_p (rtx pat);
245 static void pop_stack (stack, int);
246 static rtx *get_true_reg (rtx *);
248 static int check_asm_stack_operands (rtx);
249 static int get_asm_operand_n_inputs (rtx);
250 static rtx stack_result (tree);
251 static void replace_reg (rtx *, int);
252 static void remove_regno_note (rtx, enum reg_note, unsigned int);
253 static int get_hard_regnum (stack, rtx);
254 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
255 static void swap_to_top(rtx, stack, rtx, rtx);
256 static bool move_for_stack_reg (rtx, stack, rtx);
257 static bool move_nan_for_stack_reg (rtx, stack, rtx);
258 static int swap_rtx_condition_1 (rtx);
259 static int swap_rtx_condition (rtx);
260 static void compare_for_stack_reg (rtx, stack, rtx);
261 static bool subst_stack_regs_pat (rtx, stack, rtx);
262 static void subst_asm_stack_regs (rtx, stack);
263 static bool subst_stack_regs (rtx, stack);
264 static void change_stack (rtx, stack, stack, enum emit_where);
265 static void print_stack (FILE *, stack);
266 static rtx next_flags_user (rtx);
268 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
270 static int
271 stack_regs_mentioned_p (rtx pat)
273 const char *fmt;
274 int i;
276 if (STACK_REG_P (pat))
277 return 1;
279 fmt = GET_RTX_FORMAT (GET_CODE (pat));
280 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
282 if (fmt[i] == 'E')
284 int j;
286 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
287 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
288 return 1;
290 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
291 return 1;
294 return 0;
297 /* Return nonzero if INSN mentions stacked registers, else return zero. */
300 stack_regs_mentioned (rtx insn)
302 unsigned int uid, max;
303 int test;
305 if (! INSN_P (insn) || !stack_regs_mentioned_data)
306 return 0;
308 uid = INSN_UID (insn);
309 max = VARRAY_SIZE (stack_regs_mentioned_data);
310 if (uid >= max)
312 /* Allocate some extra size to avoid too many reallocs, but
313 do not grow too quickly. */
314 max = uid + uid / 20;
315 VARRAY_GROW (stack_regs_mentioned_data, max);
318 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
319 if (test == 0)
321 /* This insn has yet to be examined. Do so now. */
322 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
323 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
326 return test == 1;
329 static rtx ix86_flags_rtx;
331 static rtx
332 next_flags_user (rtx insn)
334 /* Search forward looking for the first use of this value.
335 Stop at block boundaries. */
337 while (insn != BB_END (current_block))
339 insn = NEXT_INSN (insn);
341 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
342 return insn;
344 if (CALL_P (insn))
345 return NULL_RTX;
347 return NULL_RTX;
350 /* Reorganize the stack into ascending numbers, before this insn. */
352 static void
353 straighten_stack (rtx insn, stack regstack)
355 struct stack_def temp_stack;
356 int top;
358 /* If there is only a single register on the stack, then the stack is
359 already in increasing order and no reorganization is needed.
361 Similarly if the stack is empty. */
362 if (regstack->top <= 0)
363 return;
365 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
367 for (top = temp_stack.top = regstack->top; top >= 0; top--)
368 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
370 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
373 /* Pop a register from the stack. */
375 static void
376 pop_stack (stack regstack, int regno)
378 int top = regstack->top;
380 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
381 regstack->top--;
382 /* If regno was not at the top of stack then adjust stack. */
383 if (regstack->reg [top] != regno)
385 int i;
386 for (i = regstack->top; i >= 0; i--)
387 if (regstack->reg [i] == regno)
389 int j;
390 for (j = i; j < top; j++)
391 regstack->reg [j] = regstack->reg [j + 1];
392 break;
397 /* Return a pointer to the REG expression within PAT. If PAT is not a
398 REG, possible enclosed by a conversion rtx, return the inner part of
399 PAT that stopped the search. */
401 static rtx *
402 get_true_reg (rtx *pat)
404 for (;;)
405 switch (GET_CODE (*pat))
407 case SUBREG:
408 /* Eliminate FP subregister accesses in favor of the
409 actual FP register in use. */
411 rtx subreg;
412 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
414 int regno_off = subreg_regno_offset (REGNO (subreg),
415 GET_MODE (subreg),
416 SUBREG_BYTE (*pat),
417 GET_MODE (*pat));
418 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
419 GET_MODE (subreg));
420 default:
421 return pat;
424 case FLOAT:
425 case FIX:
426 case FLOAT_EXTEND:
427 pat = & XEXP (*pat, 0);
428 break;
430 case FLOAT_TRUNCATE:
431 if (!flag_unsafe_math_optimizations)
432 return pat;
433 pat = & XEXP (*pat, 0);
434 break;
438 /* Set if we find any malformed asms in a block. */
439 static bool any_malformed_asm;
441 /* There are many rules that an asm statement for stack-like regs must
442 follow. Those rules are explained at the top of this file: the rule
443 numbers below refer to that explanation. */
445 static int
446 check_asm_stack_operands (rtx insn)
448 int i;
449 int n_clobbers;
450 int malformed_asm = 0;
451 rtx body = PATTERN (insn);
453 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
454 char implicitly_dies[FIRST_PSEUDO_REGISTER];
455 int alt;
457 rtx *clobber_reg = 0;
458 int n_inputs, n_outputs;
460 /* Find out what the constraints require. If no constraint
461 alternative matches, this asm is malformed. */
462 extract_insn (insn);
463 constrain_operands (1);
464 alt = which_alternative;
466 preprocess_constraints ();
468 n_inputs = get_asm_operand_n_inputs (body);
469 n_outputs = recog_data.n_operands - n_inputs;
471 if (alt < 0)
473 malformed_asm = 1;
474 /* Avoid further trouble with this insn. */
475 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
476 return 0;
479 /* Strip SUBREGs here to make the following code simpler. */
480 for (i = 0; i < recog_data.n_operands; i++)
481 if (GET_CODE (recog_data.operand[i]) == SUBREG
482 && REG_P (SUBREG_REG (recog_data.operand[i])))
483 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
485 /* Set up CLOBBER_REG. */
487 n_clobbers = 0;
489 if (GET_CODE (body) == PARALLEL)
491 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
493 for (i = 0; i < XVECLEN (body, 0); i++)
494 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
496 rtx clobber = XVECEXP (body, 0, i);
497 rtx reg = XEXP (clobber, 0);
499 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
500 reg = SUBREG_REG (reg);
502 if (STACK_REG_P (reg))
504 clobber_reg[n_clobbers] = reg;
505 n_clobbers++;
510 /* Enforce rule #4: Output operands must specifically indicate which
511 reg an output appears in after an asm. "=f" is not allowed: the
512 operand constraints must select a class with a single reg.
514 Also enforce rule #5: Output operands must start at the top of
515 the reg-stack: output operands may not "skip" a reg. */
517 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
518 for (i = 0; i < n_outputs; i++)
519 if (STACK_REG_P (recog_data.operand[i]))
521 if (reg_class_size[(int) recog_op_alt[i][alt].cl] != 1)
523 error_for_asm (insn, "output constraint %d must specify a single register", i);
524 malformed_asm = 1;
526 else
528 int j;
530 for (j = 0; j < n_clobbers; j++)
531 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
533 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
534 i, reg_names [REGNO (clobber_reg[j])]);
535 malformed_asm = 1;
536 break;
538 if (j == n_clobbers)
539 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
544 /* Search for first non-popped reg. */
545 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
546 if (! reg_used_as_output[i])
547 break;
549 /* If there are any other popped regs, that's an error. */
550 for (; i < LAST_STACK_REG + 1; i++)
551 if (reg_used_as_output[i])
552 break;
554 if (i != LAST_STACK_REG + 1)
556 error_for_asm (insn, "output regs must be grouped at top of stack");
557 malformed_asm = 1;
560 /* Enforce rule #2: All implicitly popped input regs must be closer
561 to the top of the reg-stack than any input that is not implicitly
562 popped. */
564 memset (implicitly_dies, 0, sizeof (implicitly_dies));
565 for (i = n_outputs; i < n_outputs + n_inputs; i++)
566 if (STACK_REG_P (recog_data.operand[i]))
568 /* An input reg is implicitly popped if it is tied to an
569 output, or if there is a CLOBBER for it. */
570 int j;
572 for (j = 0; j < n_clobbers; j++)
573 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
574 break;
576 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
577 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
580 /* Search for first non-popped reg. */
581 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
582 if (! implicitly_dies[i])
583 break;
585 /* If there are any other popped regs, that's an error. */
586 for (; i < LAST_STACK_REG + 1; i++)
587 if (implicitly_dies[i])
588 break;
590 if (i != LAST_STACK_REG + 1)
592 error_for_asm (insn,
593 "implicitly popped regs must be grouped at top of stack");
594 malformed_asm = 1;
597 /* Enforce rule #3: If any input operand uses the "f" constraint, all
598 output constraints must use the "&" earlyclobber.
600 ??? Detect this more deterministically by having constrain_asm_operands
601 record any earlyclobber. */
603 for (i = n_outputs; i < n_outputs + n_inputs; i++)
604 if (recog_op_alt[i][alt].matches == -1)
606 int j;
608 for (j = 0; j < n_outputs; j++)
609 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
611 error_for_asm (insn,
612 "output operand %d must use %<&%> constraint", j);
613 malformed_asm = 1;
617 if (malformed_asm)
619 /* Avoid further trouble with this insn. */
620 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
621 any_malformed_asm = true;
622 return 0;
625 return 1;
628 /* Calculate the number of inputs and outputs in BODY, an
629 asm_operands. N_OPERANDS is the total number of operands, and
630 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
631 placed. */
633 static int
634 get_asm_operand_n_inputs (rtx body)
636 switch (GET_CODE (body))
638 case SET:
639 gcc_assert (GET_CODE (SET_SRC (body)) == ASM_OPERANDS);
640 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
642 case ASM_OPERANDS:
643 return ASM_OPERANDS_INPUT_LENGTH (body);
645 case PARALLEL:
646 return get_asm_operand_n_inputs (XVECEXP (body, 0, 0));
648 default:
649 gcc_unreachable ();
653 /* If current function returns its result in an fp stack register,
654 return the REG. Otherwise, return 0. */
656 static rtx
657 stack_result (tree decl)
659 rtx result;
661 /* If the value is supposed to be returned in memory, then clearly
662 it is not returned in a stack register. */
663 if (aggregate_value_p (DECL_RESULT (decl), decl))
664 return 0;
666 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
667 if (result != 0)
669 #ifdef FUNCTION_OUTGOING_VALUE
670 result
671 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
672 #else
673 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
674 #endif
677 return result != 0 && STACK_REG_P (result) ? result : 0;
682 * This section deals with stack register substitution, and forms the second
683 * pass over the RTL.
686 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
687 the desired hard REGNO. */
689 static void
690 replace_reg (rtx *reg, int regno)
692 gcc_assert (regno >= FIRST_STACK_REG);
693 gcc_assert (regno <= LAST_STACK_REG);
694 gcc_assert (STACK_REG_P (*reg));
696 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg)) == MODE_FLOAT
697 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
699 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
702 /* Remove a note of type NOTE, which must be found, for register
703 number REGNO from INSN. Remove only one such note. */
705 static void
706 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
708 rtx *note_link, this;
710 note_link = &REG_NOTES (insn);
711 for (this = *note_link; this; this = XEXP (this, 1))
712 if (REG_NOTE_KIND (this) == note
713 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
715 *note_link = XEXP (this, 1);
716 return;
718 else
719 note_link = &XEXP (this, 1);
721 gcc_unreachable ();
724 /* Find the hard register number of virtual register REG in REGSTACK.
725 The hard register number is relative to the top of the stack. -1 is
726 returned if the register is not found. */
728 static int
729 get_hard_regnum (stack regstack, rtx reg)
731 int i;
733 gcc_assert (STACK_REG_P (reg));
735 for (i = regstack->top; i >= 0; i--)
736 if (regstack->reg[i] == REGNO (reg))
737 break;
739 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
742 /* Emit an insn to pop virtual register REG before or after INSN.
743 REGSTACK is the stack state after INSN and is updated to reflect this
744 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
745 is represented as a SET whose destination is the register to be popped
746 and source is the top of stack. A death note for the top of stack
747 cases the movdf pattern to pop. */
749 static rtx
750 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
752 rtx pop_insn, pop_rtx;
753 int hard_regno;
755 /* For complex types take care to pop both halves. These may survive in
756 CLOBBER and USE expressions. */
757 if (COMPLEX_MODE_P (GET_MODE (reg)))
759 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
760 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
762 pop_insn = NULL_RTX;
763 if (get_hard_regnum (regstack, reg1) >= 0)
764 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
765 if (get_hard_regnum (regstack, reg2) >= 0)
766 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
767 gcc_assert (pop_insn);
768 return pop_insn;
771 hard_regno = get_hard_regnum (regstack, reg);
773 gcc_assert (hard_regno >= FIRST_STACK_REG);
775 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
776 FP_MODE_REG (FIRST_STACK_REG, DFmode));
778 if (where == EMIT_AFTER)
779 pop_insn = emit_insn_after (pop_rtx, insn);
780 else
781 pop_insn = emit_insn_before (pop_rtx, insn);
783 REG_NOTES (pop_insn)
784 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
785 REG_NOTES (pop_insn));
787 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
788 = regstack->reg[regstack->top];
789 regstack->top -= 1;
790 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
792 return pop_insn;
795 /* Emit an insn before or after INSN to swap virtual register REG with
796 the top of stack. REGSTACK is the stack state before the swap, and
797 is updated to reflect the swap. A swap insn is represented as a
798 PARALLEL of two patterns: each pattern moves one reg to the other.
800 If REG is already at the top of the stack, no insn is emitted. */
802 static void
803 emit_swap_insn (rtx insn, stack regstack, rtx reg)
805 int hard_regno;
806 rtx swap_rtx;
807 int tmp, other_reg; /* swap regno temps */
808 rtx i1; /* the stack-reg insn prior to INSN */
809 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
811 hard_regno = get_hard_regnum (regstack, reg);
813 gcc_assert (hard_regno >= FIRST_STACK_REG);
814 if (hard_regno == FIRST_STACK_REG)
815 return;
817 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
819 tmp = regstack->reg[other_reg];
820 regstack->reg[other_reg] = regstack->reg[regstack->top];
821 regstack->reg[regstack->top] = tmp;
823 /* Find the previous insn involving stack regs, but don't pass a
824 block boundary. */
825 i1 = NULL;
826 if (current_block && insn != BB_HEAD (current_block))
828 rtx tmp = PREV_INSN (insn);
829 rtx limit = PREV_INSN (BB_HEAD (current_block));
830 while (tmp != limit)
832 if (LABEL_P (tmp)
833 || CALL_P (tmp)
834 || NOTE_INSN_BASIC_BLOCK_P (tmp)
835 || (NONJUMP_INSN_P (tmp)
836 && stack_regs_mentioned (tmp)))
838 i1 = tmp;
839 break;
841 tmp = PREV_INSN (tmp);
845 if (i1 != NULL_RTX
846 && (i1set = single_set (i1)) != NULL_RTX)
848 rtx i1src = *get_true_reg (&SET_SRC (i1set));
849 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
851 /* If the previous register stack push was from the reg we are to
852 swap with, omit the swap. */
854 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
855 && REG_P (i1src)
856 && REGNO (i1src) == (unsigned) hard_regno - 1
857 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
858 return;
860 /* If the previous insn wrote to the reg we are to swap with,
861 omit the swap. */
863 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
864 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
865 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
866 return;
869 /* Avoid emitting the swap if this is the first register stack insn
870 of the current_block. Instead update the current_block's stack_in
871 and let compensate edges take care of this for us. */
872 if (current_block && starting_stack_p)
874 BLOCK_INFO (current_block)->stack_in = *regstack;
875 starting_stack_p = false;
876 return;
879 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
880 FP_MODE_REG (FIRST_STACK_REG, XFmode));
882 if (i1)
883 emit_insn_after (swap_rtx, i1);
884 else if (current_block)
885 emit_insn_before (swap_rtx, BB_HEAD (current_block));
886 else
887 emit_insn_before (swap_rtx, insn);
890 /* Emit an insns before INSN to swap virtual register SRC1 with
891 the top of stack and virtual register SRC2 with second stack
892 slot. REGSTACK is the stack state before the swaps, and
893 is updated to reflect the swaps. A swap insn is represented as a
894 PARALLEL of two patterns: each pattern moves one reg to the other.
896 If SRC1 and/or SRC2 are already at the right place, no swap insn
897 is emitted. */
899 static void
900 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
902 struct stack_def temp_stack;
903 int regno, j, k, temp;
905 temp_stack = *regstack;
907 /* Place operand 1 at the top of stack. */
908 regno = get_hard_regnum (&temp_stack, src1);
909 gcc_assert (regno >= 0);
910 if (regno != FIRST_STACK_REG)
912 k = temp_stack.top - (regno - FIRST_STACK_REG);
913 j = temp_stack.top;
915 temp = temp_stack.reg[k];
916 temp_stack.reg[k] = temp_stack.reg[j];
917 temp_stack.reg[j] = temp;
920 /* Place operand 2 next on the stack. */
921 regno = get_hard_regnum (&temp_stack, src2);
922 gcc_assert (regno >= 0);
923 if (regno != FIRST_STACK_REG + 1)
925 k = temp_stack.top - (regno - FIRST_STACK_REG);
926 j = temp_stack.top - 1;
928 temp = temp_stack.reg[k];
929 temp_stack.reg[k] = temp_stack.reg[j];
930 temp_stack.reg[j] = temp;
933 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
936 /* Handle a move to or from a stack register in PAT, which is in INSN.
937 REGSTACK is the current stack. Return whether a control flow insn
938 was deleted in the process. */
940 static bool
941 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
943 rtx *psrc = get_true_reg (&SET_SRC (pat));
944 rtx *pdest = get_true_reg (&SET_DEST (pat));
945 rtx src, dest;
946 rtx note;
947 bool control_flow_insn_deleted = false;
949 src = *psrc; dest = *pdest;
951 if (STACK_REG_P (src) && STACK_REG_P (dest))
953 /* Write from one stack reg to another. If SRC dies here, then
954 just change the register mapping and delete the insn. */
956 note = find_regno_note (insn, REG_DEAD, REGNO (src));
957 if (note)
959 int i;
961 /* If this is a no-op move, there must not be a REG_DEAD note. */
962 gcc_assert (REGNO (src) != REGNO (dest));
964 for (i = regstack->top; i >= 0; i--)
965 if (regstack->reg[i] == REGNO (src))
966 break;
968 /* The destination must be dead, or life analysis is borked. */
969 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
971 /* If the source is not live, this is yet another case of
972 uninitialized variables. Load up a NaN instead. */
973 if (i < 0)
974 return move_nan_for_stack_reg (insn, regstack, dest);
976 /* It is possible that the dest is unused after this insn.
977 If so, just pop the src. */
979 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
980 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
981 else
983 regstack->reg[i] = REGNO (dest);
984 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
985 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
988 control_flow_insn_deleted |= control_flow_insn_p (insn);
989 delete_insn (insn);
990 return control_flow_insn_deleted;
993 /* The source reg does not die. */
995 /* If this appears to be a no-op move, delete it, or else it
996 will confuse the machine description output patterns. But if
997 it is REG_UNUSED, we must pop the reg now, as per-insn processing
998 for REG_UNUSED will not work for deleted insns. */
1000 if (REGNO (src) == REGNO (dest))
1002 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1003 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1005 control_flow_insn_deleted |= control_flow_insn_p (insn);
1006 delete_insn (insn);
1007 return control_flow_insn_deleted;
1010 /* The destination ought to be dead. */
1011 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1013 replace_reg (psrc, get_hard_regnum (regstack, src));
1015 regstack->reg[++regstack->top] = REGNO (dest);
1016 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1017 replace_reg (pdest, FIRST_STACK_REG);
1019 else if (STACK_REG_P (src))
1021 /* Save from a stack reg to MEM, or possibly integer reg. Since
1022 only top of stack may be saved, emit an exchange first if
1023 needs be. */
1025 emit_swap_insn (insn, regstack, src);
1027 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1028 if (note)
1030 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1031 regstack->top--;
1032 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1034 else if ((GET_MODE (src) == XFmode)
1035 && regstack->top < REG_STACK_SIZE - 1)
1037 /* A 387 cannot write an XFmode value to a MEM without
1038 clobbering the source reg. The output code can handle
1039 this by reading back the value from the MEM.
1040 But it is more efficient to use a temp register if one is
1041 available. Push the source value here if the register
1042 stack is not full, and then write the value to memory via
1043 a pop. */
1044 rtx push_rtx;
1045 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1047 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1048 emit_insn_before (push_rtx, insn);
1049 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1050 REG_NOTES (insn));
1053 replace_reg (psrc, FIRST_STACK_REG);
1055 else
1057 gcc_assert (STACK_REG_P (dest));
1059 /* Load from MEM, or possibly integer REG or constant, into the
1060 stack regs. The actual target is always the top of the
1061 stack. The stack mapping is changed to reflect that DEST is
1062 now at top of stack. */
1064 /* The destination ought to be dead. */
1065 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1067 gcc_assert (regstack->top < REG_STACK_SIZE);
1069 regstack->reg[++regstack->top] = REGNO (dest);
1070 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1071 replace_reg (pdest, FIRST_STACK_REG);
1074 return control_flow_insn_deleted;
1077 /* A helper function which replaces INSN with a pattern that loads up
1078 a NaN into DEST, then invokes move_for_stack_reg. */
1080 static bool
1081 move_nan_for_stack_reg (rtx insn, stack regstack, rtx dest)
1083 rtx pat;
1085 dest = FP_MODE_REG (REGNO (dest), SFmode);
1086 pat = gen_rtx_SET (VOIDmode, dest, not_a_num);
1087 PATTERN (insn) = pat;
1088 INSN_CODE (insn) = -1;
1090 return move_for_stack_reg (insn, regstack, pat);
1093 /* Swap the condition on a branch, if there is one. Return true if we
1094 found a condition to swap. False if the condition was not used as
1095 such. */
1097 static int
1098 swap_rtx_condition_1 (rtx pat)
1100 const char *fmt;
1101 int i, r = 0;
1103 if (COMPARISON_P (pat))
1105 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1106 r = 1;
1108 else
1110 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1111 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1113 if (fmt[i] == 'E')
1115 int j;
1117 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1118 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1120 else if (fmt[i] == 'e')
1121 r |= swap_rtx_condition_1 (XEXP (pat, i));
1125 return r;
1128 static int
1129 swap_rtx_condition (rtx insn)
1131 rtx pat = PATTERN (insn);
1133 /* We're looking for a single set to cc0 or an HImode temporary. */
1135 if (GET_CODE (pat) == SET
1136 && REG_P (SET_DEST (pat))
1137 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1139 insn = next_flags_user (insn);
1140 if (insn == NULL_RTX)
1141 return 0;
1142 pat = PATTERN (insn);
1145 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1146 with the cc value right now. We may be able to search for one
1147 though. */
1149 if (GET_CODE (pat) == SET
1150 && GET_CODE (SET_SRC (pat)) == UNSPEC
1151 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1153 rtx dest = SET_DEST (pat);
1155 /* Search forward looking for the first use of this value.
1156 Stop at block boundaries. */
1157 while (insn != BB_END (current_block))
1159 insn = NEXT_INSN (insn);
1160 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1161 break;
1162 if (CALL_P (insn))
1163 return 0;
1166 /* We haven't found it. */
1167 if (insn == BB_END (current_block))
1168 return 0;
1170 /* So we've found the insn using this value. If it is anything
1171 other than sahf or the value does not die (meaning we'd have
1172 to search further), then we must give up. */
1173 pat = PATTERN (insn);
1174 if (GET_CODE (pat) != SET
1175 || GET_CODE (SET_SRC (pat)) != UNSPEC
1176 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1177 || ! dead_or_set_p (insn, dest))
1178 return 0;
1180 /* Now we are prepared to handle this as a normal cc0 setter. */
1181 insn = next_flags_user (insn);
1182 if (insn == NULL_RTX)
1183 return 0;
1184 pat = PATTERN (insn);
1187 if (swap_rtx_condition_1 (pat))
1189 int fail = 0;
1190 INSN_CODE (insn) = -1;
1191 if (recog_memoized (insn) == -1)
1192 fail = 1;
1193 /* In case the flags don't die here, recurse to try fix
1194 following user too. */
1195 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1197 insn = next_flags_user (insn);
1198 if (!insn || !swap_rtx_condition (insn))
1199 fail = 1;
1201 if (fail)
1203 swap_rtx_condition_1 (pat);
1204 return 0;
1206 return 1;
1208 return 0;
1211 /* Handle a comparison. Special care needs to be taken to avoid
1212 causing comparisons that a 387 cannot do correctly, such as EQ.
1214 Also, a pop insn may need to be emitted. The 387 does have an
1215 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1216 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1217 set up. */
1219 static void
1220 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1222 rtx *src1, *src2;
1223 rtx src1_note, src2_note;
1225 src1 = get_true_reg (&XEXP (pat_src, 0));
1226 src2 = get_true_reg (&XEXP (pat_src, 1));
1228 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1229 registers that die in this insn - move those to stack top first. */
1230 if ((! STACK_REG_P (*src1)
1231 || (STACK_REG_P (*src2)
1232 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1233 && swap_rtx_condition (insn))
1235 rtx temp;
1236 temp = XEXP (pat_src, 0);
1237 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1238 XEXP (pat_src, 1) = temp;
1240 src1 = get_true_reg (&XEXP (pat_src, 0));
1241 src2 = get_true_reg (&XEXP (pat_src, 1));
1243 INSN_CODE (insn) = -1;
1246 /* We will fix any death note later. */
1248 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1250 if (STACK_REG_P (*src2))
1251 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1252 else
1253 src2_note = NULL_RTX;
1255 emit_swap_insn (insn, regstack, *src1);
1257 replace_reg (src1, FIRST_STACK_REG);
1259 if (STACK_REG_P (*src2))
1260 replace_reg (src2, get_hard_regnum (regstack, *src2));
1262 if (src1_note)
1264 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1265 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1268 /* If the second operand dies, handle that. But if the operands are
1269 the same stack register, don't bother, because only one death is
1270 needed, and it was just handled. */
1272 if (src2_note
1273 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1274 && REGNO (*src1) == REGNO (*src2)))
1276 /* As a special case, two regs may die in this insn if src2 is
1277 next to top of stack and the top of stack also dies. Since
1278 we have already popped src1, "next to top of stack" is really
1279 at top (FIRST_STACK_REG) now. */
1281 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1282 && src1_note)
1284 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1285 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1287 else
1289 /* The 386 can only represent death of the first operand in
1290 the case handled above. In all other cases, emit a separate
1291 pop and remove the death note from here. */
1293 /* link_cc0_insns (insn); */
1295 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1297 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1298 EMIT_AFTER);
1303 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1304 is the current register layout. Return whether a control flow insn
1305 was deleted in the process. */
1307 static bool
1308 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1310 rtx *dest, *src;
1311 bool control_flow_insn_deleted = false;
1313 switch (GET_CODE (pat))
1315 case USE:
1316 /* Deaths in USE insns can happen in non optimizing compilation.
1317 Handle them by popping the dying register. */
1318 src = get_true_reg (&XEXP (pat, 0));
1319 if (STACK_REG_P (*src)
1320 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1322 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1323 return control_flow_insn_deleted;
1325 /* ??? Uninitialized USE should not happen. */
1326 else
1327 gcc_assert (get_hard_regnum (regstack, *src) != -1);
1328 break;
1330 case CLOBBER:
1332 rtx note;
1334 dest = get_true_reg (&XEXP (pat, 0));
1335 if (STACK_REG_P (*dest))
1337 note = find_reg_note (insn, REG_DEAD, *dest);
1339 if (pat != PATTERN (insn))
1341 /* The fix_truncdi_1 pattern wants to be able to allocate
1342 its own scratch register. It does this by clobbering
1343 an fp reg so that it is assured of an empty reg-stack
1344 register. If the register is live, kill it now.
1345 Remove the DEAD/UNUSED note so we don't try to kill it
1346 later too. */
1348 if (note)
1349 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1350 else
1352 note = find_reg_note (insn, REG_UNUSED, *dest);
1353 gcc_assert (note);
1355 remove_note (insn, note);
1356 replace_reg (dest, FIRST_STACK_REG + 1);
1358 else
1360 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1361 indicates an uninitialized value. Because reload removed
1362 all other clobbers, this must be due to a function
1363 returning without a value. Load up a NaN. */
1365 if (!note)
1367 rtx t = *dest;
1368 if (get_hard_regnum (regstack, t) == -1)
1369 control_flow_insn_deleted
1370 |= move_nan_for_stack_reg (insn, regstack, t);
1371 if (COMPLEX_MODE_P (GET_MODE (t)))
1373 t = FP_MODE_REG (REGNO (t) + 1, DFmode);
1374 if (get_hard_regnum (regstack, t) == -1)
1375 control_flow_insn_deleted
1376 |= move_nan_for_stack_reg (insn, regstack, t);
1381 break;
1384 case SET:
1386 rtx *src1 = (rtx *) 0, *src2;
1387 rtx src1_note, src2_note;
1388 rtx pat_src;
1390 dest = get_true_reg (&SET_DEST (pat));
1391 src = get_true_reg (&SET_SRC (pat));
1392 pat_src = SET_SRC (pat);
1394 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1395 if (STACK_REG_P (*src)
1396 || (STACK_REG_P (*dest)
1397 && (REG_P (*src) || MEM_P (*src)
1398 || GET_CODE (*src) == CONST_DOUBLE)))
1400 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1401 break;
1404 switch (GET_CODE (pat_src))
1406 case COMPARE:
1407 compare_for_stack_reg (insn, regstack, pat_src);
1408 break;
1410 case CALL:
1412 int count;
1413 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1414 --count >= 0;)
1416 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1417 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1420 replace_reg (dest, FIRST_STACK_REG);
1421 break;
1423 case REG:
1424 /* This is a `tstM2' case. */
1425 gcc_assert (*dest == cc0_rtx);
1426 src1 = src;
1428 /* Fall through. */
1430 case FLOAT_TRUNCATE:
1431 case SQRT:
1432 case ABS:
1433 case NEG:
1434 /* These insns only operate on the top of the stack. DEST might
1435 be cc0_rtx if we're processing a tstM pattern. Also, it's
1436 possible that the tstM case results in a REG_DEAD note on the
1437 source. */
1439 if (src1 == 0)
1440 src1 = get_true_reg (&XEXP (pat_src, 0));
1442 emit_swap_insn (insn, regstack, *src1);
1444 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1446 if (STACK_REG_P (*dest))
1447 replace_reg (dest, FIRST_STACK_REG);
1449 if (src1_note)
1451 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1452 regstack->top--;
1453 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1456 replace_reg (src1, FIRST_STACK_REG);
1457 break;
1459 case MINUS:
1460 case DIV:
1461 /* On i386, reversed forms of subM3 and divM3 exist for
1462 MODE_FLOAT, so the same code that works for addM3 and mulM3
1463 can be used. */
1464 case MULT:
1465 case PLUS:
1466 /* These insns can accept the top of stack as a destination
1467 from a stack reg or mem, or can use the top of stack as a
1468 source and some other stack register (possibly top of stack)
1469 as a destination. */
1471 src1 = get_true_reg (&XEXP (pat_src, 0));
1472 src2 = get_true_reg (&XEXP (pat_src, 1));
1474 /* We will fix any death note later. */
1476 if (STACK_REG_P (*src1))
1477 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1478 else
1479 src1_note = NULL_RTX;
1480 if (STACK_REG_P (*src2))
1481 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1482 else
1483 src2_note = NULL_RTX;
1485 /* If either operand is not a stack register, then the dest
1486 must be top of stack. */
1488 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1489 emit_swap_insn (insn, regstack, *dest);
1490 else
1492 /* Both operands are REG. If neither operand is already
1493 at the top of stack, choose to make the one that is the dest
1494 the new top of stack. */
1496 int src1_hard_regnum, src2_hard_regnum;
1498 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1499 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1500 gcc_assert (src1_hard_regnum != -1);
1501 gcc_assert (src2_hard_regnum != -1);
1503 if (src1_hard_regnum != FIRST_STACK_REG
1504 && src2_hard_regnum != FIRST_STACK_REG)
1505 emit_swap_insn (insn, regstack, *dest);
1508 if (STACK_REG_P (*src1))
1509 replace_reg (src1, get_hard_regnum (regstack, *src1));
1510 if (STACK_REG_P (*src2))
1511 replace_reg (src2, get_hard_regnum (regstack, *src2));
1513 if (src1_note)
1515 rtx src1_reg = XEXP (src1_note, 0);
1517 /* If the register that dies is at the top of stack, then
1518 the destination is somewhere else - merely substitute it.
1519 But if the reg that dies is not at top of stack, then
1520 move the top of stack to the dead reg, as though we had
1521 done the insn and then a store-with-pop. */
1523 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1525 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1526 replace_reg (dest, get_hard_regnum (regstack, *dest));
1528 else
1530 int regno = get_hard_regnum (regstack, src1_reg);
1532 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1533 replace_reg (dest, regno);
1535 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1536 = regstack->reg[regstack->top];
1539 CLEAR_HARD_REG_BIT (regstack->reg_set,
1540 REGNO (XEXP (src1_note, 0)));
1541 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1542 regstack->top--;
1544 else if (src2_note)
1546 rtx src2_reg = XEXP (src2_note, 0);
1547 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1549 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1550 replace_reg (dest, get_hard_regnum (regstack, *dest));
1552 else
1554 int regno = get_hard_regnum (regstack, src2_reg);
1556 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1557 replace_reg (dest, regno);
1559 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1560 = regstack->reg[regstack->top];
1563 CLEAR_HARD_REG_BIT (regstack->reg_set,
1564 REGNO (XEXP (src2_note, 0)));
1565 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1566 regstack->top--;
1568 else
1570 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1571 replace_reg (dest, get_hard_regnum (regstack, *dest));
1574 /* Keep operand 1 matching with destination. */
1575 if (COMMUTATIVE_ARITH_P (pat_src)
1576 && REG_P (*src1) && REG_P (*src2)
1577 && REGNO (*src1) != REGNO (*dest))
1579 int tmp = REGNO (*src1);
1580 replace_reg (src1, REGNO (*src2));
1581 replace_reg (src2, tmp);
1583 break;
1585 case UNSPEC:
1586 switch (XINT (pat_src, 1))
1588 case UNSPEC_FIST:
1590 case UNSPEC_FIST_FLOOR:
1591 case UNSPEC_FIST_CEIL:
1593 /* These insns only operate on the top of the stack. */
1595 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1596 emit_swap_insn (insn, regstack, *src1);
1598 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1600 if (STACK_REG_P (*dest))
1601 replace_reg (dest, FIRST_STACK_REG);
1603 if (src1_note)
1605 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1606 regstack->top--;
1607 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1610 replace_reg (src1, FIRST_STACK_REG);
1611 break;
1613 case UNSPEC_SIN:
1614 case UNSPEC_COS:
1615 case UNSPEC_FRNDINT:
1616 case UNSPEC_F2XM1:
1618 case UNSPEC_FRNDINT_FLOOR:
1619 case UNSPEC_FRNDINT_CEIL:
1620 case UNSPEC_FRNDINT_TRUNC:
1621 case UNSPEC_FRNDINT_MASK_PM:
1623 /* These insns only operate on the top of the stack. */
1625 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1627 emit_swap_insn (insn, regstack, *src1);
1629 /* Input should never die, it is
1630 replaced with output. */
1631 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1632 gcc_assert (!src1_note);
1634 if (STACK_REG_P (*dest))
1635 replace_reg (dest, FIRST_STACK_REG);
1637 replace_reg (src1, FIRST_STACK_REG);
1638 break;
1640 case UNSPEC_FPATAN:
1641 case UNSPEC_FYL2X:
1642 case UNSPEC_FYL2XP1:
1643 /* These insns operate on the top two stack slots. */
1645 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1646 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1648 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1649 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1651 swap_to_top (insn, regstack, *src1, *src2);
1653 replace_reg (src1, FIRST_STACK_REG);
1654 replace_reg (src2, FIRST_STACK_REG + 1);
1656 if (src1_note)
1657 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1658 if (src2_note)
1659 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1661 /* Pop both input operands from the stack. */
1662 CLEAR_HARD_REG_BIT (regstack->reg_set,
1663 regstack->reg[regstack->top]);
1664 CLEAR_HARD_REG_BIT (regstack->reg_set,
1665 regstack->reg[regstack->top - 1]);
1666 regstack->top -= 2;
1668 /* Push the result back onto the stack. */
1669 regstack->reg[++regstack->top] = REGNO (*dest);
1670 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1671 replace_reg (dest, FIRST_STACK_REG);
1672 break;
1674 case UNSPEC_FSCALE_FRACT:
1675 case UNSPEC_FPREM_F:
1676 case UNSPEC_FPREM1_F:
1677 /* These insns operate on the top two stack slots.
1678 first part of double input, double output insn. */
1680 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1681 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1683 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1684 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1686 /* Inputs should never die, they are
1687 replaced with outputs. */
1688 gcc_assert (!src1_note);
1689 gcc_assert (!src2_note);
1691 swap_to_top (insn, regstack, *src1, *src2);
1693 /* Push the result back onto stack. Empty stack slot
1694 will be filled in second part of insn. */
1695 if (STACK_REG_P (*dest)) {
1696 regstack->reg[regstack->top] = REGNO (*dest);
1697 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1698 replace_reg (dest, FIRST_STACK_REG);
1701 replace_reg (src1, FIRST_STACK_REG);
1702 replace_reg (src2, FIRST_STACK_REG + 1);
1703 break;
1705 case UNSPEC_FSCALE_EXP:
1706 case UNSPEC_FPREM_U:
1707 case UNSPEC_FPREM1_U:
1708 /* These insns operate on the top two stack slots./
1709 second part of double input, double output insn. */
1711 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1712 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1714 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1715 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1717 /* Inputs should never die, they are
1718 replaced with outputs. */
1719 gcc_assert (!src1_note);
1720 gcc_assert (!src2_note);
1722 swap_to_top (insn, regstack, *src1, *src2);
1724 /* Push the result back onto stack. Fill empty slot from
1725 first part of insn and fix top of stack pointer. */
1726 if (STACK_REG_P (*dest)) {
1727 regstack->reg[regstack->top - 1] = REGNO (*dest);
1728 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1729 replace_reg (dest, FIRST_STACK_REG + 1);
1732 replace_reg (src1, FIRST_STACK_REG);
1733 replace_reg (src2, FIRST_STACK_REG + 1);
1734 break;
1736 case UNSPEC_SINCOS_COS:
1737 case UNSPEC_TAN_ONE:
1738 case UNSPEC_XTRACT_FRACT:
1739 /* These insns operate on the top two stack slots,
1740 first part of one input, double output insn. */
1742 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1744 emit_swap_insn (insn, regstack, *src1);
1746 /* Input should never die, it is
1747 replaced with output. */
1748 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1749 gcc_assert (!src1_note);
1751 /* Push the result back onto stack. Empty stack slot
1752 will be filled in second part of insn. */
1753 if (STACK_REG_P (*dest)) {
1754 regstack->reg[regstack->top + 1] = REGNO (*dest);
1755 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1756 replace_reg (dest, FIRST_STACK_REG);
1759 replace_reg (src1, FIRST_STACK_REG);
1760 break;
1762 case UNSPEC_SINCOS_SIN:
1763 case UNSPEC_TAN_TAN:
1764 case UNSPEC_XTRACT_EXP:
1765 /* These insns operate on the top two stack slots,
1766 second part of one input, double output insn. */
1768 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1770 emit_swap_insn (insn, regstack, *src1);
1772 /* Input should never die, it is
1773 replaced with output. */
1774 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1775 gcc_assert (!src1_note);
1777 /* Push the result back onto stack. Fill empty slot from
1778 first part of insn and fix top of stack pointer. */
1779 if (STACK_REG_P (*dest)) {
1780 regstack->reg[regstack->top] = REGNO (*dest);
1781 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1782 replace_reg (dest, FIRST_STACK_REG + 1);
1784 regstack->top++;
1787 replace_reg (src1, FIRST_STACK_REG);
1788 break;
1790 case UNSPEC_SAHF:
1791 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1792 The combination matches the PPRO fcomi instruction. */
1794 pat_src = XVECEXP (pat_src, 0, 0);
1795 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1796 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1797 /* Fall through. */
1799 case UNSPEC_FNSTSW:
1800 /* Combined fcomp+fnstsw generated for doing well with
1801 CSE. When optimizing this would have been broken
1802 up before now. */
1804 pat_src = XVECEXP (pat_src, 0, 0);
1805 gcc_assert (GET_CODE (pat_src) == COMPARE);
1807 compare_for_stack_reg (insn, regstack, pat_src);
1808 break;
1810 default:
1811 gcc_unreachable ();
1813 break;
1815 case IF_THEN_ELSE:
1816 /* This insn requires the top of stack to be the destination. */
1818 src1 = get_true_reg (&XEXP (pat_src, 1));
1819 src2 = get_true_reg (&XEXP (pat_src, 2));
1821 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1822 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1824 /* If the comparison operator is an FP comparison operator,
1825 it is handled correctly by compare_for_stack_reg () who
1826 will move the destination to the top of stack. But if the
1827 comparison operator is not an FP comparison operator, we
1828 have to handle it here. */
1829 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1830 && REGNO (*dest) != regstack->reg[regstack->top])
1832 /* In case one of operands is the top of stack and the operands
1833 dies, it is safe to make it the destination operand by
1834 reversing the direction of cmove and avoid fxch. */
1835 if ((REGNO (*src1) == regstack->reg[regstack->top]
1836 && src1_note)
1837 || (REGNO (*src2) == regstack->reg[regstack->top]
1838 && src2_note))
1840 int idx1 = (get_hard_regnum (regstack, *src1)
1841 - FIRST_STACK_REG);
1842 int idx2 = (get_hard_regnum (regstack, *src2)
1843 - FIRST_STACK_REG);
1845 /* Make reg-stack believe that the operands are already
1846 swapped on the stack */
1847 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1848 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1850 /* Reverse condition to compensate the operand swap.
1851 i386 do have comparison always reversible. */
1852 PUT_CODE (XEXP (pat_src, 0),
1853 reversed_comparison_code (XEXP (pat_src, 0), insn));
1855 else
1856 emit_swap_insn (insn, regstack, *dest);
1860 rtx src_note [3];
1861 int i;
1863 src_note[0] = 0;
1864 src_note[1] = src1_note;
1865 src_note[2] = src2_note;
1867 if (STACK_REG_P (*src1))
1868 replace_reg (src1, get_hard_regnum (regstack, *src1));
1869 if (STACK_REG_P (*src2))
1870 replace_reg (src2, get_hard_regnum (regstack, *src2));
1872 for (i = 1; i <= 2; i++)
1873 if (src_note [i])
1875 int regno = REGNO (XEXP (src_note[i], 0));
1877 /* If the register that dies is not at the top of
1878 stack, then move the top of stack to the dead reg.
1879 Top of stack should never die, as it is the
1880 destination. */
1881 gcc_assert (regno != regstack->reg[regstack->top]);
1882 remove_regno_note (insn, REG_DEAD, regno);
1883 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1884 EMIT_AFTER);
1888 /* Make dest the top of stack. Add dest to regstack if
1889 not present. */
1890 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1891 regstack->reg[++regstack->top] = REGNO (*dest);
1892 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1893 replace_reg (dest, FIRST_STACK_REG);
1894 break;
1896 default:
1897 gcc_unreachable ();
1899 break;
1902 default:
1903 break;
1906 return control_flow_insn_deleted;
1909 /* Substitute hard regnums for any stack regs in INSN, which has
1910 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1911 before the insn, and is updated with changes made here.
1913 There are several requirements and assumptions about the use of
1914 stack-like regs in asm statements. These rules are enforced by
1915 record_asm_stack_regs; see comments there for details. Any
1916 asm_operands left in the RTL at this point may be assume to meet the
1917 requirements, since record_asm_stack_regs removes any problem asm. */
1919 static void
1920 subst_asm_stack_regs (rtx insn, stack regstack)
1922 rtx body = PATTERN (insn);
1923 int alt;
1925 rtx *note_reg; /* Array of note contents */
1926 rtx **note_loc; /* Address of REG field of each note */
1927 enum reg_note *note_kind; /* The type of each note */
1929 rtx *clobber_reg = 0;
1930 rtx **clobber_loc = 0;
1932 struct stack_def temp_stack;
1933 int n_notes;
1934 int n_clobbers;
1935 rtx note;
1936 int i;
1937 int n_inputs, n_outputs;
1939 if (! check_asm_stack_operands (insn))
1940 return;
1942 /* Find out what the constraints required. If no constraint
1943 alternative matches, that is a compiler bug: we should have caught
1944 such an insn in check_asm_stack_operands. */
1945 extract_insn (insn);
1946 constrain_operands (1);
1947 alt = which_alternative;
1949 preprocess_constraints ();
1951 n_inputs = get_asm_operand_n_inputs (body);
1952 n_outputs = recog_data.n_operands - n_inputs;
1954 gcc_assert (alt >= 0);
1956 /* Strip SUBREGs here to make the following code simpler. */
1957 for (i = 0; i < recog_data.n_operands; i++)
1958 if (GET_CODE (recog_data.operand[i]) == SUBREG
1959 && REG_P (SUBREG_REG (recog_data.operand[i])))
1961 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
1962 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1965 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
1967 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
1968 i++;
1970 note_reg = alloca (i * sizeof (rtx));
1971 note_loc = alloca (i * sizeof (rtx *));
1972 note_kind = alloca (i * sizeof (enum reg_note));
1974 n_notes = 0;
1975 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1977 rtx reg = XEXP (note, 0);
1978 rtx *loc = & XEXP (note, 0);
1980 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
1982 loc = & SUBREG_REG (reg);
1983 reg = SUBREG_REG (reg);
1986 if (STACK_REG_P (reg)
1987 && (REG_NOTE_KIND (note) == REG_DEAD
1988 || REG_NOTE_KIND (note) == REG_UNUSED))
1990 note_reg[n_notes] = reg;
1991 note_loc[n_notes] = loc;
1992 note_kind[n_notes] = REG_NOTE_KIND (note);
1993 n_notes++;
1997 /* Set up CLOBBER_REG and CLOBBER_LOC. */
1999 n_clobbers = 0;
2001 if (GET_CODE (body) == PARALLEL)
2003 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2004 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2006 for (i = 0; i < XVECLEN (body, 0); i++)
2007 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2009 rtx clobber = XVECEXP (body, 0, i);
2010 rtx reg = XEXP (clobber, 0);
2011 rtx *loc = & XEXP (clobber, 0);
2013 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2015 loc = & SUBREG_REG (reg);
2016 reg = SUBREG_REG (reg);
2019 if (STACK_REG_P (reg))
2021 clobber_reg[n_clobbers] = reg;
2022 clobber_loc[n_clobbers] = loc;
2023 n_clobbers++;
2028 temp_stack = *regstack;
2030 /* Put the input regs into the desired place in TEMP_STACK. */
2032 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2033 if (STACK_REG_P (recog_data.operand[i])
2034 && reg_class_subset_p (recog_op_alt[i][alt].cl,
2035 FLOAT_REGS)
2036 && recog_op_alt[i][alt].cl != FLOAT_REGS)
2038 /* If an operand needs to be in a particular reg in
2039 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2040 these constraints are for single register classes, and
2041 reload guaranteed that operand[i] is already in that class,
2042 we can just use REGNO (recog_data.operand[i]) to know which
2043 actual reg this operand needs to be in. */
2045 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2047 gcc_assert (regno >= 0);
2049 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2051 /* recog_data.operand[i] is not in the right place. Find
2052 it and swap it with whatever is already in I's place.
2053 K is where recog_data.operand[i] is now. J is where it
2054 should be. */
2055 int j, k, temp;
2057 k = temp_stack.top - (regno - FIRST_STACK_REG);
2058 j = (temp_stack.top
2059 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2061 temp = temp_stack.reg[k];
2062 temp_stack.reg[k] = temp_stack.reg[j];
2063 temp_stack.reg[j] = temp;
2067 /* Emit insns before INSN to make sure the reg-stack is in the right
2068 order. */
2070 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2072 /* Make the needed input register substitutions. Do death notes and
2073 clobbers too, because these are for inputs, not outputs. */
2075 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2076 if (STACK_REG_P (recog_data.operand[i]))
2078 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2080 gcc_assert (regnum >= 0);
2082 replace_reg (recog_data.operand_loc[i], regnum);
2085 for (i = 0; i < n_notes; i++)
2086 if (note_kind[i] == REG_DEAD)
2088 int regnum = get_hard_regnum (regstack, note_reg[i]);
2090 gcc_assert (regnum >= 0);
2092 replace_reg (note_loc[i], regnum);
2095 for (i = 0; i < n_clobbers; i++)
2097 /* It's OK for a CLOBBER to reference a reg that is not live.
2098 Don't try to replace it in that case. */
2099 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2101 if (regnum >= 0)
2103 /* Sigh - clobbers always have QImode. But replace_reg knows
2104 that these regs can't be MODE_INT and will assert. Just put
2105 the right reg there without calling replace_reg. */
2107 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2111 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2113 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2114 if (STACK_REG_P (recog_data.operand[i]))
2116 /* An input reg is implicitly popped if it is tied to an
2117 output, or if there is a CLOBBER for it. */
2118 int j;
2120 for (j = 0; j < n_clobbers; j++)
2121 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2122 break;
2124 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2126 /* recog_data.operand[i] might not be at the top of stack.
2127 But that's OK, because all we need to do is pop the
2128 right number of regs off of the top of the reg-stack.
2129 record_asm_stack_regs guaranteed that all implicitly
2130 popped regs were grouped at the top of the reg-stack. */
2132 CLEAR_HARD_REG_BIT (regstack->reg_set,
2133 regstack->reg[regstack->top]);
2134 regstack->top--;
2138 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2139 Note that there isn't any need to substitute register numbers.
2140 ??? Explain why this is true. */
2142 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2144 /* See if there is an output for this hard reg. */
2145 int j;
2147 for (j = 0; j < n_outputs; j++)
2148 if (STACK_REG_P (recog_data.operand[j])
2149 && REGNO (recog_data.operand[j]) == (unsigned) i)
2151 regstack->reg[++regstack->top] = i;
2152 SET_HARD_REG_BIT (regstack->reg_set, i);
2153 break;
2157 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2158 input that the asm didn't implicitly pop. If the asm didn't
2159 implicitly pop an input reg, that reg will still be live.
2161 Note that we can't use find_regno_note here: the register numbers
2162 in the death notes have already been substituted. */
2164 for (i = 0; i < n_outputs; i++)
2165 if (STACK_REG_P (recog_data.operand[i]))
2167 int j;
2169 for (j = 0; j < n_notes; j++)
2170 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2171 && note_kind[j] == REG_UNUSED)
2173 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2174 EMIT_AFTER);
2175 break;
2179 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2180 if (STACK_REG_P (recog_data.operand[i]))
2182 int j;
2184 for (j = 0; j < n_notes; j++)
2185 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2186 && note_kind[j] == REG_DEAD
2187 && TEST_HARD_REG_BIT (regstack->reg_set,
2188 REGNO (recog_data.operand[i])))
2190 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2191 EMIT_AFTER);
2192 break;
2197 /* Substitute stack hard reg numbers for stack virtual registers in
2198 INSN. Non-stack register numbers are not changed. REGSTACK is the
2199 current stack content. Insns may be emitted as needed to arrange the
2200 stack for the 387 based on the contents of the insn. Return whether
2201 a control flow insn was deleted in the process. */
2203 static bool
2204 subst_stack_regs (rtx insn, stack regstack)
2206 rtx *note_link, note;
2207 bool control_flow_insn_deleted = false;
2208 int i;
2210 if (CALL_P (insn))
2212 int top = regstack->top;
2214 /* If there are any floating point parameters to be passed in
2215 registers for this call, make sure they are in the right
2216 order. */
2218 if (top >= 0)
2220 straighten_stack (insn, regstack);
2222 /* Now mark the arguments as dead after the call. */
2224 while (regstack->top >= 0)
2226 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2227 regstack->top--;
2232 /* Do the actual substitution if any stack regs are mentioned.
2233 Since we only record whether entire insn mentions stack regs, and
2234 subst_stack_regs_pat only works for patterns that contain stack regs,
2235 we must check each pattern in a parallel here. A call_value_pop could
2236 fail otherwise. */
2238 if (stack_regs_mentioned (insn))
2240 int n_operands = asm_noperands (PATTERN (insn));
2241 if (n_operands >= 0)
2243 /* This insn is an `asm' with operands. Decode the operands,
2244 decide how many are inputs, and do register substitution.
2245 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2247 subst_asm_stack_regs (insn, regstack);
2248 return control_flow_insn_deleted;
2251 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2252 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2254 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2256 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2257 XVECEXP (PATTERN (insn), 0, i)
2258 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2259 control_flow_insn_deleted
2260 |= subst_stack_regs_pat (insn, regstack,
2261 XVECEXP (PATTERN (insn), 0, i));
2264 else
2265 control_flow_insn_deleted
2266 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2269 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2270 REG_UNUSED will already have been dealt with, so just return. */
2272 if (NOTE_P (insn) || INSN_DELETED_P (insn))
2273 return control_flow_insn_deleted;
2275 /* If there is a REG_UNUSED note on a stack register on this insn,
2276 the indicated reg must be popped. The REG_UNUSED note is removed,
2277 since the form of the newly emitted pop insn references the reg,
2278 making it no longer `unset'. */
2280 note_link = &REG_NOTES (insn);
2281 for (note = *note_link; note; note = XEXP (note, 1))
2282 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2284 *note_link = XEXP (note, 1);
2285 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2287 else
2288 note_link = &XEXP (note, 1);
2290 return control_flow_insn_deleted;
2293 /* Change the organization of the stack so that it fits a new basic
2294 block. Some registers might have to be popped, but there can never be
2295 a register live in the new block that is not now live.
2297 Insert any needed insns before or after INSN, as indicated by
2298 WHERE. OLD is the original stack layout, and NEW is the desired
2299 form. OLD is updated to reflect the code emitted, i.e., it will be
2300 the same as NEW upon return.
2302 This function will not preserve block_end[]. But that information
2303 is no longer needed once this has executed. */
2305 static void
2306 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2308 int reg;
2309 int update_end = 0;
2311 /* Stack adjustments for the first insn in a block update the
2312 current_block's stack_in instead of inserting insns directly.
2313 compensate_edges will add the necessary code later. */
2314 if (current_block
2315 && starting_stack_p
2316 && where == EMIT_BEFORE)
2318 BLOCK_INFO (current_block)->stack_in = *new;
2319 starting_stack_p = false;
2320 *old = *new;
2321 return;
2324 /* We will be inserting new insns "backwards". If we are to insert
2325 after INSN, find the next insn, and insert before it. */
2327 if (where == EMIT_AFTER)
2329 if (current_block && BB_END (current_block) == insn)
2330 update_end = 1;
2331 insn = NEXT_INSN (insn);
2334 /* Pop any registers that are not needed in the new block. */
2336 /* If the destination block's stack already has a specified layout
2337 and contains two or more registers, use a more intelligent algorithm
2338 to pop registers that minimizes the number number of fxchs below. */
2339 if (new->top > 0)
2341 bool slots[REG_STACK_SIZE];
2342 int pops[REG_STACK_SIZE];
2343 int next, dest, topsrc;
2345 /* First pass to determine the free slots. */
2346 for (reg = 0; reg <= new->top; reg++)
2347 slots[reg] = TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]);
2349 /* Second pass to allocate preferred slots. */
2350 topsrc = -1;
2351 for (reg = old->top; reg > new->top; reg--)
2352 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2354 dest = -1;
2355 for (next = 0; next <= new->top; next++)
2356 if (!slots[next] && new->reg[next] == old->reg[reg])
2358 /* If this is a preference for the new top of stack, record
2359 the fact by remembering it's old->reg in topsrc. */
2360 if (next == new->top)
2361 topsrc = reg;
2362 slots[next] = true;
2363 dest = next;
2364 break;
2366 pops[reg] = dest;
2368 else
2369 pops[reg] = reg;
2371 /* Intentionally, avoid placing the top of stack in it's correct
2372 location, if we still need to permute the stack below and we
2373 can usefully place it somewhere else. This is the case if any
2374 slot is still unallocated, in which case we should place the
2375 top of stack there. */
2376 if (topsrc != -1)
2377 for (reg = 0; reg < new->top; reg++)
2378 if (!slots[reg])
2380 pops[topsrc] = reg;
2381 slots[new->top] = false;
2382 slots[reg] = true;
2383 break;
2386 /* Third pass allocates remaining slots and emits pop insns. */
2387 next = new->top;
2388 for (reg = old->top; reg > new->top; reg--)
2390 dest = pops[reg];
2391 if (dest == -1)
2393 /* Find next free slot. */
2394 while (slots[next])
2395 next--;
2396 dest = next--;
2398 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2399 EMIT_BEFORE);
2402 else
2404 /* The following loop attempts to maximize the number of times we
2405 pop the top of the stack, as this permits the use of the faster
2406 ffreep instruction on platforms that support it. */
2407 int live, next;
2409 live = 0;
2410 for (reg = 0; reg <= old->top; reg++)
2411 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2412 live++;
2414 next = live;
2415 while (old->top >= live)
2416 if (TEST_HARD_REG_BIT (new->reg_set, old->reg[old->top]))
2418 while (TEST_HARD_REG_BIT (new->reg_set, old->reg[next]))
2419 next--;
2420 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2421 EMIT_BEFORE);
2423 else
2424 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2425 EMIT_BEFORE);
2428 if (new->top == -2)
2430 /* If the new block has never been processed, then it can inherit
2431 the old stack order. */
2433 new->top = old->top;
2434 memcpy (new->reg, old->reg, sizeof (new->reg));
2436 else
2438 /* This block has been entered before, and we must match the
2439 previously selected stack order. */
2441 /* By now, the only difference should be the order of the stack,
2442 not their depth or liveliness. */
2444 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2445 gcc_unreachable ();
2446 win:
2447 gcc_assert (old->top == new->top);
2449 /* If the stack is not empty (new->top != -1), loop here emitting
2450 swaps until the stack is correct.
2452 The worst case number of swaps emitted is N + 2, where N is the
2453 depth of the stack. In some cases, the reg at the top of
2454 stack may be correct, but swapped anyway in order to fix
2455 other regs. But since we never swap any other reg away from
2456 its correct slot, this algorithm will converge. */
2458 if (new->top != -1)
2461 /* Swap the reg at top of stack into the position it is
2462 supposed to be in, until the correct top of stack appears. */
2464 while (old->reg[old->top] != new->reg[new->top])
2466 for (reg = new->top; reg >= 0; reg--)
2467 if (new->reg[reg] == old->reg[old->top])
2468 break;
2470 gcc_assert (reg != -1);
2472 emit_swap_insn (insn, old,
2473 FP_MODE_REG (old->reg[reg], DFmode));
2476 /* See if any regs remain incorrect. If so, bring an
2477 incorrect reg to the top of stack, and let the while loop
2478 above fix it. */
2480 for (reg = new->top; reg >= 0; reg--)
2481 if (new->reg[reg] != old->reg[reg])
2483 emit_swap_insn (insn, old,
2484 FP_MODE_REG (old->reg[reg], DFmode));
2485 break;
2487 } while (reg >= 0);
2489 /* At this point there must be no differences. */
2491 for (reg = old->top; reg >= 0; reg--)
2492 gcc_assert (old->reg[reg] == new->reg[reg]);
2495 if (update_end)
2496 BB_END (current_block) = PREV_INSN (insn);
2499 /* Print stack configuration. */
2501 static void
2502 print_stack (FILE *file, stack s)
2504 if (! file)
2505 return;
2507 if (s->top == -2)
2508 fprintf (file, "uninitialized\n");
2509 else if (s->top == -1)
2510 fprintf (file, "empty\n");
2511 else
2513 int i;
2514 fputs ("[ ", file);
2515 for (i = 0; i <= s->top; ++i)
2516 fprintf (file, "%d ", s->reg[i]);
2517 fputs ("]\n", file);
2521 /* This function was doing life analysis. We now let the regular live
2522 code do it's job, so we only need to check some extra invariants
2523 that reg-stack expects. Primary among these being that all registers
2524 are initialized before use.
2526 The function returns true when code was emitted to CFG edges and
2527 commit_edge_insertions needs to be called. */
2529 static int
2530 convert_regs_entry (void)
2532 int inserted = 0;
2533 edge e;
2534 edge_iterator ei;
2536 /* Load something into each stack register live at function entry.
2537 Such live registers can be caused by uninitialized variables or
2538 functions not returning values on all paths. In order to keep
2539 the push/pop code happy, and to not scrog the register stack, we
2540 must put something in these registers. Use a QNaN.
2542 Note that we are inserting converted code here. This code is
2543 never seen by the convert_regs pass. */
2545 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2547 basic_block block = e->dest;
2548 block_info bi = BLOCK_INFO (block);
2549 int reg, top = -1;
2551 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2552 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2554 rtx init;
2556 bi->stack_in.reg[++top] = reg;
2558 init = gen_rtx_SET (VOIDmode,
2559 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2560 not_a_num);
2561 insert_insn_on_edge (init, e);
2562 inserted = 1;
2565 bi->stack_in.top = top;
2568 return inserted;
2571 /* Construct the desired stack for function exit. This will either
2572 be `empty', or the function return value at top-of-stack. */
2574 static void
2575 convert_regs_exit (void)
2577 int value_reg_low, value_reg_high;
2578 stack output_stack;
2579 rtx retvalue;
2581 retvalue = stack_result (current_function_decl);
2582 value_reg_low = value_reg_high = -1;
2583 if (retvalue)
2585 value_reg_low = REGNO (retvalue);
2586 value_reg_high = value_reg_low
2587 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2590 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2591 if (value_reg_low == -1)
2592 output_stack->top = -1;
2593 else
2595 int reg;
2597 output_stack->top = value_reg_high - value_reg_low;
2598 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2600 output_stack->reg[value_reg_high - reg] = reg;
2601 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2606 /* Copy the stack info from the end of edge E's source block to the
2607 start of E's destination block. */
2609 static void
2610 propagate_stack (edge e)
2612 stack src_stack = &BLOCK_INFO (e->src)->stack_out;
2613 stack dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2614 int reg;
2616 /* Preserve the order of the original stack, but check whether
2617 any pops are needed. */
2618 dest_stack->top = -1;
2619 for (reg = 0; reg <= src_stack->top; ++reg)
2620 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2621 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2625 /* Adjust the stack of edge E's source block on exit to match the stack
2626 of it's target block upon input. The stack layouts of both blocks
2627 should have been defined by now. */
2629 static bool
2630 compensate_edge (edge e, FILE *file)
2632 basic_block source = e->src, target = e->dest;
2633 stack target_stack = &BLOCK_INFO (target)->stack_in;
2634 stack source_stack = &BLOCK_INFO (source)->stack_out;
2635 struct stack_def regstack;
2636 int reg;
2638 if (file)
2639 fprintf (file, "Edge %d->%d: ", source->index, target->index);
2641 gcc_assert (target_stack->top != -2);
2643 /* Check whether stacks are identical. */
2644 if (target_stack->top == source_stack->top)
2646 for (reg = target_stack->top; reg >= 0; --reg)
2647 if (target_stack->reg[reg] != source_stack->reg[reg])
2648 break;
2650 if (reg == -1)
2652 if (file)
2653 fprintf (file, "no changes needed\n");
2654 return false;
2658 if (file)
2660 fprintf (file, "correcting stack to ");
2661 print_stack (file, target_stack);
2664 /* Abnormal calls may appear to have values live in st(0), but the
2665 abnormal return path will not have actually loaded the values. */
2666 if (e->flags & EDGE_ABNORMAL_CALL)
2668 /* Assert that the lifetimes are as we expect -- one value
2669 live at st(0) on the end of the source block, and no
2670 values live at the beginning of the destination block. */
2671 gcc_assert (source_stack->top == 0);
2672 gcc_assert (target_stack->top == -1);
2673 return false;
2676 /* Handle non-call EH edges specially. The normal return path have
2677 values in registers. These will be popped en masse by the unwind
2678 library. */
2679 if (e->flags & EDGE_EH)
2681 gcc_assert (target_stack->top == -1);
2682 return false;
2685 /* We don't support abnormal edges. Global takes care to
2686 avoid any live register across them, so we should never
2687 have to insert instructions on such edges. */
2688 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2690 /* Make a copy of source_stack as change_stack is destructive. */
2691 regstack = *source_stack;
2693 /* It is better to output directly to the end of the block
2694 instead of to the edge, because emit_swap can do minimal
2695 insn scheduling. We can do this when there is only one
2696 edge out, and it is not abnormal. */
2697 if (EDGE_COUNT (source->succs) == 1)
2699 current_block = source;
2700 change_stack (BB_END (source), &regstack, target_stack,
2701 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2703 else
2705 rtx seq, after;
2707 current_block = NULL;
2708 start_sequence ();
2710 /* ??? change_stack needs some point to emit insns after. */
2711 after = emit_note (NOTE_INSN_DELETED);
2713 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2715 seq = get_insns ();
2716 end_sequence ();
2718 insert_insn_on_edge (seq, e);
2719 return true;
2721 return false;
2724 /* Traverse all non-entry edges in the CFG, and emit the necessary
2725 edge compensation code to change the stack from stack_out of the
2726 source block to the stack_in of the destination block. */
2728 static bool
2729 compensate_edges (FILE *file)
2731 bool inserted = false;
2732 basic_block bb;
2734 starting_stack_p = false;
2736 FOR_EACH_BB (bb)
2737 if (bb != ENTRY_BLOCK_PTR)
2739 edge e;
2740 edge_iterator ei;
2742 FOR_EACH_EDGE (e, ei, bb->succs)
2743 inserted |= compensate_edge (e, file);
2745 return inserted;
2748 /* Select the better of two edges E1 and E2 to use to determine the
2749 stack layout for their shared destination basic block. This is
2750 typically the more frequently executed. The edge E1 may be NULL
2751 (in which case E2 is returned), but E2 is always non-NULL. */
2753 static edge
2754 better_edge (edge e1, edge e2)
2756 if (!e1)
2757 return e2;
2759 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2760 return e1;
2761 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2762 return e2;
2764 if (e1->count > e2->count)
2765 return e1;
2766 if (e1->count < e2->count)
2767 return e2;
2769 /* Prefer critical edges to minimize inserting compensation code on
2770 critical edges. */
2772 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2773 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2775 /* Avoid non-deterministic behaviour. */
2776 return (e1->src->index < e2->src->index) ? e1 : e2;
2779 /* Convert stack register references in one block. */
2781 static void
2782 convert_regs_1 (FILE *file, basic_block block)
2784 struct stack_def regstack;
2785 block_info bi = BLOCK_INFO (block);
2786 int reg;
2787 rtx insn, next;
2788 bool control_flow_insn_deleted = false;
2790 any_malformed_asm = false;
2792 /* Choose an initial stack layout, if one hasn't already been chosen. */
2793 if (bi->stack_in.top == -2)
2795 edge e, beste = NULL;
2796 edge_iterator ei;
2798 /* Select the best incoming edge (typically the most frequent) to
2799 use as a template for this basic block. */
2800 FOR_EACH_EDGE (e, ei, block->preds)
2801 if (BLOCK_INFO (e->src)->done)
2802 beste = better_edge (beste, e);
2804 if (beste)
2805 propagate_stack (beste);
2806 else
2808 /* No predecessors. Create an arbitrary input stack. */
2809 bi->stack_in.top = -1;
2810 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2811 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2812 bi->stack_in.reg[++bi->stack_in.top] = reg;
2816 if (file)
2818 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2819 print_stack (file, &bi->stack_in);
2822 /* Process all insns in this block. Keep track of NEXT so that we
2823 don't process insns emitted while substituting in INSN. */
2824 current_block = block;
2825 next = BB_HEAD (block);
2826 regstack = bi->stack_in;
2827 starting_stack_p = true;
2831 insn = next;
2832 next = NEXT_INSN (insn);
2834 /* Ensure we have not missed a block boundary. */
2835 gcc_assert (next);
2836 if (insn == BB_END (block))
2837 next = NULL;
2839 /* Don't bother processing unless there is a stack reg
2840 mentioned or if it's a CALL_INSN. */
2841 if (stack_regs_mentioned (insn)
2842 || CALL_P (insn))
2844 if (file)
2846 fprintf (file, " insn %d input stack: ",
2847 INSN_UID (insn));
2848 print_stack (file, &regstack);
2850 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2851 starting_stack_p = false;
2854 while (next);
2856 if (file)
2858 fprintf (file, "Expected live registers [");
2859 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2860 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2861 fprintf (file, " %d", reg);
2862 fprintf (file, " ]\nOutput stack: ");
2863 print_stack (file, &regstack);
2866 insn = BB_END (block);
2867 if (JUMP_P (insn))
2868 insn = PREV_INSN (insn);
2870 /* If the function is declared to return a value, but it returns one
2871 in only some cases, some registers might come live here. Emit
2872 necessary moves for them. */
2874 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2876 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2877 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2879 rtx set;
2881 if (file)
2882 fprintf (file, "Emitting insn initializing reg %d\n", reg);
2884 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode), not_a_num);
2885 insn = emit_insn_after (set, insn);
2886 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2890 /* Amongst the insns possibly deleted during the substitution process above,
2891 might have been the only trapping insn in the block. We purge the now
2892 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2893 called at the end of convert_regs. The order in which we process the
2894 blocks ensures that we never delete an already processed edge.
2896 Note that, at this point, the CFG may have been damaged by the emission
2897 of instructions after an abnormal call, which moves the basic block end
2898 (and is the reason why we call fixup_abnormal_edges later). So we must
2899 be sure that the trapping insn has been deleted before trying to purge
2900 dead edges, otherwise we risk purging valid edges.
2902 ??? We are normally supposed not to delete trapping insns, so we pretend
2903 that the insns deleted above don't actually trap. It would have been
2904 better to detect this earlier and avoid creating the EH edge in the first
2905 place, still, but we don't have enough information at that time. */
2907 if (control_flow_insn_deleted)
2908 purge_dead_edges (block);
2910 /* Something failed if the stack lives don't match. If we had malformed
2911 asms, we zapped the instruction itself, but that didn't produce the
2912 same pattern of register kills as before. */
2913 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2914 gcc_assert (any_malformed_asm);
2915 win:
2916 bi->stack_out = regstack;
2917 bi->done = true;
2920 /* Convert registers in all blocks reachable from BLOCK. */
2922 static void
2923 convert_regs_2 (FILE *file, basic_block block)
2925 basic_block *stack, *sp;
2927 /* We process the blocks in a top-down manner, in a way such that one block
2928 is only processed after all its predecessors. The number of predecessors
2929 of every block has already been computed. */
2931 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2932 sp = stack;
2934 *sp++ = block;
2938 edge e;
2939 edge_iterator ei;
2941 block = *--sp;
2943 /* Processing BLOCK is achieved by convert_regs_1, which may purge
2944 some dead EH outgoing edge after the deletion of the trapping
2945 insn inside the block. Since the number of predecessors of
2946 BLOCK's successors was computed based on the initial edge set,
2947 we check the necessity to process some of these successors
2948 before such an edge deletion may happen. However, there is
2949 a pitfall: if BLOCK is the only predecessor of a successor and
2950 the edge between them happens to be deleted, the successor
2951 becomes unreachable and should not be processed. The problem
2952 is that there is no way to preventively detect this case so we
2953 stack the successor in all cases and hand over the task of
2954 fixing up the discrepancy to convert_regs_1. */
2956 FOR_EACH_EDGE (e, ei, block->succs)
2957 if (! (e->flags & EDGE_DFS_BACK))
2959 BLOCK_INFO (e->dest)->predecessors--;
2960 if (!BLOCK_INFO (e->dest)->predecessors)
2961 *sp++ = e->dest;
2964 convert_regs_1 (file, block);
2966 while (sp != stack);
2968 free (stack);
2971 /* Traverse all basic blocks in a function, converting the register
2972 references in each insn from the "flat" register file that gcc uses,
2973 to the stack-like registers the 387 uses. */
2975 static void
2976 convert_regs (FILE *file)
2978 int inserted;
2979 basic_block b;
2980 edge e;
2981 edge_iterator ei;
2983 /* Initialize uninitialized registers on function entry. */
2984 inserted = convert_regs_entry ();
2986 /* Construct the desired stack for function exit. */
2987 convert_regs_exit ();
2988 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
2990 /* ??? Future: process inner loops first, and give them arbitrary
2991 initial stacks which emit_swap_insn can modify. This ought to
2992 prevent double fxch that often appears at the head of a loop. */
2994 /* Process all blocks reachable from all entry points. */
2995 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2996 convert_regs_2 (file, e->dest);
2998 /* ??? Process all unreachable blocks. Though there's no excuse
2999 for keeping these even when not optimizing. */
3000 FOR_EACH_BB (b)
3002 block_info bi = BLOCK_INFO (b);
3004 if (! bi->done)
3005 convert_regs_2 (file, b);
3008 inserted |= compensate_edges (file);
3010 clear_aux_for_blocks ();
3012 fixup_abnormal_edges ();
3013 if (inserted)
3014 commit_edge_insertions ();
3016 if (file)
3017 fputc ('\n', file);
3020 /* Convert register usage from "flat" register file usage to a "stack
3021 register file. FILE is the dump file, if used.
3023 Construct a CFG and run life analysis. Then convert each insn one
3024 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3025 code duplication created when the converter inserts pop insns on
3026 the edges. */
3028 bool
3029 reg_to_stack (FILE *file)
3031 basic_block bb;
3032 int i;
3033 int max_uid;
3035 /* Clean up previous run. */
3036 stack_regs_mentioned_data = 0;
3038 /* See if there is something to do. Flow analysis is quite
3039 expensive so we might save some compilation time. */
3040 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3041 if (regs_ever_live[i])
3042 break;
3043 if (i > LAST_STACK_REG)
3044 return false;
3046 /* Ok, floating point instructions exist. If not optimizing,
3047 build the CFG and run life analysis.
3048 Also need to rebuild life when superblock scheduling is done
3049 as it don't update liveness yet. */
3050 if (!optimize
3051 || (flag_sched2_use_superblocks
3052 && flag_schedule_insns_after_reload))
3054 count_or_remove_death_notes (NULL, 1);
3055 life_analysis (file, PROP_DEATH_NOTES);
3057 mark_dfs_back_edges ();
3059 /* Set up block info for each basic block. */
3060 alloc_aux_for_blocks (sizeof (struct block_info_def));
3061 FOR_EACH_BB (bb)
3063 block_info bi = BLOCK_INFO (bb);
3064 edge_iterator ei;
3065 edge e;
3066 int reg;
3068 FOR_EACH_EDGE (e, ei, bb->preds)
3069 if (!(e->flags & EDGE_DFS_BACK)
3070 && e->src != ENTRY_BLOCK_PTR)
3071 bi->predecessors++;
3073 /* Set current register status at last instruction `uninitialized'. */
3074 bi->stack_in.top = -2;
3076 /* Copy live_at_end and live_at_start into temporaries. */
3077 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3079 if (REGNO_REG_SET_P (bb->global_live_at_end, reg))
3080 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3081 if (REGNO_REG_SET_P (bb->global_live_at_start, reg))
3082 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3086 /* Create the replacement registers up front. */
3087 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3089 enum machine_mode mode;
3090 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3091 mode != VOIDmode;
3092 mode = GET_MODE_WIDER_MODE (mode))
3093 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3094 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3095 mode != VOIDmode;
3096 mode = GET_MODE_WIDER_MODE (mode))
3097 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3100 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3102 /* A QNaN for initializing uninitialized variables.
3104 ??? We can't load from constant memory in PIC mode, because
3105 we're inserting these instructions before the prologue and
3106 the PIC register hasn't been set up. In that case, fall back
3107 on zero, which we can get from `ldz'. */
3109 if (flag_pic)
3110 not_a_num = CONST0_RTX (SFmode);
3111 else
3113 not_a_num = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
3114 not_a_num = force_const_mem (SFmode, not_a_num);
3117 /* Allocate a cache for stack_regs_mentioned. */
3118 max_uid = get_max_uid ();
3119 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
3120 "stack_regs_mentioned cache");
3122 convert_regs (file);
3124 free_aux_for_blocks ();
3125 return true;
3127 #endif /* STACK_REGS */
3129 #include "gt-reg-stack.h"