re PR middle-end/55027 (simplify vector multiplication by 1)
[official-gcc.git] / gcc / recog.c
blob466ac6c3e2ac7164cad847e0daefc59d42d2e7b0
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
32 #include "recog.h"
33 #include "regs.h"
34 #include "addresses.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "target.h"
41 #include "tree-pass.h"
42 #include "df.h"
44 #ifndef STACK_PUSH_CODE
45 #ifdef STACK_GROWS_DOWNWARD
46 #define STACK_PUSH_CODE PRE_DEC
47 #else
48 #define STACK_PUSH_CODE PRE_INC
49 #endif
50 #endif
52 #ifndef STACK_POP_CODE
53 #ifdef STACK_GROWS_DOWNWARD
54 #define STACK_POP_CODE POST_INC
55 #else
56 #define STACK_POP_CODE POST_DEC
57 #endif
58 #endif
60 #ifndef HAVE_ATTR_enabled
61 static inline bool
62 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED)
64 return true;
66 #endif
68 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
69 static void validate_replace_src_1 (rtx *, void *);
70 static rtx split_insn (rtx);
72 /* Nonzero means allow operands to be volatile.
73 This should be 0 if you are generating rtl, such as if you are calling
74 the functions in optabs.c and expmed.c (most of the time).
75 This should be 1 if all valid insns need to be recognized,
76 such as in reginfo.c and final.c and reload.c.
78 init_recog and init_recog_no_volatile are responsible for setting this. */
80 int volatile_ok;
82 struct recog_data recog_data;
84 /* Contains a vector of operand_alternative structures for every operand.
85 Set up by preprocess_constraints. */
86 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
88 /* On return from `constrain_operands', indicate which alternative
89 was satisfied. */
91 int which_alternative;
93 /* Nonzero after end of reload pass.
94 Set to 1 or 0 by toplev.c.
95 Controls the significance of (SUBREG (MEM)). */
97 int reload_completed;
99 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
100 int epilogue_completed;
102 /* Initialize data used by the function `recog'.
103 This must be called once in the compilation of a function
104 before any insn recognition may be done in the function. */
106 void
107 init_recog_no_volatile (void)
109 volatile_ok = 0;
112 void
113 init_recog (void)
115 volatile_ok = 1;
119 /* Return true if labels in asm operands BODY are LABEL_REFs. */
121 static bool
122 asm_labels_ok (rtx body)
124 rtx asmop;
125 int i;
127 asmop = extract_asm_operands (body);
128 if (asmop == NULL_RTX)
129 return true;
131 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
132 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
133 return false;
135 return true;
138 /* Check that X is an insn-body for an `asm' with operands
139 and that the operands mentioned in it are legitimate. */
142 check_asm_operands (rtx x)
144 int noperands;
145 rtx *operands;
146 const char **constraints;
147 int i;
149 if (!asm_labels_ok (x))
150 return 0;
152 /* Post-reload, be more strict with things. */
153 if (reload_completed)
155 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
156 extract_insn (make_insn_raw (x));
157 constrain_operands (1);
158 return which_alternative >= 0;
161 noperands = asm_noperands (x);
162 if (noperands < 0)
163 return 0;
164 if (noperands == 0)
165 return 1;
167 operands = XALLOCAVEC (rtx, noperands);
168 constraints = XALLOCAVEC (const char *, noperands);
170 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
172 for (i = 0; i < noperands; i++)
174 const char *c = constraints[i];
175 if (c[0] == '%')
176 c++;
177 if (! asm_operand_ok (operands[i], c, constraints))
178 return 0;
181 return 1;
184 /* Static data for the next two routines. */
186 typedef struct change_t
188 rtx object;
189 int old_code;
190 rtx *loc;
191 rtx old;
192 bool unshare;
193 } change_t;
195 static change_t *changes;
196 static int changes_allocated;
198 static int num_changes = 0;
200 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
201 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
202 the change is simply made.
204 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
205 will be called with the address and mode as parameters. If OBJECT is
206 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
207 the change in place.
209 IN_GROUP is nonzero if this is part of a group of changes that must be
210 performed as a group. In that case, the changes will be stored. The
211 function `apply_change_group' will validate and apply the changes.
213 If IN_GROUP is zero, this is a single change. Try to recognize the insn
214 or validate the memory reference with the change applied. If the result
215 is not valid for the machine, suppress the change and return zero.
216 Otherwise, perform the change and return 1. */
218 static bool
219 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
221 rtx old = *loc;
223 if (old == new_rtx || rtx_equal_p (old, new_rtx))
224 return 1;
226 gcc_assert (in_group != 0 || num_changes == 0);
228 *loc = new_rtx;
230 /* Save the information describing this change. */
231 if (num_changes >= changes_allocated)
233 if (changes_allocated == 0)
234 /* This value allows for repeated substitutions inside complex
235 indexed addresses, or changes in up to 5 insns. */
236 changes_allocated = MAX_RECOG_OPERANDS * 5;
237 else
238 changes_allocated *= 2;
240 changes = XRESIZEVEC (change_t, changes, changes_allocated);
243 changes[num_changes].object = object;
244 changes[num_changes].loc = loc;
245 changes[num_changes].old = old;
246 changes[num_changes].unshare = unshare;
248 if (object && !MEM_P (object))
250 /* Set INSN_CODE to force rerecognition of insn. Save old code in
251 case invalid. */
252 changes[num_changes].old_code = INSN_CODE (object);
253 INSN_CODE (object) = -1;
256 num_changes++;
258 /* If we are making a group of changes, return 1. Otherwise, validate the
259 change group we made. */
261 if (in_group)
262 return 1;
263 else
264 return apply_change_group ();
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
268 UNSHARE to false. */
270 bool
271 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
273 return validate_change_1 (object, loc, new_rtx, in_group, false);
276 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
277 UNSHARE to true. */
279 bool
280 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
282 return validate_change_1 (object, loc, new_rtx, in_group, true);
286 /* Keep X canonicalized if some changes have made it non-canonical; only
287 modifies the operands of X, not (for example) its code. Simplifications
288 are not the job of this routine.
290 Return true if anything was changed. */
291 bool
292 canonicalize_change_group (rtx insn, rtx x)
294 if (COMMUTATIVE_P (x)
295 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
297 /* Oops, the caller has made X no longer canonical.
298 Let's redo the changes in the correct order. */
299 rtx tem = XEXP (x, 0);
300 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
301 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
302 return true;
304 else
305 return false;
309 /* This subroutine of apply_change_group verifies whether the changes to INSN
310 were valid; i.e. whether INSN can still be recognized.
312 If IN_GROUP is true clobbers which have to be added in order to
313 match the instructions will be added to the current change group.
314 Otherwise the changes will take effect immediately. */
317 insn_invalid_p (rtx insn, bool in_group)
319 rtx pat = PATTERN (insn);
320 int num_clobbers = 0;
321 /* If we are before reload and the pattern is a SET, see if we can add
322 clobbers. */
323 int icode = recog (pat, insn,
324 (GET_CODE (pat) == SET
325 && ! reload_completed && ! reload_in_progress)
326 ? &num_clobbers : 0);
327 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
330 /* If this is an asm and the operand aren't legal, then fail. Likewise if
331 this is not an asm and the insn wasn't recognized. */
332 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
333 || (!is_asm && icode < 0))
334 return 1;
336 /* If we have to add CLOBBERs, fail if we have to add ones that reference
337 hard registers since our callers can't know if they are live or not.
338 Otherwise, add them. */
339 if (num_clobbers > 0)
341 rtx newpat;
343 if (added_clobbers_hard_reg_p (icode))
344 return 1;
346 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
347 XVECEXP (newpat, 0, 0) = pat;
348 add_clobbers (newpat, icode);
349 if (in_group)
350 validate_change (insn, &PATTERN (insn), newpat, 1);
351 else
352 PATTERN (insn) = pat = newpat;
355 /* After reload, verify that all constraints are satisfied. */
356 if (reload_completed)
358 extract_insn (insn);
360 if (! constrain_operands (1))
361 return 1;
364 INSN_CODE (insn) = icode;
365 return 0;
368 /* Return number of changes made and not validated yet. */
370 num_changes_pending (void)
372 return num_changes;
375 /* Tentatively apply the changes numbered NUM and up.
376 Return 1 if all changes are valid, zero otherwise. */
379 verify_changes (int num)
381 int i;
382 rtx last_validated = NULL_RTX;
384 /* The changes have been applied and all INSN_CODEs have been reset to force
385 rerecognition.
387 The changes are valid if we aren't given an object, or if we are
388 given a MEM and it still is a valid address, or if this is in insn
389 and it is recognized. In the latter case, if reload has completed,
390 we also require that the operands meet the constraints for
391 the insn. */
393 for (i = num; i < num_changes; i++)
395 rtx object = changes[i].object;
397 /* If there is no object to test or if it is the same as the one we
398 already tested, ignore it. */
399 if (object == 0 || object == last_validated)
400 continue;
402 if (MEM_P (object))
404 if (! memory_address_addr_space_p (GET_MODE (object),
405 XEXP (object, 0),
406 MEM_ADDR_SPACE (object)))
407 break;
409 else if (REG_P (changes[i].old)
410 && asm_noperands (PATTERN (object)) > 0
411 && REG_EXPR (changes[i].old) != NULL_TREE
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (object, true))
423 rtx pat = PATTERN (object);
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
434 rtx newpat;
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
440 int j;
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
469 last_validated = object;
472 return (i == num_changes);
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
479 void
480 confirm_change_group (void)
482 int i;
483 rtx last_object = NULL;
485 for (i = 0; i < num_changes; i++)
487 rtx object = changes[i].object;
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (last_object);
498 last_object = object;
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (last_object);
504 num_changes = 0;
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
512 apply_change_group (void)
514 if (verify_changes (0))
516 confirm_change_group ();
517 return 1;
519 else
521 cancel_changes (0);
522 return 0;
527 /* Return the number of changes so far in the current group. */
530 num_validated_changes (void)
532 return num_changes;
535 /* Retract the changes numbered NUM and up. */
537 void
538 cancel_changes (int num)
540 int i;
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
550 num_changes = num;
553 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
554 rtx. */
556 static void
557 simplify_while_replacing (rtx *loc, rtx to, rtx object,
558 enum machine_mode op0_mode)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx new_rtx;
564 if (SWAPPABLE_OPERANDS_P (x)
565 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
567 validate_unshare_change (object, loc,
568 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
569 : swap_condition (code),
570 GET_MODE (x), XEXP (x, 1),
571 XEXP (x, 0)), 1);
572 x = *loc;
573 code = GET_CODE (x);
576 switch (code)
578 case PLUS:
579 /* If we have a PLUS whose second operand is now a CONST_INT, use
580 simplify_gen_binary to try to simplify it.
581 ??? We may want later to remove this, once simplification is
582 separated from this function. */
583 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
584 validate_change (object, loc,
585 simplify_gen_binary
586 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
587 break;
588 case MINUS:
589 if (CONST_INT_P (XEXP (x, 1))
590 || CONST_DOUBLE_AS_INT_P (XEXP (x, 1)))
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0),
594 simplify_gen_unary (NEG,
595 GET_MODE (x), XEXP (x, 1),
596 GET_MODE (x))), 1);
597 break;
598 case ZERO_EXTEND:
599 case SIGN_EXTEND:
600 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
602 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
603 op0_mode);
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
606 if (!new_rtx)
607 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
608 validate_change (object, loc, new_rtx, 1);
610 break;
611 case SUBREG:
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
614 SUBREG_BYTE (x));
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
618 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
619 if (new_rtx)
620 validate_change (object, loc, new_rtx, 1);
621 break;
622 case ZERO_EXTRACT:
623 case SIGN_EXTRACT:
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
629 if (MEM_P (XEXP (x, 0))
630 && CONST_INT_P (XEXP (x, 1))
631 && CONST_INT_P (XEXP (x, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
633 MEM_ADDR_SPACE (XEXP (x, 0)))
634 && !MEM_VOLATILE_P (XEXP (x, 0)))
636 enum machine_mode wanted_mode = VOIDmode;
637 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
638 int pos = INTVAL (XEXP (x, 2));
640 if (GET_CODE (x) == ZERO_EXTRACT)
642 enum machine_mode new_mode
643 = mode_for_extraction (EP_extzv, 1);
644 if (new_mode != MAX_MACHINE_MODE)
645 wanted_mode = new_mode;
647 else if (GET_CODE (x) == SIGN_EXTRACT)
649 enum machine_mode new_mode
650 = mode_for_extraction (EP_extv, 1);
651 if (new_mode != MAX_MACHINE_MODE)
652 wanted_mode = new_mode;
655 /* If we have a narrower mode, we can do something. */
656 if (wanted_mode != VOIDmode
657 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
659 int offset = pos / BITS_PER_UNIT;
660 rtx newmem;
662 /* If the bytes and bits are counted differently, we
663 must adjust the offset. */
664 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
665 offset =
666 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
667 offset);
669 gcc_assert (GET_MODE_PRECISION (wanted_mode)
670 == GET_MODE_BITSIZE (wanted_mode));
671 pos %= GET_MODE_BITSIZE (wanted_mode);
673 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
675 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
676 validate_change (object, &XEXP (x, 0), newmem, 1);
680 break;
682 default:
683 break;
687 /* Replace every occurrence of FROM in X with TO. Mark each change with
688 validate_change passing OBJECT. */
690 static void
691 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
692 bool simplify)
694 int i, j;
695 const char *fmt;
696 rtx x = *loc;
697 enum rtx_code code;
698 enum machine_mode op0_mode = VOIDmode;
699 int prev_changes = num_changes;
701 if (!x)
702 return;
704 code = GET_CODE (x);
705 fmt = GET_RTX_FORMAT (code);
706 if (fmt[0] == 'e')
707 op0_mode = GET_MODE (XEXP (x, 0));
709 /* X matches FROM if it is the same rtx or they are both referring to the
710 same register in the same mode. Avoid calling rtx_equal_p unless the
711 operands look similar. */
713 if (x == from
714 || (REG_P (x) && REG_P (from)
715 && GET_MODE (x) == GET_MODE (from)
716 && REGNO (x) == REGNO (from))
717 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
718 && rtx_equal_p (x, from)))
720 validate_unshare_change (object, loc, to, 1);
721 return;
724 /* Call ourself recursively to perform the replacements.
725 We must not replace inside already replaced expression, otherwise we
726 get infinite recursion for replacements like (reg X)->(subreg (reg X))
727 done by regmove, so we must special case shared ASM_OPERANDS. */
729 if (GET_CODE (x) == PARALLEL)
731 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
733 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
734 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
736 /* Verify that operands are really shared. */
737 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
738 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
739 (x, 0, j))));
740 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
741 from, to, object, simplify);
743 else
744 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
745 simplify);
748 else
749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
751 if (fmt[i] == 'e')
752 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
753 else if (fmt[i] == 'E')
754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
755 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
756 simplify);
759 /* If we didn't substitute, there is nothing more to do. */
760 if (num_changes == prev_changes)
761 return;
763 /* Allow substituted expression to have different mode. This is used by
764 regmove to change mode of pseudo register. */
765 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
766 op0_mode = GET_MODE (XEXP (x, 0));
768 /* Do changes needed to keep rtx consistent. Don't do any other
769 simplifications, as it is not our job. */
770 if (simplify)
771 simplify_while_replacing (loc, to, object, op0_mode);
774 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
775 with TO. After all changes have been made, validate by seeing
776 if INSN is still valid. */
779 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
781 validate_replace_rtx_1 (loc, from, to, insn, true);
782 return apply_change_group ();
785 /* Try replacing every occurrence of FROM in INSN with TO. After all
786 changes have been made, validate by seeing if INSN is still valid. */
789 validate_replace_rtx (rtx from, rtx to, rtx insn)
791 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
792 return apply_change_group ();
795 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
796 is a part of INSN. After all changes have been made, validate by seeing if
797 INSN is still valid.
798 validate_replace_rtx (from, to, insn) is equivalent to
799 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
802 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
804 validate_replace_rtx_1 (where, from, to, insn, true);
805 return apply_change_group ();
808 /* Same as above, but do not simplify rtx afterwards. */
810 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
811 rtx insn)
813 validate_replace_rtx_1 (where, from, to, insn, false);
814 return apply_change_group ();
818 /* Try replacing every occurrence of FROM in INSN with TO. This also
819 will replace in REG_EQUAL and REG_EQUIV notes. */
821 void
822 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
824 rtx note;
825 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
826 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
827 if (REG_NOTE_KIND (note) == REG_EQUAL
828 || REG_NOTE_KIND (note) == REG_EQUIV)
829 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
832 /* Function called by note_uses to replace used subexpressions. */
833 struct validate_replace_src_data
835 rtx from; /* Old RTX */
836 rtx to; /* New RTX */
837 rtx insn; /* Insn in which substitution is occurring. */
840 static void
841 validate_replace_src_1 (rtx *x, void *data)
843 struct validate_replace_src_data *d
844 = (struct validate_replace_src_data *) data;
846 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
849 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
850 SET_DESTs. */
852 void
853 validate_replace_src_group (rtx from, rtx to, rtx insn)
855 struct validate_replace_src_data d;
857 d.from = from;
858 d.to = to;
859 d.insn = insn;
860 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
863 /* Try simplify INSN.
864 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
865 pattern and return true if something was simplified. */
867 bool
868 validate_simplify_insn (rtx insn)
870 int i;
871 rtx pat = NULL;
872 rtx newpat = NULL;
874 pat = PATTERN (insn);
876 if (GET_CODE (pat) == SET)
878 newpat = simplify_rtx (SET_SRC (pat));
879 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
880 validate_change (insn, &SET_SRC (pat), newpat, 1);
881 newpat = simplify_rtx (SET_DEST (pat));
882 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
883 validate_change (insn, &SET_DEST (pat), newpat, 1);
885 else if (GET_CODE (pat) == PARALLEL)
886 for (i = 0; i < XVECLEN (pat, 0); i++)
888 rtx s = XVECEXP (pat, 0, i);
890 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
892 newpat = simplify_rtx (SET_SRC (s));
893 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
894 validate_change (insn, &SET_SRC (s), newpat, 1);
895 newpat = simplify_rtx (SET_DEST (s));
896 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
897 validate_change (insn, &SET_DEST (s), newpat, 1);
900 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
903 #ifdef HAVE_cc0
904 /* Return 1 if the insn using CC0 set by INSN does not contain
905 any ordered tests applied to the condition codes.
906 EQ and NE tests do not count. */
909 next_insn_tests_no_inequality (rtx insn)
911 rtx next = next_cc0_user (insn);
913 /* If there is no next insn, we have to take the conservative choice. */
914 if (next == 0)
915 return 0;
917 return (INSN_P (next)
918 && ! inequality_comparisons_p (PATTERN (next)));
920 #endif
922 /* Return 1 if OP is a valid general operand for machine mode MODE.
923 This is either a register reference, a memory reference,
924 or a constant. In the case of a memory reference, the address
925 is checked for general validity for the target machine.
927 Register and memory references must have mode MODE in order to be valid,
928 but some constants have no machine mode and are valid for any mode.
930 If MODE is VOIDmode, OP is checked for validity for whatever mode
931 it has.
933 The main use of this function is as a predicate in match_operand
934 expressions in the machine description. */
937 general_operand (rtx op, enum machine_mode mode)
939 enum rtx_code code = GET_CODE (op);
941 if (mode == VOIDmode)
942 mode = GET_MODE (op);
944 /* Don't accept CONST_INT or anything similar
945 if the caller wants something floating. */
946 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
947 && GET_MODE_CLASS (mode) != MODE_INT
948 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
949 return 0;
951 if (CONST_INT_P (op)
952 && mode != VOIDmode
953 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
954 return 0;
956 if (CONSTANT_P (op))
957 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
958 || mode == VOIDmode)
959 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
960 && targetm.legitimate_constant_p (mode == VOIDmode
961 ? GET_MODE (op)
962 : mode, op));
964 /* Except for certain constants with VOIDmode, already checked for,
965 OP's mode must match MODE if MODE specifies a mode. */
967 if (GET_MODE (op) != mode)
968 return 0;
970 if (code == SUBREG)
972 rtx sub = SUBREG_REG (op);
974 #ifdef INSN_SCHEDULING
975 /* On machines that have insn scheduling, we want all memory
976 reference to be explicit, so outlaw paradoxical SUBREGs.
977 However, we must allow them after reload so that they can
978 get cleaned up by cleanup_subreg_operands. */
979 if (!reload_completed && MEM_P (sub)
980 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
981 return 0;
982 #endif
983 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
984 may result in incorrect reference. We should simplify all valid
985 subregs of MEM anyway. But allow this after reload because we
986 might be called from cleanup_subreg_operands.
988 ??? This is a kludge. */
989 if (!reload_completed && SUBREG_BYTE (op) != 0
990 && MEM_P (sub))
991 return 0;
993 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
994 create such rtl, and we must reject it. */
995 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
996 /* LRA can use subreg to store a floating point value in an
997 integer mode. Although the floating point and the
998 integer modes need the same number of hard registers, the
999 size of floating point mode can be less than the integer
1000 mode. */
1001 && ! lra_in_progress
1002 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1003 return 0;
1005 op = sub;
1006 code = GET_CODE (op);
1009 if (code == REG)
1010 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1011 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1013 if (code == MEM)
1015 rtx y = XEXP (op, 0);
1017 if (! volatile_ok && MEM_VOLATILE_P (op))
1018 return 0;
1020 /* Use the mem's mode, since it will be reloaded thus. */
1021 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1022 return 1;
1025 return 0;
1028 /* Return 1 if OP is a valid memory address for a memory reference
1029 of mode MODE.
1031 The main use of this function is as a predicate in match_operand
1032 expressions in the machine description. */
1035 address_operand (rtx op, enum machine_mode mode)
1037 return memory_address_p (mode, op);
1040 /* Return 1 if OP is a register reference of mode MODE.
1041 If MODE is VOIDmode, accept a register in any mode.
1043 The main use of this function is as a predicate in match_operand
1044 expressions in the machine description. */
1047 register_operand (rtx op, enum machine_mode mode)
1049 if (GET_MODE (op) != mode && mode != VOIDmode)
1050 return 0;
1052 if (GET_CODE (op) == SUBREG)
1054 rtx sub = SUBREG_REG (op);
1056 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1057 because it is guaranteed to be reloaded into one.
1058 Just make sure the MEM is valid in itself.
1059 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1060 but currently it does result from (SUBREG (REG)...) where the
1061 reg went on the stack.) */
1062 if (! reload_completed && MEM_P (sub))
1063 return general_operand (op, mode);
1065 #ifdef CANNOT_CHANGE_MODE_CLASS
1066 if (REG_P (sub)
1067 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1068 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1069 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1070 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT)
1071 return 0;
1072 #endif
1074 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1075 create such rtl, and we must reject it. */
1076 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1077 /* LRA can use subreg to store a floating point value in an
1078 integer mode. Although the floating point and the
1079 integer modes need the same number of hard registers, the
1080 size of floating point mode can be less than the integer
1081 mode. */
1082 && ! lra_in_progress
1083 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1084 return 0;
1086 op = sub;
1089 return (REG_P (op)
1090 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1091 || in_hard_reg_set_p (operand_reg_set,
1092 GET_MODE (op), REGNO (op))));
1095 /* Return 1 for a register in Pmode; ignore the tested mode. */
1098 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1100 return register_operand (op, Pmode);
1103 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1104 or a hard register. */
1107 scratch_operand (rtx op, enum machine_mode mode)
1109 if (GET_MODE (op) != mode && mode != VOIDmode)
1110 return 0;
1112 return (GET_CODE (op) == SCRATCH
1113 || (REG_P (op)
1114 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1117 /* Return 1 if OP is a valid immediate operand for mode MODE.
1119 The main use of this function is as a predicate in match_operand
1120 expressions in the machine description. */
1123 immediate_operand (rtx op, enum machine_mode mode)
1125 /* Don't accept CONST_INT or anything similar
1126 if the caller wants something floating. */
1127 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1128 && GET_MODE_CLASS (mode) != MODE_INT
1129 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1130 return 0;
1132 if (CONST_INT_P (op)
1133 && mode != VOIDmode
1134 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1135 return 0;
1137 return (CONSTANT_P (op)
1138 && (GET_MODE (op) == mode || mode == VOIDmode
1139 || GET_MODE (op) == VOIDmode)
1140 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1141 && targetm.legitimate_constant_p (mode == VOIDmode
1142 ? GET_MODE (op)
1143 : mode, op));
1146 /* Returns 1 if OP is an operand that is a CONST_INT. */
1149 const_int_operand (rtx op, enum machine_mode mode)
1151 if (!CONST_INT_P (op))
1152 return 0;
1154 if (mode != VOIDmode
1155 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1156 return 0;
1158 return 1;
1161 /* Returns 1 if OP is an operand that is a constant integer or constant
1162 floating-point number. */
1165 const_double_operand (rtx op, enum machine_mode mode)
1167 /* Don't accept CONST_INT or anything similar
1168 if the caller wants something floating. */
1169 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1170 && GET_MODE_CLASS (mode) != MODE_INT
1171 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1172 return 0;
1174 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1175 && (mode == VOIDmode || GET_MODE (op) == mode
1176 || GET_MODE (op) == VOIDmode));
1179 /* Return 1 if OP is a general operand that is not an immediate operand. */
1182 nonimmediate_operand (rtx op, enum machine_mode mode)
1184 return (general_operand (op, mode) && ! CONSTANT_P (op));
1187 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1190 nonmemory_operand (rtx op, enum machine_mode mode)
1192 if (CONSTANT_P (op))
1193 return immediate_operand (op, mode);
1195 if (GET_MODE (op) != mode && mode != VOIDmode)
1196 return 0;
1198 if (GET_CODE (op) == SUBREG)
1200 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1201 because it is guaranteed to be reloaded into one.
1202 Just make sure the MEM is valid in itself.
1203 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1204 but currently it does result from (SUBREG (REG)...) where the
1205 reg went on the stack.) */
1206 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1207 return general_operand (op, mode);
1208 op = SUBREG_REG (op);
1211 return (REG_P (op)
1212 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1213 || in_hard_reg_set_p (operand_reg_set,
1214 GET_MODE (op), REGNO (op))));
1217 /* Return 1 if OP is a valid operand that stands for pushing a
1218 value of mode MODE onto the stack.
1220 The main use of this function is as a predicate in match_operand
1221 expressions in the machine description. */
1224 push_operand (rtx op, enum machine_mode mode)
1226 unsigned int rounded_size = GET_MODE_SIZE (mode);
1228 #ifdef PUSH_ROUNDING
1229 rounded_size = PUSH_ROUNDING (rounded_size);
1230 #endif
1232 if (!MEM_P (op))
1233 return 0;
1235 if (mode != VOIDmode && GET_MODE (op) != mode)
1236 return 0;
1238 op = XEXP (op, 0);
1240 if (rounded_size == GET_MODE_SIZE (mode))
1242 if (GET_CODE (op) != STACK_PUSH_CODE)
1243 return 0;
1245 else
1247 if (GET_CODE (op) != PRE_MODIFY
1248 || GET_CODE (XEXP (op, 1)) != PLUS
1249 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1250 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1251 #ifdef STACK_GROWS_DOWNWARD
1252 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1253 #else
1254 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1255 #endif
1257 return 0;
1260 return XEXP (op, 0) == stack_pointer_rtx;
1263 /* Return 1 if OP is a valid operand that stands for popping a
1264 value of mode MODE off the stack.
1266 The main use of this function is as a predicate in match_operand
1267 expressions in the machine description. */
1270 pop_operand (rtx op, enum machine_mode mode)
1272 if (!MEM_P (op))
1273 return 0;
1275 if (mode != VOIDmode && GET_MODE (op) != mode)
1276 return 0;
1278 op = XEXP (op, 0);
1280 if (GET_CODE (op) != STACK_POP_CODE)
1281 return 0;
1283 return XEXP (op, 0) == stack_pointer_rtx;
1286 /* Return 1 if ADDR is a valid memory address
1287 for mode MODE in address space AS. */
1290 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1291 rtx addr, addr_space_t as)
1293 #ifdef GO_IF_LEGITIMATE_ADDRESS
1294 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1295 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1296 return 0;
1298 win:
1299 return 1;
1300 #else
1301 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1302 #endif
1305 /* Return 1 if OP is a valid memory reference with mode MODE,
1306 including a valid address.
1308 The main use of this function is as a predicate in match_operand
1309 expressions in the machine description. */
1312 memory_operand (rtx op, enum machine_mode mode)
1314 rtx inner;
1316 if (! reload_completed)
1317 /* Note that no SUBREG is a memory operand before end of reload pass,
1318 because (SUBREG (MEM...)) forces reloading into a register. */
1319 return MEM_P (op) && general_operand (op, mode);
1321 if (mode != VOIDmode && GET_MODE (op) != mode)
1322 return 0;
1324 inner = op;
1325 if (GET_CODE (inner) == SUBREG)
1326 inner = SUBREG_REG (inner);
1328 return (MEM_P (inner) && general_operand (op, mode));
1331 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1332 that is, a memory reference whose address is a general_operand. */
1335 indirect_operand (rtx op, enum machine_mode mode)
1337 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1338 if (! reload_completed
1339 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1341 int offset = SUBREG_BYTE (op);
1342 rtx inner = SUBREG_REG (op);
1344 if (mode != VOIDmode && GET_MODE (op) != mode)
1345 return 0;
1347 /* The only way that we can have a general_operand as the resulting
1348 address is if OFFSET is zero and the address already is an operand
1349 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1350 operand. */
1352 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1353 || (GET_CODE (XEXP (inner, 0)) == PLUS
1354 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1355 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1356 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1359 return (MEM_P (op)
1360 && memory_operand (op, mode)
1361 && general_operand (XEXP (op, 0), Pmode));
1364 /* Return 1 if this is an ordered comparison operator (not including
1365 ORDERED and UNORDERED). */
1368 ordered_comparison_operator (rtx op, enum machine_mode mode)
1370 if (mode != VOIDmode && GET_MODE (op) != mode)
1371 return false;
1372 switch (GET_CODE (op))
1374 case EQ:
1375 case NE:
1376 case LT:
1377 case LTU:
1378 case LE:
1379 case LEU:
1380 case GT:
1381 case GTU:
1382 case GE:
1383 case GEU:
1384 return true;
1385 default:
1386 return false;
1390 /* Return 1 if this is a comparison operator. This allows the use of
1391 MATCH_OPERATOR to recognize all the branch insns. */
1394 comparison_operator (rtx op, enum machine_mode mode)
1396 return ((mode == VOIDmode || GET_MODE (op) == mode)
1397 && COMPARISON_P (op));
1400 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1403 extract_asm_operands (rtx body)
1405 rtx tmp;
1406 switch (GET_CODE (body))
1408 case ASM_OPERANDS:
1409 return body;
1411 case SET:
1412 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1413 tmp = SET_SRC (body);
1414 if (GET_CODE (tmp) == ASM_OPERANDS)
1415 return tmp;
1416 break;
1418 case PARALLEL:
1419 tmp = XVECEXP (body, 0, 0);
1420 if (GET_CODE (tmp) == ASM_OPERANDS)
1421 return tmp;
1422 if (GET_CODE (tmp) == SET)
1424 tmp = SET_SRC (tmp);
1425 if (GET_CODE (tmp) == ASM_OPERANDS)
1426 return tmp;
1428 break;
1430 default:
1431 break;
1433 return NULL;
1436 /* If BODY is an insn body that uses ASM_OPERANDS,
1437 return the number of operands (both input and output) in the insn.
1438 Otherwise return -1. */
1441 asm_noperands (const_rtx body)
1443 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1444 int n_sets = 0;
1446 if (asm_op == NULL)
1447 return -1;
1449 if (GET_CODE (body) == SET)
1450 n_sets = 1;
1451 else if (GET_CODE (body) == PARALLEL)
1453 int i;
1454 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1456 /* Multiple output operands, or 1 output plus some clobbers:
1457 body is
1458 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1459 /* Count backwards through CLOBBERs to determine number of SETs. */
1460 for (i = XVECLEN (body, 0); i > 0; i--)
1462 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1463 break;
1464 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1465 return -1;
1468 /* N_SETS is now number of output operands. */
1469 n_sets = i;
1471 /* Verify that all the SETs we have
1472 came from a single original asm_operands insn
1473 (so that invalid combinations are blocked). */
1474 for (i = 0; i < n_sets; i++)
1476 rtx elt = XVECEXP (body, 0, i);
1477 if (GET_CODE (elt) != SET)
1478 return -1;
1479 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1480 return -1;
1481 /* If these ASM_OPERANDS rtx's came from different original insns
1482 then they aren't allowed together. */
1483 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1484 != ASM_OPERANDS_INPUT_VEC (asm_op))
1485 return -1;
1488 else
1490 /* 0 outputs, but some clobbers:
1491 body is [(asm_operands ...) (clobber (reg ...))...]. */
1492 /* Make sure all the other parallel things really are clobbers. */
1493 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1494 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1495 return -1;
1499 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1500 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1503 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1504 copy its operands (both input and output) into the vector OPERANDS,
1505 the locations of the operands within the insn into the vector OPERAND_LOCS,
1506 and the constraints for the operands into CONSTRAINTS.
1507 Write the modes of the operands into MODES.
1508 Return the assembler-template.
1510 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1511 we don't store that info. */
1513 const char *
1514 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1515 const char **constraints, enum machine_mode *modes,
1516 location_t *loc)
1518 int nbase = 0, n, i;
1519 rtx asmop;
1521 switch (GET_CODE (body))
1523 case ASM_OPERANDS:
1524 /* Zero output asm: BODY is (asm_operands ...). */
1525 asmop = body;
1526 break;
1528 case SET:
1529 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1530 asmop = SET_SRC (body);
1532 /* The output is in the SET.
1533 Its constraint is in the ASM_OPERANDS itself. */
1534 if (operands)
1535 operands[0] = SET_DEST (body);
1536 if (operand_locs)
1537 operand_locs[0] = &SET_DEST (body);
1538 if (constraints)
1539 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1540 if (modes)
1541 modes[0] = GET_MODE (SET_DEST (body));
1542 nbase = 1;
1543 break;
1545 case PARALLEL:
1547 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1549 asmop = XVECEXP (body, 0, 0);
1550 if (GET_CODE (asmop) == SET)
1552 asmop = SET_SRC (asmop);
1554 /* At least one output, plus some CLOBBERs. The outputs are in
1555 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1556 for (i = 0; i < nparallel; i++)
1558 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1559 break; /* Past last SET */
1560 if (operands)
1561 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1562 if (operand_locs)
1563 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1564 if (constraints)
1565 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1566 if (modes)
1567 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1569 nbase = i;
1571 break;
1574 default:
1575 gcc_unreachable ();
1578 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1579 for (i = 0; i < n; i++)
1581 if (operand_locs)
1582 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1583 if (operands)
1584 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1585 if (constraints)
1586 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1587 if (modes)
1588 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1590 nbase += n;
1592 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1593 for (i = 0; i < n; i++)
1595 if (operand_locs)
1596 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1597 if (operands)
1598 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1599 if (constraints)
1600 constraints[nbase + i] = "";
1601 if (modes)
1602 modes[nbase + i] = Pmode;
1605 if (loc)
1606 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1608 return ASM_OPERANDS_TEMPLATE (asmop);
1611 /* Check if an asm_operand matches its constraints.
1612 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1615 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1617 int result = 0;
1618 #ifdef AUTO_INC_DEC
1619 bool incdec_ok = false;
1620 #endif
1622 /* Use constrain_operands after reload. */
1623 gcc_assert (!reload_completed);
1625 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1626 many alternatives as required to match the other operands. */
1627 if (*constraint == '\0')
1628 result = 1;
1630 while (*constraint)
1632 char c = *constraint;
1633 int len;
1634 switch (c)
1636 case ',':
1637 constraint++;
1638 continue;
1639 case '=':
1640 case '+':
1641 case '*':
1642 case '%':
1643 case '!':
1644 case '#':
1645 case '&':
1646 case '?':
1647 break;
1649 case '0': case '1': case '2': case '3': case '4':
1650 case '5': case '6': case '7': case '8': case '9':
1651 /* If caller provided constraints pointer, look up
1652 the maching constraint. Otherwise, our caller should have
1653 given us the proper matching constraint, but we can't
1654 actually fail the check if they didn't. Indicate that
1655 results are inconclusive. */
1656 if (constraints)
1658 char *end;
1659 unsigned long match;
1661 match = strtoul (constraint, &end, 10);
1662 if (!result)
1663 result = asm_operand_ok (op, constraints[match], NULL);
1664 constraint = (const char *) end;
1666 else
1669 constraint++;
1670 while (ISDIGIT (*constraint));
1671 if (! result)
1672 result = -1;
1674 continue;
1676 case 'p':
1677 if (address_operand (op, VOIDmode))
1678 result = 1;
1679 break;
1681 case TARGET_MEM_CONSTRAINT:
1682 case 'V': /* non-offsettable */
1683 if (memory_operand (op, VOIDmode))
1684 result = 1;
1685 break;
1687 case 'o': /* offsettable */
1688 if (offsettable_nonstrict_memref_p (op))
1689 result = 1;
1690 break;
1692 case '<':
1693 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1694 excepting those that expand_call created. Further, on some
1695 machines which do not have generalized auto inc/dec, an inc/dec
1696 is not a memory_operand.
1698 Match any memory and hope things are resolved after reload. */
1700 if (MEM_P (op)
1701 && (1
1702 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1703 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1704 result = 1;
1705 #ifdef AUTO_INC_DEC
1706 incdec_ok = true;
1707 #endif
1708 break;
1710 case '>':
1711 if (MEM_P (op)
1712 && (1
1713 || GET_CODE (XEXP (op, 0)) == PRE_INC
1714 || GET_CODE (XEXP (op, 0)) == POST_INC))
1715 result = 1;
1716 #ifdef AUTO_INC_DEC
1717 incdec_ok = true;
1718 #endif
1719 break;
1721 case 'E':
1722 case 'F':
1723 if (CONST_DOUBLE_AS_FLOAT_P (op)
1724 || (GET_CODE (op) == CONST_VECTOR
1725 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1726 result = 1;
1727 break;
1729 case 'G':
1730 if (CONST_DOUBLE_AS_FLOAT_P (op)
1731 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1732 result = 1;
1733 break;
1734 case 'H':
1735 if (CONST_DOUBLE_AS_FLOAT_P (op)
1736 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1737 result = 1;
1738 break;
1740 case 's':
1741 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
1742 break;
1743 /* Fall through. */
1745 case 'i':
1746 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1747 result = 1;
1748 break;
1750 case 'n':
1751 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
1752 result = 1;
1753 break;
1755 case 'I':
1756 if (CONST_INT_P (op)
1757 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1758 result = 1;
1759 break;
1760 case 'J':
1761 if (CONST_INT_P (op)
1762 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1763 result = 1;
1764 break;
1765 case 'K':
1766 if (CONST_INT_P (op)
1767 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1768 result = 1;
1769 break;
1770 case 'L':
1771 if (CONST_INT_P (op)
1772 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1773 result = 1;
1774 break;
1775 case 'M':
1776 if (CONST_INT_P (op)
1777 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1778 result = 1;
1779 break;
1780 case 'N':
1781 if (CONST_INT_P (op)
1782 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1783 result = 1;
1784 break;
1785 case 'O':
1786 if (CONST_INT_P (op)
1787 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1788 result = 1;
1789 break;
1790 case 'P':
1791 if (CONST_INT_P (op)
1792 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1793 result = 1;
1794 break;
1796 case 'X':
1797 result = 1;
1798 break;
1800 case 'g':
1801 if (general_operand (op, VOIDmode))
1802 result = 1;
1803 break;
1805 default:
1806 /* For all other letters, we first check for a register class,
1807 otherwise it is an EXTRA_CONSTRAINT. */
1808 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1810 case 'r':
1811 if (GET_MODE (op) == BLKmode)
1812 break;
1813 if (register_operand (op, VOIDmode))
1814 result = 1;
1816 #ifdef EXTRA_CONSTRAINT_STR
1817 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1818 /* Every memory operand can be reloaded to fit. */
1819 result = result || memory_operand (op, VOIDmode);
1820 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1821 /* Every address operand can be reloaded to fit. */
1822 result = result || address_operand (op, VOIDmode);
1823 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1824 result = 1;
1825 #endif
1826 break;
1828 len = CONSTRAINT_LEN (c, constraint);
1830 constraint++;
1831 while (--len && *constraint);
1832 if (len)
1833 return 0;
1836 #ifdef AUTO_INC_DEC
1837 /* For operands without < or > constraints reject side-effects. */
1838 if (!incdec_ok && result && MEM_P (op))
1839 switch (GET_CODE (XEXP (op, 0)))
1841 case PRE_INC:
1842 case POST_INC:
1843 case PRE_DEC:
1844 case POST_DEC:
1845 case PRE_MODIFY:
1846 case POST_MODIFY:
1847 return 0;
1848 default:
1849 break;
1851 #endif
1853 return result;
1856 /* Given an rtx *P, if it is a sum containing an integer constant term,
1857 return the location (type rtx *) of the pointer to that constant term.
1858 Otherwise, return a null pointer. */
1860 rtx *
1861 find_constant_term_loc (rtx *p)
1863 rtx *tem;
1864 enum rtx_code code = GET_CODE (*p);
1866 /* If *P IS such a constant term, P is its location. */
1868 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1869 || code == CONST)
1870 return p;
1872 /* Otherwise, if not a sum, it has no constant term. */
1874 if (GET_CODE (*p) != PLUS)
1875 return 0;
1877 /* If one of the summands is constant, return its location. */
1879 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1880 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1881 return p;
1883 /* Otherwise, check each summand for containing a constant term. */
1885 if (XEXP (*p, 0) != 0)
1887 tem = find_constant_term_loc (&XEXP (*p, 0));
1888 if (tem != 0)
1889 return tem;
1892 if (XEXP (*p, 1) != 0)
1894 tem = find_constant_term_loc (&XEXP (*p, 1));
1895 if (tem != 0)
1896 return tem;
1899 return 0;
1902 /* Return 1 if OP is a memory reference
1903 whose address contains no side effects
1904 and remains valid after the addition
1905 of a positive integer less than the
1906 size of the object being referenced.
1908 We assume that the original address is valid and do not check it.
1910 This uses strict_memory_address_p as a subroutine, so
1911 don't use it before reload. */
1914 offsettable_memref_p (rtx op)
1916 return ((MEM_P (op))
1917 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1918 MEM_ADDR_SPACE (op)));
1921 /* Similar, but don't require a strictly valid mem ref:
1922 consider pseudo-regs valid as index or base regs. */
1925 offsettable_nonstrict_memref_p (rtx op)
1927 return ((MEM_P (op))
1928 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1929 MEM_ADDR_SPACE (op)));
1932 /* Return 1 if Y is a memory address which contains no side effects
1933 and would remain valid for address space AS after the addition of
1934 a positive integer less than the size of that mode.
1936 We assume that the original address is valid and do not check it.
1937 We do check that it is valid for narrower modes.
1939 If STRICTP is nonzero, we require a strictly valid address,
1940 for the sake of use in reload.c. */
1943 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1944 addr_space_t as)
1946 enum rtx_code ycode = GET_CODE (y);
1947 rtx z;
1948 rtx y1 = y;
1949 rtx *y2;
1950 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1951 (strictp ? strict_memory_address_addr_space_p
1952 : memory_address_addr_space_p);
1953 unsigned int mode_sz = GET_MODE_SIZE (mode);
1955 if (CONSTANT_ADDRESS_P (y))
1956 return 1;
1958 /* Adjusting an offsettable address involves changing to a narrower mode.
1959 Make sure that's OK. */
1961 if (mode_dependent_address_p (y, as))
1962 return 0;
1964 /* ??? How much offset does an offsettable BLKmode reference need?
1965 Clearly that depends on the situation in which it's being used.
1966 However, the current situation in which we test 0xffffffff is
1967 less than ideal. Caveat user. */
1968 if (mode_sz == 0)
1969 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1971 /* If the expression contains a constant term,
1972 see if it remains valid when max possible offset is added. */
1974 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1976 int good;
1978 y1 = *y2;
1979 *y2 = plus_constant (GET_MODE (y), *y2, mode_sz - 1);
1980 /* Use QImode because an odd displacement may be automatically invalid
1981 for any wider mode. But it should be valid for a single byte. */
1982 good = (*addressp) (QImode, y, as);
1984 /* In any case, restore old contents of memory. */
1985 *y2 = y1;
1986 return good;
1989 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1990 return 0;
1992 /* The offset added here is chosen as the maximum offset that
1993 any instruction could need to add when operating on something
1994 of the specified mode. We assume that if Y and Y+c are
1995 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1996 go inside a LO_SUM here, so we do so as well. */
1997 if (GET_CODE (y) == LO_SUM
1998 && mode != BLKmode
1999 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2000 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
2001 plus_constant (GET_MODE (y), XEXP (y, 1),
2002 mode_sz - 1));
2003 else
2004 z = plus_constant (GET_MODE (y), y, mode_sz - 1);
2006 /* Use QImode because an odd displacement may be automatically invalid
2007 for any wider mode. But it should be valid for a single byte. */
2008 return (*addressp) (QImode, z, as);
2011 /* Return 1 if ADDR is an address-expression whose effect depends
2012 on the mode of the memory reference it is used in.
2014 ADDRSPACE is the address space associated with the address.
2016 Autoincrement addressing is a typical example of mode-dependence
2017 because the amount of the increment depends on the mode. */
2019 bool
2020 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2022 /* Auto-increment addressing with anything other than post_modify
2023 or pre_modify always introduces a mode dependency. Catch such
2024 cases now instead of deferring to the target. */
2025 if (GET_CODE (addr) == PRE_INC
2026 || GET_CODE (addr) == POST_INC
2027 || GET_CODE (addr) == PRE_DEC
2028 || GET_CODE (addr) == POST_DEC)
2029 return true;
2031 return targetm.mode_dependent_address_p (addr, addrspace);
2034 /* Like extract_insn, but save insn extracted and don't extract again, when
2035 called again for the same insn expecting that recog_data still contain the
2036 valid information. This is used primary by gen_attr infrastructure that
2037 often does extract insn again and again. */
2038 void
2039 extract_insn_cached (rtx insn)
2041 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2042 return;
2043 extract_insn (insn);
2044 recog_data.insn = insn;
2047 /* Do cached extract_insn, constrain_operands and complain about failures.
2048 Used by insn_attrtab. */
2049 void
2050 extract_constrain_insn_cached (rtx insn)
2052 extract_insn_cached (insn);
2053 if (which_alternative == -1
2054 && !constrain_operands (reload_completed))
2055 fatal_insn_not_found (insn);
2058 /* Do cached constrain_operands and complain about failures. */
2060 constrain_operands_cached (int strict)
2062 if (which_alternative == -1)
2063 return constrain_operands (strict);
2064 else
2065 return 1;
2068 /* Analyze INSN and fill in recog_data. */
2070 void
2071 extract_insn (rtx insn)
2073 int i;
2074 int icode;
2075 int noperands;
2076 rtx body = PATTERN (insn);
2078 recog_data.n_operands = 0;
2079 recog_data.n_alternatives = 0;
2080 recog_data.n_dups = 0;
2081 recog_data.is_asm = false;
2083 switch (GET_CODE (body))
2085 case USE:
2086 case CLOBBER:
2087 case ASM_INPUT:
2088 case ADDR_VEC:
2089 case ADDR_DIFF_VEC:
2090 case VAR_LOCATION:
2091 return;
2093 case SET:
2094 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2095 goto asm_insn;
2096 else
2097 goto normal_insn;
2098 case PARALLEL:
2099 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2100 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2101 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2102 goto asm_insn;
2103 else
2104 goto normal_insn;
2105 case ASM_OPERANDS:
2106 asm_insn:
2107 recog_data.n_operands = noperands = asm_noperands (body);
2108 if (noperands >= 0)
2110 /* This insn is an `asm' with operands. */
2112 /* expand_asm_operands makes sure there aren't too many operands. */
2113 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2115 /* Now get the operand values and constraints out of the insn. */
2116 decode_asm_operands (body, recog_data.operand,
2117 recog_data.operand_loc,
2118 recog_data.constraints,
2119 recog_data.operand_mode, NULL);
2120 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2121 if (noperands > 0)
2123 const char *p = recog_data.constraints[0];
2124 recog_data.n_alternatives = 1;
2125 while (*p)
2126 recog_data.n_alternatives += (*p++ == ',');
2128 recog_data.is_asm = true;
2129 break;
2131 fatal_insn_not_found (insn);
2133 default:
2134 normal_insn:
2135 /* Ordinary insn: recognize it, get the operands via insn_extract
2136 and get the constraints. */
2138 icode = recog_memoized (insn);
2139 if (icode < 0)
2140 fatal_insn_not_found (insn);
2142 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2143 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2144 recog_data.n_dups = insn_data[icode].n_dups;
2146 insn_extract (insn);
2148 for (i = 0; i < noperands; i++)
2150 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2151 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2152 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2153 /* VOIDmode match_operands gets mode from their real operand. */
2154 if (recog_data.operand_mode[i] == VOIDmode)
2155 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2158 for (i = 0; i < noperands; i++)
2159 recog_data.operand_type[i]
2160 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2161 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2162 : OP_IN);
2164 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2166 if (INSN_CODE (insn) < 0)
2167 for (i = 0; i < recog_data.n_alternatives; i++)
2168 recog_data.alternative_enabled_p[i] = true;
2169 else
2171 recog_data.insn = insn;
2172 for (i = 0; i < recog_data.n_alternatives; i++)
2174 which_alternative = i;
2175 recog_data.alternative_enabled_p[i] = get_attr_enabled (insn);
2179 recog_data.insn = NULL;
2180 which_alternative = -1;
2183 /* After calling extract_insn, you can use this function to extract some
2184 information from the constraint strings into a more usable form.
2185 The collected data is stored in recog_op_alt. */
2186 void
2187 preprocess_constraints (void)
2189 int i;
2191 for (i = 0; i < recog_data.n_operands; i++)
2192 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2193 * sizeof (struct operand_alternative)));
2195 for (i = 0; i < recog_data.n_operands; i++)
2197 int j;
2198 struct operand_alternative *op_alt;
2199 const char *p = recog_data.constraints[i];
2201 op_alt = recog_op_alt[i];
2203 for (j = 0; j < recog_data.n_alternatives; j++)
2205 op_alt[j].cl = NO_REGS;
2206 op_alt[j].constraint = p;
2207 op_alt[j].matches = -1;
2208 op_alt[j].matched = -1;
2210 if (!recog_data.alternative_enabled_p[j])
2212 p = skip_alternative (p);
2213 continue;
2216 if (*p == '\0' || *p == ',')
2218 op_alt[j].anything_ok = 1;
2219 continue;
2222 for (;;)
2224 char c = *p;
2225 if (c == '#')
2227 c = *++p;
2228 while (c != ',' && c != '\0');
2229 if (c == ',' || c == '\0')
2231 p++;
2232 break;
2235 switch (c)
2237 case '=': case '+': case '*': case '%':
2238 case 'E': case 'F': case 'G': case 'H':
2239 case 's': case 'i': case 'n':
2240 case 'I': case 'J': case 'K': case 'L':
2241 case 'M': case 'N': case 'O': case 'P':
2242 /* These don't say anything we care about. */
2243 break;
2245 case '?':
2246 op_alt[j].reject += 6;
2247 break;
2248 case '!':
2249 op_alt[j].reject += 600;
2250 break;
2251 case '&':
2252 op_alt[j].earlyclobber = 1;
2253 break;
2255 case '0': case '1': case '2': case '3': case '4':
2256 case '5': case '6': case '7': case '8': case '9':
2258 char *end;
2259 op_alt[j].matches = strtoul (p, &end, 10);
2260 recog_op_alt[op_alt[j].matches][j].matched = i;
2261 p = end;
2263 continue;
2265 case TARGET_MEM_CONSTRAINT:
2266 op_alt[j].memory_ok = 1;
2267 break;
2268 case '<':
2269 op_alt[j].decmem_ok = 1;
2270 break;
2271 case '>':
2272 op_alt[j].incmem_ok = 1;
2273 break;
2274 case 'V':
2275 op_alt[j].nonoffmem_ok = 1;
2276 break;
2277 case 'o':
2278 op_alt[j].offmem_ok = 1;
2279 break;
2280 case 'X':
2281 op_alt[j].anything_ok = 1;
2282 break;
2284 case 'p':
2285 op_alt[j].is_address = 1;
2286 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2287 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2288 ADDRESS, SCRATCH)];
2289 break;
2291 case 'g':
2292 case 'r':
2293 op_alt[j].cl =
2294 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2295 break;
2297 default:
2298 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2300 op_alt[j].memory_ok = 1;
2301 break;
2303 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2305 op_alt[j].is_address = 1;
2306 op_alt[j].cl
2307 = (reg_class_subunion
2308 [(int) op_alt[j].cl]
2309 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2310 ADDRESS, SCRATCH)]);
2311 break;
2314 op_alt[j].cl
2315 = (reg_class_subunion
2316 [(int) op_alt[j].cl]
2317 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2318 break;
2320 p += CONSTRAINT_LEN (c, p);
2326 /* Check the operands of an insn against the insn's operand constraints
2327 and return 1 if they are valid.
2328 The information about the insn's operands, constraints, operand modes
2329 etc. is obtained from the global variables set up by extract_insn.
2331 WHICH_ALTERNATIVE is set to a number which indicates which
2332 alternative of constraints was matched: 0 for the first alternative,
2333 1 for the next, etc.
2335 In addition, when two operands are required to match
2336 and it happens that the output operand is (reg) while the
2337 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2338 make the output operand look like the input.
2339 This is because the output operand is the one the template will print.
2341 This is used in final, just before printing the assembler code and by
2342 the routines that determine an insn's attribute.
2344 If STRICT is a positive nonzero value, it means that we have been
2345 called after reload has been completed. In that case, we must
2346 do all checks strictly. If it is zero, it means that we have been called
2347 before reload has completed. In that case, we first try to see if we can
2348 find an alternative that matches strictly. If not, we try again, this
2349 time assuming that reload will fix up the insn. This provides a "best
2350 guess" for the alternative and is used to compute attributes of insns prior
2351 to reload. A negative value of STRICT is used for this internal call. */
2353 struct funny_match
2355 int this_op, other;
2359 constrain_operands (int strict)
2361 const char *constraints[MAX_RECOG_OPERANDS];
2362 int matching_operands[MAX_RECOG_OPERANDS];
2363 int earlyclobber[MAX_RECOG_OPERANDS];
2364 int c;
2366 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2367 int funny_match_index;
2369 which_alternative = 0;
2370 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2371 return 1;
2373 for (c = 0; c < recog_data.n_operands; c++)
2375 constraints[c] = recog_data.constraints[c];
2376 matching_operands[c] = -1;
2381 int seen_earlyclobber_at = -1;
2382 int opno;
2383 int lose = 0;
2384 funny_match_index = 0;
2386 if (!recog_data.alternative_enabled_p[which_alternative])
2388 int i;
2390 for (i = 0; i < recog_data.n_operands; i++)
2391 constraints[i] = skip_alternative (constraints[i]);
2393 which_alternative++;
2394 continue;
2397 for (opno = 0; opno < recog_data.n_operands; opno++)
2399 rtx op = recog_data.operand[opno];
2400 enum machine_mode mode = GET_MODE (op);
2401 const char *p = constraints[opno];
2402 int offset = 0;
2403 int win = 0;
2404 int val;
2405 int len;
2407 earlyclobber[opno] = 0;
2409 /* A unary operator may be accepted by the predicate, but it
2410 is irrelevant for matching constraints. */
2411 if (UNARY_P (op))
2412 op = XEXP (op, 0);
2414 if (GET_CODE (op) == SUBREG)
2416 if (REG_P (SUBREG_REG (op))
2417 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2418 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2419 GET_MODE (SUBREG_REG (op)),
2420 SUBREG_BYTE (op),
2421 GET_MODE (op));
2422 op = SUBREG_REG (op);
2425 /* An empty constraint or empty alternative
2426 allows anything which matched the pattern. */
2427 if (*p == 0 || *p == ',')
2428 win = 1;
2431 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2433 case '\0':
2434 len = 0;
2435 break;
2436 case ',':
2437 c = '\0';
2438 break;
2440 case '?': case '!': case '*': case '%':
2441 case '=': case '+':
2442 break;
2444 case '#':
2445 /* Ignore rest of this alternative as far as
2446 constraint checking is concerned. */
2448 p++;
2449 while (*p && *p != ',');
2450 len = 0;
2451 break;
2453 case '&':
2454 earlyclobber[opno] = 1;
2455 if (seen_earlyclobber_at < 0)
2456 seen_earlyclobber_at = opno;
2457 break;
2459 case '0': case '1': case '2': case '3': case '4':
2460 case '5': case '6': case '7': case '8': case '9':
2462 /* This operand must be the same as a previous one.
2463 This kind of constraint is used for instructions such
2464 as add when they take only two operands.
2466 Note that the lower-numbered operand is passed first.
2468 If we are not testing strictly, assume that this
2469 constraint will be satisfied. */
2471 char *end;
2472 int match;
2474 match = strtoul (p, &end, 10);
2475 p = end;
2477 if (strict < 0)
2478 val = 1;
2479 else
2481 rtx op1 = recog_data.operand[match];
2482 rtx op2 = recog_data.operand[opno];
2484 /* A unary operator may be accepted by the predicate,
2485 but it is irrelevant for matching constraints. */
2486 if (UNARY_P (op1))
2487 op1 = XEXP (op1, 0);
2488 if (UNARY_P (op2))
2489 op2 = XEXP (op2, 0);
2491 val = operands_match_p (op1, op2);
2494 matching_operands[opno] = match;
2495 matching_operands[match] = opno;
2497 if (val != 0)
2498 win = 1;
2500 /* If output is *x and input is *--x, arrange later
2501 to change the output to *--x as well, since the
2502 output op is the one that will be printed. */
2503 if (val == 2 && strict > 0)
2505 funny_match[funny_match_index].this_op = opno;
2506 funny_match[funny_match_index++].other = match;
2509 len = 0;
2510 break;
2512 case 'p':
2513 /* p is used for address_operands. When we are called by
2514 gen_reload, no one will have checked that the address is
2515 strictly valid, i.e., that all pseudos requiring hard regs
2516 have gotten them. */
2517 if (strict <= 0
2518 || (strict_memory_address_p (recog_data.operand_mode[opno],
2519 op)))
2520 win = 1;
2521 break;
2523 /* No need to check general_operand again;
2524 it was done in insn-recog.c. Well, except that reload
2525 doesn't check the validity of its replacements, but
2526 that should only matter when there's a bug. */
2527 case 'g':
2528 /* Anything goes unless it is a REG and really has a hard reg
2529 but the hard reg is not in the class GENERAL_REGS. */
2530 if (REG_P (op))
2532 if (strict < 0
2533 || GENERAL_REGS == ALL_REGS
2534 || (reload_in_progress
2535 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2536 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2537 win = 1;
2539 else if (strict < 0 || general_operand (op, mode))
2540 win = 1;
2541 break;
2543 case 'X':
2544 /* This is used for a MATCH_SCRATCH in the cases when
2545 we don't actually need anything. So anything goes
2546 any time. */
2547 win = 1;
2548 break;
2550 case TARGET_MEM_CONSTRAINT:
2551 /* Memory operands must be valid, to the extent
2552 required by STRICT. */
2553 if (MEM_P (op))
2555 if (strict > 0
2556 && !strict_memory_address_addr_space_p
2557 (GET_MODE (op), XEXP (op, 0),
2558 MEM_ADDR_SPACE (op)))
2559 break;
2560 if (strict == 0
2561 && !memory_address_addr_space_p
2562 (GET_MODE (op), XEXP (op, 0),
2563 MEM_ADDR_SPACE (op)))
2564 break;
2565 win = 1;
2567 /* Before reload, accept what reload can turn into mem. */
2568 else if (strict < 0 && CONSTANT_P (op))
2569 win = 1;
2570 /* During reload, accept a pseudo */
2571 else if (reload_in_progress && REG_P (op)
2572 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2573 win = 1;
2574 break;
2576 case '<':
2577 if (MEM_P (op)
2578 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2579 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2580 win = 1;
2581 break;
2583 case '>':
2584 if (MEM_P (op)
2585 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2586 || GET_CODE (XEXP (op, 0)) == POST_INC))
2587 win = 1;
2588 break;
2590 case 'E':
2591 case 'F':
2592 if (CONST_DOUBLE_AS_FLOAT_P (op)
2593 || (GET_CODE (op) == CONST_VECTOR
2594 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2595 win = 1;
2596 break;
2598 case 'G':
2599 case 'H':
2600 if (CONST_DOUBLE_AS_FLOAT_P (op)
2601 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2602 win = 1;
2603 break;
2605 case 's':
2606 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
2607 break;
2608 case 'i':
2609 if (CONSTANT_P (op))
2610 win = 1;
2611 break;
2613 case 'n':
2614 if (CONST_INT_P (op) || CONST_DOUBLE_AS_INT_P (op))
2615 win = 1;
2616 break;
2618 case 'I':
2619 case 'J':
2620 case 'K':
2621 case 'L':
2622 case 'M':
2623 case 'N':
2624 case 'O':
2625 case 'P':
2626 if (CONST_INT_P (op)
2627 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2628 win = 1;
2629 break;
2631 case 'V':
2632 if (MEM_P (op)
2633 && ((strict > 0 && ! offsettable_memref_p (op))
2634 || (strict < 0
2635 && !(CONSTANT_P (op) || MEM_P (op)))
2636 || (reload_in_progress
2637 && !(REG_P (op)
2638 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2639 win = 1;
2640 break;
2642 case 'o':
2643 if ((strict > 0 && offsettable_memref_p (op))
2644 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2645 /* Before reload, accept what reload can handle. */
2646 || (strict < 0
2647 && (CONSTANT_P (op) || MEM_P (op)))
2648 /* During reload, accept a pseudo */
2649 || (reload_in_progress && REG_P (op)
2650 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2651 win = 1;
2652 break;
2654 default:
2656 enum reg_class cl;
2658 cl = (c == 'r'
2659 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2660 if (cl != NO_REGS)
2662 if (strict < 0
2663 || (strict == 0
2664 && REG_P (op)
2665 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2666 || (strict == 0 && GET_CODE (op) == SCRATCH)
2667 || (REG_P (op)
2668 && reg_fits_class_p (op, cl, offset, mode)))
2669 win = 1;
2671 #ifdef EXTRA_CONSTRAINT_STR
2672 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2673 win = 1;
2675 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2676 /* Every memory operand can be reloaded to fit. */
2677 && ((strict < 0 && MEM_P (op))
2678 /* Before reload, accept what reload can turn
2679 into mem. */
2680 || (strict < 0 && CONSTANT_P (op))
2681 /* During reload, accept a pseudo */
2682 || (reload_in_progress && REG_P (op)
2683 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2684 win = 1;
2685 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2686 /* Every address operand can be reloaded to fit. */
2687 && strict < 0)
2688 win = 1;
2689 /* Cater to architectures like IA-64 that define extra memory
2690 constraints without using define_memory_constraint. */
2691 else if (reload_in_progress
2692 && REG_P (op)
2693 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2694 && reg_renumber[REGNO (op)] < 0
2695 && reg_equiv_mem (REGNO (op)) != 0
2696 && EXTRA_CONSTRAINT_STR
2697 (reg_equiv_mem (REGNO (op)), c, p))
2698 win = 1;
2699 #endif
2700 break;
2703 while (p += len, c);
2705 constraints[opno] = p;
2706 /* If this operand did not win somehow,
2707 this alternative loses. */
2708 if (! win)
2709 lose = 1;
2711 /* This alternative won; the operands are ok.
2712 Change whichever operands this alternative says to change. */
2713 if (! lose)
2715 int opno, eopno;
2717 /* See if any earlyclobber operand conflicts with some other
2718 operand. */
2720 if (strict > 0 && seen_earlyclobber_at >= 0)
2721 for (eopno = seen_earlyclobber_at;
2722 eopno < recog_data.n_operands;
2723 eopno++)
2724 /* Ignore earlyclobber operands now in memory,
2725 because we would often report failure when we have
2726 two memory operands, one of which was formerly a REG. */
2727 if (earlyclobber[eopno]
2728 && REG_P (recog_data.operand[eopno]))
2729 for (opno = 0; opno < recog_data.n_operands; opno++)
2730 if ((MEM_P (recog_data.operand[opno])
2731 || recog_data.operand_type[opno] != OP_OUT)
2732 && opno != eopno
2733 /* Ignore things like match_operator operands. */
2734 && *recog_data.constraints[opno] != 0
2735 && ! (matching_operands[opno] == eopno
2736 && operands_match_p (recog_data.operand[opno],
2737 recog_data.operand[eopno]))
2738 && ! safe_from_earlyclobber (recog_data.operand[opno],
2739 recog_data.operand[eopno]))
2740 lose = 1;
2742 if (! lose)
2744 while (--funny_match_index >= 0)
2746 recog_data.operand[funny_match[funny_match_index].other]
2747 = recog_data.operand[funny_match[funny_match_index].this_op];
2750 #ifdef AUTO_INC_DEC
2751 /* For operands without < or > constraints reject side-effects. */
2752 if (recog_data.is_asm)
2754 for (opno = 0; opno < recog_data.n_operands; opno++)
2755 if (MEM_P (recog_data.operand[opno]))
2756 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2758 case PRE_INC:
2759 case POST_INC:
2760 case PRE_DEC:
2761 case POST_DEC:
2762 case PRE_MODIFY:
2763 case POST_MODIFY:
2764 if (strchr (recog_data.constraints[opno], '<') == NULL
2765 && strchr (recog_data.constraints[opno], '>')
2766 == NULL)
2767 return 0;
2768 break;
2769 default:
2770 break;
2773 #endif
2774 return 1;
2778 which_alternative++;
2780 while (which_alternative < recog_data.n_alternatives);
2782 which_alternative = -1;
2783 /* If we are about to reject this, but we are not to test strictly,
2784 try a very loose test. Only return failure if it fails also. */
2785 if (strict == 0)
2786 return constrain_operands (-1);
2787 else
2788 return 0;
2791 /* Return true iff OPERAND (assumed to be a REG rtx)
2792 is a hard reg in class CLASS when its regno is offset by OFFSET
2793 and changed to mode MODE.
2794 If REG occupies multiple hard regs, all of them must be in CLASS. */
2796 bool
2797 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2798 enum machine_mode mode)
2800 unsigned int regno = REGNO (operand);
2802 if (cl == NO_REGS)
2803 return false;
2805 /* Regno must not be a pseudo register. Offset may be negative. */
2806 return (HARD_REGISTER_NUM_P (regno)
2807 && HARD_REGISTER_NUM_P (regno + offset)
2808 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2809 regno + offset));
2812 /* Split single instruction. Helper function for split_all_insns and
2813 split_all_insns_noflow. Return last insn in the sequence if successful,
2814 or NULL if unsuccessful. */
2816 static rtx
2817 split_insn (rtx insn)
2819 /* Split insns here to get max fine-grain parallelism. */
2820 rtx first = PREV_INSN (insn);
2821 rtx last = try_split (PATTERN (insn), insn, 1);
2822 rtx insn_set, last_set, note;
2824 if (last == insn)
2825 return NULL_RTX;
2827 /* If the original instruction was a single set that was known to be
2828 equivalent to a constant, see if we can say the same about the last
2829 instruction in the split sequence. The two instructions must set
2830 the same destination. */
2831 insn_set = single_set (insn);
2832 if (insn_set)
2834 last_set = single_set (last);
2835 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2837 note = find_reg_equal_equiv_note (insn);
2838 if (note && CONSTANT_P (XEXP (note, 0)))
2839 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2840 else if (CONSTANT_P (SET_SRC (insn_set)))
2841 set_unique_reg_note (last, REG_EQUAL,
2842 copy_rtx (SET_SRC (insn_set)));
2846 /* try_split returns the NOTE that INSN became. */
2847 SET_INSN_DELETED (insn);
2849 /* ??? Coddle to md files that generate subregs in post-reload
2850 splitters instead of computing the proper hard register. */
2851 if (reload_completed && first != last)
2853 first = NEXT_INSN (first);
2854 for (;;)
2856 if (INSN_P (first))
2857 cleanup_subreg_operands (first);
2858 if (first == last)
2859 break;
2860 first = NEXT_INSN (first);
2864 return last;
2867 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2869 void
2870 split_all_insns (void)
2872 sbitmap blocks;
2873 bool changed;
2874 basic_block bb;
2876 blocks = sbitmap_alloc (last_basic_block);
2877 sbitmap_zero (blocks);
2878 changed = false;
2880 FOR_EACH_BB_REVERSE (bb)
2882 rtx insn, next;
2883 bool finish = false;
2885 rtl_profile_for_bb (bb);
2886 for (insn = BB_HEAD (bb); !finish ; insn = next)
2888 /* Can't use `next_real_insn' because that might go across
2889 CODE_LABELS and short-out basic blocks. */
2890 next = NEXT_INSN (insn);
2891 finish = (insn == BB_END (bb));
2892 if (INSN_P (insn))
2894 rtx set = single_set (insn);
2896 /* Don't split no-op move insns. These should silently
2897 disappear later in final. Splitting such insns would
2898 break the code that handles LIBCALL blocks. */
2899 if (set && set_noop_p (set))
2901 /* Nops get in the way while scheduling, so delete them
2902 now if register allocation has already been done. It
2903 is too risky to try to do this before register
2904 allocation, and there are unlikely to be very many
2905 nops then anyways. */
2906 if (reload_completed)
2907 delete_insn_and_edges (insn);
2909 else
2911 if (split_insn (insn))
2913 SET_BIT (blocks, bb->index);
2914 changed = true;
2921 default_rtl_profile ();
2922 if (changed)
2923 find_many_sub_basic_blocks (blocks);
2925 #ifdef ENABLE_CHECKING
2926 verify_flow_info ();
2927 #endif
2929 sbitmap_free (blocks);
2932 /* Same as split_all_insns, but do not expect CFG to be available.
2933 Used by machine dependent reorg passes. */
2935 unsigned int
2936 split_all_insns_noflow (void)
2938 rtx next, insn;
2940 for (insn = get_insns (); insn; insn = next)
2942 next = NEXT_INSN (insn);
2943 if (INSN_P (insn))
2945 /* Don't split no-op move insns. These should silently
2946 disappear later in final. Splitting such insns would
2947 break the code that handles LIBCALL blocks. */
2948 rtx set = single_set (insn);
2949 if (set && set_noop_p (set))
2951 /* Nops get in the way while scheduling, so delete them
2952 now if register allocation has already been done. It
2953 is too risky to try to do this before register
2954 allocation, and there are unlikely to be very many
2955 nops then anyways.
2957 ??? Should we use delete_insn when the CFG isn't valid? */
2958 if (reload_completed)
2959 delete_insn_and_edges (insn);
2961 else
2962 split_insn (insn);
2965 return 0;
2968 #ifdef HAVE_peephole2
2969 struct peep2_insn_data
2971 rtx insn;
2972 regset live_before;
2975 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2976 static int peep2_current;
2978 static bool peep2_do_rebuild_jump_labels;
2979 static bool peep2_do_cleanup_cfg;
2981 /* The number of instructions available to match a peep2. */
2982 int peep2_current_count;
2984 /* A non-insn marker indicating the last insn of the block.
2985 The live_before regset for this element is correct, indicating
2986 DF_LIVE_OUT for the block. */
2987 #define PEEP2_EOB pc_rtx
2989 /* Wrap N to fit into the peep2_insn_data buffer. */
2991 static int
2992 peep2_buf_position (int n)
2994 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2995 n -= MAX_INSNS_PER_PEEP2 + 1;
2996 return n;
2999 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3000 does not exist. Used by the recognizer to find the next insn to match
3001 in a multi-insn pattern. */
3004 peep2_next_insn (int n)
3006 gcc_assert (n <= peep2_current_count);
3008 n = peep2_buf_position (peep2_current + n);
3010 return peep2_insn_data[n].insn;
3013 /* Return true if REGNO is dead before the Nth non-note insn
3014 after `current'. */
3017 peep2_regno_dead_p (int ofs, int regno)
3019 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3021 ofs = peep2_buf_position (peep2_current + ofs);
3023 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3025 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3028 /* Similarly for a REG. */
3031 peep2_reg_dead_p (int ofs, rtx reg)
3033 int regno, n;
3035 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3037 ofs = peep2_buf_position (peep2_current + ofs);
3039 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3041 regno = REGNO (reg);
3042 n = hard_regno_nregs[regno][GET_MODE (reg)];
3043 while (--n >= 0)
3044 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3045 return 0;
3046 return 1;
3049 /* Try to find a hard register of mode MODE, matching the register class in
3050 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3051 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3052 in which case the only condition is that the register must be available
3053 before CURRENT_INSN.
3054 Registers that already have bits set in REG_SET will not be considered.
3056 If an appropriate register is available, it will be returned and the
3057 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3058 returned. */
3061 peep2_find_free_register (int from, int to, const char *class_str,
3062 enum machine_mode mode, HARD_REG_SET *reg_set)
3064 static int search_ofs;
3065 enum reg_class cl;
3066 HARD_REG_SET live;
3067 df_ref *def_rec;
3068 int i;
3070 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3071 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3073 from = peep2_buf_position (peep2_current + from);
3074 to = peep2_buf_position (peep2_current + to);
3076 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3077 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3079 while (from != to)
3081 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3083 /* Don't use registers set or clobbered by the insn. */
3084 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3085 *def_rec; def_rec++)
3086 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3088 from = peep2_buf_position (from + 1);
3091 cl = (class_str[0] == 'r' ? GENERAL_REGS
3092 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3094 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3096 int raw_regno, regno, success, j;
3098 /* Distribute the free registers as much as possible. */
3099 raw_regno = search_ofs + i;
3100 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3101 raw_regno -= FIRST_PSEUDO_REGISTER;
3102 #ifdef REG_ALLOC_ORDER
3103 regno = reg_alloc_order[raw_regno];
3104 #else
3105 regno = raw_regno;
3106 #endif
3108 /* Don't allocate fixed registers. */
3109 if (fixed_regs[regno])
3110 continue;
3111 /* Don't allocate global registers. */
3112 if (global_regs[regno])
3113 continue;
3114 /* Make sure the register is of the right class. */
3115 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno))
3116 continue;
3117 /* And can support the mode we need. */
3118 if (! HARD_REGNO_MODE_OK (regno, mode))
3119 continue;
3120 /* And that we don't create an extra save/restore. */
3121 if (! call_used_regs[regno] && ! df_regs_ever_live_p (regno))
3122 continue;
3123 if (! targetm.hard_regno_scratch_ok (regno))
3124 continue;
3126 /* And we don't clobber traceback for noreturn functions. */
3127 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
3128 && (! reload_completed || frame_pointer_needed))
3129 continue;
3131 success = 1;
3132 for (j = hard_regno_nregs[regno][mode] - 1; j >= 0; j--)
3134 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3135 || TEST_HARD_REG_BIT (live, regno + j))
3137 success = 0;
3138 break;
3141 if (success)
3143 add_to_hard_reg_set (reg_set, mode, regno);
3145 /* Start the next search with the next register. */
3146 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3147 raw_regno = 0;
3148 search_ofs = raw_regno;
3150 return gen_rtx_REG (mode, regno);
3154 search_ofs = 0;
3155 return NULL_RTX;
3158 /* Forget all currently tracked instructions, only remember current
3159 LIVE regset. */
3161 static void
3162 peep2_reinit_state (regset live)
3164 int i;
3166 /* Indicate that all slots except the last holds invalid data. */
3167 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3168 peep2_insn_data[i].insn = NULL_RTX;
3169 peep2_current_count = 0;
3171 /* Indicate that the last slot contains live_after data. */
3172 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3173 peep2_current = MAX_INSNS_PER_PEEP2;
3175 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3178 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3179 starting at INSN. Perform the replacement, removing the old insns and
3180 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3181 if the replacement is rejected. */
3183 static rtx
3184 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3186 int i;
3187 rtx last, eh_note, as_note, before_try, x;
3188 rtx old_insn, new_insn;
3189 bool was_call = false;
3191 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3192 match more than one insn, or to be split into more than one insn. */
3193 old_insn = peep2_insn_data[peep2_current].insn;
3194 if (RTX_FRAME_RELATED_P (old_insn))
3196 bool any_note = false;
3197 rtx note;
3199 if (match_len != 0)
3200 return NULL;
3202 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3203 may be in the stream for the purpose of register allocation. */
3204 if (active_insn_p (attempt))
3205 new_insn = attempt;
3206 else
3207 new_insn = next_active_insn (attempt);
3208 if (next_active_insn (new_insn))
3209 return NULL;
3211 /* We have a 1-1 replacement. Copy over any frame-related info. */
3212 RTX_FRAME_RELATED_P (new_insn) = 1;
3214 /* Allow the backend to fill in a note during the split. */
3215 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3216 switch (REG_NOTE_KIND (note))
3218 case REG_FRAME_RELATED_EXPR:
3219 case REG_CFA_DEF_CFA:
3220 case REG_CFA_ADJUST_CFA:
3221 case REG_CFA_OFFSET:
3222 case REG_CFA_REGISTER:
3223 case REG_CFA_EXPRESSION:
3224 case REG_CFA_RESTORE:
3225 case REG_CFA_SET_VDRAP:
3226 any_note = true;
3227 break;
3228 default:
3229 break;
3232 /* If the backend didn't supply a note, copy one over. */
3233 if (!any_note)
3234 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3235 switch (REG_NOTE_KIND (note))
3237 case REG_FRAME_RELATED_EXPR:
3238 case REG_CFA_DEF_CFA:
3239 case REG_CFA_ADJUST_CFA:
3240 case REG_CFA_OFFSET:
3241 case REG_CFA_REGISTER:
3242 case REG_CFA_EXPRESSION:
3243 case REG_CFA_RESTORE:
3244 case REG_CFA_SET_VDRAP:
3245 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3246 any_note = true;
3247 break;
3248 default:
3249 break;
3252 /* If there still isn't a note, make sure the unwind info sees the
3253 same expression as before the split. */
3254 if (!any_note)
3256 rtx old_set, new_set;
3258 /* The old insn had better have been simple, or annotated. */
3259 old_set = single_set (old_insn);
3260 gcc_assert (old_set != NULL);
3262 new_set = single_set (new_insn);
3263 if (!new_set || !rtx_equal_p (new_set, old_set))
3264 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3267 /* Copy prologue/epilogue status. This is required in order to keep
3268 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3269 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3272 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3273 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3274 cfg-related call notes. */
3275 for (i = 0; i <= match_len; ++i)
3277 int j;
3278 rtx note;
3280 j = peep2_buf_position (peep2_current + i);
3281 old_insn = peep2_insn_data[j].insn;
3282 if (!CALL_P (old_insn))
3283 continue;
3284 was_call = true;
3286 new_insn = attempt;
3287 while (new_insn != NULL_RTX)
3289 if (CALL_P (new_insn))
3290 break;
3291 new_insn = NEXT_INSN (new_insn);
3294 gcc_assert (new_insn != NULL_RTX);
3296 CALL_INSN_FUNCTION_USAGE (new_insn)
3297 = CALL_INSN_FUNCTION_USAGE (old_insn);
3299 for (note = REG_NOTES (old_insn);
3300 note;
3301 note = XEXP (note, 1))
3302 switch (REG_NOTE_KIND (note))
3304 case REG_NORETURN:
3305 case REG_SETJMP:
3306 case REG_TM:
3307 add_reg_note (new_insn, REG_NOTE_KIND (note),
3308 XEXP (note, 0));
3309 break;
3310 default:
3311 /* Discard all other reg notes. */
3312 break;
3315 /* Croak if there is another call in the sequence. */
3316 while (++i <= match_len)
3318 j = peep2_buf_position (peep2_current + i);
3319 old_insn = peep2_insn_data[j].insn;
3320 gcc_assert (!CALL_P (old_insn));
3322 break;
3325 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3326 move those notes over to the new sequence. */
3327 as_note = NULL;
3328 for (i = match_len; i >= 0; --i)
3330 int j = peep2_buf_position (peep2_current + i);
3331 old_insn = peep2_insn_data[j].insn;
3333 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3334 if (as_note)
3335 break;
3338 i = peep2_buf_position (peep2_current + match_len);
3339 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3341 /* Replace the old sequence with the new. */
3342 last = emit_insn_after_setloc (attempt,
3343 peep2_insn_data[i].insn,
3344 INSN_LOCATION (peep2_insn_data[i].insn));
3345 before_try = PREV_INSN (insn);
3346 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3348 /* Re-insert the EH_REGION notes. */
3349 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3351 edge eh_edge;
3352 edge_iterator ei;
3354 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3355 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3356 break;
3358 if (eh_note)
3359 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3361 if (eh_edge)
3362 for (x = last; x != before_try; x = PREV_INSN (x))
3363 if (x != BB_END (bb)
3364 && (can_throw_internal (x)
3365 || can_nonlocal_goto (x)))
3367 edge nfte, nehe;
3368 int flags;
3370 nfte = split_block (bb, x);
3371 flags = (eh_edge->flags
3372 & (EDGE_EH | EDGE_ABNORMAL));
3373 if (CALL_P (x))
3374 flags |= EDGE_ABNORMAL_CALL;
3375 nehe = make_edge (nfte->src, eh_edge->dest,
3376 flags);
3378 nehe->probability = eh_edge->probability;
3379 nfte->probability
3380 = REG_BR_PROB_BASE - nehe->probability;
3382 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3383 bb = nfte->src;
3384 eh_edge = nehe;
3387 /* Converting possibly trapping insn to non-trapping is
3388 possible. Zap dummy outgoing edges. */
3389 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3392 /* Re-insert the ARGS_SIZE notes. */
3393 if (as_note)
3394 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3396 /* If we generated a jump instruction, it won't have
3397 JUMP_LABEL set. Recompute after we're done. */
3398 for (x = last; x != before_try; x = PREV_INSN (x))
3399 if (JUMP_P (x))
3401 peep2_do_rebuild_jump_labels = true;
3402 break;
3405 return last;
3408 /* After performing a replacement in basic block BB, fix up the life
3409 information in our buffer. LAST is the last of the insns that we
3410 emitted as a replacement. PREV is the insn before the start of
3411 the replacement. MATCH_LEN is the number of instructions that were
3412 matched, and which now need to be replaced in the buffer. */
3414 static void
3415 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3417 int i = peep2_buf_position (peep2_current + match_len + 1);
3418 rtx x;
3419 regset_head live;
3421 INIT_REG_SET (&live);
3422 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3424 gcc_assert (peep2_current_count >= match_len + 1);
3425 peep2_current_count -= match_len + 1;
3427 x = last;
3430 if (INSN_P (x))
3432 df_insn_rescan (x);
3433 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3435 peep2_current_count++;
3436 if (--i < 0)
3437 i = MAX_INSNS_PER_PEEP2;
3438 peep2_insn_data[i].insn = x;
3439 df_simulate_one_insn_backwards (bb, x, &live);
3440 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3443 x = PREV_INSN (x);
3445 while (x != prev);
3446 CLEAR_REG_SET (&live);
3448 peep2_current = i;
3451 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3452 Return true if we added it, false otherwise. The caller will try to match
3453 peepholes against the buffer if we return false; otherwise it will try to
3454 add more instructions to the buffer. */
3456 static bool
3457 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3459 int pos;
3461 /* Once we have filled the maximum number of insns the buffer can hold,
3462 allow the caller to match the insns against peepholes. We wait until
3463 the buffer is full in case the target has similar peepholes of different
3464 length; we always want to match the longest if possible. */
3465 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3466 return false;
3468 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3469 any other pattern, lest it change the semantics of the frame info. */
3470 if (RTX_FRAME_RELATED_P (insn))
3472 /* Let the buffer drain first. */
3473 if (peep2_current_count > 0)
3474 return false;
3475 /* Now the insn will be the only thing in the buffer. */
3478 pos = peep2_buf_position (peep2_current + peep2_current_count);
3479 peep2_insn_data[pos].insn = insn;
3480 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3481 peep2_current_count++;
3483 df_simulate_one_insn_forwards (bb, insn, live);
3484 return true;
3487 /* Perform the peephole2 optimization pass. */
3489 static void
3490 peephole2_optimize (void)
3492 rtx insn;
3493 bitmap live;
3494 int i;
3495 basic_block bb;
3497 peep2_do_cleanup_cfg = false;
3498 peep2_do_rebuild_jump_labels = false;
3500 df_set_flags (DF_LR_RUN_DCE);
3501 df_note_add_problem ();
3502 df_analyze ();
3504 /* Initialize the regsets we're going to use. */
3505 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3506 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3507 live = BITMAP_ALLOC (&reg_obstack);
3509 FOR_EACH_BB_REVERSE (bb)
3511 bool past_end = false;
3512 int pos;
3514 rtl_profile_for_bb (bb);
3516 /* Start up propagation. */
3517 bitmap_copy (live, DF_LR_IN (bb));
3518 df_simulate_initialize_forwards (bb, live);
3519 peep2_reinit_state (live);
3521 insn = BB_HEAD (bb);
3522 for (;;)
3524 rtx attempt, head;
3525 int match_len;
3527 if (!past_end && !NONDEBUG_INSN_P (insn))
3529 next_insn:
3530 insn = NEXT_INSN (insn);
3531 if (insn == NEXT_INSN (BB_END (bb)))
3532 past_end = true;
3533 continue;
3535 if (!past_end && peep2_fill_buffer (bb, insn, live))
3536 goto next_insn;
3538 /* If we did not fill an empty buffer, it signals the end of the
3539 block. */
3540 if (peep2_current_count == 0)
3541 break;
3543 /* The buffer filled to the current maximum, so try to match. */
3545 pos = peep2_buf_position (peep2_current + peep2_current_count);
3546 peep2_insn_data[pos].insn = PEEP2_EOB;
3547 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3549 /* Match the peephole. */
3550 head = peep2_insn_data[peep2_current].insn;
3551 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3552 if (attempt != NULL)
3554 rtx last = peep2_attempt (bb, head, match_len, attempt);
3555 if (last)
3557 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3558 continue;
3562 /* No match: advance the buffer by one insn. */
3563 peep2_current = peep2_buf_position (peep2_current + 1);
3564 peep2_current_count--;
3568 default_rtl_profile ();
3569 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3570 BITMAP_FREE (peep2_insn_data[i].live_before);
3571 BITMAP_FREE (live);
3572 if (peep2_do_rebuild_jump_labels)
3573 rebuild_jump_labels (get_insns ());
3575 #endif /* HAVE_peephole2 */
3577 /* Common predicates for use with define_bypass. */
3579 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3580 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3581 must be either a single_set or a PARALLEL with SETs inside. */
3584 store_data_bypass_p (rtx out_insn, rtx in_insn)
3586 rtx out_set, in_set;
3587 rtx out_pat, in_pat;
3588 rtx out_exp, in_exp;
3589 int i, j;
3591 in_set = single_set (in_insn);
3592 if (in_set)
3594 if (!MEM_P (SET_DEST (in_set)))
3595 return false;
3597 out_set = single_set (out_insn);
3598 if (out_set)
3600 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3601 return false;
3603 else
3605 out_pat = PATTERN (out_insn);
3607 if (GET_CODE (out_pat) != PARALLEL)
3608 return false;
3610 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3612 out_exp = XVECEXP (out_pat, 0, i);
3614 if (GET_CODE (out_exp) == CLOBBER)
3615 continue;
3617 gcc_assert (GET_CODE (out_exp) == SET);
3619 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3620 return false;
3624 else
3626 in_pat = PATTERN (in_insn);
3627 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3629 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3631 in_exp = XVECEXP (in_pat, 0, i);
3633 if (GET_CODE (in_exp) == CLOBBER)
3634 continue;
3636 gcc_assert (GET_CODE (in_exp) == SET);
3638 if (!MEM_P (SET_DEST (in_exp)))
3639 return false;
3641 out_set = single_set (out_insn);
3642 if (out_set)
3644 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3645 return false;
3647 else
3649 out_pat = PATTERN (out_insn);
3650 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3652 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3654 out_exp = XVECEXP (out_pat, 0, j);
3656 if (GET_CODE (out_exp) == CLOBBER)
3657 continue;
3659 gcc_assert (GET_CODE (out_exp) == SET);
3661 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3662 return false;
3668 return true;
3671 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3672 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3673 or multiple set; IN_INSN should be single_set for truth, but for convenience
3674 of insn categorization may be any JUMP or CALL insn. */
3677 if_test_bypass_p (rtx out_insn, rtx in_insn)
3679 rtx out_set, in_set;
3681 in_set = single_set (in_insn);
3682 if (! in_set)
3684 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3685 return false;
3688 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3689 return false;
3690 in_set = SET_SRC (in_set);
3692 out_set = single_set (out_insn);
3693 if (out_set)
3695 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3696 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3697 return false;
3699 else
3701 rtx out_pat;
3702 int i;
3704 out_pat = PATTERN (out_insn);
3705 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3707 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3709 rtx exp = XVECEXP (out_pat, 0, i);
3711 if (GET_CODE (exp) == CLOBBER)
3712 continue;
3714 gcc_assert (GET_CODE (exp) == SET);
3716 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3717 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3718 return false;
3722 return true;
3725 static bool
3726 gate_handle_peephole2 (void)
3728 return (optimize > 0 && flag_peephole2);
3731 static unsigned int
3732 rest_of_handle_peephole2 (void)
3734 #ifdef HAVE_peephole2
3735 peephole2_optimize ();
3736 #endif
3737 return 0;
3740 struct rtl_opt_pass pass_peephole2 =
3743 RTL_PASS,
3744 "peephole2", /* name */
3745 gate_handle_peephole2, /* gate */
3746 rest_of_handle_peephole2, /* execute */
3747 NULL, /* sub */
3748 NULL, /* next */
3749 0, /* static_pass_number */
3750 TV_PEEPHOLE2, /* tv_id */
3751 0, /* properties_required */
3752 0, /* properties_provided */
3753 0, /* properties_destroyed */
3754 0, /* todo_flags_start */
3755 TODO_df_finish | TODO_verify_rtl_sharing |
3756 0 /* todo_flags_finish */
3760 static unsigned int
3761 rest_of_handle_split_all_insns (void)
3763 split_all_insns ();
3764 return 0;
3767 struct rtl_opt_pass pass_split_all_insns =
3770 RTL_PASS,
3771 "split1", /* name */
3772 NULL, /* gate */
3773 rest_of_handle_split_all_insns, /* execute */
3774 NULL, /* sub */
3775 NULL, /* next */
3776 0, /* static_pass_number */
3777 TV_NONE, /* tv_id */
3778 0, /* properties_required */
3779 0, /* properties_provided */
3780 0, /* properties_destroyed */
3781 0, /* todo_flags_start */
3782 0 /* todo_flags_finish */
3786 static unsigned int
3787 rest_of_handle_split_after_reload (void)
3789 /* If optimizing, then go ahead and split insns now. */
3790 #ifndef STACK_REGS
3791 if (optimize > 0)
3792 #endif
3793 split_all_insns ();
3794 return 0;
3797 struct rtl_opt_pass pass_split_after_reload =
3800 RTL_PASS,
3801 "split2", /* name */
3802 NULL, /* gate */
3803 rest_of_handle_split_after_reload, /* execute */
3804 NULL, /* sub */
3805 NULL, /* next */
3806 0, /* static_pass_number */
3807 TV_NONE, /* tv_id */
3808 0, /* properties_required */
3809 0, /* properties_provided */
3810 0, /* properties_destroyed */
3811 0, /* todo_flags_start */
3812 0 /* todo_flags_finish */
3816 static bool
3817 gate_handle_split_before_regstack (void)
3819 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3820 /* If flow2 creates new instructions which need splitting
3821 and scheduling after reload is not done, they might not be
3822 split until final which doesn't allow splitting
3823 if HAVE_ATTR_length. */
3824 # ifdef INSN_SCHEDULING
3825 return (optimize && !flag_schedule_insns_after_reload);
3826 # else
3827 return (optimize);
3828 # endif
3829 #else
3830 return 0;
3831 #endif
3834 static unsigned int
3835 rest_of_handle_split_before_regstack (void)
3837 split_all_insns ();
3838 return 0;
3841 struct rtl_opt_pass pass_split_before_regstack =
3844 RTL_PASS,
3845 "split3", /* name */
3846 gate_handle_split_before_regstack, /* gate */
3847 rest_of_handle_split_before_regstack, /* execute */
3848 NULL, /* sub */
3849 NULL, /* next */
3850 0, /* static_pass_number */
3851 TV_NONE, /* tv_id */
3852 0, /* properties_required */
3853 0, /* properties_provided */
3854 0, /* properties_destroyed */
3855 0, /* todo_flags_start */
3856 0 /* todo_flags_finish */
3860 static bool
3861 gate_handle_split_before_sched2 (void)
3863 #ifdef INSN_SCHEDULING
3864 return optimize > 0 && flag_schedule_insns_after_reload;
3865 #else
3866 return 0;
3867 #endif
3870 static unsigned int
3871 rest_of_handle_split_before_sched2 (void)
3873 #ifdef INSN_SCHEDULING
3874 split_all_insns ();
3875 #endif
3876 return 0;
3879 struct rtl_opt_pass pass_split_before_sched2 =
3882 RTL_PASS,
3883 "split4", /* name */
3884 gate_handle_split_before_sched2, /* gate */
3885 rest_of_handle_split_before_sched2, /* execute */
3886 NULL, /* sub */
3887 NULL, /* next */
3888 0, /* static_pass_number */
3889 TV_NONE, /* tv_id */
3890 0, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 TODO_verify_flow /* todo_flags_finish */
3898 /* The placement of the splitting that we do for shorten_branches
3899 depends on whether regstack is used by the target or not. */
3900 static bool
3901 gate_do_final_split (void)
3903 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3904 return 1;
3905 #else
3906 return 0;
3907 #endif
3910 struct rtl_opt_pass pass_split_for_shorten_branches =
3913 RTL_PASS,
3914 "split5", /* name */
3915 gate_do_final_split, /* gate */
3916 split_all_insns_noflow, /* execute */
3917 NULL, /* sub */
3918 NULL, /* next */
3919 0, /* static_pass_number */
3920 TV_NONE, /* tv_id */
3921 0, /* properties_required */
3922 0, /* properties_provided */
3923 0, /* properties_destroyed */
3924 0, /* todo_flags_start */
3925 TODO_verify_rtl_sharing /* todo_flags_finish */