re PR middle-end/55027 (simplify vector multiplication by 1)
[official-gcc.git] / gcc / expmed.c
blob6d9b13354cb16a4e1b1f26d668ca5e0803c21d51
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
5 2011, 2012
6 Free Software Foundation, Inc.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "diagnostic-core.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
41 #include "expmed.h"
43 struct target_expmed default_target_expmed;
44 #if SWITCHABLE_TARGET
45 struct target_expmed *this_target_expmed = &default_target_expmed;
46 #endif
48 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT,
51 unsigned HOST_WIDE_INT,
52 rtx);
53 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
55 unsigned HOST_WIDE_INT,
56 unsigned HOST_WIDE_INT,
57 rtx);
58 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
59 unsigned HOST_WIDE_INT,
60 unsigned HOST_WIDE_INT, rtx, int, bool);
61 static rtx mask_rtx (enum machine_mode, int, int, int);
62 static rtx lshift_value (enum machine_mode, rtx, int, int);
63 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
64 unsigned HOST_WIDE_INT, int);
65 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
66 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
67 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
69 /* Test whether a value is zero of a power of two. */
70 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
72 #ifndef SLOW_UNALIGNED_ACCESS
73 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 #endif
77 /* Reduce conditional compilation elsewhere. */
78 #ifndef HAVE_insv
79 #define HAVE_insv 0
80 #define CODE_FOR_insv CODE_FOR_nothing
81 #define gen_insv(a,b,c,d) NULL_RTX
82 #endif
83 #ifndef HAVE_extv
84 #define HAVE_extv 0
85 #define CODE_FOR_extv CODE_FOR_nothing
86 #define gen_extv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extzv
89 #define HAVE_extzv 0
90 #define CODE_FOR_extzv CODE_FOR_nothing
91 #define gen_extzv(a,b,c,d) NULL_RTX
92 #endif
94 struct init_expmed_rtl
96 struct rtx_def reg; rtunion reg_fld[2];
97 struct rtx_def plus; rtunion plus_fld1;
98 struct rtx_def neg;
99 struct rtx_def mult; rtunion mult_fld1;
100 struct rtx_def sdiv; rtunion sdiv_fld1;
101 struct rtx_def udiv; rtunion udiv_fld1;
102 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
103 struct rtx_def smod_32; rtunion smod_32_fld1;
104 struct rtx_def wide_mult; rtunion wide_mult_fld1;
105 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
106 struct rtx_def wide_trunc;
107 struct rtx_def shift; rtunion shift_fld1;
108 struct rtx_def shift_mult; rtunion shift_mult_fld1;
109 struct rtx_def shift_add; rtunion shift_add_fld1;
110 struct rtx_def shift_sub0; rtunion shift_sub0_fld1;
111 struct rtx_def shift_sub1; rtunion shift_sub1_fld1;
112 struct rtx_def zext;
113 struct rtx_def trunc;
115 rtx pow2[MAX_BITS_PER_WORD];
116 rtx cint[MAX_BITS_PER_WORD];
119 static void
120 init_expmed_one_conv (struct init_expmed_rtl *all, enum machine_mode to_mode,
121 enum machine_mode from_mode, bool speed)
123 int to_size, from_size;
124 rtx which;
126 /* We're given no information about the true size of a partial integer,
127 only the size of the "full" integer it requires for storage. For
128 comparison purposes here, reduce the bit size by one in that case. */
129 to_size = (GET_MODE_BITSIZE (to_mode)
130 - (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT));
131 from_size = (GET_MODE_BITSIZE (from_mode)
132 - (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT));
134 /* Assume cost of zero-extend and sign-extend is the same. */
135 which = (to_size < from_size ? &all->trunc : &all->zext);
137 PUT_MODE (&all->reg, from_mode);
138 set_convert_cost (to_mode, from_mode, speed, set_src_cost (which, speed));
141 static void
142 init_expmed_one_mode (struct init_expmed_rtl *all,
143 enum machine_mode mode, int speed)
145 int m, n, mode_bitsize;
146 enum machine_mode mode_from;
148 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
150 PUT_MODE (&all->reg, mode);
151 PUT_MODE (&all->plus, mode);
152 PUT_MODE (&all->neg, mode);
153 PUT_MODE (&all->mult, mode);
154 PUT_MODE (&all->sdiv, mode);
155 PUT_MODE (&all->udiv, mode);
156 PUT_MODE (&all->sdiv_32, mode);
157 PUT_MODE (&all->smod_32, mode);
158 PUT_MODE (&all->wide_trunc, mode);
159 PUT_MODE (&all->shift, mode);
160 PUT_MODE (&all->shift_mult, mode);
161 PUT_MODE (&all->shift_add, mode);
162 PUT_MODE (&all->shift_sub0, mode);
163 PUT_MODE (&all->shift_sub1, mode);
164 PUT_MODE (&all->zext, mode);
165 PUT_MODE (&all->trunc, mode);
167 set_add_cost (speed, mode, set_src_cost (&all->plus, speed));
168 set_neg_cost (speed, mode, set_src_cost (&all->neg, speed));
169 set_mul_cost (speed, mode, set_src_cost (&all->mult, speed));
170 set_sdiv_cost (speed, mode, set_src_cost (&all->sdiv, speed));
171 set_udiv_cost (speed, mode, set_src_cost (&all->udiv, speed));
173 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (&all->sdiv_32, speed)
174 <= 2 * add_cost (speed, mode)));
175 set_smod_pow2_cheap (speed, mode, (set_src_cost (&all->smod_32, speed)
176 <= 4 * add_cost (speed, mode)));
178 set_shift_cost (speed, mode, 0, 0);
180 int cost = add_cost (speed, mode);
181 set_shiftadd_cost (speed, mode, 0, cost);
182 set_shiftsub0_cost (speed, mode, 0, cost);
183 set_shiftsub1_cost (speed, mode, 0, cost);
186 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
187 for (m = 1; m < n; m++)
189 XEXP (&all->shift, 1) = all->cint[m];
190 XEXP (&all->shift_mult, 1) = all->pow2[m];
192 set_shift_cost (speed, mode, m, set_src_cost (&all->shift, speed));
193 set_shiftadd_cost (speed, mode, m, set_src_cost (&all->shift_add, speed));
194 set_shiftsub0_cost (speed, mode, m, set_src_cost (&all->shift_sub0, speed));
195 set_shiftsub1_cost (speed, mode, m, set_src_cost (&all->shift_sub1, speed));
198 if (SCALAR_INT_MODE_P (mode))
200 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
201 mode_from = (enum machine_mode)(mode_from + 1))
202 init_expmed_one_conv (all, mode, mode_from, speed);
204 if (GET_MODE_CLASS (mode) == MODE_INT)
206 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
207 if (wider_mode != VOIDmode)
209 PUT_MODE (&all->zext, wider_mode);
210 PUT_MODE (&all->wide_mult, wider_mode);
211 PUT_MODE (&all->wide_lshr, wider_mode);
212 XEXP (&all->wide_lshr, 1) = GEN_INT (mode_bitsize);
214 set_mul_widen_cost (speed, wider_mode,
215 set_src_cost (&all->wide_mult, speed));
216 set_mul_highpart_cost (speed, mode,
217 set_src_cost (&all->wide_trunc, speed));
222 void
223 init_expmed (void)
225 struct init_expmed_rtl all;
226 enum machine_mode mode;
227 int m, speed;
229 memset (&all, 0, sizeof all);
230 for (m = 1; m < MAX_BITS_PER_WORD; m++)
232 all.pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
233 all.cint[m] = GEN_INT (m);
236 PUT_CODE (&all.reg, REG);
237 /* Avoid using hard regs in ways which may be unsupported. */
238 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
240 PUT_CODE (&all.plus, PLUS);
241 XEXP (&all.plus, 0) = &all.reg;
242 XEXP (&all.plus, 1) = &all.reg;
244 PUT_CODE (&all.neg, NEG);
245 XEXP (&all.neg, 0) = &all.reg;
247 PUT_CODE (&all.mult, MULT);
248 XEXP (&all.mult, 0) = &all.reg;
249 XEXP (&all.mult, 1) = &all.reg;
251 PUT_CODE (&all.sdiv, DIV);
252 XEXP (&all.sdiv, 0) = &all.reg;
253 XEXP (&all.sdiv, 1) = &all.reg;
255 PUT_CODE (&all.udiv, UDIV);
256 XEXP (&all.udiv, 0) = &all.reg;
257 XEXP (&all.udiv, 1) = &all.reg;
259 PUT_CODE (&all.sdiv_32, DIV);
260 XEXP (&all.sdiv_32, 0) = &all.reg;
261 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? all.cint[32] : GEN_INT (32);
263 PUT_CODE (&all.smod_32, MOD);
264 XEXP (&all.smod_32, 0) = &all.reg;
265 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
267 PUT_CODE (&all.zext, ZERO_EXTEND);
268 XEXP (&all.zext, 0) = &all.reg;
270 PUT_CODE (&all.wide_mult, MULT);
271 XEXP (&all.wide_mult, 0) = &all.zext;
272 XEXP (&all.wide_mult, 1) = &all.zext;
274 PUT_CODE (&all.wide_lshr, LSHIFTRT);
275 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
277 PUT_CODE (&all.wide_trunc, TRUNCATE);
278 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
280 PUT_CODE (&all.shift, ASHIFT);
281 XEXP (&all.shift, 0) = &all.reg;
283 PUT_CODE (&all.shift_mult, MULT);
284 XEXP (&all.shift_mult, 0) = &all.reg;
286 PUT_CODE (&all.shift_add, PLUS);
287 XEXP (&all.shift_add, 0) = &all.shift_mult;
288 XEXP (&all.shift_add, 1) = &all.reg;
290 PUT_CODE (&all.shift_sub0, MINUS);
291 XEXP (&all.shift_sub0, 0) = &all.shift_mult;
292 XEXP (&all.shift_sub0, 1) = &all.reg;
294 PUT_CODE (&all.shift_sub1, MINUS);
295 XEXP (&all.shift_sub1, 0) = &all.reg;
296 XEXP (&all.shift_sub1, 1) = &all.shift_mult;
298 PUT_CODE (&all.trunc, TRUNCATE);
299 XEXP (&all.trunc, 0) = &all.reg;
301 for (speed = 0; speed < 2; speed++)
303 crtl->maybe_hot_insn_p = speed;
304 set_zero_cost (speed, set_src_cost (const0_rtx, speed));
306 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
307 mode = (enum machine_mode)(mode + 1))
308 init_expmed_one_mode (&all, mode, speed);
310 if (MIN_MODE_PARTIAL_INT != VOIDmode)
311 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
312 mode = (enum machine_mode)(mode + 1))
313 init_expmed_one_mode (&all, mode, speed);
315 if (MIN_MODE_VECTOR_INT != VOIDmode)
316 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
317 mode = (enum machine_mode)(mode + 1))
318 init_expmed_one_mode (&all, mode, speed);
321 if (alg_hash_used_p ())
323 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
324 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
326 else
327 set_alg_hash_used_p (true);
328 default_rtl_profile ();
331 /* Return an rtx representing minus the value of X.
332 MODE is the intended mode of the result,
333 useful if X is a CONST_INT. */
336 negate_rtx (enum machine_mode mode, rtx x)
338 rtx result = simplify_unary_operation (NEG, mode, x, mode);
340 if (result == 0)
341 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
343 return result;
346 /* Report on the availability of insv/extv/extzv and the desired mode
347 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
348 is false; else the mode of the specified operand. If OPNO is -1,
349 all the caller cares about is whether the insn is available. */
350 enum machine_mode
351 mode_for_extraction (enum extraction_pattern pattern, int opno)
353 const struct insn_data_d *data;
355 switch (pattern)
357 case EP_insv:
358 if (HAVE_insv)
360 data = &insn_data[CODE_FOR_insv];
361 break;
363 return MAX_MACHINE_MODE;
365 case EP_extv:
366 if (HAVE_extv)
368 data = &insn_data[CODE_FOR_extv];
369 break;
371 return MAX_MACHINE_MODE;
373 case EP_extzv:
374 if (HAVE_extzv)
376 data = &insn_data[CODE_FOR_extzv];
377 break;
379 return MAX_MACHINE_MODE;
381 default:
382 gcc_unreachable ();
385 if (opno == -1)
386 return VOIDmode;
388 /* Everyone who uses this function used to follow it with
389 if (result == VOIDmode) result = word_mode; */
390 if (data->operand[opno].mode == VOIDmode)
391 return word_mode;
392 return data->operand[opno].mode;
395 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
396 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
397 offset is then BITNUM / BITS_PER_UNIT. */
399 static bool
400 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum,
401 unsigned HOST_WIDE_INT bitsize,
402 enum machine_mode struct_mode)
404 if (BYTES_BIG_ENDIAN)
405 return (bitnum % BITS_PER_UNIT == 0
406 && (bitnum + bitsize == GET_MODE_BITSIZE (struct_mode)
407 || (bitnum + bitsize) % BITS_PER_WORD == 0));
408 else
409 return bitnum % BITS_PER_WORD == 0;
412 /* A subroutine of store_bit_field, with the same arguments. Return true
413 if the operation could be implemented.
415 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
416 no other way of implementing the operation. If FALLBACK_P is false,
417 return false instead. */
419 static bool
420 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
421 unsigned HOST_WIDE_INT bitnum,
422 unsigned HOST_WIDE_INT bitregion_start,
423 unsigned HOST_WIDE_INT bitregion_end,
424 enum machine_mode fieldmode,
425 rtx value, bool fallback_p)
427 rtx op0 = str_rtx;
428 rtx orig_value;
430 while (GET_CODE (op0) == SUBREG)
432 /* The following line once was done only if WORDS_BIG_ENDIAN,
433 but I think that is a mistake. WORDS_BIG_ENDIAN is
434 meaningful at a much higher level; when structures are copied
435 between memory and regs, the higher-numbered regs
436 always get higher addresses. */
437 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
438 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
439 int byte_offset = 0;
441 /* Paradoxical subregs need special handling on big endian machines. */
442 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
444 int difference = inner_mode_size - outer_mode_size;
446 if (WORDS_BIG_ENDIAN)
447 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
448 if (BYTES_BIG_ENDIAN)
449 byte_offset += difference % UNITS_PER_WORD;
451 else
452 byte_offset = SUBREG_BYTE (op0);
454 bitnum += byte_offset * BITS_PER_UNIT;
455 op0 = SUBREG_REG (op0);
458 /* No action is needed if the target is a register and if the field
459 lies completely outside that register. This can occur if the source
460 code contains an out-of-bounds access to a small array. */
461 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
462 return true;
464 /* Use vec_set patterns for inserting parts of vectors whenever
465 available. */
466 if (VECTOR_MODE_P (GET_MODE (op0))
467 && !MEM_P (op0)
468 && optab_handler (vec_set_optab, GET_MODE (op0)) != CODE_FOR_nothing
469 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
470 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
471 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
473 struct expand_operand ops[3];
474 enum machine_mode outermode = GET_MODE (op0);
475 enum machine_mode innermode = GET_MODE_INNER (outermode);
476 enum insn_code icode = optab_handler (vec_set_optab, outermode);
477 int pos = bitnum / GET_MODE_BITSIZE (innermode);
479 create_fixed_operand (&ops[0], op0);
480 create_input_operand (&ops[1], value, innermode);
481 create_integer_operand (&ops[2], pos);
482 if (maybe_expand_insn (icode, 3, ops))
483 return true;
486 /* If the target is a register, overwriting the entire object, or storing
487 a full-word or multi-word field can be done with just a SUBREG. */
488 if (!MEM_P (op0)
489 && bitsize == GET_MODE_BITSIZE (fieldmode)
490 && ((bitsize == GET_MODE_BITSIZE (GET_MODE (op0)) && bitnum == 0)
491 || (bitsize % BITS_PER_WORD == 0 && bitnum % BITS_PER_WORD == 0)))
493 /* Use the subreg machinery either to narrow OP0 to the required
494 words or to cope with mode punning between equal-sized modes. */
495 rtx sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
496 bitnum / BITS_PER_UNIT);
497 if (sub)
499 emit_move_insn (sub, value);
500 return true;
504 /* If the target is memory, storing any naturally aligned field can be
505 done with a simple store. For targets that support fast unaligned
506 memory, any naturally sized, unit aligned field can be done directly. */
507 if (MEM_P (op0)
508 && bitnum % BITS_PER_UNIT == 0
509 && bitsize == GET_MODE_BITSIZE (fieldmode)
510 && (!SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
511 || (bitnum % bitsize == 0
512 && MEM_ALIGN (op0) % bitsize == 0)))
514 op0 = adjust_bitfield_address (op0, fieldmode, bitnum / BITS_PER_UNIT);
515 emit_move_insn (op0, value);
516 return true;
519 /* Make sure we are playing with integral modes. Pun with subregs
520 if we aren't. This must come after the entire register case above,
521 since that case is valid for any mode. The following cases are only
522 valid for integral modes. */
524 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
525 if (imode != GET_MODE (op0))
527 if (MEM_P (op0))
528 op0 = adjust_bitfield_address (op0, imode, 0);
529 else
531 gcc_assert (imode != BLKmode);
532 op0 = gen_lowpart (imode, op0);
537 /* Storing an lsb-aligned field in a register
538 can be done with a movstrict instruction. */
540 if (!MEM_P (op0)
541 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
542 && bitsize == GET_MODE_BITSIZE (fieldmode)
543 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
545 struct expand_operand ops[2];
546 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
547 rtx arg0 = op0;
548 unsigned HOST_WIDE_INT subreg_off;
550 if (GET_CODE (arg0) == SUBREG)
552 /* Else we've got some float mode source being extracted into
553 a different float mode destination -- this combination of
554 subregs results in Severe Tire Damage. */
555 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
556 || GET_MODE_CLASS (fieldmode) == MODE_INT
557 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
558 arg0 = SUBREG_REG (arg0);
561 subreg_off = bitnum / BITS_PER_UNIT;
562 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off))
564 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
566 create_fixed_operand (&ops[0], arg0);
567 /* Shrink the source operand to FIELDMODE. */
568 create_convert_operand_to (&ops[1], value, fieldmode, false);
569 if (maybe_expand_insn (icode, 2, ops))
570 return true;
574 /* Handle fields bigger than a word. */
576 if (bitsize > BITS_PER_WORD)
578 /* Here we transfer the words of the field
579 in the order least significant first.
580 This is because the most significant word is the one which may
581 be less than full.
582 However, only do that if the value is not BLKmode. */
584 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
585 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
586 unsigned int i;
587 rtx last;
589 /* This is the mode we must force value to, so that there will be enough
590 subwords to extract. Note that fieldmode will often (always?) be
591 VOIDmode, because that is what store_field uses to indicate that this
592 is a bit field, but passing VOIDmode to operand_subword_force
593 is not allowed. */
594 fieldmode = GET_MODE (value);
595 if (fieldmode == VOIDmode)
596 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
598 last = get_last_insn ();
599 for (i = 0; i < nwords; i++)
601 /* If I is 0, use the low-order word in both field and target;
602 if I is 1, use the next to lowest word; and so on. */
603 unsigned int wordnum = (backwards
604 ? GET_MODE_SIZE (fieldmode) / UNITS_PER_WORD
605 - i - 1
606 : i);
607 unsigned int bit_offset = (backwards
608 ? MAX ((int) bitsize - ((int) i + 1)
609 * BITS_PER_WORD,
611 : (int) i * BITS_PER_WORD);
612 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
613 unsigned HOST_WIDE_INT new_bitsize =
614 MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
616 /* If the remaining chunk doesn't have full wordsize we have
617 to make sure that for big endian machines the higher order
618 bits are used. */
619 if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards)
620 value_word = simplify_expand_binop (word_mode, lshr_optab,
621 value_word,
622 GEN_INT (BITS_PER_WORD
623 - new_bitsize),
624 NULL_RTX, true,
625 OPTAB_LIB_WIDEN);
627 if (!store_bit_field_1 (op0, new_bitsize,
628 bitnum + bit_offset,
629 bitregion_start, bitregion_end,
630 word_mode,
631 value_word, fallback_p))
633 delete_insns_since (last);
634 return false;
637 return true;
640 /* If VALUE has a floating-point or complex mode, access it as an
641 integer of the corresponding size. This can occur on a machine
642 with 64 bit registers that uses SFmode for float. It can also
643 occur for unaligned float or complex fields. */
644 orig_value = value;
645 if (GET_MODE (value) != VOIDmode
646 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
647 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
649 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
650 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
653 /* If OP0 is a multi-word register, narrow it to the affected word.
654 If the region spans two words, defer to store_split_bit_field. */
655 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
657 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
658 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
659 gcc_assert (op0);
660 bitnum %= BITS_PER_WORD;
661 if (bitnum + bitsize > BITS_PER_WORD)
663 if (!fallback_p)
664 return false;
666 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
667 bitregion_end, value);
668 return true;
672 /* From here on we can assume that the field to be stored in fits
673 within a word. If the destination is a register, it too fits
674 in a word. */
676 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
677 if (HAVE_insv
678 && GET_MODE (value) != BLKmode
679 && bitsize > 0
680 && GET_MODE_BITSIZE (op_mode) >= bitsize
681 /* Do not use insv for volatile bitfields when
682 -fstrict-volatile-bitfields is in effect. */
683 && !(MEM_P (op0) && MEM_VOLATILE_P (op0)
684 && flag_strict_volatile_bitfields > 0)
685 /* Do not use insv if the bit region is restricted and
686 op_mode integer at offset doesn't fit into the
687 restricted region. */
688 && !(MEM_P (op0) && bitregion_end
689 && bitnum - (bitnum % BITS_PER_UNIT) + GET_MODE_BITSIZE (op_mode)
690 > bitregion_end + 1))
692 struct expand_operand ops[4];
693 unsigned HOST_WIDE_INT bitpos = bitnum;
694 rtx value1;
695 rtx xop0 = op0;
696 rtx last = get_last_insn ();
697 bool copy_back = false;
699 unsigned int unit = GET_MODE_BITSIZE (op_mode);
700 if (MEM_P (xop0))
702 /* Get a reference to the first byte of the field. */
703 xop0 = adjust_bitfield_address (xop0, byte_mode,
704 bitpos / BITS_PER_UNIT);
705 bitpos %= BITS_PER_UNIT;
707 else
709 /* Convert from counting within OP0 to counting in OP_MODE. */
710 if (BYTES_BIG_ENDIAN)
711 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
714 /* If xop0 is a register, we need it in OP_MODE
715 to make it acceptable to the format of insv. */
716 if (GET_CODE (xop0) == SUBREG)
717 /* We can't just change the mode, because this might clobber op0,
718 and we will need the original value of op0 if insv fails. */
719 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
720 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
721 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
723 /* If the destination is a paradoxical subreg such that we need a
724 truncate to the inner mode, perform the insertion on a temporary and
725 truncate the result to the original destination. Note that we can't
726 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
727 X) 0)) is (reg:N X). */
728 if (GET_CODE (xop0) == SUBREG
729 && REG_P (SUBREG_REG (xop0))
730 && (!TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
731 op_mode)))
733 rtx tem = gen_reg_rtx (op_mode);
734 emit_move_insn (tem, xop0);
735 xop0 = tem;
736 copy_back = true;
739 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
740 "backwards" from the size of the unit we are inserting into.
741 Otherwise, we count bits from the most significant on a
742 BYTES/BITS_BIG_ENDIAN machine. */
744 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
745 bitpos = unit - bitsize - bitpos;
747 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
748 value1 = value;
749 if (GET_MODE (value) != op_mode)
751 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
753 /* Optimization: Don't bother really extending VALUE
754 if it has all the bits we will actually use. However,
755 if we must narrow it, be sure we do it correctly. */
757 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
759 rtx tmp;
761 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
762 if (! tmp)
763 tmp = simplify_gen_subreg (op_mode,
764 force_reg (GET_MODE (value),
765 value1),
766 GET_MODE (value), 0);
767 value1 = tmp;
769 else
770 value1 = gen_lowpart (op_mode, value1);
772 else if (CONST_INT_P (value))
773 value1 = gen_int_mode (INTVAL (value), op_mode);
774 else
775 /* Parse phase is supposed to make VALUE's data type
776 match that of the component reference, which is a type
777 at least as wide as the field; so VALUE should have
778 a mode that corresponds to that type. */
779 gcc_assert (CONSTANT_P (value));
782 create_fixed_operand (&ops[0], xop0);
783 create_integer_operand (&ops[1], bitsize);
784 create_integer_operand (&ops[2], bitpos);
785 create_input_operand (&ops[3], value1, op_mode);
786 if (maybe_expand_insn (CODE_FOR_insv, 4, ops))
788 if (copy_back)
789 convert_move (op0, xop0, true);
790 return true;
792 delete_insns_since (last);
795 /* If OP0 is a memory, try copying it to a register and seeing if a
796 cheap register alternative is available. */
797 if (HAVE_insv && MEM_P (op0))
799 enum machine_mode bestmode;
800 unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
802 if (bitregion_end)
803 maxbits = bitregion_end - bitregion_start + 1;
805 /* Get the mode to use for inserting into this field. If OP0 is
806 BLKmode, get the smallest mode consistent with the alignment. If
807 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
808 mode. Otherwise, use the smallest mode containing the field. */
810 if (GET_MODE (op0) == BLKmode
811 || GET_MODE_BITSIZE (GET_MODE (op0)) > maxbits
812 || (op_mode != MAX_MACHINE_MODE
813 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
814 bestmode = get_best_mode (bitsize, bitnum,
815 bitregion_start, bitregion_end,
816 MEM_ALIGN (op0),
817 (op_mode == MAX_MACHINE_MODE
818 ? VOIDmode : op_mode),
819 MEM_VOLATILE_P (op0));
820 else
821 bestmode = GET_MODE (op0);
823 if (bestmode != VOIDmode
824 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
825 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
826 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
828 rtx last, tempreg, xop0;
829 unsigned int unit;
830 unsigned HOST_WIDE_INT offset, bitpos;
832 last = get_last_insn ();
834 /* Adjust address to point to the containing unit of
835 that mode. Compute the offset as a multiple of this unit,
836 counting in bytes. */
837 unit = GET_MODE_BITSIZE (bestmode);
838 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
839 bitpos = bitnum % unit;
840 xop0 = adjust_bitfield_address (op0, bestmode, offset);
842 /* Fetch that unit, store the bitfield in it, then store
843 the unit. */
844 tempreg = copy_to_reg (xop0);
845 if (store_bit_field_1 (tempreg, bitsize, bitpos,
846 bitregion_start, bitregion_end,
847 fieldmode, orig_value, false))
849 emit_move_insn (xop0, tempreg);
850 return true;
852 delete_insns_since (last);
856 if (!fallback_p)
857 return false;
859 store_fixed_bit_field (op0, bitsize, bitnum, bitregion_start,
860 bitregion_end, value);
861 return true;
864 /* Generate code to store value from rtx VALUE
865 into a bit-field within structure STR_RTX
866 containing BITSIZE bits starting at bit BITNUM.
868 BITREGION_START is bitpos of the first bitfield in this region.
869 BITREGION_END is the bitpos of the ending bitfield in this region.
870 These two fields are 0, if the C++ memory model does not apply,
871 or we are not interested in keeping track of bitfield regions.
873 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
875 void
876 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
877 unsigned HOST_WIDE_INT bitnum,
878 unsigned HOST_WIDE_INT bitregion_start,
879 unsigned HOST_WIDE_INT bitregion_end,
880 enum machine_mode fieldmode,
881 rtx value)
883 /* Under the C++0x memory model, we must not touch bits outside the
884 bit region. Adjust the address to start at the beginning of the
885 bit region. */
886 if (MEM_P (str_rtx) && bitregion_start > 0)
888 enum machine_mode bestmode;
889 enum machine_mode op_mode;
890 unsigned HOST_WIDE_INT offset;
892 op_mode = mode_for_extraction (EP_insv, 3);
893 if (op_mode == MAX_MACHINE_MODE)
894 op_mode = VOIDmode;
896 gcc_assert ((bitregion_start % BITS_PER_UNIT) == 0);
898 offset = bitregion_start / BITS_PER_UNIT;
899 bitnum -= bitregion_start;
900 bitregion_end -= bitregion_start;
901 bitregion_start = 0;
902 bestmode = get_best_mode (bitsize, bitnum,
903 bitregion_start, bitregion_end,
904 MEM_ALIGN (str_rtx),
905 op_mode,
906 MEM_VOLATILE_P (str_rtx));
907 str_rtx = adjust_address (str_rtx, bestmode, offset);
910 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
911 bitregion_start, bitregion_end,
912 fieldmode, value, true))
913 gcc_unreachable ();
916 /* Use shifts and boolean operations to store VALUE into a bit field of
917 width BITSIZE in OP0, starting at bit BITNUM. */
919 static void
920 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
921 unsigned HOST_WIDE_INT bitnum,
922 unsigned HOST_WIDE_INT bitregion_start,
923 unsigned HOST_WIDE_INT bitregion_end,
924 rtx value)
926 enum machine_mode mode;
927 rtx temp;
928 int all_zero = 0;
929 int all_one = 0;
931 /* There is a case not handled here:
932 a structure with a known alignment of just a halfword
933 and a field split across two aligned halfwords within the structure.
934 Or likewise a structure with a known alignment of just a byte
935 and a field split across two bytes.
936 Such cases are not supposed to be able to occur. */
938 if (MEM_P (op0))
940 unsigned HOST_WIDE_INT maxbits = MAX_FIXED_MODE_SIZE;
942 if (bitregion_end)
943 maxbits = bitregion_end - bitregion_start + 1;
945 /* Get the proper mode to use for this field. We want a mode that
946 includes the entire field. If such a mode would be larger than
947 a word, we won't be doing the extraction the normal way.
948 We don't want a mode bigger than the destination. */
950 mode = GET_MODE (op0);
951 if (GET_MODE_BITSIZE (mode) == 0
952 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
953 mode = word_mode;
955 if (MEM_VOLATILE_P (op0)
956 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
957 && GET_MODE_BITSIZE (GET_MODE (op0)) <= maxbits
958 && flag_strict_volatile_bitfields > 0)
959 mode = GET_MODE (op0);
960 else
961 mode = get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
962 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
964 if (mode == VOIDmode)
966 /* The only way this should occur is if the field spans word
967 boundaries. */
968 store_split_bit_field (op0, bitsize, bitnum, bitregion_start,
969 bitregion_end, value);
970 return;
973 HOST_WIDE_INT bit_offset = bitnum - bitnum % GET_MODE_BITSIZE (mode);
974 op0 = adjust_bitfield_address (op0, mode, bit_offset / BITS_PER_UNIT);
975 bitnum -= bit_offset;
978 mode = GET_MODE (op0);
979 gcc_assert (SCALAR_INT_MODE_P (mode));
981 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
982 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
984 if (BYTES_BIG_ENDIAN)
985 /* BITNUM is the distance between our msb
986 and that of the containing datum.
987 Convert it to the distance from the lsb. */
988 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
990 /* Now BITNUM is always the distance between our lsb
991 and that of OP0. */
993 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
994 we must first convert its mode to MODE. */
996 if (CONST_INT_P (value))
998 HOST_WIDE_INT v = INTVAL (value);
1000 if (bitsize < HOST_BITS_PER_WIDE_INT)
1001 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
1003 if (v == 0)
1004 all_zero = 1;
1005 else if ((bitsize < HOST_BITS_PER_WIDE_INT
1006 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
1007 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
1008 all_one = 1;
1010 value = lshift_value (mode, value, bitnum, bitsize);
1012 else
1014 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
1015 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
1017 if (GET_MODE (value) != mode)
1018 value = convert_to_mode (mode, value, 1);
1020 if (must_and)
1021 value = expand_binop (mode, and_optab, value,
1022 mask_rtx (mode, 0, bitsize, 0),
1023 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1024 if (bitnum > 0)
1025 value = expand_shift (LSHIFT_EXPR, mode, value,
1026 bitnum, NULL_RTX, 1);
1029 /* Now clear the chosen bits in OP0,
1030 except that if VALUE is -1 we need not bother. */
1031 /* We keep the intermediates in registers to allow CSE to combine
1032 consecutive bitfield assignments. */
1034 temp = force_reg (mode, op0);
1036 if (! all_one)
1038 temp = expand_binop (mode, and_optab, temp,
1039 mask_rtx (mode, bitnum, bitsize, 1),
1040 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1041 temp = force_reg (mode, temp);
1044 /* Now logical-or VALUE into OP0, unless it is zero. */
1046 if (! all_zero)
1048 temp = expand_binop (mode, ior_optab, temp, value,
1049 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1050 temp = force_reg (mode, temp);
1053 if (op0 != temp)
1055 op0 = copy_rtx (op0);
1056 emit_move_insn (op0, temp);
1060 /* Store a bit field that is split across multiple accessible memory objects.
1062 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1063 BITSIZE is the field width; BITPOS the position of its first bit
1064 (within the word).
1065 VALUE is the value to store.
1067 This does not yet handle fields wider than BITS_PER_WORD. */
1069 static void
1070 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1071 unsigned HOST_WIDE_INT bitpos,
1072 unsigned HOST_WIDE_INT bitregion_start,
1073 unsigned HOST_WIDE_INT bitregion_end,
1074 rtx value)
1076 unsigned int unit;
1077 unsigned int bitsdone = 0;
1079 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1080 much at a time. */
1081 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1082 unit = BITS_PER_WORD;
1083 else
1084 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1086 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1087 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1088 that VALUE might be a floating-point constant. */
1089 if (CONSTANT_P (value) && !CONST_INT_P (value))
1091 rtx word = gen_lowpart_common (word_mode, value);
1093 if (word && (value != word))
1094 value = word;
1095 else
1096 value = gen_lowpart_common (word_mode,
1097 force_reg (GET_MODE (value) != VOIDmode
1098 ? GET_MODE (value)
1099 : word_mode, value));
1102 while (bitsdone < bitsize)
1104 unsigned HOST_WIDE_INT thissize;
1105 rtx part, word;
1106 unsigned HOST_WIDE_INT thispos;
1107 unsigned HOST_WIDE_INT offset;
1109 offset = (bitpos + bitsdone) / unit;
1110 thispos = (bitpos + bitsdone) % unit;
1112 /* When region of bytes we can touch is restricted, decrease
1113 UNIT close to the end of the region as needed. */
1114 if (bitregion_end
1115 && unit > BITS_PER_UNIT
1116 && bitpos + bitsdone - thispos + unit > bitregion_end + 1)
1118 unit = unit / 2;
1119 continue;
1122 /* THISSIZE must not overrun a word boundary. Otherwise,
1123 store_fixed_bit_field will call us again, and we will mutually
1124 recurse forever. */
1125 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1126 thissize = MIN (thissize, unit - thispos);
1128 if (BYTES_BIG_ENDIAN)
1130 /* Fetch successively less significant portions. */
1131 if (CONST_INT_P (value))
1132 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1133 >> (bitsize - bitsdone - thissize))
1134 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1135 else
1137 int total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1138 /* The args are chosen so that the last part includes the
1139 lsb. Give extract_bit_field the value it needs (with
1140 endianness compensation) to fetch the piece we want. */
1141 part = extract_fixed_bit_field (word_mode, value, thissize,
1142 total_bits - bitsize + bitsdone,
1143 NULL_RTX, 1, false);
1146 else
1148 /* Fetch successively more significant portions. */
1149 if (CONST_INT_P (value))
1150 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1151 >> bitsdone)
1152 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1153 else
1154 part = extract_fixed_bit_field (word_mode, value, thissize,
1155 bitsdone, NULL_RTX, 1, false);
1158 /* If OP0 is a register, then handle OFFSET here.
1160 When handling multiword bitfields, extract_bit_field may pass
1161 down a word_mode SUBREG of a larger REG for a bitfield that actually
1162 crosses a word boundary. Thus, for a SUBREG, we must find
1163 the current word starting from the base register. */
1164 if (GET_CODE (op0) == SUBREG)
1166 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1167 enum machine_mode sub_mode = GET_MODE (SUBREG_REG (op0));
1168 if (sub_mode != BLKmode && GET_MODE_SIZE (sub_mode) < UNITS_PER_WORD)
1169 word = word_offset ? const0_rtx : op0;
1170 else
1171 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1172 GET_MODE (SUBREG_REG (op0)));
1173 offset = 0;
1175 else if (REG_P (op0))
1177 enum machine_mode op0_mode = GET_MODE (op0);
1178 if (op0_mode != BLKmode && GET_MODE_SIZE (op0_mode) < UNITS_PER_WORD)
1179 word = offset ? const0_rtx : op0;
1180 else
1181 word = operand_subword_force (op0, offset, GET_MODE (op0));
1182 offset = 0;
1184 else
1185 word = op0;
1187 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1188 it is just an out-of-bounds access. Ignore it. */
1189 if (word != const0_rtx)
1190 store_fixed_bit_field (word, thissize, offset * unit + thispos,
1191 bitregion_start, bitregion_end, part);
1192 bitsdone += thissize;
1196 /* A subroutine of extract_bit_field_1 that converts return value X
1197 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1198 to extract_bit_field. */
1200 static rtx
1201 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1202 enum machine_mode tmode, bool unsignedp)
1204 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1205 return x;
1207 /* If the x mode is not a scalar integral, first convert to the
1208 integer mode of that size and then access it as a floating-point
1209 value via a SUBREG. */
1210 if (!SCALAR_INT_MODE_P (tmode))
1212 enum machine_mode smode;
1214 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1215 x = convert_to_mode (smode, x, unsignedp);
1216 x = force_reg (smode, x);
1217 return gen_lowpart (tmode, x);
1220 return convert_to_mode (tmode, x, unsignedp);
1223 /* A subroutine of extract_bit_field, with the same arguments.
1224 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1225 if we can find no other means of implementing the operation.
1226 if FALLBACK_P is false, return NULL instead. */
1228 static rtx
1229 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1230 unsigned HOST_WIDE_INT bitnum,
1231 int unsignedp, bool packedp, rtx target,
1232 enum machine_mode mode, enum machine_mode tmode,
1233 bool fallback_p)
1235 rtx op0 = str_rtx;
1236 enum machine_mode int_mode;
1237 enum machine_mode ext_mode;
1238 enum machine_mode mode1;
1240 if (tmode == VOIDmode)
1241 tmode = mode;
1243 while (GET_CODE (op0) == SUBREG)
1245 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1246 op0 = SUBREG_REG (op0);
1249 /* If we have an out-of-bounds access to a register, just return an
1250 uninitialized register of the required mode. This can occur if the
1251 source code contains an out-of-bounds access to a small array. */
1252 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1253 return gen_reg_rtx (tmode);
1255 if (REG_P (op0)
1256 && mode == GET_MODE (op0)
1257 && bitnum == 0
1258 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1260 /* We're trying to extract a full register from itself. */
1261 return op0;
1264 /* See if we can get a better vector mode before extracting. */
1265 if (VECTOR_MODE_P (GET_MODE (op0))
1266 && !MEM_P (op0)
1267 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1269 enum machine_mode new_mode;
1271 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1272 new_mode = MIN_MODE_VECTOR_FLOAT;
1273 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1274 new_mode = MIN_MODE_VECTOR_FRACT;
1275 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1276 new_mode = MIN_MODE_VECTOR_UFRACT;
1277 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1278 new_mode = MIN_MODE_VECTOR_ACCUM;
1279 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1280 new_mode = MIN_MODE_VECTOR_UACCUM;
1281 else
1282 new_mode = MIN_MODE_VECTOR_INT;
1284 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1285 if (GET_MODE_SIZE (new_mode) == GET_MODE_SIZE (GET_MODE (op0))
1286 && targetm.vector_mode_supported_p (new_mode))
1287 break;
1288 if (new_mode != VOIDmode)
1289 op0 = gen_lowpart (new_mode, op0);
1292 /* Use vec_extract patterns for extracting parts of vectors whenever
1293 available. */
1294 if (VECTOR_MODE_P (GET_MODE (op0))
1295 && !MEM_P (op0)
1296 && optab_handler (vec_extract_optab, GET_MODE (op0)) != CODE_FOR_nothing
1297 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1298 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1300 struct expand_operand ops[3];
1301 enum machine_mode outermode = GET_MODE (op0);
1302 enum machine_mode innermode = GET_MODE_INNER (outermode);
1303 enum insn_code icode = optab_handler (vec_extract_optab, outermode);
1304 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1306 create_output_operand (&ops[0], target, innermode);
1307 create_input_operand (&ops[1], op0, outermode);
1308 create_integer_operand (&ops[2], pos);
1309 if (maybe_expand_insn (icode, 3, ops))
1311 target = ops[0].value;
1312 if (GET_MODE (target) != mode)
1313 return gen_lowpart (tmode, target);
1314 return target;
1318 /* Make sure we are playing with integral modes. Pun with subregs
1319 if we aren't. */
1321 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1322 if (imode != GET_MODE (op0))
1324 if (MEM_P (op0))
1325 op0 = adjust_bitfield_address (op0, imode, 0);
1326 else if (imode != BLKmode)
1328 op0 = gen_lowpart (imode, op0);
1330 /* If we got a SUBREG, force it into a register since we
1331 aren't going to be able to do another SUBREG on it. */
1332 if (GET_CODE (op0) == SUBREG)
1333 op0 = force_reg (imode, op0);
1335 else if (REG_P (op0))
1337 rtx reg, subreg;
1338 imode = smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0)),
1339 MODE_INT);
1340 reg = gen_reg_rtx (imode);
1341 subreg = gen_lowpart_SUBREG (GET_MODE (op0), reg);
1342 emit_move_insn (subreg, op0);
1343 op0 = reg;
1344 bitnum += SUBREG_BYTE (subreg) * BITS_PER_UNIT;
1346 else
1348 rtx mem = assign_stack_temp (GET_MODE (op0),
1349 GET_MODE_SIZE (GET_MODE (op0)));
1350 emit_move_insn (mem, op0);
1351 op0 = adjust_bitfield_address (mem, BLKmode, 0);
1356 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1357 If that's wrong, the solution is to test for it and set TARGET to 0
1358 if needed. */
1360 /* If the bitfield is volatile, we need to make sure the access
1361 remains on a type-aligned boundary. */
1362 if (GET_CODE (op0) == MEM
1363 && MEM_VOLATILE_P (op0)
1364 && GET_MODE_BITSIZE (GET_MODE (op0)) > 0
1365 && flag_strict_volatile_bitfields > 0)
1366 goto no_subreg_mode_swap;
1368 /* Only scalar integer modes can be converted via subregs. There is an
1369 additional problem for FP modes here in that they can have a precision
1370 which is different from the size. mode_for_size uses precision, but
1371 we want a mode based on the size, so we must avoid calling it for FP
1372 modes. */
1373 mode1 = mode;
1374 if (SCALAR_INT_MODE_P (tmode))
1376 enum machine_mode try_mode = mode_for_size (bitsize,
1377 GET_MODE_CLASS (tmode), 0);
1378 if (try_mode != BLKmode)
1379 mode1 = try_mode;
1381 gcc_assert (mode1 != BLKmode);
1383 /* Extraction of a full MODE1 value can be done with a subreg as long
1384 as the least significant bit of the value is the least significant
1385 bit of either OP0 or a word of OP0. */
1386 if (!MEM_P (op0)
1387 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1388 && bitsize == GET_MODE_BITSIZE (mode1)
1389 && TRULY_NOOP_TRUNCATION_MODES_P (mode1, GET_MODE (op0)))
1391 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1392 bitnum / BITS_PER_UNIT);
1393 if (sub)
1394 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1397 /* Extraction of a full MODE1 value can be done with a load as long as
1398 the field is on a byte boundary and is sufficiently aligned. */
1399 if (MEM_P (op0)
1400 && bitnum % BITS_PER_UNIT == 0
1401 && bitsize == GET_MODE_BITSIZE (mode1)
1402 && (!SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))
1403 || (bitnum % bitsize == 0
1404 && MEM_ALIGN (op0) % bitsize == 0)))
1406 op0 = adjust_bitfield_address (op0, mode1, bitnum / BITS_PER_UNIT);
1407 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
1410 no_subreg_mode_swap:
1412 /* Handle fields bigger than a word. */
1414 if (bitsize > BITS_PER_WORD)
1416 /* Here we transfer the words of the field
1417 in the order least significant first.
1418 This is because the most significant word is the one which may
1419 be less than full. */
1421 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1422 unsigned int i;
1423 rtx last;
1425 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1426 target = gen_reg_rtx (mode);
1428 /* Indicate for flow that the entire target reg is being set. */
1429 emit_clobber (target);
1431 last = get_last_insn ();
1432 for (i = 0; i < nwords; i++)
1434 /* If I is 0, use the low-order word in both field and target;
1435 if I is 1, use the next to lowest word; and so on. */
1436 /* Word number in TARGET to use. */
1437 unsigned int wordnum
1438 = (WORDS_BIG_ENDIAN
1439 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1440 : i);
1441 /* Offset from start of field in OP0. */
1442 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1443 ? MAX (0, ((int) bitsize - ((int) i + 1)
1444 * (int) BITS_PER_WORD))
1445 : (int) i * BITS_PER_WORD);
1446 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1447 rtx result_part
1448 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1449 bitsize - i * BITS_PER_WORD),
1450 bitnum + bit_offset, 1, false, target_part,
1451 mode, word_mode, fallback_p);
1453 gcc_assert (target_part);
1454 if (!result_part)
1456 delete_insns_since (last);
1457 return NULL;
1460 if (result_part != target_part)
1461 emit_move_insn (target_part, result_part);
1464 if (unsignedp)
1466 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1467 need to be zero'd out. */
1468 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1470 unsigned int i, total_words;
1472 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1473 for (i = nwords; i < total_words; i++)
1474 emit_move_insn
1475 (operand_subword (target,
1476 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1477 1, VOIDmode),
1478 const0_rtx);
1480 return target;
1483 /* Signed bit field: sign-extend with two arithmetic shifts. */
1484 target = expand_shift (LSHIFT_EXPR, mode, target,
1485 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1486 return expand_shift (RSHIFT_EXPR, mode, target,
1487 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
1490 /* If OP0 is a multi-word register, narrow it to the affected word.
1491 If the region spans two words, defer to extract_split_bit_field. */
1492 if (!MEM_P (op0) && GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1494 op0 = simplify_gen_subreg (word_mode, op0, GET_MODE (op0),
1495 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1496 bitnum %= BITS_PER_WORD;
1497 if (bitnum + bitsize > BITS_PER_WORD)
1499 if (!fallback_p)
1500 return NULL_RTX;
1501 target = extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1502 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1506 /* From here on we know the desired field is smaller than a word.
1507 If OP0 is a register, it too fits within a word. */
1509 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1510 if (ext_mode != MAX_MACHINE_MODE
1511 && bitsize > 0
1512 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1513 /* Do not use extv/extzv for volatile bitfields when
1514 -fstrict-volatile-bitfields is in effect. */
1515 && !(MEM_P (op0) && MEM_VOLATILE_P (op0)
1516 && flag_strict_volatile_bitfields > 0)
1517 /* If op0 is a register, we need it in EXT_MODE to make it
1518 acceptable to the format of ext(z)v. */
1519 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode))
1521 struct expand_operand ops[4];
1522 unsigned HOST_WIDE_INT bitpos = bitnum;
1523 rtx xop0 = op0;
1524 rtx xtarget = target;
1525 rtx xspec_target = target;
1526 rtx xspec_target_subreg = 0;
1527 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1529 /* If op0 is a register, we need it in EXT_MODE to make it
1530 acceptable to the format of ext(z)v. */
1531 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1532 xop0 = gen_lowpart_SUBREG (ext_mode, xop0);
1534 if (MEM_P (xop0))
1536 /* Get a reference to the first byte of the field. */
1537 xop0 = adjust_bitfield_address (xop0, byte_mode,
1538 bitpos / BITS_PER_UNIT);
1539 bitpos %= BITS_PER_UNIT;
1541 else
1543 /* Convert from counting within OP0 to counting in EXT_MODE. */
1544 if (BYTES_BIG_ENDIAN)
1545 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1548 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1549 "backwards" from the size of the unit we are extracting from.
1550 Otherwise, we count bits from the most significant on a
1551 BYTES/BITS_BIG_ENDIAN machine. */
1553 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1554 bitpos = unit - bitsize - bitpos;
1556 if (xtarget == 0)
1557 xtarget = xspec_target = gen_reg_rtx (tmode);
1559 if (GET_MODE (xtarget) != ext_mode)
1561 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1562 between the mode of the extraction (word_mode) and the target
1563 mode. Instead, create a temporary and use convert_move to set
1564 the target. */
1565 if (REG_P (xtarget)
1566 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (xtarget), ext_mode))
1568 xtarget = gen_lowpart (ext_mode, xtarget);
1569 if (GET_MODE_PRECISION (ext_mode)
1570 > GET_MODE_PRECISION (GET_MODE (xspec_target)))
1571 xspec_target_subreg = xtarget;
1573 else
1574 xtarget = gen_reg_rtx (ext_mode);
1577 create_output_operand (&ops[0], xtarget, ext_mode);
1578 create_fixed_operand (&ops[1], xop0);
1579 create_integer_operand (&ops[2], bitsize);
1580 create_integer_operand (&ops[3], bitpos);
1581 if (maybe_expand_insn (unsignedp ? CODE_FOR_extzv : CODE_FOR_extv,
1582 4, ops))
1584 xtarget = ops[0].value;
1585 if (xtarget == xspec_target)
1586 return xtarget;
1587 if (xtarget == xspec_target_subreg)
1588 return xspec_target;
1589 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1593 /* If OP0 is a memory, try copying it to a register and seeing if a
1594 cheap register alternative is available. */
1595 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1597 enum machine_mode bestmode;
1599 /* Get the mode to use for inserting into this field. If
1600 OP0 is BLKmode, get the smallest mode consistent with the
1601 alignment. If OP0 is a non-BLKmode object that is no
1602 wider than EXT_MODE, use its mode. Otherwise, use the
1603 smallest mode containing the field. */
1605 if (GET_MODE (op0) == BLKmode
1606 || (ext_mode != MAX_MACHINE_MODE
1607 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1608 bestmode = get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
1609 (ext_mode == MAX_MACHINE_MODE
1610 ? VOIDmode : ext_mode),
1611 MEM_VOLATILE_P (op0));
1612 else
1613 bestmode = GET_MODE (op0);
1615 if (bestmode != VOIDmode
1616 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1617 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1619 unsigned HOST_WIDE_INT offset, bitpos;
1621 /* Compute the offset as a multiple of this unit,
1622 counting in bytes. */
1623 unsigned int unit = GET_MODE_BITSIZE (bestmode);
1624 offset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1625 bitpos = bitnum % unit;
1627 /* Make sure the register is big enough for the whole field. */
1628 if (bitpos + bitsize <= unit)
1630 rtx last, result, xop0;
1632 last = get_last_insn ();
1634 /* Fetch it to a register in that size. */
1635 xop0 = adjust_bitfield_address (op0, bestmode, offset);
1636 xop0 = force_reg (bestmode, xop0);
1637 result = extract_bit_field_1 (xop0, bitsize, bitpos,
1638 unsignedp, packedp, target,
1639 mode, tmode, false);
1640 if (result)
1641 return result;
1643 delete_insns_since (last);
1648 if (!fallback_p)
1649 return NULL;
1651 /* Find a correspondingly-sized integer field, so we can apply
1652 shifts and masks to it. */
1653 int_mode = int_mode_for_mode (tmode);
1654 if (int_mode == BLKmode)
1655 int_mode = int_mode_for_mode (mode);
1656 /* Should probably push op0 out to memory and then do a load. */
1657 gcc_assert (int_mode != BLKmode);
1659 target = extract_fixed_bit_field (int_mode, op0, bitsize, bitnum,
1660 target, unsignedp, packedp);
1661 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1664 /* Generate code to extract a byte-field from STR_RTX
1665 containing BITSIZE bits, starting at BITNUM,
1666 and put it in TARGET if possible (if TARGET is nonzero).
1667 Regardless of TARGET, we return the rtx for where the value is placed.
1669 STR_RTX is the structure containing the byte (a REG or MEM).
1670 UNSIGNEDP is nonzero if this is an unsigned bit field.
1671 PACKEDP is nonzero if the field has the packed attribute.
1672 MODE is the natural mode of the field value once extracted.
1673 TMODE is the mode the caller would like the value to have;
1674 but the value may be returned with type MODE instead.
1676 If a TARGET is specified and we can store in it at no extra cost,
1677 we do so, and return TARGET.
1678 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1679 if they are equally easy. */
1682 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1683 unsigned HOST_WIDE_INT bitnum, int unsignedp, bool packedp,
1684 rtx target, enum machine_mode mode, enum machine_mode tmode)
1686 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, packedp,
1687 target, mode, tmode, true);
1690 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1691 from bit BITNUM of OP0.
1693 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1694 PACKEDP is true if the field has the packed attribute.
1696 If TARGET is nonzero, attempts to store the value there
1697 and return TARGET, but this is not guaranteed.
1698 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1700 static rtx
1701 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1702 unsigned HOST_WIDE_INT bitsize,
1703 unsigned HOST_WIDE_INT bitnum, rtx target,
1704 int unsignedp, bool packedp)
1706 enum machine_mode mode;
1708 if (MEM_P (op0))
1710 /* Get the proper mode to use for this field. We want a mode that
1711 includes the entire field. If such a mode would be larger than
1712 a word, we won't be doing the extraction the normal way. */
1714 if (MEM_VOLATILE_P (op0)
1715 && flag_strict_volatile_bitfields > 0)
1717 if (GET_MODE_BITSIZE (GET_MODE (op0)) > 0)
1718 mode = GET_MODE (op0);
1719 else if (target && GET_MODE_BITSIZE (GET_MODE (target)) > 0)
1720 mode = GET_MODE (target);
1721 else
1722 mode = tmode;
1724 else
1725 mode = get_best_mode (bitsize, bitnum, 0, 0,
1726 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1728 if (mode == VOIDmode)
1729 /* The only way this should occur is if the field spans word
1730 boundaries. */
1731 return extract_split_bit_field (op0, bitsize, bitnum, unsignedp);
1733 unsigned int total_bits = GET_MODE_BITSIZE (mode);
1734 HOST_WIDE_INT bit_offset = bitnum - bitnum % total_bits;
1736 /* If we're accessing a volatile MEM, we can't apply BIT_OFFSET
1737 if it results in a multi-word access where we otherwise wouldn't
1738 have one. So, check for that case here. */
1739 if (MEM_P (op0)
1740 && MEM_VOLATILE_P (op0)
1741 && flag_strict_volatile_bitfields > 0
1742 && bitnum % BITS_PER_UNIT + bitsize <= total_bits
1743 && bitnum % GET_MODE_BITSIZE (mode) + bitsize > total_bits)
1745 if (STRICT_ALIGNMENT)
1747 static bool informed_about_misalignment = false;
1749 if (packedp)
1751 if (bitsize == total_bits)
1752 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1753 "multiple accesses to volatile structure"
1754 " member because of packed attribute");
1755 else
1756 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1757 "multiple accesses to volatile structure"
1758 " bitfield because of packed attribute");
1760 return extract_split_bit_field (op0, bitsize, bitnum,
1761 unsignedp);
1764 if (bitsize == total_bits)
1765 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1766 "mis-aligned access used for structure member");
1767 else
1768 warning_at (input_location, OPT_fstrict_volatile_bitfields,
1769 "mis-aligned access used for structure bitfield");
1771 if (! informed_about_misalignment)
1773 informed_about_misalignment = true;
1774 inform (input_location,
1775 "when a volatile object spans multiple type-sized"
1776 " locations, the compiler must choose between using"
1777 " a single mis-aligned access to preserve the"
1778 " volatility, or using multiple aligned accesses"
1779 " to avoid runtime faults; this code may fail at"
1780 " runtime if the hardware does not allow this"
1781 " access");
1784 bit_offset = bitnum - bitnum % BITS_PER_UNIT;
1786 op0 = adjust_bitfield_address (op0, mode, bit_offset / BITS_PER_UNIT);
1787 bitnum -= bit_offset;
1790 mode = GET_MODE (op0);
1791 gcc_assert (SCALAR_INT_MODE_P (mode));
1793 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1794 for invalid input, such as extract equivalent of f5 from
1795 gcc.dg/pr48335-2.c. */
1797 if (BYTES_BIG_ENDIAN)
1798 /* BITNUM is the distance between our msb and that of OP0.
1799 Convert it to the distance from the lsb. */
1800 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
1802 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1803 We have reduced the big-endian case to the little-endian case. */
1805 if (unsignedp)
1807 if (bitnum)
1809 /* If the field does not already start at the lsb,
1810 shift it so it does. */
1811 /* Maybe propagate the target for the shift. */
1812 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1813 if (tmode != mode)
1814 subtarget = 0;
1815 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
1817 /* Convert the value to the desired mode. */
1818 if (mode != tmode)
1819 op0 = convert_to_mode (tmode, op0, 1);
1821 /* Unless the msb of the field used to be the msb when we shifted,
1822 mask out the upper bits. */
1824 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1825 return expand_binop (GET_MODE (op0), and_optab, op0,
1826 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1827 target, 1, OPTAB_LIB_WIDEN);
1828 return op0;
1831 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1832 then arithmetic-shift its lsb to the lsb of the word. */
1833 op0 = force_reg (mode, op0);
1835 /* Find the narrowest integer mode that contains the field. */
1837 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1838 mode = GET_MODE_WIDER_MODE (mode))
1839 if (GET_MODE_BITSIZE (mode) >= bitsize + bitnum)
1841 op0 = convert_to_mode (mode, op0, 0);
1842 break;
1845 if (mode != tmode)
1846 target = 0;
1848 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
1850 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
1851 /* Maybe propagate the target for the shift. */
1852 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1853 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1856 return expand_shift (RSHIFT_EXPR, mode, op0,
1857 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
1860 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1861 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1862 complement of that if COMPLEMENT. The mask is truncated if
1863 necessary to the width of mode MODE. The mask is zero-extended if
1864 BITSIZE+BITPOS is too small for MODE. */
1866 static rtx
1867 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1869 double_int mask;
1871 mask = double_int::mask (bitsize);
1872 mask = mask.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1874 if (complement)
1875 mask = ~mask;
1877 return immed_double_int_const (mask, mode);
1880 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1881 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1883 static rtx
1884 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1886 double_int val;
1888 val = double_int::from_uhwi (INTVAL (value)).zext (bitsize);
1889 val = val.llshift (bitpos, HOST_BITS_PER_DOUBLE_INT);
1891 return immed_double_int_const (val, mode);
1894 /* Extract a bit field that is split across two words
1895 and return an RTX for the result.
1897 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1898 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1899 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1901 static rtx
1902 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1903 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1905 unsigned int unit;
1906 unsigned int bitsdone = 0;
1907 rtx result = NULL_RTX;
1908 int first = 1;
1910 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1911 much at a time. */
1912 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1913 unit = BITS_PER_WORD;
1914 else
1915 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1917 while (bitsdone < bitsize)
1919 unsigned HOST_WIDE_INT thissize;
1920 rtx part, word;
1921 unsigned HOST_WIDE_INT thispos;
1922 unsigned HOST_WIDE_INT offset;
1924 offset = (bitpos + bitsdone) / unit;
1925 thispos = (bitpos + bitsdone) % unit;
1927 /* THISSIZE must not overrun a word boundary. Otherwise,
1928 extract_fixed_bit_field will call us again, and we will mutually
1929 recurse forever. */
1930 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1931 thissize = MIN (thissize, unit - thispos);
1933 /* If OP0 is a register, then handle OFFSET here.
1935 When handling multiword bitfields, extract_bit_field may pass
1936 down a word_mode SUBREG of a larger REG for a bitfield that actually
1937 crosses a word boundary. Thus, for a SUBREG, we must find
1938 the current word starting from the base register. */
1939 if (GET_CODE (op0) == SUBREG)
1941 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1942 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1943 GET_MODE (SUBREG_REG (op0)));
1944 offset = 0;
1946 else if (REG_P (op0))
1948 word = operand_subword_force (op0, offset, GET_MODE (op0));
1949 offset = 0;
1951 else
1952 word = op0;
1954 /* Extract the parts in bit-counting order,
1955 whose meaning is determined by BYTES_PER_UNIT.
1956 OFFSET is in UNITs, and UNIT is in bits. */
1957 part = extract_fixed_bit_field (word_mode, word, thissize,
1958 offset * unit + thispos, 0, 1, false);
1959 bitsdone += thissize;
1961 /* Shift this part into place for the result. */
1962 if (BYTES_BIG_ENDIAN)
1964 if (bitsize != bitsdone)
1965 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1966 bitsize - bitsdone, 0, 1);
1968 else
1970 if (bitsdone != thissize)
1971 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1972 bitsdone - thissize, 0, 1);
1975 if (first)
1976 result = part;
1977 else
1978 /* Combine the parts with bitwise or. This works
1979 because we extracted each part as an unsigned bit field. */
1980 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1981 OPTAB_LIB_WIDEN);
1983 first = 0;
1986 /* Unsigned bit field: we are done. */
1987 if (unsignedp)
1988 return result;
1989 /* Signed bit field: sign-extend with two arithmetic shifts. */
1990 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1991 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1992 return expand_shift (RSHIFT_EXPR, word_mode, result,
1993 BITS_PER_WORD - bitsize, NULL_RTX, 0);
1996 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1997 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1998 MODE, fill the upper bits with zeros. Fail if the layout of either
1999 mode is unknown (as for CC modes) or if the extraction would involve
2000 unprofitable mode punning. Return the value on success, otherwise
2001 return null.
2003 This is different from gen_lowpart* in these respects:
2005 - the returned value must always be considered an rvalue
2007 - when MODE is wider than SRC_MODE, the extraction involves
2008 a zero extension
2010 - when MODE is smaller than SRC_MODE, the extraction involves
2011 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2013 In other words, this routine performs a computation, whereas the
2014 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2015 operations. */
2018 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
2020 enum machine_mode int_mode, src_int_mode;
2022 if (mode == src_mode)
2023 return src;
2025 if (CONSTANT_P (src))
2027 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2028 fails, it will happily create (subreg (symbol_ref)) or similar
2029 invalid SUBREGs. */
2030 unsigned int byte = subreg_lowpart_offset (mode, src_mode);
2031 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2032 if (ret)
2033 return ret;
2035 if (GET_MODE (src) == VOIDmode
2036 || !validate_subreg (mode, src_mode, src, byte))
2037 return NULL_RTX;
2039 src = force_reg (GET_MODE (src), src);
2040 return gen_rtx_SUBREG (mode, src, byte);
2043 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2044 return NULL_RTX;
2046 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
2047 && MODES_TIEABLE_P (mode, src_mode))
2049 rtx x = gen_lowpart_common (mode, src);
2050 if (x)
2051 return x;
2054 src_int_mode = int_mode_for_mode (src_mode);
2055 int_mode = int_mode_for_mode (mode);
2056 if (src_int_mode == BLKmode || int_mode == BLKmode)
2057 return NULL_RTX;
2059 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
2060 return NULL_RTX;
2061 if (!MODES_TIEABLE_P (int_mode, mode))
2062 return NULL_RTX;
2064 src = gen_lowpart (src_int_mode, src);
2065 src = convert_modes (int_mode, src_int_mode, src, true);
2066 src = gen_lowpart (mode, src);
2067 return src;
2070 /* Add INC into TARGET. */
2072 void
2073 expand_inc (rtx target, rtx inc)
2075 rtx value = expand_binop (GET_MODE (target), add_optab,
2076 target, inc,
2077 target, 0, OPTAB_LIB_WIDEN);
2078 if (value != target)
2079 emit_move_insn (target, value);
2082 /* Subtract DEC from TARGET. */
2084 void
2085 expand_dec (rtx target, rtx dec)
2087 rtx value = expand_binop (GET_MODE (target), sub_optab,
2088 target, dec,
2089 target, 0, OPTAB_LIB_WIDEN);
2090 if (value != target)
2091 emit_move_insn (target, value);
2094 /* Output a shift instruction for expression code CODE,
2095 with SHIFTED being the rtx for the value to shift,
2096 and AMOUNT the rtx for the amount to shift by.
2097 Store the result in the rtx TARGET, if that is convenient.
2098 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2099 Return the rtx for where the value is. */
2101 static rtx
2102 expand_shift_1 (enum tree_code code, enum machine_mode mode, rtx shifted,
2103 rtx amount, rtx target, int unsignedp)
2105 rtx op1, temp = 0;
2106 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2107 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2108 optab lshift_optab = ashl_optab;
2109 optab rshift_arith_optab = ashr_optab;
2110 optab rshift_uns_optab = lshr_optab;
2111 optab lrotate_optab = rotl_optab;
2112 optab rrotate_optab = rotr_optab;
2113 enum machine_mode op1_mode;
2114 int attempt;
2115 bool speed = optimize_insn_for_speed_p ();
2117 op1 = amount;
2118 op1_mode = GET_MODE (op1);
2120 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2121 shift amount is a vector, use the vector/vector shift patterns. */
2122 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2124 lshift_optab = vashl_optab;
2125 rshift_arith_optab = vashr_optab;
2126 rshift_uns_optab = vlshr_optab;
2127 lrotate_optab = vrotl_optab;
2128 rrotate_optab = vrotr_optab;
2131 /* Previously detected shift-counts computed by NEGATE_EXPR
2132 and shifted in the other direction; but that does not work
2133 on all machines. */
2135 if (SHIFT_COUNT_TRUNCATED)
2137 if (CONST_INT_P (op1)
2138 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2139 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2140 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2141 % GET_MODE_BITSIZE (mode));
2142 else if (GET_CODE (op1) == SUBREG
2143 && subreg_lowpart_p (op1)
2144 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (op1))))
2145 op1 = SUBREG_REG (op1);
2148 if (op1 == const0_rtx)
2149 return shifted;
2151 /* Check whether its cheaper to implement a left shift by a constant
2152 bit count by a sequence of additions. */
2153 if (code == LSHIFT_EXPR
2154 && CONST_INT_P (op1)
2155 && INTVAL (op1) > 0
2156 && INTVAL (op1) < GET_MODE_PRECISION (mode)
2157 && INTVAL (op1) < MAX_BITS_PER_WORD
2158 && (shift_cost (speed, mode, INTVAL (op1))
2159 > INTVAL (op1) * add_cost (speed, mode))
2160 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
2162 int i;
2163 for (i = 0; i < INTVAL (op1); i++)
2165 temp = force_reg (mode, shifted);
2166 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2167 unsignedp, OPTAB_LIB_WIDEN);
2169 return shifted;
2172 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2174 enum optab_methods methods;
2176 if (attempt == 0)
2177 methods = OPTAB_DIRECT;
2178 else if (attempt == 1)
2179 methods = OPTAB_WIDEN;
2180 else
2181 methods = OPTAB_LIB_WIDEN;
2183 if (rotate)
2185 /* Widening does not work for rotation. */
2186 if (methods == OPTAB_WIDEN)
2187 continue;
2188 else if (methods == OPTAB_LIB_WIDEN)
2190 /* If we have been unable to open-code this by a rotation,
2191 do it as the IOR of two shifts. I.e., to rotate A
2192 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2193 where C is the bitsize of A.
2195 It is theoretically possible that the target machine might
2196 not be able to perform either shift and hence we would
2197 be making two libcalls rather than just the one for the
2198 shift (similarly if IOR could not be done). We will allow
2199 this extremely unlikely lossage to avoid complicating the
2200 code below. */
2202 rtx subtarget = target == shifted ? 0 : target;
2203 rtx new_amount, other_amount;
2204 rtx temp1;
2206 new_amount = op1;
2207 if (CONST_INT_P (op1))
2208 other_amount = GEN_INT (GET_MODE_BITSIZE (mode)
2209 - INTVAL (op1));
2210 else
2211 other_amount
2212 = simplify_gen_binary (MINUS, GET_MODE (op1),
2213 GEN_INT (GET_MODE_PRECISION (mode)),
2214 op1);
2216 shifted = force_reg (mode, shifted);
2218 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2219 mode, shifted, new_amount, 0, 1);
2220 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2221 mode, shifted, other_amount,
2222 subtarget, 1);
2223 return expand_binop (mode, ior_optab, temp, temp1, target,
2224 unsignedp, methods);
2227 temp = expand_binop (mode,
2228 left ? lrotate_optab : rrotate_optab,
2229 shifted, op1, target, unsignedp, methods);
2231 else if (unsignedp)
2232 temp = expand_binop (mode,
2233 left ? lshift_optab : rshift_uns_optab,
2234 shifted, op1, target, unsignedp, methods);
2236 /* Do arithmetic shifts.
2237 Also, if we are going to widen the operand, we can just as well
2238 use an arithmetic right-shift instead of a logical one. */
2239 if (temp == 0 && ! rotate
2240 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2242 enum optab_methods methods1 = methods;
2244 /* If trying to widen a log shift to an arithmetic shift,
2245 don't accept an arithmetic shift of the same size. */
2246 if (unsignedp)
2247 methods1 = OPTAB_MUST_WIDEN;
2249 /* Arithmetic shift */
2251 temp = expand_binop (mode,
2252 left ? lshift_optab : rshift_arith_optab,
2253 shifted, op1, target, unsignedp, methods1);
2256 /* We used to try extzv here for logical right shifts, but that was
2257 only useful for one machine, the VAX, and caused poor code
2258 generation there for lshrdi3, so the code was deleted and a
2259 define_expand for lshrsi3 was added to vax.md. */
2262 gcc_assert (temp);
2263 return temp;
2266 /* Output a shift instruction for expression code CODE,
2267 with SHIFTED being the rtx for the value to shift,
2268 and AMOUNT the amount to shift by.
2269 Store the result in the rtx TARGET, if that is convenient.
2270 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2271 Return the rtx for where the value is. */
2274 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2275 int amount, rtx target, int unsignedp)
2277 return expand_shift_1 (code, mode,
2278 shifted, GEN_INT (amount), target, unsignedp);
2281 /* Output a shift instruction for expression code CODE,
2282 with SHIFTED being the rtx for the value to shift,
2283 and AMOUNT the tree for the amount to shift by.
2284 Store the result in the rtx TARGET, if that is convenient.
2285 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2286 Return the rtx for where the value is. */
2289 expand_variable_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2290 tree amount, rtx target, int unsignedp)
2292 return expand_shift_1 (code, mode,
2293 shifted, expand_normal (amount), target, unsignedp);
2297 /* Indicates the type of fixup needed after a constant multiplication.
2298 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2299 the result should be negated, and ADD_VARIANT means that the
2300 multiplicand should be added to the result. */
2301 enum mult_variant {basic_variant, negate_variant, add_variant};
2303 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2304 const struct mult_cost *, enum machine_mode mode);
2305 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2306 struct algorithm *, enum mult_variant *, int);
2307 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2308 const struct algorithm *, enum mult_variant);
2309 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2310 static rtx extract_high_half (enum machine_mode, rtx);
2311 static rtx expmed_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2312 static rtx expmed_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2313 int, int);
2314 /* Compute and return the best algorithm for multiplying by T.
2315 The algorithm must cost less than cost_limit
2316 If retval.cost >= COST_LIMIT, no algorithm was found and all
2317 other field of the returned struct are undefined.
2318 MODE is the machine mode of the multiplication. */
2320 static void
2321 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2322 const struct mult_cost *cost_limit, enum machine_mode mode)
2324 int m;
2325 struct algorithm *alg_in, *best_alg;
2326 struct mult_cost best_cost;
2327 struct mult_cost new_limit;
2328 int op_cost, op_latency;
2329 unsigned HOST_WIDE_INT orig_t = t;
2330 unsigned HOST_WIDE_INT q;
2331 int maxm, hash_index;
2332 bool cache_hit = false;
2333 enum alg_code cache_alg = alg_zero;
2334 bool speed = optimize_insn_for_speed_p ();
2335 enum machine_mode imode;
2336 struct alg_hash_entry *entry_ptr;
2338 /* Indicate that no algorithm is yet found. If no algorithm
2339 is found, this value will be returned and indicate failure. */
2340 alg_out->cost.cost = cost_limit->cost + 1;
2341 alg_out->cost.latency = cost_limit->latency + 1;
2343 if (cost_limit->cost < 0
2344 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2345 return;
2347 /* Be prepared for vector modes. */
2348 imode = GET_MODE_INNER (mode);
2349 if (imode == VOIDmode)
2350 imode = mode;
2352 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2354 /* Restrict the bits of "t" to the multiplication's mode. */
2355 t &= GET_MODE_MASK (imode);
2357 /* t == 1 can be done in zero cost. */
2358 if (t == 1)
2360 alg_out->ops = 1;
2361 alg_out->cost.cost = 0;
2362 alg_out->cost.latency = 0;
2363 alg_out->op[0] = alg_m;
2364 return;
2367 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2368 fail now. */
2369 if (t == 0)
2371 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
2372 return;
2373 else
2375 alg_out->ops = 1;
2376 alg_out->cost.cost = zero_cost (speed);
2377 alg_out->cost.latency = zero_cost (speed);
2378 alg_out->op[0] = alg_zero;
2379 return;
2383 /* We'll be needing a couple extra algorithm structures now. */
2385 alg_in = XALLOCA (struct algorithm);
2386 best_alg = XALLOCA (struct algorithm);
2387 best_cost = *cost_limit;
2389 /* Compute the hash index. */
2390 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
2392 /* See if we already know what to do for T. */
2393 entry_ptr = alg_hash_entry_ptr (hash_index);
2394 if (entry_ptr->t == t
2395 && entry_ptr->mode == mode
2396 && entry_ptr->mode == mode
2397 && entry_ptr->speed == speed
2398 && entry_ptr->alg != alg_unknown)
2400 cache_alg = entry_ptr->alg;
2402 if (cache_alg == alg_impossible)
2404 /* The cache tells us that it's impossible to synthesize
2405 multiplication by T within entry_ptr->cost. */
2406 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
2407 /* COST_LIMIT is at least as restrictive as the one
2408 recorded in the hash table, in which case we have no
2409 hope of synthesizing a multiplication. Just
2410 return. */
2411 return;
2413 /* If we get here, COST_LIMIT is less restrictive than the
2414 one recorded in the hash table, so we may be able to
2415 synthesize a multiplication. Proceed as if we didn't
2416 have the cache entry. */
2418 else
2420 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
2421 /* The cached algorithm shows that this multiplication
2422 requires more cost than COST_LIMIT. Just return. This
2423 way, we don't clobber this cache entry with
2424 alg_impossible but retain useful information. */
2425 return;
2427 cache_hit = true;
2429 switch (cache_alg)
2431 case alg_shift:
2432 goto do_alg_shift;
2434 case alg_add_t_m2:
2435 case alg_sub_t_m2:
2436 goto do_alg_addsub_t_m2;
2438 case alg_add_factor:
2439 case alg_sub_factor:
2440 goto do_alg_addsub_factor;
2442 case alg_add_t2_m:
2443 goto do_alg_add_t2_m;
2445 case alg_sub_t2_m:
2446 goto do_alg_sub_t2_m;
2448 default:
2449 gcc_unreachable ();
2454 /* If we have a group of zero bits at the low-order part of T, try
2455 multiplying by the remaining bits and then doing a shift. */
2457 if ((t & 1) == 0)
2459 do_alg_shift:
2460 m = floor_log2 (t & -t); /* m = number of low zero bits */
2461 if (m < maxm)
2463 q = t >> m;
2464 /* The function expand_shift will choose between a shift and
2465 a sequence of additions, so the observed cost is given as
2466 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2467 op_cost = m * add_cost (speed, mode);
2468 if (shift_cost (speed, mode, m) < op_cost)
2469 op_cost = shift_cost (speed, mode, m);
2470 new_limit.cost = best_cost.cost - op_cost;
2471 new_limit.latency = best_cost.latency - op_cost;
2472 synth_mult (alg_in, q, &new_limit, mode);
2474 alg_in->cost.cost += op_cost;
2475 alg_in->cost.latency += op_cost;
2476 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2478 struct algorithm *x;
2479 best_cost = alg_in->cost;
2480 x = alg_in, alg_in = best_alg, best_alg = x;
2481 best_alg->log[best_alg->ops] = m;
2482 best_alg->op[best_alg->ops] = alg_shift;
2485 /* See if treating ORIG_T as a signed number yields a better
2486 sequence. Try this sequence only for a negative ORIG_T
2487 as it would be useless for a non-negative ORIG_T. */
2488 if ((HOST_WIDE_INT) orig_t < 0)
2490 /* Shift ORIG_T as follows because a right shift of a
2491 negative-valued signed type is implementation
2492 defined. */
2493 q = ~(~orig_t >> m);
2494 /* The function expand_shift will choose between a shift
2495 and a sequence of additions, so the observed cost is
2496 given as MIN (m * add_cost(speed, mode),
2497 shift_cost(speed, mode, m)). */
2498 op_cost = m * add_cost (speed, mode);
2499 if (shift_cost (speed, mode, m) < op_cost)
2500 op_cost = shift_cost (speed, mode, m);
2501 new_limit.cost = best_cost.cost - op_cost;
2502 new_limit.latency = best_cost.latency - op_cost;
2503 synth_mult (alg_in, q, &new_limit, mode);
2505 alg_in->cost.cost += op_cost;
2506 alg_in->cost.latency += op_cost;
2507 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2509 struct algorithm *x;
2510 best_cost = alg_in->cost;
2511 x = alg_in, alg_in = best_alg, best_alg = x;
2512 best_alg->log[best_alg->ops] = m;
2513 best_alg->op[best_alg->ops] = alg_shift;
2517 if (cache_hit)
2518 goto done;
2521 /* If we have an odd number, add or subtract one. */
2522 if ((t & 1) != 0)
2524 unsigned HOST_WIDE_INT w;
2526 do_alg_addsub_t_m2:
2527 for (w = 1; (w & t) != 0; w <<= 1)
2529 /* If T was -1, then W will be zero after the loop. This is another
2530 case where T ends with ...111. Handling this with (T + 1) and
2531 subtract 1 produces slightly better code and results in algorithm
2532 selection much faster than treating it like the ...0111 case
2533 below. */
2534 if (w == 0
2535 || (w > 2
2536 /* Reject the case where t is 3.
2537 Thus we prefer addition in that case. */
2538 && t != 3))
2540 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2542 op_cost = add_cost (speed, mode);
2543 new_limit.cost = best_cost.cost - op_cost;
2544 new_limit.latency = best_cost.latency - op_cost;
2545 synth_mult (alg_in, t + 1, &new_limit, mode);
2547 alg_in->cost.cost += op_cost;
2548 alg_in->cost.latency += op_cost;
2549 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2551 struct algorithm *x;
2552 best_cost = alg_in->cost;
2553 x = alg_in, alg_in = best_alg, best_alg = x;
2554 best_alg->log[best_alg->ops] = 0;
2555 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2558 else
2560 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2562 op_cost = add_cost (speed, mode);
2563 new_limit.cost = best_cost.cost - op_cost;
2564 new_limit.latency = best_cost.latency - op_cost;
2565 synth_mult (alg_in, t - 1, &new_limit, mode);
2567 alg_in->cost.cost += op_cost;
2568 alg_in->cost.latency += op_cost;
2569 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2571 struct algorithm *x;
2572 best_cost = alg_in->cost;
2573 x = alg_in, alg_in = best_alg, best_alg = x;
2574 best_alg->log[best_alg->ops] = 0;
2575 best_alg->op[best_alg->ops] = alg_add_t_m2;
2579 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2580 quickly with a - a * n for some appropriate constant n. */
2581 m = exact_log2 (-orig_t + 1);
2582 if (m >= 0 && m < maxm)
2584 op_cost = shiftsub1_cost (speed, mode, m);
2585 new_limit.cost = best_cost.cost - op_cost;
2586 new_limit.latency = best_cost.latency - op_cost;
2587 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
2588 &new_limit, mode);
2590 alg_in->cost.cost += op_cost;
2591 alg_in->cost.latency += op_cost;
2592 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2594 struct algorithm *x;
2595 best_cost = alg_in->cost;
2596 x = alg_in, alg_in = best_alg, best_alg = x;
2597 best_alg->log[best_alg->ops] = m;
2598 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2602 if (cache_hit)
2603 goto done;
2606 /* Look for factors of t of the form
2607 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2608 If we find such a factor, we can multiply by t using an algorithm that
2609 multiplies by q, shift the result by m and add/subtract it to itself.
2611 We search for large factors first and loop down, even if large factors
2612 are less probable than small; if we find a large factor we will find a
2613 good sequence quickly, and therefore be able to prune (by decreasing
2614 COST_LIMIT) the search. */
2616 do_alg_addsub_factor:
2617 for (m = floor_log2 (t - 1); m >= 2; m--)
2619 unsigned HOST_WIDE_INT d;
2621 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2622 if (t % d == 0 && t > d && m < maxm
2623 && (!cache_hit || cache_alg == alg_add_factor))
2625 /* If the target has a cheap shift-and-add instruction use
2626 that in preference to a shift insn followed by an add insn.
2627 Assume that the shift-and-add is "atomic" with a latency
2628 equal to its cost, otherwise assume that on superscalar
2629 hardware the shift may be executed concurrently with the
2630 earlier steps in the algorithm. */
2631 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2632 if (shiftadd_cost (speed, mode, m) < op_cost)
2634 op_cost = shiftadd_cost (speed, mode, m);
2635 op_latency = op_cost;
2637 else
2638 op_latency = add_cost (speed, mode);
2640 new_limit.cost = best_cost.cost - op_cost;
2641 new_limit.latency = best_cost.latency - op_latency;
2642 synth_mult (alg_in, t / d, &new_limit, mode);
2644 alg_in->cost.cost += op_cost;
2645 alg_in->cost.latency += op_latency;
2646 if (alg_in->cost.latency < op_cost)
2647 alg_in->cost.latency = op_cost;
2648 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2650 struct algorithm *x;
2651 best_cost = alg_in->cost;
2652 x = alg_in, alg_in = best_alg, best_alg = x;
2653 best_alg->log[best_alg->ops] = m;
2654 best_alg->op[best_alg->ops] = alg_add_factor;
2656 /* Other factors will have been taken care of in the recursion. */
2657 break;
2660 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2661 if (t % d == 0 && t > d && m < maxm
2662 && (!cache_hit || cache_alg == alg_sub_factor))
2664 /* If the target has a cheap shift-and-subtract insn use
2665 that in preference to a shift insn followed by a sub insn.
2666 Assume that the shift-and-sub is "atomic" with a latency
2667 equal to it's cost, otherwise assume that on superscalar
2668 hardware the shift may be executed concurrently with the
2669 earlier steps in the algorithm. */
2670 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2671 if (shiftsub0_cost (speed, mode, m) < op_cost)
2673 op_cost = shiftsub0_cost (speed, mode, m);
2674 op_latency = op_cost;
2676 else
2677 op_latency = add_cost (speed, mode);
2679 new_limit.cost = best_cost.cost - op_cost;
2680 new_limit.latency = best_cost.latency - op_latency;
2681 synth_mult (alg_in, t / d, &new_limit, mode);
2683 alg_in->cost.cost += op_cost;
2684 alg_in->cost.latency += op_latency;
2685 if (alg_in->cost.latency < op_cost)
2686 alg_in->cost.latency = op_cost;
2687 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2689 struct algorithm *x;
2690 best_cost = alg_in->cost;
2691 x = alg_in, alg_in = best_alg, best_alg = x;
2692 best_alg->log[best_alg->ops] = m;
2693 best_alg->op[best_alg->ops] = alg_sub_factor;
2695 break;
2698 if (cache_hit)
2699 goto done;
2701 /* Try shift-and-add (load effective address) instructions,
2702 i.e. do a*3, a*5, a*9. */
2703 if ((t & 1) != 0)
2705 do_alg_add_t2_m:
2706 q = t - 1;
2707 q = q & -q;
2708 m = exact_log2 (q);
2709 if (m >= 0 && m < maxm)
2711 op_cost = shiftadd_cost (speed, mode, m);
2712 new_limit.cost = best_cost.cost - op_cost;
2713 new_limit.latency = best_cost.latency - op_cost;
2714 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2716 alg_in->cost.cost += op_cost;
2717 alg_in->cost.latency += op_cost;
2718 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2720 struct algorithm *x;
2721 best_cost = alg_in->cost;
2722 x = alg_in, alg_in = best_alg, best_alg = x;
2723 best_alg->log[best_alg->ops] = m;
2724 best_alg->op[best_alg->ops] = alg_add_t2_m;
2727 if (cache_hit)
2728 goto done;
2730 do_alg_sub_t2_m:
2731 q = t + 1;
2732 q = q & -q;
2733 m = exact_log2 (q);
2734 if (m >= 0 && m < maxm)
2736 op_cost = shiftsub0_cost (speed, mode, m);
2737 new_limit.cost = best_cost.cost - op_cost;
2738 new_limit.latency = best_cost.latency - op_cost;
2739 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2741 alg_in->cost.cost += op_cost;
2742 alg_in->cost.latency += op_cost;
2743 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2745 struct algorithm *x;
2746 best_cost = alg_in->cost;
2747 x = alg_in, alg_in = best_alg, best_alg = x;
2748 best_alg->log[best_alg->ops] = m;
2749 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2752 if (cache_hit)
2753 goto done;
2756 done:
2757 /* If best_cost has not decreased, we have not found any algorithm. */
2758 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2760 /* We failed to find an algorithm. Record alg_impossible for
2761 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2762 we are asked to find an algorithm for T within the same or
2763 lower COST_LIMIT, we can immediately return to the
2764 caller. */
2765 entry_ptr->t = t;
2766 entry_ptr->mode = mode;
2767 entry_ptr->speed = speed;
2768 entry_ptr->alg = alg_impossible;
2769 entry_ptr->cost = *cost_limit;
2770 return;
2773 /* Cache the result. */
2774 if (!cache_hit)
2776 entry_ptr->t = t;
2777 entry_ptr->mode = mode;
2778 entry_ptr->speed = speed;
2779 entry_ptr->alg = best_alg->op[best_alg->ops];
2780 entry_ptr->cost.cost = best_cost.cost;
2781 entry_ptr->cost.latency = best_cost.latency;
2784 /* If we are getting a too long sequence for `struct algorithm'
2785 to record, make this search fail. */
2786 if (best_alg->ops == MAX_BITS_PER_WORD)
2787 return;
2789 /* Copy the algorithm from temporary space to the space at alg_out.
2790 We avoid using structure assignment because the majority of
2791 best_alg is normally undefined, and this is a critical function. */
2792 alg_out->ops = best_alg->ops + 1;
2793 alg_out->cost = best_cost;
2794 memcpy (alg_out->op, best_alg->op,
2795 alg_out->ops * sizeof *alg_out->op);
2796 memcpy (alg_out->log, best_alg->log,
2797 alg_out->ops * sizeof *alg_out->log);
2800 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2801 Try three variations:
2803 - a shift/add sequence based on VAL itself
2804 - a shift/add sequence based on -VAL, followed by a negation
2805 - a shift/add sequence based on VAL - 1, followed by an addition.
2807 Return true if the cheapest of these cost less than MULT_COST,
2808 describing the algorithm in *ALG and final fixup in *VARIANT. */
2810 static bool
2811 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2812 struct algorithm *alg, enum mult_variant *variant,
2813 int mult_cost)
2815 struct algorithm alg2;
2816 struct mult_cost limit;
2817 int op_cost;
2818 bool speed = optimize_insn_for_speed_p ();
2820 /* Fail quickly for impossible bounds. */
2821 if (mult_cost < 0)
2822 return false;
2824 /* Ensure that mult_cost provides a reasonable upper bound.
2825 Any constant multiplication can be performed with less
2826 than 2 * bits additions. */
2827 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
2828 if (mult_cost > op_cost)
2829 mult_cost = op_cost;
2831 *variant = basic_variant;
2832 limit.cost = mult_cost;
2833 limit.latency = mult_cost;
2834 synth_mult (alg, val, &limit, mode);
2836 /* This works only if the inverted value actually fits in an
2837 `unsigned int' */
2838 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
2840 op_cost = neg_cost(speed, mode);
2841 if (MULT_COST_LESS (&alg->cost, mult_cost))
2843 limit.cost = alg->cost.cost - op_cost;
2844 limit.latency = alg->cost.latency - op_cost;
2846 else
2848 limit.cost = mult_cost - op_cost;
2849 limit.latency = mult_cost - op_cost;
2852 synth_mult (&alg2, -val, &limit, mode);
2853 alg2.cost.cost += op_cost;
2854 alg2.cost.latency += op_cost;
2855 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2856 *alg = alg2, *variant = negate_variant;
2859 /* This proves very useful for division-by-constant. */
2860 op_cost = add_cost (speed, mode);
2861 if (MULT_COST_LESS (&alg->cost, mult_cost))
2863 limit.cost = alg->cost.cost - op_cost;
2864 limit.latency = alg->cost.latency - op_cost;
2866 else
2868 limit.cost = mult_cost - op_cost;
2869 limit.latency = mult_cost - op_cost;
2872 synth_mult (&alg2, val - 1, &limit, mode);
2873 alg2.cost.cost += op_cost;
2874 alg2.cost.latency += op_cost;
2875 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2876 *alg = alg2, *variant = add_variant;
2878 return MULT_COST_LESS (&alg->cost, mult_cost);
2881 /* A subroutine of expand_mult, used for constant multiplications.
2882 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2883 convenient. Use the shift/add sequence described by ALG and apply
2884 the final fixup specified by VARIANT. */
2886 static rtx
2887 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2888 rtx target, const struct algorithm *alg,
2889 enum mult_variant variant)
2891 HOST_WIDE_INT val_so_far;
2892 rtx insn, accum, tem;
2893 int opno;
2894 enum machine_mode nmode;
2896 /* Avoid referencing memory over and over and invalid sharing
2897 on SUBREGs. */
2898 op0 = force_reg (mode, op0);
2900 /* ACCUM starts out either as OP0 or as a zero, depending on
2901 the first operation. */
2903 if (alg->op[0] == alg_zero)
2905 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
2906 val_so_far = 0;
2908 else if (alg->op[0] == alg_m)
2910 accum = copy_to_mode_reg (mode, op0);
2911 val_so_far = 1;
2913 else
2914 gcc_unreachable ();
2916 for (opno = 1; opno < alg->ops; opno++)
2918 int log = alg->log[opno];
2919 rtx shift_subtarget = optimize ? 0 : accum;
2920 rtx add_target
2921 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2922 && !optimize)
2923 ? target : 0;
2924 rtx accum_target = optimize ? 0 : accum;
2925 rtx accum_inner;
2927 switch (alg->op[opno])
2929 case alg_shift:
2930 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2931 /* REG_EQUAL note will be attached to the following insn. */
2932 emit_move_insn (accum, tem);
2933 val_so_far <<= log;
2934 break;
2936 case alg_add_t_m2:
2937 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2938 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2939 add_target ? add_target : accum_target);
2940 val_so_far += (HOST_WIDE_INT) 1 << log;
2941 break;
2943 case alg_sub_t_m2:
2944 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
2945 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2946 add_target ? add_target : accum_target);
2947 val_so_far -= (HOST_WIDE_INT) 1 << log;
2948 break;
2950 case alg_add_t2_m:
2951 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2952 log, shift_subtarget, 0);
2953 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2954 add_target ? add_target : accum_target);
2955 val_so_far = (val_so_far << log) + 1;
2956 break;
2958 case alg_sub_t2_m:
2959 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2960 log, shift_subtarget, 0);
2961 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2962 add_target ? add_target : accum_target);
2963 val_so_far = (val_so_far << log) - 1;
2964 break;
2966 case alg_add_factor:
2967 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2968 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2969 add_target ? add_target : accum_target);
2970 val_so_far += val_so_far << log;
2971 break;
2973 case alg_sub_factor:
2974 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
2975 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2976 (add_target
2977 ? add_target : (optimize ? 0 : tem)));
2978 val_so_far = (val_so_far << log) - val_so_far;
2979 break;
2981 default:
2982 gcc_unreachable ();
2985 if (SCALAR_INT_MODE_P (mode))
2987 /* Write a REG_EQUAL note on the last insn so that we can cse
2988 multiplication sequences. Note that if ACCUM is a SUBREG,
2989 we've set the inner register and must properly indicate that. */
2990 tem = op0, nmode = mode;
2991 accum_inner = accum;
2992 if (GET_CODE (accum) == SUBREG)
2994 accum_inner = SUBREG_REG (accum);
2995 nmode = GET_MODE (accum_inner);
2996 tem = gen_lowpart (nmode, op0);
2999 insn = get_last_insn ();
3000 set_dst_reg_note (insn, REG_EQUAL,
3001 gen_rtx_MULT (nmode, tem, GEN_INT (val_so_far)),
3002 accum_inner);
3006 if (variant == negate_variant)
3008 val_so_far = -val_so_far;
3009 accum = expand_unop (mode, neg_optab, accum, target, 0);
3011 else if (variant == add_variant)
3013 val_so_far = val_so_far + 1;
3014 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3017 /* Compare only the bits of val and val_so_far that are significant
3018 in the result mode, to avoid sign-/zero-extension confusion. */
3019 nmode = GET_MODE_INNER (mode);
3020 if (nmode == VOIDmode)
3021 nmode = mode;
3022 val &= GET_MODE_MASK (nmode);
3023 val_so_far &= GET_MODE_MASK (nmode);
3024 gcc_assert (val == val_so_far);
3026 return accum;
3029 /* Perform a multiplication and return an rtx for the result.
3030 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3031 TARGET is a suggestion for where to store the result (an rtx).
3033 We check specially for a constant integer as OP1.
3034 If you want this check for OP0 as well, then before calling
3035 you should swap the two operands if OP0 would be constant. */
3038 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3039 int unsignedp)
3041 enum mult_variant variant;
3042 struct algorithm algorithm;
3043 rtx scalar_op1;
3044 int max_cost;
3045 bool speed = optimize_insn_for_speed_p ();
3046 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
3048 if (CONSTANT_P (op0))
3050 rtx temp = op0;
3051 op0 = op1;
3052 op1 = temp;
3055 /* For vectors, there are several simplifications that can be made if
3056 all elements of the vector constant are identical. */
3057 scalar_op1 = op1;
3058 if (GET_CODE (op1) == CONST_VECTOR)
3060 int i, n = CONST_VECTOR_NUNITS (op1);
3061 scalar_op1 = CONST_VECTOR_ELT (op1, 0);
3062 for (i = 1; i < n; ++i)
3063 if (!rtx_equal_p (scalar_op1, CONST_VECTOR_ELT (op1, i)))
3064 goto skip_scalar;
3067 if (INTEGRAL_MODE_P (mode))
3069 rtx fake_reg;
3070 HOST_WIDE_INT coeff;
3071 bool is_neg;
3072 int mode_bitsize;
3074 if (op1 == CONST0_RTX (mode))
3075 return op1;
3076 if (op1 == CONST1_RTX (mode))
3077 return op0;
3078 if (op1 == CONSTM1_RTX (mode))
3079 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3080 op0, target, 0);
3082 if (do_trapv)
3083 goto skip_synth;
3085 /* These are the operations that are potentially turned into
3086 a sequence of shifts and additions. */
3087 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
3089 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3090 less than or equal in size to `unsigned int' this doesn't matter.
3091 If the mode is larger than `unsigned int', then synth_mult works
3092 only if the constant value exactly fits in an `unsigned int' without
3093 any truncation. This means that multiplying by negative values does
3094 not work; results are off by 2^32 on a 32 bit machine. */
3096 if (CONST_INT_P (scalar_op1))
3098 coeff = INTVAL (scalar_op1);
3099 is_neg = coeff < 0;
3101 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
3103 /* If we are multiplying in DImode, it may still be a win
3104 to try to work with shifts and adds. */
3105 if (CONST_DOUBLE_HIGH (scalar_op1) == 0
3106 && CONST_DOUBLE_LOW (scalar_op1) > 0)
3108 coeff = CONST_DOUBLE_LOW (scalar_op1);
3109 is_neg = false;
3111 else if (CONST_DOUBLE_LOW (scalar_op1) == 0)
3113 coeff = CONST_DOUBLE_HIGH (scalar_op1);
3114 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3116 int shift = floor_log2 (coeff) + HOST_BITS_PER_WIDE_INT;
3117 if (shift < HOST_BITS_PER_DOUBLE_INT - 1
3118 || mode_bitsize <= HOST_BITS_PER_DOUBLE_INT)
3119 return expand_shift (LSHIFT_EXPR, mode, op0,
3120 shift, target, unsignedp);
3122 goto skip_synth;
3124 else
3125 goto skip_synth;
3127 else
3128 goto skip_synth;
3130 /* We used to test optimize here, on the grounds that it's better to
3131 produce a smaller program when -O is not used. But this causes
3132 such a terrible slowdown sometimes that it seems better to always
3133 use synth_mult. */
3135 /* Special case powers of two. */
3136 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3137 return expand_shift (LSHIFT_EXPR, mode, op0,
3138 floor_log2 (coeff), target, unsignedp);
3140 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3142 /* Attempt to handle multiplication of DImode values by negative
3143 coefficients, by performing the multiplication by a positive
3144 multiplier and then inverting the result. */
3145 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3147 /* Its safe to use -coeff even for INT_MIN, as the
3148 result is interpreted as an unsigned coefficient.
3149 Exclude cost of op0 from max_cost to match the cost
3150 calculation of the synth_mult. */
3151 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed)
3152 - neg_cost(speed, mode));
3153 if (max_cost > 0
3154 && choose_mult_variant (mode, -coeff, &algorithm,
3155 &variant, max_cost))
3157 rtx temp = expand_mult_const (mode, op0, -coeff, NULL_RTX,
3158 &algorithm, variant);
3159 return expand_unop (mode, neg_optab, temp, target, 0);
3161 goto skip_synth;
3164 /* Exclude cost of op0 from max_cost to match the cost
3165 calculation of the synth_mult. */
3166 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), speed);
3167 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3168 return expand_mult_const (mode, op0, coeff, target,
3169 &algorithm, variant);
3171 skip_synth:
3173 /* Expand x*2.0 as x+x. */
3174 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1))
3176 REAL_VALUE_TYPE d;
3177 REAL_VALUE_FROM_CONST_DOUBLE (d, scalar_op1);
3179 if (REAL_VALUES_EQUAL (d, dconst2))
3181 op0 = force_reg (GET_MODE (op0), op0);
3182 return expand_binop (mode, add_optab, op0, op0,
3183 target, unsignedp, OPTAB_LIB_WIDEN);
3186 skip_scalar:
3188 /* This used to use umul_optab if unsigned, but for non-widening multiply
3189 there is no difference between signed and unsigned. */
3190 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
3191 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3192 gcc_assert (op0);
3193 return op0;
3196 /* Return a cost estimate for multiplying a register by the given
3197 COEFFicient in the given MODE and SPEED. */
3200 mult_by_coeff_cost (HOST_WIDE_INT coeff, enum machine_mode mode, bool speed)
3202 int max_cost;
3203 struct algorithm algorithm;
3204 enum mult_variant variant;
3206 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3207 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg), speed);
3208 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3209 return algorithm.cost.cost;
3210 else
3211 return max_cost;
3214 /* Perform a widening multiplication and return an rtx for the result.
3215 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3216 TARGET is a suggestion for where to store the result (an rtx).
3217 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3218 or smul_widen_optab.
3220 We check specially for a constant integer as OP1, comparing the
3221 cost of a widening multiply against the cost of a sequence of shifts
3222 and adds. */
3225 expand_widening_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
3226 int unsignedp, optab this_optab)
3228 bool speed = optimize_insn_for_speed_p ();
3229 rtx cop1;
3231 if (CONST_INT_P (op1)
3232 && GET_MODE (op0) != VOIDmode
3233 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3234 this_optab == umul_widen_optab))
3235 && CONST_INT_P (cop1)
3236 && (INTVAL (cop1) >= 0
3237 || HWI_COMPUTABLE_MODE_P (mode)))
3239 HOST_WIDE_INT coeff = INTVAL (cop1);
3240 int max_cost;
3241 enum mult_variant variant;
3242 struct algorithm algorithm;
3244 /* Special case powers of two. */
3245 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3247 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3248 return expand_shift (LSHIFT_EXPR, mode, op0,
3249 floor_log2 (coeff), target, unsignedp);
3252 /* Exclude cost of op0 from max_cost to match the cost
3253 calculation of the synth_mult. */
3254 max_cost = mul_widen_cost (speed, mode);
3255 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3256 max_cost))
3258 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3259 return expand_mult_const (mode, op0, coeff, target,
3260 &algorithm, variant);
3263 return expand_binop (mode, this_optab, op0, op1, target,
3264 unsignedp, OPTAB_LIB_WIDEN);
3267 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3268 replace division by D, and put the least significant N bits of the result
3269 in *MULTIPLIER_PTR and return the most significant bit.
3271 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3272 needed precision is in PRECISION (should be <= N).
3274 PRECISION should be as small as possible so this function can choose
3275 multiplier more freely.
3277 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3278 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3280 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3281 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3283 unsigned HOST_WIDE_INT
3284 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3285 unsigned HOST_WIDE_INT *multiplier_ptr,
3286 int *post_shift_ptr, int *lgup_ptr)
3288 double_int mhigh, mlow;
3289 int lgup, post_shift;
3290 int pow, pow2;
3292 /* lgup = ceil(log2(divisor)); */
3293 lgup = ceil_log2 (d);
3295 gcc_assert (lgup <= n);
3297 pow = n + lgup;
3298 pow2 = n + lgup - precision;
3300 /* We could handle this with some effort, but this case is much
3301 better handled directly with a scc insn, so rely on caller using
3302 that. */
3303 gcc_assert (pow != HOST_BITS_PER_DOUBLE_INT);
3305 /* mlow = 2^(N + lgup)/d */
3306 double_int val = double_int_zero.set_bit (pow);
3307 mlow = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3309 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3310 val |= double_int_zero.set_bit (pow2);
3311 mhigh = val.div (double_int::from_uhwi (d), true, TRUNC_DIV_EXPR);
3313 gcc_assert (!mhigh.high || val.high - d < d);
3314 gcc_assert (mhigh.high <= 1 && mlow.high <= 1);
3315 /* Assert that mlow < mhigh. */
3316 gcc_assert (mlow.ult (mhigh));
3318 /* If precision == N, then mlow, mhigh exceed 2^N
3319 (but they do not exceed 2^(N+1)). */
3321 /* Reduce to lowest terms. */
3322 for (post_shift = lgup; post_shift > 0; post_shift--)
3324 int shft = HOST_BITS_PER_WIDE_INT - 1;
3325 unsigned HOST_WIDE_INT ml_lo = (mlow.high << shft) | (mlow.low >> 1);
3326 unsigned HOST_WIDE_INT mh_lo = (mhigh.high << shft) | (mhigh.low >> 1);
3327 if (ml_lo >= mh_lo)
3328 break;
3330 mlow = double_int::from_uhwi (ml_lo);
3331 mhigh = double_int::from_uhwi (mh_lo);
3334 *post_shift_ptr = post_shift;
3335 *lgup_ptr = lgup;
3336 if (n < HOST_BITS_PER_WIDE_INT)
3338 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3339 *multiplier_ptr = mhigh.low & mask;
3340 return mhigh.low >= mask;
3342 else
3344 *multiplier_ptr = mhigh.low;
3345 return mhigh.high;
3349 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3350 congruent to 1 (mod 2**N). */
3352 static unsigned HOST_WIDE_INT
3353 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3355 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3357 /* The algorithm notes that the choice y = x satisfies
3358 x*y == 1 mod 2^3, since x is assumed odd.
3359 Each iteration doubles the number of bits of significance in y. */
3361 unsigned HOST_WIDE_INT mask;
3362 unsigned HOST_WIDE_INT y = x;
3363 int nbit = 3;
3365 mask = (n == HOST_BITS_PER_WIDE_INT
3366 ? ~(unsigned HOST_WIDE_INT) 0
3367 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3369 while (nbit < n)
3371 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3372 nbit *= 2;
3374 return y;
3377 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3378 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3379 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3380 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3381 become signed.
3383 The result is put in TARGET if that is convenient.
3385 MODE is the mode of operation. */
3388 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3389 rtx op1, rtx target, int unsignedp)
3391 rtx tem;
3392 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3394 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3395 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3396 tem = expand_and (mode, tem, op1, NULL_RTX);
3397 adj_operand
3398 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3399 adj_operand);
3401 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3402 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
3403 tem = expand_and (mode, tem, op0, NULL_RTX);
3404 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3405 target);
3407 return target;
3410 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3412 static rtx
3413 extract_high_half (enum machine_mode mode, rtx op)
3415 enum machine_mode wider_mode;
3417 if (mode == word_mode)
3418 return gen_highpart (mode, op);
3420 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3422 wider_mode = GET_MODE_WIDER_MODE (mode);
3423 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3424 GET_MODE_BITSIZE (mode), 0, 1);
3425 return convert_modes (mode, wider_mode, op, 0);
3428 /* Like expmed_mult_highpart, but only consider using a multiplication
3429 optab. OP1 is an rtx for the constant operand. */
3431 static rtx
3432 expmed_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3433 rtx target, int unsignedp, int max_cost)
3435 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3436 enum machine_mode wider_mode;
3437 optab moptab;
3438 rtx tem;
3439 int size;
3440 bool speed = optimize_insn_for_speed_p ();
3442 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3444 wider_mode = GET_MODE_WIDER_MODE (mode);
3445 size = GET_MODE_BITSIZE (mode);
3447 /* Firstly, try using a multiplication insn that only generates the needed
3448 high part of the product, and in the sign flavor of unsignedp. */
3449 if (mul_highpart_cost (speed, mode) < max_cost)
3451 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3452 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3453 unsignedp, OPTAB_DIRECT);
3454 if (tem)
3455 return tem;
3458 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3459 Need to adjust the result after the multiplication. */
3460 if (size - 1 < BITS_PER_WORD
3461 && (mul_highpart_cost (speed, mode)
3462 + 2 * shift_cost (speed, mode, size-1)
3463 + 4 * add_cost (speed, mode) < max_cost))
3465 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3466 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3467 unsignedp, OPTAB_DIRECT);
3468 if (tem)
3469 /* We used the wrong signedness. Adjust the result. */
3470 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3471 tem, unsignedp);
3474 /* Try widening multiplication. */
3475 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3476 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3477 && mul_widen_cost (speed, wider_mode) < max_cost)
3479 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3480 unsignedp, OPTAB_WIDEN);
3481 if (tem)
3482 return extract_high_half (mode, tem);
3485 /* Try widening the mode and perform a non-widening multiplication. */
3486 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
3487 && size - 1 < BITS_PER_WORD
3488 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3489 < max_cost))
3491 rtx insns, wop0, wop1;
3493 /* We need to widen the operands, for example to ensure the
3494 constant multiplier is correctly sign or zero extended.
3495 Use a sequence to clean-up any instructions emitted by
3496 the conversions if things don't work out. */
3497 start_sequence ();
3498 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3499 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3500 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3501 unsignedp, OPTAB_WIDEN);
3502 insns = get_insns ();
3503 end_sequence ();
3505 if (tem)
3507 emit_insn (insns);
3508 return extract_high_half (mode, tem);
3512 /* Try widening multiplication of opposite signedness, and adjust. */
3513 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3514 if (widening_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
3515 && size - 1 < BITS_PER_WORD
3516 && (mul_widen_cost (speed, wider_mode)
3517 + 2 * shift_cost (speed, mode, size-1)
3518 + 4 * add_cost (speed, mode) < max_cost))
3520 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3521 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3522 if (tem != 0)
3524 tem = extract_high_half (mode, tem);
3525 /* We used the wrong signedness. Adjust the result. */
3526 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3527 target, unsignedp);
3531 return 0;
3534 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3535 putting the high half of the result in TARGET if that is convenient,
3536 and return where the result is. If the operation can not be performed,
3537 0 is returned.
3539 MODE is the mode of operation and result.
3541 UNSIGNEDP nonzero means unsigned multiply.
3543 MAX_COST is the total allowed cost for the expanded RTL. */
3545 static rtx
3546 expmed_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3547 rtx target, int unsignedp, int max_cost)
3549 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3550 unsigned HOST_WIDE_INT cnst1;
3551 int extra_cost;
3552 bool sign_adjust = false;
3553 enum mult_variant variant;
3554 struct algorithm alg;
3555 rtx tem;
3556 bool speed = optimize_insn_for_speed_p ();
3558 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3559 /* We can't support modes wider than HOST_BITS_PER_INT. */
3560 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
3562 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3564 /* We can't optimize modes wider than BITS_PER_WORD.
3565 ??? We might be able to perform double-word arithmetic if
3566 mode == word_mode, however all the cost calculations in
3567 synth_mult etc. assume single-word operations. */
3568 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3569 return expmed_mult_highpart_optab (mode, op0, op1, target,
3570 unsignedp, max_cost);
3572 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
3574 /* Check whether we try to multiply by a negative constant. */
3575 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3577 sign_adjust = true;
3578 extra_cost += add_cost (speed, mode);
3581 /* See whether shift/add multiplication is cheap enough. */
3582 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3583 max_cost - extra_cost))
3585 /* See whether the specialized multiplication optabs are
3586 cheaper than the shift/add version. */
3587 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3588 alg.cost.cost + extra_cost);
3589 if (tem)
3590 return tem;
3592 tem = convert_to_mode (wider_mode, op0, unsignedp);
3593 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3594 tem = extract_high_half (mode, tem);
3596 /* Adjust result for signedness. */
3597 if (sign_adjust)
3598 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3600 return tem;
3602 return expmed_mult_highpart_optab (mode, op0, op1, target,
3603 unsignedp, max_cost);
3607 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3609 static rtx
3610 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3612 unsigned HOST_WIDE_INT masklow, maskhigh;
3613 rtx result, temp, shift, label;
3614 int logd;
3616 logd = floor_log2 (d);
3617 result = gen_reg_rtx (mode);
3619 /* Avoid conditional branches when they're expensive. */
3620 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3621 && optimize_insn_for_speed_p ())
3623 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3624 mode, 0, -1);
3625 if (signmask)
3627 signmask = force_reg (mode, signmask);
3628 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3629 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3631 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3632 which instruction sequence to use. If logical right shifts
3633 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3634 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3636 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3637 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
3638 || (set_src_cost (temp, optimize_insn_for_speed_p ())
3639 > COSTS_N_INSNS (2)))
3641 temp = expand_binop (mode, xor_optab, op0, signmask,
3642 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3643 temp = expand_binop (mode, sub_optab, temp, signmask,
3644 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3645 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3646 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3647 temp = expand_binop (mode, xor_optab, temp, signmask,
3648 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3649 temp = expand_binop (mode, sub_optab, temp, signmask,
3650 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3652 else
3654 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3655 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3656 signmask = force_reg (mode, signmask);
3658 temp = expand_binop (mode, add_optab, op0, signmask,
3659 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3660 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3661 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3662 temp = expand_binop (mode, sub_optab, temp, signmask,
3663 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3665 return temp;
3669 /* Mask contains the mode's signbit and the significant bits of the
3670 modulus. By including the signbit in the operation, many targets
3671 can avoid an explicit compare operation in the following comparison
3672 against zero. */
3674 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3675 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3677 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3678 maskhigh = -1;
3680 else
3681 maskhigh = (HOST_WIDE_INT) -1
3682 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3684 temp = expand_binop (mode, and_optab, op0,
3685 immed_double_const (masklow, maskhigh, mode),
3686 result, 1, OPTAB_LIB_WIDEN);
3687 if (temp != result)
3688 emit_move_insn (result, temp);
3690 label = gen_label_rtx ();
3691 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3693 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3694 0, OPTAB_LIB_WIDEN);
3695 masklow = (HOST_WIDE_INT) -1 << logd;
3696 maskhigh = -1;
3697 temp = expand_binop (mode, ior_optab, temp,
3698 immed_double_const (masklow, maskhigh, mode),
3699 result, 1, OPTAB_LIB_WIDEN);
3700 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3701 0, OPTAB_LIB_WIDEN);
3702 if (temp != result)
3703 emit_move_insn (result, temp);
3704 emit_label (label);
3705 return result;
3708 /* Expand signed division of OP0 by a power of two D in mode MODE.
3709 This routine is only called for positive values of D. */
3711 static rtx
3712 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3714 rtx temp, label;
3715 int logd;
3717 logd = floor_log2 (d);
3719 if (d == 2
3720 && BRANCH_COST (optimize_insn_for_speed_p (),
3721 false) >= 1)
3723 temp = gen_reg_rtx (mode);
3724 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3725 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3726 0, OPTAB_LIB_WIDEN);
3727 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3730 #ifdef HAVE_conditional_move
3731 if (BRANCH_COST (optimize_insn_for_speed_p (), false)
3732 >= 2)
3734 rtx temp2;
3736 /* ??? emit_conditional_move forces a stack adjustment via
3737 compare_from_rtx so, if the sequence is discarded, it will
3738 be lost. Do it now instead. */
3739 do_pending_stack_adjust ();
3741 start_sequence ();
3742 temp2 = copy_to_mode_reg (mode, op0);
3743 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3744 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3745 temp = force_reg (mode, temp);
3747 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3748 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3749 mode, temp, temp2, mode, 0);
3750 if (temp2)
3752 rtx seq = get_insns ();
3753 end_sequence ();
3754 emit_insn (seq);
3755 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
3757 end_sequence ();
3759 #endif
3761 if (BRANCH_COST (optimize_insn_for_speed_p (),
3762 false) >= 2)
3764 int ushift = GET_MODE_BITSIZE (mode) - logd;
3766 temp = gen_reg_rtx (mode);
3767 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3768 if (shift_cost (optimize_insn_for_speed_p (), mode, ushift)
3769 > COSTS_N_INSNS (1))
3770 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3771 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3772 else
3773 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3774 ushift, NULL_RTX, 1);
3775 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3776 0, OPTAB_LIB_WIDEN);
3777 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3780 label = gen_label_rtx ();
3781 temp = copy_to_mode_reg (mode, op0);
3782 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3783 expand_inc (temp, GEN_INT (d - 1));
3784 emit_label (label);
3785 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
3788 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3789 if that is convenient, and returning where the result is.
3790 You may request either the quotient or the remainder as the result;
3791 specify REM_FLAG nonzero to get the remainder.
3793 CODE is the expression code for which kind of division this is;
3794 it controls how rounding is done. MODE is the machine mode to use.
3795 UNSIGNEDP nonzero means do unsigned division. */
3797 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3798 and then correct it by or'ing in missing high bits
3799 if result of ANDI is nonzero.
3800 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3801 This could optimize to a bfexts instruction.
3802 But C doesn't use these operations, so their optimizations are
3803 left for later. */
3804 /* ??? For modulo, we don't actually need the highpart of the first product,
3805 the low part will do nicely. And for small divisors, the second multiply
3806 can also be a low-part only multiply or even be completely left out.
3807 E.g. to calculate the remainder of a division by 3 with a 32 bit
3808 multiply, multiply with 0x55555556 and extract the upper two bits;
3809 the result is exact for inputs up to 0x1fffffff.
3810 The input range can be reduced by using cross-sum rules.
3811 For odd divisors >= 3, the following table gives right shift counts
3812 so that if a number is shifted by an integer multiple of the given
3813 amount, the remainder stays the same:
3814 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3815 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3816 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3817 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3818 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3820 Cross-sum rules for even numbers can be derived by leaving as many bits
3821 to the right alone as the divisor has zeros to the right.
3822 E.g. if x is an unsigned 32 bit number:
3823 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3827 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3828 rtx op0, rtx op1, rtx target, int unsignedp)
3830 enum machine_mode compute_mode;
3831 rtx tquotient;
3832 rtx quotient = 0, remainder = 0;
3833 rtx last;
3834 int size;
3835 rtx insn;
3836 optab optab1, optab2;
3837 int op1_is_constant, op1_is_pow2 = 0;
3838 int max_cost, extra_cost;
3839 static HOST_WIDE_INT last_div_const = 0;
3840 static HOST_WIDE_INT ext_op1;
3841 bool speed = optimize_insn_for_speed_p ();
3843 op1_is_constant = CONST_INT_P (op1);
3844 if (op1_is_constant)
3846 ext_op1 = INTVAL (op1);
3847 if (unsignedp)
3848 ext_op1 &= GET_MODE_MASK (mode);
3849 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3850 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3854 This is the structure of expand_divmod:
3856 First comes code to fix up the operands so we can perform the operations
3857 correctly and efficiently.
3859 Second comes a switch statement with code specific for each rounding mode.
3860 For some special operands this code emits all RTL for the desired
3861 operation, for other cases, it generates only a quotient and stores it in
3862 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3863 to indicate that it has not done anything.
3865 Last comes code that finishes the operation. If QUOTIENT is set and
3866 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3867 QUOTIENT is not set, it is computed using trunc rounding.
3869 We try to generate special code for division and remainder when OP1 is a
3870 constant. If |OP1| = 2**n we can use shifts and some other fast
3871 operations. For other values of OP1, we compute a carefully selected
3872 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3873 by m.
3875 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3876 half of the product. Different strategies for generating the product are
3877 implemented in expmed_mult_highpart.
3879 If what we actually want is the remainder, we generate that by another
3880 by-constant multiplication and a subtraction. */
3882 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3883 code below will malfunction if we are, so check here and handle
3884 the special case if so. */
3885 if (op1 == const1_rtx)
3886 return rem_flag ? const0_rtx : op0;
3888 /* When dividing by -1, we could get an overflow.
3889 negv_optab can handle overflows. */
3890 if (! unsignedp && op1 == constm1_rtx)
3892 if (rem_flag)
3893 return const0_rtx;
3894 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3895 ? negv_optab : neg_optab, op0, target, 0);
3898 if (target
3899 /* Don't use the function value register as a target
3900 since we have to read it as well as write it,
3901 and function-inlining gets confused by this. */
3902 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3903 /* Don't clobber an operand while doing a multi-step calculation. */
3904 || ((rem_flag || op1_is_constant)
3905 && (reg_mentioned_p (target, op0)
3906 || (MEM_P (op0) && MEM_P (target))))
3907 || reg_mentioned_p (target, op1)
3908 || (MEM_P (op1) && MEM_P (target))))
3909 target = 0;
3911 /* Get the mode in which to perform this computation. Normally it will
3912 be MODE, but sometimes we can't do the desired operation in MODE.
3913 If so, pick a wider mode in which we can do the operation. Convert
3914 to that mode at the start to avoid repeated conversions.
3916 First see what operations we need. These depend on the expression
3917 we are evaluating. (We assume that divxx3 insns exist under the
3918 same conditions that modxx3 insns and that these insns don't normally
3919 fail. If these assumptions are not correct, we may generate less
3920 efficient code in some cases.)
3922 Then see if we find a mode in which we can open-code that operation
3923 (either a division, modulus, or shift). Finally, check for the smallest
3924 mode for which we can do the operation with a library call. */
3926 /* We might want to refine this now that we have division-by-constant
3927 optimization. Since expmed_mult_highpart tries so many variants, it is
3928 not straightforward to generalize this. Maybe we should make an array
3929 of possible modes in init_expmed? Save this for GCC 2.7. */
3931 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3932 ? (unsignedp ? lshr_optab : ashr_optab)
3933 : (unsignedp ? udiv_optab : sdiv_optab));
3934 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3935 ? optab1
3936 : (unsignedp ? udivmod_optab : sdivmod_optab));
3938 for (compute_mode = mode; compute_mode != VOIDmode;
3939 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3940 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
3941 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
3942 break;
3944 if (compute_mode == VOIDmode)
3945 for (compute_mode = mode; compute_mode != VOIDmode;
3946 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3947 if (optab_libfunc (optab1, compute_mode)
3948 || optab_libfunc (optab2, compute_mode))
3949 break;
3951 /* If we still couldn't find a mode, use MODE, but expand_binop will
3952 probably die. */
3953 if (compute_mode == VOIDmode)
3954 compute_mode = mode;
3956 if (target && GET_MODE (target) == compute_mode)
3957 tquotient = target;
3958 else
3959 tquotient = gen_reg_rtx (compute_mode);
3961 size = GET_MODE_BITSIZE (compute_mode);
3962 #if 0
3963 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3964 (mode), and thereby get better code when OP1 is a constant. Do that
3965 later. It will require going over all usages of SIZE below. */
3966 size = GET_MODE_BITSIZE (mode);
3967 #endif
3969 /* Only deduct something for a REM if the last divide done was
3970 for a different constant. Then set the constant of the last
3971 divide. */
3972 max_cost = (unsignedp
3973 ? udiv_cost (speed, compute_mode)
3974 : sdiv_cost (speed, compute_mode));
3975 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3976 && INTVAL (op1) == last_div_const))
3977 max_cost -= (mul_cost (speed, compute_mode)
3978 + add_cost (speed, compute_mode));
3980 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3982 /* Now convert to the best mode to use. */
3983 if (compute_mode != mode)
3985 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3986 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3988 /* convert_modes may have placed op1 into a register, so we
3989 must recompute the following. */
3990 op1_is_constant = CONST_INT_P (op1);
3991 op1_is_pow2 = (op1_is_constant
3992 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3993 || (! unsignedp
3994 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3997 /* If one of the operands is a volatile MEM, copy it into a register. */
3999 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
4000 op0 = force_reg (compute_mode, op0);
4001 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
4002 op1 = force_reg (compute_mode, op1);
4004 /* If we need the remainder or if OP1 is constant, we need to
4005 put OP0 in a register in case it has any queued subexpressions. */
4006 if (rem_flag || op1_is_constant)
4007 op0 = force_reg (compute_mode, op0);
4009 last = get_last_insn ();
4011 /* Promote floor rounding to trunc rounding for unsigned operations. */
4012 if (unsignedp)
4014 if (code == FLOOR_DIV_EXPR)
4015 code = TRUNC_DIV_EXPR;
4016 if (code == FLOOR_MOD_EXPR)
4017 code = TRUNC_MOD_EXPR;
4018 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4019 code = TRUNC_DIV_EXPR;
4022 if (op1 != const0_rtx)
4023 switch (code)
4025 case TRUNC_MOD_EXPR:
4026 case TRUNC_DIV_EXPR:
4027 if (op1_is_constant)
4029 if (unsignedp)
4031 unsigned HOST_WIDE_INT mh, ml;
4032 int pre_shift, post_shift;
4033 int dummy;
4034 unsigned HOST_WIDE_INT d = (INTVAL (op1)
4035 & GET_MODE_MASK (compute_mode));
4037 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4039 pre_shift = floor_log2 (d);
4040 if (rem_flag)
4042 remainder
4043 = expand_binop (compute_mode, and_optab, op0,
4044 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4045 remainder, 1,
4046 OPTAB_LIB_WIDEN);
4047 if (remainder)
4048 return gen_lowpart (mode, remainder);
4050 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4051 pre_shift, tquotient, 1);
4053 else if (size <= HOST_BITS_PER_WIDE_INT)
4055 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
4057 /* Most significant bit of divisor is set; emit an scc
4058 insn. */
4059 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
4060 compute_mode, 1, 1);
4062 else
4064 /* Find a suitable multiplier and right shift count
4065 instead of multiplying with D. */
4067 mh = choose_multiplier (d, size, size,
4068 &ml, &post_shift, &dummy);
4070 /* If the suggested multiplier is more than SIZE bits,
4071 we can do better for even divisors, using an
4072 initial right shift. */
4073 if (mh != 0 && (d & 1) == 0)
4075 pre_shift = floor_log2 (d & -d);
4076 mh = choose_multiplier (d >> pre_shift, size,
4077 size - pre_shift,
4078 &ml, &post_shift, &dummy);
4079 gcc_assert (!mh);
4081 else
4082 pre_shift = 0;
4084 if (mh != 0)
4086 rtx t1, t2, t3, t4;
4088 if (post_shift - 1 >= BITS_PER_WORD)
4089 goto fail1;
4091 extra_cost
4092 = (shift_cost (speed, compute_mode, post_shift - 1)
4093 + shift_cost (speed, compute_mode, 1)
4094 + 2 * add_cost (speed, compute_mode));
4095 t1 = expmed_mult_highpart (compute_mode, op0,
4096 GEN_INT (ml),
4097 NULL_RTX, 1,
4098 max_cost - extra_cost);
4099 if (t1 == 0)
4100 goto fail1;
4101 t2 = force_operand (gen_rtx_MINUS (compute_mode,
4102 op0, t1),
4103 NULL_RTX);
4104 t3 = expand_shift (RSHIFT_EXPR, compute_mode,
4105 t2, 1, NULL_RTX, 1);
4106 t4 = force_operand (gen_rtx_PLUS (compute_mode,
4107 t1, t3),
4108 NULL_RTX);
4109 quotient = expand_shift
4110 (RSHIFT_EXPR, compute_mode, t4,
4111 post_shift - 1, tquotient, 1);
4113 else
4115 rtx t1, t2;
4117 if (pre_shift >= BITS_PER_WORD
4118 || post_shift >= BITS_PER_WORD)
4119 goto fail1;
4121 t1 = expand_shift
4122 (RSHIFT_EXPR, compute_mode, op0,
4123 pre_shift, NULL_RTX, 1);
4124 extra_cost
4125 = (shift_cost (speed, compute_mode, pre_shift)
4126 + shift_cost (speed, compute_mode, post_shift));
4127 t2 = expmed_mult_highpart (compute_mode, t1,
4128 GEN_INT (ml),
4129 NULL_RTX, 1,
4130 max_cost - extra_cost);
4131 if (t2 == 0)
4132 goto fail1;
4133 quotient = expand_shift
4134 (RSHIFT_EXPR, compute_mode, t2,
4135 post_shift, tquotient, 1);
4139 else /* Too wide mode to use tricky code */
4140 break;
4142 insn = get_last_insn ();
4143 if (insn != last)
4144 set_dst_reg_note (insn, REG_EQUAL,
4145 gen_rtx_UDIV (compute_mode, op0, op1),
4146 quotient);
4148 else /* TRUNC_DIV, signed */
4150 unsigned HOST_WIDE_INT ml;
4151 int lgup, post_shift;
4152 rtx mlr;
4153 HOST_WIDE_INT d = INTVAL (op1);
4154 unsigned HOST_WIDE_INT abs_d;
4156 /* Since d might be INT_MIN, we have to cast to
4157 unsigned HOST_WIDE_INT before negating to avoid
4158 undefined signed overflow. */
4159 abs_d = (d >= 0
4160 ? (unsigned HOST_WIDE_INT) d
4161 : - (unsigned HOST_WIDE_INT) d);
4163 /* n rem d = n rem -d */
4164 if (rem_flag && d < 0)
4166 d = abs_d;
4167 op1 = gen_int_mode (abs_d, compute_mode);
4170 if (d == 1)
4171 quotient = op0;
4172 else if (d == -1)
4173 quotient = expand_unop (compute_mode, neg_optab, op0,
4174 tquotient, 0);
4175 else if (HOST_BITS_PER_WIDE_INT >= size
4176 && abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4178 /* This case is not handled correctly below. */
4179 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4180 compute_mode, 1, 1);
4181 if (quotient == 0)
4182 goto fail1;
4184 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4185 && (rem_flag
4186 ? smod_pow2_cheap (speed, compute_mode)
4187 : sdiv_pow2_cheap (speed, compute_mode))
4188 /* We assume that cheap metric is true if the
4189 optab has an expander for this mode. */
4190 && ((optab_handler ((rem_flag ? smod_optab
4191 : sdiv_optab),
4192 compute_mode)
4193 != CODE_FOR_nothing)
4194 || (optab_handler (sdivmod_optab,
4195 compute_mode)
4196 != CODE_FOR_nothing)))
4198 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4200 if (rem_flag)
4202 remainder = expand_smod_pow2 (compute_mode, op0, d);
4203 if (remainder)
4204 return gen_lowpart (mode, remainder);
4207 if (sdiv_pow2_cheap (speed, compute_mode)
4208 && ((optab_handler (sdiv_optab, compute_mode)
4209 != CODE_FOR_nothing)
4210 || (optab_handler (sdivmod_optab, compute_mode)
4211 != CODE_FOR_nothing)))
4212 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4213 compute_mode, op0,
4214 gen_int_mode (abs_d,
4215 compute_mode),
4216 NULL_RTX, 0);
4217 else
4218 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4220 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4221 negate the quotient. */
4222 if (d < 0)
4224 insn = get_last_insn ();
4225 if (insn != last
4226 && abs_d < ((unsigned HOST_WIDE_INT) 1
4227 << (HOST_BITS_PER_WIDE_INT - 1)))
4228 set_dst_reg_note (insn, REG_EQUAL,
4229 gen_rtx_DIV (compute_mode, op0,
4230 gen_int_mode
4231 (abs_d,
4232 compute_mode)),
4233 quotient);
4235 quotient = expand_unop (compute_mode, neg_optab,
4236 quotient, quotient, 0);
4239 else if (size <= HOST_BITS_PER_WIDE_INT)
4241 choose_multiplier (abs_d, size, size - 1,
4242 &ml, &post_shift, &lgup);
4243 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4245 rtx t1, t2, t3;
4247 if (post_shift >= BITS_PER_WORD
4248 || size - 1 >= BITS_PER_WORD)
4249 goto fail1;
4251 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4252 + shift_cost (speed, compute_mode, size - 1)
4253 + add_cost (speed, compute_mode));
4254 t1 = expmed_mult_highpart (compute_mode, op0,
4255 GEN_INT (ml), NULL_RTX, 0,
4256 max_cost - extra_cost);
4257 if (t1 == 0)
4258 goto fail1;
4259 t2 = expand_shift
4260 (RSHIFT_EXPR, compute_mode, t1,
4261 post_shift, NULL_RTX, 0);
4262 t3 = expand_shift
4263 (RSHIFT_EXPR, compute_mode, op0,
4264 size - 1, NULL_RTX, 0);
4265 if (d < 0)
4266 quotient
4267 = force_operand (gen_rtx_MINUS (compute_mode,
4268 t3, t2),
4269 tquotient);
4270 else
4271 quotient
4272 = force_operand (gen_rtx_MINUS (compute_mode,
4273 t2, t3),
4274 tquotient);
4276 else
4278 rtx t1, t2, t3, t4;
4280 if (post_shift >= BITS_PER_WORD
4281 || size - 1 >= BITS_PER_WORD)
4282 goto fail1;
4284 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4285 mlr = gen_int_mode (ml, compute_mode);
4286 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4287 + shift_cost (speed, compute_mode, size - 1)
4288 + 2 * add_cost (speed, compute_mode));
4289 t1 = expmed_mult_highpart (compute_mode, op0, mlr,
4290 NULL_RTX, 0,
4291 max_cost - extra_cost);
4292 if (t1 == 0)
4293 goto fail1;
4294 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4295 t1, op0),
4296 NULL_RTX);
4297 t3 = expand_shift
4298 (RSHIFT_EXPR, compute_mode, t2,
4299 post_shift, NULL_RTX, 0);
4300 t4 = expand_shift
4301 (RSHIFT_EXPR, compute_mode, op0,
4302 size - 1, NULL_RTX, 0);
4303 if (d < 0)
4304 quotient
4305 = force_operand (gen_rtx_MINUS (compute_mode,
4306 t4, t3),
4307 tquotient);
4308 else
4309 quotient
4310 = force_operand (gen_rtx_MINUS (compute_mode,
4311 t3, t4),
4312 tquotient);
4315 else /* Too wide mode to use tricky code */
4316 break;
4318 insn = get_last_insn ();
4319 if (insn != last)
4320 set_dst_reg_note (insn, REG_EQUAL,
4321 gen_rtx_DIV (compute_mode, op0, op1),
4322 quotient);
4324 break;
4326 fail1:
4327 delete_insns_since (last);
4328 break;
4330 case FLOOR_DIV_EXPR:
4331 case FLOOR_MOD_EXPR:
4332 /* We will come here only for signed operations. */
4333 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4335 unsigned HOST_WIDE_INT mh, ml;
4336 int pre_shift, lgup, post_shift;
4337 HOST_WIDE_INT d = INTVAL (op1);
4339 if (d > 0)
4341 /* We could just as easily deal with negative constants here,
4342 but it does not seem worth the trouble for GCC 2.6. */
4343 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4345 pre_shift = floor_log2 (d);
4346 if (rem_flag)
4348 remainder = expand_binop (compute_mode, and_optab, op0,
4349 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4350 remainder, 0, OPTAB_LIB_WIDEN);
4351 if (remainder)
4352 return gen_lowpart (mode, remainder);
4354 quotient = expand_shift
4355 (RSHIFT_EXPR, compute_mode, op0,
4356 pre_shift, tquotient, 0);
4358 else
4360 rtx t1, t2, t3, t4;
4362 mh = choose_multiplier (d, size, size - 1,
4363 &ml, &post_shift, &lgup);
4364 gcc_assert (!mh);
4366 if (post_shift < BITS_PER_WORD
4367 && size - 1 < BITS_PER_WORD)
4369 t1 = expand_shift
4370 (RSHIFT_EXPR, compute_mode, op0,
4371 size - 1, NULL_RTX, 0);
4372 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4373 NULL_RTX, 0, OPTAB_WIDEN);
4374 extra_cost = (shift_cost (speed, compute_mode, post_shift)
4375 + shift_cost (speed, compute_mode, size - 1)
4376 + 2 * add_cost (speed, compute_mode));
4377 t3 = expmed_mult_highpart (compute_mode, t2,
4378 GEN_INT (ml), NULL_RTX, 1,
4379 max_cost - extra_cost);
4380 if (t3 != 0)
4382 t4 = expand_shift
4383 (RSHIFT_EXPR, compute_mode, t3,
4384 post_shift, NULL_RTX, 1);
4385 quotient = expand_binop (compute_mode, xor_optab,
4386 t4, t1, tquotient, 0,
4387 OPTAB_WIDEN);
4392 else
4394 rtx nsign, t1, t2, t3, t4;
4395 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4396 op0, constm1_rtx), NULL_RTX);
4397 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4398 0, OPTAB_WIDEN);
4399 nsign = expand_shift
4400 (RSHIFT_EXPR, compute_mode, t2,
4401 size - 1, NULL_RTX, 0);
4402 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4403 NULL_RTX);
4404 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4405 NULL_RTX, 0);
4406 if (t4)
4408 rtx t5;
4409 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4410 NULL_RTX, 0);
4411 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4412 t4, t5),
4413 tquotient);
4418 if (quotient != 0)
4419 break;
4420 delete_insns_since (last);
4422 /* Try using an instruction that produces both the quotient and
4423 remainder, using truncation. We can easily compensate the quotient
4424 or remainder to get floor rounding, once we have the remainder.
4425 Notice that we compute also the final remainder value here,
4426 and return the result right away. */
4427 if (target == 0 || GET_MODE (target) != compute_mode)
4428 target = gen_reg_rtx (compute_mode);
4430 if (rem_flag)
4432 remainder
4433 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4434 quotient = gen_reg_rtx (compute_mode);
4436 else
4438 quotient
4439 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4440 remainder = gen_reg_rtx (compute_mode);
4443 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4444 quotient, remainder, 0))
4446 /* This could be computed with a branch-less sequence.
4447 Save that for later. */
4448 rtx tem;
4449 rtx label = gen_label_rtx ();
4450 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4451 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4452 NULL_RTX, 0, OPTAB_WIDEN);
4453 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4454 expand_dec (quotient, const1_rtx);
4455 expand_inc (remainder, op1);
4456 emit_label (label);
4457 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4460 /* No luck with division elimination or divmod. Have to do it
4461 by conditionally adjusting op0 *and* the result. */
4463 rtx label1, label2, label3, label4, label5;
4464 rtx adjusted_op0;
4465 rtx tem;
4467 quotient = gen_reg_rtx (compute_mode);
4468 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4469 label1 = gen_label_rtx ();
4470 label2 = gen_label_rtx ();
4471 label3 = gen_label_rtx ();
4472 label4 = gen_label_rtx ();
4473 label5 = gen_label_rtx ();
4474 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4475 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4476 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4477 quotient, 0, OPTAB_LIB_WIDEN);
4478 if (tem != quotient)
4479 emit_move_insn (quotient, tem);
4480 emit_jump_insn (gen_jump (label5));
4481 emit_barrier ();
4482 emit_label (label1);
4483 expand_inc (adjusted_op0, const1_rtx);
4484 emit_jump_insn (gen_jump (label4));
4485 emit_barrier ();
4486 emit_label (label2);
4487 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4488 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4489 quotient, 0, OPTAB_LIB_WIDEN);
4490 if (tem != quotient)
4491 emit_move_insn (quotient, tem);
4492 emit_jump_insn (gen_jump (label5));
4493 emit_barrier ();
4494 emit_label (label3);
4495 expand_dec (adjusted_op0, const1_rtx);
4496 emit_label (label4);
4497 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4498 quotient, 0, OPTAB_LIB_WIDEN);
4499 if (tem != quotient)
4500 emit_move_insn (quotient, tem);
4501 expand_dec (quotient, const1_rtx);
4502 emit_label (label5);
4504 break;
4506 case CEIL_DIV_EXPR:
4507 case CEIL_MOD_EXPR:
4508 if (unsignedp)
4510 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4512 rtx t1, t2, t3;
4513 unsigned HOST_WIDE_INT d = INTVAL (op1);
4514 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4515 floor_log2 (d), tquotient, 1);
4516 t2 = expand_binop (compute_mode, and_optab, op0,
4517 GEN_INT (d - 1),
4518 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4519 t3 = gen_reg_rtx (compute_mode);
4520 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4521 compute_mode, 1, 1);
4522 if (t3 == 0)
4524 rtx lab;
4525 lab = gen_label_rtx ();
4526 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4527 expand_inc (t1, const1_rtx);
4528 emit_label (lab);
4529 quotient = t1;
4531 else
4532 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4533 t1, t3),
4534 tquotient);
4535 break;
4538 /* Try using an instruction that produces both the quotient and
4539 remainder, using truncation. We can easily compensate the
4540 quotient or remainder to get ceiling rounding, once we have the
4541 remainder. Notice that we compute also the final remainder
4542 value here, and return the result right away. */
4543 if (target == 0 || GET_MODE (target) != compute_mode)
4544 target = gen_reg_rtx (compute_mode);
4546 if (rem_flag)
4548 remainder = (REG_P (target)
4549 ? target : gen_reg_rtx (compute_mode));
4550 quotient = gen_reg_rtx (compute_mode);
4552 else
4554 quotient = (REG_P (target)
4555 ? target : gen_reg_rtx (compute_mode));
4556 remainder = gen_reg_rtx (compute_mode);
4559 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4560 remainder, 1))
4562 /* This could be computed with a branch-less sequence.
4563 Save that for later. */
4564 rtx label = gen_label_rtx ();
4565 do_cmp_and_jump (remainder, const0_rtx, EQ,
4566 compute_mode, label);
4567 expand_inc (quotient, const1_rtx);
4568 expand_dec (remainder, op1);
4569 emit_label (label);
4570 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4573 /* No luck with division elimination or divmod. Have to do it
4574 by conditionally adjusting op0 *and* the result. */
4576 rtx label1, label2;
4577 rtx adjusted_op0, tem;
4579 quotient = gen_reg_rtx (compute_mode);
4580 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4581 label1 = gen_label_rtx ();
4582 label2 = gen_label_rtx ();
4583 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4584 compute_mode, label1);
4585 emit_move_insn (quotient, const0_rtx);
4586 emit_jump_insn (gen_jump (label2));
4587 emit_barrier ();
4588 emit_label (label1);
4589 expand_dec (adjusted_op0, const1_rtx);
4590 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4591 quotient, 1, OPTAB_LIB_WIDEN);
4592 if (tem != quotient)
4593 emit_move_insn (quotient, tem);
4594 expand_inc (quotient, const1_rtx);
4595 emit_label (label2);
4598 else /* signed */
4600 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4601 && INTVAL (op1) >= 0)
4603 /* This is extremely similar to the code for the unsigned case
4604 above. For 2.7 we should merge these variants, but for
4605 2.6.1 I don't want to touch the code for unsigned since that
4606 get used in C. The signed case will only be used by other
4607 languages (Ada). */
4609 rtx t1, t2, t3;
4610 unsigned HOST_WIDE_INT d = INTVAL (op1);
4611 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4612 floor_log2 (d), tquotient, 0);
4613 t2 = expand_binop (compute_mode, and_optab, op0,
4614 GEN_INT (d - 1),
4615 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4616 t3 = gen_reg_rtx (compute_mode);
4617 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4618 compute_mode, 1, 1);
4619 if (t3 == 0)
4621 rtx lab;
4622 lab = gen_label_rtx ();
4623 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4624 expand_inc (t1, const1_rtx);
4625 emit_label (lab);
4626 quotient = t1;
4628 else
4629 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4630 t1, t3),
4631 tquotient);
4632 break;
4635 /* Try using an instruction that produces both the quotient and
4636 remainder, using truncation. We can easily compensate the
4637 quotient or remainder to get ceiling rounding, once we have the
4638 remainder. Notice that we compute also the final remainder
4639 value here, and return the result right away. */
4640 if (target == 0 || GET_MODE (target) != compute_mode)
4641 target = gen_reg_rtx (compute_mode);
4642 if (rem_flag)
4644 remainder= (REG_P (target)
4645 ? target : gen_reg_rtx (compute_mode));
4646 quotient = gen_reg_rtx (compute_mode);
4648 else
4650 quotient = (REG_P (target)
4651 ? target : gen_reg_rtx (compute_mode));
4652 remainder = gen_reg_rtx (compute_mode);
4655 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4656 remainder, 0))
4658 /* This could be computed with a branch-less sequence.
4659 Save that for later. */
4660 rtx tem;
4661 rtx label = gen_label_rtx ();
4662 do_cmp_and_jump (remainder, const0_rtx, EQ,
4663 compute_mode, label);
4664 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4665 NULL_RTX, 0, OPTAB_WIDEN);
4666 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4667 expand_inc (quotient, const1_rtx);
4668 expand_dec (remainder, op1);
4669 emit_label (label);
4670 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4673 /* No luck with division elimination or divmod. Have to do it
4674 by conditionally adjusting op0 *and* the result. */
4676 rtx label1, label2, label3, label4, label5;
4677 rtx adjusted_op0;
4678 rtx tem;
4680 quotient = gen_reg_rtx (compute_mode);
4681 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4682 label1 = gen_label_rtx ();
4683 label2 = gen_label_rtx ();
4684 label3 = gen_label_rtx ();
4685 label4 = gen_label_rtx ();
4686 label5 = gen_label_rtx ();
4687 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4688 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4689 compute_mode, label1);
4690 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4691 quotient, 0, OPTAB_LIB_WIDEN);
4692 if (tem != quotient)
4693 emit_move_insn (quotient, tem);
4694 emit_jump_insn (gen_jump (label5));
4695 emit_barrier ();
4696 emit_label (label1);
4697 expand_dec (adjusted_op0, const1_rtx);
4698 emit_jump_insn (gen_jump (label4));
4699 emit_barrier ();
4700 emit_label (label2);
4701 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4702 compute_mode, label3);
4703 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4704 quotient, 0, OPTAB_LIB_WIDEN);
4705 if (tem != quotient)
4706 emit_move_insn (quotient, tem);
4707 emit_jump_insn (gen_jump (label5));
4708 emit_barrier ();
4709 emit_label (label3);
4710 expand_inc (adjusted_op0, const1_rtx);
4711 emit_label (label4);
4712 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4713 quotient, 0, OPTAB_LIB_WIDEN);
4714 if (tem != quotient)
4715 emit_move_insn (quotient, tem);
4716 expand_inc (quotient, const1_rtx);
4717 emit_label (label5);
4720 break;
4722 case EXACT_DIV_EXPR:
4723 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4725 HOST_WIDE_INT d = INTVAL (op1);
4726 unsigned HOST_WIDE_INT ml;
4727 int pre_shift;
4728 rtx t1;
4730 pre_shift = floor_log2 (d & -d);
4731 ml = invert_mod2n (d >> pre_shift, size);
4732 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4733 pre_shift, NULL_RTX, unsignedp);
4734 quotient = expand_mult (compute_mode, t1,
4735 gen_int_mode (ml, compute_mode),
4736 NULL_RTX, 1);
4738 insn = get_last_insn ();
4739 set_dst_reg_note (insn, REG_EQUAL,
4740 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4741 compute_mode, op0, op1),
4742 quotient);
4744 break;
4746 case ROUND_DIV_EXPR:
4747 case ROUND_MOD_EXPR:
4748 if (unsignedp)
4750 rtx tem;
4751 rtx label;
4752 label = gen_label_rtx ();
4753 quotient = gen_reg_rtx (compute_mode);
4754 remainder = gen_reg_rtx (compute_mode);
4755 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4757 rtx tem;
4758 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4759 quotient, 1, OPTAB_LIB_WIDEN);
4760 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4761 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4762 remainder, 1, OPTAB_LIB_WIDEN);
4764 tem = plus_constant (compute_mode, op1, -1);
4765 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem, 1, NULL_RTX, 1);
4766 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4767 expand_inc (quotient, const1_rtx);
4768 expand_dec (remainder, op1);
4769 emit_label (label);
4771 else
4773 rtx abs_rem, abs_op1, tem, mask;
4774 rtx label;
4775 label = gen_label_rtx ();
4776 quotient = gen_reg_rtx (compute_mode);
4777 remainder = gen_reg_rtx (compute_mode);
4778 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4780 rtx tem;
4781 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4782 quotient, 0, OPTAB_LIB_WIDEN);
4783 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4784 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4785 remainder, 0, OPTAB_LIB_WIDEN);
4787 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4788 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4789 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4790 1, NULL_RTX, 1);
4791 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4792 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4793 NULL_RTX, 0, OPTAB_WIDEN);
4794 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4795 size - 1, NULL_RTX, 0);
4796 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4797 NULL_RTX, 0, OPTAB_WIDEN);
4798 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4799 NULL_RTX, 0, OPTAB_WIDEN);
4800 expand_inc (quotient, tem);
4801 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4802 NULL_RTX, 0, OPTAB_WIDEN);
4803 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4804 NULL_RTX, 0, OPTAB_WIDEN);
4805 expand_dec (remainder, tem);
4806 emit_label (label);
4808 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4810 default:
4811 gcc_unreachable ();
4814 if (quotient == 0)
4816 if (target && GET_MODE (target) != compute_mode)
4817 target = 0;
4819 if (rem_flag)
4821 /* Try to produce the remainder without producing the quotient.
4822 If we seem to have a divmod pattern that does not require widening,
4823 don't try widening here. We should really have a WIDEN argument
4824 to expand_twoval_binop, since what we'd really like to do here is
4825 1) try a mod insn in compute_mode
4826 2) try a divmod insn in compute_mode
4827 3) try a div insn in compute_mode and multiply-subtract to get
4828 remainder
4829 4) try the same things with widening allowed. */
4830 remainder
4831 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4832 op0, op1, target,
4833 unsignedp,
4834 ((optab_handler (optab2, compute_mode)
4835 != CODE_FOR_nothing)
4836 ? OPTAB_DIRECT : OPTAB_WIDEN));
4837 if (remainder == 0)
4839 /* No luck there. Can we do remainder and divide at once
4840 without a library call? */
4841 remainder = gen_reg_rtx (compute_mode);
4842 if (! expand_twoval_binop ((unsignedp
4843 ? udivmod_optab
4844 : sdivmod_optab),
4845 op0, op1,
4846 NULL_RTX, remainder, unsignedp))
4847 remainder = 0;
4850 if (remainder)
4851 return gen_lowpart (mode, remainder);
4854 /* Produce the quotient. Try a quotient insn, but not a library call.
4855 If we have a divmod in this mode, use it in preference to widening
4856 the div (for this test we assume it will not fail). Note that optab2
4857 is set to the one of the two optabs that the call below will use. */
4858 quotient
4859 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4860 op0, op1, rem_flag ? NULL_RTX : target,
4861 unsignedp,
4862 ((optab_handler (optab2, compute_mode)
4863 != CODE_FOR_nothing)
4864 ? OPTAB_DIRECT : OPTAB_WIDEN));
4866 if (quotient == 0)
4868 /* No luck there. Try a quotient-and-remainder insn,
4869 keeping the quotient alone. */
4870 quotient = gen_reg_rtx (compute_mode);
4871 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4872 op0, op1,
4873 quotient, NULL_RTX, unsignedp))
4875 quotient = 0;
4876 if (! rem_flag)
4877 /* Still no luck. If we are not computing the remainder,
4878 use a library call for the quotient. */
4879 quotient = sign_expand_binop (compute_mode,
4880 udiv_optab, sdiv_optab,
4881 op0, op1, target,
4882 unsignedp, OPTAB_LIB_WIDEN);
4887 if (rem_flag)
4889 if (target && GET_MODE (target) != compute_mode)
4890 target = 0;
4892 if (quotient == 0)
4894 /* No divide instruction either. Use library for remainder. */
4895 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4896 op0, op1, target,
4897 unsignedp, OPTAB_LIB_WIDEN);
4898 /* No remainder function. Try a quotient-and-remainder
4899 function, keeping the remainder. */
4900 if (!remainder)
4902 remainder = gen_reg_rtx (compute_mode);
4903 if (!expand_twoval_binop_libfunc
4904 (unsignedp ? udivmod_optab : sdivmod_optab,
4905 op0, op1,
4906 NULL_RTX, remainder,
4907 unsignedp ? UMOD : MOD))
4908 remainder = NULL_RTX;
4911 else
4913 /* We divided. Now finish doing X - Y * (X / Y). */
4914 remainder = expand_mult (compute_mode, quotient, op1,
4915 NULL_RTX, unsignedp);
4916 remainder = expand_binop (compute_mode, sub_optab, op0,
4917 remainder, target, unsignedp,
4918 OPTAB_LIB_WIDEN);
4922 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4925 /* Return a tree node with data type TYPE, describing the value of X.
4926 Usually this is an VAR_DECL, if there is no obvious better choice.
4927 X may be an expression, however we only support those expressions
4928 generated by loop.c. */
4930 tree
4931 make_tree (tree type, rtx x)
4933 tree t;
4935 switch (GET_CODE (x))
4937 case CONST_INT:
4939 HOST_WIDE_INT hi = 0;
4941 if (INTVAL (x) < 0
4942 && !(TYPE_UNSIGNED (type)
4943 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4944 < HOST_BITS_PER_WIDE_INT)))
4945 hi = -1;
4947 t = build_int_cst_wide (type, INTVAL (x), hi);
4949 return t;
4952 case CONST_DOUBLE:
4953 if (GET_MODE (x) == VOIDmode)
4954 t = build_int_cst_wide (type,
4955 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4956 else
4958 REAL_VALUE_TYPE d;
4960 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4961 t = build_real (type, d);
4964 return t;
4966 case CONST_VECTOR:
4968 int units = CONST_VECTOR_NUNITS (x);
4969 tree itype = TREE_TYPE (type);
4970 tree *elts;
4971 int i;
4973 /* Build a tree with vector elements. */
4974 elts = XALLOCAVEC (tree, units);
4975 for (i = units - 1; i >= 0; --i)
4977 rtx elt = CONST_VECTOR_ELT (x, i);
4978 elts[i] = make_tree (itype, elt);
4981 return build_vector (type, elts);
4984 case PLUS:
4985 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4986 make_tree (type, XEXP (x, 1)));
4988 case MINUS:
4989 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4990 make_tree (type, XEXP (x, 1)));
4992 case NEG:
4993 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4995 case MULT:
4996 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4997 make_tree (type, XEXP (x, 1)));
4999 case ASHIFT:
5000 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5001 make_tree (type, XEXP (x, 1)));
5003 case LSHIFTRT:
5004 t = unsigned_type_for (type);
5005 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5006 make_tree (t, XEXP (x, 0)),
5007 make_tree (type, XEXP (x, 1))));
5009 case ASHIFTRT:
5010 t = signed_type_for (type);
5011 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5012 make_tree (t, XEXP (x, 0)),
5013 make_tree (type, XEXP (x, 1))));
5015 case DIV:
5016 if (TREE_CODE (type) != REAL_TYPE)
5017 t = signed_type_for (type);
5018 else
5019 t = type;
5021 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5022 make_tree (t, XEXP (x, 0)),
5023 make_tree (t, XEXP (x, 1))));
5024 case UDIV:
5025 t = unsigned_type_for (type);
5026 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5027 make_tree (t, XEXP (x, 0)),
5028 make_tree (t, XEXP (x, 1))));
5030 case SIGN_EXTEND:
5031 case ZERO_EXTEND:
5032 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5033 GET_CODE (x) == ZERO_EXTEND);
5034 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5036 case CONST:
5037 return make_tree (type, XEXP (x, 0));
5039 case SYMBOL_REF:
5040 t = SYMBOL_REF_DECL (x);
5041 if (t)
5042 return fold_convert (type, build_fold_addr_expr (t));
5043 /* else fall through. */
5045 default:
5046 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
5048 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5049 address mode to pointer mode. */
5050 if (POINTER_TYPE_P (type))
5051 x = convert_memory_address_addr_space
5052 (TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
5054 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5055 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5056 t->decl_with_rtl.rtl = x;
5058 return t;
5062 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5063 and returning TARGET.
5065 If TARGET is 0, a pseudo-register or constant is returned. */
5068 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
5070 rtx tem = 0;
5072 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5073 tem = simplify_binary_operation (AND, mode, op0, op1);
5074 if (tem == 0)
5075 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
5077 if (target == 0)
5078 target = tem;
5079 else if (tem != target)
5080 emit_move_insn (target, tem);
5081 return target;
5084 /* Helper function for emit_store_flag. */
5085 static rtx
5086 emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
5087 enum machine_mode mode, enum machine_mode compare_mode,
5088 int unsignedp, rtx x, rtx y, int normalizep,
5089 enum machine_mode target_mode)
5091 struct expand_operand ops[4];
5092 rtx op0, last, comparison, subtarget;
5093 enum machine_mode result_mode = insn_data[(int) icode].operand[0].mode;
5095 last = get_last_insn ();
5096 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5097 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
5098 if (!x || !y)
5100 delete_insns_since (last);
5101 return NULL_RTX;
5104 if (target_mode == VOIDmode)
5105 target_mode = result_mode;
5106 if (!target)
5107 target = gen_reg_rtx (target_mode);
5109 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
5111 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5112 create_fixed_operand (&ops[1], comparison);
5113 create_fixed_operand (&ops[2], x);
5114 create_fixed_operand (&ops[3], y);
5115 if (!maybe_expand_insn (icode, 4, ops))
5117 delete_insns_since (last);
5118 return NULL_RTX;
5120 subtarget = ops[0].value;
5122 /* If we are converting to a wider mode, first convert to
5123 TARGET_MODE, then normalize. This produces better combining
5124 opportunities on machines that have a SIGN_EXTRACT when we are
5125 testing a single bit. This mostly benefits the 68k.
5127 If STORE_FLAG_VALUE does not have the sign bit set when
5128 interpreted in MODE, we can do this conversion as unsigned, which
5129 is usually more efficient. */
5130 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (result_mode))
5132 convert_move (target, subtarget,
5133 val_signbit_known_clear_p (result_mode,
5134 STORE_FLAG_VALUE));
5135 op0 = target;
5136 result_mode = target_mode;
5138 else
5139 op0 = subtarget;
5141 /* If we want to keep subexpressions around, don't reuse our last
5142 target. */
5143 if (optimize)
5144 subtarget = 0;
5146 /* Now normalize to the proper value in MODE. Sometimes we don't
5147 have to do anything. */
5148 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5150 /* STORE_FLAG_VALUE might be the most negative number, so write
5151 the comparison this way to avoid a compiler-time warning. */
5152 else if (- normalizep == STORE_FLAG_VALUE)
5153 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
5155 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5156 it hard to use a value of just the sign bit due to ANSI integer
5157 constant typing rules. */
5158 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
5159 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
5160 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
5161 normalizep == 1);
5162 else
5164 gcc_assert (STORE_FLAG_VALUE & 1);
5166 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
5167 if (normalizep == -1)
5168 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
5171 /* If we were converting to a smaller mode, do the conversion now. */
5172 if (target_mode != result_mode)
5174 convert_move (target, op0, 0);
5175 return target;
5177 else
5178 return op0;
5182 /* A subroutine of emit_store_flag only including "tricks" that do not
5183 need a recursive call. These are kept separate to avoid infinite
5184 loops. */
5186 static rtx
5187 emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
5188 enum machine_mode mode, int unsignedp, int normalizep,
5189 enum machine_mode target_mode)
5191 rtx subtarget;
5192 enum insn_code icode;
5193 enum machine_mode compare_mode;
5194 enum mode_class mclass;
5195 enum rtx_code scode;
5196 rtx tem;
5198 if (unsignedp)
5199 code = unsigned_condition (code);
5200 scode = swap_condition (code);
5202 /* If one operand is constant, make it the second one. Only do this
5203 if the other operand is not constant as well. */
5205 if (swap_commutative_operands_p (op0, op1))
5207 tem = op0;
5208 op0 = op1;
5209 op1 = tem;
5210 code = swap_condition (code);
5213 if (mode == VOIDmode)
5214 mode = GET_MODE (op0);
5216 /* For some comparisons with 1 and -1, we can convert this to
5217 comparisons with zero. This will often produce more opportunities for
5218 store-flag insns. */
5220 switch (code)
5222 case LT:
5223 if (op1 == const1_rtx)
5224 op1 = const0_rtx, code = LE;
5225 break;
5226 case LE:
5227 if (op1 == constm1_rtx)
5228 op1 = const0_rtx, code = LT;
5229 break;
5230 case GE:
5231 if (op1 == const1_rtx)
5232 op1 = const0_rtx, code = GT;
5233 break;
5234 case GT:
5235 if (op1 == constm1_rtx)
5236 op1 = const0_rtx, code = GE;
5237 break;
5238 case GEU:
5239 if (op1 == const1_rtx)
5240 op1 = const0_rtx, code = NE;
5241 break;
5242 case LTU:
5243 if (op1 == const1_rtx)
5244 op1 = const0_rtx, code = EQ;
5245 break;
5246 default:
5247 break;
5250 /* If we are comparing a double-word integer with zero or -1, we can
5251 convert the comparison into one involving a single word. */
5252 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5253 && GET_MODE_CLASS (mode) == MODE_INT
5254 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5256 if ((code == EQ || code == NE)
5257 && (op1 == const0_rtx || op1 == constm1_rtx))
5259 rtx op00, op01;
5261 /* Do a logical OR or AND of the two words and compare the
5262 result. */
5263 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5264 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5265 tem = expand_binop (word_mode,
5266 op1 == const0_rtx ? ior_optab : and_optab,
5267 op00, op01, NULL_RTX, unsignedp,
5268 OPTAB_DIRECT);
5270 if (tem != 0)
5271 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
5272 unsignedp, normalizep);
5274 else if ((code == LT || code == GE) && op1 == const0_rtx)
5276 rtx op0h;
5278 /* If testing the sign bit, can just test on high word. */
5279 op0h = simplify_gen_subreg (word_mode, op0, mode,
5280 subreg_highpart_offset (word_mode,
5281 mode));
5282 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5283 unsignedp, normalizep);
5285 else
5286 tem = NULL_RTX;
5288 if (tem)
5290 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
5291 return tem;
5292 if (!target)
5293 target = gen_reg_rtx (target_mode);
5295 convert_move (target, tem,
5296 !val_signbit_known_set_p (word_mode,
5297 (normalizep ? normalizep
5298 : STORE_FLAG_VALUE)));
5299 return target;
5303 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5304 complement of A (for GE) and shifting the sign bit to the low bit. */
5305 if (op1 == const0_rtx && (code == LT || code == GE)
5306 && GET_MODE_CLASS (mode) == MODE_INT
5307 && (normalizep || STORE_FLAG_VALUE == 1
5308 || val_signbit_p (mode, STORE_FLAG_VALUE)))
5310 subtarget = target;
5312 if (!target)
5313 target_mode = mode;
5315 /* If the result is to be wider than OP0, it is best to convert it
5316 first. If it is to be narrower, it is *incorrect* to convert it
5317 first. */
5318 else if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5320 op0 = convert_modes (target_mode, mode, op0, 0);
5321 mode = target_mode;
5324 if (target_mode != mode)
5325 subtarget = 0;
5327 if (code == GE)
5328 op0 = expand_unop (mode, one_cmpl_optab, op0,
5329 ((STORE_FLAG_VALUE == 1 || normalizep)
5330 ? 0 : subtarget), 0);
5332 if (STORE_FLAG_VALUE == 1 || normalizep)
5333 /* If we are supposed to produce a 0/1 value, we want to do
5334 a logical shift from the sign bit to the low-order bit; for
5335 a -1/0 value, we do an arithmetic shift. */
5336 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5337 GET_MODE_BITSIZE (mode) - 1,
5338 subtarget, normalizep != -1);
5340 if (mode != target_mode)
5341 op0 = convert_modes (target_mode, mode, op0, 0);
5343 return op0;
5346 mclass = GET_MODE_CLASS (mode);
5347 for (compare_mode = mode; compare_mode != VOIDmode;
5348 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5350 enum machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
5351 icode = optab_handler (cstore_optab, optab_mode);
5352 if (icode != CODE_FOR_nothing)
5354 do_pending_stack_adjust ();
5355 tem = emit_cstore (target, icode, code, mode, compare_mode,
5356 unsignedp, op0, op1, normalizep, target_mode);
5357 if (tem)
5358 return tem;
5360 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5362 tem = emit_cstore (target, icode, scode, mode, compare_mode,
5363 unsignedp, op1, op0, normalizep, target_mode);
5364 if (tem)
5365 return tem;
5367 break;
5371 return 0;
5374 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5375 and storing in TARGET. Normally return TARGET.
5376 Return 0 if that cannot be done.
5378 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5379 it is VOIDmode, they cannot both be CONST_INT.
5381 UNSIGNEDP is for the case where we have to widen the operands
5382 to perform the operation. It says to use zero-extension.
5384 NORMALIZEP is 1 if we should convert the result to be either zero
5385 or one. Normalize is -1 if we should convert the result to be
5386 either zero or -1. If NORMALIZEP is zero, the result will be left
5387 "raw" out of the scc insn. */
5390 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5391 enum machine_mode mode, int unsignedp, int normalizep)
5393 enum machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
5394 enum rtx_code rcode;
5395 rtx subtarget;
5396 rtx tem, last, trueval;
5398 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
5399 target_mode);
5400 if (tem)
5401 return tem;
5403 /* If we reached here, we can't do this with a scc insn, however there
5404 are some comparisons that can be done in other ways. Don't do any
5405 of these cases if branches are very cheap. */
5406 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5407 return 0;
5409 /* See what we need to return. We can only return a 1, -1, or the
5410 sign bit. */
5412 if (normalizep == 0)
5414 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5415 normalizep = STORE_FLAG_VALUE;
5417 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
5419 else
5420 return 0;
5423 last = get_last_insn ();
5425 /* If optimizing, use different pseudo registers for each insn, instead
5426 of reusing the same pseudo. This leads to better CSE, but slows
5427 down the compiler, since there are more pseudos */
5428 subtarget = (!optimize
5429 && (target_mode == mode)) ? target : NULL_RTX;
5430 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
5432 /* For floating-point comparisons, try the reverse comparison or try
5433 changing the "orderedness" of the comparison. */
5434 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5436 enum rtx_code first_code;
5437 bool and_them;
5439 rcode = reverse_condition_maybe_unordered (code);
5440 if (can_compare_p (rcode, mode, ccp_store_flag)
5441 && (code == ORDERED || code == UNORDERED
5442 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5443 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5445 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5446 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5448 /* For the reverse comparison, use either an addition or a XOR. */
5449 if (want_add
5450 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5451 optimize_insn_for_speed_p ()) == 0)
5453 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5454 STORE_FLAG_VALUE, target_mode);
5455 if (tem)
5456 return expand_binop (target_mode, add_optab, tem,
5457 GEN_INT (normalizep),
5458 target, 0, OPTAB_WIDEN);
5460 else if (!want_add
5461 && rtx_cost (trueval, XOR, 1,
5462 optimize_insn_for_speed_p ()) == 0)
5464 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5465 normalizep, target_mode);
5466 if (tem)
5467 return expand_binop (target_mode, xor_optab, tem, trueval,
5468 target, INTVAL (trueval) >= 0, OPTAB_WIDEN);
5472 delete_insns_since (last);
5474 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5475 if (code == ORDERED || code == UNORDERED)
5476 return 0;
5478 and_them = split_comparison (code, mode, &first_code, &code);
5480 /* If there are no NaNs, the first comparison should always fall through.
5481 Effectively change the comparison to the other one. */
5482 if (!HONOR_NANS (mode))
5484 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
5485 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
5486 target_mode);
5489 #ifdef HAVE_conditional_move
5490 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5491 conditional move. */
5492 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
5493 normalizep, target_mode);
5494 if (tem == 0)
5495 return 0;
5497 if (and_them)
5498 tem = emit_conditional_move (target, code, op0, op1, mode,
5499 tem, const0_rtx, GET_MODE (tem), 0);
5500 else
5501 tem = emit_conditional_move (target, code, op0, op1, mode,
5502 trueval, tem, GET_MODE (tem), 0);
5504 if (tem == 0)
5505 delete_insns_since (last);
5506 return tem;
5507 #else
5508 return 0;
5509 #endif
5512 /* The remaining tricks only apply to integer comparisons. */
5514 if (GET_MODE_CLASS (mode) != MODE_INT)
5515 return 0;
5517 /* If this is an equality comparison of integers, we can try to exclusive-or
5518 (or subtract) the two operands and use a recursive call to try the
5519 comparison with zero. Don't do any of these cases if branches are
5520 very cheap. */
5522 if ((code == EQ || code == NE) && op1 != const0_rtx)
5524 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5525 OPTAB_WIDEN);
5527 if (tem == 0)
5528 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5529 OPTAB_WIDEN);
5530 if (tem != 0)
5531 tem = emit_store_flag (target, code, tem, const0_rtx,
5532 mode, unsignedp, normalizep);
5533 if (tem != 0)
5534 return tem;
5536 delete_insns_since (last);
5539 /* For integer comparisons, try the reverse comparison. However, for
5540 small X and if we'd have anyway to extend, implementing "X != 0"
5541 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5542 rcode = reverse_condition (code);
5543 if (can_compare_p (rcode, mode, ccp_store_flag)
5544 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
5545 && code == NE
5546 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5547 && op1 == const0_rtx))
5549 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5550 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5552 /* Again, for the reverse comparison, use either an addition or a XOR. */
5553 if (want_add
5554 && rtx_cost (GEN_INT (normalizep), PLUS, 1,
5555 optimize_insn_for_speed_p ()) == 0)
5557 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5558 STORE_FLAG_VALUE, target_mode);
5559 if (tem != 0)
5560 tem = expand_binop (target_mode, add_optab, tem,
5561 GEN_INT (normalizep), target, 0, OPTAB_WIDEN);
5563 else if (!want_add
5564 && rtx_cost (trueval, XOR, 1,
5565 optimize_insn_for_speed_p ()) == 0)
5567 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5568 normalizep, target_mode);
5569 if (tem != 0)
5570 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
5571 INTVAL (trueval) >= 0, OPTAB_WIDEN);
5574 if (tem != 0)
5575 return tem;
5576 delete_insns_since (last);
5579 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5580 the constant zero. Reject all other comparisons at this point. Only
5581 do LE and GT if branches are expensive since they are expensive on
5582 2-operand machines. */
5584 if (op1 != const0_rtx
5585 || (code != EQ && code != NE
5586 && (BRANCH_COST (optimize_insn_for_speed_p (),
5587 false) <= 1 || (code != LE && code != GT))))
5588 return 0;
5590 /* Try to put the result of the comparison in the sign bit. Assume we can't
5591 do the necessary operation below. */
5593 tem = 0;
5595 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5596 the sign bit set. */
5598 if (code == LE)
5600 /* This is destructive, so SUBTARGET can't be OP0. */
5601 if (rtx_equal_p (subtarget, op0))
5602 subtarget = 0;
5604 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5605 OPTAB_WIDEN);
5606 if (tem)
5607 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5608 OPTAB_WIDEN);
5611 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5612 number of bits in the mode of OP0, minus one. */
5614 if (code == GT)
5616 if (rtx_equal_p (subtarget, op0))
5617 subtarget = 0;
5619 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5620 GET_MODE_BITSIZE (mode) - 1,
5621 subtarget, 0);
5622 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5623 OPTAB_WIDEN);
5626 if (code == EQ || code == NE)
5628 /* For EQ or NE, one way to do the comparison is to apply an operation
5629 that converts the operand into a positive number if it is nonzero
5630 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5631 for NE we negate. This puts the result in the sign bit. Then we
5632 normalize with a shift, if needed.
5634 Two operations that can do the above actions are ABS and FFS, so try
5635 them. If that doesn't work, and MODE is smaller than a full word,
5636 we can use zero-extension to the wider mode (an unsigned conversion)
5637 as the operation. */
5639 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5640 that is compensated by the subsequent overflow when subtracting
5641 one / negating. */
5643 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
5644 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5645 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
5646 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5647 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5649 tem = convert_modes (word_mode, mode, op0, 1);
5650 mode = word_mode;
5653 if (tem != 0)
5655 if (code == EQ)
5656 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5657 0, OPTAB_WIDEN);
5658 else
5659 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5662 /* If we couldn't do it that way, for NE we can "or" the two's complement
5663 of the value with itself. For EQ, we take the one's complement of
5664 that "or", which is an extra insn, so we only handle EQ if branches
5665 are expensive. */
5667 if (tem == 0
5668 && (code == NE
5669 || BRANCH_COST (optimize_insn_for_speed_p (),
5670 false) > 1))
5672 if (rtx_equal_p (subtarget, op0))
5673 subtarget = 0;
5675 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5676 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5677 OPTAB_WIDEN);
5679 if (tem && code == EQ)
5680 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5684 if (tem && normalizep)
5685 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5686 GET_MODE_BITSIZE (mode) - 1,
5687 subtarget, normalizep == 1);
5689 if (tem)
5691 if (!target)
5693 else if (GET_MODE (tem) != target_mode)
5695 convert_move (target, tem, 0);
5696 tem = target;
5698 else if (!subtarget)
5700 emit_move_insn (target, tem);
5701 tem = target;
5704 else
5705 delete_insns_since (last);
5707 return tem;
5710 /* Like emit_store_flag, but always succeeds. */
5713 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5714 enum machine_mode mode, int unsignedp, int normalizep)
5716 rtx tem, label;
5717 rtx trueval, falseval;
5719 /* First see if emit_store_flag can do the job. */
5720 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5721 if (tem != 0)
5722 return tem;
5724 if (!target)
5725 target = gen_reg_rtx (word_mode);
5727 /* If this failed, we have to do this with set/compare/jump/set code.
5728 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5729 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
5730 if (code == NE
5731 && GET_MODE_CLASS (mode) == MODE_INT
5732 && REG_P (target)
5733 && op0 == target
5734 && op1 == const0_rtx)
5736 label = gen_label_rtx ();
5737 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp,
5738 mode, NULL_RTX, NULL_RTX, label, -1);
5739 emit_move_insn (target, trueval);
5740 emit_label (label);
5741 return target;
5744 if (!REG_P (target)
5745 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5746 target = gen_reg_rtx (GET_MODE (target));
5748 /* Jump in the right direction if the target cannot implement CODE
5749 but can jump on its reverse condition. */
5750 falseval = const0_rtx;
5751 if (! can_compare_p (code, mode, ccp_jump)
5752 && (! FLOAT_MODE_P (mode)
5753 || code == ORDERED || code == UNORDERED
5754 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
5755 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
5757 enum rtx_code rcode;
5758 if (FLOAT_MODE_P (mode))
5759 rcode = reverse_condition_maybe_unordered (code);
5760 else
5761 rcode = reverse_condition (code);
5763 /* Canonicalize to UNORDERED for the libcall. */
5764 if (can_compare_p (rcode, mode, ccp_jump)
5765 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
5767 falseval = trueval;
5768 trueval = const0_rtx;
5769 code = rcode;
5773 emit_move_insn (target, trueval);
5774 label = gen_label_rtx ();
5775 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5776 NULL_RTX, label, -1);
5778 emit_move_insn (target, falseval);
5779 emit_label (label);
5781 return target;
5784 /* Perform possibly multi-word comparison and conditional jump to LABEL
5785 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5786 now a thin wrapper around do_compare_rtx_and_jump. */
5788 static void
5789 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5790 rtx label)
5792 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5793 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5794 NULL_RTX, NULL_RTX, label, -1);