* gcc.dg/tree-ssa/pr44258.c: Disable scan test for Epiphany.
[official-gcc.git] / gcc / double-int.c
blobfe3c096619ab0acce595955d74207279bd33b1dc
1 /* Operations with long integers.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h" /* For SHIFT_COUNT_TRUNCATED. */
24 #include "tree.h"
26 static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
27 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
28 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
29 bool);
31 #define add_double(l1,h1,l2,h2,lv,hv) \
32 add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
34 static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
35 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
37 static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
39 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
40 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
41 bool);
43 #define mul_double(l1,h1,l2,h2,lv,hv) \
44 mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
46 static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
47 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
48 HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
49 HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
50 HOST_WIDE_INT *);
52 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
53 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
54 and SUM1. Then this yields nonzero if overflow occurred during the
55 addition.
57 Overflow occurs if A and B have the same sign, but A and SUM differ in
58 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
59 sign. */
60 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
62 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
63 We do that by representing the two-word integer in 4 words, with only
64 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
65 number. The value of the word is LOWPART + HIGHPART * BASE. */
67 #define LOWPART(x) \
68 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
69 #define HIGHPART(x) \
70 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
71 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
73 /* Unpack a two-word integer into 4 words.
74 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
75 WORDS points to the array of HOST_WIDE_INTs. */
77 static void
78 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
80 words[0] = LOWPART (low);
81 words[1] = HIGHPART (low);
82 words[2] = LOWPART (hi);
83 words[3] = HIGHPART (hi);
86 /* Pack an array of 4 words into a two-word integer.
87 WORDS points to the array of words.
88 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
90 static void
91 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
92 HOST_WIDE_INT *hi)
94 *low = words[0] + words[1] * BASE;
95 *hi = words[2] + words[3] * BASE;
98 /* Add two doubleword integers with doubleword result.
99 Return nonzero if the operation overflows according to UNSIGNED_P.
100 Each argument is given as two `HOST_WIDE_INT' pieces.
101 One argument is L1 and H1; the other, L2 and H2.
102 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
104 static int
105 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
106 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
107 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
108 bool unsigned_p)
110 unsigned HOST_WIDE_INT l;
111 HOST_WIDE_INT h;
113 l = l1 + l2;
114 h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
115 + (unsigned HOST_WIDE_INT) h2
116 + (l < l1));
118 *lv = l;
119 *hv = h;
121 if (unsigned_p)
122 return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
123 || (h == h1
124 && l < l1));
125 else
126 return OVERFLOW_SUM_SIGN (h1, h2, h);
129 /* Negate a doubleword integer with doubleword result.
130 Return nonzero if the operation overflows, assuming it's signed.
131 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
132 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
134 static int
135 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
136 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
138 if (l1 == 0)
140 *lv = 0;
141 *hv = - h1;
142 return (*hv & h1) < 0;
144 else
146 *lv = -l1;
147 *hv = ~h1;
148 return 0;
152 /* Multiply two doubleword integers with quadword result.
153 Return nonzero if the operation overflows according to UNSIGNED_P.
154 Each argument is given as two `HOST_WIDE_INT' pieces.
155 One argument is L1 and H1; the other, L2 and H2.
156 The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
157 *LW and *HW.
158 If lw is NULL then only the low part and no overflow is computed. */
160 static int
161 mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
162 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
163 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
164 unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
165 bool unsigned_p)
167 HOST_WIDE_INT arg1[4];
168 HOST_WIDE_INT arg2[4];
169 HOST_WIDE_INT prod[4 * 2];
170 unsigned HOST_WIDE_INT carry;
171 int i, j, k;
172 unsigned HOST_WIDE_INT neglow;
173 HOST_WIDE_INT neghigh;
175 encode (arg1, l1, h1);
176 encode (arg2, l2, h2);
178 memset (prod, 0, sizeof prod);
180 for (i = 0; i < 4; i++)
182 carry = 0;
183 for (j = 0; j < 4; j++)
185 k = i + j;
186 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
187 carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
188 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
189 carry += prod[k];
190 prod[k] = LOWPART (carry);
191 carry = HIGHPART (carry);
193 prod[i + 4] = carry;
196 decode (prod, lv, hv);
198 /* We are not interested in the wide part nor in overflow. */
199 if (lw == NULL)
200 return 0;
202 decode (prod + 4, lw, hw);
204 /* Unsigned overflow is immediate. */
205 if (unsigned_p)
206 return (*lw | *hw) != 0;
208 /* Check for signed overflow by calculating the signed representation of the
209 top half of the result; it should agree with the low half's sign bit. */
210 if (h1 < 0)
212 neg_double (l2, h2, &neglow, &neghigh);
213 add_double (neglow, neghigh, *lw, *hw, lw, hw);
215 if (h2 < 0)
217 neg_double (l1, h1, &neglow, &neghigh);
218 add_double (neglow, neghigh, *lw, *hw, lw, hw);
220 return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
223 /* Shift the doubleword integer in L1, H1 right by COUNT places
224 keeping only PREC bits of result. ARITH nonzero specifies
225 arithmetic shifting; otherwise use logical shift.
226 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
228 static void
229 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
230 unsigned HOST_WIDE_INT count, unsigned int prec,
231 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
232 bool arith)
234 unsigned HOST_WIDE_INT signmask;
236 signmask = (arith
237 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
238 : 0);
240 if (SHIFT_COUNT_TRUNCATED)
241 count %= prec;
243 if (count >= HOST_BITS_PER_DOUBLE_INT)
245 /* Shifting by the host word size is undefined according to the
246 ANSI standard, so we must handle this as a special case. */
247 *hv = 0;
248 *lv = 0;
250 else if (count >= HOST_BITS_PER_WIDE_INT)
252 *hv = 0;
253 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
255 else
257 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
258 *lv = ((l1 >> count)
259 | ((unsigned HOST_WIDE_INT) h1
260 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
263 /* Zero / sign extend all bits that are beyond the precision. */
265 if (count >= prec)
267 *hv = signmask;
268 *lv = signmask;
270 else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
272 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
274 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
275 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
277 else
279 *hv = signmask;
280 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
281 *lv |= signmask << (prec - count);
285 /* Shift the doubleword integer in L1, H1 left by COUNT places
286 keeping only PREC bits of result.
287 Shift right if COUNT is negative.
288 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
289 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
291 static void
292 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
293 unsigned HOST_WIDE_INT count, unsigned int prec,
294 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
296 unsigned HOST_WIDE_INT signmask;
298 if (SHIFT_COUNT_TRUNCATED)
299 count %= prec;
301 if (count >= HOST_BITS_PER_DOUBLE_INT)
303 /* Shifting by the host word size is undefined according to the
304 ANSI standard, so we must handle this as a special case. */
305 *hv = 0;
306 *lv = 0;
308 else if (count >= HOST_BITS_PER_WIDE_INT)
310 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
311 *lv = 0;
313 else
315 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
316 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
317 *lv = l1 << count;
320 /* Sign extend all bits that are beyond the precision. */
322 signmask = -((prec > HOST_BITS_PER_WIDE_INT
323 ? ((unsigned HOST_WIDE_INT) *hv
324 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
325 : (*lv >> (prec - 1))) & 1);
327 if (prec >= HOST_BITS_PER_DOUBLE_INT)
329 else if (prec >= HOST_BITS_PER_WIDE_INT)
331 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
332 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
334 else
336 *hv = signmask;
337 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
338 *lv |= signmask << prec;
342 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
343 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
344 CODE is a tree code for a kind of division, one of
345 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
346 or EXACT_DIV_EXPR
347 It controls how the quotient is rounded to an integer.
348 Return nonzero if the operation overflows.
349 UNS nonzero says do unsigned division. */
351 static int
352 div_and_round_double (unsigned code, int uns,
353 /* num == numerator == dividend */
354 unsigned HOST_WIDE_INT lnum_orig,
355 HOST_WIDE_INT hnum_orig,
356 /* den == denominator == divisor */
357 unsigned HOST_WIDE_INT lden_orig,
358 HOST_WIDE_INT hden_orig,
359 unsigned HOST_WIDE_INT *lquo,
360 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
361 HOST_WIDE_INT *hrem)
363 int quo_neg = 0;
364 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
365 HOST_WIDE_INT den[4], quo[4];
366 int i, j;
367 unsigned HOST_WIDE_INT work;
368 unsigned HOST_WIDE_INT carry = 0;
369 unsigned HOST_WIDE_INT lnum = lnum_orig;
370 HOST_WIDE_INT hnum = hnum_orig;
371 unsigned HOST_WIDE_INT lden = lden_orig;
372 HOST_WIDE_INT hden = hden_orig;
373 int overflow = 0;
375 if (hden == 0 && lden == 0)
376 overflow = 1, lden = 1;
378 /* Calculate quotient sign and convert operands to unsigned. */
379 if (!uns)
381 if (hnum < 0)
383 quo_neg = ~ quo_neg;
384 /* (minimum integer) / (-1) is the only overflow case. */
385 if (neg_double (lnum, hnum, &lnum, &hnum)
386 && ((HOST_WIDE_INT) lden & hden) == -1)
387 overflow = 1;
389 if (hden < 0)
391 quo_neg = ~ quo_neg;
392 neg_double (lden, hden, &lden, &hden);
396 if (hnum == 0 && hden == 0)
397 { /* single precision */
398 *hquo = *hrem = 0;
399 /* This unsigned division rounds toward zero. */
400 *lquo = lnum / lden;
401 goto finish_up;
404 if (hnum == 0)
405 { /* trivial case: dividend < divisor */
406 /* hden != 0 already checked. */
407 *hquo = *lquo = 0;
408 *hrem = hnum;
409 *lrem = lnum;
410 goto finish_up;
413 memset (quo, 0, sizeof quo);
415 memset (num, 0, sizeof num); /* to zero 9th element */
416 memset (den, 0, sizeof den);
418 encode (num, lnum, hnum);
419 encode (den, lden, hden);
421 /* Special code for when the divisor < BASE. */
422 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
424 /* hnum != 0 already checked. */
425 for (i = 4 - 1; i >= 0; i--)
427 work = num[i] + carry * BASE;
428 quo[i] = work / lden;
429 carry = work % lden;
432 else
434 /* Full double precision division,
435 with thanks to Don Knuth's "Seminumerical Algorithms". */
436 int num_hi_sig, den_hi_sig;
437 unsigned HOST_WIDE_INT quo_est, scale;
439 /* Find the highest nonzero divisor digit. */
440 for (i = 4 - 1;; i--)
441 if (den[i] != 0)
443 den_hi_sig = i;
444 break;
447 /* Insure that the first digit of the divisor is at least BASE/2.
448 This is required by the quotient digit estimation algorithm. */
450 scale = BASE / (den[den_hi_sig] + 1);
451 if (scale > 1)
452 { /* scale divisor and dividend */
453 carry = 0;
454 for (i = 0; i <= 4 - 1; i++)
456 work = (num[i] * scale) + carry;
457 num[i] = LOWPART (work);
458 carry = HIGHPART (work);
461 num[4] = carry;
462 carry = 0;
463 for (i = 0; i <= 4 - 1; i++)
465 work = (den[i] * scale) + carry;
466 den[i] = LOWPART (work);
467 carry = HIGHPART (work);
468 if (den[i] != 0) den_hi_sig = i;
472 num_hi_sig = 4;
474 /* Main loop */
475 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
477 /* Guess the next quotient digit, quo_est, by dividing the first
478 two remaining dividend digits by the high order quotient digit.
479 quo_est is never low and is at most 2 high. */
480 unsigned HOST_WIDE_INT tmp;
482 num_hi_sig = i + den_hi_sig + 1;
483 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
484 if (num[num_hi_sig] != den[den_hi_sig])
485 quo_est = work / den[den_hi_sig];
486 else
487 quo_est = BASE - 1;
489 /* Refine quo_est so it's usually correct, and at most one high. */
490 tmp = work - quo_est * den[den_hi_sig];
491 if (tmp < BASE
492 && (den[den_hi_sig - 1] * quo_est
493 > (tmp * BASE + num[num_hi_sig - 2])))
494 quo_est--;
496 /* Try QUO_EST as the quotient digit, by multiplying the
497 divisor by QUO_EST and subtracting from the remaining dividend.
498 Keep in mind that QUO_EST is the I - 1st digit. */
500 carry = 0;
501 for (j = 0; j <= den_hi_sig; j++)
503 work = quo_est * den[j] + carry;
504 carry = HIGHPART (work);
505 work = num[i + j] - LOWPART (work);
506 num[i + j] = LOWPART (work);
507 carry += HIGHPART (work) != 0;
510 /* If quo_est was high by one, then num[i] went negative and
511 we need to correct things. */
512 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
514 quo_est--;
515 carry = 0; /* add divisor back in */
516 for (j = 0; j <= den_hi_sig; j++)
518 work = num[i + j] + den[j] + carry;
519 carry = HIGHPART (work);
520 num[i + j] = LOWPART (work);
523 num [num_hi_sig] += carry;
526 /* Store the quotient digit. */
527 quo[i] = quo_est;
531 decode (quo, lquo, hquo);
533 finish_up:
534 /* If result is negative, make it so. */
535 if (quo_neg)
536 neg_double (*lquo, *hquo, lquo, hquo);
538 /* Compute trial remainder: rem = num - (quo * den) */
539 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
540 neg_double (*lrem, *hrem, lrem, hrem);
541 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
543 switch (code)
545 case TRUNC_DIV_EXPR:
546 case TRUNC_MOD_EXPR: /* round toward zero */
547 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
548 return overflow;
550 case FLOOR_DIV_EXPR:
551 case FLOOR_MOD_EXPR: /* round toward negative infinity */
552 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
554 /* quo = quo - 1; */
555 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
556 lquo, hquo);
558 else
559 return overflow;
560 break;
562 case CEIL_DIV_EXPR:
563 case CEIL_MOD_EXPR: /* round toward positive infinity */
564 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
566 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
567 lquo, hquo);
569 else
570 return overflow;
571 break;
573 case ROUND_DIV_EXPR:
574 case ROUND_MOD_EXPR: /* round to closest integer */
576 unsigned HOST_WIDE_INT labs_rem = *lrem;
577 HOST_WIDE_INT habs_rem = *hrem;
578 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
579 HOST_WIDE_INT habs_den = hden, htwice;
581 /* Get absolute values. */
582 if (*hrem < 0)
583 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
584 if (hden < 0)
585 neg_double (lden, hden, &labs_den, &habs_den);
587 /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
588 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
589 labs_rem, habs_rem, &ltwice, &htwice);
591 if (((unsigned HOST_WIDE_INT) habs_den
592 < (unsigned HOST_WIDE_INT) htwice)
593 || (((unsigned HOST_WIDE_INT) habs_den
594 == (unsigned HOST_WIDE_INT) htwice)
595 && (labs_den <= ltwice)))
597 if (*hquo < 0)
598 /* quo = quo - 1; */
599 add_double (*lquo, *hquo,
600 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
601 else
602 /* quo = quo + 1; */
603 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
604 lquo, hquo);
606 else
607 return overflow;
609 break;
611 default:
612 gcc_unreachable ();
615 /* Compute true remainder: rem = num - (quo * den) */
616 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
617 neg_double (*lrem, *hrem, lrem, hrem);
618 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
619 return overflow;
623 /* Construct from a buffer of length LEN. BUFFER will be read according
624 to byte endianess and word endianess. Only the lower LEN bytes
625 of the result are set; the remaining high bytes are cleared. */
627 double_int
628 double_int::from_buffer (const unsigned char *buffer, int len)
630 double_int result = double_int_zero;
631 int words = len / UNITS_PER_WORD;
633 gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
635 for (int byte = 0; byte < len; byte++)
637 int offset;
638 int bitpos = byte * BITS_PER_UNIT;
639 unsigned HOST_WIDE_INT value;
641 if (len > UNITS_PER_WORD)
643 int word = byte / UNITS_PER_WORD;
645 if (WORDS_BIG_ENDIAN)
646 word = (words - 1) - word;
648 offset = word * UNITS_PER_WORD;
650 if (BYTES_BIG_ENDIAN)
651 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
652 else
653 offset += byte % UNITS_PER_WORD;
655 else
656 offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
658 value = (unsigned HOST_WIDE_INT) buffer[offset];
660 if (bitpos < HOST_BITS_PER_WIDE_INT)
661 result.low |= value << bitpos;
662 else
663 result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
666 return result;
670 /* Returns mask for PREC bits. */
672 double_int
673 double_int::mask (unsigned prec)
675 unsigned HOST_WIDE_INT m;
676 double_int mask;
678 if (prec > HOST_BITS_PER_WIDE_INT)
680 prec -= HOST_BITS_PER_WIDE_INT;
681 m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
682 mask.high = (HOST_WIDE_INT) m;
683 mask.low = ALL_ONES;
685 else
687 mask.high = 0;
688 mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
691 return mask;
694 /* Returns a maximum value for signed or unsigned integer
695 of precision PREC. */
697 double_int
698 double_int::max_value (unsigned int prec, bool uns)
700 return double_int::mask (prec - (uns ? 0 : 1));
703 /* Returns a minimum value for signed or unsigned integer
704 of precision PREC. */
706 double_int
707 double_int::min_value (unsigned int prec, bool uns)
709 if (uns)
710 return double_int_zero;
711 return double_int_one.lshift (prec - 1, prec, false);
714 /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
715 outside of the precision are set to the sign bit (i.e., the PREC-th one),
716 otherwise they are set to zero.
718 This corresponds to returning the value represented by PREC lowermost bits
719 of CST, with the given signedness. */
721 double_int
722 double_int::ext (unsigned prec, bool uns) const
724 if (uns)
725 return this->zext (prec);
726 else
727 return this->sext (prec);
730 /* The same as double_int::ext with UNS = true. */
732 double_int
733 double_int::zext (unsigned prec) const
735 const double_int &cst = *this;
736 double_int mask = double_int::mask (prec);
737 double_int r;
739 r.low = cst.low & mask.low;
740 r.high = cst.high & mask.high;
742 return r;
745 /* The same as double_int::ext with UNS = false. */
747 double_int
748 double_int::sext (unsigned prec) const
750 const double_int &cst = *this;
751 double_int mask = double_int::mask (prec);
752 double_int r;
753 unsigned HOST_WIDE_INT snum;
755 if (prec <= HOST_BITS_PER_WIDE_INT)
756 snum = cst.low;
757 else
759 prec -= HOST_BITS_PER_WIDE_INT;
760 snum = (unsigned HOST_WIDE_INT) cst.high;
762 if (((snum >> (prec - 1)) & 1) == 1)
764 r.low = cst.low | ~mask.low;
765 r.high = cst.high | ~mask.high;
767 else
769 r.low = cst.low & mask.low;
770 r.high = cst.high & mask.high;
773 return r;
776 /* Returns true if CST fits in signed HOST_WIDE_INT. */
778 bool
779 double_int::fits_shwi () const
781 const double_int &cst = *this;
782 if (cst.high == 0)
783 return (HOST_WIDE_INT) cst.low >= 0;
784 else if (cst.high == -1)
785 return (HOST_WIDE_INT) cst.low < 0;
786 else
787 return false;
790 /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
791 unsigned HOST_WIDE_INT if UNS is true. */
793 bool
794 double_int::fits_hwi (bool uns) const
796 if (uns)
797 return this->fits_uhwi ();
798 else
799 return this->fits_shwi ();
802 /* Returns A * B. */
804 double_int
805 double_int::operator * (double_int b) const
807 const double_int &a = *this;
808 double_int ret;
809 mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
810 return ret;
813 /* Multiplies *this with B and returns a reference to *this. */
815 double_int &
816 double_int::operator *= (double_int b)
818 mul_double (low, high, b.low, b.high, &low, &high);
819 return *this;
822 /* Returns A * B. If the operation overflows according to UNSIGNED_P,
823 *OVERFLOW is set to nonzero. */
825 double_int
826 double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
828 const double_int &a = *this;
829 double_int ret, tem;
830 *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
831 &ret.low, &ret.high,
832 &tem.low, &tem.high, unsigned_p);
833 return ret;
836 double_int
837 double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
838 double_int *higher, bool *overflow) const
841 double_int lower;
842 *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
843 &lower.low, &lower.high,
844 &higher->low, &higher->high,
845 unsigned_p);
846 return lower;
849 /* Returns A + B. */
851 double_int
852 double_int::operator + (double_int b) const
854 const double_int &a = *this;
855 double_int ret;
856 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
857 return ret;
860 /* Adds B to *this and returns a reference to *this. */
862 double_int &
863 double_int::operator += (double_int b)
865 add_double (low, high, b.low, b.high, &low, &high);
866 return *this;
870 /* Returns A + B. If the operation overflows according to UNSIGNED_P,
871 *OVERFLOW is set to nonzero. */
873 double_int
874 double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
876 const double_int &a = *this;
877 double_int ret;
878 *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
879 &ret.low, &ret.high, unsigned_p);
880 return ret;
883 /* Returns A - B. */
885 double_int
886 double_int::operator - (double_int b) const
888 const double_int &a = *this;
889 double_int ret;
890 neg_double (b.low, b.high, &b.low, &b.high);
891 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
892 return ret;
895 /* Subtracts B from *this and returns a reference to *this. */
897 double_int &
898 double_int::operator -= (double_int b)
900 neg_double (b.low, b.high, &b.low, &b.high);
901 add_double (low, high, b.low, b.high, &low, &high);
902 return *this;
906 /* Returns A - B. If the operation overflows via inconsistent sign bits,
907 *OVERFLOW is set to nonzero. */
909 double_int
910 double_int::sub_with_overflow (double_int b, bool *overflow) const
912 double_int ret;
913 neg_double (b.low, b.high, &ret.low, &ret.high);
914 add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
915 *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
916 return ret;
919 /* Returns -A. */
921 double_int
922 double_int::operator - () const
924 const double_int &a = *this;
925 double_int ret;
926 neg_double (a.low, a.high, &ret.low, &ret.high);
927 return ret;
930 double_int
931 double_int::neg_with_overflow (bool *overflow) const
933 double_int ret;
934 *overflow = neg_double (low, high, &ret.low, &ret.high);
935 return ret;
938 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
939 specified by CODE). CODE is enum tree_code in fact, but double_int.h
940 must be included before tree.h. The remainder after the division is
941 stored to MOD. */
943 double_int
944 double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
945 double_int *mod, bool *overflow) const
947 const double_int &a = *this;
948 double_int ret;
950 *overflow = div_and_round_double (code, uns, a.low, a.high,
951 b.low, b.high, &ret.low, &ret.high,
952 &mod->low, &mod->high);
953 return ret;
956 double_int
957 double_int::divmod (double_int b, bool uns, unsigned code,
958 double_int *mod) const
960 const double_int &a = *this;
961 double_int ret;
963 div_and_round_double (code, uns, a.low, a.high,
964 b.low, b.high, &ret.low, &ret.high,
965 &mod->low, &mod->high);
966 return ret;
969 /* The same as double_int::divmod with UNS = false. */
971 double_int
972 double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
974 return this->divmod (b, false, code, mod);
977 /* The same as double_int::divmod with UNS = true. */
979 double_int
980 double_int::udivmod (double_int b, unsigned code, double_int *mod) const
982 return this->divmod (b, true, code, mod);
985 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
986 specified by CODE). CODE is enum tree_code in fact, but double_int.h
987 must be included before tree.h. */
989 double_int
990 double_int::div (double_int b, bool uns, unsigned code) const
992 double_int mod;
994 return this->divmod (b, uns, code, &mod);
997 /* The same as double_int::div with UNS = false. */
999 double_int
1000 double_int::sdiv (double_int b, unsigned code) const
1002 return this->div (b, false, code);
1005 /* The same as double_int::div with UNS = true. */
1007 double_int
1008 double_int::udiv (double_int b, unsigned code) const
1010 return this->div (b, true, code);
1013 /* Returns A % B (computed as unsigned depending on UNS, and rounded as
1014 specified by CODE). CODE is enum tree_code in fact, but double_int.h
1015 must be included before tree.h. */
1017 double_int
1018 double_int::mod (double_int b, bool uns, unsigned code) const
1020 double_int mod;
1022 this->divmod (b, uns, code, &mod);
1023 return mod;
1026 /* The same as double_int::mod with UNS = false. */
1028 double_int
1029 double_int::smod (double_int b, unsigned code) const
1031 return this->mod (b, false, code);
1034 /* The same as double_int::mod with UNS = true. */
1036 double_int
1037 double_int::umod (double_int b, unsigned code) const
1039 return this->mod (b, true, code);
1042 /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1043 the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1044 unchanged. */
1046 bool
1047 double_int::multiple_of (double_int factor,
1048 bool unsigned_p, double_int *multiple) const
1050 double_int remainder;
1051 double_int quotient = this->divmod (factor, unsigned_p,
1052 TRUNC_DIV_EXPR, &remainder);
1053 if (remainder.is_zero ())
1055 *multiple = quotient;
1056 return true;
1059 return false;
1062 /* Set BITPOS bit in A. */
1063 double_int
1064 double_int::set_bit (unsigned bitpos) const
1066 double_int a = *this;
1067 if (bitpos < HOST_BITS_PER_WIDE_INT)
1068 a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
1069 else
1070 a.high |= (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1072 return a;
1075 /* Count trailing zeros in A. */
1077 double_int::trailing_zeros () const
1079 const double_int &a = *this;
1080 unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1081 unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1082 if (!w)
1083 return HOST_BITS_PER_DOUBLE_INT;
1084 bits += ctz_hwi (w);
1085 return bits;
1088 /* Shift A left by COUNT places. */
1090 double_int
1091 double_int::lshift (HOST_WIDE_INT count) const
1093 double_int ret;
1095 gcc_checking_assert (count >= 0);
1097 if (count >= HOST_BITS_PER_DOUBLE_INT)
1099 /* Shifting by the host word size is undefined according to the
1100 ANSI standard, so we must handle this as a special case. */
1101 ret.high = 0;
1102 ret.low = 0;
1104 else if (count >= HOST_BITS_PER_WIDE_INT)
1106 ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1107 ret.low = 0;
1109 else
1111 ret.high = (((unsigned HOST_WIDE_INT) high << count)
1112 | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1113 ret.low = low << count;
1116 return ret;
1119 /* Shift A right by COUNT places. */
1121 double_int
1122 double_int::rshift (HOST_WIDE_INT count) const
1124 double_int ret;
1126 gcc_checking_assert (count >= 0);
1128 if (count >= HOST_BITS_PER_DOUBLE_INT)
1130 /* Shifting by the host word size is undefined according to the
1131 ANSI standard, so we must handle this as a special case. */
1132 ret.high = 0;
1133 ret.low = 0;
1135 else if (count >= HOST_BITS_PER_WIDE_INT)
1137 ret.high = 0;
1138 ret.low
1139 = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1141 else
1143 ret.high = high >> count;
1144 ret.low = ((low >> count)
1145 | ((unsigned HOST_WIDE_INT) high
1146 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1149 return ret;
1152 /* Shift A left by COUNT places keeping only PREC bits of result. Shift
1153 right if COUNT is negative. ARITH true specifies arithmetic shifting;
1154 otherwise use logical shift. */
1156 double_int
1157 double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1159 double_int ret;
1160 if (count > 0)
1161 lshift_double (low, high, count, prec, &ret.low, &ret.high);
1162 else
1163 rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
1164 return ret;
1167 /* Shift A right by COUNT places keeping only PREC bits of result. Shift
1168 left if COUNT is negative. ARITH true specifies arithmetic shifting;
1169 otherwise use logical shift. */
1171 double_int
1172 double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1174 double_int ret;
1175 if (count > 0)
1176 rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
1177 else
1178 lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
1179 return ret;
1182 /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1183 Shift right if COUNT is negative. */
1185 double_int
1186 double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1188 double_int r;
1189 if (count > 0)
1190 lshift_double (low, high, count, prec, &r.low, &r.high);
1191 else
1192 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
1193 return r;
1196 /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1197 Shift left if COUNT is negative. */
1199 double_int
1200 double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1202 double_int r;
1203 if (count > 0)
1204 rshift_double (low, high, count, prec, &r.low, &r.high, true);
1205 else
1206 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1207 return r;
1210 /* Logical shift A left by COUNT places keeping only PREC bits of result.
1211 Shift right if COUNT is negative. */
1213 double_int
1214 double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1216 double_int r;
1217 if (count > 0)
1218 lshift_double (low, high, count, prec, &r.low, &r.high);
1219 else
1220 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
1221 return r;
1224 /* Logical shift A right by COUNT places keeping only PREC bits of result.
1225 Shift left if COUNT is negative. */
1227 double_int
1228 double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1230 double_int r;
1231 if (count > 0)
1232 rshift_double (low, high, count, prec, &r.low, &r.high, false);
1233 else
1234 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1235 return r;
1238 /* Rotate A left by COUNT places keeping only PREC bits of result.
1239 Rotate right if COUNT is negative. */
1241 double_int
1242 double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1244 double_int t1, t2;
1246 count %= prec;
1247 if (count < 0)
1248 count += prec;
1250 t1 = this->llshift (count, prec);
1251 t2 = this->lrshift (prec - count, prec);
1253 return t1 | t2;
1256 /* Rotate A rigth by COUNT places keeping only PREC bits of result.
1257 Rotate right if COUNT is negative. */
1259 double_int
1260 double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1262 double_int t1, t2;
1264 count %= prec;
1265 if (count < 0)
1266 count += prec;
1268 t1 = this->lrshift (count, prec);
1269 t2 = this->llshift (prec - count, prec);
1271 return t1 | t2;
1274 /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1275 comparison is given by UNS. */
1278 double_int::cmp (double_int b, bool uns) const
1280 if (uns)
1281 return this->ucmp (b);
1282 else
1283 return this->scmp (b);
1286 /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1287 and 1 if A > B. */
1290 double_int::ucmp (double_int b) const
1292 const double_int &a = *this;
1293 if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1294 return -1;
1295 if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1296 return 1;
1297 if (a.low < b.low)
1298 return -1;
1299 if (a.low > b.low)
1300 return 1;
1302 return 0;
1305 /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1306 and 1 if A > B. */
1309 double_int::scmp (double_int b) const
1311 const double_int &a = *this;
1312 if (a.high < b.high)
1313 return -1;
1314 if (a.high > b.high)
1315 return 1;
1316 if (a.low < b.low)
1317 return -1;
1318 if (a.low > b.low)
1319 return 1;
1321 return 0;
1324 /* Compares two unsigned values A and B for less-than. */
1326 bool
1327 double_int::ult (double_int b) const
1329 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1330 return true;
1331 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1332 return false;
1333 if (low < b.low)
1334 return true;
1335 return false;
1338 /* Compares two unsigned values A and B for less-than or equal-to. */
1340 bool
1341 double_int::ule (double_int b) const
1343 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1344 return true;
1345 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1346 return false;
1347 if (low <= b.low)
1348 return true;
1349 return false;
1352 /* Compares two unsigned values A and B for greater-than. */
1354 bool
1355 double_int::ugt (double_int b) const
1357 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1358 return true;
1359 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1360 return false;
1361 if (low > b.low)
1362 return true;
1363 return false;
1366 /* Compares two signed values A and B for less-than. */
1368 bool
1369 double_int::slt (double_int b) const
1371 if (high < b.high)
1372 return true;
1373 if (high > b.high)
1374 return false;
1375 if (low < b.low)
1376 return true;
1377 return false;
1380 /* Compares two signed values A and B for less-than or equal-to. */
1382 bool
1383 double_int::sle (double_int b) const
1385 if (high < b.high)
1386 return true;
1387 if (high > b.high)
1388 return false;
1389 if (low <= b.low)
1390 return true;
1391 return false;
1394 /* Compares two signed values A and B for greater-than. */
1396 bool
1397 double_int::sgt (double_int b) const
1399 if (high > b.high)
1400 return true;
1401 if (high < b.high)
1402 return false;
1403 if (low > b.low)
1404 return true;
1405 return false;
1409 /* Compares two values A and B. Returns max value. Signedness of the
1410 comparison is given by UNS. */
1412 double_int
1413 double_int::max (double_int b, bool uns)
1415 return (this->cmp (b, uns) == 1) ? *this : b;
1418 /* Compares two signed values A and B. Returns max value. */
1420 double_int
1421 double_int::smax (double_int b)
1423 return (this->scmp (b) == 1) ? *this : b;
1426 /* Compares two unsigned values A and B. Returns max value. */
1428 double_int
1429 double_int::umax (double_int b)
1431 return (this->ucmp (b) == 1) ? *this : b;
1434 /* Compares two values A and B. Returns mix value. Signedness of the
1435 comparison is given by UNS. */
1437 double_int
1438 double_int::min (double_int b, bool uns)
1440 return (this->cmp (b, uns) == -1) ? *this : b;
1443 /* Compares two signed values A and B. Returns min value. */
1445 double_int
1446 double_int::smin (double_int b)
1448 return (this->scmp (b) == -1) ? *this : b;
1451 /* Compares two unsigned values A and B. Returns min value. */
1453 double_int
1454 double_int::umin (double_int b)
1456 return (this->ucmp (b) == -1) ? *this : b;
1459 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1461 static unsigned
1462 double_int_split_digit (double_int *cst, unsigned base)
1464 unsigned HOST_WIDE_INT resl, reml;
1465 HOST_WIDE_INT resh, remh;
1467 div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
1468 &resl, &resh, &reml, &remh);
1469 cst->high = resh;
1470 cst->low = resl;
1472 return reml;
1475 /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1476 otherwise it is signed. */
1478 void
1479 dump_double_int (FILE *file, double_int cst, bool uns)
1481 unsigned digits[100], n;
1482 int i;
1484 if (cst.is_zero ())
1486 fprintf (file, "0");
1487 return;
1490 if (!uns && cst.is_negative ())
1492 fprintf (file, "-");
1493 cst = -cst;
1496 for (n = 0; !cst.is_zero (); n++)
1497 digits[n] = double_int_split_digit (&cst, 10);
1498 for (i = n - 1; i >= 0; i--)
1499 fprintf (file, "%u", digits[i]);
1503 /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1504 otherwise. */
1506 void
1507 mpz_set_double_int (mpz_t result, double_int val, bool uns)
1509 bool negate = false;
1510 unsigned HOST_WIDE_INT vp[2];
1512 if (!uns && val.is_negative ())
1514 negate = true;
1515 val = -val;
1518 vp[0] = val.low;
1519 vp[1] = (unsigned HOST_WIDE_INT) val.high;
1520 mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1522 if (negate)
1523 mpz_neg (result, result);
1526 /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1527 values of VAL will be wrapped; otherwise, they will be set to the
1528 appropriate minimum or maximum TYPE bound. */
1530 double_int
1531 mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1533 unsigned HOST_WIDE_INT *vp;
1534 size_t count, numb;
1535 double_int res;
1537 if (!wrap)
1539 mpz_t min, max;
1541 mpz_init (min);
1542 mpz_init (max);
1543 get_type_static_bounds (type, min, max);
1545 if (mpz_cmp (val, min) < 0)
1546 mpz_set (val, min);
1547 else if (mpz_cmp (val, max) > 0)
1548 mpz_set (val, max);
1550 mpz_clear (min);
1551 mpz_clear (max);
1554 /* Determine the number of unsigned HOST_WIDE_INT that are required
1555 for representing the value. The code to calculate count is
1556 extracted from the GMP manual, section "Integer Import and Export":
1557 http://gmplib.org/manual/Integer-Import-and-Export.html */
1558 numb = 8*sizeof(HOST_WIDE_INT);
1559 count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1560 if (count < 2)
1561 count = 2;
1562 vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT));
1564 vp[0] = 0;
1565 vp[1] = 0;
1566 mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1568 gcc_assert (wrap || count <= 2);
1570 res.low = vp[0];
1571 res.high = (HOST_WIDE_INT) vp[1];
1573 res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1574 if (mpz_sgn (val) < 0)
1575 res = -res;
1577 return res;